WO2019221573A1 - Anti-reflective film, polarizing plate, and display apparatus - Google Patents

Anti-reflective film, polarizing plate, and display apparatus Download PDF

Info

Publication number
WO2019221573A1
WO2019221573A1 PCT/KR2019/006006 KR2019006006W WO2019221573A1 WO 2019221573 A1 WO2019221573 A1 WO 2019221573A1 KR 2019006006 W KR2019006006 W KR 2019006006W WO 2019221573 A1 WO2019221573 A1 WO 2019221573A1
Authority
WO
WIPO (PCT)
Prior art keywords
low refractive
meth
film
inorganic particles
hollow inorganic
Prior art date
Application number
PCT/KR2019/006006
Other languages
French (fr)
Korean (ko)
Inventor
변진석
고경문
이상헌
서광석
장영래
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190055866A external-priority patent/KR102280262B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201980012904.7A priority Critical patent/CN111712534B/en
Priority to US16/978,458 priority patent/US11732142B2/en
Priority to JP2020545503A priority patent/JP7205815B2/en
Priority to EP19803464.7A priority patent/EP3733745A4/en
Publication of WO2019221573A1 publication Critical patent/WO2019221573A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to an antireflection film, a polarizing plate and a display device. [Technique to become background of invention]
  • a flat panel display device such as a PDP or LCD is equipped with an anti-reflection film for minimizing reflection of light incident from the outside.
  • a method for minimizing the reflection of light a method of dispersing a filler such as inorganic fine particles in a resin and coating on a base film to give irregularities (ant i-glare: AG coating); And a method of forming a plurality of layers having different refractive indices on a base film to use interference of light (ant i-reflect ion: AR coating) or a method of mixing them.
  • the absolute amount of reflected light is on the same level as a general hard coating, but a low reflection effect can be obtained by reducing the amount of light entering the eye by scattering light through irregularities.
  • the AG coating has poor screen clarity due to surface irregularities, much research has recently been conducted on AR coatings.
  • the film using the AR coating As the film using the AR coating, a multilayer structure in which a hard coating layer (high refractive index layer), a low reflection coating layer, and the like are laminated on a base film is commercialized.
  • the film using the conventional AR coating has a disadvantage in that visibility is lowered due to an increase in reflectance at a portion damaged or deformed by an external rub or friction. Accordingly, many studies have been made to obtain an antireflection film in which the reflectance does not increase even when some surfaces are damaged or deformed due to external influences.
  • the present invention is to provide an anti-reflection film that has high mechanical properties such as high wear resistance and scratch resistance and excellent suppression of the increase in reflectance of a part damaged or deformed by external rubbing or friction.
  • this invention is providing the polarizing plate containing the said antireflection film.
  • the present invention is to provide a display device including the anti-reflection film and provides a high screen sharpness.
  • the hard coating layer And it may be provided an anti-reflection film comprising a low refractive index layer satisfying the following formula (1).
  • 3 ⁇ 4 is the average reflectance in the wavelength range of 380 to 780 nm of the low refractive layer
  • 3 ⁇ 4 was measured in the same manner as the method of measuring 3 ⁇ 4 for the low refractive layer after performing a rubbing test for rubbing the surface of the low refractive layer by applying a steel load of 500 g and reciprocating 10 times at a speed of 33 rpm. Average reflectance in the wavelength range from 780 nm to 780 nm.
  • the polarizing plate containing the said antireflection film is provided.
  • a display device including the anti-reflection film may be provided.
  • the low refractive index layer may mean a layer having a low refractive index, for example, a layer exhibiting a refractive index of about 1.2 to 1.6 in a wavelength region of 380 to 780 nm or a wavelength of 550 nm.
  • (meth) acrylate is an acrylate (acrylate) and 2019/221573 1 »(: 1 ⁇ 1 ⁇ 2019/006006
  • Methacrylate means both.
  • the photocurable resin generally refers to the polymer resin superposed
  • a fluorine-type compound means the compound in which at least 1 or more fluorine elements are contained among the compounds.
  • the hard coating layer And it is provided with an antireflection film comprising a low refractive index layer satisfying the following formula (1).
  • 3 ⁇ 4 is the average reflectance in the wavelength range of 380 to 780 nm of the low refractive layer
  • 3 ⁇ 4 was measured in the same manner as the method of measuring 3 ⁇ 4 for the low refractive layer after performing a rubbing test that rubs the surface of the low refractive layer by applying a steel load of 500 g and reciprocating 10 times at a speed of 33 rpm. Average reflectance in the wavelength range from 780 nm to 780 nm.
  • Anti-reflection film according to the embodiment can effectively suppress the increase in reflectance of the damaged or deformed portion due to external rubbing or friction.
  • the anti-reflection film has mechanical properties such as high wear resistance and scratch resistance and excellent optical properties. Accordingly, when it is used in a display device, it is possible to remarkably improve the glare caused by light incident from the outside of the device without degrading the image quality, and effectively protect the surface of the device from external impact or stimulus.
  • the low refractive index layer may satisfy the above formula (1).
  • 3 ⁇ 4 is the average reflectance in the wavelength range of 380 to 780 nm of the low refractive index layer
  • Ri is the average reflectance in the wavelength range of 380 to 780 nm of the low refractive layer after the friction test.
  • the friction test is a test that rubs the surface of the low refractive layer by applying 500g load to the steel wool and reciprocating 10 times at a speed of 33 rpm, and when the loaded steel wool is rubbed on the surface of the low refractive layer, the low refractive layer is cut off. Damage or low refractive index 2019/221573 1 »(: 1 ⁇ 1 ⁇ 2019/006006
  • the degree of average reflectance change before and after the friction test of Equation 1 the effect of suppressing the increase in reflectance of the part damaged or deformed by external rubbing, friction, or the like can be evaluated. Since the low refractive index layer is excellent in suppressing the increase in reflectivity, the degree of change of the average reflectance before and after the friction test of Equation 1 may be less than 0.23 ⁇ 4), less than 0.0183 ⁇ 4), or less than 0.1153 ⁇ 4). Since the low refractive index layer may have no change in the average reflectance even after the friction test is performed, the average reflectance change degree (switch may be 0).
  • the low refractive index layer together with excellent optical and mechanical properties, has a low average reflectance in the visible light region, thereby effectively preventing glare of the display device.
  • the average reflectance (3 ⁇ 4 value of Equation 1) in the wavelength region of 380 to 780 ä may be 0.1 to 2.0%, 0.2 to 1.9%, or 0.3 to 1.8%. have.
  • the low refractive index layer can effectively suppress the increase in reflectance of the portion damaged or deformed by external rubbing or friction.
  • the average reflectance (3 ⁇ 4 value of Equation 1) in the wavelength range of 380 to 7800111 may be 0.3 to 2.2%, 0.4 to 2. 1%, or 0.5 to 2.0%.
  • the low refractive index layer according to the embodiment may satisfy the following Equation 2.
  • the degree of color change (s * ) before and after the friction test of Equation 2 is 1 or less, 0.8 or less, or 0.5 2019/221573 1 »(: 1 ⁇ 1 ⁇ 2019/006006
  • the color change degree (s1) may be zero.
  • value of said Formula 2 is a thing of the low refractive layer It may be a value of a coordinate system, and specifically, may be 2 to -10.
  • a positive value represents a color biased to yellow
  • a negative value represents a color biased to blue. Therefore, the low refractive layer exhibits the color coordinate values as described above, thereby effectively preventing the glare while transmitting the image as it is without changing the quality of the display device image.
  • the low refractive layer can effectively suppress the color change of the part damaged or deformed by external rubbing or friction.
  • the value of the 01 ⁇ 0/310 color coordinate system ( ⁇ 1 value in Equation 2) may be specifically 3 to -9.
  • the low refractive index layer may include a binder resin.
  • the binder resin may include a copolymer of a polyfunctional (meth) acrylate monomer containing a 2 to 4 functional (meth) acrylate monomer and a 5 to 6 functional (meth) acrylate monomer.
  • the 2 to 4 functional (meth) acrylate-based monomer may have a pentaerythritol structure in the center, and the kind thereof is not limited thereto.
  • the 2 to 4 functional (meth) acrylate monomer having a pentaerythritol structure in the center may be represented by Formula 1 below.
  • 3 ⁇ 4 to 3 ⁇ 4 are hydroxyl groups; (Meth) acrylate groups; Or a substituted or unsubstituted 0 1-40 alkoxy group, provided that at least one of them is 2019/221573 1 »(: 1 ⁇ 1 ⁇ 2019/006006
  • the 5 to 6 functional (meth) acrylate monomers may have a dipentaerythritol structure in the center, the kind is not limited thereto, for example, dipentaerythritol penta (meth) acrylic Latent, dipentaerythritol nucleated (meth) acrylate or mixtures thereof.
  • the 5- to 6-functional (meth) acrylate monomer having a dipentaerythritol structure in the center may be represented by the following formula (2).
  • Rn to R e are hydroxy groups; (Meth) acrylate groups; Or a substituted or unsubstituted Ci-40 alkoxy group, provided that at least one of them is a (meth) acrylate group.
  • the 2-4 functional (meth) acrylate monomer having a pentaerythritol structure is about 5-6 functional (meth) acrylate monomers having a dipentaerythritol structure. Since it has twice the molecular weight and volume, the packing density of the (meth) acrylate and the relatively small molecular weight and (meth) acrylate in the copolymer are packed dens i in the unit volume. ty) can be maximized, so that the degree of crosslinking can be increased and the free volume can be minimized.
  • the 2 to 4 functional (meth) acrylate monomers and the 5 to 6 functional (meth) acrylate monomers are 9: 1 to 6: 4, 8.5: 1.5 to 6.5: 3.5, or 8: 2 to Due to the crosslinking polymerization at a weight ratio of 7: 3, the degree of crosslinking of the copolymer is maximized and the free volume of the low refractive layer including the same can be minimized. As a result, it is possible to prevent the increase in the reflectance of the portion where external rubbing or friction is applied to the low refractive layer. 2019/221573 1 »(: 1 ⁇ 1 ⁇ 2019/006006
  • the copolymer in which the 2 to 4 functional (meth) acrylate and the 5 to 6 functional (meth) acrylate are cross-polymerized at a weight ratio of 9: 1 to 6: 4 has a free volume of 420 or less in 3 volumes of 12511111. Can be. When the free volume in the 125 ä 3 volume of the copolymer is more than 420, the increase in reflectance of the part damaged or deformed by external rubbing or friction cannot be prevented.
  • the degree of crosslinking of the low refractive layer including the copolymer may be 85% or more, 85 to 99%, 90 to 99%, or 95 to 99%. If the crosslinking density is less than 85%, the reflectance of the portion where the low refractive index layer is damaged or deformed due to external rubbing or friction may increase.
  • the low refractive index layer may further include a portion derived from a fluorine-based compound including a photoreactive functional group.
  • the binder resin of the low refractive index layer may have a lower reflectance and an improved light transmittance as the fluorine-based compound including a photoreactive functional group is included, and may effectively suppress an increase in reflectance of a part damaged or deformed by external rubbing or friction.
  • the low refractive layer of the antireflection film may further include a copolymer of the multifunctional (meth) acrylate monomer and a fluorine compound including a photoreactive functional group.
  • the fluorine-based compound may include or substitute one or more photoreactive functional groups
  • the photoreactive functional group refers to a functional group capable of participating in a polymerization reaction by irradiation of light, for example, by irradiation of visible light or ultraviolet light.
  • the photoreactive functional group may include various functional groups known to be able to participate in a polymerization reaction by irradiation of light, and specific examples thereof may be a (meth) acrylate group, an epoxide group, a vinyl group (1 1) or a thiol group. 03 ⁇ 4 ⁇ 1).
  • the fluorine-based compound including the photoreactive functional group may include 1 to 60% by weight, 2 to 50% by weight, or 3 to 40% by weight of fluorine. If the content of the fluorine is less than 1% by weight, the surface of the low refractive index layer may not be sufficiently arranged to reduce the surface slip properties. If the content exceeds 60% by weight, the scratch resistance of the low refractive layer may be deteriorated. Reflectance increase may occur due to friction.
  • the fluorine-based compound including the photoreactive functional group may further include silicon or a silicon compound. That is, the fluorine-based containing the photoreactive functional group 2019/221573 1 »(: 1 ⁇ 1 ⁇ 2019/006006
  • the compound may optionally contain a silicon or silicon compound therein, specifically, the content of silicon in the fluorine-based compound including the photoreactive functional group may be 0.1 to 20% by weight, 0.5 to 18% by weight, or 1 to 15% by weight. Can be. Silicon contained in the fluorine-based compound including the photoreactive functional group may serve to prevent transparency of the haze 11326 from occurring in the low refractive layer. On the other hand, when the content of silicon in the fluorine-based compound including the photoreactive functional group is too large, the alkali resistance of the low refractive index layer may be lowered.
  • the fluorine-based compound including the photoreactive functional group may have a weight average molecular weight in terms of polystyrene measured by a weight average molecular weight 1 ⁇ 2 ⁇ method of 2,000 to 200,000, 3,000 to 180,000, or 4,000 to 170,000.
  • the weight average molecular weight of the fluorine-based compound including the photoreactive functional group is less than 2,000, the surface slidability may be lowered because the fluorine component may not be sufficiently arranged on the surface of the low refractive index layer.
  • the reflectance of the deteriorated or damaged or deformed portion may be increased due to external rubbing or friction, and also the compatibility between the fluorine-based compound including the photoreactive functional group and other components may be lowered, resulting in uniform dispersion in the low refractive index layer. As a result, the internal structure or surface properties of the final product may be degraded.
  • the fluorine-based compound including the photoreactive functional group may be an aliphatic compound or an aliphatic ring compound in which at least one photoreactive functional group is substituted and at least one fluorine is substituted for at least one carbon;
  • 111) polydialkylsiloxane polymers eg, polydimethylsiloxane polymers
  • at least one photoreactive functional group is substituted and at least one fluorine is substituted in at least one silicon;
  • the low refractive layer may include 0.1 to 50 parts by weight, 0.3 to 40 parts by weight, or 0.5 to 30 parts by weight of the fluorine compound including the photoreactive functional group based on 100 parts by weight of the copolymer.
  • the surface slip resistance of the low refractive index layer may be lowered. If the content of the fluorine-based compound is greater than 50 parts by weight, the scratch resistance may be deteriorated or damaged or deformed by external rubbing or friction. The reflectance of the part may rise.
  • the low refractive layer is a binder resin; And two or more hollow inorganic particles dispersed in the binder resin and having different particle diameters.
  • the two or more hollow inorganic particles having different particle diameters include hollow inorganic particles having a particle diameter of 40 nm to 60 nm and hollow inorganic particles having a particle size of 65 nm to 100 nm, as measured by dynamic light scattering (DLS). can do.
  • hollow inorganic particles having a relatively small particle diameter are disposed between the hollow inorganic particles having a relatively large particle diameter, thereby
  • the ideal arrangement makes it possible to prevent an increase in reflectance due to rubbing or friction from the outside, and to secure physical properties such as wear resistance and scratch resistance, and furthermore, the anti-reflection film improves the sharpness of the screen of the display device. High mechanical properties can be exhibited at the same time.
  • the hollow inorganic particles included in the low refractive index layer are fine particles having a hollow portion therein, and may have a low refractive index of about 1.20 to 1.40 because the hollow portion contains air having a refractive index of 1.0. In the case where such particles are included in the low refractive layer, even if the hollow inorganic particles themselves have a high density, the refractive index of the low refractive layer can be controlled to be low, thereby achieving low reflectance.
  • the weight ratio between the hollow inorganic particles having a particle size of 40 nm to 60 nm and the hollow inorganic particles having a particle size of 65 nm to 100 nm is 7: 3 to 3: 7, 6: 4 to 4: 6, or 6.5: 4.5 to 5: 5 may be. If the weight ratio range is not satisfied, the arrangement of the hollow inorganic particles may be disturbed, thereby increasing the average reflectance of the low refractive layer due to external rubbing or friction.
  • the two or more types of hollow inorganic particles having different particle diameters may be at least 40 nm to 60 nm, 42 to 60 nm, or 45 to 60 nm hollow inorganic particles having a particle size of 65 nm to 100 nm, 65 nm to 95 nm, or 65 nm to 90 nm.
  • One type of hollow inorganic particles may be included.
  • the particle size of the hollow inorganic particles is 40nm 2019/221573 1 »(: 1 ⁇ 1 ⁇ 2019/006006
  • the refractive index of the low refractive index layer may be increased to increase the reflectance, and if it exceeds 100ä, the strength of the low refractive layer is weakened, scratch resistance may be lowered.
  • the average particle diameter difference between the average particle diameter of one hollow inorganic particle having a particle diameter of 40ä to 60ä and the average particle diameter of one hollow inorganic particle having a particle size of 6511111 to 10011111 is 60 ä, 7 ⁇ 1 to 4011111, or 8! ⁇ To 30 ⁇ 1. If the difference in particle size is too small or large, the reflectance of the portion where the low refractive index layer is damaged or deformed by external rubbing or friction may increase. With respect to 100 parts by weight of the binder resin, the content of the two or more hollow inorganic particles may be 30 to 500 parts by weight, 50 to 450 parts by weight, or 60 to 400 parts by weight. If the content of the at least two hollow inorganic particles is less than 30 parts by weight, the reflectance of the low refractive index layer may be increased. As a result, the reflectance of the damaged or deformed portion may increase.
  • each of the hollow inorganic particles may contain at least one reactive functional group selected from the group consisting of (meth) acrylate group, epoxide group, vinyl group (1 1) and thiol group 03 ⁇ 4 ⁇ 1) on the surface.
  • the low refractive index layer may have a higher degree of crosslinking, thereby effectively suppressing the increase in reflectance of the part damaged or deformed by external rubbing or friction. It is possible to further improve the scratch resistance and antifouling.
  • the hollow inorganic particles may be coated on a surface thereof with a fluorine compound.
  • a fluorine-based compound When the surface of the hollow inorganic particles is coated with a fluorine-based compound, it is possible to lower the surface energy, thereby increasing the durability and scratch resistance of the low refractive layer.
  • Particle coating methods or polymerization methods commonly known as coating the fluorine-based compound on the surface of the hollow inorganic particle may be used without any significant limitation.
  • the hollow inorganic particles and the fluorine-based compound may be formed of water and a catalyst. In the presence of the sol-gel reaction can be bonded to the fluorine-based compound on the surface of the hollow inorganic particles through the hydrolysis and condensation reaction.
  • hollow inorganic particles include hollow silica particles.
  • the hollow silica is deposited on the surface in order to be more easily dispersed in an organic solvent. 2019/221573 1 »(: 1 ⁇ 1 ⁇ 2019/006006
  • organic functional groups that can be substituted on the surface of the hollow silica particles are not particularly limited, and examples thereof include (meth) acrylate groups, vinyl groups, hydroxy groups, amine groups, allyl groups (1), epoxy groups, hydroxy groups, isocyanate groups, and amines.
  • a group or fluorine may be substituted on the hollow silica surface.
  • the low refractive index layer may have a refractive index of 1.2 to 1.55, 1.25 to 1.45, or 1.3 to 1.43.
  • Binder resin containing the copolymer of the (meth) acrylate type monomer and the polyfunctional (meth) acrylate type monomer containing a 5-6 functional (meth) acrylate type monomer; And two or more hollow inorganic particles dispersed in the binder resin and having different particle diameters.
  • the 2 to 4 functional (meth) acrylate monomers and the 5 to 6 functional (meth) acrylate monomers are 9: 1 to 6: 4, 8.5: 1.5 to 6.5: 3.5, or 8: 2 to Due to the crosslinking polymerization at a weight ratio of 7: 3, the degree of crosslinking of the copolymer is maximized and the free volume of the low refractive index layer containing the same (root ratio ⁇ 1111116) can be minimized. As a result, it is possible to prevent the increase in the reflectance of the part where external rubbing or friction is applied to the low refractive layer.
  • the weight ratio between the hollow inorganic particles having a particle size of 40ä to 60ä and the hollow ' inorganic particles having a particle size of 6511111 to 100ä is 7: 3 to 3: 7, 6: 4 to 4: 6, or 6.5 : 4.5 to 5: 5. If the weight ratio range is not satisfied, the arrangement of the hollow inorganic particles may be disturbed, and the average reflectance of the low refractive layer may increase due to external rubbing or friction.
  • the low refractive index layer may be obtained by applying a photopolymerizable coating composition comprising the copolymer and the hollow inorganic particles on a predetermined substrate and photopolymerizing the applied resultant.
  • the specific kind or thickness of the substrate is not particularly limited, and a substrate known to be used in the manufacture of a hard coating layer or an antireflection film may be used without any significant limitation.
  • Bar coating methods such as Meyer bar, gravure coating, 2 reverse reverse coating, vacuum s lot die coating and the like can be used.
  • the exposure dose is preferably 100 to 4,000 mJ / cin 2 when irradiated.
  • Exposure time is not specifically limited, either, The exposure apparatus used can be suitably changed according to the wavelength or exposure amount of irradiation light.
  • nitrogen purging may be performed to apply nitrogen atmospheric conditions.
  • the antireflection film may have an average reflectance in a wavelength range of 380 nm to 780 nm of less than 3%, 2.5% or less, or 2% or less.
  • the hard coating layer can be used without a large limitation to the conventional known hard coating layer.
  • Binder resin containing a photocurable resin and it may be a hard coating layer comprising organic or inorganic fine particles dispersed in the binder resin.
  • the low refractive index layer may be formed on one surface of the hard coating layer, and an additional functional layer may be further included between the low refractive layer and the hard coating layer.
  • the photocurable resin is a polymer resin polymerized by irradiation of light, for example, by irradiation of visible light or ultraviolet light, for example, a urethane acrylate oligomer, an epoxide acrylate oligomer, Reactive acrylate oligomer group consisting of polyester acrylate, and polyether acrylate; And dipentaerythritol nuxaacrylate, dipentaerythritol hydroxy pentaacrylate, pentaerythritol tetraacrylate, pentaerythritol triacrylate, trimethylene propyl triacrylate, propoxylated glycerol triacrylate, trimethylpropane ethoxy tri At least one member selected from the group of polyfunctional acrylate monomers consisting of acryl
  • the organic or inorganic fine particles are not specifically limited in particle size, for example, the organic fine particles may have a particle size of 1 to 10 / rni, the inorganic 2019/221573 1 »(: 1 ⁇ 1 ⁇ 2019/006006
  • Particles 500 1 ⁇ or 1ä to 300ä.
  • the organic or inorganic fine particles included in the hard coating layer are not limited.
  • the organic or inorganic fine particles may be organic fine particles made of acrylic resin, styrene resin, epoxide resin and nylon resin, or silicon oxide, It may be an inorganic fine particle consisting of titanium dioxide, indium oxide, tin oxide, zirconium oxide and zinc oxide.
  • the hard coating layer a binder resin of a photocurable resin; And an antistatic agent dispersed in the binder resin.
  • the antistatic agent may be a quaternary ammonium salt compound, a conductive polymer or a mixture thereof.
  • the quaternary ammonium salt compound may be a compound having one or more quaternary ammonium salt groups in a molecule, and may use a low molecular type or a polymer type without limitation.
  • the conductive polymer may be a low molecular type or a polymer type without limitation, the kind thereof may be conventional in the art to which the present invention pertains, and is not particularly limited.
  • Binder resin of the photopolymerizable resin; And the hard coating layer comprising an antistatic agent dispersed in the binder resin may further comprise at least one compound selected from the group consisting of alkoxy silane oligomer and metal alkoxide oligomer.
  • the alkoxy silane compound may be conventional in the art, but preferably tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methacryloxypropyl It may be at least one compound selected from the group consisting of trimethoxysilane, glycidoxypropyl trimethoxysilane and glycidoxypropyl triethoxysilane.
  • the metal alkoxide-based oligomer may be prepared through a sol-gel reaction of a composition comprising a metal alkoxide-based compound and water.
  • the sol-gel reaction can be carried out by a method similar to the method for producing an alkoxy silane oligomer described above.
  • the sol-gel reaction may be performed by diluting the metal alkoxide compound in an organic solvent and slowly dropping water.
  • the molar ratio (metal ion basis) of the metal alkoxide compound to water is in the range of 3 to 170. 2019/221573 1 »(: 1 ⁇ 1 ⁇ 2019/006006
  • the metal alkoxide-based compound may be at least one compound selected from the group consisting of titanium tetra-isopropoxide, zirconium isopropoxide and aluminum isopropoxide.
  • the anti-reflection film may further include a substrate bonded to the other surface of the hard coating layer.
  • the substrate may have a light transmittance of 90% or more and a haze of 1% or less.
  • the material of the substrate may be triacetyl cellulose, cycloolefin polymer, polyacrylate, polycarbonate, polyethylene terephthalate and the like.
  • the thickness of the base film may be 10 to 300_ in consideration of productivity, but is not limited thereto.
  • the anti-reflection film has a thickness of retardation (inside the cemetery) measured at wavelengths 400) 1111 to 80011111 of 3, 000 13 ⁇ 41 or more, or 5, 000 or more, or 5,000 11111 to 20,000 1 pad. It may further include a light transmissive substrate.
  • Such a light transmissive substrate include a uniaxially stretched polyethylene terephthalate film or a biaxially stretched polyethylene terephthalate film.
  • the anti-reflection film includes a light transmissive substrate having a retardation in the thickness direction measured at the wavelengths 40011111 to 800 TM of at least 3, 000 ⁇ , or at least 5, 000 11111, or at 5, 000 1ä to 20, 000 1ä.
  • the rainbow phenomenon due to the interference of visible rays may be alleviated as compared with the case of using a retardation of 3000 ⁇ or less.
  • Retardation in the thickness direction can be confirmed through a commonly known measuring method and measuring apparatus. For example, as a measuring apparatus of retardation of the thickness direction, the brand name "Exo-Cans" by the Tombstone company, etc. are mentioned.
  • the retardation of the thickness direction of the transparent base film was measured, and based on the obtained retardation immediate value (immediate value by automatic instantaneous (automatic calculation) of the instantaneous device) of the obtained thickness direction, It can be obtained by converting the retardation value per 10 ⁇ !
  • the size of the light transmissive substrate of the measurement sample is larger than that of the light metering portion (diameter: about 1011) of the stage of the measuring instrument. 2019/221573 1 »(: 1 ⁇ 1 ⁇ 2019/006006
  • the value of the "refractive index (589 nm) of the said light-transmissive base material" used for the measurement of retardation of the thickness direction is unburned containing the resin film of the same kind as the light-transmissive base material which forms the film used as the measurement object of retardation.
  • a polarizing plate including the anti-reflection film may be provided.
  • the polarizing plate may include a polarizing film and an antireflection film formed on at least one surface of the polarizing film.
  • the material and manufacturing method of the polarizing film are not particularly limited, and conventional materials and manufacturing methods known in the art may be used.
  • the polarizing film may be a polyvinyl alcohol polarizing film.
  • a protective film may be provided between the polarizing film and the antireflection film.
  • the protective film are not limited, and for example, C0P (cycloolef in polymer) film, acrylic film, TAC (tr i acetylcel lulose) film,
  • PEK polyethylene terephtalate film may be any one or more.
  • the protective film may be used as it is a substrate for forming a single coating layer in the production of the anti-reflection film.
  • the polarizing film and the anti-reflection film may be laminated by an adhesive such as an aqueous adhesive or a non-aqueous adhesive.
  • a display device including the anti-reflection film may be provided. Specific examples of the display device are not limited, and for example, a liquid crystal display device, 2019/221573 1 »(: 1 ⁇ 1 ⁇ 2019/006006
  • a device such as a plasma display device, an organic light emitting diode device, and the like.
  • the display device includes a pair of polarizing plates facing each other; A thin film transistor, a color filter, and a liquid crystal cell sequentially stacked between the pair of polarizing plates; And it may be a liquid crystal display device including a backlight unit.
  • the anti-reflection film may be provided on the outermost surface of the observer side or the backlight side of the display panel.
  • the anti-reflection film may be positioned on one surface of the polarizing plate relatively far from the backlight unit among the pair of polarizing plates.
  • the display apparatus may include a display panel, a polarizing film provided on at least one surface of the panel, and an antireflection film provided on an opposite side of the panel contacting the panel of the polarizing film.
  • an anti-reflection film having high mechanical properties such as high abrasion resistance and scratch resistance and an excellent anti-reflective property of a part damaged or deformed by an external rub or friction
  • an anti-reflection film and an anti-reflection film
  • a display device including the polarizing plate and the anti-reflection film.
  • the hard coating composition thus obtained was coated with a # 10 mayer bar on a triacetyl cellulose film and dried at 90 ° C. for 1 minute. This dried material was irradiated with ultraviolet light of 150 mJ / cin 2 to prepare a hard coating layer having a thickness of 4 ,.
  • the hard coating composition of Preparation Example 1 was coated with # 10 mayer bar on a PET film having a thickness of 80 iM and a retardation 10000 ⁇ and dried at 60 ° C. for 1 minute. This dried material was irradiated with ultraviolet light of 150 mJ / oif to prepare a hard coating layer having a thickness of 4 ⁇ !.
  • KY0EISHA salt type antistatic hard coating solution (50 wt% solids, product name: LJD-1000) was coated on a triacetyl cellulose film with # 10 mayer bar and dried at 90 ° C for 1 minute, then UV light of 150 mJ / cm 2 Irradiated to prepare a hard coating layer having a thickness of about 5.
  • Hollow silica nanoparticles (diameter: about 50) with respect to 100 parts by weight of the mixed binder of pentaerythritol triacrylate (PETA) and dipentaerythritol nuxaacrylate (DPHA) (mixing ratio of PETA: DPHA is 7: 3).
  • PETA pentaerythritol triacrylate
  • DPHA dipentaerythritol nuxaacrylate
  • PETA dipentaerythritol nuxaacrylate
  • MIBK methyl i sobutyl ketone
  • the photocurable coating composition was coated with a # 4 mayer bar to a thickness of about 110 to 120 nm, and dried and cured at 60 ° C. for 1 minute to prepare an antireflection film.
  • the dried coating was irradiated with ultraviolet rays of 252 mJ / cm 2 under nitrogen purge. 2019/221573 1 »(: 1 ⁇ 1 ⁇ 2019/006006
  • Hollow silica nanoparticles (diameter: about 50) with respect to 100 parts by weight of the mixed binder of pentaerythritol triacrylate (PETA) and dipentaerythritol nuxaacrylate (DPHA) (mixing ratio of PETA: DPHA is 6: 4).
  • PETA pentaerythritol triacrylate
  • DPHA dipentaerythritol nuxaacrylate
  • the photocurable coating composition was coated with a # 4 mayer bar to a thickness of about 110 to 120 times, and dried and cured at 60 ° C. for 1 minute to prepare an antireflection film. At the time of curing, the dried coating was irradiated with ultraviolet light of 252 mJ / cuf under nitrogen purge.
  • Example 3
  • Hollow silica nanoparticles (diameter: about 50) with respect to 100 parts by weight of the mixed binder of pentaerythritol triacrylate (PETA) and dipentaerythritol nuxaacrylate (DPHA) (mixing ratio of PETA: DPHA is 7: 3).
  • PETA pentaerythritol triacrylate
  • DPHA dipentaerythritol nuxaacrylate
  • To 60 ran, 350 parts by weight of JGC catalyst and chemicals 100 parts by weight of solid silica nanoparticles (diameter: about 13 nm), 30 parts by weight of fluorine-based compound (F477, DIC), and an initiator (Irgacure 127,
  • Ciba 37 parts by weight was diluted in a MIBR (methyl isobutyl ketone) solvent to a solid content of 3.0% by weight to prepare a photocurable coating composition.
  • MIBR methyl isobutyl ketone
  • the photocurable coating composition was coated with a # 4 mayer bar to have a thickness of about 110 to 120 ran, and dried and cured at 60 ° C. for 1 minute to prepare an antireflection film. .
  • the dried coating was irradiated with ultraviolet light of 252 mJ / cuf under nitrogen purge.
  • PETA pentaerythritol triacrylate
  • DPHA dipentaerythritol nuxaacrylate
  • the photocurable coating composition was coated with a # 4 mayer bar to have a thickness of about 110 to 120 nm, and dried and cured at 60 ° C. for 1 minute to prepare an antireflection film. .
  • the dried coating was irradiated with ultraviolet light of 252 mJ / cuf under nitrogen purge.
  • Hollow silica nanoparticles (diameter: about 60 to 70) with respect to 100 parts by weight of the mixed binder of pentaerythritol triacrylate and dipentaerythritol nuxaacrylate (DPHA) (mixing ratio of PETA: DPHA is 7: 3) nm, manufactured by JGC catalyst and chemicals) 323.5 parts by weight, solid zirconia nanoparticles (diameter: about 15 nm) 125 parts by weight, fluorine-based compound (RS-90, DIC) 29.4 parts by weight, initiator (Irgacure 127, Ciba) 17.6
  • the weight part was diluted in a MIBK (methyl isobutyl ketone) solvent so as to have a solid concentration of 3.2% by weight to prepare a photocurable coating composition.
  • MIBK methyl isobutyl ketone
  • the photocurable coating composition was coated with a # 4 mayer bar to have a thickness of about 110 to 120, and dried and cured at 60 ° C. for 1 minute to prepare an antireflection film. At the time of curing, the dried coating was irradiated with ultraviolet light of 252 mJ / cuf under nitrogen purge.
  • Example 6
  • Trimethylolpropane triacrylate 01 Based on 100 parts by weight of the first hollow silica nanoparticles 0) 1 Measurement diameter: 58.2ä) 45 parts by weight of the second hollow silica nanoparticles (1) 1 Measurement diameter: 66.7 ⁇ ) 78 parts by weight, solid silica nanoparticles (diameter: about 1511111) 71 parts by weight, fluorine compound ⁇ 90, 1) 10 23 parts by weight, and initiator (1 301 127, (33 companies) 25 parts by weight, 0131 ⁇ 1 Urine 011 ⁇ 2) Solids concentration in solvent 3. Dilute to 1% by weight of photocurable coating 2019/221573 1 »(: 1 ⁇ 1 ⁇ 2019/006006
  • the composition was prepared.
  • the furnace was coated to a thickness of about 110 to 120, dried and cured at 601: for 1 minute. In the dried coating under a nitrogen purge at the time of the curing it was irradiated with ultraviolet rays of 252/2.
  • the mixing ratio of 100 parts by weight of the mixed binder of pentaerythritol triacrylate) and dipentaerythritol nuxaacrylate (8) is 8: 2).
  • the furnace was coated to a thickness of about 110 to 120 ä, dried and cured at 60 ° (for 1 minute) to prepare an antireflection film.
  • the dried coating was irradiated with ultraviolet rays of 252 ⁇ under nitrogen purge.
  • An antireflective film was prepared in the same manner as in Example 1 except that only a pentaerythritol triacrylate was used without using a mixed binder. Comparative Example 2
  • Pentaerythritol An antireflective film was prepared in the same manner as in Example 2 except that dipentaerythritol nuxaacrylate (X) was used at a mixing ratio of 5: 5. 2019/221573 1 »(: 1 ⁇ 1 ⁇ 2019/006006
  • An antireflective film was prepared in the same manner as in Example 3, except that pentaerythritol triacrylate ⁇ and dipentaerythritol nuxaacrylate (3 ⁇ 4h was used in a mixing ratio of 4: 6).
  • An antireflective film was prepared in the same manner as in Example 4 except that pentaerythritol triacrylate-myoxi and dipentaerythritol nuxaacrylate ( ⁇ 3 ⁇ 4 hours were used in a mixing ratio of 2: 8). 5
  • An antireflective film was prepared in the same manner as in Example 5 except that only dipentaerythritol nuxaacrylate (IX) was used without using a mixed binder. Comparative Example 6
  • the darkening treatment is performed to prevent light from penetrating the surface where the hard coating layer and the low refractive layer of the antireflection film obtained in Examples and Comparative Examples are not formed.
  • the reflectance was measured by using reflectance mode of Solidspec 3700 (UV-Vis spectrophotometer, Shimadzu) before and after friction test
  • the color coordinate value () of the low refractive layer was measured using a -2401PC Color Analysis program.
  • the color coordinate values of the low refractive layer were measured before the friction test was carried out, and the results are shown in “bV ′ of Table 1 below. Then, after performing the friction test, the color coordinate values were measured in the same manner as the method of measuring b * 0 for the low refractive layer, and the results are shown in "b '" in Table 1 below. In addition, the difference between the b * 0 and b * i was calculated, and the degree of change of the color coordinate values before and after the friction test is shown in "Ab * " in Table 1 below.
  • the steel wool of grade # 0000 was hung and reciprocated 10 times at a speed of 27 rpm to rub the surface of the antireflective film obtained in Examples and Comparative Examples. Thereafter, the maximum load at which one scratch or less of lcm or less observed with the naked eye was measured was measured, and the results are shown in Table 1 below.
  • Examples 1 to 7 show the degree of change of the average reflectance before and after the friction test (swimming ratio of 0.02%? Since the degree of change in color before and after the friction test is 0.3 or less, compared with Comparative Examples 1 to 6, it is possible to effectively increase the reflectance and change in color at the damaged / deformed portion due to the friction test. 2019/221573 1 »(: 1/10 ⁇ 019/006006

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

The present invention relates to an anti-reflective film having mechanical properties, such as high wear resistance and scratch resistance, and excellent optical properties; a polarizing plate comprising same; and a display device comprising same.

Description

2019/221573 1»(:1^1{2019/006006  2019/221573 1 »(: 1 ^ 1 {2019/006006
【발명의 명칭】 [Name of invention]
반사방지 필름, 편광판 및 디스플레이 장치  Antireflection Films, Polarizers and Display Devices
【기술분야】  Technical Field
관련출원(들)과의 상호 인용 Cross Citation with Related Application (s)
본출원은 2018년 5월 18일자 한국특허 출원 제 10-2018-0057299호 및 This application is filed with Korean Patent Application No. 10-2018-0057299 dated May 18, 2018, and
2019 년 5월 13 일자 한국 특허 출원 제 10-2019-0055866호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다. Claiming the benefit of priority based on Korean Patent Application No. 10-2019-0055866 dated May 13, 2019, all the contents disclosed in the literature of those Korean patent applications are incorporated as part of this specification.
본발명은 반사방지 필름, 편광판 및 디스플레이 장치에 관한 것이다. 【발명의 배경이 되는 기술】  The present invention relates to an antireflection film, a polarizing plate and a display device. [Technique to become background of invention]
일반적으로 PDP, LCD 등의 평판 디스플레이 장치에는 외부로부터 입사되는 빛의 반사를 최소화하기 위한 반사 방지 필름이 장착된다. 빛의 반사를 최소화하기 위한 방법으로는 수지에 무기 미립자 등의 필러를 분산시켜 기재 필름 상에 코팅하고 요철을 부여하는 방법(ant i-glare : AG 코팅) ; 기재 필름 상에 굴절율이 다른 다수의 층을 형성시켜 빛의 간섭을 이용하는 방법(ant i - ref lect ion: AR코팅) 또는 이들을혼용하는 방법 등이 있다.  In general, a flat panel display device such as a PDP or LCD is equipped with an anti-reflection film for minimizing reflection of light incident from the outside. As a method for minimizing the reflection of light, a method of dispersing a filler such as inorganic fine particles in a resin and coating on a base film to give irregularities (ant i-glare: AG coating); And a method of forming a plurality of layers having different refractive indices on a base film to use interference of light (ant i-reflect ion: AR coating) or a method of mixing them.
그 중, 상기 AG 코팅의 경우 반사되는 빛의 절대량은 일반적인 하드 코팅과동등한수준이지만, 요철을 통한 빛의 산란을 이용해 눈에 들어오는 빛의 양을 줄임으로써 저반사 효과를 얻을 수 있다. 그러나, 상기 AG 코팅은 표면 요철로 인해 화면의 선명도가 떨어지기 때문에, 최근에는 AR 코팅에 대한 많은 연구가 이루어지고 있다.  Among them, in the case of the AG coating, the absolute amount of reflected light is on the same level as a general hard coating, but a low reflection effect can be obtained by reducing the amount of light entering the eye by scattering light through irregularities. However, since the AG coating has poor screen clarity due to surface irregularities, much research has recently been conducted on AR coatings.
상기 AR 코팅을 이용한 필름으로는 기재 필름 상에 하드 코팅층(고굴절율층), 저반사 코팅층 등이 적층된 다층 구조인 것이 상용화되고 있다. 그러나, 기존의 AR 코팅을 이용한 필름은 외부에서의 문지름이나 마찰 등에 의해 손상 또는 변형된 부분에서 반사율이 상승하여 시인성이 떨어지는 단점이 있다. 이에 따라, 외부의 영향으로 인해 일부 표면이 손상 또는 변형되더라도 반사율이 상승하지 않는 반사 방지 필름을 얻기 위해 많은 연구가 이루어지고 있다.  As the film using the AR coating, a multilayer structure in which a hard coating layer (high refractive index layer), a low reflection coating layer, and the like are laminated on a base film is commercialized. However, the film using the conventional AR coating has a disadvantage in that visibility is lowered due to an increase in reflectance at a portion damaged or deformed by an external rub or friction. Accordingly, many studies have been made to obtain an antireflection film in which the reflectance does not increase even when some surfaces are damaged or deformed due to external influences.
【발명의 내용】  [Content of invention]
【해결하고자하는 과제】 2019/221573 1»(:1^1{2019/006006 【Problem to solve】 2019/221573 1 »(: 1 ^ 1 {2019/006006
본 발명은 높은 내마모성 및 내스크래치성 등의 기계적 물성과 우수한 광학 특성을 가지면서도, 외부의 문지름이나 마찰 등에 의해 손상 또는 변형된 부분의 반사율 상승을 효과적으로 억제하는 반사 방지 필름을 제공하기 위한 것이다. The present invention is to provide an anti-reflection film that has high mechanical properties such as high wear resistance and scratch resistance and excellent suppression of the increase in reflectance of a part damaged or deformed by external rubbing or friction.
또한, 본 발명은 상기 반사 방지 필름을 포함하는 편광판을 제공하기 위한 것이다.  Moreover, this invention is providing the polarizing plate containing the said antireflection film.
또한, 본 발명은 상기 반사 방지 필름을 포함하며 높은 화면의 선명도를 제공하는디스플레이 장치를 제공하기 위한 것이다.  In addition, the present invention is to provide a display device including the anti-reflection film and provides a high screen sharpness.
【과제의 해결 수단】  [Measures of problem]
본 명세서에서는, 하드 코팅층; 및 하기 식 1 을 만족하는 저굴절층을 포함하는 반사 방지 필름이 제공될 수 있다.  In the present specification, the hard coating layer; And it may be provided an anti-reflection film comprising a low refractive index layer satisfying the following formula (1).
[식 1]  [Formula 1]
0.2%p ³ AR = | ¾ -Ro l  0.2% p ³ AR = | ¾ -Ro l
상기 식 1에서,  In Equation 1,
¾은상기 저굴절층의 380내지 780nm의 파장 영역에서 평균 반사율이고, ¾ is the average reflectance in the wavelength range of 380 to 780 nm of the low refractive layer,
¾은 스틸울에 500g의 하중을걸고 33rpm의 속도로 10회 왕복하여 상기 저굴절층의 표면을 문지르는 마찰 시험 (Rubbing Test ) 시행 후, 저굴절층에 대하여 ¾을 측정한 방법과 같이 측정된 380 내지 780nm 의 파장 영역에서 평균 반사율이다. ¾ was measured in the same manner as the method of measuring ¾ for the low refractive layer after performing a rubbing test for rubbing the surface of the low refractive layer by applying a steel load of 500 g and reciprocating 10 times at a speed of 33 rpm. Average reflectance in the wavelength range from 780 nm to 780 nm.
또한, 본 명세서에서는, 상기 반사 방지 필름을 포함하는 편광판이 제공된다.  Moreover, in this specification, the polarizing plate containing the said antireflection film is provided.
또한, 본 명세서에서는, 상기 반사 방지 필름을 포함하는 디스플레이 장치가제공될 수 있다.  In addition, in the present specification, a display device including the anti-reflection film may be provided.
이하 발명의 구체적인 구현예에 따른 반사 방지 필름 및 이를 포함하는 디스플레이 장치에 관하여 보다상세하게 설명하기로 한다. 본 명세서에서, 저굴절층은 낮은 굴절률을 갖는 층을 의미할 수 있으며, 예를 들면, 380 내지 780nm의 파장 영역 또는 550nm의 파장에서 약 1.2 내지 1.6의 굴절률을나타내는층을 의미할수 있다.  Hereinafter, an anti-reflection film and a display device including the same according to a specific embodiment of the present invention will be described in detail. In the present specification, the low refractive index layer may mean a layer having a low refractive index, for example, a layer exhibiting a refractive index of about 1.2 to 1.6 in a wavelength region of 380 to 780 nm or a wavelength of 550 nm.
또한, (메타)아크릴레이트[(Meth)acrylate]는 아크릴레이트 (acrylate) 및 2019/221573 1»(:1^1{2019/006006 In addition, (meth) acrylate [(Meth) acrylate] is an acrylate (acrylate) and 2019/221573 1 »(: 1 ^ 1 {2019/006006
메타크릴레이트 (Methacryl ate) 양쪽모두를포함하는의미이다. Methacrylate means both.
또한, 광경화성 수지는 빛의 조사에 의해, 예를 들어 가시 광선 또는 자외선의 조사에 의해 중합된 고분자수지를통칭한다.  In addition, the photocurable resin generally refers to the polymer resin superposed | polymerized by irradiation of light, for example, irradiation of visible light or an ultraviolet-ray.
또한, 불소계 화합물은 화합물 중 적어도 1개 이상의 불소 원소가 포함된 화합물을 의미한다. 발명의 일 구현예에 따르면, 하드 코팅층; 및 하기 식 1 을 만족하는 저굴절층을포함하는반사방지 필름이 제공된다.  In addition, a fluorine-type compound means the compound in which at least 1 or more fluorine elements are contained among the compounds. According to one embodiment of the invention, the hard coating layer; And it is provided with an antireflection film comprising a low refractive index layer satisfying the following formula (1).
[식 1]  [Equation 1]
0.2%p > AR = | Rx -R0 | 0.2% p> AR = | Rx -R 0 |
상기 식 1에서,  In Equation 1,
¾은상기 저굴절층의 380내지 780nm의 파장 영역에서 평균 반사율이고, ¾ is the average reflectance in the wavelength range of 380 to 780 nm of the low refractive layer,
¾은 스틸울에 500g의 하중을걸고 33rpm의 속도로 10회 왕복하여 상기 저굴절층의 표면을 문지르는 마찰 시험 (Rubbing Test ) 시행 후, 저굴절층에 대하여 ¾을 측정한 방법과 같이 측정된 380 내지 780nm 의 파장 영역에서 평균 반사율이다. ¾ was measured in the same manner as the method of measuring ¾ for the low refractive layer after performing a rubbing test that rubs the surface of the low refractive layer by applying a steel load of 500 g and reciprocating 10 times at a speed of 33 rpm. Average reflectance in the wavelength range from 780 nm to 780 nm.
상기 일 구현예에 따른 반사 방지 필름은 외부의 문지름이나 마찰 등에 의해 손상 또는 변형된 부분의 반사율 상승을 효과적으로 억제할 수 있다. 뿐만 아니라, 상기 반사 방지 필름은 높은 내마모성 및 내스크래치성 등의 기계적 물성과 우수한 광학 특성을 갖는다. 이에 따라, 이를 디스플레이 장치에 사용하는 경우, 영상의 품질 저하 없이 장치 외부에서 입사되는 빛에 의한 눈부심 현상을 현저하게 개선할 수 있으며, 외부 충격 혹은 자극 등으로부터 장치 표면을효과적으로보호할수 있다.  Anti-reflection film according to the embodiment can effectively suppress the increase in reflectance of the damaged or deformed portion due to external rubbing or friction. In addition, the anti-reflection film has mechanical properties such as high wear resistance and scratch resistance and excellent optical properties. Accordingly, when it is used in a display device, it is possible to remarkably improve the glare caused by light incident from the outside of the device without degrading the image quality, and effectively protect the surface of the device from external impact or stimulus.
보다구체적으로, 상기 저굴절층은 상술한 식 1 을 만족할 수 있다. 상기 식 1 에서, ¾은 저굴절층의 380 내지 780nm 파장 영역에서 평균 반사율이고, Ri은 마찰 시험 시행 후, 저굴절층의 380 내지 780nm 의 파장 영역에서 평균 반사율이다.  More specifically, the low refractive index layer may satisfy the above formula (1). In Equation 1, ¾ is the average reflectance in the wavelength range of 380 to 780 nm of the low refractive index layer, Ri is the average reflectance in the wavelength range of 380 to 780 nm of the low refractive layer after the friction test.
상기 마찰 시험은 스틸울에 500g 의 하중을 걸고 33rpm 의 속도로 10 회 왕복하여 저굴절층의 표면을 문지르는 시험으로, 하중을 건 스틸울을 저굴절층의 표면에 문지르는 경우 저굴절층이 깎여 부분적인 손상이 발생하거나 저굴절층이 2019/221573 1»(:1^1{2019/006006 The friction test is a test that rubs the surface of the low refractive layer by applying 500g load to the steel wool and reciprocating 10 times at a speed of 33 rpm, and when the loaded steel wool is rubbed on the surface of the low refractive layer, the low refractive layer is cut off. Damage or low refractive index 2019/221573 1 »(: 1 ^ 1 {2019/006006
압축되어 두께 자체가 얇아지는 등의 변형이 발생할 수 있다. 따라서, 상기 식 1 의 마찰 시험 전후의 평균 반사율 변화 정도를 통해, 외부의 문지름이나 마찰 등에 의해 손상또는 변형된 부분의 반사율상승 억제 효과를 평가할수 있다. 상기 저굴절층은 반사율 상승 억제 효과가 우수함으로 인하여, 상기 식 1 의 마찰 시험 시행 전후의 평균 반사율 변화 정도(스묘)가 0.2¾) 이하, 0. 18¾) 이하또는 0. 15¾) 이하일 수 있다. 상기 저굴절층은 마찰 시험 시행 후에도 평균 반사율의 변화가 전혀 없을 수 있으므로, 상기 평균 반사율 변화 정도(스則는 0일 수 있다. Compression may occur such that the thickness itself becomes thinner. Therefore, through the degree of average reflectance change before and after the friction test of Equation 1, the effect of suppressing the increase in reflectance of the part damaged or deformed by external rubbing, friction, or the like can be evaluated. Since the low refractive index layer is excellent in suppressing the increase in reflectivity, the degree of change of the average reflectance before and after the friction test of Equation 1 may be less than 0.2¾), less than 0.018¾), or less than 0.115¾). Since the low refractive index layer may have no change in the average reflectance even after the friction test is performed, the average reflectance change degree (switch may be 0).
한편, 상기 저굴절층은 우수한 광학 특성 및 기계적 특성과 함께, 가시 광선 영역에서의 평균 반사율이 낮아 디스플레이 장치의 눈부심 현상을 효과적으로 방지할 수 있다. 구체적으로, 상기 저굴절층에 대해 마찰 시험 시행 전, 380 내지 780ä 의 파장 영역에서 평균 반사율(식 1 의 ¾값)은 0. 1 내지 2.0%, 0.2내지 1.9%, 또는 0.3내지 1.8%일 수 있다.  The low refractive index layer, together with excellent optical and mechanical properties, has a low average reflectance in the visible light region, thereby effectively preventing glare of the display device. Specifically, before the friction test is performed on the low refractive index layer, the average reflectance (¾ value of Equation 1) in the wavelength region of 380 to 780 ä may be 0.1 to 2.0%, 0.2 to 1.9%, or 0.3 to 1.8%. have.
또한, 상기 저굴절층은 외부의 문지름이나 마찰 등에 의해 손상 또는 변형된 부분의 반사율 상승을 효과적으로 억제할 수 있다. 구체적으로, 마찰 시험 시행 후, 380 내지 7800111 의 파장 영역에서 평균 반사율(식 1 의 ¾ 값)은 0.3내지 2.2%, 0.4내지 2. 1%, 또는 0.5내지 2.0%일 수 있다.  In addition, the low refractive index layer can effectively suppress the increase in reflectance of the portion damaged or deformed by external rubbing or friction. Specifically, after the friction test, the average reflectance (¾ value of Equation 1) in the wavelength range of 380 to 7800111 may be 0.3 to 2.2%, 0.4 to 2. 1%, or 0.5 to 2.0%.
상기 일 구현예에 따른 저굴절층은하기 식 2를 만족할수 있다.  The low refractive index layer according to the embodiment may satisfy the following Equation 2.
[식 到  [Formula 到
1 ³ ᅀ1/ = "、 - 1)* 01 1 ³ ᅀ 1 / = "、-1) * 0 1
상기 식 2에서, In Equation 2,
0은국제 조명 위원회가
Figure imgf000005_0001
값이고,
0 The International Lighting Commission
Figure imgf000005_0001
Value,
1) '은스틸울에 500§의 하중을걸고 33 께의 속도로 10회 왕복하여 상기 저굴절층의 표면을 문지르는 마찰 시험 0¾13뱌1¾ 16 ) 시행 후, 저굴절층에 대하여 측정한 방법과 같이 측정된 ^ (1*3V) 색 좌표계의 값일 수 있다. 따라서, 상기 식 2의 마찰시험 전후의 저굴절층의 색상 변화 정도를통해, 외부의 문지름이나 마찰 등에 의해 손상 또는 변형된 부분에서 색상이 변하는 것을 억제하는효과를 평가할수 있다. 1) 'Rubber test for rubbing the surface of the low refractive index layer by reciprocating 10 times at a speed of 33 with a load of 500 § on a silver steel wool 0¾13 뱌 1¾ 1 6 ) It can be the value of the measured ^ (1 * 3V) color coordinate system. Therefore, through the degree of color change of the low refractive layer before and after the friction test of Equation 2, it is possible to evaluate the effect of suppressing the color change in the damaged or deformed portion by the external rub or friction.
상기 저굴절층은 색상 변화의 억제 효과가 우수함으로 인하여, 상기 식 2 의 마찰 시험 시행 전후의 색상 변화 정도(스 *)가 1 이하, 0.8 이하또는 0.5 2019/221573 1»(:1^1{2019/006006 Since the low refractive index layer has an excellent effect of suppressing color change, the degree of color change (s * ) before and after the friction test of Equation 2 is 1 or less, 0.8 or less, or 0.5 2019/221573 1 »(: 1 ^ 1 {2019/006006
이하일 수 있다. 상기 저굴절층은 마찰 시험 시행 후에도 색상의 변화가 전혀 없을수 있으므로, 상기 색상 변화 정도(스1 )는 0일 수 있다. It may be: Since the low refractive index layer may have no color change even after the friction test, the color change degree (s1) may be zero.
상기 식 2의 !八)값은, 저굴절층의
Figure imgf000006_0001
좌표계의 값일 수 있으며, 구체적으로, 2내지 -10일 수 있다. 상기 01^ (1*3 V) 색 좌표계에서 값은 양수이면 황색에 치우친 색을 나타내며, 음수이면 청색에 치우친 색을 나타낸다. 따라서, 상기 저굴절층은 상술한 바와 같은 색 좌표값을 나타내어 디스플레이 장치 영상의 품질 변화 없이 영상을 그대로 투과시키면서 눈부심 현상을 효과적으로 방지할수 있다.
! 8) value of said Formula 2 is a thing of the low refractive layer
Figure imgf000006_0001
It may be a value of a coordinate system, and specifically, may be 2 to -10. In the 01 ^ (1 * 3 V) color coordinate system, a positive value represents a color biased to yellow, and a negative value represents a color biased to blue. Therefore, the low refractive layer exhibits the color coordinate values as described above, thereby effectively preventing the glare while transmitting the image as it is without changing the quality of the display device image.
또한, 상기 저굴절층은 외부의 문지름이나 마찰 등에 의해 손상 또는 변형된 부분의 색상 변화를 효과적으로 억제할 수 있다. 예를 들어, 상기 저굴절층에 대해 마찰시험 시행 후, 01^ 0/310 색 좌표계의 값(식 2 의 ^1 값)은, 구체적으로, 3내지 -9일 수 있다. In addition, the low refractive layer can effectively suppress the color change of the part damaged or deformed by external rubbing or friction. For example, after the friction test is performed on the low refractive layer, the value of the 01 ^ 0/310 color coordinate system (^ 1 value in Equation 2) may be specifically 3 to -9.
한편, 상기 저굴절층은 바인더 수지를 포함할 수 있다. 상기 바인더 수지는, 2 내지 4 관능성 (메트)아크릴레이트계 모노머 및 5 내지 6 관능성 (메트)아크릴레이트계 모노머를 포함하는 다관능성 (메트)아크릴레이트계 모노머의 공중합체를포함할수 있다.  On the other hand, the low refractive index layer may include a binder resin. The binder resin may include a copolymer of a polyfunctional (meth) acrylate monomer containing a 2 to 4 functional (meth) acrylate monomer and a 5 to 6 functional (meth) acrylate monomer.
상기 2 내지 4 관능성 (메트)아크릴레이트계 모노머는 중심에 펜타에리트리톨 구조를 가질 수 있으며, 그 종류는 이로써 한정하는 것은 아니나, 예를 들어, 펜타에리트리톨 디(메타)아크릴레이트, 펜타에리트리톨 트리(메타)아크릴레이트또는 이들의 혼합물일 수 있다.  The 2 to 4 functional (meth) acrylate-based monomer may have a pentaerythritol structure in the center, and the kind thereof is not limited thereto. For example, pentaerythritol di (meth) acrylate and pentaerythrate. It may be lititol tri (meth) acrylate or a mixture thereof.
구체적으로, 중심에 펜타에리트리톨 구조를 상기 2 내지 4 관능성 (메트)아크릴레이트계 모노머는하기 화학식 1일 수 있다.  Specifically, the 2 to 4 functional (meth) acrylate monomer having a pentaerythritol structure in the center may be represented by Formula 1 below.
[화학식 1]  [Formula 1]
Figure imgf000006_0002
상기 화학식 1에서,
Figure imgf000006_0002
In Chemical Formula 1,
¾ 내지 ¾ 는 히드록시기; (메타)아크릴레이트기; 또는 치환 또는 비치환된 01-40 알콕시기이고, 단, 이들 중 적어도 하나 이상이 2019/221573 1»(:1^1{2019/006006 ¾ to ¾ are hydroxyl groups; (Meth) acrylate groups; Or a substituted or unsubstituted 0 1-40 alkoxy group, provided that at least one of them is 2019/221573 1 »(: 1 ^ 1 {2019/006006
(메타)아크릴레이트기이다. It is a (meth) acrylate group.
한편, 상기 5 내지 6 관능성 (메트)아크릴레이트계 모노머는 중심에 디펜타에리트리톨 구조를 가질 수 있으며, 그 종류는 이로써 한정하는 것은 아니나, 예를 들어, 디펜타에리트리톨 펜타(메타)아크릴레이트, 디펜타에리트리톨 핵사(메타)아크릴레이트또는 이들의 혼합물일 수 있다.  On the other hand, the 5 to 6 functional (meth) acrylate monomers may have a dipentaerythritol structure in the center, the kind is not limited thereto, for example, dipentaerythritol penta (meth) acrylic Latent, dipentaerythritol nucleated (meth) acrylate or mixtures thereof.
구체적으로, 중심에 디펜타에리트리톨 구조를 갖는 상기 5 내지 6 관능성 (메트)아크릴레이트계 모노머는하기 화학식 2일 수 있다.  Specifically, the 5- to 6-functional (meth) acrylate monomer having a dipentaerythritol structure in the center may be represented by the following formula (2).
[화학식 2]  [Formula 2]
Figure imgf000007_0001
Figure imgf000007_0001
상기 화학식 2에서 ,  In Chemical Formula 2,
Rn 내지 R e 은 히드록시기; (메타)아크릴레이트기; 또는 치환 또는 비치환된 Ci-40 알콕시기이고, 단, 이들 중 적어도 하나 이상이 (메타)아크릴레이트기이다.  Rn to R e are hydroxy groups; (Meth) acrylate groups; Or a substituted or unsubstituted Ci-40 alkoxy group, provided that at least one of them is a (meth) acrylate group.
상기 화학식 1 및 2 에 따르면, 상기 펜타에리트리톨 구조를 갖는 2 내지 4 관능성 (메트)아크릴레이트계 모노머는 디펜타에리트리톨 구조를 갖는 5 내지 6 관능성 (메트)아크릴레이트계 모노머에 비해 대략 2 배의 분자량 및 부피를 가지므로, 상기 공중합체에서 분자량 및 부피가 상대적으로 큰 (메타)아크릴레이트와 분자량 및 부피가 상대적으로 작은 (메타)아크릴레이트가 단위 부피 내에서 채우기 밀도(packing dens i ty)를 최대화할 수 있으므로 가교도가 높아질 수 있을 뿐만 아니라 자유부피(free vo lume)를 최소화할 수 있다.  According to the formulas (1) and (2), the 2-4 functional (meth) acrylate monomer having a pentaerythritol structure is about 5-6 functional (meth) acrylate monomers having a dipentaerythritol structure. Since it has twice the molecular weight and volume, the packing density of the (meth) acrylate and the relatively small molecular weight and (meth) acrylate in the copolymer are packed dens i in the unit volume. ty) can be maximized, so that the degree of crosslinking can be increased and the free volume can be minimized.
또한, 상기 2 내지 4 관능성 (메트)아크릴레이트계 모노머와 5 내지 6 관능성 (메트)아크릴레이트계 모노머가 9 : 1 내지 6 : 4, 8.5 : 1.5 내지 6.5 :3.5 , 또는 8 : 2 내지 7 :3 의 중량비로 가교 중합됨으로 인해, 공중합체의 가교도가 최대로 높아지고 이를 포함하는 저굴절층의 자유 부피(free volume)가 최소화될 수 있다. 이로 인해, 저굴절층에 외부의 문지름이나 마찰이 가해진 부분의 반사율상승이 방지될 수 있다. 2019/221573 1»(:1^1{2019/006006 Further, the 2 to 4 functional (meth) acrylate monomers and the 5 to 6 functional (meth) acrylate monomers are 9: 1 to 6: 4, 8.5: 1.5 to 6.5: 3.5, or 8: 2 to Due to the crosslinking polymerization at a weight ratio of 7: 3, the degree of crosslinking of the copolymer is maximized and the free volume of the low refractive layer including the same can be minimized. As a result, it is possible to prevent the increase in the reflectance of the portion where external rubbing or friction is applied to the low refractive layer. 2019/221573 1 »(: 1 ^ 1 {2019/006006
상기 2 내지 4 관능성 (메타)아크릴레이트 및 5 내지 6 관능성 (메타)아크릴레이트가 9 : 1 내지 6 : 4의 중량비로 가교 중합된 공중합체는 125111113 부피 내에서의 자유부피가 420 이하일 수 있다. 상기 공중합체의 125ä3부피 내에서의 자유 부피가 420 초과일 경우, 외부의 문지름이나 마찰 등에 의해 손상또는 변형된 부분의 반사율상승을 막을수 없다. The copolymer in which the 2 to 4 functional (meth) acrylate and the 5 to 6 functional (meth) acrylate are cross-polymerized at a weight ratio of 9: 1 to 6: 4 has a free volume of 420 or less in 3 volumes of 12511111. Can be. When the free volume in the 125 ä 3 volume of the copolymer is more than 420, the increase in reflectance of the part damaged or deformed by external rubbing or friction cannot be prevented.
또한, 상기 공중합체를 포함하는 저굴절층의 가교도는 85% 이상, 85 내지 99%, 90 내지 99%, 또는 95내지 99%일 수 있다. 상기 가교 밀도가 85%미만이면 상기 저굴절층이 외부의 문지름이나 마찰 등에 의해 손상 또는 변형된 부분의 반사율이 상승할수 있다.  In addition, the degree of crosslinking of the low refractive layer including the copolymer may be 85% or more, 85 to 99%, 90 to 99%, or 95 to 99%. If the crosslinking density is less than 85%, the reflectance of the portion where the low refractive index layer is damaged or deformed due to external rubbing or friction may increase.
상기 저굴절층은 광반응성 작용기를 포함한 불소계 화합물로부터 유래한 부분을 더 포함할 수 있다. 상기 저굴절층의 바인더 수지는 광반응성 작용기를 포함한 불소계 화합물이 포함됨에 따라 보다 낮은 반사율 및 향상된 투광율을 가질 수 있고 아울러 외부의 문지름이나 마찰 등에 의해 손상 또는 변형된 부분의 반사율 상승을 효과적으로 억제할수 있다. 이에 따라, 일 실시예에 따른 반사 방지 필름의 저굴절층은, 상기 다관능성 (메트)아크릴레이트계 모노머와, 광반응성 작용기를포함한불소계 화합물의 공중합체를 더 포함할수 있다.  The low refractive index layer may further include a portion derived from a fluorine-based compound including a photoreactive functional group. The binder resin of the low refractive index layer may have a lower reflectance and an improved light transmittance as the fluorine-based compound including a photoreactive functional group is included, and may effectively suppress an increase in reflectance of a part damaged or deformed by external rubbing or friction. . Accordingly, the low refractive layer of the antireflection film according to an embodiment may further include a copolymer of the multifunctional (meth) acrylate monomer and a fluorine compound including a photoreactive functional group.
상기 불소계 화합물에는 1 이상의 광반응성 작용기가 포함 또는 치환될 수 있으며, 상기 광반응성 작용기는 빛의 조사에 의하여, 예를 들어 가시 광선 또는 자외선의 조사에 의하여 중합 반응에 참여할 수 있는 작용기를 의미한다. 상기 광반응성 작용기는 빛의 조사에 의하여 중합 반응에 참여할 수 있는 것으로 알려진 다양한 작용기를 포함할 수 있으며, 이의 구체적인 예로는 (메트)아크릴레이트기, 에폭사이드기, 비닐기( 1 1) 또는 싸이올기 0¾比1)를 들 수 있다.  The fluorine-based compound may include or substitute one or more photoreactive functional groups, and the photoreactive functional group refers to a functional group capable of participating in a polymerization reaction by irradiation of light, for example, by irradiation of visible light or ultraviolet light. The photoreactive functional group may include various functional groups known to be able to participate in a polymerization reaction by irradiation of light, and specific examples thereof may be a (meth) acrylate group, an epoxide group, a vinyl group (1 1) or a thiol group. 0¾ 比 1).
상기 광반응성 작용기를 포함한 불소계 화합물은 1 내지 60중량%, 2 내지 50중량%, 또는 3 내지 40중량%의 불소를 포함할 수 있다. 상기 불소의 함량이 1중량%미만이면 상기 저굴절층의 표면으로 불소 성분이 충분히 배열하지 못하여 표면 슬립성이 떨어질 수 있으며, 60중량%를 초과하면 상기 저굴절층의 내스크래치 특성이 저하되거나외부마찰에 의한반사율상승이 발생할수 있다. 상기 광반응성 작용기를 포함한 불소계 화합물은 규소 또는 규소 화합물을 더 포함할 수 있다. 즉, 상기 광반응성 작용기를 포함한 불소계 2019/221573 1»(:1^1{2019/006006 The fluorine-based compound including the photoreactive functional group may include 1 to 60% by weight, 2 to 50% by weight, or 3 to 40% by weight of fluorine. If the content of the fluorine is less than 1% by weight, the surface of the low refractive index layer may not be sufficiently arranged to reduce the surface slip properties. If the content exceeds 60% by weight, the scratch resistance of the low refractive layer may be deteriorated. Reflectance increase may occur due to friction. The fluorine-based compound including the photoreactive functional group may further include silicon or a silicon compound. That is, the fluorine-based containing the photoreactive functional group 2019/221573 1 »(: 1 ^ 1 {2019/006006
화합물은 선택적으로 내부에 규소 또는 규소 화합물을 함유할 수 있고, 구체적으로 상기 광반응성 작용기를 포함한불소계 화합물 중 규소의 함량은 0.1 내지 20중량%, 0.5 내지 18중량%, 또는 1 내지 15중량%일 수 있다. 상기 광반응성 작용기를 포함한 불소계 화합물에 포함되는 규소는 상기 저굴절층에 헤이즈 (11326)가 발생하는 것을 방지하여 투명도를 높이는 역할을 할 수 있다. 한편, 상기 광반응성 작용기를 포함한 불소계 화합물 중 규소의 함량이 너무 커지면, 상기 저굴절층이 갖는내알칼리성이 저하될 수 있다. The compound may optionally contain a silicon or silicon compound therein, specifically, the content of silicon in the fluorine-based compound including the photoreactive functional group may be 0.1 to 20% by weight, 0.5 to 18% by weight, or 1 to 15% by weight. Can be. Silicon contained in the fluorine-based compound including the photoreactive functional group may serve to prevent transparency of the haze 11326 from occurring in the low refractive layer. On the other hand, when the content of silicon in the fluorine-based compound including the photoreactive functional group is too large, the alkali resistance of the low refractive index layer may be lowered.
상기 광반응성 작용기를 포함한 불소계 화합물은 2,000 내지 200,000, 3,000 내지 180,000, 또는 4,000 내지 170 ,000의 중량평균분자량 ½ᄄ법에 의해 측정한 폴리스티렌 환산의 중량 평균 분자량)을 가질 수 있다. 상기 광반응성 작용기를 포함한 불소계 화합물의 중량평균분자량이 2,000 미만이면 상기 저굴절층의 표면으로 불소 성분이 충분히 배열하지 못하여 표면 슬립성이 떨어질 수 있으며, 200,000 초과하면 상기 저굴절층이 내스크래치 특성이 저하되거나 외부의 문지름이나 마찰 등에 의해 손상 또는 변형된 부분의 반사율 상승할 수 있으며, 아울러 상기 광반응성 작용기를 포함한 불소계 화합물과 다른 성분들 간의 상용성이 낮아져서 상기 저굴절층 제조시에 균일한 분산이 되지 않아서 최종 제품의 내부 구조또는표면 특성이 저하될 수 있다.  The fluorine-based compound including the photoreactive functional group may have a weight average molecular weight in terms of polystyrene measured by a weight average molecular weight ½ ᄄ method of 2,000 to 200,000, 3,000 to 180,000, or 4,000 to 170,000. When the weight average molecular weight of the fluorine-based compound including the photoreactive functional group is less than 2,000, the surface slidability may be lowered because the fluorine component may not be sufficiently arranged on the surface of the low refractive index layer. The reflectance of the deteriorated or damaged or deformed portion may be increased due to external rubbing or friction, and also the compatibility between the fluorine-based compound including the photoreactive functional group and other components may be lowered, resulting in uniform dispersion in the low refractive index layer. As a result, the internal structure or surface properties of the final product may be degraded.
구체적으로, 상기 광반응성 작용기를 포함한 불소계 화합물은 0 하나 이상의 광반응성 작용기가 치환되고, 적어도 하나의 탄소에 1 이상의 불소가 치환된 지방족 화합물 또는 지방족 고리 화합물; ) 1 이상의 광반응성 작용기로 치환되고, 적어도 하나의 수소가 불소로 치환되고, 하나 이상의 탄소가 규소로 치환된 헤테로어 근 )) 지방족 화합물 또는 헤테로 야근 )지방족 고리 화합물; 111) 하나 이상의 광반응성 작용기가 치환되고, 적어도 하나의 실리콘에 1이상의 불소가 치환된 폴리디알킬실록산계 고분자 (예를 들어, 폴리디메틸실록산계 고분자) ; IV) 1 이상의 광반응성 작용기로 치환되고 적어도 하나의 수소가 불소로 치환된 폴리에테르 화합물, 또는 상기 0 내지 IV) 중 2이상의 혼합물또는 이들의 공중합체를들수 있다.  Specifically, the fluorine-based compound including the photoreactive functional group may be an aliphatic compound or an aliphatic ring compound in which at least one photoreactive functional group is substituted and at least one fluorine is substituted for at least one carbon; A) heteroaromatic) substituted with one or more photoreactive functional groups, at least one hydrogen substituted with fluorine, and one or more carbons substituted with silicon)) an aliphatic compound or a heteronight muscle) aliphatic ring compound; 111) polydialkylsiloxane polymers (eg, polydimethylsiloxane polymers) in which at least one photoreactive functional group is substituted and at least one fluorine is substituted in at least one silicon; IV) polyether compounds substituted with one or more photoreactive functional groups and at least one hydrogen substituted with fluorine, or mixtures of two or more of 0 to IV) or copolymers thereof.
상기 저굴절층은 상기 공중합체 100중량부에 대하여 상기 광반응성 작용기를 포함한 불소계 화합물 0.1 내지 50중량부, 0.3 내지 40중량부, 또는 0.5 내지 30중량부를 포함할 수 있다. 상기 공중합체 대비 상기 광반응성 2019/221573 1»(:1^1{2019/006006 The low refractive layer may include 0.1 to 50 parts by weight, 0.3 to 40 parts by weight, or 0.5 to 30 parts by weight of the fluorine compound including the photoreactive functional group based on 100 parts by weight of the copolymer. The photoreactivity compared to the copolymer 2019/221573 1 »(: 1 ^ 1 {2019/006006
작용기를 포함한 불소계 화합물의 함량이 0. 1 중량부 미만이면 상기 저굴절층의 표면 슬립성이 저하될 수 있으며, 50중량부 초과하면 내스크래치 특성이 저하되거나 외부의 문지름이나 마찰 등에 의해 손상 또는 변형된 부분의 반사율이 상승할수 있다. If the content of the fluorine-based compound including the functional group is less than 0.1 part by weight, the surface slip resistance of the low refractive index layer may be lowered. If the content of the fluorine-based compound is greater than 50 parts by weight, the scratch resistance may be deteriorated or damaged or deformed by external rubbing or friction. The reflectance of the part may rise.
한편, 상기 저굴절층은 바인더 수지; 및 상기 바인더 수지에 분산되고 상이한 입경을 갖는 2종 이상의 중공형 무기 입자를포함할수 있다.  On the other hand, the low refractive layer is a binder resin; And two or more hollow inorganic particles dispersed in the binder resin and having different particle diameters.
상기 상이한 입경을 갖는 2종 이상의 중공형 무기 입자는, 동적 (Dynamic Light Scattering, DLS)으로 측정된 40nm내지 60nm의 입경을 갖는 중공형 무기 입자와 65nm내지 100nm의 입경을 갖는중공형 무기 입자를포함할수 있다. 상기 상이한 입경을 갖는 2 종 이상의 중공형 무기 입자가 저굴절층에 포함되는 경우, 상대적으로 입경이 큰 중공형 무기 입자들 사이에 상대적으로 입경이 작은 중공형 무기 입자가 배치되어 중공형 무기 입자의 배열이 이상적이 되어, 외부에서의 문지름이나 마찰에 의한 반사율 상승을 방지할 수 있음과 동시에 내마모성, 내스크래치성 등의 물성을 확보할 수 있으며, 나아가 상기 반사 방지 필름이 디스플레이 장치의 화면의 선명도를 높일 수 있으면서도 우수한기계적 물성을나타낼 수 있다.  The two or more hollow inorganic particles having different particle diameters include hollow inorganic particles having a particle diameter of 40 nm to 60 nm and hollow inorganic particles having a particle size of 65 nm to 100 nm, as measured by dynamic light scattering (DLS). can do. When the two or more kinds of hollow inorganic particles having different particle diameters are included in the low refractive layer, hollow inorganic particles having a relatively small particle diameter are disposed between the hollow inorganic particles having a relatively large particle diameter, thereby The ideal arrangement makes it possible to prevent an increase in reflectance due to rubbing or friction from the outside, and to secure physical properties such as wear resistance and scratch resistance, and furthermore, the anti-reflection film improves the sharpness of the screen of the display device. High mechanical properties can be exhibited at the same time.
상기 저굴절층에 포함되는 중공형 무기 입자는 내부에 중공부를 갖는 미립자로, 이러한 중공부에 굴절률이 1.0 인 공기를 함유하고 있기 때문에 대략 1.20 내지 1.40 의 낮은 굴절률을 가질 수 있다. 이러한 입자를 저굴절층에 포함하는 경우, 중공형 무기 입자 자체의 밀도가 높더라도 저굴절층의 굴절률을 낮게 제어할수 있고 이에 따른 저반사율을도모할수 있다.  The hollow inorganic particles included in the low refractive index layer are fine particles having a hollow portion therein, and may have a low refractive index of about 1.20 to 1.40 because the hollow portion contains air having a refractive index of 1.0. In the case where such particles are included in the low refractive layer, even if the hollow inorganic particles themselves have a high density, the refractive index of the low refractive layer can be controlled to be low, thereby achieving low reflectance.
상기 40nm내지 60nm의 입경을 갖는 중공형 무기 입자 1 종과 65nm내지 lOOnm의 입경을 갖는 중공형 무기 입자 1 종 간의 중량비는 7 : 3 내지 3 : 7, 6 :4 내지 4: 6, 또는 6.5 : 4.5 내지 5 : 5 일 수 있다. 상기 중량비 범위를 만족하지 않으면 중공형 무기 입자의 배열이 흐트러지게 되어 외부의 문지름이나 마찰로 인하여 저굴절층의 평균 반사율이 상승할수 있다.  The weight ratio between the hollow inorganic particles having a particle size of 40 nm to 60 nm and the hollow inorganic particles having a particle size of 65 nm to 100 nm is 7: 3 to 3: 7, 6: 4 to 4: 6, or 6.5: 4.5 to 5: 5 may be. If the weight ratio range is not satisfied, the arrangement of the hollow inorganic particles may be disturbed, thereby increasing the average reflectance of the low refractive layer due to external rubbing or friction.
상기 상이한 입경을 갖는 2 종 이상의 중공형 무기 입자는, 적어도 40nm 내지 60nm, 42 내지 60nm, 또는 45 내지 60nm의 입경을 갖는 중공형 무기 입자 65nm내지 lOOnm, 65nm내지 95nm, 또는 65nm내지 90nm의 입경을 갖는 중공형 무기 입자 1 종을 포함할 수 있다. 상기 중공형 무기 입자의 입경이 40nm 2019/221573 1»(:1^1{2019/006006 The two or more types of hollow inorganic particles having different particle diameters may be at least 40 nm to 60 nm, 42 to 60 nm, or 45 to 60 nm hollow inorganic particles having a particle size of 65 nm to 100 nm, 65 nm to 95 nm, or 65 nm to 90 nm. One type of hollow inorganic particles may be included. The particle size of the hollow inorganic particles is 40nm 2019/221573 1 »(: 1 ^ 1 {2019/006006
미만이면 저굴절층의 굴절률이 높아져 반사율이 높아질 수 있고, 100ä 를 초과하면 저굴절층의 강도가 약해져서 내스크래치성이 저하될 수 있다. If it is less than the refractive index of the low refractive index layer may be increased to increase the reflectance, and if it exceeds 100ä, the strength of the low refractive layer is weakened, scratch resistance may be lowered.
상기 40ä 내지 60ä 의 입경을 갖는 중공형 무기 입자 1 종의 평균 입경과, 상기 6511111 내지 10011111 의 입경을 갖는 중공형 무기 입자 1 종의 평균 입경 간의 평균 입경 차이는
Figure imgf000011_0001
60ä, 7^1 내지 4011111, 또는 8!^ 내지 30^1 일 수 있다. 상기 입경 차이가 지나치게 작거나 크면 저굴절층이 외부의 문지름이나마찰등에 의해 손상또는 변형된 부분의 반사율이 상승할수 있다. 상기 바인더 수지 100중량부에 대해, 상기 2종 이상의 중공형 무기 입자의 함량은 30 내지 500 중량부, 50 내지 450 중량부, 또는 60 내지 400 중량부일 수 있다. 상기 2종 이상의 중공형 무기 입자의 함량이 30 중량부 미만이면 저굴절층의 반사율이 높아질 수 있고, 500 중량부를 초과하면 바인더 수지의 함량 저하로 인하여 내스크래치성이 저하되거나 외부의 문지름이나 마찰 등에 의해 손상또는 변형된 부분의 반사율이 상승할수 있다.
The average particle diameter difference between the average particle diameter of one hollow inorganic particle having a particle diameter of 40ä to 60ä and the average particle diameter of one hollow inorganic particle having a particle size of 6511111 to 10011111 is
Figure imgf000011_0001
60 ä, 7 ^ 1 to 4011111, or 8! ^ To 30 ^ 1. If the difference in particle size is too small or large, the reflectance of the portion where the low refractive index layer is damaged or deformed by external rubbing or friction may increase. With respect to 100 parts by weight of the binder resin, the content of the two or more hollow inorganic particles may be 30 to 500 parts by weight, 50 to 450 parts by weight, or 60 to 400 parts by weight. If the content of the at least two hollow inorganic particles is less than 30 parts by weight, the reflectance of the low refractive index layer may be increased. As a result, the reflectance of the damaged or deformed portion may increase.
한편, 상기 중공형 무기 입자 각각은 표면에 (메트)아크릴레이트기, 에폭사이드기 , 비닐기( 1 1) 및 싸이올기 0¾比1)로 이루어진 군에서 선택된 1종 이상의 반응성 작용기를 함유할 수 있다. 상기 중공형 무기 입자 각각이 표면에 상술한 반응성 작용기를 함유함에 따라서 , 저굴절층은 보다 높은 가교도를 가질 수 있으며, 이에 따라 외부의 문지름이나 마찰 등에 의해 손상 또는 변형된 부분의 반사율 상승을 효과적으로 억제할 수 있고, 나아가 보다 향상된 내스크래치성 및 방오성을 확보할수 있다.  On the other hand, each of the hollow inorganic particles may contain at least one reactive functional group selected from the group consisting of (meth) acrylate group, epoxide group, vinyl group (1 1) and thiol group 0¾ 比 1) on the surface. . As each of the hollow inorganic particles contains the above-described reactive functional group on the surface, the low refractive index layer may have a higher degree of crosslinking, thereby effectively suppressing the increase in reflectance of the part damaged or deformed by external rubbing or friction. It is possible to further improve the scratch resistance and antifouling.
상기 중공형 무기 입자는 그 표면이 불소계 화합물로 코팅될 수 있다 . 상기 중공형 무기 입자의 표면이 불소계 화합물로 코팅되면 표면 에너지를 보다 낮출 수 있으며, 이에 따라 상기 저굴절층의 내구성이나 내스크래치성을 보다 높일 수 있다. 상기 중공형 무기 입자의 표면에 불소계 화합물을 코팅하는 방법으로 통상적으로 알려진 입자 코팅 방법이나 중합 방법 등을 큰 제한 없이 사용할 수 있으며, 예를 들어, 상기 중공형 무기 입자 및 불소계 화합물을 물과 촉매의 존재 하에서 졸-겔 반응 시켜서 가수 분해 및 축합 반응을 통하여 상기 중공형 무기 입자의 표면에 불소계 화합물을 결합시킬 수 있다.  The hollow inorganic particles may be coated on a surface thereof with a fluorine compound. When the surface of the hollow inorganic particles is coated with a fluorine-based compound, it is possible to lower the surface energy, thereby increasing the durability and scratch resistance of the low refractive layer. Particle coating methods or polymerization methods commonly known as coating the fluorine-based compound on the surface of the hollow inorganic particle may be used without any significant limitation. For example, the hollow inorganic particles and the fluorine-based compound may be formed of water and a catalyst. In the presence of the sol-gel reaction can be bonded to the fluorine-based compound on the surface of the hollow inorganic particles through the hydrolysis and condensation reaction.
상기 중공형 무기 입자의 구체적인 예로는 중공 실리카 입자를 들 수 있다. 상기 중공 실리카는 유기 용매에 보다 용이하게 분산되기 위해서 표면에 2019/221573 1»(:1^1{2019/006006 Specific examples of the hollow inorganic particles include hollow silica particles. The hollow silica is deposited on the surface in order to be more easily dispersed in an organic solvent. 2019/221573 1 »(: 1 ^ 1 {2019/006006
치환된 소정의 작용기를 포함할 수 있다. 상기 중공 실리카 입자 표면에 치환 가능한 유기 작용기의 예가 크게 한정되는 것은 아니며, 예를 들어 (메트)아크릴레이트기, 비닐기, 히드록시기, 아민기, 알릴기( 1 ), 에폭시기, 히드록시기, 이소시아네이트기, 아민기 또는 불소 등이 상기 중공 실리카 표면에 치환될 수 있다. It may include certain functional groups substituted. Examples of organic functional groups that can be substituted on the surface of the hollow silica particles are not particularly limited, and examples thereof include (meth) acrylate groups, vinyl groups, hydroxy groups, amine groups, allyl groups (1), epoxy groups, hydroxy groups, isocyanate groups, and amines. A group or fluorine may be substituted on the hollow silica surface.
상기 저굴절층은 굴절율이 1.2 내지 1.55, 1.25 내지 1.45, 또는 1.3 내지 1.43일 수 있다.  The low refractive index layer may have a refractive index of 1.2 to 1.55, 1.25 to 1.45, or 1.3 to 1.43.
한편, 상기 저굴절층의 구체적인 예로는, 2 내지 4 관능성 On the other hand, as a specific example of the low refractive layer, 2 to 4 functional
(메트)아크릴레이트계 모노머 및 5 내지 6 관능성 (메트)아크릴레이트계 모노머를 포함하는 다관능성 (메트)아크릴레이트계 모노머의 공중합체를 포함한 바인더 수지; 및 상기 바인더 수지에 분산되고, 상이한 입경을 갖는 2종 이상의 중공형 무기 입자를 포함할수 있다. Binder resin containing the copolymer of the (meth) acrylate type monomer and the polyfunctional (meth) acrylate type monomer containing a 5-6 functional (meth) acrylate type monomer; And two or more hollow inorganic particles dispersed in the binder resin and having different particle diameters.
또한, 상기 2 내지 4 관능성 (메트)아크릴레이트계 모노머와 5 내지 6 관능성 (메트)아크릴레이트계 모노머가 9:1 내지 6:4, 8.5:1.5 내지 6.5:3.5, 또는 8:2 내지 7:3 의 중량비로 가교 중합됨으로 인해, 공중합체의 가교도가 최대로 높아지고 이를 포함하는 저굴절층의 자유 부피( 근근 \ 1111116)가 최소화될 수 있다. 이로 인해, 저굴절층에 외부의 문지름이나 마찰이 가해진 부분의 반사율 상승이 방지될 수 있다.  Further, the 2 to 4 functional (meth) acrylate monomers and the 5 to 6 functional (meth) acrylate monomers are 9: 1 to 6: 4, 8.5: 1.5 to 6.5: 3.5, or 8: 2 to Due to the crosslinking polymerization at a weight ratio of 7: 3, the degree of crosslinking of the copolymer is maximized and the free volume of the low refractive index layer containing the same (root ratio \ 1111116) can be minimized. As a result, it is possible to prevent the increase in the reflectance of the part where external rubbing or friction is applied to the low refractive layer.
상기 40ä 내지 60ä 의 입경을 갖는 중공형 무기 입자 1종과 6511111내지 100ä 의 입경을 갖는 중공형무기 입자 1 종 간의 중량비는 7:3 내지 3:7, 6:4 내지 4:6, 또는 6.5:4.5 내지 5:5 일 수 있다. 상기 중량비 범위를 만족하지 않으면 중공형 무기 입자의 배열이 흐트러지게 되어 외부의 문지름이나 마찰로 인하여 저굴절층의 평균 반사율이 상승할 수 있다. The weight ratio between the hollow inorganic particles having a particle size of 40ä to 60ä and the hollow ' inorganic particles having a particle size of 6511111 to 100ä is 7: 3 to 3: 7, 6: 4 to 4: 6, or 6.5 : 4.5 to 5: 5. If the weight ratio range is not satisfied, the arrangement of the hollow inorganic particles may be disturbed, and the average reflectance of the low refractive layer may increase due to external rubbing or friction.
상기 저굴절층은 상기 공중합체 및 상기 중공형 무기 입자를 포함하는 광중합성 코팅 조성물을 소정의 기재 상에 도포하고 도포된 결과물을 광중합함으로서 얻어질 수 있다. 상기 기재의 구체적인 종류나 두께는 크게 한정되는 것은 아니며, 하드 코팅층 또는 반사 방지 필름의 제조에 사용되는 것으로 알려진 기재를 큰 제한 없이 사용할 수 있다.  The low refractive index layer may be obtained by applying a photopolymerizable coating composition comprising the copolymer and the hollow inorganic particles on a predetermined substrate and photopolymerizing the applied resultant. The specific kind or thickness of the substrate is not particularly limited, and a substrate known to be used in the manufacture of a hard coating layer or an antireflection film may be used without any significant limitation.
한편, 상기 광중합성 코팅 조성물을 도포하는데 통상적으로 사용되는 방법 및 장치를 별 다른 제한 없이 사용할 수 있으며, 예를 들어, 2019/221573 1»(:1^1{2019/006006 On the other hand, methods and apparatus conventionally used to apply the photopolymerizable coating composition can be used without particular limitation, for example, 2019/221573 1 »(: 1 ^ 1 {2019/006006
메이어바 (Meyer bar )등의 바 코팅법, 그라비아 코팅법, 2 ro l l reverse 코팅법, vacuum s lot di e 코팅법 등을 사용할 수 있다. Bar coating methods such as Meyer bar, gravure coating, 2 reverse reverse coating, vacuum s lot die coating and the like can be used.
상기 광중합성 코팅 조성물을 광중합 시키는 단계에서는 200 내지 400m 파장의 자외선 또는 가시 광선을 조사할 수 있고, 조사시 노광량은 100 내지 4 , 000 mJ/cin2 이 바람직하다. 노광 시간도 특별히 한정되는 것이 아니고, 사용되는 노광 장치, 조사 광선의 파장 또는 노광량에 따라 적절히 변화시킬 수 있다. 또한, 상기 광중합성 코팅 조성물을 광중합 시키는 단계에서는 질소 대기 조건을 적용하기 위하여 질소 퍼징 등을 할 수 있다. In the step of photopolymerizing the photopolymerizable coating composition may be irradiated with ultraviolet rays or visible light having a wavelength of 200 to 400m, the exposure dose is preferably 100 to 4,000 mJ / cin 2 when irradiated. Exposure time is not specifically limited, either, The exposure apparatus used can be suitably changed according to the wavelength or exposure amount of irradiation light. In addition, in the step of photopolymerizing the photopolymerizable coating composition, nitrogen purging may be performed to apply nitrogen atmospheric conditions.
상기 반사 방지 필름은 380 nm 내지 780 nm 파장 영역에서의 평균 반사율이 3% 미만, 2.5% 이하, 2% 이하일 수 있다.  The antireflection film may have an average reflectance in a wavelength range of 380 nm to 780 nm of less than 3%, 2.5% or less, or 2% or less.
한편, 상기 하드 코팅층은 통상적으로 알려진 하드 코팅층을 큰 제한 없이 사용할 수 있다. 상기 하드 코팅층의 일 예로서 , 광경화성 수지를 포함하는 바인더 수지 ; 및 상기 바인더 수지에 분산된 유기 또는무기 미립자를 포함하는 하드 코팅층일 수 있다.  On the other hand, the hard coating layer can be used without a large limitation to the conventional known hard coating layer. As an example of the hard coating layer, Binder resin containing a photocurable resin; And it may be a hard coating layer comprising organic or inorganic fine particles dispersed in the binder resin.
상술한 저굴절층은 상기 하드 코팅층의 일면에 형성될 수 있으며, 또한 상기 저굴절층과 하드 코팅층 사이에는 추가적인 기능층이 더 포함될 수도 있다. 상기 광경화성 수지는 앞서 언급한 바와 같이, 빛의 조사에 의해, 예를 들어 가시 광선 또는 자외선의 조사에 의해 중합된 고분자 수지인 것으로, 예를 들어, 우레탄 아크릴레이트 올리고머, 에폭사이드 아크릴레이트 올리고머, 폴리에스터 아크릴레이트, 및 폴리에테르 아크릴레이트로 이루어진 반응성 아크릴레이트 올리고머 군; 및 디펜타에리스리톨 핵사아크릴레이트, 디펜타에리스리톨 하이드록시 펜타아크릴레이트, 펜타에리스리톨 테트라아크릴레이트, 펜타에리스리톨 트리아크릴레이트, 트리메틸렌 프로필 트리아크릴레이트, 프로폭시레이티드 글리세롤 트리아크릴레이트, 트리메틸프로판 에톡시 트리아크릴레이트 , 1,6 -핵산디올디아크릴레이트, 프로폭시레이티드 글리세롤 트리아크릴레이트, 트리프로필렌 글리콜 디아크릴레이트 및 에틸렌글리콜 디아크릴레이트로 이루어진 다관능성 아크릴레이트 단량체 군에서 선택되는 1 종 이상을 포함할 수 있다.  The low refractive index layer may be formed on one surface of the hard coating layer, and an additional functional layer may be further included between the low refractive layer and the hard coating layer. As mentioned above, the photocurable resin is a polymer resin polymerized by irradiation of light, for example, by irradiation of visible light or ultraviolet light, for example, a urethane acrylate oligomer, an epoxide acrylate oligomer, Reactive acrylate oligomer group consisting of polyester acrylate, and polyether acrylate; And dipentaerythritol nuxaacrylate, dipentaerythritol hydroxy pentaacrylate, pentaerythritol tetraacrylate, pentaerythritol triacrylate, trimethylene propyl triacrylate, propoxylated glycerol triacrylate, trimethylpropane ethoxy tri At least one member selected from the group of polyfunctional acrylate monomers consisting of acrylate, 1,6-nucleic acid diol diacrylate, propoxylated glycerol triacrylate, tripropylene glycol diacrylate and ethylene glycol diacrylate can do.
상기 유기 또는 무기 미립자는 입경의 구체적으로 한정되는 것은 아니나, 예들 들어 유기 미립자는 1 내지 10/rni의 입경을 가질 수 있으며, 상기 무기 2019/221573 1»(:1^1{2019/006006 The organic or inorganic fine particles are not specifically limited in particle size, for example, the organic fine particles may have a particle size of 1 to 10 / rni, the inorganic 2019/221573 1 »(: 1 ^ 1 {2019/006006
입자는
Figure imgf000014_0001
500 1^ , 또는 1ä 내지 300ä의 입경을 가질 수 있다.
Particles
Figure imgf000014_0001
500 1 ^ or 1ä to 300ä.
또한, 상기 하드 코팅층에 포함되는 유기 또는 무기 미립자의 구체적인 예가 한정되는 것은 아니나, 예를 들어 상기 유기 또는 무기 미립자는 아크릴계 수지 , 스티렌계 수지, 에폭사이드 수지 및 나일론 수지로 이루어진 유기 미립자이거나 산화규소, 이산화티탄, 산화인듐, 산화주석, 산화지르코늄 및 산화아연으로 이루어진 무기 미립자일 수 있다.  In addition, specific examples of the organic or inorganic fine particles included in the hard coating layer are not limited. For example, the organic or inorganic fine particles may be organic fine particles made of acrylic resin, styrene resin, epoxide resin and nylon resin, or silicon oxide, It may be an inorganic fine particle consisting of titanium dioxide, indium oxide, tin oxide, zirconium oxide and zinc oxide.
한편, 상기 하드 코팅층의 또 다른 일 예로서, 광경화성 수지의 바인더 수지; 및 상기 바인더 수지에 분산된 대전 방지제를 포함하는 하드 코팅층을 들 수 있다.  On the other hand, as another example of the hard coating layer, a binder resin of a photocurable resin; And an antistatic agent dispersed in the binder resin.
상기 대전 방지제는 4급 암모늄염 화합물, 전도성 고분자 또는 이들의 혼합물일 수 있다. 여기서, 상기 4급 암모늄염 화합물은 분자 내에 1개 이상의 4급 암모늄염기를 가지는 화합물일 수 있으며, 저분자형 또는 고분자형을 제한 없이 사용할 수 있다. 또한, 상기 전도성 고분자로는 저분자형 또는 고분자형을 제한 없이 사용할 수 있으며, 그 종류는 본 발명이 속하는 기술분야에서 통상적인 것일 수 있으므로, 특별히 제한되지 않는다.  The antistatic agent may be a quaternary ammonium salt compound, a conductive polymer or a mixture thereof. Here, the quaternary ammonium salt compound may be a compound having one or more quaternary ammonium salt groups in a molecule, and may use a low molecular type or a polymer type without limitation. In addition, the conductive polymer may be a low molecular type or a polymer type without limitation, the kind thereof may be conventional in the art to which the present invention pertains, and is not particularly limited.
상기 광중합성 수지의 바인더 수지; 및 상기 바인더 수지에 분산된 대전 방지제를 포함하는 하드 코팅층은 알콕시 실란계 올리고머 및 금속 알콕사이드계 올리고머로 이루어진 군에서 선택되는 1종 이상의 화합물을 더 포함할 수 있다. 상기 알콕시 실란계 화합물은 당업계에서 통상적인 것일 수 있으나, 바람직하게는 테트라메톡시실란, 테트라에톡시실란, 테트라이소프로폭시실란, 메틸트리메톡시실란, 메틸트리에톡시실란, 메타크릴록시프로필트리메톡시실란, 글리시독시프로필 트리메톡시실란 및 글리시독시프로필 트리에톡시실란으로 이루어진 군에서 선택되는 1종 이상의 화합물일 수 있다.  Binder resin of the photopolymerizable resin; And the hard coating layer comprising an antistatic agent dispersed in the binder resin may further comprise at least one compound selected from the group consisting of alkoxy silane oligomer and metal alkoxide oligomer. The alkoxy silane compound may be conventional in the art, but preferably tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methacryloxypropyl It may be at least one compound selected from the group consisting of trimethoxysilane, glycidoxypropyl trimethoxysilane and glycidoxypropyl triethoxysilane.
또한, 상기 금속 알콕사이드계 올리고머는 금속 알콕사이드계 화합물 및 물을 포함하는 조성물의 졸-겔 반응을 통해 제조할 수 있다. 상기 졸-겔 반응은 전술한 알콕시 실란계 올리고머의 제조 방법에 준하는 방법으로 수행할 수 있다. 다만, 상기 금속 알콕사이드계 화합물은 물과 급격하게 반응할 수 있으므로, 상기 금속 알콕사이드계 화합물을 유기용매에 희석한 후 물을 천천히 드로핑하는 방법으로 상기 졸-겔 반응을 수행할 수 있다. 이때, 반응 효율 등을 감안하여, 물에 대한 금속 알콕사이드 화합물의 몰비(금속이온 기준)는 3 내지 170인 범위 2019/221573 1»(:1^1{2019/006006 In addition, the metal alkoxide-based oligomer may be prepared through a sol-gel reaction of a composition comprising a metal alkoxide-based compound and water. The sol-gel reaction can be carried out by a method similar to the method for producing an alkoxy silane oligomer described above. However, since the metal alkoxide compound may react with water rapidly, the sol-gel reaction may be performed by diluting the metal alkoxide compound in an organic solvent and slowly dropping water. At this time, in consideration of the reaction efficiency, the molar ratio (metal ion basis) of the metal alkoxide compound to water is in the range of 3 to 170. 2019/221573 1 »(: 1 ^ 1 {2019/006006
내에서 조절하는 것이 바람직하다. It is desirable to adjust within.
여기서, 상기 금속 알콕사이드계 화합물은 티타늄 테트라- 이소프로폭사이드, 지르코늄 이소프로폭사이드 및 알루미늄 이소프로폭사이드로 이루어진 군에서 선택되는 1종 이상의 화합물일 수 있다.  Here, the metal alkoxide-based compound may be at least one compound selected from the group consisting of titanium tetra-isopropoxide, zirconium isopropoxide and aluminum isopropoxide.
한편, 상기 반사 방지 필름은 상기 하드 코팅층의 다른 일면에 결합된 기재를 더 포함할 수 있다. 상기 기재는 광 투과도가 90% 이상이고, 헤이즈 1% 이하인 투명 필름일 수 있다. 또한, 상기 기재의 소재는 트리아세틸셀룰로오스, 사이클로올레핀중합체, 폴리아크릴레이트, 폴리카보네이트 , 폴리에틸렌테레프탈레이트 등일 수 있다. 또한, 상기 기재 필름의 두께는 생산성 등을 고려하여 10내지 300_일 수 있으나, 이에 한정하는 것은 아니다.  On the other hand, the anti-reflection film may further include a substrate bonded to the other surface of the hard coating layer. The substrate may have a light transmittance of 90% or more and a haze of 1% or less. In addition, the material of the substrate may be triacetyl cellulose, cycloolefin polymer, polyacrylate, polycarbonate, polyethylene terephthalate and the like. In addition, the thickness of the base film may be 10 to 300_ in consideration of productivity, but is not limited thereto.
보다 구체적으로, 상기 반사 방지 필름은 파장 400)1111 내지 80011111에서 측정되는 두께 방향의 리타데이션(묘내)이 3 , 000 1¾1 이상, 또는 5 , 000 이상, 또는 5 , 000 11111 내지 20 ,000 1패인 광투과성 기재를 더 포함할수 있다.  More specifically, the anti-reflection film has a thickness of retardation (inside the cemetery) measured at wavelengths 400) 1111 to 80011111 of 3, 000 1¾1 or more, or 5, 000 or more, or 5,000 11111 to 20,000 1 pad. It may further include a light transmissive substrate.
이러한 광투과성 기재의 구체적인 예로는 일축 연신 폴리에틸렌테레프탈레이트 필름 또는 이축 연신 폴리에틸렌테레프탈레이트 필름을들 수 있다.  Specific examples of such a light transmissive substrate include a uniaxially stretched polyethylene terephthalate film or a biaxially stretched polyethylene terephthalate film.
상기 반사 방지 필름이 상기 파장 40011111 내지 800™에서 측정되는 두께 방향의 리타데이션이 3 , 000 ■ 이상, 또는 5 , 000 11111 이상, 또는 5, 000 1ä 내지 20 , 000 1ä인 광투과성 기재를 포함하는 경우, 3000ä 이하의 리타데이션을 사용할 경우에 비하여 가시광선의 간섭에 의한 레인보우 현상이 완화될 수 있다. 두께 방향의 리타데이션은 통상적으로 알려진 측정 방법 및 측정 장치를 통하여 확인할 수 있다. 예를 들어, 두께 방향의 리타데이션의 측정 장치로는 湖肝묘比사제의 상품명 「엑소스캔 ) 등을들수 있다.  The anti-reflection film includes a light transmissive substrate having a retardation in the thickness direction measured at the wavelengths 40011111 to 800 ™ of at least 3, 000 ■, or at least 5, 000 11111, or at 5, 000 1ä to 20, 000 1ä. In this case, the rainbow phenomenon due to the interference of visible rays may be alleviated as compared with the case of using a retardation of 3000 이하 or less. Retardation in the thickness direction can be confirmed through a commonly known measuring method and measuring apparatus. For example, as a measuring apparatus of retardation of the thickness direction, the brand name "Exo-Cans" by the Tombstone company, etc. are mentioned.
예를 들어, 두께 방향의 리타데이션의 측정 조건으로는, 상기 광투과성 기재 필름에 대하여, 굴절률(589ä)값을 상기 측정 장치에 입력한 후, 온도: 251:, 습도: 40%의 조건 하, 파장 590ä의 광을 사용하여 , 광투과성 기재 필름의 두께 방향의 리타데이션을 측정하고, 구해진 두께 방향의 리타데이션 즉정값(즉정 장치의 자동 즉정(자동 계산)에 의한 즉정값)에 기초하여, 필름의 두께 10쌘!당 리타데이션 값으로 환산함으로써 구할 수 있다 . 또한 , 측정 시료의 광투과성 기재의 사이즈는, 측정기의 스테이지의 측광부(직경: 약 1011)보다도 2019/221573 1»(:1^1{2019/006006 For example, as a measurement condition of the retardation of thickness direction, after inputting the refractive index (589ä) value to the said measuring apparatus about the said light-transmissive base film, under the conditions of temperature: 251 :, humidity: 40%, Using the light of wavelength 590ä, the retardation of the thickness direction of the transparent base film was measured, and based on the obtained retardation immediate value (immediate value by automatic instantaneous (automatic calculation) of the instantaneous device) of the obtained thickness direction, It can be obtained by converting the retardation value per 10 쌘! The size of the light transmissive substrate of the measurement sample is larger than that of the light metering portion (diameter: about 1011) of the stage of the measuring instrument. 2019/221573 1 »(: 1 ^ 1 {2019/006006
크면 되기 때문에, 특별히 제한되지 않지만, 세로: 76mm, 가로 52mm, 두께 13쌘!의 크기로 할수 있다. Since it is large, it does not restrict | limit especially, It can be set as the size of 76 mm in length, 52 mm in width, and 13 mm thick.
또한, 두께 방향의 리타데이션의 측정에 이용하는 「상기 광투과성 기재의 굴절률 (589nm)」 의 값은, 리타데이션의 측정 대상이 되는 필름을 형성하는 광투과성 기재와 동일한 종류의 수지 필름을 포함하는 미연신 필름을 형성한 후, 이러한 미연신 필름을 측정 시료로서 사용하고 (또한, 측정 대상이 되는 필름이 미연신 필름인 경우에는, 그 필름을 그대로 측정 시료로서 사용할 수 있음) , 측정 장치로서 굴절률 측정 장치 (가부시끼가이샤 아타고제의 상품명 「NAR-1T SOLID」 )를사용하며 , 589nm의 광원을 사용하고, 23°C의 온도 조건에서, 측정 시료의 면 내 방향 (두께 방향과는 수직인 방향)의 589nm의 광에 대한 굴절률을측정하여 구할수 있다. 발명의 다른 구현예에 따르면, 상기 반사 방지 필름을 포함하는 편광판이 제공될 수 있다. 상기 편광판은 편광막과 상기 편광막의 적어도 일면에 형성된 반사 방지 필름을포함할수 있다. In addition, the value of the "refractive index (589 nm) of the said light-transmissive base material" used for the measurement of retardation of the thickness direction is unburned containing the resin film of the same kind as the light-transmissive base material which forms the film used as the measurement object of retardation. After forming a new film, such an unstretched film is used as a measurement sample (in addition, when the film used as a measurement object is an unstretched film, the film can be used as a measurement sample as it is), and a refractive index measurement as a measuring apparatus In-plane direction of the measurement sample (direction perpendicular to the thickness direction) using a device (trade name "NAR-1T SOLID" manufactured by Atago, Ltd.), using a light source of 589 nm, and a temperature condition of 23 ° C. It can be obtained by measuring the refractive index of the light of 589nm. According to another embodiment of the invention, a polarizing plate including the anti-reflection film may be provided. The polarizing plate may include a polarizing film and an antireflection film formed on at least one surface of the polarizing film.
상기 편광막의 재료 및 제조방법은 특별히 한정하지 않으며, 당 기술분야에 알려져 있는 통상적인 재료 및 제조방법을 사용할 수 있다. 예를 들어, 상기 편광막은폴리비닐알코올계 편광막일 수 있다.  The material and manufacturing method of the polarizing film are not particularly limited, and conventional materials and manufacturing methods known in the art may be used. For example, the polarizing film may be a polyvinyl alcohol polarizing film.
상기 편광막과 반사방지 필름 사이에는 보호 필름이 구비될 수 있다. 상기 보호 필름의 예가 한정되는 것은 아니며, 예를 들어 C0P(cycloolef in polymer )계 필름, 아크릴계 필름, TAC(tr i acetylcel lulose)계 필름, A protective film may be provided between the polarizing film and the antireflection film. Examples of the protective film are not limited, and for example, C0P (cycloolef in polymer) film, acrylic film, TAC (tr i acetylcel lulose) film,
COC cycloolef in copolymer )계 필름, PNB(polynorbornene)계 필름 및COC cycloolef in copolymer (PNB) films, polynorbornene (PNB) films, and
PEKpolyethylene terephtalate)계 필름 중 어느하나 이상일 수 있다. PEK polyethylene terephtalate) film may be any one or more.
상기 보호필름은 상기 반사방지 필름의 제조시 단일 코팅층을 형성하기 위한 기재가그대로사용될 수도 있다. 상기 편광막과상기 반사방지필름은 수계 접착제 또는 비수계 접착제 등의 접착제에 의하여 합지될 수 있다. 발명의 또 다른 구현예에 따르면, 상술한 반사 방지 필름을 포함하는 디스플레이 장치가 제공될 수 있다. 상기 디스플레이 장치의 구체적인 예가 한정되는 것은 아니며, 예를 들어 액정표시장치 (Liquid Crystal Di splay] ) , 2019/221573 1»(:1^1{2019/006006 The protective film may be used as it is a substrate for forming a single coating layer in the production of the anti-reflection film. The polarizing film and the anti-reflection film may be laminated by an adhesive such as an aqueous adhesive or a non-aqueous adhesive. According to another embodiment of the invention, a display device including the anti-reflection film may be provided. Specific examples of the display device are not limited, and for example, a liquid crystal display device, 2019/221573 1 »(: 1 ^ 1 {2019/006006
플라즈마 디스플레이 장치, 유기발광 다이오드 장치 (Organi c Light Emi tt ing Di odes) 등의 장치일 수 있다. Or a device such as a plasma display device, an organic light emitting diode device, and the like.
하나의 일 예로, 상기 디스플레이 장치는 서로 대향하는 1 쌍의 편광판; 상기 1 쌍의 편광판 사이에 순차적으로 적층된 박막트랜지스터, 컬러필터 및 액정셀; 및 백라이트유닛을포함하는 액정디스플레이 장치일 수 있다.  As one example, the display device includes a pair of polarizing plates facing each other; A thin film transistor, a color filter, and a liquid crystal cell sequentially stacked between the pair of polarizing plates; And it may be a liquid crystal display device including a backlight unit.
상기 디스플레이 장치에서 상기 반사 방지 필름은 디스플레이 패널의 관측자측또는 백라이트측의 최외각표면에 구비될 수 있다.  In the display device, the anti-reflection film may be provided on the outermost surface of the observer side or the backlight side of the display panel.
상기 반사 방지 필름을 포함하는 디스플레이 장치는, 1 쌍의 편광판 중에서 상대적으로 백라이트 유닛과 거리가 먼 편광판의 일면에 반사 방지 필름이 위치할수 있다.  In the display device including the anti-reflection film, the anti-reflection film may be positioned on one surface of the polarizing plate relatively far from the backlight unit among the pair of polarizing plates.
또한, 상기 디스플레이 장치는 디스플레이 패널, 상기 패널의 적어도 일면에 구비된 편광막 및 상기 편광막의 패널과 접하는 반대측 면에 구비된 반사방지 필름을포함할수 있다.  In addition, the display apparatus may include a display panel, a polarizing film provided on at least one surface of the panel, and an antireflection film provided on an opposite side of the panel contacting the panel of the polarizing film.
【발명의 효과】  【Effects of the Invention】
본 발명에 따르면, 높은 내마모성 및 내스크래치성 등의 기계적 물성과 우수한 광학 특성을 가지면서도, 외부의 문지름이나 마찰 등에 의해 손상 또는 변형된 부분의 반사율 상승을 억제하는 반사 방지 필름과, 상기 반사 방지 필름을 포함한 편광판과, 상기 반사 방지 필름을 포함하는 디스플레이 장치를 제공할수 있다.  According to the present invention, an anti-reflection film having high mechanical properties such as high abrasion resistance and scratch resistance and an excellent anti-reflective property of a part damaged or deformed by an external rub or friction, and an anti-reflection film, And a display device including the polarizing plate and the anti-reflection film.
【발명을실시하기 위한구체적인 내용】  [Specific contents for carrying out invention]
발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다. <제조예 1내지 3: 하드코팅층의 제조>  The invention is explained in more detail in the following examples. However, the following examples are only for exemplifying the present invention, and the contents of the present invention are not limited to the following examples. <Production Examples 1 to 3: Production of Hard Coating Layer>
제조예 1  Preparation Example 1
펜타에리스리톨 트리아크릴레이트 30g, 고분자량 공중합체 (BEAM況 T 371 , Arakawa 사, 에폭시 아크릴레이트 (분자량 40 , 000) 2.5g, 메틸에틸케톤 20g 및 레벨링제 (Tego wet 270) 0.5g 을 균일하게 혼합하게 혼합한 이후에 굴절률이 1.525 인 아크릴-스티렌 공중합체 수지 미립자 (부피 평균 입경 : 2 pm 제조사: 2019/221573 1»(:1^1{2019/006006 30 g of pentaerythritol triacrylate, high molecular weight copolymer (BEAM 況 T 371, Arakawa, 2.5 g of epoxy acrylate (molecular weight 40,000), 20 g of methyl ethyl ketone and 0.5 g of leveling agent (Tego wet 270) are uniformly mixed After the mixing, acryl-styrene copolymer resin fine particles having a refractive index of 1.525 (volume average particle diameter: 2 pm 2019/221573 1 »(: 1 ^ 1 {2019/006006
Seki sui Plast i c) 2g을첨가하여 하드코팅 조성물을제조하였다. 2 g of Seki sui Plast i c) was added to prepare a hard coating composition.
이와 같이 얻어진 하드 코팅 조성물을 트리아세틸 셀룰로스 필름에 #10 mayer bar로코팅하고 90°C에서 1분건조하였다. 이러한건조물에 150 mJ/cin2의 자외선을조사하여 4 ,의 두께를갖는하드코팅층을제조하였다. 제조예 2 The hard coating composition thus obtained was coated with a # 10 mayer bar on a triacetyl cellulose film and dried at 90 ° C. for 1 minute. This dried material was irradiated with ultraviolet light of 150 mJ / cin 2 to prepare a hard coating layer having a thickness of 4 ,. Preparation Example 2
제조예 1 의 하드 코팅 조성물을 두께 80 iM, 리타데이션 10000· 인 PET 필름에 #10 mayer bar 로 코팅하고 60°C에서 1 분 건조하였다. 이러한 건조물에 150 mJ/oif의 자외선을 조사하여 4 쌘!의 두께를 갖는 하드 코팅층을 제조하였다. 제조예 3 -The hard coating composition of Preparation Example 1 was coated with # 10 mayer bar on a PET film having a thickness of 80 iM and a retardation 10000 · and dried at 60 ° C. for 1 minute. This dried material was irradiated with ultraviolet light of 150 mJ / oif to prepare a hard coating layer having a thickness of 4 쌘!. Preparation Example 3-
KY0EISHA사 염타입의 대전 방지 하드 코팅액 (고형분 50 중량%, 제품명 : LJD-1000)을 트리아세틸 셀룰로스 필름에 #10 mayer bar 로 코팅하고 90°C에서 1분건조한이후, 150 mJ/cm2의 자외선을조사하여 약 5 의 두께를 갖는하드 코팅층을제조하였다. KY0EISHA salt type antistatic hard coating solution (50 wt% solids, product name: LJD-1000) was coated on a triacetyl cellulose film with # 10 mayer bar and dried at 90 ° C for 1 minute, then UV light of 150 mJ / cm 2 Irradiated to prepare a hard coating layer having a thickness of about 5.
<실시예 1내지 6: 반사방지 필름의 제조> <Examples 1 to 6: Production of Antireflection Films>
실시예 1  Example 1
펜타에리트리톨 트리아크릴레이트 (PETA)와 디펜타에리트리톨 핵사아크릴레이트 (DPHA)의 혼합 바인더 100 중량부 (PETA:DPHA 의 혼합비는 7 : 3)에 대하여, 중공형 실리카나노입자 (직경: 약 50내지 60 nm , JGC catalyst and chemical s사제품) 100중량부, 불소계 화합물 (RS-907, DIC) 12중량부, 및 개시제 ( Irgacure 127 , Ciba 사) 13.4 중량부를, MIBK(methyl i sobutyl ketone)용매에 고형분 농도 3중량%가 되도록 희석하여 광경화성 코팅 조성물을 제조하였다.  Hollow silica nanoparticles (diameter: about 50) with respect to 100 parts by weight of the mixed binder of pentaerythritol triacrylate (PETA) and dipentaerythritol nuxaacrylate (DPHA) (mixing ratio of PETA: DPHA is 7: 3). To 60 nm, manufactured by JGC Catalyst and Chemicals, 100 parts by weight, fluorine-based compound (RS-907, DIC) 12 parts by weight, and initiator (Irgacure 127, Ciba) 13.4 parts by weight, MIBK (methyl i sobutyl ketone) solvent The photocurable coating composition was prepared by diluting to 3 wt% solids concentration.
상기 제조예 1의 하드코팅 필름상에 , 광경화성 코팅 조성물을 #4 mayer bar로두께가약 110내지 120 nm가되도록코팅하고, 60°C에서 1분동안건조및 경화하여 반사방지 필름을제조하였다. 상기 경화시에는 질소퍼징 하에서 상기 건조된코팅물에 252 mJ/cm2의 자외선을조사하였다. 2019/221573 1»(:1^1{2019/006006 On the hard coat film of Preparation Example 1, the photocurable coating composition was coated with a # 4 mayer bar to a thickness of about 110 to 120 nm, and dried and cured at 60 ° C. for 1 minute to prepare an antireflection film. At the time of curing, the dried coating was irradiated with ultraviolet rays of 252 mJ / cm 2 under nitrogen purge. 2019/221573 1 »(: 1 ^ 1 {2019/006006
실시예 2 Example 2
펜타에리트리톨 트리아크릴레이트 (PETA)와 디펜타에리트리톨 핵사아크릴레이트 (DPHA)의 혼합 바인더 100 중량부 (PETA:DPHA 의 혼합비는 6 :4)에 대하여, 중공형 실리카나노 입자 (직경: 약 50 내지 60 ran, JGC catalyst and chemicals사제품) 150중량부, 솔리드형 실리카나노 입자 (직경 : 약 15nm) 100 중량부, 불소계 화합물 (RS-90, DIC) 16 중량부, 및 개시제 (Irgacure 127 , Ciba 사) 8 중량부를, MIBK(methyl isobutyl ketone)용매에 고형분 농도 3.5 중량%가되도록 희석하여 광경화성 코팅 조성물을 제조하였다.  Hollow silica nanoparticles (diameter: about 50) with respect to 100 parts by weight of the mixed binder of pentaerythritol triacrylate (PETA) and dipentaerythritol nuxaacrylate (DPHA) (mixing ratio of PETA: DPHA is 6: 4). To 60 ran, 150 parts by weight of JGC catalyst and chemicals), 100 parts by weight of solid silica nanoparticles (diameter: about 15 nm), 16 parts by weight of fluorine-based compound (RS-90, DIC), and an initiator (Irgacure 127, Ciba G) 8 parts by weight was diluted in a MIBK (methyl isobutyl ketone) solvent to have a solid content of 3.5% by weight to prepare a photocurable coating composition.
상기 제조예 1의 하드코팅 필름상에, 광경화성 코팅 조성물을 #4 mayer bar로두께가 약 110내지 120때가되도록코팅하고, 60°C에서 1분동안 건조 및 경화하여 반사방지 필름을 제조하였다. 상기 경화 시에는 질소 퍼징 하에서 상기 건조된 코팅물에 252 mJ/cuf의 자외선을조사하였다. 실시예 3 On the hard coat film of Preparation Example 1, the photocurable coating composition was coated with a # 4 mayer bar to a thickness of about 110 to 120 times, and dried and cured at 60 ° C. for 1 minute to prepare an antireflection film. At the time of curing, the dried coating was irradiated with ultraviolet light of 252 mJ / cuf under nitrogen purge. Example 3
펜타에리트리톨 트리아크릴레이트 (PETA)와 디펜타에리트리톨 핵사아크릴레이트 (DPHA)의 혼합 바인더 100 중량부 (PETA:DPHA 의 혼합비는 7 : 3)에 대하여, 중공형 실리카나노 입자 (직경: 약 50 내지 60 ran, JGC catalyst and chemicals사 제품) 350중량부, 솔리드형 실리카나노 입자 (직경 : 약 13nm) 100 중량부, 불소계 화합물 (F477, DIC) 30 중량부, 및 개시제 (Irgacure 127 , Hollow silica nanoparticles (diameter: about 50) with respect to 100 parts by weight of the mixed binder of pentaerythritol triacrylate (PETA) and dipentaerythritol nuxaacrylate (DPHA) (mixing ratio of PETA: DPHA is 7: 3). To 60 ran, 350 parts by weight of JGC catalyst and chemicals), 100 parts by weight of solid silica nanoparticles (diameter: about 13 nm), 30 parts by weight of fluorine-based compound (F477, DIC), and an initiator (Irgacure 127,
Ciba 사) 37 중량부를, MIBR(methyl isobutyl ketone)용매에 고형분 농도 3.0 중량%가되도록 희석하여 광경화성 코팅 조성물을 제조하였다. Ciba) 37 parts by weight was diluted in a MIBR (methyl isobutyl ketone) solvent to a solid content of 3.0% by weight to prepare a photocurable coating composition.
상기 제조예 2의 하드코팅 필름상에, 광경화성 코팅 조성물을 #4 mayer bar로두께가 약 110내지 120 ran가되도록코팅하고, 60°C에서 1분동안건조 및 경화하여 반사방지 필름을 제조하였다. 상기 경화 시에는 질소 퍼징 하에서 상기 건조된 코팅물에 252 mJ/cuf의 자외선을조사하였다. 실시예 4 On the hard coating film of Preparation Example 2, the photocurable coating composition was coated with a # 4 mayer bar to have a thickness of about 110 to 120 ran, and dried and cured at 60 ° C. for 1 minute to prepare an antireflection film. . At the time of curing, the dried coating was irradiated with ultraviolet light of 252 mJ / cuf under nitrogen purge. Example 4
펜타에리트리톨 트리아크릴레이트 (PETA)와 디펜타에리트리톨 핵사아크릴레이트 (DPHA)의 혼합 바인더 100 중량부 (PETA:DPHA 의 혼합비는 2019/221573 1»(:1^1{2019/006006 100 parts by weight of the mixed binder of pentaerythritol triacrylate (PETA) and dipentaerythritol nuxaacrylate (DPHA) (PETA: DPHA 2019/221573 1 »(: 1 ^ 1 {2019/006006
6:4)에 대하여, 중공형 실리카나노 입자 (직경: 약 50내지 60 nm, JGC catalyst and chemicals사제품) 400중량부, 솔리드형 실리카나노 입자 (직경 : 약 14nm) 120.1중량부, 불소계 화합물(RS-537, DIC) 41중량부, 및 개시제 (Irgacure 127, Ciba사) 22.2 중량부를, MIBK(methyl isobutyl ketone)용매에 고형분 농도 3.3 중량%가되도록 희석하여 광경화성 코팅 조성물을 제조하였다. 6: 4), 400 parts by weight of hollow silica nanoparticles (diameter: about 50 to 60 nm, manufactured by JGC catalyst and chemicals), 120.1 parts by weight of solid silica nanoparticles (diameter: about 14 nm), fluorine-based compound ( 41 parts by weight of RS-537, DIC), and 22.2 parts by weight of an initiator (Irgacure 127, Ciba) were diluted to a solid content of 3.3% by weight in a methyl isobutyl ketone (MIBK) solvent to prepare a photocurable coating composition.
상기 제조예 3의 하드코팅 필름상에 , 광경화성 코팅 조성물을 #4 mayer bar로두께가 약 110내지 120 nm가되도록코팅하고, 60°C에서 1분동안건조 및 경화하여 반사방지 필름을 제조하였다. 상기 경화 시에는 질소 퍼징 하에서 상기 건조된 코팅물에 252 mJ/cuf의 자외선을조사하였다. 실시예 5 On the hard coat film of Preparation Example 3, the photocurable coating composition was coated with a # 4 mayer bar to have a thickness of about 110 to 120 nm, and dried and cured at 60 ° C. for 1 minute to prepare an antireflection film. . At the time of curing, the dried coating was irradiated with ultraviolet light of 252 mJ / cuf under nitrogen purge. Example 5
펜타에리트리톨 트리아크릴레이트 시와 디펜타에리트리톨 핵사아크릴레이트 (DPHA)의 혼합 바인더 100 중량부 (PETA:DPHA 의 혼합비는 7 : 3)에 대하여, 중공형 실리카나노 입자 (직경: 약 60 내지 70 nm, JGC catalyst and chemicals사 제품) 323.5중량부, 솔리드형 지르코니아나노 입자 (직경 : 약 15nm) 125 중량부, 불소계 화합물 (RS-90 , DIC) 29.4 중량부, 개시제 (Irgacure 127 , Ciba사) 17.6 중량부를, MIBK(methyl isobutyl ketone)용매에 고형분 농도 3.2중량%가되도록 희석하여 광경화성 코팅 조성물을 제조하였다.  Hollow silica nanoparticles (diameter: about 60 to 70) with respect to 100 parts by weight of the mixed binder of pentaerythritol triacrylate and dipentaerythritol nuxaacrylate (DPHA) (mixing ratio of PETA: DPHA is 7: 3) nm, manufactured by JGC catalyst and chemicals) 323.5 parts by weight, solid zirconia nanoparticles (diameter: about 15 nm) 125 parts by weight, fluorine-based compound (RS-90, DIC) 29.4 parts by weight, initiator (Irgacure 127, Ciba) 17.6 The weight part was diluted in a MIBK (methyl isobutyl ketone) solvent so as to have a solid concentration of 3.2% by weight to prepare a photocurable coating composition.
상기 제조예 3의 하드코팅 필름상에, 광경화성 코팅 조성물을 #4 mayer bar로두께가 약 110내지 120 가되도록코팅하고, 60°C에서 1분동안 건조 및 경화하여 반사방지 필름을 제조하였다. 상기 경화 시에는 질소 퍼징 하에서 상기 건조된 코팅물에 252 mJ/cuf의 자외선을조사하였다. 실시예 6 On the hard coating film of Preparation Example 3, the photocurable coating composition was coated with a # 4 mayer bar to have a thickness of about 110 to 120, and dried and cured at 60 ° C. for 1 minute to prepare an antireflection film. At the time of curing, the dried coating was irradiated with ultraviolet light of 252 mJ / cuf under nitrogen purge. Example 6
트리메틸올프로판 트리아크릴레이트 01 ) 100 중량부에 대하여, 제 1 중공형 실리카 나노 입자 0)1 측정 직경: 58.2ä) 45 중량부, 제 2 중공형 실리카 나노 입자 (1)1名 측정 직경: 66.7^) 78 중량부, 솔리드형 실리카 나노 입자 (직경: 약 1511111) 71 중량부, 불소계 화합물犯 90, 1)10 23 중량부, 및 개시제 ( 1 301 127, ( 33 사) 25 중량부를,
Figure imgf000020_0001
0131比 1 뇨 01½)용매에 고형분 농도 3. 1 중량%가 되도록 희석하여 광경화성 코팅 2019/221573 1»(:1^1{2019/006006
Trimethylolpropane triacrylate 01) Based on 100 parts by weight of the first hollow silica nanoparticles 0) 1 Measurement diameter: 58.2ä) 45 parts by weight of the second hollow silica nanoparticles (1) 1 Measurement diameter: 66.7 ^) 78 parts by weight, solid silica nanoparticles (diameter: about 1511111) 71 parts by weight, fluorine compound 犯 90, 1) 10 23 parts by weight, and initiator (1 301 127, (33 companies) 25 parts by weight,
Figure imgf000020_0001
0131 比 1 Urine 01½) Solids concentration in solvent 3. Dilute to 1% by weight of photocurable coating 2019/221573 1 »(: 1 ^ 1 {2019/006006
조성물을 제조하였다. The composition was prepared.
상기 제조예 1 의 하드 코팅 필름 상에, 광경화성 코팅
Figure imgf000021_0001
On the hard coat film of Preparation Example 1, a photocurable coating
Figure imgf000021_0001
로 두께가 약 110 내지 120 가 되도록 코팅하고, 601:에서 1분동안 건조 및 경화하였다. 상기 경화 시에는 질소 퍼징 하에서 상기 건조된 코팅물에 252 /이2의 자외선을 조사하였다. 실시예 7 The furnace was coated to a thickness of about 110 to 120, dried and cured at 601: for 1 minute. In the dried coating under a nitrogen purge at the time of the curing it was irradiated with ultraviolet rays of 252/2. Example 7
펜타에리트리톨 트리아크릴레이트作묘쇼)와 디펜타에리트리톨 핵사아크릴레이트( )의 혼합 바인더 100 중량부 奸 의 혼합비는 8 : 2)에 대하여, 제 1 중공형 실리카 나노 입자 0)1名 측정 직경: 58.211111) 55 중량부, 제 2 중공형 실리카 나노 입자 (1)1名 측정 직경: 66.7ä) 90 중량부, 솔리드형 실리카 나노 입자 (직경: 약 15:1111) 71 중량부 (직경: 약 1511111) 150 중량부, 불소계 화합물 0¾-90, 1)10 25 중량부, 개시제 (1대301 127 , ( )3 사) 15 중량부를, (11161上71 ᅵ 30131^71 뇨61;0116)용매에 고형분 농도 3. 1 중량%가 되도록 희석하여 광경화성 코팅 조성물을 제조하였다.  The mixing ratio of 100 parts by weight of the mixed binder of pentaerythritol triacrylate) and dipentaerythritol nuxaacrylate (8) is 8: 2). 58.211 parts) 55 parts by weight, second hollow silica nanoparticles (1) 1 measurement diameter: 66.7ä) 90 parts by weight, solid silica nanoparticles (diameter: about 15: 1111) 71 parts by weight (diameter: about 1511111) 150 parts by weight, fluorine-based compound 0¾-90, 1) 10 25 parts by weight, initiator (1 to 301 127, (3)) 15 parts by weight, solid concentration in solvent (11161 上 71 ᅵ 30131 ^ 71 Urine 61; 0116) 3. Dilution to 1% by weight to prepare a photocurable coating composition.
상기 제조예 3 의 하드 코팅 필름 상에, 광경화성 코팅
Figure imgf000021_0002
On the hard coat film of Preparation Example 3, a photocurable coating
Figure imgf000021_0002
로 두께가 약 110 내지 120 ä가 되도록 코팅하고, 60 °(:에서 1분동안 건조 및 경화하여 반사방지 필름을 제조하였다. 상기 경화 시에는 질소 퍼징 하에서 상기 건조된 코팅물에 252 八 의 자외선을 조사하였다. The furnace was coated to a thickness of about 110 to 120 ä, dried and cured at 60 ° (for 1 minute) to prepare an antireflection film. At the time of curing, the dried coating was irradiated with ultraviolet rays of 252 八 under nitrogen purge.
<비교예 1내지 6: 반사방지 필름의 제조 > <Comparative Examples 1 to 6: Preparation of Antireflection Film>
비교예 1  Comparative Example 1
혼합 바인더를 사용하지 않고 펜타에리트리톨 트리아크릴레이트 시만을 사용하였다는 것을 제외하고는 실시예 1 과 동일한 방법으로 반사방지 필름을 제조하였다. 비교예 2  An antireflective film was prepared in the same manner as in Example 1 except that only a pentaerythritol triacrylate was used without using a mixed binder. Comparative Example 2
펜타에리트리톨
Figure imgf000021_0003
디펜타에리트리톨 핵사아크릴레이트(卵 )를 5 : 5의 혼합비로 사용하였다는 것을 제외하고는 실시예 2와 동일한 방법으로 반사방지 필름을 제조하였다. 2019/221573 1»(:1^1{2019/006006
Pentaerythritol
Figure imgf000021_0003
An antireflective film was prepared in the same manner as in Example 2 except that dipentaerythritol nuxaacrylate (X) was used at a mixing ratio of 5: 5. 2019/221573 1 »(: 1 ^ 1 {2019/006006
비교예 3 Comparative Example 3
펜타에리트리톨 트리아크릴레이트 肝 와 디펜타에리트리톨 핵사아크릴레이트 ( ¾시를 4:6의 혼합비로사용하였다는 것을 제외하고는실시예 3과동일한방법으로 반사방지 필름을 제조하였다 비교예 4  An antireflective film was prepared in the same manner as in Example 3, except that pentaerythritol triacrylate 肝 and dipentaerythritol nuxaacrylate (¾h was used in a mixing ratio of 4: 6).
펜타에리트리톨 트리아크릴레이트奸묘시와 디펜타에리트리톨 핵사아크릴레이트 (^¾시를 2 : 8의 혼합비로사용하였다는 것을 제외하고는실시예 4와동일한 방법으로 반사방지 필름을 제조하였다. 비교예 5  An antireflective film was prepared in the same manner as in Example 4 except that pentaerythritol triacrylate-myoxi and dipentaerythritol nuxaacrylate (^ ¾ hours were used in a mixing ratio of 2: 8). 5
혼합 바인더를 사용하지 않고 디펜타에리트리톨 핵사아크릴레이트 (卵 )만 사용하였다는 것을 제외하고는 실시예 5 와 동일한 방법으로 반사방지 필름을 제조하였다. 비교예 6  An antireflective film was prepared in the same manner as in Example 5 except that only dipentaerythritol nuxaacrylate (IX) was used without using a mixed binder. Comparative Example 6
제 1 중공형 실리카 나노 입자 (班 측정 직경: 58.2ä) 45 중량부, 제 2 중공형 실리카 나노 입자 (1)1名 즉정 직경: 66.7ä) 78 중량부 대신, 중공형 실리카 나노입자 측정 직경: 58.2^) 123 중량부만 사용하였다는 것을 제외하고는실시예 6과동일한방법으로 반사방지 필름을 제조하였다. 평가  1st hollow silica nanoparticle (measured diameter: 58.2ä) 45 weight part, 2nd hollow silica nanoparticle (1) Instantaneous diameter: 66.7ä) Instead of 78 weight part, measured hollow silica nanoparticle diameter: 58.2 ^) An antireflection film was prepared in the same manner as in Example 6 except that only 123 parts by weight was used. evaluation
1.마찰시험 전후의 반사율측정  1. Reflectance measurement before and after friction test
#0000등급의 스틸울에 500g하중을걸고 33rpm의 속도로 10회 왕복하여 실시예 및 비교예에서 얻어진 반사 방지 필름의 하드 코팅층과 저굴절층이 형성되지 않은 면에 광이 투과하지 못하도록 암색 처리하고, 저굴절층의 표면을 문지르는 마찰 시험 (Rubbing Test )를 시행하여, 마찰 시험 전후 시점에서 반사 방지 필름의 저굴절층의 평균 반사율을측정하였다.  With 500g load on steel wool of # 0000 grade, reciprocating 10 times at the speed of 33rpm, the darkening treatment was performed to prevent light from passing through the surface where the hard coating layer and the low refractive layer of the antireflection film obtained in Examples and Comparative Examples were not formed. The rubbing test was carried out to rub the surface of the low refractive layer, and the average reflectance of the low refractive layer of the antireflection film was measured at the time points before and after the friction test.
구체적으로, 상기 마찰 시험 시행 전, 하드 코팅층과 저굴절층이 2019/221573 1»(:1^1{2019/006006 Specifically, before the friction test is carried out, the hard coating layer and the low refractive layer 2019/221573 1 »(: 1 ^ 1 {2019/006006
형성되지 않은 면에 광이 투과하지 못하도록 암색 처리하고, Solidspec 3700(UV- Vis 분광 광도계, 시마즈社)의 반사율(Reflectance) 모드를 이용하여 380 내지 780nm 파장 영역에서의 평균 반사율을 측정하고, 그 결과를 하기 표 1 의 나타내었다. 이후, 상기 마찰 시험을 시행한 이후, 저굴절층에 대하여 ¾을 측정한 방법과 동일하게 평균 반사율을 측정하고, 그 결과를 하기 표 1 의 나타내었다. 또한, 상기 RO와 ¾의 차를 계산하여, 마찰 시험 전후 반사율의 변화정도를 하기 표 1의 “AR” 에 나타내었다. Darkness treatment is performed to prevent light from passing through the unformed surface, and the average reflectance in the wavelength range of 380 to 780 nm is measured using the reflectance mode of the Solidspec 3700 (UV-Vis spectrophotometer, Shimadzu Corporation). Is shown in Table 1 below. Then, after performing the friction test, the average reflectance was measured in the same manner as the method for measuring ¾ for the low refractive index layer, the results are shown in Table 1 below. In addition, by calculating the difference between the R O and ¾, the degree of change in reflectance before and after the friction test is shown in "AR" of Table 1 below.
2. 색좌표값(I ) 측정 2. Color coordinate value (I) measurement
#0000등급의 스틸울에 500g하중을걸고 33rpm의 속도로 10회 왕복하여 실시예 및 비교예에서 얻어진 반사 방지 필름의 하드 코팅층과 저굴절층이 형성되지 않은 면에 광이 투과하지 못하도록 암색 처리하고, 저굴절층의 표면을 문지르는 마찰 시험(Rubbing Test)를 시행하여 , 마찰 시험 전후 시점에서 Solidspec 3700(UV-Vis 분광 광도계, 시마즈社)의 반사율 (Reflectance) 모드를 이용하여 반사율을 측정한 후 UV-2401PC Color Analysis 프로그램을 이용하여 저굴절층의 색좌표값( ) 을측정하였다.  With 500g load on steel wool of # 0000 grade, reciprocating 10 times at the speed of 33rpm, the darkening treatment is performed to prevent light from penetrating the surface where the hard coating layer and the low refractive layer of the antireflection film obtained in Examples and Comparative Examples are not formed. After rubbing test to rub the surface of low refractive index layer, the reflectance was measured by using reflectance mode of Solidspec 3700 (UV-Vis spectrophotometer, Shimadzu) before and after friction test The color coordinate value () of the low refractive layer was measured using a -2401PC Color Analysis program.
구체적으로, 상기 마찰 시험 시행 전, 저굴절층의 색좌표값을 측정하고, 그 결과를 하기 표 1 의 “bV’ 에 나타내었다. 이후, 상기 마찰 시험을 시행한 이후, 저굴절층에 대하여 b* 0을 측정한 방법과 동일하게 색좌표값을 측정하고, 그 결과를 하기 표 1 의 “b'” 에 나타내었다. 또한, 상기 b* 0와 b*i의 차를 계산하여, 마찰 시험 전후 색좌표값의 변화 정도를 하기 표 1 의 “Ab*” 에 나타내었다. Specifically, the color coordinate values of the low refractive layer were measured before the friction test was carried out, and the results are shown in “bV ′ of Table 1 below. Then, after performing the friction test, the color coordinate values were measured in the same manner as the method of measuring b * 0 for the low refractive layer, and the results are shown in "b '" in Table 1 below. In addition, the difference between the b * 0 and b * i was calculated, and the degree of change of the color coordinate values before and after the friction test is shown in "Ab * " in Table 1 below.
3. 내스크래치성 측정 3. Scratch resistance measurement
#0000 등급의 스틸울을 걸고 27rpm의 속도로 10 회 왕복하며 실시예 및 비교예에서 얻어진 반사 방지 필름의 표면을 문질렀다. 이후, 육안으로 관찰되는 lcm 이하의 스크래치 1 개 이하가 관찰되는 최대 하중을 측정하고, 그 결과를 하기 표 1에 나타내었다.  The steel wool of grade # 0000 was hung and reciprocated 10 times at a speed of 27 rpm to rub the surface of the antireflective film obtained in Examples and Comparative Examples. Thereafter, the maximum load at which one scratch or less of lcm or less observed with the naked eye was measured was measured, and the results are shown in Table 1 below.
4. 방오성 측정 2019/221573 1»(:1^1{2019/006006 4. Antifouling measurement 2019/221573 1 »(: 1 ^ 1 {2019/006006
실시예 및 비교예에서 얻어진 반사 방지 필름의 저굴절층의 표면에 검은색 유성펜으로 5 예 길이의 직선을 그리고, 무진천을 이용하여 문질렀을 때 지워지는 횟수를 확인하여 방오성을 측정하고, 그 결과를 하기 표 1 에 나타내었다. Draw five straight lines with a black oil pen on the surface of the anti-reflective layer of the antireflection film obtained in the Examples and Comparative Examples, and measure the antifouling properties by checking the number of times erased when rubbed using a dust-free cloth. It is shown in Table 1 below.
<측정 기준 ñ  <Measurement standard ñ
◦ : 지워지는시점이 10회 이하  ◦: 10 times to be erased
스 : 지워지는시점이 11회 내지 20회  SE: 11-20 times
X: 지워지는 시점이 20회 초과 【표 1]  X: Cleared more than 20 times [Table 1]
Figure imgf000024_0001
상기 표 1 에 나타난 바와 같이 , 실시예 1 내지 7 은 마찰 시험 시행 전후의 평균 반사율 변화 정도(스幻가 0.02%? 이하이고, 마찰 시험 시행 전후의 색상 변화 정도(스 )가 0.3 이하이므로, 비교예 1 내지 6 에 비해, 마찰 시험으로 인해 손상/변형된 부분에서 반사율 상승 및 색상의 변화를 효과적으로 2019/221573 1»(:1/10公019/006006
Figure imgf000024_0001
As shown in Table 1, Examples 1 to 7 show the degree of change of the average reflectance before and after the friction test (swimming ratio of 0.02%? Since the degree of change in color before and after the friction test is 0.3 or less, compared with Comparative Examples 1 to 6, it is possible to effectively increase the reflectance and change in color at the damaged / deformed portion due to the friction test. 2019/221573 1 »(: 1/10 公 019/006006
억제하여 시인성이 우수하다는 점을 확인했다. It confirmed that it was suppressed and was excellent in visibility.

Claims

2019/221573 1»(:1^1{2019/006006 【특허청구범위】 【청구항 11 하드 코팅층; 및 하기 식 1을 만족하는 저굴절층을 포함하는 반사 방지 필름: 2019/221573 1 "(: 1 ^ 1 {2019/006006 [claim]] [claim 11] Hard coating layer; And an anti-reflection film comprising a low refractive index layer satisfying the following formula 1:
[식 1]  [Equation 1]
0.2¾) ³ ᅀ요 = 此 - ¾ |  0.2¾) ³ required = 此-¾ |
상기 식 1에서,  In Equation 1,
¾은 상기 저굴절층의 380 내지 780:ä의 파장 영역에서 평균 반사율이고, ¾은 스틸울에 500§의 하중을 걸고 33印며 의 속도로 10 회 왕복하여 상기 저굴절층의 표면을 문지르는 마찰 시험 0? 明 16 ) 시행 후, 저굴절층에 대하여 ¾을 측정한 방법과 같이 측정된 380 내지 78011111 의 파장 영역에서 평균 반사율이다. ¾ is the average reflectance in the wavelength range of 380 to 780: ä of the low refractive layer, ¾ is a friction rubbing the surface of the low refractive layer by reciprocating 10 times at a speed of 33 impression with a load of 500 § on steel wool. Exam 0? After the implementation, the average reflectance is measured in the wavelength range of 380 to 78011111 measured in the same manner as the method for measuring ¾ for the low refractive layer.
【청구항 2] [Claim 2]
제 1항에 있어서,  The method of claim 1,
상기 식 1의 I?ᄋ값은 0. 1 내지 2.0%인 반사 방지 필름.  The anti-reflection film of Formula 1 is 0.1 to 2.0%.
【청구항 3] [Claim 3]
제 1항에 있어서,  The method of claim 1,
상기 식 1의 값은 0.3 내지 2 .2%인 반사 방지 필름.  The anti-reflection film of the formula 1 is 0.3 to 0.2%.
【청구항 4] [Claim 4]
제 1항에 있어서,  The method of claim 1,
상기 저굴절층은 하기 식 2를 만족하는 반사 방지 필름:  The low refractive index layer is an antireflection film satisfying the following formula 2:
[식 2]  [Equation 2]
1 ³ 사* = | 1 - 0 | 1 ³ four * = | 1 - 0 |
상기 식 2에서, In Equation 2,
0은 국제 조명 위원회가
Figure imgf000026_0001
색 좌표계의 값이고,
0 is the International Lighting Commission
Figure imgf000026_0001
The value in the color coordinate system
13 '은 스틸울에 50½의 하중을 걸고 33印01의 속도로 10회 왕복하여 상기 저굴절증의 표면을 문지르는 마찰 시험 시행 후, 저굴절증에 대하여 1)* 0 을 2019/221573 1»(:1^1{2019/006006 13 'is performed after the friction test under the load of 50½ rubbing the surface of the low refractive index increases by reciprocating 10 times with 33印01 speed to steel wool, a 1) * 0 with respect to the low refractive index increases 2019/221573 1 »(: 1 ^ 1 {2019/006006
측정한방법과 같이 측정된
Figure imgf000027_0001
값이다.
Measured with the same method
Figure imgf000027_0001
Value.
【청구항 5】 [Claim 5]
제 4항에 있어서,  The method of claim 4,
상기 식 2의 。 값은 2내지 -10인 반사방지 필름.  The value of Equation 2 is 2 to -10 antireflection film.
【청구항 6] [Claim 6]
제 4항에 있어서 ,  The method of claim 4,
상기 식 2의 ! ^ 값은 3내지 - 9인 반사방지 필름.  Equation 2 above! ^ Antireflective film with a value of 3 to 9.
【청구항 7] [Claim 7]
제 1항에 있어서,  The method of claim 1,
상기 저굴절층은 바인더 수지를 포함하고,  The low refractive index layer comprises a binder resin,
상기 바인더 수지는, 2 내지 4 관능성 (메트)아크릴레이트계 모노머 및 5 내지 6 관능성 (메트)아크릴레이트계 모노머를 포함하는 다관능성 The binder resin is a polyfunctional containing 2 to 4 functional (meth) acrylate monomers and 5 to 6 functional (meth) acrylate monomers.
(메트)아크릴레이트계 모노머의 공중합체를포함하는 반사방지 필름. An antireflection film containing a copolymer of a (meth) acrylate monomer.
【청구항 8] [Claim 8]
제 7항에 있어서,  The method of claim 7,
상기 2 내지 4 관능성 (메트)아크릴레이트계 모노머 및 5 내지 6 관능성 Said 2-4 functional (meth) acrylate type monomer and 5-6 functional
(메트)아크릴레이트계 모노머는중량비가 9 : 1 내지 6 :4인 반사방지 필름. The (meth) acrylate monomer is an antireflection film having a weight ratio of 9: 1 to 6: 4.
【청구항 91 [Claim 91]
제 1항에 있어서,  The method of claim 1,
상기 저굴절층은, 바인더 수지 ; 및 상기 바인더 수지에 분산되고 상이한 입경을 갖는 2종 이상의 중공형 무기 입자;를포함하는 반사방지 필름.  The low refractive layer is a binder resin; And at least two hollow inorganic particles dispersed in the binder resin and having different particle diameters.
【청구항 10】 [Claim 10]
제 9항에 있어서 ,  The method of claim 9,
상기 상이한 입경을 갖는 2종 이상의 중공형 무기 입자는, 2019/221573 1»(:1^1{2019/006006 Two or more types of hollow inorganic particles having different particle diameters, 2019/221573 1 »(: 1 ^ 1 {2019/006006
동적 광산란법 (Dynamic Light Scatter ing, DLS)으로 즉정된 입경이 40nm 내지 60nm인 중공형 무기 입자 1종과, 1 type of hollow inorganic particles having a particle diameter of 40 nm to 60 nm immediately determined by dynamic light scattering (DLS),
동적 광산란법으로 측정된 입경이 65nm 내지 100nm 인 중공형 무기 입자 1종을포함하는 반사방지 필름.  An antireflection film comprising one hollow inorganic particle having a particle diameter of 65 nm to 100 nm measured by dynamic light scattering.
【청구항 11】 [Claim 11]
제 10항에 있어서,  The method of claim 10,
상기 40nm 내지 60nm 의 입경을 갖는 중공형 무기 입자 및 65nm 내지 lOOnm 의 입경을 갖는 중공형 무기 입자는 중량비가 7 : 3 내지 3 : 7 인 반사 방지 필름.  The hollow inorganic particles having a particle diameter of 40 nm to 60 nm and the hollow inorganic particles having a particle size of 65 nm to 100 nm have a weight ratio of 7: 3 to 3: 7.
【청구항 12】 [Claim 12]
제 1항에 있어서,  The method of claim 1,
상기 저굴절층은, 2 내지 4 관능성 (메트)아크릴레이트계 모노머 및 5 내지 6 관능성 (메트)아크릴레이트계 모노머를 포함하는 다관능성 The low refractive layer is a polyfunctional containing 2 to 4 functional (meth) acrylate monomers and 5 to 6 functional (meth) acrylate monomers.
(메트)아크릴레이트계 모노머의 공중합체를포함한바인더 수지; 및 Binder resin containing a copolymer of a (meth) acrylate monomer; And
상기 바인더 수지에 분산되고, 상이한 입경을 갖는 2종 이상의 중공형 무기 입자;를포함하는 반사방지 필름.  And at least two hollow inorganic particles dispersed in the binder resin and having different particle diameters.
【청구항 13】 [Claim 13]
제 12항에 있어서,  The method of claim 12,
상기 2 내지 4 관능성 (메트)아크릴레이트계 모노머 및 5 내지 6 관능성 (메트)아크릴레이트계 모노머는중량비가 9 : 1 내지 6 : 4이고,  The 2 to 4 functional (meth) acrylate monomers and 5 to 6 functional (meth) acrylate monomers have a weight ratio of 9: 1 to 6: 4,
상기 상이한 입경을 갖는 2종 이상의 중공형 무기 입자는, 입경이 40nm 내지 60nm인 중공형 무기 입자 및 입경이 65nm내지 lOOnm인 중공형 무기 입자를 7 : 3내지 3 : 7의 중량비로포함하는 반사방지 필름.  The two or more types of hollow inorganic particles having different particle diameters include anti-reflection including hollow inorganic particles having a particle diameter of 40 nm to 60 nm and hollow inorganic particles having a particle size of 65 nm to 100 nm in a weight ratio of 7: 3 to 3: 7. film.
【청구항 14】 [Claim 14]
제 1항에 있어서,  The method of claim 1,
파장 400 nm 내지 800 때에서 측정되는 두께 방향의 리타데이션(Rth)이 2019/221573 1»(:1^1{2019/006006 , 000 1ä 이상인 광투과성 기재를 더 포함하는 반사방지 필름. Retardation (Rth) in the thickness direction measured at a wavelength of 400 nm to 800 2019/221573 1 »(: 1 ^ 1 {2019/006006, 000) An antireflection film further comprising a light-transmissive base material of 1 1 or more.
【청구항 15】 [Claim 15]
제 1항에 따른 반사 방지 필름을포함하는편광판.  Polarizing plate comprising the anti-reflection film according to claim 1.
【청구항 16】 [Claim 16]
저 11항에 따른 반사방지 필름을포함하는 디스플레이 장치 .  Display device comprising an antireflective film according to claim 11.
PCT/KR2019/006006 2018-05-18 2019-05-14 Anti-reflective film, polarizing plate, and display apparatus WO2019221573A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980012904.7A CN111712534B (en) 2018-05-18 2019-05-14 Antireflection film, polarizing plate and display device
US16/978,458 US11732142B2 (en) 2018-05-18 2019-05-14 Anti-reflective film, polarizing plate, and display apparatus
JP2020545503A JP7205815B2 (en) 2018-05-18 2019-05-14 Antireflection films, polarizers, and display devices
EP19803464.7A EP3733745A4 (en) 2018-05-18 2019-05-14 Anti-reflective film, polarizing plate, and display apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20180057299 2018-05-18
KR10-2018-0057299 2018-05-18
KR10-2019-0055866 2019-05-13
KR1020190055866A KR102280262B1 (en) 2018-05-18 2019-05-13 Anti-reflective film, polarizing plate, and display apparatus

Publications (1)

Publication Number Publication Date
WO2019221573A1 true WO2019221573A1 (en) 2019-11-21

Family

ID=68540493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/006006 WO2019221573A1 (en) 2018-05-18 2019-05-14 Anti-reflective film, polarizing plate, and display apparatus

Country Status (1)

Country Link
WO (1) WO2019221573A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114514445A (en) * 2020-03-16 2022-05-17 株式会社Lg化学 Anti-reflection film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060031941A (en) * 2004-10-11 2006-04-14 제일모직주식회사 Composition for coating high refractive layer of anti-reflection film
KR20130120223A (en) * 2012-04-25 2013-11-04 주식회사 엘지화학 Anti-reflective film having improved scratch-resistant and manufacturing method thereof
KR20140006922A (en) * 2011-04-26 2014-01-16 다이니폰 인사츠 가부시키가이샤 Antireflection film, polarizing plate, and image display device
KR20170021757A (en) * 2015-08-18 2017-02-28 주식회사 엘지화학 Low refractive layer and anti-reflective film comprising the same
KR20170086477A (en) * 2014-11-25 2017-07-26 도요보 가부시키가이샤 Liquid crystal display device and polarizing plate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060031941A (en) * 2004-10-11 2006-04-14 제일모직주식회사 Composition for coating high refractive layer of anti-reflection film
KR20140006922A (en) * 2011-04-26 2014-01-16 다이니폰 인사츠 가부시키가이샤 Antireflection film, polarizing plate, and image display device
KR20130120223A (en) * 2012-04-25 2013-11-04 주식회사 엘지화학 Anti-reflective film having improved scratch-resistant and manufacturing method thereof
KR20170086477A (en) * 2014-11-25 2017-07-26 도요보 가부시키가이샤 Liquid crystal display device and polarizing plate
KR20170021757A (en) * 2015-08-18 2017-02-28 주식회사 엘지화학 Low refractive layer and anti-reflective film comprising the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114514445A (en) * 2020-03-16 2022-05-17 株式会社Lg化学 Anti-reflection film

Similar Documents

Publication Publication Date Title
JP6607510B2 (en) Photocurable coating composition, low refractive layer and antireflection film
KR101471692B1 (en) Hard-coated antiglare film, polarizing plate and image display including the same, and method for producing the same
JP6732015B2 (en) Anti-reflection film
KR102280262B1 (en) Anti-reflective film, polarizing plate, and display apparatus
JP7191340B2 (en) Antireflection films, polarizers and display devices
EP3309222B1 (en) Photocurable coating composition, low-refraction layer, and anti-reflection film
JP2006047504A (en) Antireflective stack
WO2019177271A1 (en) Anti-reflective film, polarizing plate, and display apparatus
US11506820B2 (en) Anti-reflective film, polarizing plate, and display apparatus
JP6925692B2 (en) Anti-reflection film, polarizing plate and display device
WO2019221573A1 (en) Anti-reflective film, polarizing plate, and display apparatus
JP2013156643A (en) Optical laminate
JP2010079111A (en) Optical layered product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19803464

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019803464

Country of ref document: EP

Effective date: 20200728

ENP Entry into the national phase

Ref document number: 2020545503

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE