TW201245756A - Antireflection film, polarizing plate, and image display device - Google Patents

Antireflection film, polarizing plate, and image display device Download PDF

Info

Publication number
TW201245756A
TW201245756A TW101114663A TW101114663A TW201245756A TW 201245756 A TW201245756 A TW 201245756A TW 101114663 A TW101114663 A TW 101114663A TW 101114663 A TW101114663 A TW 101114663A TW 201245756 A TW201245756 A TW 201245756A
Authority
TW
Taiwan
Prior art keywords
refractive index
low refractive
index layer
item
mass
Prior art date
Application number
TW101114663A
Other languages
Chinese (zh)
Other versions
TWI542899B (en
Inventor
Mariko Hayashi
Tomoyuki Horio
Original Assignee
Dainippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47072049&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TW201245756(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Dainippon Printing Co Ltd filed Critical Dainippon Printing Co Ltd
Publication of TW201245756A publication Critical patent/TW201245756A/en
Application granted granted Critical
Publication of TWI542899B publication Critical patent/TWI542899B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • G02B1/105
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/418Refractive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/107Porous materials, e.g. for reducing the refractive index

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Polarising Elements (AREA)
  • Laminated Bodies (AREA)
  • Liquid Crystal (AREA)

Abstract

The purpose of the present invention is to provide an antireflection film that has a sufficient surface hardness and a uniform surface, comprises a low-refractive-index layer having a sufficiently low refractive index, and has excellent antireflection performance. An antireflection film wherein a hard coating layer is formed on a light-permeable substrate and a low-refractive-index layer is formed on the hard coating layer is characterized in that the low-refractive-index layer of the antireflection film comprises (meth)acrylic resin, hollow silica microparticles, reactive silica microparticles and an antifouling agent and the reactive silica microparticles in the low-refractive-index layer are unevenly distributed near the interface on the hard coating layer side and/or near the interface of the side opposite the hard coating layer.

Description

201245756 - 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種抗反射膜、偏光板及影像顯示裝置。 【先前技術】 對於陰極射線管顯示裝置(C RT )、液晶顯示器(L c D )、 電漿顯示器(PDP)、電致發光顯示器(ELD)、場發射顯示 器(ΡΕζ))、觸控面板、平板Pc、電子紙等影像顯示裝置中 之影像顯示面,要求減少因由外部光源照射之光線引起之 反射,而提高其視認性。 相對於此,通常藉由利用於透光性基材上形成有抗反 射層之抗反射膜,而減少影像顯示裝置之影像顯示面之反 射,提高視認性。 作為具有抗反射層之抗反射膜,先前已知有於最表面 設置折射率低於透光性基材之低折射率層的構造。 ;此種低折射率層,為了提高抗反射膜之抗反射性 能而要求為低折射率,由於設置於最表面故而要求具有防 5陡鲍’為了抗損傷等而要求具有高硬度,及要求具有透 明性等優異之光學特性。 作為最表面形成有低折射率層之抗反射膜,例如專利 ^獻1中揭示有如下抗反射膜:使用含有中空狀二氧化石夕 微粒子與丙埽醆赌等點合樹脂等之塗佈液,具有 中空狀二氧化矽料 ^ 7喊拉子之構造之低折射率層的抗反射膜。201245756 - VI. Description of the Invention: [Technical Field] The present invention relates to an anti-reflection film, a polarizing plate, and an image display device. [Prior Art] For a cathode ray tube display device (C RT ), a liquid crystal display (L c D ), a plasma display (PDP), an electroluminescence display (ELD), a field emission display (ΡΕζ), a touch panel, The image display surface in an image display device such as a flat panel Pc or an electronic paper is required to reduce reflection caused by light irradiated by an external light source, thereby improving visibility. On the other hand, by using an antireflection film having an antireflection layer formed on a light-transmitting substrate, reflection of the image display surface of the image display device is reduced, and visibility is improved. As the antireflection film having an antireflection layer, a structure in which a low refractive index layer having a refractive index lower than that of a light-transmitting substrate is provided on the outermost surface is known. Such a low refractive index layer is required to have a low refractive index in order to improve the antireflection performance of the antireflection film, and is required to have a high hardness in order to prevent damage or the like because it is provided on the outermost surface, and is required to have Excellent optical properties such as transparency. As an antireflection film in which a low refractive index layer is formed on the outermost surface, for example, Patent Document 1 discloses an antireflection film using a coating liquid containing hollow smectite particles and a blistering resin such as acryl. An antireflection film having a low refractive index layer of a hollow cerium oxide material.

但近年來,别_ P A 一 f衫像顯示裝置所要求之顯示品質變得非 吊南,對於rf? > c a 几射祺產生之抗反射性能亦變得要求更高 3 201245756 水平。 然而’先前之設置有内包中空狀二氧化矽微粒子之低 折射率層之抗反射膜,其抗反射性能難言充分,無法充分 應對近年來之高顯示品質之要求。 又,例如於專利文獻2等中揭示有於低折射率層之材 料中調配含氟原子聚合物或單體之方法。含氟原子聚合物 或單體為折射率較低之材料,因此含有該等之低折射率層 與先則之内包中空狀二氧化矽微粒子之低折射率層相比, 可進一步降低折射率》 然而先前之含有含氟原子聚合物或單體之低折射率 層若以充分地降低折射率之程度含有該等化合物,則存在 低折射率層之硬度變得不充分之問題。 因此謀求種具備具有充分之表面硬度並且折射率 更低之低折射率4 ’且具有高抗反射性能的抗反射膜。 =進而,此種抗反射膜由於通常設置於影像顯示裝置之 最表面,故而亦要求具備優異之光滑性。 專利文獻1 :曰本特開2003-29283 1號公報 專利文獻2:日本特開2001-100004號公報 【發明内容】 本發月繁於上述現狀,目的在於提供一種抗反射膜、 吏用〆抗反射膜而成之偏光板及影像顯示裝置,該抗反射 膜”有充/刀之防>7性能、表面硬度及均勻之表面,且具備 (折射率層之折射率充分低之低折射率層,具有優異之抗 反射性能。 4 201245756 本發明係一種抗反射膜,係於透光性基材上形成硬塗 層、於上述硬塗層上形成低折射率層,其特徵在於:上述 低折射率層含有(曱基)丙烯酸系樹脂、中空狀二氧化矽微粒 子、反應性二氧化矽微粒子及防污劑,且上述低折射率層 中之反應性二氧化矽微粒子偏於上述硬塗層側之界面附近 及/或與上述硬塗層相反側之界面附近。 於本發明之抗反射膜中,較佳為上述低折射率層中之 反應性二氧化矽微粒子偏於與硬塗層側相反側之界面附 近’上述硬塗層於低折射率層側之界面附近具有沿該界面 方向整齊排列之反應性二氧化矽微粒子。 又’較佳為上述低折射率層中之反應性二氧化矽微粒 子之含量相對於(曱基)丙烯酸系樹脂1〇〇質量份,為5〜6〇 質量份。 又,較佳為上述中空狀二氧化矽微粒子之平均粒徑為 40〜80 nm,進而相對於(曱基)丙烯酸系樹脂之調配比(中 空狀二氧化矽微粒子之含量/(甲基)丙烯酸系樹脂之含量) 為 0.90〜1.60。 又,較佳為上述防污劑偏於上述低折射率層之與硬塗 層相反側之界面附近。 較佳為上述防污劑係含有反應性官能基、與氟原子及/ 或石夕原子之化合物。 又’較佳為上述(甲基)丙烯酸系樹脂係選自由新戊四醇 三(曱基)丙烯酸酯、二新戊四醇六(曱基)丙烯酸酯、新戊四 醇四(曱基)丙烯酸酯、二新戊四醇五(曱基)丙烯酸酯、三羥 201245756 甲基丙烧三(甲基)丙烯酸@旨、二新戍四醇四(甲基)丙烯酸 酯、及、異三聚氱酸三(甲基)丙烯酸酯所組成之群中之至少 1種單體之聚合物或共聚物。 又,較佳為上述低折射率層進而含有含氟原子之樹脂。 又’較佳為上述硬塗層中之反應性二氧化矽微粒子之 含量相對於(甲基)丙烯酸系樹脂丨00質量份,為i 5〜6〇質 量份。 又,本發明亦係一種偏光板,係具備偏光元件而成, 其特徵在於:上述偏光板於偏光元件表面具備上述抗反射 膜》 又,本發明亦係一種影像顯示裝置,具備上述抗反射 膜、或上述偏光板。 以下詳細說明本發明。 本發明係一種抗反射膜’係於透光性基材上形成硬塗 層、於上述硬塗層上形成低折射率層。 本發明者等人對於上述構成之抗反射膜進行努力研 究’結果發現’使硬塗層含有反應性:氧切微粒子,進 而使低折射率層含有反應性二氧化矽微粒子與中空狀二氧 化石夕微粒子,藉此上述低折射率層中之反n氧化石夕微 粒子偏於與硬塗層相反側之界面附近,又,低折射率層中 之t空狀—氧化石夕微粒子成為緊密填充之狀態,發揮所 望之效果’最終完成本發明。 x下°羊細說明構成本發明之抗反射膜之各層。 低折射率0 201245756 上述所謂低折射率層,係指其折射率低於構成本發明 之抗反射膜之透光性基材或硬塗層等除低折射率層以外之 構成物之折射率者。 於本發明之抗反射膜中,上述低折射率層含有(甲美 丙烯酸系樹脂、中空狀二氧化石夕微粒子、反應性二氧切 微粒子及防污劑。 上述中空狀二氧化矽微粒子發揮保持低折射率層之層 =度、並降低其折射率之作用。再者,於本說明書中,所 谓y中空狀二氧切微粒子」,意指如下二氧切微粒子: 其係内部填充有氣體之構造及/或包含氣體之多孔質構造 體,與二氧化石夕微粒子原本之折射率相比,其折射率係與 氣體之佔有率成比例地下降。 又於本發明中,根據二氧化矽微粒子之形態、構造、 凝集狀態、於使用形成上述低折射率層時所使用之後述低 折射率層帛組成物所形成之塗膜之内部中的分散狀態,於 内部及/或表面之至少一部分亦含有可形成奈米孔洞構造之 一氧化$夕微粒子。 ^於本發明之抗反射膜中,上述中空狀二氧化矽微粒子 係以緊密地填充於上述低折射率層中之狀態而含有。因 此,上述低折射率層之表面之均勻性優異,本發明之抗反 射膜之表面硬度優異。 再者,上述所謂「緊密填充之狀態」,意指於鄰接之中 空狀二氧化矽微粒子間幾乎不存在後述反應性二氧化矽微 粒子’形成類似最密填充構造之狀態。 201245756 推測上述中空狀二氧化矽微粒子以緊密填充之狀態含 有於上述低折射率層中的原因在於,如後所述,上述低折 射率層中所包含之反應性二氧化矽微粒子偏於低折射率層 之硬塗層側界面附近或與硬塗層相反側之界面附近。即, 推則原因在於,上述低折射率層係藉由如下方式而形成: 將包3中工狀—氧化碎微粒子、反應性二氧化#微粒子及 (甲基)丙稀系樹脂之單體成分之組成物(以下亦稱作低折 率層用’《a成物)塗佈於硬塗層上,形成塗膜,使該塗膜 =燥硬化。形成上述塗膜時,如後所述,該塗膜中所包 3之反應—氧化碎微粒子會移動於上述硬塗層側之界面 附近或與硬塗層4目反側之界面附&。因&,於所形成之塗 膜中,於鄰接之中空狀二氧化碎微粒子間幾乎不存在反應 性一氧化矽微粒子’結果所形成之低折射率層中之中空狀 一氧化矽微粒子成為緊密填充之狀態。 —作為上述中空狀二氧化矽微粒子之具體例,並不特別 限定’例如可較佳地列舉:使用日本專利特開Mm則 號公報中所揭示之技術所製備之二氧化矽微粒子。中空狀 :氧化矽微粒子由於易於製造且其自身之硬度冑,因此於 2機系黏合劑混合而形成低折射率層時,可提高低折射 ^之層強度,且可將折射率調整得較低。 出上述中空一氧化石夕微粒子以外,亦可列舉:為 大比表面積而製造使用之填充用之管柱、使表面之多 ,部吸附各種化學物質之吸附劑、用於觸媒固定之多孔 質微粗子、或相以併人斷熱材或低介電材之中线粒子 8 201245756 之分散體或凝集體。作為此種具體例, 舉:Nippon Silica Industrial 公司製造 作為市售品,可列 之商品名Nipsil或However, in recent years, the display quality required for the display device has become non-hanging, and the anti-reflection performance of rf? > c a several shots has become higher. 3 201245756 Level. However, the antireflection film which has been provided with a low refractive index layer containing hollow cerium oxide microparticles has insufficient antireflection performance and cannot sufficiently satisfy the demand for high display quality in recent years. Further, for example, Patent Document 2 or the like discloses a method of formulating a fluorine atom-containing polymer or a monomer in a material of a low refractive index layer. Since the fluorine atom-containing polymer or the monomer is a material having a relatively low refractive index, the low refractive index layer containing the lower refractive index layer can further reduce the refractive index as compared with the low refractive index layer containing the hollow hollow ceria microparticles. However, when the low refractive index layer containing a fluorine atom-containing polymer or a monomer contains such a compound to such an extent that the refractive index is sufficiently lowered, the hardness of the low refractive index layer becomes insufficient. Therefore, an antireflection film having a low refractive index 4' having a sufficient surface hardness and a lower refractive index and having high antireflection properties has been sought. Further, since such an antireflection film is usually provided on the outermost surface of the image display device, it is required to have excellent smoothness. Patent Document 1: JP-A-2003-29283 No. JP-A No. 2001-100004 (Patent Document 2) Japanese Laid-Open Patent Publication No. 2001-100004 (Summary of the Invention) This is a continuation of the present invention, and is intended to provide an anti-reflection film and an anti-reflection film. a polarizing plate and an image display device made of a reflective film, which has a surface resistance, a surface hardness, and a uniform surface, and has a low refractive index (the refractive index of the refractive index layer is sufficiently low) The layer has excellent anti-reflection properties. 4 201245756 The present invention is an anti-reflection film which is formed by forming a hard coat layer on a light-transmitting substrate and forming a low-refractive-index layer on the hard coat layer, which is characterized by the above-mentioned low The refractive index layer contains a (fluorenyl) acrylic resin, hollow cerium oxide fine particles, reactive cerium oxide fine particles, and an antifouling agent, and the reactive cerium oxide fine particles in the low refractive index layer are biased to the hard coat layer. In the vicinity of the interface of the side and/or near the interface opposite to the hard coat layer. In the antireflection film of the present invention, it is preferred that the reactive cerium oxide microparticles in the low refractive index layer are biased to the side of the hard coat layer. phase Near the interface of the side, the hard coat layer has reactive ceria particles arranged neatly along the interface direction in the vicinity of the interface on the side of the low refractive index layer. Further preferably, the reactive ceria in the low refractive index layer is The content of the fine particles is 5 to 6 parts by mass based on 1 part by mass of the (fluorenyl) acrylic resin. Further, it is preferable that the average particle diameter of the hollow cerium oxide fine particles is 40 to 80 nm, and further The blending ratio of the (mercapto)acrylic resin (the content of the hollow cerium oxide fine particles/the content of the (meth)acrylic resin) is 0.90 to 1.60. Further, it is preferable that the above-mentioned antifouling agent is biased to the above low refractive index. Preferably, the antifouling agent contains a reactive functional group, a compound having a fluorine atom and/or a cerium atom, and is preferably 'the above (meth)acrylic acid. The resin is selected from the group consisting of neopentyl alcohol tris(mercapto) acrylate, dipentaerythritol hexakisyl acrylate, pentaerythritol tetrakis(meth) acrylate, and dipentaerythritol five (曱). Acrylate, At least one of a group consisting of trihydroxy 201245756 methyl propyl tris(meth) acrylate @ 、, diterpene tetraol tetra(meth) acrylate, and isotrimeric decanoic acid tri(meth) acrylate Further, the polymer or copolymer of one type of monomer is preferably a resin containing a fluorine atom in the low refractive index layer. Further, it is preferable that the content of the reactive cerium oxide microparticles in the hard coat layer is relative to The (meth)acrylic resin 丨 00 parts by mass is i 5 to 6 〇 parts by mass. The present invention is also a polarizing plate comprising a polarizing element, wherein the polarizing plate is provided on the surface of the polarizing element. Further, the present invention relates to an image display device comprising the above-described antireflection film or the above polarizing plate. The present invention will be described in detail below. The present invention is an antireflection film formed on a light-transmitting substrate. A hard coat layer forms a low refractive index layer on the hard coat layer. The inventors of the present invention conducted an effort to study the antireflection film having the above-described structure and found that the hard coat layer contains reactivity: oxygen-cut microparticles, and further, the low refractive index layer contains reactive ceria particles and hollow silica. In the case of the fine particles, the reverse n-oxidized oxide particles in the low refractive index layer are biased to the vicinity of the interface on the opposite side of the hard coat layer, and the t-shaped hollow oxide particles in the low refractive index layer are closely packed. The state, the desired effect is achieved', and the present invention is finally completed. Each of the layers constituting the antireflection film of the present invention is described. Low refractive index 0 201245756 The above-mentioned low refractive index layer refers to a refractive index lower than that of a constituent other than the low refractive index layer such as a light-transmitting substrate or a hard coat layer constituting the antireflection film of the present invention. . In the antireflection film of the present invention, the low refractive index layer contains (american acrylic resin, hollow silica fine particles, reactive dioxygen fine particles, and an antifouling agent. The hollow cerium oxide microparticles are maintained. The layer of the low refractive index layer has a degree of degree and reduces the refractive index. Further, in the present specification, the term "y hollow-shaped dioxy-cut microparticles" means a dioxo-cut microparticle: the inside of which is filled with a gas. The porous structure including the structure and/or the gas has a refractive index which decreases in proportion to the gas occupation rate as compared with the original refractive index of the silica fine particles. Further, in the present invention, the cerium oxide microparticles are used. The form, the structure, the agglomerated state, and the dispersed state in the interior of the coating film formed by using the low refractive index layer composition described later when the low refractive index layer is formed, and at least a part of the inside and/or the surface The oxidized cerium microparticles are formed in the antireflection film of the present invention, and the hollow cerium oxide microparticles are closely packed in the antireflection film of the present invention. The surface of the low refractive index layer is excellent in the uniformity of the surface of the low refractive index layer, and the surface hardness of the antireflection film of the present invention is excellent. Further, the term "closely filled state" means There is almost no state in which the above-mentioned reactive cerium oxide microparticles are formed in a state similar to the most densely packed structure between adjacent hollow cerium oxide microparticles. 201245756 It is presumed that the hollow cerium oxide microparticles are contained in the state of being closely packed in the low refractive index. The reason for the layer is that, as will be described later, the reactive ceria particles contained in the low refractive index layer are biased near the interface of the hard coat side of the low refractive index layer or near the interface opposite to the side of the hard coat layer. That is, the reason for the reason is that the low refractive index layer is formed by: forming the monomer component of the work--oxidized fine particles, the reactive dioxide #microparticles, and the (meth)acrylic resin in the package 3. The composition (hereinafter also referred to as a low-fold layer) is applied to the hard coat layer to form a coating film, and the coating film is dried and hardened. As will be described later, the reaction-containing oxidized fine particles contained in the coating film are moved to the vicinity of the interface on the side of the hard coat layer or to the interface on the opposite side of the hard coat layer 4, because & In the formed coating film, the hollow niobium oxide microparticles in the low refractive index layer formed by the formation of the reactive niobium oxide microparticles between the adjacent hollow oxidized fine particles are in a state of being closely packed. Specific examples of the hollow cerium oxide fine particles are not particularly limited. For example, cerium oxide fine particles prepared by the technique disclosed in Japanese Laid-Open Patent Publication No. Hm. Since the fine particles are easy to manufacture and their hardness is low, when the two-system adhesive is mixed to form a low refractive index layer, the layer strength of the low refractive index can be improved, and the refractive index can be adjusted to be low. In addition to the fine particles of the nitric oxide, the column for filling used for the production of a large specific surface area, the adsorbent for adsorbing various chemical substances, and the catalyst for the catalyst are used. A fixed dispersion of porous or coarse particles, or a dispersion or aggregate of the particles in the middle of a hot or low dielectric material. As a specific example, it is manufactured by Nippon Silica Industrial Co., Ltd. As a commercial item, it can be listed under the trade name Nipsil or

Nipgel中之多孔質二氧化矽微粒子之集合體,日產化學工 業公司製造之具有二氧切微粒子連接成鍵狀之構造之膠 體一氧化石夕UP系列(商品名 之較佳之粒徑範圍内者。 該等之中,可利用本發明 作為上述中空狀二氧化矽微粒子之平均粒徑,較佳為 10〜100 nm。藉由使中空狀二氧化石夕微粒子之平均粒徑處 於該範圍Θ ’而可對低折射率層賦予優異之透明性。更佳 之下限為40 nm ’更佳之上限為8〇 nm,進而更佳之下限為 45 nm ’進而更佳之上限$ 75 nm,最佳之下限$ 5〇⑽, 最佳之上限為70 nm。 再者’上述中空狀二氧化石夕微粒子之平均粒徑於該中 空狀二氧切微粒子單獨之情形時,意指藉由動態光散射 法所測定之值。另一方面,上述低折射率層中之中空狀二 氧化石夕微粒子之平均粒徑係如下值:利用stem等^察: 折射率層之剖面’選擇任意《30個中空狀二氧化石夕微粒 子,測定其剖面之粒徑,算出其平均值。 又,作為上述中空狀二氧化石夕微粒子之空隙率,較佳 2.5〜8〇.〇%。若未達丨5% ’料在無法充分降低低折射 :層、之折射率而使本發明之抗反射膜之抗反射性能變得不 刀的If况。若超過8G G%’則存在上述中空狀二氧化石夕微 子之強度下降而使低折射率層整體之強度變得不充分的 情况。上述中空狀二氧化矽微粒子之空隙率之更佳之下限 201245756 為6.4%’ t佳之上限& 76 4%’進而更佳之下限丨2〇 〇%, 進而更佳之上限為55.0%。藉由具有該範圍之空隙率而可 使低折射率層充分地低折射率化,並且可使低折射率層具 有優異之強度》 再者上述中空狀二氧化石夕微粒子之空隙率可藉由如 下,式計算:藉由中空狀二氧化石夕微粒子之剖面§丁膽觀 察等,測定除去其直徑及空隙部分之外殼部分之厚度,將 中空狀二氧化石夕微粒子設為球體,算出中空狀二氧化石夕微 粒子之空隙部分之體積、及設為無空隙部分時之中空狀二 氧化石夕微粒子之體積,藉由{(t空狀二氧切微粒子之空隙 #刀之體積)/(設為無㈣部分時之中空狀二氧化石夕微粒子 之體積)}xl〇〇而算出。 又,於在低折射率層中含有平均粒徑及上述外殼部分 之厚度不同之複數之中空狀二氧化石夕微粒子之情形時,將 由利用上述方法所算出之各中空狀二氧化石夕微粒子之空隙 率、與各中空狀二氧化石夕微粒子之調配比所算出得平均值 作為上述中空狀二氧化石夕微粒子之空隙率(以下亦將此種 空隙率稱作「平均空隙率」)。再者,即便於該情形時,各 個中空狀二氧切微粒子亦較佳為具有上述範圍之空隙 於本發明之抗反射臈中,上述中空狀二氧化石夕微粒子 之平均空隙率較㈣10.0,%1未達丨讓,則存在 無法充分降低低折射率層之折射率而使本發明之抗反射膜 之抗反射性能變得不充分的情況。若超過40.0%,則存在上 201245756 述中二狀一氧化矽微粒子之強度下降而使低折射率層整體 之強度變得不充分的情況。更佳之下限為15.0%,更佳之上 限為35.0%。 藉由有B亥範圍之空隙率,而可使低折射率層充分地 低折射率化’並且可使低折射率層具有優異之強度。就低 折射率化及強度之觀點而言,上述中空狀二氧切微粒子 之平均空隙率之進而更佳之下限為20.0%,進而更佳之上限 為 30.0% 〇 又上述中空狀一氧化石夕微粒子之相對於低折射率層 中所包含之後述(甲基)丙烯酸系樹脂的調配比(中空狀二氧 化矽微粒子之含量/(甲基)丙烯酸系樹脂之含量)較佳為 〇·90〜1.6G。若上述調配比未達請,則存在無法充分降低 上述低折射率層之折射率而使本發明之抗反射膜之抗反射 性能變得不充分的情況。若上述調配比超過丨·6〇,則存在 低折射率層之表面之均勻性變得不充分而使本發明之抗反 射膜之表面硬度變得不充分的情況。上述調配比之更佳之 下限為1.0 0 ’更佳之上限為1 5 0。 藉由處於該範圍内,而可製成具備更優異之抗反射性 能與表面均勻性及表面硬度之抗反射膜。又,藉由提高低 折射率層之表面均勻性,而使表面硬度(耐擦傷性)提高。 於本發明之抗反射膜中,上述中空狀二氧化矽微粒子 較佳為沿低折射率層之厚度方向積層成2段之最密填充構 造。藉由以此種狀態含有,而可使本發明之抗反射膜之透 明性、表面之均勻性及低折射率性等變得極其優異。 11 201245756 上述反應性二氧化矽微粒子偏於低折射率層之後述硬 塗層側之界面附近及/或與後述硬塗層相反側之界面附近, 發揮降低該低折射率層之折射率、並提高其表面硬度的作 用。 於上述反應性二氧化矽微粒子偏於低折射率層之硬塗 層側之界面附近及與該硬塗層相反側之界面附近的情形 時’可使表面硬度與防污性均優異。 又,於上述反應性二氧化矽微粒子偏於低折射率層之 硬塗層側之界面附近的情形時,後述防污劑偏於低折射率 層之與硬塗層相反側之界面附近,與反應性二氧化矽存在 於最表面之情形相比,防污劑於之最表面上之存在量增 加,因此本發明之抗反射臈之防污性能變得極其優異。另 一方面,當上述反應性二氧化矽微粒子偏於低折射率層之 與硬塗層相反側之界面附近時,可獲得因該反應性二氧化 矽微粒子偏向存在造成低折射率層之表面硬度之進一步提 高0 又’於上述低折射率層中,如上所述,中空狀二氧化 矽微粒子成為緊密填充之狀態,因此亦可謀求因低折射率 層之表面均勻性變得優異所引起的表面硬度之提高。結果 使本發明之抗反射膜之耐擦傷性變得優異。 此處’上述所謂「偏於硬塗層側之界面附近、或與後 述硬塗層相反侧之界面附近」,意指於上述低折射率層中, 上述反應性二氧化矽微粒子存在於處於緊密填充狀態之上 述中空狀二氧化矽微粒子之下方(硬塗層側)或上方(與 12 201245756 硬塗層相反側)。更具體而言,於上述低折射率層之剖面 中,將該低折射率層之厚度3等分,自上述硬塗層側之界 面開始依序設為1/3區域、2/3區域、3/3區域時,將於i/3 區域中包含反應性二氧化矽微粒子之7〇%以上之情形判斷 為反應性二氧化矽微粒子偏於硬塗層側之界面附近,將於 上述3/3區域中包含反應性二氧化矽微粒子之7〇%以上之情 形判斷為反應性二氧化矽微粒子偏於與硬塗層相反側之界 面附近。並且,將上述反應性二氧化矽微粒子之合計7〇〇/〇 以上偏於上述1/3區域與3/3區域中、且分別偏於1/3區域、 3/3區域中之反應性二氧化矽微粒子之量多於2/3區域中所 包含之反應性二氧化矽微粒子之量的情形判斷為上述反應 性二氧化矽微粒子偏於低折射率層之硬塗層側之界面附近 及與該硬塗層相反側之界面附近。 再者’此種反應性二氧化矽微粒子偏向地存在之狀態 可藉由沿厚度方向切割本發明之抗反射膜時之低折射率層 之剖面顯微鏡觀察(STEM、TEM )而容易地判別。 上述反應性二氧化矽微粒子於上述低折射率層中偏於 硬塗層側界面附近及/或與硬塗層相反側界面附近的原因並 未明確。然而’例如於後述硬塗層含有反應性二氧化矽微 粒子之情形時’藉由調整該硬塗層中之反應性二氧化矽微 粒子之添加量,而可控制上述低折射率層中之反應性二氧 化石夕微粒子之偏向存在。 即’於上述硬塗層不含有反應性二氧化矽微粒子之情 形時’若於該硬塗層上形成低折射率層,則可使低折射率 13 201245756 層之反應性一氧化石夕微粒子偏於硬塗層側界面附近。另一 方面’於上述硬塗層以相對於構成硬塗層之樹脂成分100 量伤而超過25質量份且為6〇質量份以下之範圍含有反 應性二氧化石夕微粒子的情形時,若於該硬塗層上形成低折 射率層’則可使低折射率層之反應性二氧化石夕微粒子偏於 與硬塗層相反側之界面附近。進而,於上述硬塗層以相對 於構成硬塗層之樹脂成分丨〇〇質量份而為丨5〜25質量份之 範圍含有反應性二氧化石夕微粒子的情形時,可使上述低折 射率層之反應性二氧化石夕微粒子偏於上述低折身十率層之硬 塗層側界面附近及與硬塗層相反側之界面附近。 作為上述反應性二氧化矽微粒子,亦可使用市售品, 例如可列舉:MIBK_SDL、MIBK_SDMS、mibk sd (以上 均為日產化學工業公司製造)、Dpi〇21SIV、Dpi〇39siv、 DP1117SIV (以上均為日揮觸媒化成公司製造)等。 作為上述反應性一氧化石夕微粒子之平均粒徑,較佳為1 〜25 nm。若未達! nm,則存在易於凝集、填充度變低而使 所獲得之低折射率層無法獲得充分之強度的情況。另一方 面,若超過25 nm,則存在於低折射率層形成表面凹凸而無 法獲得充分之強度的情況。又,引起反射率之上升,難以 表現出藉由含有後述防污劑之充分之防污性。 上述反應性二氧化矽微粒子之平均粒徑之更佳之下限 為5 nm,更佳之上限為20 nm。藉由處於該範圍,可維持 本發明之抗反射膜之低反射率、高硬度。 再者,於本說明書中,上述反應性二氧化矽微粒子之 201245756 平句粒仫思才日、藉由BET (Brun_r E_emller,布厄 特)法或STEM等之剖面觀察(3〇個之平均值)所測定之 值。 作為上述低折射率層中之上述反應性三氧化⑪微粒子 之5里,相對於後述(甲基)丙烯酸系樹脂1 00質量份,較佳 為5 60質量份。若未達5質量份,則存在無法充分提高 上述低折射率層之表面硬度而導致本發明之抗反射膜之耐 擦傷性變差的情況1超過6G f量份,則不處於上述於低 折射率層中偏向地存在之狀態之反應性二氧切微粒子量 増加m二氧化石夕微粒子並未成為上述緊密填充之狀 態,結果存在使低折射率層之表面之均勻性變差之情況, 亦存在引起反射率上升之可能性。上述反應性二氧化石夕微 粒子之3量之更佳之下限為丨0質量份,更佳之上限為5 〇 質量份。藉由於該範圍内含有反應性二氧化矽微粒子,可 使本發明之抗反射膜之表面硬度變得極其優異。 上述(曱基)丙烯酸系樹脂於上述低折射率層中發揮作 為上述中空狀二氧化矽微粒子或反應性二氧化矽微粒子之 黏合劑成分的功能》再者,於本說明書中,所謂「(曱基) 丙烯酸酯」’意指丙烯酸酯或甲基丙烯酸酯。 作為上述(甲基)丙烯酸系樹脂’可列舉(甲基)丙烯酸酉旨 單體之聚合物或共聚物’作為上述(早基)丙烯酸酯單體並無 特別限定,例如可較佳地列舉:新戊四醇三(曱基)丙稀酸 酉曰、一新戊四醇六(曱基)丙稀酸醋、新戊四醇四(曱基)丙稀 酸酯、二新戊四醇五(曱基)丙烯酸酯、三羥甲基丙院三(甲 15 201245756 基)丙烯酸醋、二新戊四醇四(曱基)丙烯酸酯、異三聚氰酸 三(甲基)丙烯酸酯等。 又’該等(曱基)丙烯酸酯單體亦可為分子骨架之一部分 經改質者,亦可使用經環氧乙烷、環氧丙烷、己内酯、異 三聚氰酸、烷基、環狀烷基、芳香族、雙酚等改質而成者。 s亥專(甲基)丙烯酸酯單體可單獨使用,亦可併用2種以 上。該等(曱基)丙烯酸酯單體滿足如後述之折射率之範圍, 且硬化反應性優異,可提高所獲得之低折射率層之硬度。 其中,可較佳地使用官能基數為3以上之(甲基)丙烯酸 系樹脂。 上述(曱基)丙烯酸系樹脂(硬化後)之折射率較佳為 1.47〜1.53 ^事實上無法將折射率設為未達147,若超過 1.53,則存在無法獲得折射率充分低之低折射率層。 上过(甲基)丙稀酸g旨單體之重量平均分子量較佳為 250〜1〇〇〇。若未達25〇,則由於官能基數變少而存在所 獲得之低折射率層之硬度下降之虞。若超過胸,則通常 由於官能基當4 (官能基數/分子量”憂小,而存在交聯密 度變低而無法獲得充分之硬度之低折射率層的情況。 再者,上述(甲基)丙烯酸酯單體之重量平均分子量可 由利用凝膠滲透層析法(Gpc)之聚苯乙稀換算而求出。可 於gpc移動相之溶劑中使用四mu# 可組合四氫呋咗田+, ^ ^ 4用之管柱之市售品管柱而使用。 作為上述市售σ其h 目桎,例如可列舉·· Sh〇dexGPCKF_801、 GPC-KF800D (均為廉· 0 々 (勺為商品名,昭和電工公司製造)等。檢測 16 201245756 器使用RI (示差折射率)檢測器及UV檢測器即可。使用 此種溶劑、管柱、檢測器,例如藉由sh〇dexGpc_1〇1 (昭和 電工公司製造)等GPC系統,可適當測定上述重量平均分 子量。 上述低折射率層進而含有防污劑。 上述低折射率層進而含有防污劑,藉此本發明之抗反 射膜變得具有防污性能’尤其是於低折射率層中之反應性 二氧化矽微粒子偏於硬塗層側之界面附近之情形時,上述 低折射率層之與硬塗層相反側之界面附近之防污劑之含有 比例變大,因此本發明之抗反射膜之防污性能變得特別優 異。 再者’於上述低折射率層中’於反應性二氧化梦微粒 子偏於與硬塗層相反側之界面附近之情形時,上述防污劑 與上述反應性二氧化矽微粒子同樣地一定程度上偏於低折 射率層之與硬塗層相反側之界面附近,於該情形時亦可謀 求藉由上述防污劑的防污性能之一定程度上之提高》如此 防5劑一定程度地偏於與硬塗層相反側之界面附近之原因 :未月確但推測例如形成硬塗層上所形成之塗膜時,如 上所述,反應性二氧化矽微粒子於該塗膜中移動,該反應 性一氧化矽微粒子之移動影響防污劑之偏向存在。 如此,於本發明之抗反射膜中,藉由於上述低折射率 層中a有防污劑而使防污性能變得優異。 作為上述防污劑,較佳為含有反應性官能基、與氟原 子及/或矽原子之化合物。藉由含有此種防污劑,可進一步 17 201245756 提尚所形成之低折射率層之防污性能。 作為上述含有反應性官能基與氟原子之化合物,例如 可廣泛地使用反應性敗化合物、尤其是具有乙稀性不飽和 鍵之含氟單體,更具體而言,例如可列舉:氟烯烴類(例 如氟乙烯、偏二氟乙烯、四氟乙烯、六氟丙烯、全氟丁二 烯、全敗·2,2-二甲基間二氧雜環戊= (perfluoro-2,2-dimethyl-l,3-diox〇le)等)0 又,例如亦可列舉:(甲基)丙烯酸2,2,2_三氟乙酯、(甲 基)丙烯酸2,2,3,3,3-五氟丙酯、(甲基)丙烯酸2_(全氟丁基) 乙醋、(曱基)丙烯酸2-(全氣己基)乙雖、(甲基)丙烯酸2_(全 氟辛基)乙酯、(甲基)丙烯酸2_(全氟癸基)乙酯、α —三氟(甲 基)丙浠 S文甲酯(methyi α _trifiu〇r〇(methyl)acrylate)等於分 子中具有氟原子之(曱基)丙烯酸酯化合物;於分子中具有帶 有至;3個氟原子之碳數1〜14之氟烷基、氟環烷基或氟 伸烷基、與至少2個(甲基)丙烯醯氧基的含氟多官能(甲基) 丙烯酸酯化合物等。 —進而,亦可列舉:於主鏈具有氟化伸烷基之氟聚合物、 寡聚物,或於主鏈及側鏈具有氟化伸烷基、氟化烷基之氟 化聚口物、寡聚物等。該等之中,尤其是於主鍵及側鍵具 有氯1化伸烧基、氟化烷基之氟化聚合物由於不易產生自低 折射率層上渗出之問題’因此可尤佳地使用。 又’作為上述含有反應性官能基與矽原子之化合物, 例如可列舉反應性聚矽氧化合物。 具體而言,例如可列舉:(聚)二甲基矽氧烷、(聚)二乙 201245756 基矽氧烷、(聚)二苯基矽氧烷、(聚)甲基苯基矽氧烷、烷基 改質(聚)二甲基石夕氧@ '含偶氮基之(聚)二甲基石夕氧烷、二 f基聚矽氧、苯基甲基聚矽氧、烷基_芳烷基改質聚矽氧、 氟聚矽氧、聚醚改質聚矽氧、脂肪酸酯改質聚矽氧、曱基 f聚石夕氧、含㈣醇基之聚錢、含院氧基之聚魏、含 本酚基之聚矽氧、(甲基)丙烯酸酯改質聚矽I、胺基改質聚 石夕氧、㈣改質聚錢、甲醇改質聚錢、環氧改質聚石夕 氧、巯基改質聚矽氧、氟改質聚矽氧、聚醚改質聚矽氧等。 其中’具有二甲基魏貌構造者不易產生自低折射率層上 滲出之問題,因此較佳。 又’作為上述含有反應性 之化合物,例如可列舉:使上 應性聚矽氧化合物進行反應而 烯共聚物等。 官能基、與氟原子及矽原子 述反應性氟化合物與上述反 生成之含聚矽氧之偏二氟乙 作為上述防污劑之含量’根據目標低折射率層 :能而適當決定’相對於上述中空狀二氧化矽微粒 幻丙=系暂樹脂之合計100質量份,較佳為^質量份。 =達\,質量份,則存在無法對所形成之低折射率層賦予 二::性也的情況’若超過2。質量份’則存在所添加 之防㈣自低折射率層上渗出的情況… 到添加防污劑之效果、製造 】存在無法看 廢夕 良137、所獲得之低折射率 層之硬度及外觀下降、進而導致反射率 ㈣羊 防污杳丨丨之人θ 9清况。上述A collection of porous cerium oxide microparticles in Nipgel, manufactured by Nissan Chemical Industries Co., Ltd., having a structure in which the oxidized microparticles are joined to form a bond, and the colloidal niobium oxide series (the preferred particle size range of the trade name). Among these, the present invention can be used as the average particle diameter of the hollow cerium oxide microparticles, preferably 10 to 100 nm, by making the average particle diameter of the hollow smectite particles into the range Θ ' The low refractive index layer can be provided with excellent transparency. The lower limit is 40 nm. The upper limit is 8 〇 nm, and the lower limit is 45 nm. The upper limit is better than $ 75 nm. The lower limit is $ 5 〇. (10), the optimal upper limit is 70 nm. In addition, the average particle diameter of the above-mentioned hollow-shaped silica dioxide particles is the same as that of the hollow-shaped dioxygen particles alone, which means the value measured by dynamic light scattering method. On the other hand, the average particle diameter of the hollow-shaped silica fine particles in the low-refractive-index layer is as follows: using stem or the like: the profile of the refractive index layer 'select any 30 hollow-shaped dioxide In the case of the granules, the particle size of the cross-section is measured, and the average value is calculated. Further, the void ratio of the hollow zirconia particles is preferably 2.5 to 8 〇.〇%. The low refractive index: the refractive index of the layer and the refractive index of the layer are sufficiently reduced, and the anti-reflection performance of the anti-reflection film of the present invention is not slashed. If it exceeds 8 G G%, the strength of the hollow-shaped dioxide is reduced. Further, the strength of the entire low refractive index layer may be insufficient. The lower limit of the void ratio of the hollow cerium oxide fine particles 201245756 is 6.4%' of the upper limit & 76 4%' and thus the lower limit 丨2 〇〇%, and further preferably, the upper limit is 55.0%. By having a void ratio in this range, the low refractive index layer can be sufficiently lowered in refractive index, and the low refractive index layer can have excellent strength. The void ratio of the SiO2 particles can be calculated by the following formula: the thickness of the outer shell portion excluding the diameter and the void portion is measured by the hollow zirconia granule section § dicing observation or the like, and the hollow portion is determined. two The fossil granules are set as spheres, and the volume of the void portion of the hollow zirconia granules and the volume of the hollow zirconia granules when the void-free portion is set are calculated by {(t empty dicing microparticles) The gap (the volume of the knives) / (the volume of the hollow zirconia particles in the absence of the (four) portion) is calculated by xl 〇〇. Also, the average particle diameter and the outer shell portion are contained in the low refractive index layer. In the case of a plurality of hollow-shaped silica fine particles having different thicknesses, the void ratio of each of the hollow silica-containing fine particles calculated by the above method and the ratio of the void ratio of each of the hollow silica stones to the fine particles are calculated. The average value is taken as the void ratio of the hollow silica-containing fine particles (hereinafter, the void ratio is also referred to as "average void ratio"). Furthermore, even in this case, each of the hollow dioxo-particles preferably has a void having the above-mentioned range in the anti-reflection crucible of the present invention, and the average void ratio of the hollow-shaped silica fine particles is higher than (4) 10.0. When %1 is not satisfied, the refractive index of the low refractive index layer may not be sufficiently lowered, and the antireflection performance of the antireflection film of the present invention may be insufficient. When it exceeds 40.0%, the strength of the dimorphic cerium oxide microparticles in the above-mentioned 201245756 may be lowered, and the strength of the entire low refractive index layer may be insufficient. A lower limit is preferably 15.0%, and a lower limit is 35.0%. By having a void ratio in the range of B, the low refractive index layer can be sufficiently low in refractive index and the low refractive index layer can be made excellent in strength. From the viewpoint of low refractive index and strength, the lower limit of the average void ratio of the hollow dioxo fine particles is further preferably 20.0%, and more preferably the upper limit is 30.0%. Further, the hollow nitric oxide particles are The blending ratio of the (meth)acrylic resin to be described later (the content of the hollow cerium oxide fine particles/the content of the (meth)acrylic resin) is preferably 〇·90 to 1.6 G. . When the above-mentioned blending ratio is not satisfied, the refractive index of the low refractive index layer may not be sufficiently lowered, and the antireflection performance of the antireflection film of the present invention may be insufficient. When the compounding ratio exceeds 丨6〇, the uniformity of the surface of the low refractive index layer may be insufficient, and the surface hardness of the antireflection film of the present invention may be insufficient. The lower limit of the above-mentioned blending ratio is 1.0 0 ', and the upper limit is preferably 150. By being in this range, an antireflection film having more excellent antireflection properties, surface uniformity, and surface hardness can be obtained. Further, the surface hardness (scratch resistance) is improved by increasing the surface uniformity of the low refractive index layer. In the antireflection film of the present invention, the hollow ceria particles are preferably in a most densely packed structure in which two layers are laminated in the thickness direction of the low refractive index layer. By being contained in such a state, the antireflection film of the present invention can be extremely excellent in transparency, surface uniformity, and low refractive index. 11 201245756 The reactive ceria fine particles are biased to the vicinity of the interface of the low-refractive-index layer on the side of the hard coat layer and/or near the interface on the opposite side to the hard coat layer to be described later, and the refractive index of the low-refractive-index layer is lowered. Improve the surface hardness of the role. When the reactive ceria fine particles are in the vicinity of the interface on the hard coat layer side of the low refractive index layer and in the vicinity of the interface on the opposite side to the hard coat layer, the surface hardness and the antifouling property are excellent. Further, when the reactive cerium oxide fine particles are in the vicinity of the interface on the hard coat layer side of the low refractive index layer, the antifouling agent described later is biased to the vicinity of the interface of the low refractive index layer opposite to the hard coat layer, and In the case where the reactive cerium oxide is present on the outermost surface, the amount of the antifouling agent present on the outermost surface is increased, and therefore the antifouling property of the antireflective enamel of the present invention becomes extremely excellent. On the other hand, when the above-mentioned reactive cerium oxide microparticles are biased in the vicinity of the interface of the low refractive index layer opposite to the hard coat layer, the surface hardness of the low refractive index layer due to the biasing of the reactive cerium oxide microparticles can be obtained. Further, in the low refractive index layer, as described above, the hollow cerium oxide fine particles are in a state of being closely packed. Therefore, the surface due to the excellent surface uniformity of the low refractive index layer can be obtained. Increased hardness. As a result, the scratch resistance of the antireflection film of the present invention is excellent. Here, the above-mentioned "near the interface near the hard coat layer side or the vicinity of the interface on the side opposite to the hard coat layer described later" means that the above-mentioned reactive cerium oxide microparticles are present in close proximity in the low refractive index layer. In the filled state, the hollow cerium oxide microparticles are below (hard coat side) or above (opposite to 12 201245756 hard coat layer). More specifically, in the cross section of the low refractive index layer, the thickness of the low refractive index layer is divided into three, and the interface from the side of the hard coat layer is sequentially set to a 1/3 region and a 2/3 region. In the case of the 3/3 region, it is judged that the reactive cerium oxide fine particles are located near the interface of the hard coat layer side in the case where the i/3 region contains 75% or more of the reactive cerium oxide fine particles, which will be 3/3 above. In the case where the region 3 contains 75% or more of the reactive cerium oxide fine particles, it is judged that the reactive cerium oxide fine particles are in the vicinity of the interface on the opposite side to the hard coat layer. Further, the total of the above-mentioned reactive cerium oxide microparticles is more than 7 〇〇 / 〇 in the above-mentioned 1/3 region and 3 / 3 region, and is biased in the 1/3 region and the 3 / 3 region respectively. When the amount of the cerium oxide microparticles is more than the amount of the reactive cerium oxide microparticles contained in the 2/3 region, it is judged that the reactive cerium oxide microparticles are biased to the vicinity of the interface of the hard coating layer of the low refractive index layer and Near the interface on the opposite side of the hard coat. Further, the state in which such reactive cerium oxide fine particles are present in a biased state can be easily discriminated by cross-sectional microscopic observation (STEM, TEM) of the low refractive index layer when the antireflection film of the present invention is cut in the thickness direction. The reason why the above-mentioned reactive cerium oxide fine particles are in the vicinity of the hard coat layer side interface and/or in the vicinity of the hard coat layer side interface in the low refractive index layer is not clear. However, 'for example, when the hard coat layer contains reactive cerium oxide microparticles, the reactivity in the low refractive index layer can be controlled by adjusting the amount of the reactive cerium oxide microparticles in the hard coat layer. The bias of the dioxide dioxide particles exists. That is, when the hard coat layer does not contain reactive cerium oxide microparticles, if a low refractive index layer is formed on the hard coat layer, the reactive refractive index of the low refractive index 13 201245756 layer can be made. Near the hard coating side interface. On the other hand, when the hard coat layer contains reactive redox oxide particles in a range of more than 25 parts by mass and 6 parts by mass or less with respect to the resin component 100 constituting the hard coat layer, The formation of the low refractive index layer on the hard coat layer allows the reactive rare earth oxide particles of the low refractive index layer to be biased near the interface with the opposite side of the hard coat layer. Further, when the hard coat layer contains reactive rare earth oxide particles in a range of 5 to 25 parts by mass based on the mass of the resin component constituting the hard coat layer, the low refractive index can be obtained. The layer of reactive SiO2 particles is located near the interface of the hard coat side of the low-profile ten-layer layer and near the interface with the opposite side of the hard coat layer. Commercially available products may be used as the above-mentioned reactive cerium oxide fine particles, and examples thereof include MIBK_SDL, MIBK_SDMS, and mibk sd (all of which are manufactured by Nissan Chemical Industries, Ltd.), Dpi〇21SIV, Dpi〇39siv, and DP1117SIV (all of which are The Japanese company has become a company to manufacture. The average particle diameter of the reactive nitric oxide granules is preferably from 1 to 25 nm. If not! In the case of nm, there is a case where aggregation is easy and the degree of filling is lowered, so that the obtained low refractive index layer cannot obtain sufficient strength. On the other hand, when it exceeds 25 nm, surface unevenness is formed in the low refractive index layer, and sufficient strength cannot be obtained. Further, when the reflectance is increased, it is difficult to exhibit sufficient antifouling property by containing an antifouling agent to be described later. A more preferred lower limit of the average particle diameter of the above reactive ceria particles is 5 nm, and a more preferred upper limit is 20 nm. By being in this range, the low reflectance and high hardness of the antireflection film of the present invention can be maintained. Furthermore, in the present specification, the above-mentioned reactive cerium oxide microparticles have a 201245756 flat sentence, and are observed by a cross section of BET (Brun_r E_emller) or STEM (the average of 3 〇) The value measured. 5 of the reactive trioxide 11 fine particles in the low refractive index layer is preferably 5 60 parts by mass based on 100 parts by mass of the (meth)acrylic resin to be described later. If it is less than 5 parts by mass, the surface hardness of the low refractive index layer may not be sufficiently increased, and the scratch resistance of the antireflection film of the present invention may be deteriorated. When the amount exceeds 6 G f, the above is not in the low refractive index. The amount of the reactive dioxygen microparticles in the state in which the layer is biased to exist is not in the state of the above-mentioned close filling, and as a result, the uniformity of the surface of the low refractive index layer is deteriorated. There is a possibility of causing an increase in reflectance. A more preferred lower limit of the amount of the above-mentioned reactive rare earth oxide particles is 丨0 parts by mass, and more preferably, the upper limit is 5 parts by mass. By containing reactive cerium oxide fine particles in this range, the surface hardness of the antireflection film of the present invention can be extremely excellent. The (mercapto)acrylic resin functions as a binder component of the hollow cerium oxide microparticles or the reactive cerium oxide microparticles in the low refractive index layer. Further, in the present specification, "(曱"Acrylate" means acrylate or methacrylate. The (meth)acrylic resin is a polymer or a copolymer of a (meth)acrylic acid monomer. The (early) acrylate monomer is not particularly limited, and for example, preferably, it is exemplified: Neopentyl alcohol tris(indenyl) acrylate bismuth, neopentyl pentoxide hexa(indenyl) acrylate vinegar, neopentyl alcohol tetrakis(mercapto) acrylate, dipentaerythritol (Mercapto) acrylate, trimethylol propyl tris (methyl 15 201245756 based) acrylic vinegar, dipentaerythritol tetrakis(meth) acrylate, tris (meth) acrylate, and the like. Moreover, the (mercapto) acrylate monomer may also be modified by one part of the molecular skeleton, and may also be used by ethylene oxide, propylene oxide, caprolactone, iso-cyanuric acid, alkyl, It is a modified one of a cyclic alkyl group, an aromatic group, and a bisphenol. The s-specific (meth) acrylate monomer may be used singly or in combination of two or more. These (fluorenyl) acrylate monomers satisfy the range of the refractive index described later, and are excellent in curing reactivity, and the hardness of the obtained low refractive index layer can be improved. Among them, a (meth)acrylic resin having a functional group number of 3 or more can be preferably used. The refractive index of the above (fluorenyl) acrylic resin (after hardening) is preferably 1.47 to 1.53. In fact, the refractive index cannot be set to less than 147. If it exceeds 1.53, a low refractive index having a sufficiently low refractive index cannot be obtained. Floor. The weight average molecular weight of the (meth)acrylic acid g-based monomer is preferably 250 to 1 Å. If it is less than 25 Å, the hardness of the obtained low refractive index layer is lowered due to the decrease in the number of functional groups. When the amount exceeds the chest, the functional group is usually 4 (the number of functional groups/molecular weight) is small, and there is a case where the crosslinking density is low and a low refractive index layer having sufficient hardness cannot be obtained. Further, the above (meth)acrylic acid The weight average molecular weight of the ester monomer can be determined by conversion of polystyrene by gel permeation chromatography (Gpc). It can be used in the solvent of the gpc mobile phase. Four mu# can be combined with tetrahydrofuran +, ^ ^4. It is used as a commercial column for the column. As the above-mentioned commercially available sigma, for example, Sh〇dexGPCKF_801 and GPC-KF800D (all are cheap · 0 々 (spoon is the trade name, Manufactured by Showa Denko Co., Ltd., etc. Detecting 16 201245756 The RI (differential refractive index) detector and UV detector can be used. This solvent, column, and detector are used, for example, by sh〇dexGpc_1〇1 (Showa Denko) The GPC system can be suitably measured for the weight average molecular weight. The low refractive index layer further contains an antifouling agent. The low refractive index layer further contains an antifouling agent, whereby the antireflection film of the present invention becomes antifouling property. 'especially When the reactive cerium oxide fine particles in the refractive index layer are in the vicinity of the interface on the side of the hard coat layer, the content ratio of the antifouling agent in the vicinity of the interface on the opposite side to the hard coat layer of the low refractive index layer becomes large. The antifouling property of the antireflection film of the present invention is particularly excellent. Further, in the case of the above low refractive index layer, when the reactive oxidized dreaming microparticles are in the vicinity of the interface opposite to the hard coat layer, the above prevention The same as the above-mentioned reactive cerium oxide microparticles, the stain is partially offset to the vicinity of the interface of the low refractive index layer opposite to the hard coat layer, and in this case, the antifouling property by the above antifouling agent can also be sought. To some extent, the reason for preventing the 5 agents from being biased to some extent near the interface with the opposite side of the hard coat layer is that the reaction film formed on the hard coat layer is not formed, but it is presumed that, for example, the reaction is as described above. The cerium oxide microparticles move in the coating film, and the movement of the reactive cerium oxide microparticles affects the deflection of the antifouling agent. Thus, in the antireflection film of the present invention, the low refractive index layer is a has an antifouling agent and is excellent in antifouling performance. The antifouling agent is preferably a compound containing a reactive functional group and a fluorine atom and/or a ruthenium atom. Further, the antifouling property of the low refractive index layer formed by the present invention is as follows. As the compound containing a reactive functional group and a fluorine atom, for example, a reactive decomposing compound, particularly an ethylenically unsaturated bond, can be widely used. The fluorine-containing monomer, more specifically, for example, a fluoroolefin (for example, vinyl fluoride, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, perfluorobutadiene, total ruthenium 2,2-dimethyl (difluoro-2,2-dimethyl-l,3-diox〇le), etc.) Further, for example, (2,2,2-trifluoroethyl (meth)acrylate, 2,2,3,3,3-pentafluoropropyl (meth)acrylate, 2-(perfluorobutyl)acetate (meth)acrylate, 2-(allylhexyl)ethyl (mercapto)acrylate, 2-(Perfluorooctyl)ethyl (meth)acrylate, 2-(perfluorodecyl)ethyl (meth)acrylate, α-trifluoro(methyl)propene S The methyl ester (methyi _trifiu〇r〇(methyl)acrylate) is equivalent to a (fluorenyl) acrylate compound having a fluorine atom in the molecule; and has a fluorocarbon having a carbon number of 1 to 14 in the molecule; A fluorine-containing polyfunctional (meth) acrylate compound having a fluorocycloalkyl group or a fluoroalkyl group and at least two (meth) acryloxy groups. Further, a fluoropolymer or oligomer having a fluorinated alkyl group in the main chain, or a fluorinated polycondensate having a fluorinated alkyl group or a fluorinated alkyl group in the main chain and the side chain, Oligomers, etc. Among these, in particular, a fluorinated polymer having a chlorinated alkyl group and a fluorinated alkyl group in the primary and side bonds is less likely to cause bleed out from the low refractive index layer, and thus can be preferably used. Further, examples of the compound containing a reactive functional group and a ruthenium atom include a reactive polyoxo compound. Specific examples thereof include (poly)dimethyloxane, (poly)diethylene 201245756 sulfoxane, (poly)diphenylphosphorane, and (poly)methylphenyloxy siloxane. Alkyl modified (poly) dimethyl sulphur oxygen@ 'Azo-containing (poly) dimethyl oxa alkane, bis-f-polyoxyl, phenylmethyl polyoxyl, alkyl _ aryl Alkyl modified polyfluorene oxide, fluoropolyfluorene oxide, polyether modified polyfluorene oxide, fatty acid ester modified polyfluorene oxide, sulfhydryl f polyphosphorus, poly (m) alcohol-based polyphenol, containing alkoxy Poly-Wei, polyoxyl oxide containing phenolic group, (meth) acrylate modified poly-I, amine-modified poly-stone, (4) modified poly-money, methanol modified poly-money, epoxy modified Poly-stone oxygen, sulfhydryl-modified poly-oxygen, fluorine-modified poly-oxygen, polyether modified poly-oxygen, and the like. Among them, a structure having a dimethyl-dimension structure is less likely to cause bleeding from the low-refractive-index layer, and therefore is preferable. Further, the above-mentioned reactive compound may, for example, be an olefin copolymer obtained by reacting a reactive polyphosphonium compound. The content of the functional group, the reactive fluorine compound with the fluorine atom and the ruthenium atom, and the counter-generated polyoxymethylene-containing difluoroethylene as the antifouling agent are appropriately determined according to the target low refractive index layer: The hollow cerium oxide microparticles are all 100 parts by mass, preferably ^ parts by mass. = up to \, parts by mass, there is a case where it is impossible to impart a second:: property to the formed low refractive index layer. In the case of the mass portion, there is a case where the added prevention (4) oozes from the low refractive index layer... The effect of adding the antifouling agent, and the manufacturing] the hardness and appearance of the obtained low refractive index layer are not observed. Decline, and thus lead to reflectivity (four) sheep anti-pollution people θ 9 clear condition. Above

Sr…更佳之下限為2質量份,更佳之上限為15 19 201245756 再者,作為上述防污劑,亦可與上述含有反應性官能 基、與氟原子及/或矽原子之化合物一併地添加不含有反應 性S能基之化合物而使用。 於本發明之抗反射膜中,上述低折射率層之折射率較 佳為未達1.45 〇若為1.45以上,則存在本發明之抗反射膜 之抗反射性能變得不充分而無法應對近年來之影像顯示裝 置之间級別之顯示品質的情況。更佳之下限為丨2 5,更佳 之上限為1.43。 上述低折射率層之膜厚(nm ) dA較佳為滿足下述式 dA= m λ / ( 4nA) ( I) (上述式中, nA表示低折射率層之折射率, m表示正奇數,較佳為表示1, 又為波長,較佳為480〜580 nm之範圍之值)者。 又,於本發明中,就低反射率化方面而言,低折射率 層較佳為滿足下述式(Π ): 120< nAdA< 145 ( II) 又,上述低折射率層之霧度值較佳為ι%以下。若超 〜則存在本發明之抗反㈣之透紐下㈣導致影像 不裝置之顯示品質下降的情況。更佳& 0,。以下。再者 於本說明書中,所謂霧度值,係依據mK7136所求出之在 又,上述低折射率層較佳 之藉由鉛筆硬度試驗之硬度為 為依據 JIS K5600-5-4 ( 1999 ) Η以上’更佳為2H以上。 20 201245756 選而 上返低折射率層較佳為於 鋼絲絨之摩擦荷重3 肖#_〇號之 中未受損傷。 摩擦1〇個來回的耐擦傷試驗 子、反上:ΓΓ層可製備含有上述中空狀二氧切微粒 !及=:夕微粒子,基)丙婦酸系樹脂之單體成 用塗佈液而形成。 ―,使用該低折射率層 上述低折射率層I组成物較佳為含有溶劑。 作為上述溶劑,其中,較佳為:甲基異丁基嗣(蠢κ)、 :丙二醇單甲基鍵(PGME)或丙二醇單甲基醚乙酸醋 人PGMEA )之混合溶劑。藉由使用此種混合溶劑由於所 s有之溶劑之乾燥時間不同,因此可較佳地形成上述構造 之低折射率層。 作為上述混合溶劑中之MIBK、與pGME或pgmea之 混合比,較佳為以質量比計(MIBK/pGME或pgmea)= /5 )( 30/70 )。藉由滿足上述範圍之混合比,可尤佳 地形成上述構造之低折射率層。更佳為(8〇/2〇 )〜(4〇/6〇 )。 又,上述低折射率層用組成物只要為不阻礙上述構造 之低折射率層之形成之範圍,亦可含有其他溶劑。作為此 種其他溶劑,例如可列舉:甲醇、乙醇、丙醇、異丙醇、 正丁醇、異丁醇、第二丁醇、苄醇等醇·,丙酮、曱基乙基 酮環己酮、庚酮、二異丁基酮、二乙基酮等酮;乙酸甲 酉曰、乙酸乙酯、乙酸丙酯、乙酸丁酯、曱酸曱酯、曱酸乙 西曰、曱酸丙酯、甲酸丁酯、PGMEA等酯;己烷、環己烷等 21 201245756 ,肪族烴;二氣甲院、氣仿、四氣化碳等齒化烴;苯、甲 苯、二曱苯等芳香族烴;二甲基曱醯胺、二甲基乙醯胺、 正甲基。比嘻烧_等醯胺匕乙基崎二卩号烧、四氣咬喃等峻; 1-甲氧基-2-丙醇等喊醇等。 又,上述低折射率層用組成物視需要進而亦可包含其 他成分。 作為上述其他成分,例如可列舉:光聚合起始劑、調 平劑、聚合促進劑、黏度調整劑、防眩劑、抗靜電劑、紫 外線吸收劑、除上述以外之樹脂(單體、寡聚物、聚人物 等。 。 作為上述光聚合起始劑,於上述低折射率層用組成物 含有具有自由基聚合性不飽和基之樹脂系之情形時,例如 可列舉:苯乙酮類(例如作為商品名Irgacurel84(BAsF& 司製造)市售之r經基-環己基·苯基·酮)、二苯甲嗣類、= 雜蒽酮類、安息香、安息香甲基醚等,該等可單獨使用, 亦可併用2種以上。 又,於上述低折射率層用組成物含有具有陽離子聚合 性官能基之樹脂系之情形時,作為上述光聚合起始劑,例 如可列舉:芳香族重氮鹽、芳香族銃鹽、芳香族鍈鹽、茂 金屬化合物、安息香磺酸酯等,該等可單獨使用,亦可併 用2種以上。具體而言,可列舉·· BASF公司製造之The lower limit of Sr is preferably 2 parts by mass, and the upper limit is more preferably 15 19 201245756. Further, the antifouling agent may be added together with the above-mentioned compound containing a reactive functional group and a fluorine atom and/or a ruthenium atom. It is used without containing a compound of a reactive S-energy group. In the antireflection film of the present invention, the refractive index of the low refractive index layer is preferably less than 1.45 Å, and if it is 1.45 or more, the antireflection property of the antireflection film of the present invention is insufficient to cope with recent years. The image shows the display quality of the level between the devices. A lower limit is preferably 丨 2 5 and a higher limit is 1.43. The film thickness (nm) dA of the low refractive index layer preferably satisfies the following formula dA = m λ / ( 4nA) (I) (in the above formula, nA represents the refractive index of the low refractive index layer, and m represents a positive odd number, Preferably, it is 1, and is also a wavelength, preferably a value in the range of 480 to 580 nm. Further, in the present invention, in terms of low reflectance, the low refractive index layer preferably satisfies the following formula (Π): 120 < nAdA < 145 (II) Further, the haze value of the above low refractive index layer It is preferably 1% or less. If it is over ~, there is a case where the anti-reverse (four) of the present invention is inferior to (4), and the display quality of the image is not lowered. Better & 0,. the following. In the present specification, the haze value is determined according to mK7136, and the hardness of the low refractive index layer is preferably determined by the pencil hardness test according to JIS K5600-5-4 (1999). 'More preferably 2H or more. 20 201245756 The upper return low refractive index layer is preferably not damaged by the friction load of the steel wool 3 # #_〇. Rubbing one round back and forth scratch-resistant test, on the reverse side: the ruthenium layer can be prepared by preparing a monomer-forming coating liquid containing the above-mentioned hollow dioxin particles and = ray powder, base) . ― Use of the low refractive index layer The low refractive index layer I composition preferably contains a solvent. As the solvent, a mixed solvent of methyl isobutyl hydrazine (stupid κ), propylene glycol monomethyl bond (PGME) or propylene glycol monomethyl ether acetate vinegar PGMEA) is preferred. By using such a mixed solvent, since the drying time of the solvent is different, the low refractive index layer of the above configuration can be preferably formed. The mixing ratio of MIBK and pGME or pgmea in the above mixed solvent is preferably a mass ratio (MIBK/pGME or pgmea) = /5 ) (30/70 ). The low refractive index layer of the above structure can be particularly preferably formed by satisfying the mixing ratio of the above range. More preferably (8〇/2〇)~(4〇/6〇). Further, the composition for a low refractive index layer may contain other solvents as long as it does not inhibit the formation of the low refractive index layer having the above structure. Examples of such other solvents include alcohols such as methanol, ethanol, propanol, isopropanol, n-butanol, isobutanol, second butanol, and benzyl alcohol, acetone, and mercaptoethyl ketone cyclohexanone. Ketones such as heptanone, diisobutyl ketone, and diethyl ketone; methyl hydrazine acetate, ethyl acetate, propyl acetate, butyl acetate, decyl decanoate, acetaminophen citrate, propyl citrate, Butyl formate, PGMEA and other esters; hexane, cyclohexane, etc. 21 201245756, aliphatic hydrocarbons; dentate hydrocarbons such as gas, gas, and gasification; aromatic hydrocarbons such as benzene, toluene, and diphenylbenzene ; dimethyl decylamine, dimethyl acetamide, n-methyl.嘻 嘻 _ _ 醯 醯 醯 醯 匕 匕 匕 匕 匕 匕 匕 匕 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 Further, the composition for a low refractive index layer may further contain other components as needed. Examples of the other components include a photopolymerization initiator, a leveling agent, a polymerization accelerator, a viscosity modifier, an antiglare agent, an antistatic agent, an ultraviolet absorber, and a resin other than the above (monomer, oligomerization). In the case where the composition for a low refractive index layer contains a resin having a radical polymerizable unsaturated group, for example, an acetophenone (for example, As a trade name of Irgacurel 84 (manufactured by BAsF & s), ruthenyl-cyclohexyl phenyl ketone, benzophenone, hydrazinone, benzoin, benzoin methyl ether, etc. In the case where the composition for a low refractive index layer contains a resin having a cationically polymerizable functional group, the photopolymerization initiator may, for example, be an aromatic diazo. The salt, the aromatic sulfonium salt, the aromatic sulfonium salt, the metallocene compound, the benzoin sulfonate, etc. may be used alone or in combination of two or more. Specific examples thereof include those manufactured by BASF Corporation.

IrgaCure907 、 Irgacure369 、 lrgacure379 、 Irgacure819 、 IrgaCUrel27 、 Irgacure500 、 Irgacure754 、 Irgacure25〇 、IrgaCure907, Irgacure369, lrgacure379, Irgacure819, IrgaCUrel27, Irgacure500, Irgacure754, Irgacure25〇,

Irgacurel800、Irgacurel870、irgacureOXEOl、daROCUR 22 201245756 • ΤΡΟ、DAROCUR1173 ;日本 SiberHegner 公司製造之 SpeedcureMBB 、 SpeedcurePBZ 、 SpeedcurelTX 、 SpeedcureCTX ' SpeedcureEDB ' Esacure ONE ' Esacurc KIP150、Esacure KT046 ;日本化藥公司製造之 KAYACURE DETX-S、KAYACURE CTX、KAYACURE BMS、KAYACURE DMBI 專。其中’較佳為 irgacure369、irgacurei27、 Irgacure907、Esacure ONE、SpeedcureMBB、SpeedcurePBZ、 KAYACURE DETX-S。 尤佳為Irgacurel27 ( BASF公司製造之2-羥基 -1-{4-[4-(2-羥基-2-曱基_丙醯基)_苄基]苯基}_2_甲基_丙烷 -1-酮)、Irgacurel84 ( BASF公司製造之卜羥基-環己基-苯 基-酮)。上述光聚合起始劑之添加量相對於上述低折射率層 用塗佈液申所包含之樹脂成分之固形物成分1〇〇質量份, 較佳為0.1〜10質量份。 上述調平劑、聚合促進劑、黏度調整劑、防眩劑、抗 靜電劑、紫外線吸收劑、除上述以外之樹脂(單體、寡聚 物、聚合物)可使用公知者。 作為上述低折射率層用組成物之製備方法’並無特別 限定」例如可藉錢合上述中空狀二氧化石夕微粒子、反應 性二氧化石夕微粒子、(甲基)丙稀酸系樹脂之單體成分、及防 ::劑、以及溶劑、視需要添加之光聚合起始劑等成分而獲 付。在合可使用塗料振盛器或珠磨機等公知之方法。 上述低折射率層用組成物係於後述硬塗層上塗佈上述 低折射率層用組成物,乾燥所形成之塗膜,藉由電離放射 23 201245756 線之照射及/或加熱使塗膜硬化,藉此可形成上述低折射率 層β 此處’作為上述塗膜之較佳之乾燥條件’為40〜80°C、 10秒〜2分鐘。藉由於此種條件下乾燥上述塗臈,可較佳 地形成上述構造之低折射率層。 作為塗佈上述低折射率層用組成物之方法,並無特別 限定,例如可列舉:旋塗法、浸潰法、噴霧法、凹版印刷 塗佈法、模塗法、棒塗法、輥塗法、液面彎曲式塗佈法等 各種方法。 硬塗層 本發明之抗反射膜於透光性基材與低折射率層之間具 有硬塗層。Irgacurel800, Irgacurel870, ilgacureOXEOl, daROCUR 22 201245756 • ΤΡΟ, DAROCUR1173; SpeedcureMBB, SpeedcurePBZ, SpeedcurelTX, SpeedcureCTX 'SpeedcureEDB ' Esacure ONE ' Esacurc KIP150, Esacure KT046 manufactured by Siber Hegner, Japan; KAYACURE DETX-S, KAYACURE manufactured by Nippon Kayaku Co., Ltd. CTX, KAYACURE BMS, KAYACURE DMBI. Among them, 'irgacure369, irgacurei27, Irgacure907, Esacure ONE, SpeedcureMBB, SpeedcurePBZ, KAYACURE DETX-S are preferred.尤佳 is Irgacurel27 (2-hydroxy-1-{4-[4-(2-hydroxy-2-indolyl-propionyl)-benzyl]phenyl}_2-methyl-propane-1 manufactured by BASF -ketone), Irgacurel 84 (hydroxy-cyclohexyl-phenyl-ketone manufactured by BASF Corporation). The amount of the photopolymerization initiator to be added is preferably 0.1 to 10 parts by mass based on 1 part by mass of the solid content of the resin component contained in the coating liquid for the low refractive index layer. The above-mentioned leveling agent, polymerization accelerator, viscosity adjuster, antiglare agent, antistatic agent, ultraviolet absorber, and other resins (monomer, oligomer, polymer) other than the above may be used. The method for producing the composition for a low refractive index layer is not particularly limited. For example, the hollow silica fine particles, the reactive silica fine particles, and the (meth)acrylic resin may be borrowed. It is obtained by using a monomer component, an anti-agent, a solvent, and a photopolymerization initiator which is added as needed. A known method such as a paint shaker or a bead mill can be used. The composition for a low refractive index layer is coated on the hard coat layer described later by applying the composition for the low refractive index layer, and the formed coating film is dried, and the coating film is hardened by irradiation and/or heating of ionizing radiation 23 201245756 line. Thereby, the low refractive index layer β can be formed. Here, 'the preferred drying condition as the coating film' is 40 to 80 ° C for 10 seconds to 2 minutes. By drying the above coating under such conditions, the low refractive index layer of the above configuration can be preferably formed. The method of applying the composition for the low refractive index layer is not particularly limited, and examples thereof include a spin coating method, a dipping method, a spray method, a gravure coating method, a die coating method, a bar coating method, and a roll coating method. Various methods such as a method and a liquid surface bending coating method. Hard coat layer The antireflection film of the present invention has a hard coat layer between the light-transmitting substrate and the low refractive index layer.

硬塗層」,係指於jIS 再者,於本說明書中,所謂 K5600-5-4 ( 1999 )中所規定之船筆硬度試驗中表現出2h 以上之硬度者。上述鉛筆硬度更佳為3H以上。又,作為上 述硬塗層之膜厚 〜1 5 β m。 硬化時),較佳為1〜3 〇 於本發明之抗反射膜中,上述硬塗層較佳為含有反應 性二氧切微粒子。硬塗層含有反應性二氧切微粒子*, 藉此上述低折射率層中之反應性二氧切微粒子偏於與硬 塗層相反側之界面附近。 作為上述反應性二氧切微粒子,可列舉與上述低折 層中之反應性二氧化矽微粒子相同者。 作為上述硬塗層中之反應性:氧切微粒子之含量, 24 201245756 相對於構成該硬塗層之樹脂成分1〇〇質量份,較佳為15〜 60質量份。若未達15質量份,則存在硬塗層之硬度變得不 充分之情況,若超過60質量份,則存在與透光性基材之密 合性、及與低折射率層之密合性變差之情況,又,存在硬 塗層變得易於破裂、或引起總光線透過率之降低、霧度上 升之清況更佳之下限為20質量份,更佳之上限為55質 量份。 上述硬塗層較佳為具有以於低折射率層側之界面附近 沿該界面方向整齊排列之狀態所包含之反應性二氧化矽微 粒子。藉由具有如此整齊排列之反應性二氧化矽微粒子, 而可更佳地獲得上述構造之低折射率層。 此處,上述所謂「於低折射率層側之界面附近沿該界 面方向整齊排列之狀態」,較佳為如下狀態:於上述硬塗層 之與低折射率層之界面附近,上述反應性二氧切微粒子 以沿界面方向相互鄰接之方式整齊排列,更佳為如下狀 1、反應性一氧化石夕微粒子以其上端接觸上述硬塗層之與 低折射率層之界面、H h π物β , 相互鄰接的狀態沿界面整齊排列(圖 I 1 Λ 再者上述硬塗層較佳為亦含有除上述整齊排列之狀 態以外之無規地含有之反廄w e ㈣夕J之狀 ,炙反應性二氧化矽微粒子。 作為上述硬塗層,可兩丨集> ^ ^ w 列舉耠由含有上述反應性二氧化 吵ί政粒子、與接f賠甘 成者。 、 、任意成分之硬塗層用組成物所形 作為上述樹脂,較祛 使用透明性者’具體而言,可列 25 201245756 舉:作為藉由紫外線或電子束而硬化之樹脂的電離放射線 硬化型樹脂、電離放射線硬化型樹脂與溶劑乾燥型樹脂(使 塗佈時為調整固形物成分所添加之溶劑乾燥而成為被膜之 類的樹脂)之混合物、或熱硬化型樹脂等,較佳為列舉電 離放射線硬化型樹脂。 作為上述電離放射線硬化型樹脂之具體例,可列舉丙 嫦酸醋系之具有官能基者,例如分子量相對較低之聚醋樹 脂、聚醚樹脂、丙烯酸系樹脂、環氧樹脂、胺酯樹脂、多 元醇等多官能化合物之(甲基)丙烯酸酯等之單體、寡聚物或 預聚物等。除此以外,上述低折射率層中所使用之(甲基) 丙烯酸系樹脂亦可用於硬塗層中,其中,較佳為官能基數 為3以上之(甲基)丙稀酸系樹脂。 於使用上述電離放射線硬化型樹脂作為紫外線硬化型 樹脂之情形時’較佳為使用光聚合起始劑。 作為上述光聚合起始劑’例如可列舉:苯乙酮類、二 苯甲酿I類、米氏苯曱醯基苯曱酸酯(Michler,s benZQyl benzoate) ' α -戊基肪醋(a -amyloxime ester)、一硫化四甲 基秋蘭姆、硫雜葱嗣類等。較佳為Irgacure 184 ( Basf公司 製造之1-經基·環己基-苯基-酮)。 又’較佳為混合使用光增感劑,作為其具體例,例如 可列舉:正丁基胺、三乙基胺、聚-正丁基膦等。 亦可將非反應性之聚合物與上述電離放射線硬化型樹 脂混合而使用。作為上述非反應性之聚合物,例如可列舉: 聚丙烯酸、聚曱基丙烯酸、聚丙烯酸酯、聚甲基丙烯酸醋、 26 201245756 聚烯烴、聚苯乙烯、聚醯胺 mm ^ ^ 承瞄亞私、聚氯乙烯、聚乙 料、聚乙烯縮丁盤、聚碳酸 :聚乙 性之聚合物,而可抑制捲曲。“添…非反應 作為上述熱硬化性樹 樹脂、鄰苯二甲酸1…“ 了列舉.苯酴樹脂、腺 脂、不餘聚氛胺樹脂'胍胺樹 樹脂、二聚°顧,樹脂、聚胺醋樹脂、環氧樹脂、胺基醇酸 曰-< 腺共縮合樹脂、石夕樹脂、聚梦氧院樹脂等。 於使用上述熱硬化性樹脂之情形時q見需要可進而添 '乂聯劑、聚合起始劑等硬化劑、聚合促進劑、溶劑、黏 度調整劑等而使用。 ’ 上述硬塗層可藉由如下方式而形成:將使用上述各材 :所製備之硬塗層用組成物塗佈於上述透光性基材上,視 需要乾燥所形成之塗膜’藉由電離放射線照射或加熱等而 使硬化。 再者,作為上述硬塗層用組成物之製備方法及塗膜之 形成方法等,可列舉與上述低折射率層相同之方法。 於上述硬塗層中進而亦可包含公知之抗靜電劑、高折 射率劑等高硬度、低捲曲材料等。 透光性篡村 本發明之抗反射膜具有透光性基材。 上述透光性基材較佳為具備平滑性、耐熱性、且機械 強度優異者。作為形成透光性基材之材料之具體例,例如 可列舉:聚酯(聚對苯二曱酸乙二酯、聚萘二曱酸乙二酯)、 三乙酸纖維素、二乙酸纖維素、乙酸丁酸纖維素、聚酯、 27 201245756 聚醢胺、聚醯亞胺、聚醚砜、聚颯、聚丙烯、聚曱基戊烯、 聚氣乙稀、聚乙烯縮醛、聚醚酮、聚甲基丙烯酸曱酯、聚 碳酉义自曰丙稀酸系基材(PMMA,Poly Methyl Methacrylate ) 或聚胺基曱酸酯等熱塑性樹脂。較佳為列舉:聚酯(聚對 苯一甲酸乙二酯、聚萘二曱酸乙二酯)、三乙酸纖維素。 上述透光性基材較佳為以富於柔軟性之膜狀體之形態 使用上述熱塑性樹脂,但根據要求硬化性之使用態樣,亦 可使用該等熱塑性樹脂之板、或玻璃板之板狀體者。 除此以外,作為上述透光性基材,亦可列舉具有脂環 構w之非日日質烯烴聚合物(Cycl〇 〇lefin_p〇lymer : C〇p ) 膜。此係使用降冰片烯系聚合物 '單環之環狀烯烴系聚合 物、環狀共|ra二婦系聚合物、乙稀基脂環式烴系聚合物等 之基材例如可列舉:日本ZE〇N公司製造之ζΕ〇ΝΕχ或 ZEONOR (降冰片烯系樹脂)、住友公司製造之 SUMILITEFS-1700、jSR公司製造之art〇n (改質降冰片 稀系樹脂)' 三井化風八n也」Λ 开化干a司製造之APEL (環狀烯烴共聚 物)、^_公司製造之T〇pas (環狀烯烴共聚物)、日立化 、司製w之OPTOREZOZ」咖系列(脂環式丙烯酸系樹 止 乍為一乙醯纖維素之代替基材,旭化成化學公 、之FV系歹(低雙折射率、低光彈性模數膜)亦較佳 作為上述透光性基材之厚度,較佳為卜則 佳為下限為9 η 狀妒之产形生功,上限為100以m。於透光性基材為; 月,亦可為超過該等厚度之厚度。上述透光^ 28 201245756 基材於在其上形成上述硬塗層等時’為提高接著性,除電 暈放電處理、氧化處理等物理性之處理以外,亦可預先進 行稱作增黏劑或底塗劑之塗料之塗佈。 於上述透光性基材與低折射率層之間形成上述硬塗層 之構造之本發明之抗反射膜進而亦可為於上述硬塗層與^ 光性基材之間形成由公知之抗靜電劑與黏合樹脂所構成之 抗靜電層之構造。 又,本發明之抗反射膜視需要亦可為具備作為任意層 之與上述硬塗層不同之其他硬塗層、防污染層、高折射率 層、中折射率層等而成者。上述防污染層、高折射率層、 中折射率層可製備添加有通常使用之防污染劑、高折射率 劑、中折射率劑、低折射率劑或樹脂等之組成物,藉由公 知之方法形成各層。 本發明之抗反射膜之總光線透過率較佳為9〇%以上。 若未達90%,則於裝著於顯示器表面之情形時,存在損害 色再線性或視認性之虞。上述總光線透過率更佳為Μ %以 上’進而更佳為95%以上。 本發明之抗反射膜之霧度較佳為未達〗%,更佳為未達 0.5%。 作為本發明之抗反射膜之製造方法,可列舉具有於透 光性基材上塗佈上述硬塗層用組成物而形成硬塗層之步 驟及於所形成之硬塗層上塗佈上述低折射率層用組成物 而形成低折射率詹之步驟的方法。 作為形成上述硬塗層及低折射率層之方法,如上所述。 29 201245756 本發明之抗反射膜係藉由於偏光元件之表面上、於與 該抗反射膜中之低折射率層存在之面相反之面上設置本發 明之抗反射膜,而可製成偏光板。此種偏光板亦為本發明 之一。 作為上述偏光元件,並無特別限定,例如可列舉:藉 由碘等染色、並經拉伸之聚乙烯醇膜' 聚乙烯甲醛膜、聚 乙烯縮醛膜、乙烯-乙酸乙烯酯共聚物系皂化膜等。 於上述偏光元件與本發明之抗反射膜之層壓處理中, 較佳為對透光性基材(較佳為三乙醯纖維素膜)進行皂化 處理。藉由皂化處理,接著性變得良好,亦可獲得抗靜電 效果。 本發明亦可為具備上述抗反射膜或上述偏光板而成之 影像顯示裝置。上述影像顯示裝置可為LCD、pDp、、 eld (有機EL、無機EL)、CRT、觸控面板、平板、電 子紙等影像顯示裝置β 上述LCD係具備透過性顯示體、與自背面照射該透過 性顯不體之光源裝置而成者。於本發明之影像顯示裝置為 LCD之情形時,係於該透過性顯示體之表面形成本發明之 抗反射膜或本發明之偏光板而成者。 於本發明為具有上述抗反射膜之液晶顯示裝置之情形 寺光源裝置之光源自光學積層體之下側經照射。再者, 於STN型之液晶顯示裝置中’亦可於液晶顯示元件與偏光 1插入相位差板。於該液晶顯示裝置之各層間,視需 要亦可設置接著劑層。 30 201245756 * 上述PDP係具備表面玻璃基板(於表面形成電極广與 於與該表面玻璃基板相對之間封入放電氣體所配置之背面 玻璃基板(於表面形成電極及微小之溝槽,於溝槽内形成 紅、綠、藍之螢光體層)巾成者。於本發明之影像顯示裝 置為pdp之情形時,亦係於上述表面玻璃基板之表面、或 其前面板(玻璃基板或膜基板)具備上述抗反射膜者。 上述影像顯示裝置亦可為於玻璃基板蒸鍍若施加電壓 則會發光之硫化辞、二胺類物質等發光體、控制施加於基 板上之電壓而進行顯示的ELD裝置,或將電氣信號轉換為 光、產生人眼可視之像之CRT等影像顯示裝置。於該情形 時,係於如上所述之各顯示裝置之最表面或其前面板之表 面上具備上述抗反射膜者。 本發明之影像顯示裝置於任意之情形時,均可用於電 視、電腦、文字處理機等之顯示器顯示。尤其是可較佳地 用於CRT、觸控面板、平板pc、電子紙、液晶面板、pDp、 ELD、FED等高精細影像用顯示器之表面。 [發明之效果] 於本發明之抗反射膜中,低折射率層具有偏於其表面 附近之反應性二氧化石夕微粒子,藉此表面硬度變得優異。 又,於先則之抗反射膜中,於低折射率層之表面存在微小 之凹凸,此成為導致耐擦傷性差之原因之一,但於上述構 ^之低折射率層中’中空狀二氧化妙微粒子處於緊密填充 之狀態,因此具有極其均勻之表面。因此,本發明之抗反 射膜成為表面硬度極為優異者。進而,於本發明之抗反射 31 201245756 膜中’低折射率層主要由上述中空狀二氧化矽微粒子與反 應性二氧化石夕微粒子所構成,因此可使折射率變得充分 低’而使本發明之抗反射膜成為具有優異之抗反射性能者。 因此,本發明之抗反射膜可較佳地用於陰極射線管顯 示裝置(CRT )、液晶顯示器(LCD )、電漿顯示器(pdp )、 電致發光顯示器(ELD )、場發射顯示器(FEI))、觸控面板、 平板PC、電子紙等中》 【實施方式】 藉由下述實施例說明本發明之内容,但本發明之内容 並非限定於該等實施態樣加以解釋者。只要無特別說明, 「份」及「%」為質量基準。進而,只要無特別說明,各成 分量為固形物成分量。 (硬塗層用組成物(1)之製備) 混合如下所示之各成分,製備硬塗層用組成物(^ 。 反應性二氧化矽微粒子(Z7537,JSR公司製造固形 物成分50%,反應性二氧化矽微粒子6〇%含有品)^質量 份 〇〇 胺基甲酸酯丙烯酸酯(UV1700B,日本合成公司製造, 10官能)5.7質量份 聚合起始劑(lrgacurel84,BASF公司製造)〇 6質量 份 · 曱基乙基酮3.3質量份 甲基異丁基酮2.3質量份 再者’硬塗層用組成物⑴中之調平劑之固形物成分 32 201245756 質量比為0.10%。 (硬塗層用組成物(2 )之製備) 混合如下所示之各成分,製備硬塗層用組成物(2 )。 聚酯丙烯酸酯(ARONIXM-9050,東亞合成公司製造, 3官能)5質量份 胺基甲酸酯丙烯酸酯(UV1700B,日本合成公司製造, 1 〇官能)11質量份 聚合起始劑(Irgacurel 84,BASF公司製造)0.5質量 份 曱基乙基酮10質量份 再者,硬塗層用組成物(2)中之調平劑之固形物成分 質量比為0.10%。 (硬塗層用組成物(3 )之製備) 混合如下所示之各成分,製備硬塗層用組成物(3 )。 反應性二氧化石夕微粒子(Z7537,JSR公司製造,固形 物成刀50/ί»,反應性一氧化石夕微粒子60%含有品)4質量份 胺基甲酸酿丙烯酸酯(UV1700B,日本合成公司製造, 10官能)5.7質量份 聚合起始劑(IrgaCUrei84,BASF公司製造)〇 6質量 份 曱基乙基酮3.3質量份 曱基異丁基酮2.3質量份 再者,硬塗層用組成物(3 )中 ’ τi碉十劑之固形物成分 質量比為0.10%。 33 201245756 (低折射率層用組成物(1 )之製備) 混合如下所示之成分’製備低折射率層用組成物(1 )。 中空狀二氧化矽微粒子(該中空狀二氧化矽微粒子之 固形物成分為20質量%溶液:甲基異丁基酮,平均粒徑: 55 nm ’平均空隙率:23.3%) 0.8質量份 新戊四醇三丙烯酸酯(PETA) 0.05質量份 二新戊四醇六丙烯酸酯(DPHA) 〇.〇5質量份 反應性二氧化ί夕微粒子(該反應性二氧化碎微粒子之 固形物成分為30質量%溶液:曱基異丁基酮,平均粒徑: 12 nm ) 0_ 1質量份 防污劑(X-22-164E,信越化學工業公司製造)〇 〇1質 量份 聚合起始劑(lrgacurel27,BASF公司製造)〇 〇1質量 份 MIBK3質量份 PGME2質量份 (低折射率層用組成物(2 )之製備) 混合如下所示之成分’製備低折射率層用組成物(2 )。 中空狀二氧化矽微粒子(該中空狀二氧化矽微粒子之 固形物成分為20質量%溶液:曱基異丁基酮,平均粒徑: 60 nm,平均空隙率:29.6%) 0.8質量份 新戍四醇三丙烯酸酯(PETA ) 0.1質量份 反應性二氧化矽微粒子(該反應性二氧化矽微粒子之 固形物成分為30質量%溶液:曱基異丁基酮,平均粒徑: 34 201245756 12 nm ) 0.1質量份 防污劑(RS-74,DIC公司製造,20質量%溶液:甲基 乙基酮)0.01質量份 防污劑(TU2225,JSR公司製造’ 15質量%溶液:曱 基異丁基酮)0,01質量份 聚合起始劑(Irgacurel27,BASF公司製造)〇.〇1質量 份 MIBK3質量份 PGME2質量份 (低折射率層用組成物(3 )之製備) 混合如下所*之成分,製備低折射率層用組成物(3 )。 中空狀二氧化石夕微粒子(該中空狀二氧化石夕微粒子之 固形物成分為20質量%溶液:甲基異丁基酮,平均粒徑: 55 nm,平均空隙率:23.3%) 0.8質量份 新戊四醇三丙烯酸酯(PETA) 0_08質量份 二新戊四醇六丙烯酸酯(DPHA) 〇·〇8質量份 反應性二氧切微粒子(減應性二氧切微粒子之 固形物成分為30質量%溶液:曱基異丁基酮,平均粒徑: 12 nm ) 0.1質量份 防污劑(X-22-164E,信越化學工業公司製· 量份 聚合起始劑(Irgaeurel27, BASF公司製 。 份 MIBK3質量份 35 201245756 PGME2質量份 (低折射率層用組成物(4 )之製備) 混合如下所示之成分,製備低折射率層用組成物(4)。 中空狀二氧化矽微粒子(該中空狀二氧化矽微粒子之 固形物成分為2G質量%溶液:曱基異丁基酮,平均粒徑: 60 nm ’平均空隙率:29 6%) 〇 8質量份 新戊四醇三丙烯酸酯(PETA) 0.17質量份 反應性二氧化矽微粒子(該反應性二氧化矽微粒子之 固形物成分為30質量%溶液:甲基異丁基酮,平均粒徑: 12 nm) 0.2質量份 防污劑(RS-74,DIC公司製造,20質量%溶液:甲基 乙基酮)0.01質量份 防污劑(TU2225,JSR公司製造,15質量0/〇溶液:曱 基異丁基酮)0·01質量份 聚合起始劑(lrgacure127,BASF公司製造)〇 〇1質量 份 MIBK3質量份 PGME2質量份 (低折射率層用組成物(5 )之製備) 混合如下所示之成分,製備低折射率層用組成物(5 )。 中空狀二氧化矽微粒子(該中空狀二氧化矽微粒子之 固形物成分為20質量%溶液:甲基異丁基_,平均粒徑: 60 nm,平均空隙率:29.6%) 0.8質量份 新戊四醇三丙烯酸酯(PETA) 0.1質量份 36 201245756 反應性二氧化矽微粒子(該反應性二氧化矽微粒子之 固形物成分為30質量%溶液:甲基異丁基酮,平均粒徑: 12 nm) 0.02質量份 防污劑(RS-74,DIC公司製造,20質量%溶液:甲基 乙基酮)0.01質量份 防污劑(TU2225,JSR公司製造,15質量%溶液:甲 基異丁基酮)0.01質量份 聚合起始劑(Irgacurel27,BASF公司製造)〇.〇1質量 份 MIBK3質量份 PGME2質量份 (低折射率層用組成物(6 )之製備) 混合如下所示之成分,製備低折射率層用組成物(6 )。 中空狀二氧化矽微粒子(該中空狀二氧化矽微粒子之 固形物成分為20質量%溶液:甲基異丁基酮,平均粒徑: 5 5 nm ’平均空隙率:23 3%) 〇 8質量份 新戊四醇三丙烯酸酯(ΡΕΤΑ ) 〇·〇5質量份 二新戊四醇六丙烯酸酯(DPHA) 0.05質量份 反應性二氧化矽微粒子(該反應性二氧化矽微粒子之 固形物成分為30質量%溶液:甲基異丁基酮,平均粒徑: 12 nm) 0.1質量份 防污劑(RS-74,DIC公司製造,20質量%溶液:曱基 乙基酮)0.01質量份 防污劑(TU2225,JSR公司製造,15質量%溶液:甲 37 201245756 基異丁基酮)ο·οι質量份 聚合起始劑(Irgacurel27,BASF公司製造)〇 〇1質量 份 MIBK4質量份 PGMEA1質量份 (低折射率層用組成物(7 )之製備) 混合如下所示之成分,製備低折射率層用組成物(7 )。 中空狀二氧化矽微粒子(該中空狀二氧化矽微粒子之 固形物成分為20質量%溶液:甲基異丁基酮,平均粒徑: 60 nm ’平均空隙率:29 6%) 〇 8質量份 新戊四醇三丙烯酸酯(PETA ) 〇.2質量份 反應性二氧化ί夕微粒子(該反應性二氧化$夕微粒子之 固形物成分為30質量%溶液:甲基異丁基酮,平均粒徑: 12 nm ) 0.1質量份 防污劑(RS-74,DIC公司製造,20質量%溶液:甲基 乙基酮)0_01質量份 防污劑(TU2225,JSR公司製造,15質量%溶液:曱 基異丁基酮)〇.〇1質量份 聚合起始劑(Irgacure127,BASF公司製造)〇·〇ι質量 份 ΜΙΒΚ3質量份 PGME2質量份 (低折射率層用組成物(8 )之製備) 混合如下所示之成分,製備低折射率層用組成物(8 )。 38 201245756 中空狀二氧化矽微粒子(該中空狀二氧化矽微粒子之 固形物成分為20質量。/〇溶液:甲基異丁基酮,平均粒徑: 60 nm ’平均空隙率:29.6%) 0.8質量份 新戊四醇三丙烯酸酯(PETA ) 0.1質量份 反應性二氧化矽微粒子(該反應性二氧化矽微粒子之 固形物成分為30質量%溶液:甲基異丁基酮,平均粒徑: 12 nm) 0.25質量份 防污劑(RS-74 , DIC公司製造,20質量%溶液:甲基 乙基酮)0.01質量份 防污劑(TU2225,JSR公司製造,15質量%溶液:甲 基異丁基酮)〇.〇1質量份 聚合起始劑(Irgacurel27,BASF公司製造)〇 〇1質旦 份 里 M1BK3質量份 PGME2質量份 (低折射率層用組成物(9 )之製備) 混:如下所示之成分,製備低折射率層用組成物(9)。 中空狀二氧化石夕微粒子(該中空狀二氧化石夕微粒 固形物成分為20質量%溶液:甲基異丁基,,平均粒秤. 60 nm,平均空隙率:29.6%) 〇·8質量份 /徑. 新戊四醇三丙烯酸酯(ΡΕΤΑ ) 〇. 1質量份 ,反應性二氧切微粒子(較純二氧切微 固形物成分為3 0質量。/0溶液:曱基異 12nm) 0.22質量份 基異丁基酮,平均粒徑: 39 201245756 防巧劑(RS-74 ’ DIC公司製造’ 20質量%溶液:曱基 乙基酮)0.01質量份 防污劑(TU2225,JSR公司製造,15質量%溶液:甲 基異丁基酮)〇,〇1質量份 聚合起始劑(lrgacurel27,BASF公司製造)〇 〇1質量 份 MIBK3質量份 PGME2質量份 (低折射率層用組成物(i 〇 )之製備) 混合如下所示之成分,製備低折射率層用組成物(1〇)。 中空狀二氧化矽微粒子(該中空狀二氧化矽微粒子之 固形物成分為20質量%溶液:曱基異丁基酮,平均粒徑: 60 nm ’平均空隙率:29.6%) 0.8質量份 新戊四醇三丙烯酸酯(PETA ) 0· 1質量份 反應性二氧化妙微粒子(該反應性二氧化妙微粒子 固形物成分為30質量%溶液:曱基異丁基酮,平均粗徑. 12 nm) 0.01質量份 防污劑(RS-74,DIC公司製造,20質量%溶液:甲基 乙基酮)0.01質量份 防污劑(TU2225 ’ JSR公司製造’ 15質量%溶液.甲 基異丁基酮)0.01質量份 聚合起始劑(Irgacurel27,BASF公司製造)〇〇1質曰 份 MIBK3質量份 40 201245756 PGME2質量份 (低折射率層用組成物(11 )之製備) 混合如下所示之成分,製備低折射率層用組成物(i i)。 中玉狀一氧化石夕微粒子(該中空狀二氧化石夕微粒子之 固形物成分為20質量%溶液:甲基異丁基酮,平均粒徑: 55 nm,平均空隙率:23.3% ) 0.8質量份 新戊四醇三丙烯酸酯(PETA) 0.05質量份 二新戊四醇六丙稀酸酯(DPHA ) 0.05質量份 反應性二氧化矽微粒子(該反應性二氧化碎微粒子之 固形物成分為30質量%溶液:曱基異丁基酮,平均粒徑: 12 nm ) 0.1質量份 防/亏劑(RS·74,DIC公司製造,20質量〇/0溶液:曱基 乙基酮1) 0.01質量份 防污劑(TU2225 ’ JSR公司製造,15質量%溶液:甲 基異丁基酮)0.01質量份 t合起始劑(Irgacurel27,BASF公司製造)〇.〇1質量 份 MIBK1質量份 MEK4質量份 (實施例1 ) 於二乙酸纖維素膜(厚度8〇 M m )之一側面上塗佈硬 塗層用組成物(1 )濕潤重量30 g/m2 (乾燥重量1 5 g/m2 )。 於50 C下乾燥30秒’照射紫外線50 mJ/cm2,形成硬塗層。 、繼而’於所形成之硬塗層上以乾燥(25。(: x30秒〜70 201245756"Hard-coating" refers to the hardness of 2h or more in the pen hardness test specified in K5600-5-4 (1999) in this specification. The above pencil hardness is more preferably 3H or more. Further, the film thickness of the hard coat layer is 〜1 5 β m. In the case of curing, it is preferably 1 to 3 Å. In the antireflection film of the present invention, the hard coat layer preferably contains reactive dioxygen particles. The hard coat layer contains reactive dioxygen microparticles*, whereby the reactive dioxygen microparticles in the low refractive index layer are biased to the vicinity of the interface on the opposite side to the hard coat layer. The reactive dioxygen fine particles are the same as those of the reactive ceria particles in the above-mentioned low-fold layer. The content of the reactivity in the hard coat layer: the content of the oxygen-cut fine particles, 24 201245756 is preferably 15 to 60 parts by mass based on 1 part by mass of the resin component constituting the hard coat layer. When the amount is less than 15 parts by mass, the hardness of the hard coat layer may be insufficient, and if it exceeds 60 parts by mass, the adhesion to the light-transmitting substrate and the adhesion to the low refractive index layer may be obtained. In the case of deterioration, the lower limit of the hard coat layer which is liable to be broken or the total light transmittance is lowered and the haze is increased is preferably 20 parts by mass, and more preferably the upper limit is 55 parts by mass. The hard coat layer preferably has reactive cerium oxide microparticles contained in a state in which the vicinity of the interface on the low refractive index layer side is aligned in the interface direction. The low refractive index layer of the above configuration can be more preferably obtained by having the thus arranged reactive ceria particles. Here, the above-mentioned "state in which the vicinity of the interface on the side of the low refractive index layer is aligned in the direction of the interface" is preferably a state in which the reactivity is in the vicinity of the interface between the hard coat layer and the low refractive index layer. The oxygen-cut microparticles are arranged neatly in such a manner as to be adjacent to each other in the interfacial direction, and more preferably as follows: 1. The reactive nitric oxide granules have an upper end contacting the interface of the hard coat layer with the low refractive index layer, H h π β The mutually adjacent states are arranged neatly along the interface (Fig. I 1 Λ Further, the hard coat layer preferably also contains a ruthenium containing a state other than the above-mentioned neatly arranged state, and is 炙-reactive As the hard coat layer, it can be used as a hard coat layer, and it can be exemplified by a hard coat layer containing the above-mentioned reactive oxidized granules, and a component of the same. The composition is formed as the above-mentioned resin, and the transparency is used. Specifically, it can be listed as 25 201245756: ionizing radiation-curable resin which is a resin which is hardened by ultraviolet rays or electron beams, and ionizing radiation. A mixture of a curable resin and a solvent-drying resin (a resin which is a resin to be dried by adjusting a solid content component during coating to form a film, or a thermosetting resin) is preferably an ionizing radiation curable resin. Specific examples of the ionizing radiation-curable resin include those having a functional group of a propionate vinegar type, for example, a polyester resin having a relatively low molecular weight, a polyether resin, an acrylic resin, an epoxy resin, or an amine ester resin. a monomer, an oligomer, a prepolymer or the like of a (meth) acrylate such as a polyfunctional compound such as a polyhydric alcohol, etc. In addition, the (meth)acrylic resin used in the low refractive index layer may be used. Among the hard coat layers, a (meth)acrylic resin having a functional group number of 3 or more is preferred. When the above ionizing radiation curable resin is used as the ultraviolet curable resin, it is preferred to use photopolymerization. The starting agent. As the photopolymerization initiator, for example, acetophenone, diphenyl ketone, and M. benzoyl benzoate (Michler, s benZQy) l benzoate) 'a-amyloxime ester, tetramethylthiuram monosulfide, sulfonium sulfonium, etc. Preferably Irgacure 184 (1-carbo-cyclohexyl) manufactured by Basf -Phenyl-ketone). It is preferable to use a photosensitizer in combination, and specific examples thereof include n-butylamine, triethylamine, poly-n-butylphosphine, and the like. The reactive polymer is used in combination with the ionizing radiation-curable resin. Examples of the non-reactive polymer include polyacrylic acid, polyacrylic acid, polyacrylate, polymethacrylic acid vinegar, and 26 201245756. Olefin, polystyrene, polyamine, mm ^ ^ bearing sub-private, polyvinyl chloride, polyethylene, polyethylene shrink disk, polycarbonate: polyethylene polymer, and can inhibit curl. "Add... non-reactive as the above-mentioned thermosetting tree resin, phthalic acid 1..." Listed. Benzene resin, gland grease, non-polyamine resin 'melamine resin, dimerization, resin, poly Amine vinegar resin, epoxy resin, amino strontium silicate-< gland co-condensation resin, Shixi resin, polymethane resin, and the like. In the case of using the above-mentioned thermosetting resin, q may be added as needed, such as a curing agent such as a crosslinking agent or a polymerization initiator, a polymerization accelerator, a solvent, a viscosity modifier, or the like. The above hard coat layer can be formed by applying the above-mentioned respective materials: the prepared hard coat layer composition onto the above-mentioned light-transmitting substrate, and drying the formed coating film as needed. It is hardened by irradiation with radiation or heating. In addition, as a method of preparing the composition for a hard coat layer, a method for forming a coating film, and the like, the same method as the above-described low refractive index layer can be mentioned. Further, the hard coat layer may further contain a high hardness or a low crimp material such as a known antistatic agent or a high refractive index agent. Translucent enamel The antireflection film of the present invention has a light-transmitting substrate. The light-transmitting substrate preferably has smoothness, heat resistance, and mechanical strength. Specific examples of the material for forming the light-transmitting substrate include polyester (polyethylene terephthalate, polyethylene naphthalate), cellulose triacetate, cellulose diacetate, Cellulose acetate butyrate, polyester, 27 201245756 Polyamide, polyimide, polyethersulfone, polyfluorene, polypropylene, polydecylpentene, polyethylene oxide, polyvinyl acetal, polyether ketone, A thermoplastic resin such as polymethyl methacrylate or polycarboethyl methacrylate (PMMA, Poly Methyl Methacrylate) or polyamino phthalate. Preferred examples are polyester (polyethylene terephthalate, polyethylene naphthalate) and cellulose triacetate. It is preferable that the above-mentioned thermoplastic resin is used in the form of a film body rich in flexibility, but a plate of the thermoplastic resin or a plate of a glass plate may be used depending on the use form of the curable property. Shaped person. In addition, as the light-transmitting substrate, a non-Japanese olefin polymer (Cycl〇 finlefin_p〇lymer: C〇p) film having an alicyclic structure w may also be mentioned. In the case of using a norbornene-based polymer, a monocyclic cyclic olefin polymer, a cyclic copolymer, a vinyl alicyclic polymer, or a vinyl alicyclic hydrocarbon polymer, for example, Japan is used. ZE〇N company's ζΕ〇ΝΕχ or ZEONOR (norbornene resin), Sumitomo's SUMILITEFS-1700, jSR company's art〇n (modified borneol thin resin)' Mitsui Chemicals 8n AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP The tree stagnation is a substitute substrate of acetyl cellulose, and the Asahi Kasei Chemical Corporation, the FV system 低 (low birefringence, low photoelastic modulus film) is also preferably used as the thickness of the light transmissive substrate, preferably Bu Bujia is the lower limit of 9 η 妒 妒 妒 , , , , , , , , , , , , , , , 上限 上限 上限 上限 上限 上限 上限 上限 上限 上限 上限 上限 上限 上限 上限 上限 上限 上限 上限 上限 上限 上限 上限 上限 上限 上限When the above-mentioned hard coat layer or the like is formed thereon, in order to improve adhesion, in addition to corona discharge treatment, In addition to the physical treatment such as chemical treatment, coating of a coating called a tackifier or a primer may be carried out in advance. The structure of the hard coat layer is formed between the light-transmitting substrate and the low refractive index layer. The antireflection film of the present invention may further comprise a structure in which an antistatic layer composed of a known antistatic agent and an adhesive resin is formed between the hard coat layer and the photosensitive substrate. Further, the antireflection film of the present invention. If necessary, it may be any other hard coat layer, anti-contamination layer, high refractive index layer, medium refractive index layer or the like which is different from the hard coat layer as an optional layer. The anti-fouling layer, the high refractive index layer, The intermediate refractive index layer can be prepared by adding a composition containing a commonly used antifouling agent, a high refractive index agent, a medium refractive index agent, a low refractive index agent, a resin, or the like, and each layer is formed by a known method. The total light transmittance is preferably 9% or more. If it is less than 90%, there is a possibility that the color is relinearized or visually recognized when it is mounted on the surface of the display. The total light transmittance is preferably Μ. More than % and further preferably 95% The anti-reflection film of the present invention preferably has a haze of less than about 5%, more preferably less than 0.5%. As a method for producing the antireflection film of the present invention, the above method is applied to a light-transmitting substrate. a step of forming a hard coat layer by using a composition for a hard coat layer and a step of applying a composition for the low refractive index layer on the formed hard coat layer to form a low refractive index, as a method of forming the hard coat layer and The method of the low refractive index layer is as described above. 29 201245756 The antireflection film of the present invention is provided by the present invention on the surface of the polarizing element opposite to the surface on which the low refractive index layer in the antireflection film exists. The polarizing plate can be made into a polarizing plate. The polarizing plate is also one of the inventions. The polarizing element is not particularly limited, and examples thereof include polyethylene which is dyed by iodine or the like and stretched. An alcohol film 'polyethylene formaldehyde film, a polyvinyl acetal film, an ethylene-vinyl acetate copolymer saponified film, or the like. In the lamination treatment of the above polarizing element and the antireflection film of the present invention, it is preferred to subject the light-transmitting substrate (preferably triacetyl cellulose film) to a saponification treatment. By the saponification treatment, the adhesion becomes good, and an antistatic effect can also be obtained. The present invention may be an image display device comprising the antireflection film or the polarizing plate. The image display device may be an image display device such as an LCD, a pDp, an eld (organic EL, an inorganic EL), a CRT, a touch panel, a flat panel, or an electronic paper. The LCD has a transmissive display and is illuminating from the back. The light source device is not the body. In the case where the image display device of the present invention is an LCD, the antireflection film of the present invention or the polarizing plate of the present invention is formed on the surface of the transparent display body. In the case where the present invention is a liquid crystal display device having the above antireflection film, the light source of the temple light source device is irradiated from the lower side of the optical laminate. Further, in the STN type liquid crystal display device, a phase difference plate can also be inserted into the liquid crystal display element and the polarized light 1. An adhesive layer may be provided between the layers of the liquid crystal display device as needed. 30 201245756 * The PDP is provided with a surface glass substrate (the surface forming electrode is wider than the back glass substrate in which the discharge gas is sealed between the surface glass substrate (the electrode is formed on the surface and the minute groove is formed in the groove). When the image display device of the present invention is pdp, the surface of the surface glass substrate or the front panel (glass substrate or film substrate) thereof is provided. The image display device may be an ELD device that performs vapor deposition on a glass substrate, such as a vulcanization or a diamine-based substance that emits light when a voltage is applied, and controls display of a voltage applied to the substrate. Or an image display device such as a CRT that converts an electrical signal into light and produces an image visible to the human eye. In this case, the anti-reflection film is provided on the outer surface of each of the display devices as described above or on the surface of the front panel thereof. The image display device of the present invention can be used for display display of televisions, computers, word processors, etc., in any case. Good for use in the surface of displays for high-definition images such as CRT, touch panel, tablet pc, electronic paper, liquid crystal panel, pDp, ELD, FED, etc. [Effects of the Invention] In the antireflection film of the present invention, low refractive index The layer has reactive rare earth oxide particles in the vicinity of the surface thereof, whereby the surface hardness is excellent. Further, in the antireflection film of the prior art, fine irregularities are present on the surface of the low refractive index layer, which causes One of the causes of poor scratch resistance, but in the low refractive index layer of the above-mentioned structure, the hollow oxidized fine particles are in a state of being closely packed, and thus have an extremely uniform surface. Therefore, the antireflection film of the present invention becomes a surface hardness. Further, in the antireflection 31 201245756 film of the present invention, the 'low refractive index layer is mainly composed of the above hollow cerium oxide microparticles and reactive oxidized cerium oxide microparticles, so that the refractive index can be sufficiently low. The antireflection film of the present invention is excellent in antireflection properties. Therefore, the antireflection film of the present invention can be preferably used for a cathode ray tube display device. CRT), liquid crystal display (LCD), plasma display (pdp), electroluminescent display (ELD), field emission display (FEI), touch panel, tablet PC, electronic paper, etc. [Embodiment] The following examples illustrate the contents of the present invention, but the contents of the present invention are not limited to those explained in the embodiments. Unless otherwise stated, "parts" and "%" are quality benchmarks. Further, each component is a solid content component unless otherwise specified. (Preparation of composition (1) for hard coat layer) Each component shown below was mixed to prepare a composition for a hard coat layer (^. Reactive cerium oxide microparticles (Z7537, solid content component manufactured by JSR Corporation, 50%, reaction)二 二 含有 含有 含有 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 Parts by mass · mercapto ethyl ketone 3.3 parts by mass of methyl isobutyl ketone 2.3 parts by mass Further, the solid content component of the leveling agent in the composition for hard coat layer (1) 32 201245756 mass ratio is 0.10%. Preparation of Layer Composition (2) A composition for the hard coat layer (2) was prepared by mixing the components shown below. Polyester acrylate (ARONIX M-9050, manufactured by Toagosei Co., Ltd., 3-functional) 5 parts by mass of an amine Urethane acrylate (UV1700B, manufactured by Nippon Synthetic Co., Ltd., 1 〇 functional) 11 parts by mass of a polymerization initiator (Irgacurel 84, manufactured by BASF Corporation) 0.5 parts by mass of mercaptoethyl ketone 10 parts by mass, further, hard coat layer In the composition (2) The mass ratio of the solid content of the flat agent is 0.10%. (Preparation of the composition (3) for hard coat layer) Each component shown below is mixed to prepare a composition (3) for a hard coat layer. Microparticles (Z7537, manufactured by JSR, Solids Knife 50/ί», Reactive Nitric Oxide Microparticles 60%), 4 parts by mass of amino acid styrene acrylate (UV1700B, manufactured by Nippon Synthetic Co., Ltd., 10 functional) 5.7 A part by mass of a polymerization initiator (Irga CUrei 84, manufactured by BASF Corporation) 〇 6 parts by mass of mercaptoethyl ketone 3.3 parts by mass of mercaptoisobutyl ketone 2.3 parts by mass, and a composition for hard coat layer (3) 'τi碉The mass ratio of the solid content of the ten doses was 0.10%. 33 201245756 (Preparation of composition for low refractive index layer (1)) The composition (1) for preparing a low refractive index layer was prepared by mixing the components shown below. Cerium oxide microparticles (the solid content of the hollow ceria microparticles is 20% by mass solution: methyl isobutyl ketone, average particle diameter: 55 nm 'average void ratio: 23.3%) 0.8 parts by mass of pentaerythritol Acrylate (PETA) 0.05 parts by mass Pentaerythritol hexaacrylate (DPHA) 〇. 〇 5 parts by mass of reactive oxidized cerium microparticles (the solid content of the reactive oxidized pulverized microparticles is 30% by mass solution: decyl isobutyl ketone, average particle diameter : 12 nm ) 0_1 mass parts of antifouling agent (X-22-164E, manufactured by Shin-Etsu Chemical Co., Ltd.) 〇〇 1 part by mass of polymerization initiator (lrgacurel27, manufactured by BASF) 〇〇 1 part by mass MIBK 3 parts by mass PGME2 mass Parts (Preparation of Composition (2) for Low Refractive Index Layer) A component (2) for preparing a low refractive index layer was prepared by mixing the components shown below. Hollow-shaped cerium oxide microparticles (the solid content of the hollow cerium oxide microparticles is 20% by mass solution: decyl isobutyl ketone, average particle diameter: 60 nm, average void ratio: 29.6%) 0.8 parts by mass of neodymium Tetrahydrin triacrylate (PETA) 0.1 part by mass of reactive cerium oxide microparticles (the solid content of the reactive cerium oxide microparticle is 30% by mass solution: decyl isobutyl ketone, average particle diameter: 34 201245756 12 nm 0.1 part by mass of antifouling agent (RS-74, manufactured by DIC, 20% by mass solution: methyl ethyl ketone) 0.01 part by mass of antifouling agent (TU2225, manufactured by JSR Corporation) 15% by mass solution: mercaptoisobutyl Ketone) 0,01 parts by mass of a polymerization initiator (Irgacurel 27, manufactured by BASF Corporation) 〇 1 part by mass of MIBK 3 parts by mass of PGME 2 parts by mass (preparation of composition for low refractive index layer (3)) A composition (3) for a low refractive index layer was prepared. Hollow-shaped silica dioxide granules (the solid content of the hollow zirconia granules is 20% by mass solution: methyl isobutyl ketone, average particle diameter: 55 nm, average void ratio: 23.3%) 0.8 parts by mass Neopentyl alcohol triacrylate (PETA) 0_08 parts by mass of dipentaerythritol hexaacrylate (DPHA) 〇·〇 8 parts by mass of reactive dioxygen microparticles (the solid content of the reducing dioxygen microparticles is 30) Mass % solution: decyl isobutyl ketone, average particle diameter: 12 nm) 0.1 part by mass of an antifouling agent (X-22-164E, manufactured by Shin-Etsu Chemical Co., Ltd.) Amount of polymerization initiator (Irgaeurel 27, manufactured by BASF Corporation). MIBK 3 parts by mass 35 201245756 PGME 2 parts by mass (preparation of composition for low refractive index layer (4)) The composition (4) for the low refractive index layer was prepared by mixing the components shown below. Hollow cerium oxide microparticles (this) The solid content of the hollow cerium oxide microparticles is 2 G mass% solution: decyl isobutyl ketone, average particle diameter: 60 nm 'average void ratio: 29 6%) 〇 8 parts by mass of pentaerythritol triacrylate ( PETA) 0.17 parts by mass of reactive dioxide矽Microparticles (the solid content of the reactive cerium oxide microparticles is 30% by mass solution: methyl isobutyl ketone, average particle diameter: 12 nm) 0.2 parts by mass of antifouling agent (RS-74, manufactured by DIC Corporation, 20 Mass % solution: methyl ethyl ketone) 0.01 parts by mass of antifouling agent (TU2225, manufactured by JSR, 15 mass 0 / 〇 solution: mercapto isobutyl ketone) 0. 01 parts by mass of polymerization initiator (lrgacure 127, BASF (manufactured by the company) 〇〇1 part by mass of MIBK, 3 parts by mass of PGME, 2 parts by mass (preparation of composition for low refractive index layer (5)) The composition shown below is prepared by mixing the components shown below to prepare a composition (5) for a low refractive index layer. Cerium oxide microparticles (the solid content of the hollow ceria microparticles is 20% by mass solution: methyl isobutyl _, average particle diameter: 60 nm, average void ratio: 29.6%) 0.8 parts by mass of pentaerythritol Acrylate (PETA) 0.1 parts by mass 36 201245756 Reactive cerium oxide microparticles (the solid content of the reactive cerium oxide microparticles is 30% by mass solution: methyl isobutyl ketone, average particle diameter: 12 nm) 0.02 mass Antifouling agent (RS-74, DIC) Manufacture, 20% by mass solution: methyl ethyl ketone) 0.01 parts by mass of antifouling agent (TU2225, manufactured by JSR Corporation, 15% by mass solution: methyl isobutyl ketone) 0.01 parts by mass of polymerization initiator (Irgacurel 27, BASF Corporation (manufactured) 〇. 〇 1 part by mass of MIBK 3 parts by mass of PGME 2 parts by mass (preparation of composition (6) for low refractive index layer) The component (6) for the low refractive index layer was prepared by mixing the components shown below. Hollow cerium oxide microparticles (the solid content of the hollow cerium oxide microparticles is 20% by mass solution: methyl isobutyl ketone, average particle diameter: 5 5 nm 'average void ratio: 23 3%) 〇 8 mass Pentaerythritol triacrylate (ΡΕΤΑ) 〇·〇 5 parts by mass of dipentaerythritol hexaacrylate (DPHA) 0.05 parts by mass of reactive cerium oxide microparticles (the solid component of the reactive cerium oxide microparticles is 30% by mass solution: methyl isobutyl ketone, average particle diameter: 12 nm) 0.1 part by mass of antifouling agent (RS-74, manufactured by DIC Corporation, 20% by mass solution: mercaptoethyl ketone) 0.01 part by mass of antifouling Agent (TU2225, manufactured by JSR, 15% by mass solution: A 37 201245756 isobutyl ketone) ο·οι mass part polymerization initiator (Irgacurel 27, manufactured by BASF Corporation) 〇〇 1 part by mass MIBK 4 parts by mass PGMEA 1 part by mass ( Preparation of Composition (7) for Low Refractive Index Layer) A component (7) for a low refractive index layer was prepared by mixing the components shown below. Hollow cerium oxide microparticles (the solid content of the hollow cerium oxide microparticles is 20% by mass solution: methyl isobutyl ketone, average particle diameter: 60 nm 'average void ratio: 29 6%) 〇 8 parts by mass Neopentyl alcohol triacrylate (PETA) 2. 2 parts by mass of reactive oxidized cerium microparticles (the reactive solid dioxide component of the solar oxidized microparticles is 30% by mass solution: methyl isobutyl ketone, average particle Diameter: 12 nm) 0.1 part by mass of antifouling agent (RS-74, manufactured by DIC, 20% by mass solution: methyl ethyl ketone) 0_01 parts by mass of antifouling agent (TU2225, manufactured by JSR, 15% by mass solution: 曱Isobutyl ketone) 〇. 〇 1 part by mass of a polymerization initiator (Irgacure 127, manufactured by BASF Corporation) 〇·〇ι parts by mass ΜΙΒΚ 3 parts by mass of PGME 2 parts by mass (preparation of composition for low refractive index layer (8)) A composition (8) for a low refractive index layer was prepared as shown below. 38 201245756 Hollow ceria particles (the solid content of the hollow ceria particles is 20 mass. /〇 solution: methyl isobutyl ketone, average particle size: 60 nm 'average void ratio: 29.6%) 0.8 Parts by mass of pentaerythritol triacrylate (PETA) 0.1 parts by mass of reactive cerium oxide microparticles (the solid content of the reactive cerium oxide microparticles is 30% by mass solution: methyl isobutyl ketone, average particle diameter: 12 nm) 0.25 parts by mass of antifouling agent (RS-74, manufactured by DIC, 20% by mass solution: methyl ethyl ketone) 0.01 parts by mass of antifouling agent (TU2225, manufactured by JSR, 15% by mass solution: methyl Butyl ketone) 〇. 〇 1 part by mass of a polymerization initiator (Irgacurel 27, manufactured by BASF Corporation) 〇〇1 mass fraction of M1BK 3 parts by mass of PGME 2 parts by mass (preparation of composition for low refractive index layer (9)) A composition (9) for a low refractive index layer was prepared as shown below. Hollow-shaped white oxide fine particles (the hollow-shaped silica dioxide solid particles composition is 20% by mass solution: methyl isobutyl, average particle scale. 60 nm, average void ratio: 29.6%) 〇·8 mass Parts/diameter. Pentaerythritol triacrylate (ΡΕΤΑ) 〇. 1 part by mass, reactive dioxygen microparticles (compared to pure dioxate microsolids component of 30 mass. /0 solution: thiol iso 12 nm) 0.22 Amount of isobutyl ketone, average particle size: 39 201245756 Anti-fouling agent (RS-74 'Manufactured by DIC Corporation' 20% by mass solution: mercaptoethyl ketone) 0.01 parts by mass of antifouling agent (TU2225, manufactured by JSR Corporation, 15 mass% solution: methyl isobutyl ketone) hydrazine, hydrazine 1 part by mass of a polymerization initiator (lrgacurel 27, manufactured by BASF Corporation) 〇〇 1 part by mass MIBK 3 parts by mass PGME 2 parts by mass (a composition for a low refractive index layer (i Preparation of 〇)) A composition for a low refractive index layer (1 Å) was prepared by mixing the components shown below. Hollow cerium oxide microparticles (the solid content of the hollow cerium oxide microparticles is 20% by mass solution: decyl isobutyl ketone, average particle diameter: 60 nm 'average void ratio: 29.6%) 0.8 parts by mass of new pentylene Tetrahydrin triacrylate (PETA) 0.1 part by mass of reactive dioxygen fine particles (the reactive disulfide fine particles solid component is 30% by mass solution: mercaptoisobutyl ketone, average large diameter. 12 nm) 0.01 parts by mass of antifouling agent (RS-74, manufactured by DIC Corporation, 20% by mass solution: methyl ethyl ketone) 0.01 parts by mass of antifouling agent (TU2225 'manufactured by JSR Corporation' 15% by mass solution. Methyl isobutyl ketone 0.01 parts by mass of a polymerization initiator (Irgacurel 27, manufactured by BASF Corporation) 〇〇1 mass MI part MIBK 3 parts by mass 40 201245756 PGME 2 parts by mass (preparation of composition for low refractive index layer (11)) The components shown below are mixed, A composition (ii) for a low refractive index layer was prepared. Medium jade-like nitric oxide granules (the solid content of the hollow-shaped cerium oxide granules is 20% by mass solution: methyl isobutyl ketone, average particle diameter: 55 nm, average void ratio: 23.3%) 0.8 mass Pentaerythritol triacrylate (PETA) 0.05 parts by mass of dipentaerythritol hexaacrylate (DPHA) 0.05 parts by mass of reactive cerium oxide microparticles (the solid content of the reactive oxidized fine particles is 30 Mass% solution: mercaptoisobutyl ketone, average particle size: 12 nm) 0.1 mass part of anti-/depletion agent (RS·74, manufactured by DIC, 20 mass 〇/0 solution: mercapto ethyl ketone 1) 0.01 mass Antifouling agent (TU2225 'manufactured by JSR, 15% by mass solution: methyl isobutyl ketone) 0.01 parts by mass of t-starting agent (Irgacurel 27, manufactured by BASF Corporation) 〇. 1 part by mass of MIBK 1 part by mass of MEK 4 parts by mass (Example 1) A composition for a hard coat layer (1) was applied to one side of a cellulose diacetate film (thickness 8 〇M m ) to have a wet weight of 30 g/m 2 (dry weight of 15 g/m 2 ). It was dried at 50 C for 30 seconds and irradiated with ultraviolet rays of 50 mJ/cm 2 to form a hard coat layer. And then 'dry on the hard coating formed (25. (: x30 seconds ~ 70 201245756

Cx3〇秒)後之膜厚成為0.1 /zm之方式塗佈低折射率層用 組成物(1 )。並且’使用紫外線照射裝置(Fusi〇n UV System Japan公司製造,光源η閥),以照射線量192 mJ/m2進行 紫外線照射而使硬化’獲得抗反射膜《膜厚係以反射率之 極小值成為波長5 5 0 nm附近之方式進行調整。 於所獲得之抗反射膜之低折射率層中,中空狀二氧化 石夕微粒子之相對於(曱基)丙烯酸系樹脂之調配比(中空狀二 氧化矽微粒子之含量/(甲基)丙烯酸系樹脂之含量)為1 (實施例2) 使用低折射率層用組成物(2)代替低折射率層用組成 物(1 ),除此以外,以與實施例1相同之方式獲得抗反射 膜。 於所獲得之抗反射膜之低折射率層中,中空狀二氧化 矽微粒子之相對於(甲基)丙烯酸系樹脂之調配比(中空狀二 氧化矽微粒子之含量/(甲基)丙烯酸系樹脂之含量)為1 6〇。 (實施例3) 於二乙酸纖維素膜(厚度80 //m)之一側面上塗佈硬 塗層用組成物(2 )濕潤重量3 0 g/m2 (乾燥重量1 5 g/m2 ), 形成硬塗層,繼而,於所形成之硬塗層上,使用低折射率 層用組成物(2 )形成低折射率層,除此以外,以與實施例 1相同之方式獲得抗反射膜。 (實施例4) 使用低折射率層用組成物(3 )代替低折射率層用組成 物(1 ),除此以外,以與實施例丨相同之方式獲得抗反射 42 201245756 Λ 膜。 於所獲得之抗反射膜之低折射率層中,中空狀二氧化 矽微粒子之相對於(曱基)丙烯酸系樹脂之調配比(中空狀二 氧化矽微粒子之含量/(曱基)丙烯酸系樹脂之含量)為1 〇〇。 (實施例5) 使用低折射率層用組成物(4 )代替低折射率層用組成 物(1 ),除此以外,以與實施例1相同之方式獲得抗反射 膜。 於所獲得之抗反射膜之低折射率層中,中空狀二氧化 矽微粒子之相對於(曱基)丙烯酸系樹脂之調配比(中空狀二 氧化矽微粒子之含量/(曱基)丙烯酸系樹脂之含量)為〇 94。 (實施例6) 使用低折射率層用組成物(5 )代替低折射率層用組成 物(1 ),除此以外,以與實施例丨相同之方式獲得抗反射 膜。 於所獲得之抗反射膜之低折射率層中,中空狀二氧化 矽微粒子之相對於(曱基)丙烯酸系樹脂之調配比(中空狀二 氧化矽微粒子之含量/(曱基)丙烯酸系樹脂之含量)為1 6〇。 (實施例7) 於三乙酸纖維素膜(厚度8〇以m )之一側面上塗佈硬 塗層用組成物(3)濕潤重量30 g/m2 (乾燥重量15 g/m2), 形成硬塗層,繼而’於所形成之硬塗層上,使用低折射率 層用組成物(2 )形成低折射率層,除此以外,以與實施例 1相同之方式獲得抗反射膜。 43 201245756 (實施例8 ) 使用低折射率層用組成物(6)代替低折射率層用組成 物⑴’除此以外,以與實施例"目同之方式獲得抗反射 膜。 於所獲得之抗反射膜之低折射率層中,中空狀二氧化 矽微粒子之相對於(甲基)丙烯酸系樹脂之調配比(中空狀二 氧化矽微粒子之含量/(曱基)丙烯酸系樹脂之含量)為16〇。 (比較例1 ) 使用低折射率層用組成物(丨丨)代替低折射率層用組成 物(1 ),將該低折射率層用組成物(丨1 )之乾燥條件設為 120°C X 1分鐘,形成低折射率層,除此以外,以與實施例i 相同之方式獲得抗反射膜。 (比較例2) 製備除不含有反應性二氧化矽微粒子以外與低折射率 層用組成物(1 )相同之組成之低折射率層用組成物(丨2 ), 使用該低折射率層用組成物(12 ),除此以外,以與實施例 1相同之方式獲得抗反射膜。 (比較例3) 於低折射率層用組成物(1 )中,將反應性二氧化矽微 粒子設為表面不具有反應性官能基之二氧化矽微粒子 (MEK-ST ’曰產化學工業公司製造),製備低折射率層用 組成物(13 )’使用該低折射層用組成物(丨3 ),除此以外, 以與實施例1相同之方式獲得抗反射膜》 (參考例1 ) 201245756 使用低折射率層用組成物(7 )代替低折射率層用組成 物(1 ),除此以外,以與實施例丨相同之方式獲得抗反射 膜。於所獲得之抗反射膜之低折射率層中,中空狀二氧化 石夕微粒子之相對於(曱基)丙烯酸系樹脂之調配比(中空狀二 氧化石夕微粒子之含量/(甲基)丙烯酸系樹脂之含量)為〇 8〇。 (參考例2) 使用低折射率層用組成物(8 )代替低折射率層用組成 物(1 ),除此以外,以與實施例1相同之方式獲得抗反射 膜。 於所獲得之抗反射膜之低折射率層中,中空狀二氧化 石夕微粒子之相對於(曱基)丙烯酸系樹脂之調配比(中空狀二 氧化矽微粒子之含量/(曱基)丙烯酸系樹脂之含量)為 1.60。 再者,低折射率層中之反應性二氧化矽微粒子之含量 相對於(曱基)丙烯酸系樹脂10〇質量份,為75質量份。 (參考例3) 使用低折射率層用組成物(9 )代替低折射率層用組成 物(1 ),除此以外,以與實施例!相同之方式獲得抗反射 膜。 於所獲得之抗反射膜之低折射率層中,中空狀二氧化 石夕微粒子之相對於(甲基)丙烯酸系樹脂之調配比(中空狀二 氧化矽微粒子之含量/(甲基)丙烯酸系樹脂之含量)為 1.60。 再者,低折射率層中之反應性二氧化矽微粒子之含量 相對於(甲基)丙烯酸系樹脂丨00質量份,為65質量份。 (參考例4) 45 201245756 使用低折射率層用組成物(10 )代替低折射率層用組 成物(1 )’除此以外,以與實施例丨相同之方式獲得抗反 射膜。 於所獲得之抗反射膜之低折射率層中,中空狀二氧化 石夕微粒子之相對於(甲基)丙烯酸系樹脂之調配比(中空狀二 氧化石夕微粒子之含量/(甲基)丙烯酸系樹脂之含量)為 1.60 »再者’低折射率層中之反應性二氧化矽微粒子之含量 相對於(甲基)丙烯酸系樹脂1 00質量份,為3質量份。 (評價) 對於實施例及比較例中所獲得之抗反射膜,進行以下 所示之各評價》將結果示於表1。 (反射率之測定) 黏貼用以防止所獲得之各抗反射膜之背面反射之黑色 膠帶’自低折射率層之面開始,使用島津製作所製造之分 光反射率測定機「MCP3100」,測定波段380〜780 nm中之 5°正反射Y值。以下述基準評價結果^ 5。正反射γ值係於 380〜780 nm之波長範圍内測定5。正反射率,其後,利用換 算作人眼感受到之亮度之軟件(内藏於MCP3 100中)所算 出之以視感反射率表示的值。 評價基準 〇:5°正反射Y值未達1.5% X : 5°正反射Y值為1.5%以上 (耐擦傷性) 使用# 〇〇〇〇號之鋼絲絨、以規定之摩擦荷重300 g/cm2 46 201245756 摩擦實施例及比較例中所獲得之抗反射膜之低折射率層之 表面1 0個來回’其後目測塗膜有無剝離,以下述基準評價 結果。 ◎:無傷 〇:稍有傷 X :有傷 (防污性) 使指紋附著於實施例及比較例中所獲得之抗反射膜之 表面後,使日本製紙CRECIA公司製造之Kimwipe (註冊商 標)以150 g/cm2荷重來回30次進行擦栻,黏貼黑膠帶, 於螢光燈下藉由目測以下述基準評價擦栻性(指紋之殘留 情況)。 ◎ ‘指紋未殘留 〇··指紋稍有殘留 X :指紋殘留 47 201245756 vg 萃 Μ tn 〇§π 左 荃 £ 破 芸 Μ V0 V0 V0 V0 V0 V0 喊 v§ V0 喊 喊 与 岭 岭 岭 岭 岭 ^Φ 岭 岭 4 Η" 荃 荃 W U 革 萃 V0 草 5 革 V0 萃 €: 革 萃 ε e ε Μ 〇§〇 备 要 要 要 要 毋 要 m 要 蝴· 蝴· δ3 Qgm Djn 革 {$〇 萃 茶 〇^〇 鈿 m 劍 劍 劍 如1 右 右 絮 Ί LfilJ W tfhi w 蜊 b xsaJ w \〇xJ vp> / ^hJ w 铽 硪 i£lJ w 硪 铼 硃 \B^J 硃 硃 竦 t 举 荦 埂 牮 竣 1 Μ ±! k 〇 〇 ◎ 〇 〇 〇 〇 〇 X 〇 〇 〇 X X X 验 ◎ ◎ 〇 〇 ◎ 〇 〇 〇 X X X 〇 X X X 跻 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 X 〇 〇 〇 客 W. 劍 /-"N V—/ /—N /-N CN 's*/ /-N /•"N Sw^ /~S /->, 1—^ /^N /-N S*-/ /-"Ν VwX /^\ ^-H iftj 蓉 昍 蝴· /-N Vw/ Vw/ Sw/ Nw/ 寸 V—/ /—N (N \-/ (11) (12) (13) N«/ (10) 絮 (N ΓΟ 军 寸 <n 革 VO 卜 00 (N 签 (N 军 寸 革 碧 雀 雀 辑 省 % Hr 命 私 %κ 私 Jj 〇3 aJ 妹 妹The composition (1) for the low refractive index layer was applied in such a manner that the film thickness after Cx3 〇 second was 0.1 / zm. In addition, the ultraviolet ray irradiation device (manufactured by Fusi〇n UV System Japan Co., Ltd., light source η valve) is irradiated with ultraviolet rays at an irradiation dose of 192 mJ/m 2 to obtain an anti-reflection film. The film thickness is extremely small at a reflectance. Adjust by the way around the wavelength of 5 50 nm. In the low refractive index layer of the obtained antireflection film, the ratio of the hollow zirconia particles to the (fluorenyl) acrylate resin (the content of the hollow cerium oxide microparticles / (meth)acrylic acid The content of the resin was 1 (Example 2) An antireflection film was obtained in the same manner as in Example 1 except that the composition (2) for the low refractive index layer was used instead of the composition (1) for the low refractive index layer. . In the low refractive index layer of the obtained antireflection film, the ratio of the hollow cerium oxide microparticles to the (meth)acrylic resin (the content of the hollow cerium oxide microparticles / (meth)acrylic resin) The content) is 16 〇. (Example 3) The composition for hard coating layer (2) was applied to one side of a cellulose diacetate film (thickness 80 // m) to have a wet weight of 30 g/m 2 (dry weight of 15 g/m 2 ). An anti-reflection film was obtained in the same manner as in Example 1 except that a hard coat layer was formed, and then a low refractive index layer was formed on the formed hard coat layer using the low refractive index layer composition (2). (Example 4) An antireflection film 42 201245756 Λ film was obtained in the same manner as in Example 使用 except that the composition (3) for the low refractive index layer was used instead of the composition (1) for the low refractive index layer. In the low refractive index layer of the obtained antireflection film, the ratio of the hollow cerium oxide microparticles to the (fluorenyl) acrylate resin (the content of the hollow cerium oxide microparticles / (fluorenyl) acrylic resin The content) is 1 〇〇. (Example 5) An antireflection film was obtained in the same manner as in Example 1 except that the composition (4) for the low refractive index layer was used instead of the composition (1) for the low refractive index layer. In the low refractive index layer of the obtained antireflection film, the ratio of the hollow cerium oxide microparticles to the (fluorenyl) acrylate resin (the content of the hollow cerium oxide microparticles / (fluorenyl) acrylic resin The content) is 〇94. (Example 6) An antireflection film was obtained in the same manner as in Example 使用 except that the composition (5) for the low refractive index layer was used instead of the composition (1) for the low refractive index layer. In the low refractive index layer of the obtained antireflection film, the ratio of the hollow cerium oxide microparticles to the (fluorenyl) acrylate resin (the content of the hollow cerium oxide microparticles / (fluorenyl) acrylic resin The content) is 16 〇. (Example 7) A composition for hard coating layer (3) was applied to one side of a cellulose triacetate film (thickness of 8 Å in m) to have a wet weight of 30 g/m 2 (dry weight: 15 g/m 2 ) to form a hard An antireflection film was obtained in the same manner as in Example 1 except that the coating layer was used to form a low refractive index layer on the formed hard coat layer using the low refractive index layer composition (2). 43 201245756 (Example 8) An antireflection film was obtained in the same manner as in Example " except that the composition (6) for the low refractive index layer was used instead of the composition (1)' for the low refractive index layer. In the low refractive index layer of the obtained antireflection film, the ratio of the hollow cerium oxide microparticles to the (meth)acrylic resin (the content of the hollow cerium oxide microparticles / (mercapto) acrylic resin) The content) is 16 〇. (Comparative Example 1) The low refractive index layer composition (1) was used instead of the low refractive index layer composition (1), and the low refractive index layer composition (?1) was dried at 120 °C. An antireflection film was obtained in the same manner as in Example i except that a low refractive index layer was formed in 1 minute. (Comparative Example 2) A composition for low refractive index layer (丨2) having the same composition as that of the composition (1) for a low refractive index layer other than the reactive cerium oxide microparticles was used, and the low refractive index layer was used. An antireflection film was obtained in the same manner as in Example 1 except for the composition (12). (Comparative Example 3) In the composition (1) for a low refractive index layer, the reactive cerium oxide fine particles are cerium oxide fine particles having a surface having no reactive functional groups (MEK-ST 'Medical Chemical Industry Co., Ltd.) An antireflection film was obtained in the same manner as in Example 1 except that the composition for low refractive index layer (13) was used to prepare the composition for low refractive index layer (Ref. 3) (Reference Example 1) 201245756 An antireflection film was obtained in the same manner as in Example 除 except that the composition (1) for the low refractive index layer was used instead of the composition (1) for the low refractive index layer. In the low refractive index layer of the obtained antireflection film, the ratio of the hollow zirconia particles to the (fluorenyl) acrylic resin (the content of the hollow zirconia particles / (meth) acrylate The content of the resin is 〇8〇. (Reference Example 2) An antireflection film was obtained in the same manner as in Example 1 except that the composition (8) for the low refractive index layer was used instead of the composition (1) for the low refractive index layer. In the low refractive index layer of the obtained antireflection film, the ratio of the hollow silica dioxide particles to the (fluorenyl) acrylic resin (the content of the hollow cerium oxide microparticles / (mercapto) acrylic) The content of the resin was 1.60. Further, the content of the reactive ceria fine particles in the low refractive index layer was 75 parts by mass based on 10 parts by mass of the (fluorenyl) acrylic resin. (Reference Example 3) The composition (1) for the low refractive index layer was used instead of the composition (1) for the low refractive index layer, and other examples were used! An antireflection film was obtained in the same manner. In the low refractive index layer of the obtained antireflection film, the ratio of the hollow zirconia particles to the (meth)acrylic resin (the content of the hollow cerium oxide microparticles / (meth)acrylic acid) The content of the resin was 1.60. In addition, the content of the reactive cerium oxide fine particles in the low refractive index layer is 65 parts by mass based on 00 parts by mass of the (meth)acrylic resin. (Reference Example 4) 45 201245756 An antireflection film was obtained in the same manner as in Example 除 except that the composition (10) for the low refractive index layer was used instead of the composition (1) for the low refractive index layer. In the low refractive index layer of the obtained antireflection film, the ratio of the hollow zirconia particles to the (meth)acrylic resin (the content of the hollow zirconia particles/(meth)acrylic acid) The content of the resin is 1.60. The content of the reactive cerium oxide microparticles in the low refractive index layer is 3 parts by mass based on 100 parts by mass of the (meth)acrylic resin. (Evaluation) The respective evaluations shown below were carried out for the antireflection films obtained in the examples and the comparative examples. The results are shown in Table 1. (Measurement of reflectance) The black tape of the back surface of each of the obtained anti-reflection films is prevented from being adhered to the surface of the low refractive index layer, and the spectral reflectance measuring machine "MCP3100" manufactured by Shimadzu Corporation is used to measure the wavelength band 380. 5° positive reflection Y value in ~780 nm. The results were evaluated on the basis of the following criteria ^5. The specular reflection gamma value was measured in the wavelength range of 380 to 780 nm. The regular reflectance, and thereafter, the value expressed by the visual reflectance calculated by the software for calculating the brightness perceived by the human eye (built in the MCP3 100). Evaluation standard 〇: 5° positive reflection Y value is less than 1.5% X : 5° positive reflection Y value is 1.5% or more (scratch resistance) Steel wool with #〇〇〇〇, with a specified friction load of 300 g/ Cm2 46 201245756 The surface of the low refractive index layer of the antireflection film obtained in the examples and the comparative examples was rubbed for 10 times. Then, the coating film was visually observed for peeling, and the results were evaluated by the following criteria. ◎: no scars: slightly injured X: wounded (anti-staining property) After attaching the fingerprint to the surface of the antireflection film obtained in the examples and the comparative examples, Kimwipe (registered trademark) manufactured by Nippon Paper Paper CRECIA Co., Ltd. was The load of 150 g/cm2 was rubbed back and forth 30 times, and the black tape was pasted, and the rubbing property (residence of the fingerprint) was evaluated by visual inspection under the fluorescent light according to the following criteria. ◎ 'The fingerprint is not left 〇··The fingerprint is slightly residual X: The fingerprint remains 47 201245756 vg Μ Μ tn 〇§π Left 荃 £ 芸Μ 芸Μ V0 V0 V0 V0 V0 V0 叫 v§ V0 shouting and Lingling Ridge Ridge ^ Φ 岭岭4 Η" 荃荃WU leather extract V0 grass 5 leather V0 extract €: leather extraction ε e ε Μ 〇§〇要要要要要要要要· Butterfly· δ3 Qgm Djn leather {$〇萃茶〇^〇钿m Sword and sword like 1 Right and right Ί LfilJ W tfhi w 蜊b xsaJ w \〇xJ vp> / ^hJ w 铽硪i£lJ w 硪铼朱\B^J Zhu Zhu竦t埂牮竣1 Μ ±! k 〇〇◎ 〇〇〇〇〇X 〇〇〇XXX ◎ ◎ 〇〇 ◎ 〇〇〇XXX 〇XXX 跻〇〇〇〇 〇〇〇〇〇〇X hacker W. Sword/-"NV-/ /-N /-N CN 's*/ /-N /•"N Sw^ /~S /->, 1—^ /^N /-NS*-/ /-"Ν VwX /^\ ^-H iftj 昍 昍 · / / N Vw / Vw / Sw / Nw / inch V - / / - N (N \ -/ (11) (12) (13) N«/ (10) 絮 (N ΓΟ 军 inch <n 革 VO 00 (N sign (N Army inch leather 雀雀雀省% Hr 私私%κ私Jj 〇3 aJ sister

201245756 (低折射率層之剖面觀察) 沿厚度方向㈣實施例及比較例中所獲得之抗反射 膜,利用STEM (施加電壓:3〇〇 kv,倍率:2〇萬倍)觀 察各自之剖面。分別將實施例1之結果示於圖1,將實施例 7之結果示於圖2,將比較例1之結果示於圖3,將比較例 2之結果示於圖4。再者’比較例】中所獲得之抗反射膜於 剖面觀察時形成厚度約15碳所構成之蒸錄層。 又,於圖1〜4之右下方,1刻度表示20_之尺度。 由圖1、2確認,於實施例1之抗反射膜中,反應性二 氧化石夕微粒子偏於低折射率層之與硬塗層相反側之界面附 近,又,於實施例7之抗反射膜中,反應性二氧化石夕微粒 子偏於低折射率層之硬塗層側之界面附近及與該硬塗層相 ^側之界面附近’兩者之中空狀二氧切微粒子均處於緊 密填充之狀態,低折射率層之表面為極其均句之狀態。 又,雖未作圖式,但確認於實施例3之抗反射膜中, 反應性二氧化矽微粒子偏於低折射率層之硬塗層側之界面 附近中工狀一氧化矽微粒子亦處於緊密填充之狀態’低 折射率層之表面處於極其均勻之狀態。又,雖未作圖式, 但確認於實施例2、4〜6、8之抗反射膜中,反應性二氧化 石夕微粒子均偏於低折射率層《與硬塗層相反側之界面附 近’中空狀二氧化石夕微粒子亦處於緊密填充之狀態,低折 射率層之表面為極其均勻之狀態。 -又’又纟1得知,實施例之抗反射膜均具有充分之防 污性、抗反射性能及耐擦傷性。 49 201245756 又,由實施例之結果得知,耐擦傷性於以下情形時成 為最佳。 如下情形:反應性二氧化矽微粒子偏於低折射率層之 與硬塗層相反侧、且偏向地存在之反應性二氧化矽微粒子 量為最佳(相對於(曱基)丙烯酸系樹脂丨〇〇質量份為3〇質 量份以上)。 如下情形:於硬塗層中亦含有反應性二氧化矽微粒 子,藉此成為低折射率層之底層之層(透光性基材及硬塗 層)整體之硬度較高。 又,得知,防污性於反應性二氧化矽微粒子偏於低折 射率層之硬塗層側之情形時成為最佳,推測其原因在於, 於低折射率層之最表面上不存在反應性二氧化矽微粒子, 從而使得防污劑自身易來到低折射率層之表面,於低折射 率層之整個最表面上存在防污劑。 另一方面,如圖3所示,於比較例丨之抗反射膜中, 反應性二氧化石夕微粒子散佈於低折射率層中之各處,未確 認到偏於低折射率層之硬塗層側'或與硬塗層相反側之界 面附近之反應性二氧化矽微粒子,又,其表面亦不均勻。1 推測其原因在於,所使用之溶劑或乾燥條件不恰當,乾燥 速度快。進而,比較例1之抗反射膜之防污性亦較差。又, 如圖4所示,於比較例2之抗反射膜中,儘管中空狀二氧 化矽微粒子處於緊密填充之狀態且表面均勻,但由於在低 折射率層中不含有反應性二氧化矽微粒子’因此财擦傷性 差。又,雖未作圖式,但於比較例3之抗反射膜中,儘管 201245756 中空狀二氧化矽微粒子處於緊密填充之狀態且表面均勻, 但由於在低折射率層中含有不具有反應性官能基之二氧化 矽微粒子,因此耐擦傷性差。 又,於參考例1之抗反射膜中,相對於低折射率層之(曱 基)丙稀酸系樹脂’中空狀二氧化矽微粒子之比例較小抗 反射性能差。X ’於參考例2及3之抗反射膜中,低折射 率層中之反應性二氧化矽微粒子之含量較多,反應性二氧 化石夕微粒子之偏向存在不充分,散佈於低折射率層中之各 處,中空狀二氧化矽微粒子亦未成為緊密填充之狀態,耐 擦傷性及防污性差。又,於參考你^ 4之抗反射膜中,低折 射率層中之反應性一氧化石夕微粒子之含量較少,反應性二 氧化矽微粒子之偏向存在不充分,散佈於低折射率層中之 各處,中空狀二氧化矽微粒子亦未成為緊密填充之狀態, 耐擦傷性及防污性差。 [產業上之可利用性] 本發明之抗反射膜由於具有由上述構成所構成之低折 射率層’因此抗反射性能及表面硬度優異。因此,本發明 之抗反射膜可較佳地應用於陰極射線管顯示裝置(CRT )、 液晶顯示器(LGD )、電漿顯示器(PDP )、電致發光顯示器 (ELD )、場發射顯示器(FED)、觸控面板、平板pc、電 子紙等中。 【圖式簡單說明】 圖1係實施例1之抗反射膜之剖面之顯微鏡相片。 圖2係實施例7之抗反射膜之剖面之顯微鏡相片。 201245756 圖3係比較例1之抗反射膜之剖面之顯微鏡相片。 圖4係比較例2之抗反射膜之剖面之顯微鏡相片。 【主要元件符號說明】 無 52201245756 (Sectional observation of the low refractive index layer) The antireflection film obtained in the examples and the comparative examples in the thickness direction (4) was observed by STEM (applied voltage: 3 〇〇 kv, magnification: 2 million times). The results of Example 1 are shown in Fig. 1, the results of Example 7 are shown in Fig. 2, the results of Comparative Example 1 are shown in Fig. 3, and the results of Comparative Example 2 are shown in Fig. 4. Further, the antireflection film obtained in the 'Comparative Example' was formed into a vapor deposition layer having a thickness of about 15 carbons when observed in a cross section. Further, in the lower right of Figs. 1 to 4, the scale 1 indicates the scale of 20_. It is confirmed from FIGS. 1 and 2 that in the antireflection film of Example 1, the reactive silica fine particles are biased to the vicinity of the interface of the low refractive index layer opposite to the hard coat layer, and further, the antireflection of Example 7. In the film, the reactive smectite particles are in the vicinity of the interface on the hard coat side of the low refractive index layer and in the vicinity of the interface with the side of the hard coat layer, and both of the hollow oxy-cut particles are intimately filled. In the state, the surface of the low refractive index layer is in an extremely uniform state. Further, although not shown in the drawings, it was confirmed that in the antireflection film of Example 3, the reactive cerium oxide microparticles were in the vicinity of the interface on the hard coat layer side of the low refractive index layer, and the work of the cerium oxide microparticles was also tight. In the filled state, the surface of the low refractive index layer is in an extremely uniform state. Further, although not shown in the drawings, it was confirmed that in the antireflection films of Examples 2, 4 to 6, and 8, the reactive silica fine particles were all biased to the vicinity of the interface of the low refractive index layer on the opposite side to the hard coat layer. The hollow-shaped silica dioxide particles are also in a state of close filling, and the surface of the low refractive index layer is extremely uniform. Further, it has been found that the antireflection film of the examples has sufficient antifouling properties, antireflection properties and scratch resistance. 49 201245756 Further, as a result of the examples, the scratch resistance was optimized in the following cases. In the case where the reactive cerium oxide microparticles are biased on the opposite side of the low refractive index layer from the hard coat layer, and the amount of reactive cerium oxide microparticles present in a biased manner is optimal (relative to the (fluorenyl) acrylic resin 丨〇 〇 mass parts are more than 3 parts by mass). In the case where the hard coat layer contains reactive cerium oxide fine particles, the layer which becomes the underlayer of the low refractive index layer (translucent substrate and hard coat layer) has a high hardness as a whole. Further, it is found that the antifouling property is optimized when the reactive cerium oxide fine particles are biased to the hard coat layer side of the low refractive index layer, and it is presumed that there is no reaction on the outermost surface of the low refractive index layer. The cerium oxide microparticles are such that the antifouling agent itself easily comes to the surface of the low refractive index layer, and the antifouling agent is present on the entire outermost surface of the low refractive index layer. On the other hand, as shown in Fig. 3, in the antireflection film of Comparative Example, the reactive silica fine particles were dispersed throughout the low refractive index layer, and the hard coat layer biased to the low refractive index layer was not confirmed. The side of the side or the reactive cerium oxide microparticles near the interface opposite the hard coat layer, and the surface thereof is also uneven. 1 It is presumed that the reason is that the solvent or drying conditions used are not appropriate and the drying speed is fast. Further, the antireflection film of Comparative Example 1 was also inferior in antifouling property. Further, as shown in FIG. 4, in the antireflection film of Comparative Example 2, although the hollow cerium oxide microparticles were in a state of being closely packed and the surface was uniform, since no reactive cerium oxide microparticles were contained in the low refractive index layer. 'So the financial scratch is poor. Further, although not illustrated, in the antireflection film of Comparative Example 3, although the hollow cerium oxide microparticles of 201245756 are in a state of being closely packed and the surface is uniform, since the low refractive index layer contains a non-reactive functional group. Based on the cerium oxide microparticles, the scratch resistance is poor. Further, in the antireflection film of Reference Example 1, the ratio of the hollow cerium oxide microparticles of the (fluorenyl)acrylic resin to the low refractive index layer was small, and the antireflection property was inferior. In the antireflection film of Reference Examples 2 and 3, the content of the reactive cerium oxide microparticles in the low refractive index layer is large, and the bias of the reactive oxidized cerium microparticles is insufficient, and is dispersed in the low refractive index layer. In the middle of the process, the hollow cerium oxide microparticles are not in a state of close filling, and the scratch resistance and the antifouling property are inferior. Moreover, in the anti-reflection film of the reference 4, the content of the reactive oxidized cerium particles in the low refractive index layer is small, and the bias of the reactive cerium oxide microparticles is insufficient, and is dispersed in the low refractive index layer. In all cases, the hollow cerium oxide fine particles are not in a state of being closely packed, and the scratch resistance and the antifouling property are inferior. [Industrial Applicability] The antireflection film of the present invention has an excellent antireflection property and surface hardness because it has a low refractive index layer composed of the above configuration. Therefore, the antireflection film of the present invention can be preferably applied to a cathode ray tube display device (CRT), a liquid crystal display (LGD), a plasma display (PDP), an electroluminescence display (ELD), a field emission display (FED). , touch panel, tablet pc, electronic paper, etc. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a photomicrograph of a cross section of an antireflection film of Example 1. 2 is a photomicrograph of a cross section of the antireflection film of Example 7. 201245756 FIG. 3 is a photomicrograph of a cross section of the antireflection film of Comparative Example 1. 4 is a photomicrograph of a cross section of the antireflection film of Comparative Example 2. [Main component symbol description] None 52

Claims (1)

201245756 * 七、申請專利範圍: 1. 一種抗反射膜’係於透光性基材上形成硬塗層且於該 硬塗層上形成低折射率層,其特徵在於: 該低折射率層含有(甲基)丙烯酸系樹脂、中空狀二氧化 矽微粒子、反應性二氧化矽微粒子及防污劑,且 該低折射率層中之反應性二氧化矽微粒子偏於該硬塗 層側之界面附近及/或與該硬塗層相反側之界面附近。 2. 如申請專利範圍第1項之抗反射膜,其中,低折射率 層中之反應性一氧化石夕微粒子偏於與硬塗層側相反側之界 面附近’該硬塗層於該低折射率層側之界面附近具有沿該 界面方向整齊排列之反應性二氧化矽微粒子。 3. 如申請專利範圍第1項或第2項之抗反射膜,其中, 低折射率層中之反應性二氧化矽微粒子之含量相對於(曱基) 丙稀酸系樹脂1 0 0質量份,為5〜6 〇質量份。 4·如申請專利範圍第丨項、第2項或第3項之抗反射 膜其中’中空狀一氧化石夕微粒子之平均粒徑為40〜80 nm,進而相對於(曱基)丙烯酸系樹脂之調配比(中空狀二氧 化矽微粒子之含量/(甲基)丙烯酸系樹脂之含量)為〇 9〇〜 1.60。 5. 如申請專利範圍第丨項、第2項、第3項或第4項之 抗反射膜,其中,防污劑偏於低折射率層之與硬塗層相反 側之界面附近。 6. 如申請專利範圍第】項、第2項、第3項、第4項或 第5項之抗反射膜,其中,防污劑係含有反應性官能基、 53 201245756 與敦原子及/或石夕原子之化合物。 7. 如申請專利範圍第1項、第2項、第3項、第4項' 第5項或第6項之抗反射膜’其中,(甲基)丙烯酸系樹脂係 選自由新戊四醇三(曱基)丙烯酸酯、二新戊四醇六(曱基)丙 稀酸酯、新戊四醇四(曱基)丙烯酸酯、二新戊四醇五(曱基) 丙稀S夂自曰、二經曱基丙烧二(曱基)丙稀酸醋、二新戊四醇四 (曱基)丙烯酸醋、及異三聚氰酸三(甲基)丙烯酸酯所組成之 群中之至少1種單體之聚合物或共聚物。 8. 如申請專利範圍第1項、第2項、第3項、第4項、 第5項、第6項或第7項之抗反射膜’其中,低折射率層 進而含有含氟原子之樹脂。 9. 如申請專利範圍第1項、第2項、第3項、第4項、 第5項、第6項、第7項或第8項之抗反射膜,其中,硬 塗層中之反應性二氧化矽微粒子之含量相對於(曱基)丙稀 酸系樹脂100質量份,為15〜60質量份。 10_—種偏光板’係具備偏光元件而成,其特徵在於· 该偏光板於偏光元件表面具備申請專利範圍第1項、 第2項、第3項、第4項、第5項、第6項、第7項、第8 項或第9項之抗反射膜。 11. 一種影傢 八丨《 1 π -r q靶固第 i項、 2項、第3項、第4項、第5項、第6項、第7項、第8 或第9項之抗反射膜或申請專利範圍第項之偏光板 54201245756 * VII. Patent application scope: 1. An anti-reflection film is formed on a light-transmitting substrate to form a hard coating layer and a low refractive index layer is formed on the hard coating layer, wherein the low refractive index layer contains a (meth)acrylic resin, hollow cerium oxide microparticles, reactive cerium oxide microparticles, and an antifouling agent, and the reactive cerium oxide microparticles in the low refractive index layer are biased near the interface of the hard coat layer side And/or near the interface on the opposite side of the hard coat layer. 2. The antireflection film of claim 1, wherein the reactive smectite particles in the low refractive index layer are biased near the interface on the side opposite to the side of the hard coat layer, the hard coat layer being at the low refractive index Near the interface on the rate layer side, there are reactive cerium oxide microparticles arranged neatly along the interface direction. 3. The antireflection film according to claim 1 or 2, wherein the content of the reactive cerium oxide microparticles in the low refractive index layer is 1.0 part by mass relative to the (fluorenyl) acrylic resin. , for 5 to 6 〇 by mass. 4. The anti-reflection film of the second, third or third aspect of the patent application, wherein the average particle diameter of the hollow-shaped oxidized fine particles is 40 to 80 nm, and further relative to the (fluorenyl) acrylic resin. The blending ratio (the content of the hollow cerium oxide microparticles / the content of the (meth)acrylic resin) is 〇9 〇 to 1.60. 5. The antireflection film of claim 2, 2, 3 or 4, wherein the antifouling agent is biased near the interface of the low refractive index layer opposite to the hard coat layer. 6. For anti-reflection film of the scope of the patent, the second item, the third item, the fourth item or the fifth item, wherein the antifouling agent contains a reactive functional group, 53 201245756 and the atom and/or The compound of Shi Xi atom. 7. For the patent application, item 1, item 2, item 3, item 4, item 5 or item 6 of the antireflection film, wherein the (meth)acrylic resin is selected from the group consisting of neopentyl alcohol Tris(fluorenyl) acrylate, dipentaerythritol hexa(indenyl) acrylate, neopentyltetrakis(mercapto) acrylate, dipentaerythritol quinone (mercapto) propylene S 夂曰, 曱 曱 丙 丙 丙 曱 曱 曱 曱 曱 曱 曱 曱 曱 曱 曱 曱 曱 曱 曱 曱 曱 曱 曱 曱 曱 曱 曱 曱 曱 曱 之 之 之 之 之 之 之 之 之 之 之 之A polymer or copolymer of at least one monomer. 8. For anti-reflection film of claim 1, item 1, item 3, item 4, item 5, item 6, or item 7, wherein the low refractive index layer further contains a fluorine atom Resin. 9. For the anti-reflection film of claim 1, item 1, item 3, item 4, item 5, item 6, item 7, or item 8, wherein the reaction in the hard coat layer The content of the cerium oxide fine particles is 15 to 60 parts by mass based on 100 parts by mass of the (fluorenyl) acrylic resin. The polarizing plate of the 10th type is provided with a polarizing element, and the polarizing plate has the first, second, third, fourth, fifth, and sixth patent claims on the surface of the polarizing element. Item, item 7, item 8, or item 9 of the antireflective film. 11. Anti-reflection of the 1st, 2nd, 3rd, 4th, 5th, 6th, 7th, 8th or 9th item of the 1 π-rq target Film or polarizing plate 54 of the scope of patent application
TW101114663A 2011-04-26 2012-04-25 Anti-reflection film, polarizing plate and image display device TWI542899B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011098112 2011-04-26

Publications (2)

Publication Number Publication Date
TW201245756A true TW201245756A (en) 2012-11-16
TWI542899B TWI542899B (en) 2016-07-21

Family

ID=47072049

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101114663A TWI542899B (en) 2011-04-26 2012-04-25 Anti-reflection film, polarizing plate and image display device

Country Status (5)

Country Link
JP (1) JP6011527B2 (en)
KR (2) KR101871135B1 (en)
CN (1) CN103460079B (en)
TW (1) TWI542899B (en)
WO (1) WO2012147527A1 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014091835A1 (en) * 2012-12-14 2014-06-19 中井工業株式会社 Hard coat film
JP2014142443A (en) * 2013-01-23 2014-08-07 Kyocera Corp Imaging optical system
KR101813707B1 (en) * 2015-11-04 2017-12-29 주식회사 엘지화학 Anti-reflective film and preparation method of the same
JP7161836B2 (en) 2015-12-18 2022-10-27 デクセリアルズ株式会社 Antifogging antifouling laminate, article, and method for producing the same
KR102294715B1 (en) * 2016-01-13 2021-08-26 주식회사 엘지화학 Anti-reflective film and preparation method of the same
KR102340255B1 (en) * 2016-01-13 2021-12-15 주식회사 엘지화학 Anti-reflective film and preparation method of the same
JP2017146492A (en) * 2016-02-18 2017-08-24 リンテック株式会社 Film with protective film for laminating transparent conductive film, and method of manufacturing transparent conductive film
KR102077797B1 (en) * 2016-02-19 2020-02-14 주식회사 엘지화학 Photocurable coating composition for forming low refractive layer
WO2017142291A1 (en) * 2016-02-19 2017-08-24 주식회사 엘지화학 Photocurable coating composition for forming low refractive layer
CN108474870A (en) 2016-03-09 2018-08-31 株式会社Lg化学 Anti-reflective film
KR101906492B1 (en) * 2016-03-14 2018-12-05 주식회사 엘지화학 Anti-reflective film
KR101790240B1 (en) * 2016-03-11 2017-10-26 주식회사 엘지화학 Anti-refractive film
WO2017155337A1 (en) * 2016-03-09 2017-09-14 주식회사 엘지화학 Anti-reflection film
CN107632330B (en) * 2016-07-14 2019-11-01 株式会社Lg化学 Antireflection film
KR101961333B1 (en) * 2016-07-14 2019-03-22 주식회사 엘지화학 Anti-reflective film
EP3407097B1 (en) 2016-09-27 2020-08-19 LG Chem, Ltd. Anti-reflection film and method for producing same
CN110520765B (en) * 2017-04-10 2021-12-10 日东电工株式会社 Optical laminate, polarizing plate, and image display device
WO2018190174A1 (en) * 2017-04-10 2018-10-18 日東電工株式会社 Optical laminate, polarizing plate, and image display device
JP7020277B2 (en) * 2017-04-28 2022-02-16 大日本印刷株式会社 Molded body and display device using it
KR101991928B1 (en) 2017-04-28 2019-06-21 주식회사 엘지화학 Anti-reflective film
WO2019049578A1 (en) * 2017-09-08 2019-03-14 株式会社ダイセル Anti-reflection film
KR102267594B1 (en) 2018-01-24 2021-06-18 주식회사 엘지화학 Anti-reflective film, polarizing plate, and display apparatus
KR102257923B1 (en) * 2018-01-24 2021-05-27 주식회사 엘지화학 Anti-reflective film, polarizing plate, and display apparatus
WO2019221573A1 (en) * 2018-05-18 2019-11-21 주식회사 엘지화학 Anti-reflective film, polarizing plate, and display apparatus
KR102280262B1 (en) 2018-05-18 2021-07-21 주식회사 엘지화학 Anti-reflective film, polarizing plate, and display apparatus
KR102194998B1 (en) 2018-06-26 2020-12-24 주식회사 엘지화학 Anti-reflective film, polarizing plate, and display apparatus
CN109473045A (en) * 2018-12-17 2019-03-15 武汉华星光电半导体显示技术有限公司 A kind of optical cement, its manufacturing method and its flexible display screen
CN116719106A (en) * 2019-01-10 2023-09-08 大日本印刷株式会社 Antireflection member, and polarizing plate, image display device and antireflection article each comprising the antireflection member
KR102449532B1 (en) * 2019-07-30 2022-09-29 히가시야마 필름 가부시키가이샤 anti-reflection film
JP7235623B2 (en) 2019-09-05 2023-03-08 エルジー ディスプレイ カンパニー リミテッド flexible display

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0700975B1 (en) * 1993-12-28 2001-09-05 Daikin Industries, Ltd. Coating composition and coated article
JP3864361B2 (en) * 1998-09-01 2006-12-27 清水建設株式会社 Viscous damping wall mounting structure and mounting method
JP4324344B2 (en) * 2002-05-02 2009-09-02 富士フイルム株式会社 Antireflection film and method for forming the same, polarizing plate, and image display device
JP2005181543A (en) * 2003-12-17 2005-07-07 Bridgestone Corp Antireflection film
US20080032052A1 (en) * 2006-08-04 2008-02-07 Kostantinos Kourtakis Low refractive index composition
JP5320703B2 (en) * 2007-08-10 2013-10-23 大日本印刷株式会社 Hard coat film
JP2009086360A (en) * 2007-09-28 2009-04-23 Dainippon Printing Co Ltd Antireflection film
JP5659460B2 (en) * 2008-04-03 2015-01-28 大日本印刷株式会社 Optical film and method for producing the same
JP5531509B2 (en) * 2008-09-05 2014-06-25 大日本印刷株式会社 Optical laminate, polarizing plate, and image display device
JP5262610B2 (en) * 2008-11-17 2013-08-14 大日本印刷株式会社 Manufacturing method of optical sheet
WO2011046149A1 (en) * 2009-10-16 2011-04-21 大日本印刷株式会社 Optical film and display panel

Also Published As

Publication number Publication date
TWI542899B (en) 2016-07-21
CN103460079B (en) 2016-01-20
KR20140006922A (en) 2014-01-16
KR20170092702A (en) 2017-08-11
JP6011527B2 (en) 2016-10-19
KR101871135B1 (en) 2018-06-25
CN103460079A (en) 2013-12-18
WO2012147527A1 (en) 2012-11-01
JPWO2012147527A1 (en) 2014-07-28

Similar Documents

Publication Publication Date Title
TW201245756A (en) Antireflection film, polarizing plate, and image display device
TWI515271B (en) Anti-reflection film, anti-reflection film manufacturing method, polarizing film and image display device
TWI418463B (en) An optical laminate, a polarizing plate, and an image display device
TWI530707B (en) Method for manufacturing anti-reflection film, anti-reflection film, polarizing plate, and image display device
TWI416158B (en) Optical laminated body and optical laminate
JP5531509B2 (en) Optical laminate, polarizing plate, and image display device
TWI390240B (en) An optical laminate having a low refractive index
CN102782527B (en) Optical film and method for producing the same
TWI448718B (en) An optical laminate, a polarizing plate, and an image display device
JP4853813B2 (en) Anti-reflection laminate
TW201213138A (en) Optical laminate, polarization plate and image display device
JP2010241937A (en) Curable resin composition for hard coat layer, hard coat film, and transmission type optical display
TWI389798B (en) An anti-reflectance film
TW201346319A (en) Display element front-face film, and display element provided with surface member
JP2007322877A (en) Optical laminated body
JP5051088B2 (en) Optical laminate, polarizing plate, and image display device
JP2003344603A (en) Antireflection film
JP2010117554A (en) Method of manufacturing optical laminate, optical laminate, polarization plate and image display device
JP2017019247A (en) Optical laminate
JP2008250265A (en) Optical film
JP4985051B2 (en) Antireflection film
JP4296098B2 (en) Anti-glare film
TWI542472B (en) Optical laminate, polarizing plate and image display device