WO2012147527A1 - Antireflection film, polarizing plate, and image display device - Google Patents

Antireflection film, polarizing plate, and image display device Download PDF

Info

Publication number
WO2012147527A1
WO2012147527A1 PCT/JP2012/060000 JP2012060000W WO2012147527A1 WO 2012147527 A1 WO2012147527 A1 WO 2012147527A1 JP 2012060000 W JP2012060000 W JP 2012060000W WO 2012147527 A1 WO2012147527 A1 WO 2012147527A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
fine particles
low refractive
silica fine
index layer
Prior art date
Application number
PCT/JP2012/060000
Other languages
French (fr)
Japanese (ja)
Inventor
真理子 林
智之 堀尾
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47072049&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2012147527(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to KR1020177021088A priority Critical patent/KR101871135B1/en
Priority to JP2013512005A priority patent/JP6011527B2/en
Priority to CN201280017337.2A priority patent/CN103460079B/en
Priority to KR1020137022588A priority patent/KR20140006922A/en
Publication of WO2012147527A1 publication Critical patent/WO2012147527A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • G02B1/105
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/418Refractive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/107Porous materials, e.g. for reducing the refractive index

Definitions

  • the present invention relates to an antireflection film, a polarizing plate, and an image display device.
  • Image display surface in image display devices such as cathode ray tube display (CRT), liquid crystal display (LCD), plasma display (PDP), electroluminescence display (ELD), field emission display (FED), touch panel, tablet PC, electronic paper
  • CTR cathode ray tube display
  • LCD liquid crystal display
  • PDP plasma display
  • ELD electroluminescence display
  • FED field emission display
  • touch panel tablet PC
  • electronic paper it is required to reduce the reflection due to the light rays emitted from the external light source and to improve the visibility.
  • an antireflection film having an antireflection layer As an antireflection film having an antireflection layer, a structure in which a low refractive index layer having a refractive index lower than that of a light-transmitting substrate is provided on the outermost surface is conventionally known.
  • a low refractive index layer has a low refractive index in order to enhance the antireflection performance of the antireflection film, and since it is provided on the outermost surface, it has antifouling performance, scratch prevention, etc. It is required to have high hardness and excellent optical properties such as transparency.
  • an antireflection film having a low refractive index layer formed on the outermost surface for example, in Patent Document 1, a coating liquid containing hollow silica fine particles and a binder resin such as acrylate is used, and the inside is hollow.
  • An antireflection film having a low refractive index layer having a structure containing silica fine particles is disclosed.
  • the display quality required for image display devices has become very high, and the antireflection performance by the antireflection film has also been required at a higher level.
  • the conventional antireflection film provided with a low refractive index layer containing hollow silica fine particles does not have sufficient antireflection performance and cannot sufficiently meet the recent demand for high display quality. It was.
  • Patent Document 2 discloses a method of blending a fluorine atom-containing polymer or monomer with a material for a low refractive index layer. Since the fluorine atom-containing polymer or monomer is a material having a low refractive index, a low refractive index layer containing these may lower the refractive index more than a conventional low refractive index layer containing hollow silica fine particles. Is possible. However, the conventional low refractive index layer containing a fluorine atom-containing polymer or monomer has a problem that the hardness of the low refractive index layer becomes insufficient when these compounds are contained to such an extent that the refractive index is sufficiently reduced. was there.
  • an antireflection film having a sufficient surface hardness, a low refractive index layer having a lower refractive index, and having high antireflection performance has been demanded. Furthermore, since such an antireflection film is usually placed on the outermost surface of the image display device, it is also required to have excellent slipperiness.
  • the present invention has a sufficient antifouling performance, surface hardness, and a uniform surface, and has a low refractive index layer having a sufficiently low refractive index, and has excellent antireflection performance. It is an object to provide an antireflection film having a polarizing plate, a polarizing plate using the antireflection film, and an image display device.
  • the present invention is an antireflection film in which a hard coat layer is formed on a light-transmitting substrate and a low refractive index layer is formed on the hard coat layer.
  • Acrylic resin, hollow silica fine particles, reactive silica fine particles and antifouling agent, and the reactive silica fine particles in the low refractive index layer are near the interface on the hard coat layer side and / or the hard coat. It is an antireflection film characterized by being unevenly distributed in the vicinity of the interface opposite to the layer.
  • the reactive silica fine particles in the low refractive index layer are unevenly distributed in the vicinity of the interface opposite to the hard coat layer side, and the hard coat layer is an interface on the low refractive index layer side. It is preferable to have reactive silica fine particles aligned in the interface direction in the vicinity. Further, the content of the reactive silica fine particles in the low refractive index layer is preferably 5 to 60 parts by mass with respect to 100 parts by mass of the (meth) acrylic resin.
  • the hollow silica fine particles have an average particle diameter of 40 to 80 nm, and the blending ratio with respect to (meth) acrylic resin (content of hollow silica fine particles / content of (meth) acrylic resin) is 0.
  • the antifouling agent is preferably a compound containing a reactive functional group and a fluorine atom and / or a silicon atom.
  • the (meth) acrylic resin includes pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, trimethylolpropane tri (meth) ), A polymer or copolymer of at least one monomer selected from the group consisting of acrylate, dipentaerythritol tetra (meth) acrylate, and isocyanuric acid tri (meth) acrylate.
  • the low refractive index layer preferably further contains a fluorine atom-containing resin.
  • the content of the reactive silica fine particles in the hard coat layer is preferably 15 to 60 parts by mass with respect to 100 parts by mass of the (meth) acrylic resin.
  • This invention is also a polarizing plate provided with a polarizing element, Comprising:
  • the said polarizing plate is provided with the above-mentioned antireflection film on the surface of a polarizing element, It is also a polarizing plate characterized by the above-mentioned.
  • the present invention is also an image display device comprising the above-described antireflection film or the above-described polarizing plate. The present invention is described in detail below.
  • the present invention is an antireflection film in which a hard coat layer is formed on a light-transmitting substrate and a low refractive index layer is formed on the hard coat layer.
  • the present inventors have included the reactive silica fine particles in the hard coat layer and further the reactive silica fine particles and the hollow silica fine particles in the low refractive index layer.
  • the reactive silica fine particles in the low refractive index layer are unevenly distributed in the vicinity of the interface opposite to the hard coat layer, and the hollow silica fine particles in the low refractive index layer are densely packed.
  • the inventors have found that the present invention is effective and have completed the present invention.
  • each layer constituting the antireflection film of the present invention will be described in detail.
  • the low refractive index layer is lower than the refractive index of components other than the low refractive index layer, such as a light-transmitting base material and a hard coat layer constituting the antireflection film of the present invention. What is the refractive index.
  • the low refractive index layer contains (meth) acrylic resin, hollow silica fine particles, reactive silica fine particles, and an antifouling agent.
  • the hollow silica fine particles serve to lower the refractive index while maintaining the layer strength of the low refractive index layer.
  • “hollow silica fine particles” refers to a structure in which gas is filled and / or a porous structure containing a gas, and the gas occupancy rate compared to the original refractive index of silica fine particles.
  • the silica fine particles whose refractive index decreases in proportion to Further, in the present invention, the form of silica fine particles, the structure, the aggregation state, and the dispersion inside the coating film formed by using the composition for low refractive index layer, which will be described later, used when forming the low refractive index layer.
  • silica fine particles capable of forming a nanoporous structure inside and / or at least part of the surface are also included.
  • the hollow silica fine particles are contained in a densely packed state in the low refractive index layer. For this reason, the surface uniformity of the low refractive index layer is excellent, and the antireflection film of the present invention is excellent in surface hardness.
  • the “closely packed state” means that there are almost no reactive silica fine particles to be described later between adjacent hollow silica fine particles, and a state similar to the closest packed structure is formed. Means.
  • the hollow silica fine particles are contained in a densely packed state in the low refractive index layer because the reactive silica fine particles contained in the low refractive index layer are hard in the low refractive index layer as will be described later. This is presumably because it is unevenly distributed in the vicinity of the interface on the coat layer side or in the vicinity of the interface on the side opposite to the hard coat layer. That is, the low refractive index layer comprises a composition containing hollow silica fine particles, reactive silica fine particles and a monomer component of (meth) acrylic resin (hereinafter also referred to as a composition for low refractive index layer) on the hard coat layer.
  • the coating film is formed by applying to the film, and the coating film is dried and cured.
  • the reactive silica fine particles contained in the coating film move to the vicinity of the interface on the hard coat layer side or the vicinity of the interface on the opposite side of the hard coat layer as described later. For this reason, in the formed coating film, there is almost no reactive silica fine particles between adjacent hollow silica fine particles, and as a result, the hollow silica fine particles in the low refractive index layer to be formed are closely packed. It is presumed that it will be in the state.
  • hollow silica fine particles are not particularly limited, and for example, silica fine particles prepared by using the technique disclosed in JP-A-2001-233611 are preferable. Since hollow silica fine particles are easy to manufacture and have high hardness themselves, when mixed with an organic binder to form a low refractive index layer, the layer strength is improved and the refractive index is adjusted to be low. It becomes possible to do.
  • hollow silica fine particles In addition to the above-mentioned hollow silica fine particles, it is manufactured and used for the purpose of increasing the specific surface area, used for packing columns, adsorbents that adsorb various chemical substances on the porous surface, and for fixing catalysts. Porous fine particles, or dispersions or aggregates of hollow fine particles intended to be incorporated into a heat insulating material or a low dielectric material. As such a specific example, it has a structure in which porous silica fine particles aggregated from the product names Nippil and Nipgel manufactured by Nippon Silica Kogyo Co., Ltd. as a commercial product, and silica fine particles manufactured by Nissan Chemical Industries, Ltd. are linked in a chain shape. Colloidal silica UP series (trade name) may be mentioned. Among these, those within the preferred particle diameter range of the present invention can be used.
  • the average particle diameter of the hollow silica fine particles is preferably 10 to 100 nm. When the average particle diameter of the hollow silica fine particles is within this range, excellent transparency can be imparted to the low refractive index layer.
  • a more preferred lower limit is 40 nm, a more preferred upper limit is 80 nm, a still more preferred lower limit is 45 nm, a still more preferred upper limit is 75 nm, a most preferred lower limit is 50 nm, and a most preferred upper limit is 70 nm.
  • the average particle diameter of the hollow silica fine particles means a value measured by a dynamic light scattering method in the case of the hollow silica fine particles alone.
  • the average particle diameter of the hollow silica fine particles in the low refractive index layer is determined by observing the cross section of the low refractive index layer with a STEM or the like, and selecting 30 arbitrary hollow silica fine particles. It is a value measured and calculated as the average value.
  • the porosity of the hollow silica fine particles is preferably 1.5 to 80.0%. If it is less than 1.5%, the refractive index of the low refractive index layer cannot be sufficiently lowered, and the antireflection performance of the antireflection film of the present invention may be insufficient. If it exceeds 80.0%, the strength of the hollow silica fine particles may be lowered, and the strength of the entire low refractive index layer may be insufficient.
  • the void ratio of the hollow silica fine particles has a more preferable lower limit of 6.4%, a more preferable upper limit of 76.4%, a still more preferable lower limit of 20.0%, and a further preferable upper limit of 55.0%.
  • the low refractive index layer can have a sufficiently low refractive index and can have excellent strength.
  • the porosity of the hollow silica fine particles is measured by measuring the diameter and the thickness of the outer shell portion excluding the void portions by cross-sectional STEM observation of the hollow silica fine particles, and the hollow silica fine particles are spherical.
  • the volume of the void portion of the hollow silica fine particle and the volume of the hollow silica fine particle when there is no void portion are calculated, and ⁇ (the volume of the void portion of the hollow silica fine particle) / (the void portion is absent) (Volume of hollow silica fine particles) ⁇ ⁇ 100.
  • the low refractive index layer includes a plurality of hollow silica fine particles having different average particle diameters and thicknesses of the outer shell portion
  • the porosity of each hollow silica fine particle calculated by the method described above, and each hollow silica fine particle The average value calculated from the blending ratio is used as the porosity of the hollow silica fine particles (hereinafter, such porosity is also referred to as “average porosity”).
  • each hollow silica fine particle preferably has a porosity in the above-described range.
  • the average porosity of the hollow silica fine particles is preferably 10.0 to 40.0%.
  • the refractive index of the low refractive index layer cannot be sufficiently lowered, and the antireflection performance of the antireflection film of the present invention may be insufficient. If it exceeds 40.0%, the strength of the hollow silica fine particles may be lowered, and the strength of the entire low refractive index layer may be insufficient.
  • a more preferred lower limit is 15.0%, and a more preferred upper limit is 35.0%.
  • the porosity in this range the low refractive index layer can have a sufficiently low refractive index and can have excellent strength. From the viewpoint of low refractive index and strength, the more preferable lower limit of the average porosity of the hollow silica fine particles is 20.0%, and the more preferable upper limit is 30.0%.
  • the hollow silica fine particles have a blending ratio (content of hollow silica fine particles / content of (meth) acrylic resin) with respect to the (meth) acrylic resin described later contained in the low refractive index layer of 0.90 to It is preferably 1.60.
  • the blending ratio is less than 0.90, the refractive index of the low refractive index layer is not sufficiently low, and the antireflection performance of the antireflection film of the present invention may be insufficient.
  • the blending ratio exceeds 1.60, the surface uniformity of the low refractive index layer is insufficient, and the surface hardness of the antireflection film of the present invention may be insufficient.
  • a more preferable lower limit of the blending ratio is 1.00, and a more preferable upper limit is 1.50. By being in this range, it can be set as the antireflection film provided with the more excellent antireflection performance, surface uniformity, and surface hardness. Further, the surface hardness (scratch resistance) is improved by increasing the surface uniformity of the low refractive index layer.
  • the hollow silica fine particles preferably have a close-packed structure laminated in two steps in the thickness direction of the low refractive index layer.
  • the transparency, surface uniformity, low refractive index, etc. of the antireflection film of the present invention can be made extremely excellent.
  • the reactive silica fine particles are unevenly distributed in the vicinity of the interface on the hard coat layer side to be described later of the low refractive index layer and / or in the vicinity of the interface on the side opposite to the hard coat layer to be described later. It plays a role of lowering and increasing the surface hardness.
  • the reactive silica fine particles are unevenly distributed in the vicinity of the interface on the hard coat layer side of the low refractive index layer and in the vicinity of the interface on the side opposite to the hard coat layer, both the surface hardness and the antifouling property can be improved. .
  • the reactive silica fine particles are unevenly distributed in the vicinity of the interface on the hard coat layer side of the low refractive index layer, an antifouling agent described later is unevenly distributed in the vicinity of the interface opposite to the hard coat layer of the low refractive index layer, Since the amount of antifouling agent present on the outermost surface is increased compared to the case where reactive silica is present on the outermost surface, the antifouling performance of the antireflection film of the present invention is extremely excellent.
  • the reactive silica fine particles are unevenly distributed in the vicinity of the interface opposite to the hard coat layer of the low refractive index layer, the surface hardness of the low refractive index layer can be further improved by the uneven distribution of the reactive silica fine particles.
  • the low refractive index layer is in a state where the hollow silica fine particles are densely packed as described above, the surface hardness is improved by the excellent surface uniformity of the low refractive index layer. Can also be planned. As a result, the antireflection film of the present invention has excellent scratch resistance.
  • the phrase “is unevenly distributed in the vicinity of the interface on the hard coat layer side or in the vicinity of the interface on the side opposite to the hard coat layer described later” means that the reactive silica fine particles are dense in the low refractive index layer. It means that it exists below (hard coat layer side) or above (opposite side of the hard coat layer) of the above-mentioned hollow silica fine particles in a state of being filled.
  • the thickness of the low refractive index layer is divided into three equal parts, and the 1/3 region, 2/3 region, 3 /
  • the 1/3 region contains 70% or more of the reactive silica fine particles
  • the reactive silica fine particles are unevenly distributed in the vicinity of the interface on the hard coat layer side.
  • the / 3 region contains 70% or more of the reactive silica fine particles, it is determined that the reactive silica fine particles are unevenly distributed in the vicinity of the interface opposite to the hard coat layer.
  • Reactive silica in which a total of 70% or more of the reactive silica fine particles are unevenly distributed in the 1/3 region and the 3/3 region, and each of the 1/3 region and the 3/3 region is unevenly distributed.
  • the amount of fine particles is larger than the amount of reactive silica fine particles contained in the 2/3 region, the reactive silica fine particles are in the vicinity of the interface on the hard coat layer side of the low refractive index layer and on the side opposite to the hard coat layer. Judged to be unevenly distributed near the interface.
  • the state where such reactive silica fine particles are unevenly distributed is easily determined by cross-sectional observation (STEM, TEM) of the low refractive index layer when the antireflection film of the present invention is cut in the thickness direction. be able to.
  • the reason why the reactive silica fine particles are unevenly distributed in the vicinity of the hard coat layer side interface and / or the vicinity of the hard coat layer side interface in the low refractive index layer is not clear.
  • the amount of reactive silica fine particles in the low refractive index layer can be adjusted by adjusting the amount of reactive silica fine particles added in the hard coat layer. It is possible to control the uneven distribution. That is, when the hard coat layer does not contain reactive silica fine particles, forming a low refractive index layer on the hard coat layer causes the reactive silica fine particles of the low refractive index layer to be unevenly distributed near the hard coat layer side interface. Can do.
  • the hard coat layer contains reactive silica fine particles in a range of more than 25 parts by weight and less than 60 parts by weight with respect to 100 parts by weight of the resin component constituting the hard coat layer, on the hard coat layer
  • the reactive silica fine particles of the low refractive index layer can be unevenly distributed in the vicinity of the interface opposite to the hard coat layer.
  • the reactive silica fine particles of the low refractive index layer can be unevenly distributed in the vicinity of the hard coat layer side interface of the low refractive index layer and in the vicinity of the interface opposite to the hard coat layer.
  • reactive silica fine particles commercially available products can be used, for example, MIBK-SDL, MIBK-SDMS, MIBK-SD (all are manufactured by Nissan Chemical Industries, Ltd.), DP1021SIV, DP1039SIV, DP1117SIV (all above, any Also available from JGC Catalysts & Chemicals Co., Ltd.).
  • the average particle diameter of the reactive silica fine particles is preferably 1 to 25 nm.
  • the thickness is less than 1 nm, aggregation is likely to occur, and sufficient strength may not be obtained in the low refractive index layer obtained when the filling degree is low.
  • it exceeds 25 nm surface irregularities are formed in the low refractive index layer, and sufficient strength may not be obtained.
  • the more preferable lower limit of the average particle diameter of the reactive silica fine particles is 5 nm, and the more preferable upper limit is 20 nm.
  • the average particle diameter of the reactive silica fine particles means a value measured by cross-sectional observation (average value of 30 particles) such as BET method or STEM.
  • the content of the reactive silica fine particles in the low refractive index layer is preferably 5 to 60 parts by mass with respect to 100 parts by mass of the (meth) acrylic resin described later.
  • the amount is less than 5 parts by mass, the surface hardness of the low refractive index layer cannot be sufficiently increased, and the antireflection film of the present invention may be inferior in scratch resistance.
  • the amount exceeds 60 parts by mass the amount of reactive silica fine particles that are not unevenly distributed in the low refractive index layer increases, and the hollow silica fine particles do not become the above-described densely packed state, resulting in low refraction.
  • the uniformity of the surface of the index layer may be inferior and may cause an increase in reflectivity.
  • the minimum with more preferable content of the said reactive silica fine particle is 10 mass parts, and a more preferable upper limit is 50 mass parts.
  • the (meth) acrylic resin functions as a binder component for the hollow silica fine particles and reactive silica fine particles described above in the low refractive index layer.
  • “(meth) acryl” means acryl or methacryl.
  • Examples of the (meth) acrylic resin include polymers or copolymers of (meth) acrylic monomers, and the (meth) acrylic monomer is not particularly limited.
  • pentaerythritol tri (meth) acrylate dipenta Erythritol hexa (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, trimethylolpropane tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, isocyanuric acid tri (meth) acrylate, etc.
  • pentaerythritol tri (meth) acrylate dipenta Erythritol hexa (meth) acrylate
  • pentaerythritol tetra (meth) acrylate dipentaerythritol penta (meth) acrylate
  • trimethylolpropane tri (meth) acrylate dipentaerythritol tetra (meth) acrylate
  • these (meth) acrylate monomers may be modified in part of the molecular skeleton, and have been modified with ethylene oxide, propylene oxide, caprolactone, isocyanuric acid, alkyl, cyclic alkyl, aromatic, bisphenol, etc. Things can also be used.
  • These (meth) acrylic monomers may be used alone or in combination of two or more. These (meth) acrylic monomers satisfy the refractive index range as described later and are excellent in curing reactivity, and can improve the hardness of the resulting low refractive index layer. Of these, (meth) acrylic resins having 3 or more functional groups are preferably used.
  • the (meth) acrylic resin (after curing) preferably has a refractive index of 1.47 to 1.53. It is practically impossible to make the refractive index less than 1.47. If it exceeds 1.53, a low refractive index layer having a sufficiently low refractive index may not be obtained.
  • the (meth) acrylic monomer preferably has a weight average molecular weight of 250 to 1,000. If it is less than 250, the number of functional groups decreases, and the hardness of the resulting low refractive index layer may be reduced. If it exceeds 1000, the functional group equivalent (number of functional groups / molecular weight) is generally small, so that the crosslink density is low and a low refractive index layer having sufficient hardness may not be obtained.
  • the weight average molecular weight of the said (meth) acryl monomer can be calculated
  • the measurement column may be used in combination with a commercially available column such as a column for tetrahydrofuran or a column for chloroform.
  • a commercially available column such as a column for tetrahydrofuran or a column for chloroform.
  • Examples of the commercially available column include Shodex GPC KF-801, GPC-KF800D (both are trade names, manufactured by Showa Denko KK) and the like.
  • an RI (differential refractive index) detector and a UV detector may be used. Using such a solvent, a column, and a detector, the weight average molecular weight can be appropriately measured by a GPC system such as Shodex GPC-101 (manufactured by Showa Denko).
  • the low refractive index layer further contains an antifouling agent.
  • the antireflective film of the present invention has antifouling performance.
  • the reactive silica fine particles in the low refractive index layer are on the interface on the hard coat layer side.
  • the antifouling performance of the antireflection film of the present invention is particularly excellent because the content ratio of the antifouling agent in the vicinity of the interface opposite to the hard coat layer of the low refractive index layer is increased. Become.
  • the antifouling agent is the same as the reactive silica fine particles described above. It is unevenly distributed in the vicinity of the interface opposite to the hard coat layer, and in this case as well, the antifouling performance by the antifouling agent can be improved to some extent.
  • the reason why the antifouling agent is unevenly distributed to some extent in the vicinity of the interface opposite to the hard coat layer is not clear, but for example, when a coating film formed on the hard coat layer is formed, the coating film is formed as described above.
  • the reactive silica fine particles move in this, and it is assumed that the movement of the reactive silica fine particles has an influence.
  • an antifouling performance is obtained by including an antifouling agent in the low refractive index layer.
  • the antifouling agent is preferably a compound containing a reactive functional group and a fluorine atom and / or a silicon atom. By containing such an antifouling agent, the antifouling performance of the low refractive index layer to be formed can be further improved.
  • a reactive fluorine compound for example, a fluorine-containing monomer having an ethylenically unsaturated bond can be widely used.
  • olefins for example, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, perfluorobutadiene, perfluoro-2,2-dimethyl-1,3-dioxole, and the like).
  • 2,2,2-trifluoroethyl (meth) acrylate 2,2,3,3,3-pentafluoropropyl (meth) acrylate, 2- (perfluorobutyl) ethyl (meth) acrylate, 2 -(Perfluorohexyl) ethyl (meth) acrylate, 2- (perfluorooctyl) ethyl (meth) acrylate, 2- (perfluorodecyl) ethyl (meth) acrylate, methyl ⁇ -trifluoro (meth) acrylate, etc.
  • a fluorinated polymer having a fluorinated alkylene group or a fluorinated alkyl group in the main chain and the side chain is particularly preferably used because the problem of bleeding out from the low refractive index layer hardly occurs.
  • a reactive silicone compound is mentioned, for example.
  • Examples of the compound containing the reactive functional group and a fluorine atom and a silicon atom include a silicone-containing vinylidene fluoride copolymer obtained by reacting the reactive silicone compound with the reactive fluorine compound. It is done.
  • the content of the antifouling agent is appropriately determined depending on the antifouling performance of the target low refractive index layer, but with respect to a total of 100 parts by mass of the hollow silica fine particles and the (meth) acrylic resin described above,
  • the amount is preferably 1 to 20 parts by mass. If it is less than 1 part by mass, it may not be possible to impart sufficient antifouling performance to the low refractive index layer to be formed. If it exceeds 20 parts by mass, the added antifouling agent will bleed out from the low refractive index layer. There are things to do.
  • the effect of simply adding the antifouling agent is not seen, the manufacturing cost is increased, the hardness and appearance of the obtained low refractive index layer are lowered, and the reflectance may be increased.
  • the minimum with more preferable content of the said antifouling agent is 2 mass parts, and a more preferable upper limit is 15 mass parts.
  • a compound not containing a reactive functional group may be added and used together with a compound containing the reactive functional group and a fluorine atom and / or a silicon atom.
  • the low refractive index layer preferably has a refractive index of less than 1.45.
  • the antireflection performance of the antireflection film of the present invention is insufficient, and it may not be possible to cope with the high-level display quality of recent image display devices.
  • a more preferred lower limit is 1.25, and a more preferred upper limit is 1.43.
  • the low refractive index layer has the following formula (II): 120 ⁇ n A d A ⁇ 145 (II) It is preferable from the viewpoint of low reflectivity.
  • the low refractive index layer preferably has a haze value of 1% or less. If it exceeds 1%, the light transmittance of the antireflection film of the present invention may be reduced, which may cause a reduction in display quality of the image display device. More preferably, it is 0.5% or less.
  • the haze value is a value obtained in accordance with JIS K7136.
  • the low refractive index layer preferably has a hardness of H or higher, more preferably 2H or higher, according to a pencil hardness test according to JIS K5600-5-4 (1999). Furthermore, it is preferable that the low refractive index layer does not cause scratches in a scratch resistance test in which a friction load of 300 g / cm 2 using # 0000 steel wool is used and the friction is made 10 times.
  • the low refractive index layer is prepared by preparing a composition for a low refractive index layer containing the hollow silica fine particles, reactive silica fine particles, a monomer component of (meth) acrylic resin and an antifouling agent, and the like. It can form using the coating liquid for layers.
  • the said composition for low refractive index layers contains a solvent.
  • the solvent is preferably a mixed solvent of methyl isobutyl ketone (MIBK) and propylene glycol monomethyl ether (PGME) or propylene glycol monomethyl ether acetate (PGMEA).
  • MIBK methyl isobutyl ketone
  • PGME propylene glycol monomethyl ether
  • PGMEA propylene glycol monomethyl ether acetate
  • the said composition for low refractive index layers may contain the other solvent, if it is a range which does not inhibit formation of the low refractive index layer of the structure mentioned above.
  • other solvents include alcohols such as methanol, ethanol, propanol, isopropanol, n-butanol, iso-butanol, t-butanol, and benzyl alcohol; acetone, methyl ethyl ketone, cyclohexanone, heptanone, diisobutyl ketone, diethyl ketone Ketones such as methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl formate, ethyl formate, propyl formate, butyl formate, and PGMEA; aliphatic hydrocarbons such as hexane and cyclohexane; methylene chloride, chloroform, tetrach
  • the said composition for low refractive index layers may contain the other component further as needed.
  • the other components include photopolymerization initiators, leveling agents, polymerization accelerators, viscosity modifiers, antiglare agents, antistatic agents, ultraviolet absorbers, and resins (monomers, oligomers, polymers) other than those described above. Is mentioned.
  • the composition for a low refractive index layer contains a resin system having a radical polymerizable unsaturated group
  • acetophenones for example, trade name Irgacure 184 (manufactured by BASF)
  • 1-hydroxy-cyclohexyl-phenyl-ketone 1,3-bis(trimethyl)-2-hydroxy-cyclohexyl-phenyl-ketone
  • benzophenones 1, 4-hydroxy-cyclohexyl-phenyl-ketone
  • benzophenones 1, thioxanthones
  • benzoin 1,4-benzin methyl ether
  • the photopolymerization initiator include aromatic diazonium salts, aromatic sulfonium salts, aromatic iodonium salts, A metallocene compound, benzoin sulfonic acid ester, etc. are mentioned, These may be used independently and 2 or more types may be used together.
  • Irgacure 369 Irgacure 127, Irgacure 907, Esacure ONE, Speedcure MBB, Speedcure PBZ, and KAYACURE DETX-S are preferable.
  • Irgacure 127 (2-Hydroxy-1- ⁇ 4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] phenyl ⁇ -2-methyl-propan-1-one manufactured by BASF
  • Irgacure 184 (1-hydroxy-cyclohexyl-phenyl-ketone manufactured by BASF).
  • the addition amount of the photopolymerization initiator is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the solid content of the resin component contained in the low refractive index layer coating solution.
  • leveling agents, polymerization accelerators, viscosity modifiers, antiglare agents, antistatic agents, ultraviolet absorbers, and resins (monomers, oligomers, polymers) other than those described above can be used.
  • the method for preparing the composition for the low refractive index layer is not particularly limited.
  • the hollow silica fine particles, the reactive silica fine particles, the monomer component of the (meth) acrylic resin, the antifouling agent, and the solvent It can be obtained by mixing components such as a photopolymerization initiator added as necessary.
  • a known method such as a paint shaker or a bead mill can be used.
  • the composition for a low refractive index layer is a coating film formed by applying the composition for a low refractive index layer on a hard coat layer to be described later, and the coating film is cured by irradiation with ionizing radiation and / or heating. Can be formed.
  • preferable drying conditions for the coating film are 40 to 80 ° C. and 10 seconds to 2 minutes. By drying the coating film under such conditions, the low refractive index layer having the above-described structure can be suitably formed.
  • the method for applying the low refractive index layer composition is not particularly limited. For example, spin coating, dipping, spraying, gravure coating, die coating, bar coating, roll coater, meniscus coater, etc. There are various methods.
  • Hard coat layer The antireflection film of the present invention has a hard coat layer between the light-transmitting substrate and the low refractive index layer.
  • the “hard coat layer” means a layer showing a hardness of 2H or more in a pencil hardness test specified in JIS K5600-5-4 (1999). The pencil hardness is more preferably 3H or more.
  • the film thickness (when cured) of the hard coat layer is preferably 1 to 30 ⁇ m, and more preferably 2 to 15 ⁇ m.
  • the hard coat layer preferably contains reactive silica fine particles.
  • the reactive silica fine particles in the low refractive index layer described above are unevenly distributed in the vicinity of the interface opposite to the hard coat layer.
  • the reactive silica fine particles include the same reactive silica fine particles as those in the low refractive index layer described above.
  • the content of reactive silica fine particles in the hard coat layer is preferably 15 to 60 parts by mass with respect to 100 parts by mass of the resin component constituting the hard coat layer. If it is less than 15 parts by mass, the hardness of the hard coat layer may be insufficient, and if it exceeds 60 parts by mass, the adhesiveness with the light-transmitting substrate and the adhesiveness with the low refractive index layer are insufficient.
  • the hard coat layer may be easily broken, or the total light transmittance may be lowered and the haze degree may be increased.
  • a more preferred lower limit is 20 parts by mass, and a more preferred upper limit is 55 parts by mass.
  • the hard coat layer preferably has reactive silica fine particles contained in a state aligned in the interface direction near the interface on the low refractive index layer side.
  • the reactive silica fine particles aligned in this way, the low refractive index layer having the above-described structure can be obtained more suitably.
  • the state of alignment in the interface direction near the interface on the low refractive index layer side means that the reactive silica fine particles are aligned along the interface direction in the vicinity of the interface of the hard coat layer with the low refractive index layer.
  • the aligned state is preferably adjacent to each other, and more preferably, the upper ends of the reactive silica fine particles are in contact with the interface of the hard coat layer with the low refractive index layer and aligned along the interface in a state adjacent to each other. (FIG. 1).
  • the said hard-coat layer also contains the reactive silica fine particle contained at random other than the state which aligned as mentioned above.
  • the hard coat layer examples include those formed by the composition for hard coat layer containing the reactive silica fine particles, a resin, and other optional components.
  • a transparent resin is preferably used.
  • an ionizing radiation curable resin, an ionizing radiation curable resin and a solvent-drying resin (during coating) are resins that are cured by ultraviolet rays or electron beams. The resin added to adjust the solid content is dried, and a mixture with a resin that forms a film), a thermosetting resin, or the like, preferably an ionizing radiation curable resin.
  • the ionizing radiation curable resin include those having an acrylate functional group, for example, a relatively low molecular weight polyester resin, polyether resin, acrylic resin, epoxy resin, urethane resin, polyhydric alcohol, and the like. Monomers such as (meth) allylates of functional compounds, oligomers or prepolymers may be mentioned.
  • the (meth) acrylic resin used in the low refractive index layer is also used in the hard coat layer, and among them, a (meth) acrylic resin having 3 or more functional groups is preferable.
  • the ionizing radiation curable resin is used as an ultraviolet curable resin
  • a photopolymerization initiator examples include acetophenones, benzophenones, Michler benzoyl benzoate, ⁇ -amyloxime ester, tetramethylchuram monosulfide, thioxanthones, and the like.
  • Irgacure 184 (1-hydroxy-cyclohexyl-phenyl-ketone manufactured by BASF) is preferable.
  • a mixture of photosensitizers and specific examples thereof include n-butylamine, triethylamine, poly-n-butylphosphine and the like.
  • a non-reactive polymer may be used by mixing with the ionizing radiation curable resin.
  • the non-reactive polymer include polyacrylic acid, polymethacrylic acid, polyacrylate, polymethacrylate, polyolefin, polystyrene, polyamide, polyimide, polyvinyl chloride, polyvinyl alcohol, polyvinyl butyral, and polycarbonate.
  • thermosetting resin examples include phenol resin, urea resin, diallyl phthalate resin, melanin resin, guanamine resin, unsaturated polyester resin, polyurethane resin, epoxy resin, aminoalkyd resin, melamine-urea cocondensation resin, silicon resin. And polysiloxane resin.
  • hardening agents such as a crosslinking agent and a polymerization initiator, a polymerization accelerator, a solvent, a viscosity modifier, etc. can be further added and used.
  • the hard coat layer is formed by applying the composition for hard coat layer prepared using each of the above-mentioned materials on the light-transmitting substrate, and if necessary, dried, and irradiated with ionizing radiation. Alternatively, it can be formed by curing by heating or the like.
  • the preparation method of the said composition for hard-coat layers, the formation method of a coating film, etc. can mention the method similar to the low-refractive-index layer mentioned above.
  • the hard coat layer may further contain a high hardness / low curl material such as a known antistatic agent or high refractive index agent.
  • the antireflection film of the present invention has a light transmissive substrate.
  • the light transmissive substrate preferably has smoothness and heat resistance and is excellent in mechanical strength.
  • Specific examples of the material forming the light-transmitting substrate include, for example, polyester (polyethylene terephthalate, polyethylene naphthalate), cellulose triacetate, cellulose diacetate, cellulose acetate butyrate, polyester, polyamide, polyimide, polyethersulfone, poly Examples thereof include thermoplastic resins such as sulfone, polypropylene, polymethylpentene, polyvinyl chloride, polyvinyl acetal, polyether ketone, polymethyl methacrylate, polycarbonate, acrylic base material (PMMA), and polyurethane.
  • polyester (polyethylene terephthalate, polyethylene naphthalate) and cellulose triacetate are used.
  • the light-transmitting substrate preferably uses the thermoplastic resin as a flexible film-like body, but uses a plate of these thermoplastic resins depending on the use mode in which curability is required. It is also possible, or a glass plate plate may be used.
  • examples of the light transmissive substrate include an amorphous olefin polymer (Cyclo-Olefin-Polymer: COP) film having an alicyclic structure.
  • This is a base material in which a norbornene polymer, a monocyclic olefin polymer, a cyclic conjugated diene polymer, a vinyl alicyclic hydrocarbon polymer, and the like are used.
  • the thickness of the light transmissive substrate is preferably 3 to 300 ⁇ m, more preferably the lower limit is 20 ⁇ m and the upper limit is 100 ⁇ m. When the light-transmitting substrate is a plate-like body, the thickness may exceed these thicknesses.
  • the light-transmitting substrate is called an anchor agent or a primer in addition to physical treatment such as corona discharge treatment and oxidation treatment in order to improve adhesiveness when forming the hard coat layer or the like thereon. Application of the paint may be performed in advance.
  • the antireflection film of the present invention having a structure in which the hard coat layer is formed between the light transmissive substrate and the low refractive index layer is further provided between the hard coat layer and the light transmissive substrate.
  • a structure in which an antistatic layer comprising a known antistatic agent and a binder resin is formed may be used.
  • the antireflection film of the present invention includes other hard coat layers different from the above-described hard coat layer, antifouling layer, high refractive index layer, medium refractive index layer, etc. as optional layers as necessary. It may be.
  • the antifouling layer, the high refractive index layer, and the medium refractive index layer are prepared by adding a commonly used antifouling agent, a high refractive index agent, a medium refractive index agent, a low refractive index agent or a resin, Each layer may be formed by a known method.
  • the total light transmittance of the antireflection film of the present invention is preferably 90% or more. If it is less than 90%, color reproducibility and visibility may be impaired when it is mounted on the display surface.
  • the total light transmittance is more preferably 93% or more, and still more preferably 95% or more.
  • the haze of the antireflection film of the present invention is preferably less than 1%, and more preferably less than 0.5%.
  • the method for producing an antireflection film of the present invention includes the steps of forming the hard coat layer by applying the above-described hard coat layer composition on the light-transmitting substrate, and the above-described hard coat layer.
  • coating the composition for low refractive index layers and forming a low refractive index layer is mentioned.
  • the method for forming the hard coat layer and the low refractive index layer is as described above.
  • the antireflection film of the present invention can be made into a polarizing plate by providing the antireflection film according to the present invention on the surface of the polarizing element opposite to the surface where the low refractive index layer is present in the antireflection film. .
  • a polarizing plate is also one aspect of the present invention.
  • the polarizing element is not particularly limited, and examples thereof include a polyvinyl alcohol film, a polyvinyl formal film, a polyvinyl acetal film, and an ethylene-vinyl acetate copolymer saponified film that are dyed and stretched with iodine.
  • the light-transmitting substrate preferably a triacetyl cellulose film.
  • the present invention is also an image display device comprising the antireflection film or the polarizing plate.
  • the image display device may be an image display device such as an LCD, PDP, FED, ELD (organic EL, inorganic EL), CRT, touch panel, tablet PC, or electronic paper.
  • the LCD includes a transmissive display and a light source device that irradiates the transmissive display from the back.
  • the image display device of the present invention is an LCD
  • the antireflection film of the present invention or the polarizing plate of the present invention is formed on the surface of the transmissive display.
  • the present invention is a liquid crystal display device having the antireflection film
  • the light source of the light source device is irradiated from the lower side of the optical laminate.
  • a retardation plate may be inserted between the liquid crystal display element and the polarizing plate.
  • An adhesive layer may be provided between the layers of the liquid crystal display device as necessary.
  • the PDP has a front glass substrate (formed with an electrode on the surface) and a rear glass substrate (disposed with discharge gas sealed between the front glass substrate and the electrode and minute grooves formed on the surface). A red, green, and blue phosphor layer is formed in the groove).
  • the image display device of the present invention is a PDP
  • the surface of the surface glass substrate or the front plate (glass substrate or film substrate) is provided with the antireflection film described above.
  • the above image display device is a zinc sulfide or diamine substance that emits light when a voltage is applied: a light emitting material is deposited on a glass substrate, and an ELD device that performs display by controlling the voltage applied to the substrate, or converts an electrical signal into light Alternatively, it may be an image display device such as a CRT that generates an image visible to human eyes.
  • the antireflection film described above is provided on the outermost surface of each display device as described above or the surface of the front plate.
  • the image display apparatus of the present invention can be used for display display of a television, a computer, a word processor, or the like.
  • it can be suitably used for the surface of high-definition image displays such as CRT, touch panel, tablet PC, electronic paper, liquid crystal panel, PDP, ELD, and FED.
  • the antireflective film of the present invention has excellent surface hardness due to the low refractive index layer having reactive silica fine particles that are unevenly distributed in the vicinity of the surface thereof.
  • the conventional antireflection film was one of the causes of inferior scratch resistance due to the presence of minute irregularities on the surface of the low refractive index layer, but the low refractive index layer having the above structure is hollow. Since the silica fine particles are in a closely packed state, it has a very uniform surface. For this reason, the antireflection film of the present invention is extremely excellent in surface hardness.
  • the antireflective film of the present invention has a low refractive index layer mainly composed of the hollow silica fine particles and the reactive silica fine particles, so that the refractive index can be made sufficiently low and excellent antireflective properties. It can have performance.
  • the antireflection film of the present invention includes a cathode ray tube display (CRT), a liquid crystal display (LCD), a plasma display (PDP), an electroluminescence display (ELD), a field emission display (FED), a touch panel, a tablet PC, It can be suitably applied to electronic paper and the like.
  • Example 2 is a micrograph of a cross section of an antireflection film according to Example 1.
  • 10 is a micrograph of a cross section of an antireflection film according to Example 7.
  • 2 is a micrograph of a cross section of an antireflection film according to Comparative Example 1.
  • 4 is a micrograph of a cross section of an antireflection film according to Comparative Example 2.
  • composition for hard coat layer (1) The components shown below were mixed to prepare a hard coat layer composition (1).
  • Reactive silica fine particles Z7537, manufactured by JSR, solid content 50%, product containing reactive silica fine particles 60%
  • 10 parts by mass urethane acrylate UV1700B, manufactured by Nippon Gosei Co., Ltd., 10 functional
  • UV1700B manufactured by Nippon Gosei Co., Ltd., 10 functional
  • mass polymerization initiator Irgacure 184; manufactured by BASF
  • leveling agent in the composition for hard coat layer (1) The solid content mass ratio was 0.10%.
  • composition for hard coat layer (2) The components shown below were mixed to prepare a hard coat layer composition (2).
  • the solid content mass ratio of the leveling agent in the hard coat layer composition (2) was 0.10%. It was.
  • composition for hard coat layer (3) The components shown below were mixed to prepare a hard coat layer composition (3).
  • Reactive silica fine particles Z7537, manufactured by JSR, solid content 50%, product containing 60% reactive silica fine particles
  • UV1700B Nippon Gosei Co., Ltd., 10 functional
  • mass polymerization initiator Irgacure 184; manufactured by BASF
  • leveling agent in the composition for hard coat layer (3) The solid content mass ratio was 0.10%.
  • composition for low refractive index layer (1) The following components were mixed to prepare a composition for low refractive index layer (1).
  • Hollow silica fine particles solid content of the hollow silica fine particles: 20% by mass solution; methyl isobutyl ketone, average particle diameter: 55 nm, average porosity: 23.3%
  • PETA pentaerythritol triacrylate
  • DPHA dipentaerythritol hexaacrylate
  • reactive silica fine particles solid content of the reactive silica fine particles: 30% by mass solution; methyl Isobutyl ketone, average particle size: 12 nm
  • 0.1 parts by mass antifouling agent X-22-164E, manufactured by Shin-Etsu Chemical Co., Ltd.
  • 0.01 parts by mass polymerization initiator Irgacure 127; manufactured by BASF
  • composition for low refractive index layer (2) The following components were mixed to prepare a low refractive index layer composition (2).
  • Hollow silica fine particles solid content of hollow silica fine particles: 20% by mass solution; methyl isobutyl ketone, average particle size: 60 nm, average porosity: 29.6%
  • PETA pentaerythritol triacrylate
  • 0.1 part by mass reactive silica fine particles solid content of the reactive silica fine particles: 30% by mass solution; methyl isobutyl ketone, average particle size: 12 nm
  • RS-74 manufactured by DIC, 20% by mass solution; methyl ethyl ketone
  • TU2225 manufactured by JSR, 15% by mass solution; methyl isobutyl butyl ketone
  • mass polymerization initiator Irgacure 127; manufactured by BASF
  • composition (3) for low refractive index layer The following components were mixed to prepare a composition for low refractive index layer (3).
  • Hollow silica fine particles solid content of the hollow silica fine particles: 20% by mass solution; methyl isobutyl ketone, average particle diameter: 55 nm, average porosity: 23.3%
  • PETA pentaerythritol triacrylate
  • DPHA dipentaerythritol hexaacrylate
  • reactive silica fine particles solid content of the reactive silica fine particles: 30% by mass solution; methyl Isobutyl ketone, average particle size: 12 nm
  • 0.1 parts by mass antifouling agent X-22-164E, manufactured by Shin-Etsu Chemical Co., Ltd.
  • 0.01 parts by mass polymerization initiator Irgacure 127; manufactured by BASF
  • composition for low refractive index layer (4) The following components were mixed to prepare a composition for low refractive index layer (4).
  • Hollow silica fine particles solid content of hollow silica fine particles: 20% by mass solution; methyl isobutyl ketone, average particle size: 60 nm, average porosity: 29.6%
  • PETA pentaerythritol triacrylate
  • reactive silica fine particles solid content of the reactive silica fine particles: 30% by mass solution; methyl isobutyl ketone, average particle size: 12 nm
  • RS-74 manufactured by DIC, 20% by mass solution; methyl ethyl ketone
  • Antifouling agent TU2225, manufactured by JSR, 15% by mass solution; methyl isobutyl butyl ketone
  • mass polymerization initiator Irgacure 127; manufactured by BASF
  • composition (5) for low refractive index layer The following components were mixed to prepare a composition for low refractive index layer (5).
  • Hollow silica fine particles solid content of hollow silica fine particles: 20% by mass solution; methyl isobutyl ketone, average particle size: 60 nm, average porosity: 29.6%
  • PETA pentaerythritol triacrylate
  • 0.1 part by mass reactive silica fine particles solid content of the reactive silica fine particles: 30% by mass solution; methyl isobutyl ketone, average particle size: 12 nm
  • 0.02 mass Antifouling agent RS-74, manufactured by DIC, 20% by mass solution; methyl ethyl ketone
  • TU2225 manufactured by JSR, 15% by mass solution; methyl isobutyl butyl ketone
  • mass polymerization initiator Irgacure 127; manufactured by BASF
  • composition for low refractive index layer (6) The following components were mixed to prepare a composition for low refractive index layer (6).
  • Hollow silica fine particles solid content of the hollow silica fine particles: 20% by mass solution; methyl isobutyl ketone, average particle diameter: 55 nm, average porosity: 23.3%
  • PETA pentaerythritol triacrylate
  • DPHA dipentaerythritol hexaacrylate
  • reactive silica fine particles solid content of the reactive silica fine particles: 30% by mass solution; methyl Isobutyl ketone, average particle size: 12 nm
  • RS-74 manufactured by DIC, 20% by mass solution; methyl ethyl ketone
  • Antifouling agent TU2225, manufactured by JSR, 15% by mass solution; methyl isobutyl butyl ket
  • composition for low refractive index layer (7) The following components were mixed to prepare a composition for low refractive index layer (7).
  • Hollow silica fine particles solid content of hollow silica fine particles: 20% by mass solution; methyl isobutyl ketone, average particle size: 60 nm, average porosity: 29.6%
  • PETA pentaerythritol triacrylate
  • reactive silica fine particles solid content of the reactive silica fine particles: 30% by mass solution; methyl isobutyl ketone, average particle size: 12 nm
  • 0.1 mass Antifouling agent RS-74, manufactured by DIC, 20% by mass solution; methyl ethyl ketone
  • TU2225 manufactured by JSR, 15% by mass solution; methyl isobutyl butyl ketone
  • mass polymerization initiator Irgacure 127; manufactured by BASF
  • composition for low refractive index layer (8) The following components were mixed to prepare a low refractive index layer composition (8).
  • Hollow silica fine particles solid content of hollow silica fine particles: 20% by mass solution; methyl isobutyl ketone, average particle size: 60 nm, average porosity: 29.6%
  • PETA pentaerythritol triacrylate
  • 0.1 part by mass reactive silica fine particles solid content of the reactive silica fine particles: 30% by mass solution; methyl isobutyl ketone, average particle size: 12 nm
  • Antifouling agent RS-74, manufactured by DIC, 20% by mass solution; methyl ethyl ketone
  • TU2225 manufactured by JSR, 15% by mass solution; methyl isobutyl butyl ketone
  • mass polymerization initiator Irgacure 127; manufactured by BASF
  • composition for low refractive index layer (9) The following components were mixed to prepare a composition for low refractive index layer (9).
  • Hollow silica fine particles solid content of hollow silica fine particles: 20% by mass solution; methyl isobutyl ketone, average particle size: 60 nm, average porosity: 29.6%
  • PETA pentaerythritol triacrylate
  • 0.1 part by mass reactive silica fine particles solid content of the reactive silica fine particles: 30% by mass solution; methyl isobutyl ketone, average particle size: 12 nm
  • RS-74 manufactured by DIC, 20% by mass solution; methyl ethyl ketone
  • TU2225 manufactured by JSR, 15% by mass solution; methyl isobutyl butyl ketone
  • mass polymerization initiator Irgacure 127; manufactured by BASF
  • composition for low refractive index layer (10) The following components were mixed to prepare a composition for low refractive index layer (10).
  • Hollow silica fine particles solid content of hollow silica fine particles: 20% by mass solution; methyl isobutyl ketone, average particle size: 60 nm, average porosity: 29.6%
  • PETA pentaerythritol triacrylate
  • reactive silica fine particles solid content of the reactive silica fine particles: 30% by mass solution; methyl isobutyl ketone, average particle size: 12 nm
  • Antifouling agent RS-74, manufactured by DIC, 20% by mass solution; methyl ethyl ketone
  • TU2225 manufactured by JSR, 15% by mass solution; methyl isobutyl butyl ketone
  • mass polymerization initiator Irgacure 127; manufactured by BASF
  • composition (11) for low refractive index layer The following components were mixed to prepare a composition for low refractive index layer (11).
  • Hollow silica fine particles solid content of the hollow silica fine particles: 20% by mass solution; methyl isobutyl ketone, average particle diameter: 55 nm, average porosity: 23.3%
  • PETA pentaerythritol triacrylate
  • DPHA dipentaerythritol hexaacrylate
  • reactive silica fine particles solid content of the reactive silica fine particles: 30% by mass solution; methyl Isobutyl ketone, average particle size: 12 nm
  • RS-74 manufactured by DIC, 20% by mass solution; methyl ethyl ketone
  • TU2225 manufactured by JSR, 15% by mass solution; methyl isobutyl butyl ketone
  • Example 1 The composition for hard coat layer (1) was applied on one side of a cellulose triacetate film (thickness: 80 ⁇ m) with a wet weight of 30 g / m 2 (dry weight of 15 g / m 2 ). It dried for 30 seconds at 50 degreeC, and irradiated the ultraviolet-ray 50mJ / cm ⁇ 2 >, and formed the hard-coat layer. Next, on the formed hard coat layer, the composition (1) for the low refractive index layer is dried (25 ° C. ⁇ 30 seconds ⁇ 70 ° C. ⁇ 30 seconds) so that the film thickness becomes 0.1 ⁇ m. Applied.
  • the ultraviolet irradiation device (The fusion UV system Japan company make, light source H bulb), it irradiated with ultraviolet irradiation with the irradiation dose of 192 mJ / m ⁇ 2 >, and it was made to harden, and the antireflection film was obtained.
  • the film thickness was adjusted so that the minimum value of reflectivity was around 550 nm.
  • the blending ratio of hollow silica fine particles to (meth) acrylic resin content of hollow silica fine particles / content of (meth) acrylic resin was 1.60. It was.
  • Example 2 An antireflection film was obtained in the same manner as in Example 1 except that the low refractive index layer composition (2) was used instead of the low refractive index layer composition (1).
  • the blending ratio of hollow silica fine particles to (meth) acrylic resin was 1.60. It was.
  • Example 3 The hard coat layer composition (2) was applied on one side of a cellulose triacetate film (thickness: 80 ⁇ m) to form a hard coat layer by applying a wet weight of 30 g / m 2 (dry weight of 15 g / m 2 ).
  • An antireflection film was obtained in the same manner as in Example 1 except that the low refractive index layer was formed on the coating layer using the composition for low refractive index layer (2).
  • Example 4 An antireflection film was obtained in the same manner as in Example 1 except that the low refractive index layer composition (3) was used instead of the low refractive index layer composition (1).
  • the mixing ratio of hollow silica fine particles to (meth) acrylic resin was 1.00. It was.
  • Example 5 An antireflection film was obtained in the same manner as in Example 1 except that the low refractive index layer composition (4) was used instead of the low refractive index layer composition (1).
  • the mixing ratio of hollow silica fine particles to (meth) acrylic resin was 0.94. It was.
  • Example 6 An antireflection film was obtained in the same manner as in Example 1 except that the low refractive index layer composition (5) was used instead of the low refractive index layer composition (1).
  • the blending ratio of hollow silica fine particles to (meth) acrylic resin was 1.60. It was.
  • Example 7 The hard coat layer composition (3) was applied on one side of a cellulose triacetate film (thickness: 80 ⁇ m) to form a hard coat layer by applying a wet weight of 30 g / m 2 (dry weight: 15 g / m 2 ).
  • An antireflection film was obtained in the same manner as in Example 1 except that the low refractive index layer was formed on the coating layer using the composition for low refractive index layer (2).
  • Example 8 An antireflection film was obtained in the same manner as in Example 1 except that the low refractive index layer composition (6) was used instead of the low refractive index layer composition (1).
  • the blending ratio of hollow silica fine particles to (meth) acrylic resin was 1.60. It was.
  • the low refractive index layer composition (11) is used in place of the low refractive index layer composition (1), and the low refractive index layer composition (11) is dried at 120 ° C. for 1 minute.
  • An antireflection film was obtained in the same manner as in Example 1 except that the rate layer was formed.
  • Example 2 A low refractive index layer composition (12) having the same composition as the low refractive index layer composition (1) except that the reactive silica fine particles are not contained is prepared, and the low refractive index layer composition (12) is prepared. An antireflection film was obtained in the same manner as in Example 1 except that was used.
  • composition for low refractive index layer (1) the composition for low refractive index layer (MEK-ST, manufactured by Nissan Chemical Industries, Ltd.) having reactive silica fine particles having no reactive functional group on the surface (1) 13) was prepared, and an antireflection film was obtained in the same manner as in Example 1 except that the composition for low refractive layer (13) was used.
  • MEK-ST the composition for low refractive index layer having reactive silica fine particles having no reactive functional group on the surface (1) 13
  • Example 3 An antireflection film was obtained in the same manner as in Example 1 except that the low refractive index layer composition (9) was used instead of the low refractive index layer composition (1).
  • the blending ratio of hollow silica fine particles to (meth) acrylic resin was 1.60. It was.
  • content of the reactive silica fine particle in a low-refractive-index layer was 65 mass parts with respect to 100 mass parts of (meth) acrylic resins.
  • Example 4 An antireflection film was obtained in the same manner as in Example 1 except that the low refractive index layer composition (10) was used instead of the low refractive index layer composition (1).
  • the blending ratio of hollow silica fine particles to (meth) acrylic resin was 1.60. It was.
  • content of the reactive silica fine particle in a low-refractive-index layer was 3 mass parts with respect to 100 mass parts of (meth) acrylic resins.
  • Example 1 The antireflection films obtained in Examples and Comparative Examples were cut in the thickness direction, and the respective cross sections were observed with STEM (applied voltage: 30.0 kV, magnification: 200,000 times).
  • the result of Example 1 is shown in FIG. 1
  • the result of Example 7 is shown in FIG. 2
  • the result of Comparative Example 1 is shown in FIG. 3
  • the result of Comparative Example 2 is shown in FIG.
  • the antireflection film obtained in Comparative Example 1 formed a vapor deposition layer made of carbon having a thickness of about 150 nm during cross-sectional observation. Further, in the lower right of FIGS. 1 to 4, one scale indicates a scale of 20 nm.
  • the antireflection film according to Example 1 is confirmed to have reactive silica fine particles unevenly distributed in the vicinity of the interface opposite to the hard coat layer of the low refractive index layer. Further, the antireflection film according to Example 7 is confirmed. In the film, reactive silica fine particles unevenly distributed in the vicinity of the interface on the hard coat layer side of the low refractive index layer and in the vicinity of the interface opposite to the hard coat layer were confirmed, both of which were filled with hollow silica fine particles densely And the surface of the low refractive index layer was extremely uniform.
  • the antireflection film according to Example 3 has a state in which reactive silica fine particles unevenly distributed in the vicinity of the interface on the hard coat layer side of the low refractive index layer are confirmed, and hollow silica fine particles are also densely packed.
  • the surface of the low refractive index layer was in a very uniform state.
  • the antireflection films according to Examples 2, 4 to 6, and 8 were all confirmed to have reactive silica fine particles unevenly distributed in the vicinity of the interface opposite to the hard coat layer of the low refractive index layer, The hollow silica fine particles were also densely packed, and the surface of the low refractive index layer was extremely uniform.
  • the antireflection films according to the examples had sufficient antifouling properties, antireflection performance and scratch resistance. From the results of the examples, it was found that the scratch resistance was the best in the following cases.
  • the reactive silica fine particles are unevenly distributed on the side opposite to the hard coat layer of the low refractive index layer, and the amount of the reactive silica fine particles unevenly distributed is optimal (30 parts by mass with respect to 100 parts by mass of the (meth) acrylic resin) Or more).
  • the hard coat layer also contains reactive silica fine particles, the hardness of the entire layer (light-transmitting substrate and hard coat layer) serving as the base of the low refractive index layer is high.
  • the antifouling property is best when the reactive silica fine particles are unevenly distributed on the hard coat layer side of the low refractive index layer. This is because the antifouling agent itself tends to come out on the surface of the low refractive index layer because there is no reactive silica fine particle on the outermost surface of the low refractive index layer, and the antifouling agent exists on the entire outermost surface of the low refractive index layer. It is presumed that.
  • the antireflection film according to Comparative Example 2 is in a state where the hollow silica fine particles are densely packed and the surface is uniform, but the reactive silica fine particles are present in the low refractive index layer. Since it was not included, the scratch resistance was poor.
  • the antireflection film according to Comparative Example 3 is in a state where the hollow silica fine particles are densely packed and the surface is uniform, but does not have a reactive functional group in the low refractive index layer. Since it contained silica fine particles, it was inferior in scratch resistance.
  • the ratio of the hollow silica fine particle with respect to the (meth) acrylic resin of the low refractive index layer was small, and the antireflection film according to Reference Example 1 was inferior in antireflection performance.
  • the antireflection films according to Reference Examples 2 and 3 have a high content of reactive silica fine particles in the low refractive index layer, and the reactive silica fine particles are insufficiently distributed and exist uniformly in the low refractive index layer. Further, the hollow silica fine particles were not in a densely packed state and were inferior in scratch resistance and antifouling property.
  • the antireflection film according to Reference Example 4 has a low content of reactive silica fine particles in the low refractive index layer, the uneven distribution of reactive silica fine particles is insufficient, and is uniformly present in the low refractive index layer,
  • the hollow silica fine particles were not in a densely packed state and were inferior in scratch resistance and antifouling properties.
  • the antireflection film of the present invention Since the antireflection film of the present invention has the low refractive index layer having the above-described configuration, it has excellent antireflection performance and surface hardness. Therefore, the antireflection film of the present invention is a cathode ray tube display (CRT), a liquid crystal display (LCD), a plasma display (PDP), an electroluminescence display (ELD), a field emission display (FED), a touch panel, a tablet PC, an electronic It can be suitably applied to paper or the like.
  • CTR cathode ray tube display
  • LCD liquid crystal display
  • PDP plasma display
  • ELD electroluminescence display
  • FED field emission display
  • touch panel a touch panel
  • tablet PC an electronic It can be suitably applied to paper or the like.

Abstract

The purpose of the present invention is to provide an antireflection film that has a sufficient surface hardness and a uniform surface, comprises a low-refractive-index layer having a sufficiently low refractive index, and has excellent antireflection performance. An antireflection film wherein a hard coating layer is formed on a light-permeable substrate and a low-refractive-index layer is formed on the hard coating layer is characterized in that the low-refractive-index layer of the antireflection film comprises (meth)acrylic resin, hollow silica microparticles, reactive silica microparticles and an antifouling agent and the reactive silica microparticles in the low-refractive-index layer are unevenly distributed near the interface on the hard coating layer side and/or near the interface of the side opposite the hard coating layer.

Description

反射防止フィルム、偏光板及び画像表示装置Antireflection film, polarizing plate and image display device
本発明は、反射防止フィルム、偏光板及び画像表示装置に関する。 The present invention relates to an antireflection film, a polarizing plate, and an image display device.
陰極線管表示装置(CRT)、液晶ディスプレイ(LCD)、プラズマディスプレイ(PDP)、エレクトロルミネッセンスディスプレイ(ELD)、フィールドエミッションディスプレイ(FED)、タッチパネル、タブレットPC、電子ペーパー等の画像表示装置における画像表示面は、外部光源から照射された光線による反射を少なくし、その視認性を高めることが要求される。
これに対して、光透過性基材に、反射防止層を形成した反射防止フィルムを利用することにより、画像表示装置の画像表示面の反射を低減させ、視認性を向上させることが一般的に行われている。
Image display surface in image display devices such as cathode ray tube display (CRT), liquid crystal display (LCD), plasma display (PDP), electroluminescence display (ELD), field emission display (FED), touch panel, tablet PC, electronic paper However, it is required to reduce the reflection due to the light rays emitted from the external light source and to improve the visibility.
On the other hand, it is common to reduce the reflection of the image display surface of the image display device and improve the visibility by using an antireflection film having an antireflection layer formed on the light transmissive substrate. Has been done.
反射防止層を有する反射防止フィルムとしては、従来、光透過性基材よりも屈折率の低い低屈折率層を最表面に設けた構造が知られている。
このような低屈折率層には、反射防止フィルムの反射防止性能を高めるために低屈折率であること、最表面に設けられることから、防汚性能を有すること、傷付き防止等のために高い硬度を有すること、及び、透明性等の優れた光学特性を有することが求められる。
低屈折率層が最表面に形成された反射防止フィルムとしては、例えば、特許文献1に、中空状シリカ微粒子とアクリレート等のバインダー樹脂等とを含有する塗工液を用いて、内部に中空状シリカ微粒子を含有する構造の低屈折率層を有する反射防止フィルムが開示されている。
As an antireflection film having an antireflection layer, a structure in which a low refractive index layer having a refractive index lower than that of a light-transmitting substrate is provided on the outermost surface is conventionally known.
Such a low refractive index layer has a low refractive index in order to enhance the antireflection performance of the antireflection film, and since it is provided on the outermost surface, it has antifouling performance, scratch prevention, etc. It is required to have high hardness and excellent optical properties such as transparency.
As an antireflection film having a low refractive index layer formed on the outermost surface, for example, in Patent Document 1, a coating liquid containing hollow silica fine particles and a binder resin such as acrylate is used, and the inside is hollow. An antireflection film having a low refractive index layer having a structure containing silica fine particles is disclosed.
ところが、近年、画像表示装置に要求される表示品質は非常に高いものとなってきており、反射防止フィルムによる反射防止性能もより高いレベルで要求されるようになってきている。
しかしながら、従来の中空状シリカ微粒子を内包する低屈折率層が設けられた反射防止フィルムでは、反射防止性能が充分とは言えず近年の高い表示品質の要求に充分に応えることができないものであった。
However, in recent years, the display quality required for image display devices has become very high, and the antireflection performance by the antireflection film has also been required at a higher level.
However, the conventional antireflection film provided with a low refractive index layer containing hollow silica fine particles does not have sufficient antireflection performance and cannot sufficiently meet the recent demand for high display quality. It was.
また、例えば、特許文献2等には、低屈折率層の材料にフッ素原子含有ポリマー又はモノマーを配合する方法が開示されている。フッ素原子含有ポリマー又はモノマーは、屈折率の低い材料であるためこれらを含有する低屈折率層は、従来の中空状シリカ微粒子を内包する低屈折率層よりも屈折率をより低減化することが可能である。
しかしながら、従来のフッ素原子含有ポリマー又はモノマーを含有する低屈折率層は、充分に屈折率を低減化させる程度にまでこれらの化合物を含有させると、低屈折率層の硬度が不充分となる問題があった。
そのため、充分な表面硬度を有するとともに、より屈折率の低い低屈折率層を備え、高い反射防止性能を有する反射防止フィルムが求められていた。
更に、このような反射防止フィルムは、通常、画像表示装置の最表面に設置されるものであるため、優れた滑り性を備えることも要求される。
For example, Patent Document 2 discloses a method of blending a fluorine atom-containing polymer or monomer with a material for a low refractive index layer. Since the fluorine atom-containing polymer or monomer is a material having a low refractive index, a low refractive index layer containing these may lower the refractive index more than a conventional low refractive index layer containing hollow silica fine particles. Is possible.
However, the conventional low refractive index layer containing a fluorine atom-containing polymer or monomer has a problem that the hardness of the low refractive index layer becomes insufficient when these compounds are contained to such an extent that the refractive index is sufficiently reduced. was there.
Therefore, an antireflection film having a sufficient surface hardness, a low refractive index layer having a lower refractive index, and having high antireflection performance has been demanded.
Furthermore, since such an antireflection film is usually placed on the outermost surface of the image display device, it is also required to have excellent slipperiness.
特開2003-292831号公報JP 2003-292831 A 特開2001-100004号公報JP 2001-100004 A
本発明は、上記現状に鑑みて、充分な防汚性能と表面硬度と均一な表面とを有するとともに、低屈折率層の屈折率が充分に低い低屈折率層を備え、優れた反射防止性能を有する反射防止フィルム、該反射防止フィルムを用いてなる偏光板及び画像表示装置を提供することを目的とするものである。 In view of the above situation, the present invention has a sufficient antifouling performance, surface hardness, and a uniform surface, and has a low refractive index layer having a sufficiently low refractive index, and has excellent antireflection performance. It is an object to provide an antireflection film having a polarizing plate, a polarizing plate using the antireflection film, and an image display device.
本発明は、光透過性基材の上にハードコート層が形成され、上記ハードコート層の上に低屈折率層が形成された反射防止フィルムであって、上記低屈折率層は、(メタ)アクリル樹脂、中空状シリカ微粒子、反応性シリカ微粒子及び防汚剤を含有し、かつ、上記低屈折率層中の反応性シリカ微粒子は、上記ハードコート層側の界面近傍及び/又は前記ハードコート層と反対側の界面近傍に偏在していることを特徴とする反射防止フィルムである。 The present invention is an antireflection film in which a hard coat layer is formed on a light-transmitting substrate and a low refractive index layer is formed on the hard coat layer. ) Acrylic resin, hollow silica fine particles, reactive silica fine particles and antifouling agent, and the reactive silica fine particles in the low refractive index layer are near the interface on the hard coat layer side and / or the hard coat. It is an antireflection film characterized by being unevenly distributed in the vicinity of the interface opposite to the layer.
本発明の反射防止フィルムにおいて、上記低屈折率層中の反応性シリカ微粒子は、ハードコート層側と反対側の界面近傍に偏在しており、上記ハードコート層は、低屈折率層側の界面近傍で該界面方向整列した反応性シリカ微粒子を有することが好ましい。
また、上記低屈折率層中の反応性シリカ微粒子の含有量が、(メタ)アクリル樹脂100質量部に対して、5~60質量部であることが好ましい。
また、上記中空状シリカ微粒子は、平均粒子径が40~80nmであり、更に、(メタ)アクリル樹脂に対する配合比(中空状シリカ微粒子の含有量/(メタ)アクリル樹脂の含有量)が、0.90~1.60であることが好ましい。
また、上記防汚剤は、上記低屈折率層のハードコート層と反対側の界面近傍に偏在していることが好ましい。
上記防汚剤は、反応性官能基と、フッ素原子及び/又はケイ素原子とを含有する化合物であることが好ましい。
また、上記(メタ)アクリル樹脂は、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、及び、イソシアヌル酸トリ(メタ)アクリレートからなる群より選択される少なくとも1種のモノマーの重合体又は共重合体であることが好ましい。
また、上記低屈折率層は、フッ素原子含有樹脂を更に含有することが好ましい。
また、上記ハードコート層中の反応性シリカ微粒子の含有量が、(メタ)アクリル樹脂100質量部に対して、15~60質量部であることが好ましい。
In the antireflection film of the present invention, the reactive silica fine particles in the low refractive index layer are unevenly distributed in the vicinity of the interface opposite to the hard coat layer side, and the hard coat layer is an interface on the low refractive index layer side. It is preferable to have reactive silica fine particles aligned in the interface direction in the vicinity.
Further, the content of the reactive silica fine particles in the low refractive index layer is preferably 5 to 60 parts by mass with respect to 100 parts by mass of the (meth) acrylic resin.
The hollow silica fine particles have an average particle diameter of 40 to 80 nm, and the blending ratio with respect to (meth) acrylic resin (content of hollow silica fine particles / content of (meth) acrylic resin) is 0. It is preferably 90 to 1.60.
Moreover, it is preferable that the said antifouling agent is unevenly distributed in the vicinity of the interface opposite to the hard coat layer of the low refractive index layer.
The antifouling agent is preferably a compound containing a reactive functional group and a fluorine atom and / or a silicon atom.
The (meth) acrylic resin includes pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, trimethylolpropane tri (meth) ), A polymer or copolymer of at least one monomer selected from the group consisting of acrylate, dipentaerythritol tetra (meth) acrylate, and isocyanuric acid tri (meth) acrylate.
The low refractive index layer preferably further contains a fluorine atom-containing resin.
The content of the reactive silica fine particles in the hard coat layer is preferably 15 to 60 parts by mass with respect to 100 parts by mass of the (meth) acrylic resin.
本発明はまた、偏光素子を備えてなる偏光板であって、上記偏光板は、偏光素子表面に上述の反射防止フィルムを備えることを特徴とする偏光板でもある。
本発明はまた、上述の反射防止フィルム、又は、上述の偏光板を備えることを特徴とする画像表示装置でもある。
以下に、本発明を詳細に説明する。
This invention is also a polarizing plate provided with a polarizing element, Comprising: The said polarizing plate is provided with the above-mentioned antireflection film on the surface of a polarizing element, It is also a polarizing plate characterized by the above-mentioned.
The present invention is also an image display device comprising the above-described antireflection film or the above-described polarizing plate.
The present invention is described in detail below.
本発明は、光透過性基材の上にハードコート層が形成され、上記ハードコート層の上に低屈折率層が形成された反射防止フィルムである。
本発明者らは、上記構成の反射防止フィルムについて鋭意検討した結果、ハードコート層に反応性シリカ微粒子を含有させ、更に、低屈折率層に反応性シリカ微粒子と中空状シリカ微粒子とを含有させることで、上記低屈折率層中の反応性シリカ微粒子がハードコート層と反対側界面近傍に偏在し、また、低屈折率層中の中空状シリカ微粒子が密に充填された状態となり、所望の効果を発揮することを見出し、本発明を完成するに至った。
以下、本発明の反射防止フィルムを構成する各層について詳細に説明する。
The present invention is an antireflection film in which a hard coat layer is formed on a light-transmitting substrate and a low refractive index layer is formed on the hard coat layer.
As a result of intensive investigations on the antireflection film having the above-described structure, the present inventors have included the reactive silica fine particles in the hard coat layer and further the reactive silica fine particles and the hollow silica fine particles in the low refractive index layer. As a result, the reactive silica fine particles in the low refractive index layer are unevenly distributed in the vicinity of the interface opposite to the hard coat layer, and the hollow silica fine particles in the low refractive index layer are densely packed. The inventors have found that the present invention is effective and have completed the present invention.
Hereinafter, each layer constituting the antireflection film of the present invention will be described in detail.
低屈折率層
上記低屈折率層とは、本発明の反射防止フィルムを構成する光透過性基材やハードコート層等、低屈折率層以外の構成物の屈折率よりも低い屈折率であるものをいう。
本発明の反射防止フィルムにおいて、上記低屈折率層は、(メタ)アクリル樹脂、中空状シリカ微粒子、反応性シリカ微粒子及び防汚剤を含有するものである。
Low refractive index layer The low refractive index layer is lower than the refractive index of components other than the low refractive index layer, such as a light-transmitting base material and a hard coat layer constituting the antireflection film of the present invention. What is the refractive index.
In the antireflection film of the present invention, the low refractive index layer contains (meth) acrylic resin, hollow silica fine particles, reactive silica fine particles, and an antifouling agent.
上記中空状シリカ微粒子は、低屈折率層の層強度を保持しつつ、その屈折率を下げる役割を果たすものである。なお、本明細書において、「中空状シリカ微粒子」とは、内部に気体が充填された構造及び/又は気体を含む多孔質構造体であり、シリカ微粒子本来の屈折率に比べて気体の占有率に比例して屈折率が低下するシリカ微粒子を意味する。
また、本発明においては、シリカ微粒子の形態、構造、凝集状態、上記低屈折率層を形成する際に用いられる後述する低屈折率層用組成物を用いて形成した塗膜の内部での分散状態により、内部及び/又は表面の少なくとも一部にナノポーラス構造の形成が可能なシリカ微粒子も含まれる。
The hollow silica fine particles serve to lower the refractive index while maintaining the layer strength of the low refractive index layer. In the present specification, “hollow silica fine particles” refers to a structure in which gas is filled and / or a porous structure containing a gas, and the gas occupancy rate compared to the original refractive index of silica fine particles. The silica fine particles whose refractive index decreases in proportion to
Further, in the present invention, the form of silica fine particles, the structure, the aggregation state, and the dispersion inside the coating film formed by using the composition for low refractive index layer, which will be described later, used when forming the low refractive index layer. Depending on the state, silica fine particles capable of forming a nanoporous structure inside and / or at least part of the surface are also included.
本発明の反射防止フィルムにおいて、上記中空状シリカ微粒子は、上記低屈折率層中で密に充填された状態で含有されている。このため、上記低屈折率層の表面の均一性が優れたものとなり、本発明の反射防止フィルムは、表面硬度に優れたものとなる。
なお、上記「密に充填された状態」とは、隣接する中空状シリカ微粒子間に後述する反応性シリカ微粒子が殆ど存在しておらず、最密充填構造に類似の状態を形成していることを意味する。
In the antireflection film of the present invention, the hollow silica fine particles are contained in a densely packed state in the low refractive index layer. For this reason, the surface uniformity of the low refractive index layer is excellent, and the antireflection film of the present invention is excellent in surface hardness.
The “closely packed state” means that there are almost no reactive silica fine particles to be described later between adjacent hollow silica fine particles, and a state similar to the closest packed structure is formed. Means.
上記中空状シリカ微粒子が上記低屈折率層中で密に充填された状態で含有されるのは、後述するように上記低屈折率層に含まれる反応性シリカ微粒子が、低屈折率層のハードコート層側界面近傍又はハードコート層と反対側界面近傍に偏在しているからであると推測される。すなわち、上記低屈折率層は、中空状シリカ微粒子、反応性シリカ微粒子及び(メタ)アクリル樹脂のモノマー成分を含む組成物(以下、低屈折率層用組成物ともいう)を、ハードコート層上に塗布して塗膜を形成し、該塗膜を乾燥、硬化させることで形成される。上記塗膜を形成したとき、該塗膜に含まれる反応性シリカ微粒子は、後述するように上記ハードコート層側の界面近傍又はハードコート層の反対側の界面近傍に移動する。このため、形成した塗膜中において、隣接する中空状シリカ微粒子間に反応性シリカ微粒子が殆ど存在していないこととなり、その結果、形成する低屈折率層における中空状シリカ微粒子は、密に充填された状態になるものと推測される。 The hollow silica fine particles are contained in a densely packed state in the low refractive index layer because the reactive silica fine particles contained in the low refractive index layer are hard in the low refractive index layer as will be described later. This is presumably because it is unevenly distributed in the vicinity of the interface on the coat layer side or in the vicinity of the interface on the side opposite to the hard coat layer. That is, the low refractive index layer comprises a composition containing hollow silica fine particles, reactive silica fine particles and a monomer component of (meth) acrylic resin (hereinafter also referred to as a composition for low refractive index layer) on the hard coat layer. The coating film is formed by applying to the film, and the coating film is dried and cured. When the coating film is formed, the reactive silica fine particles contained in the coating film move to the vicinity of the interface on the hard coat layer side or the vicinity of the interface on the opposite side of the hard coat layer as described later. For this reason, in the formed coating film, there is almost no reactive silica fine particles between adjacent hollow silica fine particles, and as a result, the hollow silica fine particles in the low refractive index layer to be formed are closely packed. It is presumed that it will be in the state.
上記中空状シリカ微粒子の具体例としては特に限定されず、例えば、特開2001-233611号公報で開示されている技術を用いて調製したシリカ微粒子が好ましく挙げられる。中空状シリカ微粒子は、製造が容易でそれ自身の硬度が高いため、有機系バインダーと混合して低屈折率層を形成した際、その層強度が向上され、かつ、屈折率が低くなるよう調整することが可能となる。 Specific examples of the hollow silica fine particles are not particularly limited, and for example, silica fine particles prepared by using the technique disclosed in JP-A-2001-233611 are preferable. Since hollow silica fine particles are easy to manufacture and have high hardness themselves, when mixed with an organic binder to form a low refractive index layer, the layer strength is improved and the refractive index is adjusted to be low. It becomes possible to do.
また、上述の中空シリカ微粒子に加え、比表面積を大きくすることを目的として製造され使用される、充填用のカラム、表面の多孔質部に各種化学物質を吸着させる吸着剤、触媒固定用に使用される多孔質微粒子、又は、断熱材若しくは低誘電材に組み込むことを目的とする中空微粒子の分散体若しくは凝集体が挙げられる。そのような具体例としては、市販品として日本シリカ工業社製の商品名NipsilやNipgelの中から多孔質シリカ微粒子の集合体、日産化学工業社製のシリカ微粒子が鎖状に繋がった構造を有するコロイダルシリカUPシリーズ(商品名)が挙げられる。これらの中から、本発明の好ましい粒子径の範囲内のものを利用することが可能である。 In addition to the above-mentioned hollow silica fine particles, it is manufactured and used for the purpose of increasing the specific surface area, used for packing columns, adsorbents that adsorb various chemical substances on the porous surface, and for fixing catalysts. Porous fine particles, or dispersions or aggregates of hollow fine particles intended to be incorporated into a heat insulating material or a low dielectric material. As such a specific example, it has a structure in which porous silica fine particles aggregated from the product names Nippil and Nipgel manufactured by Nippon Silica Kogyo Co., Ltd. as a commercial product, and silica fine particles manufactured by Nissan Chemical Industries, Ltd. are linked in a chain shape. Colloidal silica UP series (trade name) may be mentioned. Among these, those within the preferred particle diameter range of the present invention can be used.
上記中空状シリカ微粒子の平均粒子径としては、10~100nmであることが好ましい。中空状シリカ微粒子の平均粒子径がこの範囲内にあることにより、低屈折率層に優れた透明性を付与することができる。より好ましい下限は40nm、より好ましい上限は80nm、更に好ましい下限は45nm、更に好ましい上限は75nm、最も好ましい下限は50nm、最も好ましい上限は70nmである。
なお、上記中空状シリカ微粒子の平均粒子径は、該中空状シリカ微粒子単独の場合、動的光散乱法により測定された値を意味する。一方、上記低屈折率層中の中空状シリカ微粒子の平均粒子径は、低屈折率層の断面をSTEM等で観察し、任意の中空状シリカ微粒子30個を選択してその断面の粒子径を測定し、その平均値として算出される値である。
The average particle diameter of the hollow silica fine particles is preferably 10 to 100 nm. When the average particle diameter of the hollow silica fine particles is within this range, excellent transparency can be imparted to the low refractive index layer. A more preferred lower limit is 40 nm, a more preferred upper limit is 80 nm, a still more preferred lower limit is 45 nm, a still more preferred upper limit is 75 nm, a most preferred lower limit is 50 nm, and a most preferred upper limit is 70 nm.
The average particle diameter of the hollow silica fine particles means a value measured by a dynamic light scattering method in the case of the hollow silica fine particles alone. On the other hand, the average particle diameter of the hollow silica fine particles in the low refractive index layer is determined by observing the cross section of the low refractive index layer with a STEM or the like, and selecting 30 arbitrary hollow silica fine particles. It is a value measured and calculated as the average value.
また、上記中空状シリカ微粒子の空隙率としては、1.5~80.0%であることが好ましい。1.5%未満であると、低屈折率層の屈折率を充分に低くできず、本発明の反射防止フィルムの反射防止性能が不充分となることがある。80.0%を超えると、上記中空状シリカ微粒子の強度が低下して低屈折率層全体の強度が不充分となることがある。上記中空状シリカ微粒子の空隙率は、より好ましい下限が6.4%、より好ましい上限が76.4%であり、更に好ましい下限が20.0%、更に好ましい上限が55.0%である。この範囲の空隙率を有することで、低屈折率層を、充分に低屈折率化させることができるとともに、優れた強度を有するものとすることができる。
なお、上記中空状シリカ微粒子の空隙率は、中空状シリカ微粒子の断面STEM観察等により、その直径及び空隙部分を除いた外殻部分の厚みを測定し、中空状シリカ微粒子が球体であるとして、中空状シリカ微粒子の空隙部分の体積、及び、空隙部分がないとしたときの中空状シリカ微粒子の体積を算出し、{(中空状シリカ微粒子の空隙部分の体積)/(空隙部分がないとしたときの中空状シリカ微粒子の体積)}×100より算出することができる。
Further, the porosity of the hollow silica fine particles is preferably 1.5 to 80.0%. If it is less than 1.5%, the refractive index of the low refractive index layer cannot be sufficiently lowered, and the antireflection performance of the antireflection film of the present invention may be insufficient. If it exceeds 80.0%, the strength of the hollow silica fine particles may be lowered, and the strength of the entire low refractive index layer may be insufficient. The void ratio of the hollow silica fine particles has a more preferable lower limit of 6.4%, a more preferable upper limit of 76.4%, a still more preferable lower limit of 20.0%, and a further preferable upper limit of 55.0%. By having the porosity in this range, the low refractive index layer can have a sufficiently low refractive index and can have excellent strength.
The porosity of the hollow silica fine particles is measured by measuring the diameter and the thickness of the outer shell portion excluding the void portions by cross-sectional STEM observation of the hollow silica fine particles, and the hollow silica fine particles are spherical. The volume of the void portion of the hollow silica fine particle and the volume of the hollow silica fine particle when there is no void portion are calculated, and {(the volume of the void portion of the hollow silica fine particle) / (the void portion is absent) (Volume of hollow silica fine particles)} × 100.
また、平均粒子径及び上記外殻部分の厚みの異なる複数の中空状シリカ微粒子を低屈折率層に含む場合、上述した方法で算出した各中空状シリカ微粒子の空隙率と、各中空状シリカ微粒子の配合比とから算出した平均値を、上記中空状シリカ微粒子の空隙率とする(以下、このような空隙率を「平均空隙率」ともいう)。なお、この場合であっても、個々の中空状シリカ微粒子は、上述した範囲の空隙率を有することが好ましい。
本発明の反射防止フィルムでは、上記中空状シリカ微粒子の平均空隙率は、10.0~40.0%であることが好ましい。10.0%未満であると、低屈折率層の屈折率を充分に低くできず、本発明の反射防止フィルムの反射防止性能が不充分となることがある。40.0%を超えると、上記中空状シリカ微粒子の強度が低下して低屈折率層全体の強度が不充分となることがある。より好ましい下限は15.0%、より好ましい上限は35.0%である。この範囲の空隙率を有することで、低屈折率層を、充分に低屈折率化させることができるとともに、優れた強度を有するものとすることができる。低屈折率化及び強度の観点から、上記中空状シリカ微粒子の平均空隙率の更に好ましい下限は20.0%、更に好ましい上限は30.0%である。
Further, when the low refractive index layer includes a plurality of hollow silica fine particles having different average particle diameters and thicknesses of the outer shell portion, the porosity of each hollow silica fine particle calculated by the method described above, and each hollow silica fine particle The average value calculated from the blending ratio is used as the porosity of the hollow silica fine particles (hereinafter, such porosity is also referred to as “average porosity”). Even in this case, each hollow silica fine particle preferably has a porosity in the above-described range.
In the antireflection film of the present invention, the average porosity of the hollow silica fine particles is preferably 10.0 to 40.0%. If it is less than 10.0%, the refractive index of the low refractive index layer cannot be sufficiently lowered, and the antireflection performance of the antireflection film of the present invention may be insufficient. If it exceeds 40.0%, the strength of the hollow silica fine particles may be lowered, and the strength of the entire low refractive index layer may be insufficient. A more preferred lower limit is 15.0%, and a more preferred upper limit is 35.0%. By having the porosity in this range, the low refractive index layer can have a sufficiently low refractive index and can have excellent strength. From the viewpoint of low refractive index and strength, the more preferable lower limit of the average porosity of the hollow silica fine particles is 20.0%, and the more preferable upper limit is 30.0%.
また、上記中空状シリカ微粒子は、低屈折率層に含まれる後述する(メタ)アクリル樹脂に対する配合比(中空状シリカ微粒子の含有量/(メタ)アクリル樹脂の含有量)が、0.90~1.60であることが好ましい。上記配合比が0.90未満であると、上記低屈折率層の屈折率が充分に低くならず、本発明の反射防止フィルムの反射防止性能が不充分となることがある。上記配合比が1.60を超えると、低屈折率層の表面の均一性が不充分となり、本発明の反射防止フィルムの表面硬度が不充分となることがある。上記配合比のより好ましい下限は1.00、より好ましい上限は1.50である。この範囲内にあることで、より優れた反射防止性能と表面均一性及び表面硬度とを備えた反射防止フィルムとすることができる。また、低屈折率層の表面均一性が上がることにより、表面硬度(耐擦傷性)が向上する。 Further, the hollow silica fine particles have a blending ratio (content of hollow silica fine particles / content of (meth) acrylic resin) with respect to the (meth) acrylic resin described later contained in the low refractive index layer of 0.90 to It is preferably 1.60. When the blending ratio is less than 0.90, the refractive index of the low refractive index layer is not sufficiently low, and the antireflection performance of the antireflection film of the present invention may be insufficient. When the blending ratio exceeds 1.60, the surface uniformity of the low refractive index layer is insufficient, and the surface hardness of the antireflection film of the present invention may be insufficient. A more preferable lower limit of the blending ratio is 1.00, and a more preferable upper limit is 1.50. By being in this range, it can be set as the antireflection film provided with the more excellent antireflection performance, surface uniformity, and surface hardness. Further, the surface hardness (scratch resistance) is improved by increasing the surface uniformity of the low refractive index layer.
本発明の反射防止フィルムにおいて、上記中空状シリカ微粒子は、低屈折率層の厚さ方向に2段に積層された最密充填構造であることが好ましい。このような状態で含有されていることで、本発明の反射防止フィルムの透明性、表面の均一性及び低屈折率性等を極めて優れたものとすることができる。 In the antireflection film of the present invention, the hollow silica fine particles preferably have a close-packed structure laminated in two steps in the thickness direction of the low refractive index layer. By containing in such a state, the transparency, surface uniformity, low refractive index, etc. of the antireflection film of the present invention can be made extremely excellent.
上記反応性シリカ微粒子は、低屈折率層の後述するハードコート層側の界面近傍及び/又は後述するハードコート層と反対側の界面近傍に偏在しており、該低屈折率層の屈折率を下げるとともに、その表面硬度を高くする役割を果たすものである。
上記反応性シリカ微粒子が低屈折率層のハードコート層側の界面近傍及び該ハードコート層と反対側の界面近傍に偏在している場合、表面硬度と防汚性とがともに優れたものができる。
また、上記反応性シリカ微粒子が低屈折率層のハードコート層側の界面近傍に偏在している場合、低屈折率層のハードコート層と反対側界面近傍に後述する防汚剤が偏在し、最表面に反応性シリカが存在する場合と比較して防汚剤の最表面での存在量が増えるため、本発明の反射防止フィルムの防汚性能が極めて優れたものとなる。一方、上記反応性シリカ微粒子が低屈折率層のハードコート層と反対側の界面近傍に偏在している場合、該反応性シリカ微粒子の偏在による低屈折率層の表面硬度の更なる向上が得られる。
また、上記低屈折率層中では上述のように中空状シリカ微粒子が密に充填された状態となっているため、低屈折率層の表面均一性が優れたものとなることによる表面硬度の向上も図ることができる。この結果、本発明の反射防止フィルムの耐擦傷性が優れたものとなる。
ここで、上記「ハードコート層側の界面近傍、又は、後述するハードコート層と反対側の界面近傍に偏在している」とは、上記低屈折率層中で、上記反応性シリカ微粒子が密に充填された状態にある上述した中空状シリカ微粒子の下方(ハードコート層側)又は上方(ハードコート層と反対側)に存在していることを意味する。より具体的には、上記低屈折率層の断面において、該低屈折率層の厚さを3等分し、上記ハードコート層側の界面から順に1/3領域、2/3領域、3/3領域としたとき、1/3領域に反応性シリカ微粒子の70%以上が含まれている場合を、反応性シリカ微粒子がハードコート層側の界面近傍に偏在していると判断し、上記3/3領域に反応性シリカ微粒子の70%以上が含まれている場合を、反応性シリカ微粒子がハードコート層と反対側の界面近傍に偏在していると判断する。そして、上記1/3領域と3/3領域とに上記反応性シリカ微粒子の合計70%以上が偏在しており、かつ、1/3領域、3/3領域のそれぞれ偏在している反応性シリカ微粒子の量が、2/3領域に含まれる反応性シリカ微粒子の量よりも多い場合、上記反応性シリカ微粒子が低屈折率層のハードコート層側の界面近傍及び該ハードコート層と反対側の界面近傍に偏在していると判断する。
なお、このような反応性シリカ微粒子が偏在している状態は、本発明の反射防止フィルムを厚さ方向に切断した際の低屈折率層の断面顕微鏡観察(STEM、TEM)により容易に判別することができる。
The reactive silica fine particles are unevenly distributed in the vicinity of the interface on the hard coat layer side to be described later of the low refractive index layer and / or in the vicinity of the interface on the side opposite to the hard coat layer to be described later. It plays a role of lowering and increasing the surface hardness.
When the reactive silica fine particles are unevenly distributed in the vicinity of the interface on the hard coat layer side of the low refractive index layer and in the vicinity of the interface on the side opposite to the hard coat layer, both the surface hardness and the antifouling property can be improved. .
Further, when the reactive silica fine particles are unevenly distributed in the vicinity of the interface on the hard coat layer side of the low refractive index layer, an antifouling agent described later is unevenly distributed in the vicinity of the interface opposite to the hard coat layer of the low refractive index layer, Since the amount of antifouling agent present on the outermost surface is increased compared to the case where reactive silica is present on the outermost surface, the antifouling performance of the antireflection film of the present invention is extremely excellent. On the other hand, when the reactive silica fine particles are unevenly distributed in the vicinity of the interface opposite to the hard coat layer of the low refractive index layer, the surface hardness of the low refractive index layer can be further improved by the uneven distribution of the reactive silica fine particles. It is done.
In addition, since the low refractive index layer is in a state where the hollow silica fine particles are densely packed as described above, the surface hardness is improved by the excellent surface uniformity of the low refractive index layer. Can also be planned. As a result, the antireflection film of the present invention has excellent scratch resistance.
Here, the phrase “is unevenly distributed in the vicinity of the interface on the hard coat layer side or in the vicinity of the interface on the side opposite to the hard coat layer described later” means that the reactive silica fine particles are dense in the low refractive index layer. It means that it exists below (hard coat layer side) or above (opposite side of the hard coat layer) of the above-mentioned hollow silica fine particles in a state of being filled. More specifically, in the cross section of the low refractive index layer, the thickness of the low refractive index layer is divided into three equal parts, and the 1/3 region, 2/3 region, 3 / In the case of 3 regions, when the 1/3 region contains 70% or more of the reactive silica fine particles, it is determined that the reactive silica fine particles are unevenly distributed in the vicinity of the interface on the hard coat layer side. When the / 3 region contains 70% or more of the reactive silica fine particles, it is determined that the reactive silica fine particles are unevenly distributed in the vicinity of the interface opposite to the hard coat layer. Reactive silica in which a total of 70% or more of the reactive silica fine particles are unevenly distributed in the 1/3 region and the 3/3 region, and each of the 1/3 region and the 3/3 region is unevenly distributed. When the amount of fine particles is larger than the amount of reactive silica fine particles contained in the 2/3 region, the reactive silica fine particles are in the vicinity of the interface on the hard coat layer side of the low refractive index layer and on the side opposite to the hard coat layer. Judged to be unevenly distributed near the interface.
In addition, the state where such reactive silica fine particles are unevenly distributed is easily determined by cross-sectional observation (STEM, TEM) of the low refractive index layer when the antireflection film of the present invention is cut in the thickness direction. be able to.
上記反応性シリカ微粒子が上記低屈折率層中でハードコート層側界面近傍及び/又はハードコート層と反対側界面近傍に偏在している理由は明確ではない。しかしながら、例えば、後述するハードコート層が反応性シリカ微粒子を含有する場合、該ハードコート層中の反応性シリカ微粒子の添加量を調整することで、上記低屈折率層中の反応性シリカ微粒子の偏在を制御することが可能である。
すなわち、上記ハードコート層が反応性シリカ微粒子を含有しない場合、該ハードコート層上に低屈折率層を形成すると、低屈折率層の反応性シリカ微粒子をハードコート層側界面近傍に偏在させることができる。一方、上記ハードコート層が反応性シリカ微粒子を、ハードコート層を構成する樹脂成分100質量部に対して25質量部を超え、60質量部以下の範囲で含有する場合、該ハードコート層上に低屈折率層を形成すると、低屈折率層の反応性シリカ微粒子をハードコート層と反対側界面近傍に偏在させることができる。更に、上記ハードコート層が反応性シリカ微粒子を、ハードコート層を構成する樹脂成分100質量部に対して、15~25質量部の範囲で含有する場合、上記低屈折率層の反応性シリカ微粒子を上記低屈折率層のハードコート層側界面近傍及びハードコート層と反対側界面近傍に偏在させることができる。
The reason why the reactive silica fine particles are unevenly distributed in the vicinity of the hard coat layer side interface and / or the vicinity of the hard coat layer side interface in the low refractive index layer is not clear. However, for example, when the hard coat layer described later contains reactive silica fine particles, the amount of reactive silica fine particles in the low refractive index layer can be adjusted by adjusting the amount of reactive silica fine particles added in the hard coat layer. It is possible to control the uneven distribution.
That is, when the hard coat layer does not contain reactive silica fine particles, forming a low refractive index layer on the hard coat layer causes the reactive silica fine particles of the low refractive index layer to be unevenly distributed near the hard coat layer side interface. Can do. On the other hand, when the hard coat layer contains reactive silica fine particles in a range of more than 25 parts by weight and less than 60 parts by weight with respect to 100 parts by weight of the resin component constituting the hard coat layer, on the hard coat layer When the low refractive index layer is formed, the reactive silica fine particles of the low refractive index layer can be unevenly distributed in the vicinity of the interface opposite to the hard coat layer. Further, when the hard coat layer contains the reactive silica fine particles in the range of 15 to 25 parts by mass with respect to 100 parts by mass of the resin component constituting the hard coat layer, the reactive silica fine particles of the low refractive index layer Can be unevenly distributed in the vicinity of the hard coat layer side interface of the low refractive index layer and in the vicinity of the interface opposite to the hard coat layer.
上記反応性シリカ微粒子としては、市販品を用いることもでき、例えば、MIBK-SDL、MIBK-SDMS、MIBK-SD(以上、いずれも日産化学工業社製)、DP1021SIV、DP1039SIV、DP1117SIV(以上、いずれも日揮触媒化成社製)等が挙げられる。 As the reactive silica fine particles, commercially available products can be used, for example, MIBK-SDL, MIBK-SDMS, MIBK-SD (all are manufactured by Nissan Chemical Industries, Ltd.), DP1021SIV, DP1039SIV, DP1117SIV (all above, any Also available from JGC Catalysts & Chemicals Co., Ltd.).
上記反応性シリカ微粒子の平均粒子径としては、1~25nmであることが好ましい。1nm未満であると、凝集しやすく、充填度が低くなって得られる低屈折率層に充分な強度が得られないことがある。一方、25nmを超えると、低屈折率層に表面凹凸が形成され、充分な強度が得られないことがある。また、反射率の上昇を引き起こし、後述する防汚剤を含有することによる充分な防汚性を発現しにくくなる。
上記反応性シリカ微粒子の平均粒子径のより好ましい下限は5nm、より好ましい上限は20nmである。この範囲にあることで、本発明の反射防止フィルムの低反射率・高硬度を維持できる。
なお、本明細書において、上記反応性シリカ微粒子の平均粒子径は、BET法やSTEMなどの断面観察(30個の平均値)により測定した値を意味する。
The average particle diameter of the reactive silica fine particles is preferably 1 to 25 nm. When the thickness is less than 1 nm, aggregation is likely to occur, and sufficient strength may not be obtained in the low refractive index layer obtained when the filling degree is low. On the other hand, if it exceeds 25 nm, surface irregularities are formed in the low refractive index layer, and sufficient strength may not be obtained. Moreover, it raises the reflectance and makes it difficult to develop sufficient antifouling properties due to the inclusion of the antifouling agent described later.
The more preferable lower limit of the average particle diameter of the reactive silica fine particles is 5 nm, and the more preferable upper limit is 20 nm. By being in this range, the low reflectance and high hardness of the antireflection film of the present invention can be maintained.
In the present specification, the average particle diameter of the reactive silica fine particles means a value measured by cross-sectional observation (average value of 30 particles) such as BET method or STEM.
上記低屈折率層における上記反応性シリカ微粒子の含有量としては、後述する(メタ)アクリル樹脂100質量部に対して、5~60質量部であることが好ましい。5質量部未満であると、上記低屈折率層の表面硬度を充分に高くすることができず、本発明の反射防止フィルムの耐擦傷性が劣ることがある。60質量部を超えると、上述した低屈折率層中で偏在した状態にない反応性シリカ微粒子量が増え、中空状シリカ微粒子が上述した密に充填された状態とならず、その結果、低屈折率層の表面の均一性が劣ることがあり、反射率の上昇を引き起こす可能性もある。上記反応性シリカ微粒子の含有量のより好ましい下限は10質量部、より好ましい上限は50質量部である。この範囲で反応性シリカ微粒子が含有されていることで、本発明の反射防止フィルムの表面硬度を極めて優れたものとすることができる。 The content of the reactive silica fine particles in the low refractive index layer is preferably 5 to 60 parts by mass with respect to 100 parts by mass of the (meth) acrylic resin described later. When the amount is less than 5 parts by mass, the surface hardness of the low refractive index layer cannot be sufficiently increased, and the antireflection film of the present invention may be inferior in scratch resistance. When the amount exceeds 60 parts by mass, the amount of reactive silica fine particles that are not unevenly distributed in the low refractive index layer increases, and the hollow silica fine particles do not become the above-described densely packed state, resulting in low refraction. The uniformity of the surface of the index layer may be inferior and may cause an increase in reflectivity. The minimum with more preferable content of the said reactive silica fine particle is 10 mass parts, and a more preferable upper limit is 50 mass parts. By containing the reactive silica fine particles in this range, the surface hardness of the antireflection film of the present invention can be made extremely excellent.
上記(メタ)アクリル樹脂は、上記低屈折率層において、上述した中空状シリカ微粒子や反応性シリカ微粒子のバインダー成分として機能するものである。なお、本明細書において、「(メタ)アクリル」とは、アクリル又はメタクリルを意味する。
上記(メタ)アクリル樹脂としては、(メタ)アクリルモノマーの重合体又は共重合体が挙げられ、上記(メタ)アクリルモノマーとしては特に限定されないが、例えば、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、イソシアヌル酸トリ(メタ)アクリレート等が好適に挙げられる。
また、これら(メタ)アクリレートモノマーは、分子骨格の一部を変性しているものでもよく、エチレンオキサイド、プロピレンオキサイド、カプロラクトン、イソシアヌル酸、アルキル、環状アルキル、芳香族、ビスフェノール等による変性がなされたものも使用することができる。
これらの(メタ)アクリルモノマーは、単独で用いられてもよく、2種以上が併用されてもよい。これらの(メタ)アクリルモノマーは、後述するような屈折率の範囲を満たすとともに硬化反応性に優れ、得られる低屈折率層の硬度を向上させることができる。
なかでも、官能基数が3以上の(メタ)アクリル樹脂が好適に用いられる。
The (meth) acrylic resin functions as a binder component for the hollow silica fine particles and reactive silica fine particles described above in the low refractive index layer. In the present specification, “(meth) acryl” means acryl or methacryl.
Examples of the (meth) acrylic resin include polymers or copolymers of (meth) acrylic monomers, and the (meth) acrylic monomer is not particularly limited. For example, pentaerythritol tri (meth) acrylate, dipenta Erythritol hexa (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, trimethylolpropane tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, isocyanuric acid tri (meth) acrylate, etc. Are preferable.
In addition, these (meth) acrylate monomers may be modified in part of the molecular skeleton, and have been modified with ethylene oxide, propylene oxide, caprolactone, isocyanuric acid, alkyl, cyclic alkyl, aromatic, bisphenol, etc. Things can also be used.
These (meth) acrylic monomers may be used alone or in combination of two or more. These (meth) acrylic monomers satisfy the refractive index range as described later and are excellent in curing reactivity, and can improve the hardness of the resulting low refractive index layer.
Of these, (meth) acrylic resins having 3 or more functional groups are preferably used.
上記(メタ)アクリル樹脂(硬化後)は、屈折率が1.47~1.53であることが好ましい。屈折率を1.47未満とすることは事実上不可能であり、1.53を超えると、充分に低い屈折率の低屈折率層を得ることができないことがある。 The (meth) acrylic resin (after curing) preferably has a refractive index of 1.47 to 1.53. It is practically impossible to make the refractive index less than 1.47. If it exceeds 1.53, a low refractive index layer having a sufficiently low refractive index may not be obtained.
また、上記(メタ)アクリルモノマーは、重量平均分子量が250~1000であることが好ましい。250未満であると、官能基数が少なくなるため、得られる低屈折率層の硬度が低下する恐れがある。1000を超えると、一般的には、官能基当量(官能基数/分子量)が小さくなるため、架橋密度が低くなり充分な硬度の低屈折率層が得られなくなることがある。
なお、上記(メタ)アクリルモノマーの重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算により求めることができる。GPC移動相の溶剤には、テトラヒドロフランやクロロホルムを使用することができる。測定用カラムは、テトラヒドロフラン用又はクロロホルム用のカラムの市販品カラムを組み合わせて使用するとよい。上記市販品カラムとしては、例えば、Shodex GPC KF-801、GPC-KF800D(いずれも、商品名、昭和電工社製)等を挙げることができる。検出器には、RI(示差屈折率)検出器及びUV検出器を使用するとよい。このような溶剤、カラム、検出器を使用して、例えば、Shodex GPC-101(昭和電工社製)等のGPCシステムにより、上記重量平均分子量を適宜測定することができる。
The (meth) acrylic monomer preferably has a weight average molecular weight of 250 to 1,000. If it is less than 250, the number of functional groups decreases, and the hardness of the resulting low refractive index layer may be reduced. If it exceeds 1000, the functional group equivalent (number of functional groups / molecular weight) is generally small, so that the crosslink density is low and a low refractive index layer having sufficient hardness may not be obtained.
In addition, the weight average molecular weight of the said (meth) acryl monomer can be calculated | required by polystyrene conversion by gel permeation chromatography (GPC). Tetrahydrofuran or chloroform can be used as the solvent for the GPC mobile phase. The measurement column may be used in combination with a commercially available column such as a column for tetrahydrofuran or a column for chloroform. Examples of the commercially available column include Shodex GPC KF-801, GPC-KF800D (both are trade names, manufactured by Showa Denko KK) and the like. As the detector, an RI (differential refractive index) detector and a UV detector may be used. Using such a solvent, a column, and a detector, the weight average molecular weight can be appropriately measured by a GPC system such as Shodex GPC-101 (manufactured by Showa Denko).
上記低屈折率層は、更に防汚剤を含有する。
上記低屈折率層が防汚剤を更に含有することで、本発明の反射防止フィルムは、防汚性能を有することとなり、特に低屈折率層中の反応性シリカ微粒子がハードコート層側の界面近傍に偏在している場合、上記低屈折率層のハードコート層と反対側界面近傍における防汚剤の含有割合が大きくなるため、本発明の反射防止フィルムの防汚性能は特に優れたものとなる。
なお、上記低屈折率層において、反応性シリカ微粒子がハードコート層と反対側界面近傍に偏在している場合、上記防汚剤は、上述した反応性シリカ微粒子と同様に、低屈折率層のハードコート層と反対側の界面近傍にある程度偏在することとなり、この場合も上記防汚剤による防汚性能のある程度の向上を図ることができる。このように防汚剤がハードコート層と反対側の界面近傍にある程度偏在する理由は明確ではないが、例えば、ハードコート層上に形成した塗膜を形成したとき、上述のように該塗膜中で反応性シリカ微粒子が移動するが、この反応性シリカ微粒子の移動が影響しているものと推測される。
このように、本発明の反射防止フィルムでは、上記低屈折率層に防汚剤を含有することで防汚性能に優れたものとなる。
The low refractive index layer further contains an antifouling agent.
When the low refractive index layer further contains an antifouling agent, the antireflective film of the present invention has antifouling performance. In particular, the reactive silica fine particles in the low refractive index layer are on the interface on the hard coat layer side. When unevenly distributed in the vicinity, the antifouling performance of the antireflection film of the present invention is particularly excellent because the content ratio of the antifouling agent in the vicinity of the interface opposite to the hard coat layer of the low refractive index layer is increased. Become.
In the low refractive index layer, when the reactive silica fine particles are unevenly distributed in the vicinity of the interface opposite to the hard coat layer, the antifouling agent is the same as the reactive silica fine particles described above. It is unevenly distributed in the vicinity of the interface opposite to the hard coat layer, and in this case as well, the antifouling performance by the antifouling agent can be improved to some extent. The reason why the antifouling agent is unevenly distributed to some extent in the vicinity of the interface opposite to the hard coat layer is not clear, but for example, when a coating film formed on the hard coat layer is formed, the coating film is formed as described above. The reactive silica fine particles move in this, and it is assumed that the movement of the reactive silica fine particles has an influence.
Thus, in the antireflection film of the present invention, an antifouling performance is obtained by including an antifouling agent in the low refractive index layer.
上記防汚剤としては、反応性官能基と、フッ素原子及び/又はケイ素原子とを含有する化合物であることが好ましい。このような防汚剤を含有することで、形成する低屈折率層の防汚性能をより向上させることができる。 The antifouling agent is preferably a compound containing a reactive functional group and a fluorine atom and / or a silicon atom. By containing such an antifouling agent, the antifouling performance of the low refractive index layer to be formed can be further improved.
上記反応性官能基とフッ素原子とを含有する化合物としては、例えば、反応性フッ素化合物、特にエチレン性不飽和結合を有するフッ素含有モノマーを広く用いることができ、より具体的には、例えば、フルオロオレフィン類(例えば、フルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロブタジエン、パーフルオロ-2,2-ジメチル-1,3-ジオキソール等)が挙げられる。
また、例えば、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3,3-ペンタフルオロプロピル(メタ)アクリレート、2-(パーフルオロブチル)エチル(メタ)アクリレート、2-(パーフルオロヘキシル)エチル(メタ)アクリレート、2-(パーフルオロオクチル)エチル(メタ)アクリレート、2-(パーフルオロデシル)エチル(メタ)アクリレート、α-トリフルオロ(メタ)アクリル酸メチル等の分子中にフッ素原子を有する(メタ)アクリレート化合物;分子中にフッ素原子を少なくとも3個持つ炭素数1~14の、フルオロアルキル基、フルオロシクロアルキル基又はフルオロアルキレン基と、少なくとも2個の(メタ)アクリロイルオキシ基とを有する含フッ素多官能(メタ)アクリル酸エステル化合物等も挙げられる。
更にまた、主鎖にフッ素化アルキレン基を有するフッ素ポリマー、オリゴマーや、主鎖及び側鎖にフッ素化アルキレン基、フッ素化アルキル基を有するフッ素化ポリマー、オリゴマー等も挙げられる。これらの中でも、特に、主鎖及び側鎖にフッ素化アルキレン基、フッ素化アルキル基を有するフッ素化ポリマーは、低屈折率層からのブリードアウトの問題が生じにくいことから特に好適に用いられる。
As the compound containing the reactive functional group and the fluorine atom, for example, a reactive fluorine compound, in particular, a fluorine-containing monomer having an ethylenically unsaturated bond can be widely used. Examples include olefins (for example, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, perfluorobutadiene, perfluoro-2,2-dimethyl-1,3-dioxole, and the like).
Also, for example, 2,2,2-trifluoroethyl (meth) acrylate, 2,2,3,3,3-pentafluoropropyl (meth) acrylate, 2- (perfluorobutyl) ethyl (meth) acrylate, 2 -(Perfluorohexyl) ethyl (meth) acrylate, 2- (perfluorooctyl) ethyl (meth) acrylate, 2- (perfluorodecyl) ethyl (meth) acrylate, methyl α-trifluoro (meth) acrylate, etc. A (meth) acrylate compound having a fluorine atom in the molecule; a fluoroalkyl group, a fluorocycloalkyl group or a fluoroalkylene group having 1 to 14 carbon atoms having at least three fluorine atoms in the molecule; ) Fluorine-containing polyfunctional (meth) acrylic acid ester having acryloyloxy group Le compounds may be mentioned.
Furthermore, a fluorine polymer or oligomer having a fluorinated alkylene group in the main chain, a fluorinated polymer or oligomer having a fluorinated alkylene group or a fluorinated alkyl group in the main chain or side chain, and the like can also be mentioned. Among these, in particular, a fluorinated polymer having a fluorinated alkylene group or a fluorinated alkyl group in the main chain and the side chain is particularly preferably used because the problem of bleeding out from the low refractive index layer hardly occurs.
また、上記反応性官能基とケイ素原子とを含有する化合物としては、例えば、反応性シリコーン化合物が挙げられる。
具体的には、例えば、(ポリ)ジメチルシロキサン、(ポリ)ジエチルシロキサン、(ポリ)ジフェニルシロキサン、(ポリ)メチルフェニルシロキサン、アルキル変性(ポリ)ジメチルシロキサン、アゾ基含有(ポリ)ジメチルシロキサン、ジメチルシリコーン、フェニルメチルシリコーン、アルキル・アラルキル変性シリコーン、フルオロシリコーン、ポリエーテル変性シリコーン、脂肪酸エステル変性シリコーン、メチル水素シリコーン、シラノール基含有シリコーン、アルコキシ基含有シリコーン、フェノール基含有シリコーン、(メタ)アクリル変性シリコーン、アミノ変性シリコーン、カルボン酸変性シリコーン、カルビノール変性シリコーン、エポキシ変性シリコーン、メルカプト変性シリコーン、フッ素変性シリコーン、ポリエーテル変性シリコーン等が挙げられる。なかでも、ジメチルシロキサン構造を有するものは、低屈折率層からのブリードアウトの問題が生じ難いことから好ましい。
Moreover, as a compound containing the said reactive functional group and a silicon atom, a reactive silicone compound is mentioned, for example.
Specifically, for example, (poly) dimethylsiloxane, (poly) diethylsiloxane, (poly) diphenylsiloxane, (poly) methylphenylsiloxane, alkyl-modified (poly) dimethylsiloxane, azo group-containing (poly) dimethylsiloxane, dimethyl Silicone, phenylmethyl silicone, alkyl aralkyl modified silicone, fluorosilicone, polyether modified silicone, fatty acid ester modified silicone, methyl hydrogen silicone, silanol group containing silicone, alkoxy group containing silicone, phenol group containing silicone, (meth) acryl modified silicone Amino modified silicone, carboxylic acid modified silicone, carbinol modified silicone, epoxy modified silicone, mercapto modified silicone, fluorine modified silicone, polyester Ether-modified silicone, and the like. Among these, those having a dimethylsiloxane structure are preferable because the problem of bleeding out from the low refractive index layer hardly occurs.
また、上記反応性官能基と、フッ素原子及びケイ素原子とを含有する化合物としては、例えば、上記反応性フッ素化合物に上記反応性シリコーン化合物を反応させたシリコーン含有フッ化ビニリデン共重合体等が挙げられる。 Examples of the compound containing the reactive functional group and a fluorine atom and a silicon atom include a silicone-containing vinylidene fluoride copolymer obtained by reacting the reactive silicone compound with the reactive fluorine compound. It is done.
上記防汚剤の含有量としては、目的とする低屈折率層の防汚性能により適宜決定されるが、上述した中空状シリカ微粒子と(メタ)アクリル樹脂との合計100質量部に対して、1~20質量部であることが好ましい。1質量部未満であると、形成する低屈折率層に充分な防汚性能を付与することができないことがあり、20質量部を超えると、添加した防汚剤が低屈折率層からブリードアウトすることがある。また、防汚剤を添加しただけの効果が見られず、製造コストが高くなり、得られる低屈折率層の硬度、外観が低下し、更に、反射率上昇の原因となることもある。上記防汚剤の含有量のより好ましい下限は2質量部、より好ましい上限は15質量部である。
なお、上記防汚剤として、上記反応性官能基と、フッ素原子及び/又はケイ素原子とを含有する化合物と一緒に反応性官能基を含有しない化合物を添加し、用いてもよい。
The content of the antifouling agent is appropriately determined depending on the antifouling performance of the target low refractive index layer, but with respect to a total of 100 parts by mass of the hollow silica fine particles and the (meth) acrylic resin described above, The amount is preferably 1 to 20 parts by mass. If it is less than 1 part by mass, it may not be possible to impart sufficient antifouling performance to the low refractive index layer to be formed. If it exceeds 20 parts by mass, the added antifouling agent will bleed out from the low refractive index layer. There are things to do. In addition, the effect of simply adding the antifouling agent is not seen, the manufacturing cost is increased, the hardness and appearance of the obtained low refractive index layer are lowered, and the reflectance may be increased. The minimum with more preferable content of the said antifouling agent is 2 mass parts, and a more preferable upper limit is 15 mass parts.
In addition, as the antifouling agent, a compound not containing a reactive functional group may be added and used together with a compound containing the reactive functional group and a fluorine atom and / or a silicon atom.
本発明の反射防止フィルムにおいて、上記低屈折率層は、屈折率が1.45未満であることが好ましい。1.45以上であると、本発明の反射防止フィルムの反射防止性能が不充分となり、近年の画像表示装置の高レベルな表示品質に対応することができないことがある。より好ましい下限は1.25、より好ましい上限は1.43である。 In the antireflection film of the present invention, the low refractive index layer preferably has a refractive index of less than 1.45. When it is 1.45 or more, the antireflection performance of the antireflection film of the present invention is insufficient, and it may not be possible to cope with the high-level display quality of recent image display devices. A more preferred lower limit is 1.25, and a more preferred upper limit is 1.43.
上記低屈折率層の膜厚(nm)dは、下記式(I):
       d=mλ/(4n)  (I)
 (上記式中、
 nは低屈折率層の屈折率を表し、
 mは正の奇数を表し、好ましくは1を表し、
 λは波長であり、好ましくは480~580nmの範囲の値である)
を満たすものが好ましい。
The film thickness (nm) d A of the low refractive index layer is the following formula (I):
d A = mλ / (4n A ) (I)
(In the above formula,
n A represents the refractive index of the low refractive index layer;
m represents a positive odd number, preferably 1;
λ is a wavelength, preferably a value in the range of 480 to 580 nm)
Those satisfying these conditions are preferred.
また、本発明にあっては、低屈折率層は下記式(II):
       120<n<145    (II)
を満たすことが低反射率化の点で好ましい。
In the present invention, the low refractive index layer has the following formula (II):
120 <n A d A <145 (II)
It is preferable from the viewpoint of low reflectivity.
また、上記低屈折率層は、ヘイズ値が1%以下であることが好ましい。1%を超えると、本発明の反射防止フィルムの光透過性が低下し、画像表示装置の表示品質低下の原因となることがある。より好ましくは0.5%以下である。なお、本明細書において、ヘイズ値とはJIS K7136に準拠して求められた値である。 The low refractive index layer preferably has a haze value of 1% or less. If it exceeds 1%, the light transmittance of the antireflection film of the present invention may be reduced, which may cause a reduction in display quality of the image display device. More preferably, it is 0.5% or less. In the present specification, the haze value is a value obtained in accordance with JIS K7136.
また、上記低屈折率層は、JIS K5600-5-4(1999)による鉛筆硬度試験による硬度がH以上であることが好ましく、2H以上であることがより好ましい。
更に、上記低屈折率層は、例えば、#0000番のスチールウールを用いた摩擦荷重300g/cm、10往復摩擦する耐擦傷試験で傷が生じないことが好ましい。
Further, the low refractive index layer preferably has a hardness of H or higher, more preferably 2H or higher, according to a pencil hardness test according to JIS K5600-5-4 (1999).
Furthermore, it is preferable that the low refractive index layer does not cause scratches in a scratch resistance test in which a friction load of 300 g / cm 2 using # 0000 steel wool is used and the friction is made 10 times.
上記低屈折率層は、上述した中空状シリカ微粒子、反応性シリカ微粒子、(メタ)アクリル樹脂のモノマー成分及び防汚剤等を含有する低屈折率層用組成物を調製し、該低屈折率層用塗工液を用いて形成することができる。 The low refractive index layer is prepared by preparing a composition for a low refractive index layer containing the hollow silica fine particles, reactive silica fine particles, a monomer component of (meth) acrylic resin and an antifouling agent, and the like. It can form using the coating liquid for layers.
上記低屈折率層用組成物は、溶剤を含有することが好ましい。
上記溶剤としては、なかでも、メチルイソブチルケトン(MIBK)と、プロピレングリコールモノメチルエーテル(PGME)又はプロピレングリコールモノメチルエーテルアセテート(PGMEA)との混合溶剤であることが好ましい。このような混合溶剤を用いることで、含有する溶剤の乾燥時間が異なるため、上述した構造の低屈折率層を好適に形成することができる。
上記混合溶剤におけるMIBKと、PGME又はPGMEAとの混合比としては、好ましくは質量比で(MIBK/PGME又はPGMEA)=(95/5)~(30/70)である。上記範囲の混合比を満たすことで、特に好適に上述した構造の低屈折率層を形成することが可能となる。より好ましくは(80/20)~(40/60)である。
It is preferable that the said composition for low refractive index layers contains a solvent.
The solvent is preferably a mixed solvent of methyl isobutyl ketone (MIBK) and propylene glycol monomethyl ether (PGME) or propylene glycol monomethyl ether acetate (PGMEA). By using such a mixed solvent, the drying time of the solvent to be contained differs, so that the low refractive index layer having the above-described structure can be suitably formed.
The mixing ratio of MIBK and PGME or PGMEA in the mixed solvent is preferably (MIBK / PGME or PGMEA) = (95/5) to (30/70) in terms of mass ratio. By satisfying the mixing ratio in the above range, it is possible to form the low refractive index layer having the above-described structure particularly preferably. More preferably, it is (80/20) to (40/60).
また、上記低屈折率層用組成物は、上述した構造の低屈折率層の形成を阻害しない範囲であれば、その他の溶剤を含有していてもよい。このようなその他の溶剤としては、例えば、メタノール、エタノール、プロパノール、イソプロパノール、n-ブタノール、iso-ブタノール、t-ブタノール、ベンジルアルコール等のアルコール;アセトン、メチルエチルケトン、シクロヘキサノン、ヘプタノン、ジイソブチルケトン、ジエチルケトン等のケトン;酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、蟻酸メチル、蟻酸エチル、蟻酸プロピル、蟻酸ブチル、PGMEA等のエステル;ヘキサン、シクロヘキサン等の脂肪族炭化水素;メチレンクロライド、クロロホルム、四塩化炭素等のハロゲン化炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;ジメチルホルムアミド、ジメチルアセトアミド、n-メチルピロリドン等のアミド;ジエチルエーテル、ジオキサン、テトラヒドロフラン等のエーテル;1-メトキシ-2-プロパノール等のエーテルアルコール等が挙げられる。 Moreover, the said composition for low refractive index layers may contain the other solvent, if it is a range which does not inhibit formation of the low refractive index layer of the structure mentioned above. Examples of such other solvents include alcohols such as methanol, ethanol, propanol, isopropanol, n-butanol, iso-butanol, t-butanol, and benzyl alcohol; acetone, methyl ethyl ketone, cyclohexanone, heptanone, diisobutyl ketone, diethyl ketone Ketones such as methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl formate, ethyl formate, propyl formate, butyl formate, and PGMEA; aliphatic hydrocarbons such as hexane and cyclohexane; methylene chloride, chloroform, tetrachloride Halogenated hydrocarbons such as carbon; aromatic hydrocarbons such as benzene, toluene and xylene; amides such as dimethylformamide, dimethylacetamide and n-methylpyrrolidone; diethyl ether; Dioxane, ethers such as tetrahydrofuran; ether alcohols such as 1-methoxy-2-propanol.
また、上記低屈折率層用組成物は、必要に応じて、更にその他の成分を含んでいてもよい。
上記その他の成分としては、例えば、光重合開始剤、レベリング剤、重合促進剤、粘度調整剤、防眩剤、帯電防止剤、紫外線吸収剤、上述した以外の樹脂(モノマー、オリゴマー、ポリマー)等が挙げられる。
Moreover, the said composition for low refractive index layers may contain the other component further as needed.
Examples of the other components include photopolymerization initiators, leveling agents, polymerization accelerators, viscosity modifiers, antiglare agents, antistatic agents, ultraviolet absorbers, and resins (monomers, oligomers, polymers) other than those described above. Is mentioned.
上記光重合開始剤としては、上記低屈折率層用組成物がラジカル重合性不飽和基を有する樹脂系を含有する場合、例えば、アセトフェノン類(例えば、商品名イルガキュア184(BASF社製)として市販されている1-ヒドロキシ-シクロヘキシル-フェニル-ケトン)、ベンゾフェノン類、チオキサントン類、ベンゾイン、ベンゾインメチルエーテル等が挙げられ、これらは、単独で用いられてもよく、2種以上が併用されてもよい。
また、上記低屈折率層用組成物がカチオン重合性官能基を有する樹脂系を含有する場合、上記光重合開始剤としては、例えば、芳香族ジアゾニウム塩、芳香族スルホニウム塩、芳香族ヨードニウム塩、メタロセン化合物、ベンゾインスルホン酸エステル等が挙げられ、これらは、単独で用いられてもよく、2種以上が併用されてもよい。具体的には、BASF社製のイルガキュア907、イルガキュア369、イルガキュア379、イルガキュア819、イルガキュア127、イルガキュア500、イルガキュア754、イルガキュア250、イルガキュア1800、イルガキュア1870、イルガキュアOXE01、DAROCUR TPO、DAROCUR1173;日本シーベルヘグナー社製のSpeedcureMBB、SpeedcurePBZ、SpeedcureITX、SpeedcureCTX、SpeedcureEDB、Esacure ONE、Esacure KIP150、Esacure KTO46;日本化薬社製のKAYACURE DETX-S、KAYACURE CTX、KAYACURE BMS、KAYACURE DMBI等が挙げられる。なかでも、イルガキュア369、イルガキュア127、イルガキュア907、Esacure ONE、SpeedcureMBB、SpeedcurePBZ、KAYACURE DETX-Sが好ましい。
特に好ましくはイルガキュア127(BASF社製の2-ヒロドキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン)、イルガキュア184(BASF社製の1-ヒドロキシ-シクロヘキシル-フェニル-ケトン)である。上記光重合開始剤の添加量は、上記低屈折率層用塗工液に含まれる樹脂成分の固形分100質量部に対して、0.1~10質量部であることが好ましい。
上記レベリング剤、重合促進剤、粘度調整剤、防眩剤、帯電防止剤、紫外線吸収剤、上述した以外の樹脂(モノマー、オリゴマー、ポリマー)は、公知のものを使用することができる。
As the photopolymerization initiator, when the composition for a low refractive index layer contains a resin system having a radical polymerizable unsaturated group, for example, it is commercially available as acetophenones (for example, trade name Irgacure 184 (manufactured by BASF)). 1-hydroxy-cyclohexyl-phenyl-ketone), benzophenones, thioxanthones, benzoin, benzoin methyl ether, etc., and these may be used alone or in combination of two or more. .
When the low refractive index layer composition contains a resin system having a cationic polymerizable functional group, examples of the photopolymerization initiator include aromatic diazonium salts, aromatic sulfonium salts, aromatic iodonium salts, A metallocene compound, benzoin sulfonic acid ester, etc. are mentioned, These may be used independently and 2 or more types may be used together. Specifically, Irgacure 907, Irgacure 369, Irgacure 379, Irgacure 819, Irgacure 127, Irgacure 500, Irgacure 754, Irgacure 250, Irgacure 1800, Irgacure 1870, Irgacure OXE01, DAROCUR TP Speedcure MBB, Speedcure PBZ, SpeedcureITX, Speedcure CTX, Speedcure EDB, Escure ONE, Esacure KIP150, Esacure KTO46, and KAYACURE DETO . Among these, Irgacure 369, Irgacure 127, Irgacure 907, Esacure ONE, Speedcure MBB, Speedcure PBZ, and KAYACURE DETX-S are preferable.
Particularly preferably, Irgacure 127 (2-Hydroxy-1- {4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] phenyl} -2-methyl-propan-1-one manufactured by BASF), Irgacure 184 (1-hydroxy-cyclohexyl-phenyl-ketone manufactured by BASF). The addition amount of the photopolymerization initiator is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the solid content of the resin component contained in the low refractive index layer coating solution.
Known leveling agents, polymerization accelerators, viscosity modifiers, antiglare agents, antistatic agents, ultraviolet absorbers, and resins (monomers, oligomers, polymers) other than those described above can be used.
上記低屈折率層用組成物の調製方法としては特に限定されず、例えば、上述した中空状シリカ微粒子、反応性シリカ微粒子、(メタ)アクリル樹脂のモノマー成分、及び、防汚剤、並びに、溶剤、必要に応じて添加される光重合開始剤等の成分を混合することにより得ることができる。混合には、ペイントシェーカー又はビーズミル等の公知の方法を使用することができる。 The method for preparing the composition for the low refractive index layer is not particularly limited. For example, the hollow silica fine particles, the reactive silica fine particles, the monomer component of the (meth) acrylic resin, the antifouling agent, and the solvent It can be obtained by mixing components such as a photopolymerization initiator added as necessary. For the mixing, a known method such as a paint shaker or a bead mill can be used.
上記低屈折率層用組成物は、後述するハードコート層上に、上記低屈折率層用組成物を塗布し形成した塗膜を乾燥し、電離放射線の照射及び/又は加熱により塗膜を硬化させることにより形成することができる。
ここで、上記塗膜の好ましい乾燥条件としては、40~80℃、10秒~2分である。このような条件で上記塗膜を乾燥させることで、上述した構造の低屈折率層を好適に形成することが可能となる。
The composition for a low refractive index layer is a coating film formed by applying the composition for a low refractive index layer on a hard coat layer to be described later, and the coating film is cured by irradiation with ionizing radiation and / or heating. Can be formed.
Here, preferable drying conditions for the coating film are 40 to 80 ° C. and 10 seconds to 2 minutes. By drying the coating film under such conditions, the low refractive index layer having the above-described structure can be suitably formed.
上記低屈折率層用組成物を塗布する方法としては特に限定されず、例えば、スピンコート法、ディップ法、スプレー法、グラビアコート法、ダイコート法、バーコート法、ロールコーター法、メニスカスコーター法等の各種方法が挙げられる。 The method for applying the low refractive index layer composition is not particularly limited. For example, spin coating, dipping, spraying, gravure coating, die coating, bar coating, roll coater, meniscus coater, etc. There are various methods.
ハードコート層
本発明の反射防止フィルムは、光透過性基材と低屈折率層との間にハードコート層を有する。
なお、本明細書において、「ハードコート層」とは、JIS K5600-5-4(1999)で規定される鉛筆硬度試験で2H以上の硬度を示すものをいう。上記鉛筆硬度は、3H以上であることがより好ましい。また、上記ハードコート層の膜厚(硬化時)としては1~30μmであることが好ましく、より好ましくは2~15μmである。
Hard coat layer The antireflection film of the present invention has a hard coat layer between the light-transmitting substrate and the low refractive index layer.
In the present specification, the “hard coat layer” means a layer showing a hardness of 2H or more in a pencil hardness test specified in JIS K5600-5-4 (1999). The pencil hardness is more preferably 3H or more. The film thickness (when cured) of the hard coat layer is preferably 1 to 30 μm, and more preferably 2 to 15 μm.
本発明の反射防止フィルムにおいて、上記ハードコート層は、反応性シリカ微粒子を含有することが好ましい。ハードコート層が反応性シリカ微粒子を含有することで、上述した低屈折率層中の反応性シリカ微粒子が、ハードコート層と反対側界面近傍に偏在することとなる。
上記反応性シリカ微粒子としては、上述した低屈折率層における反応性シリカ微粒子と同じものが挙げられる。
In the antireflection film of the present invention, the hard coat layer preferably contains reactive silica fine particles. When the hard coat layer contains the reactive silica fine particles, the reactive silica fine particles in the low refractive index layer described above are unevenly distributed in the vicinity of the interface opposite to the hard coat layer.
Examples of the reactive silica fine particles include the same reactive silica fine particles as those in the low refractive index layer described above.
上記ハードコート層における反応性シリカ微粒子の含有量としては、該ハードコート層を構成する樹脂成分100質量部に対して、15~60質量部であることが好ましい。15質量部未満であると、ハードコート層の硬度が不充分となることがあり、60質量部を超えると、光透過性基材との密着性、及び、低屈折率層との密着性が悪くなり、また、ハードコート層が割れ易くなったり、全光線透過率の低下・ヘイズ度の上昇を引き起こしたりすることがある。より好ましい下限は20質量部、より好ましい上限は55質量部である。 The content of reactive silica fine particles in the hard coat layer is preferably 15 to 60 parts by mass with respect to 100 parts by mass of the resin component constituting the hard coat layer. If it is less than 15 parts by mass, the hardness of the hard coat layer may be insufficient, and if it exceeds 60 parts by mass, the adhesiveness with the light-transmitting substrate and the adhesiveness with the low refractive index layer are insufficient. The hard coat layer may be easily broken, or the total light transmittance may be lowered and the haze degree may be increased. A more preferred lower limit is 20 parts by mass, and a more preferred upper limit is 55 parts by mass.
上記ハードコート層は、低屈折率層側の界面近傍で該界面方向に整列した状態で含まれる反応性シリカ微粒子を有することが好ましい。このように整列した反応性シリカ微粒子を有することで、上述した構造の低屈折率層をより好適に得ることができる。
ここで、上記「低屈折率層側の界面近傍で該界面方向に整列した状態」とは、上記ハードコート層の低屈折率層との界面近傍で上記反応性シリカ微粒子が界面方向に沿って互いに隣接するように整列した状態が好ましく、より好ましくは、上記ハードコート層の低屈折率層との界面に、反応性シリカ微粒子の上端が接し、かつ、互いに隣接した状態で界面に沿って整列した状態である(図1)。
なお、上記ハードコート層は、上述した整列した状態以外のランダムに含有された反応性シリカ微粒子も含有することが好ましい。
The hard coat layer preferably has reactive silica fine particles contained in a state aligned in the interface direction near the interface on the low refractive index layer side. By having the reactive silica fine particles aligned in this way, the low refractive index layer having the above-described structure can be obtained more suitably.
Here, “the state of alignment in the interface direction near the interface on the low refractive index layer side” means that the reactive silica fine particles are aligned along the interface direction in the vicinity of the interface of the hard coat layer with the low refractive index layer. The aligned state is preferably adjacent to each other, and more preferably, the upper ends of the reactive silica fine particles are in contact with the interface of the hard coat layer with the low refractive index layer and aligned along the interface in a state adjacent to each other. (FIG. 1).
In addition, it is preferable that the said hard-coat layer also contains the reactive silica fine particle contained at random other than the state which aligned as mentioned above.
上記ハードコート層は、上記反応性シリカ微粒子と、樹脂とその他の任意成分とを含有するハードコート層用組成物により形成されてなるものが挙げられる。
上記樹脂としては、透明性のものが好適に用いられ、具体的には、紫外線若しくは電子線により硬化する樹脂である電離放射線硬化型樹脂、電離放射線硬化型樹脂と溶剤乾燥型樹脂(塗工時に固形分を調整するために添加した溶剤を乾燥させるだけで、被膜となるような樹脂)との混合物、又は、熱硬化型樹脂等が挙げられ、好ましくは電離放射線硬化型樹脂が挙げられる。
Examples of the hard coat layer include those formed by the composition for hard coat layer containing the reactive silica fine particles, a resin, and other optional components.
As the resin, a transparent resin is preferably used. Specifically, an ionizing radiation curable resin, an ionizing radiation curable resin and a solvent-drying resin (during coating) are resins that are cured by ultraviolet rays or electron beams. The resin added to adjust the solid content is dried, and a mixture with a resin that forms a film), a thermosetting resin, or the like, preferably an ionizing radiation curable resin.
上記電離放射線硬化型樹脂の具体例としては、アクリレート系の官能基を有するもの、例えば、比較的低分子量のポリエステル樹脂、ポリエーテル樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、多価アルコール等の多官能化合物の(メタ)アルリレート等のモノマー、オリゴマー又はプレポリマー等が挙げられる。その他、上記低屈折率層で用いられた(メタ)アクリル樹脂がハードコート層にも用いられ、なかでも、官能基数が3以上の(メタ)アクリル樹脂が好ましい。 Specific examples of the ionizing radiation curable resin include those having an acrylate functional group, for example, a relatively low molecular weight polyester resin, polyether resin, acrylic resin, epoxy resin, urethane resin, polyhydric alcohol, and the like. Monomers such as (meth) allylates of functional compounds, oligomers or prepolymers may be mentioned. In addition, the (meth) acrylic resin used in the low refractive index layer is also used in the hard coat layer, and among them, a (meth) acrylic resin having 3 or more functional groups is preferable.
上記電離放射線硬化型樹脂を紫外線硬化型樹脂として使用する場合には、光重合開始剤を用いることが好ましい。
上記光重合開始剤としては、例えば、アセトフェノン類、ベンゾフェノン類、ミヒラーベンゾイルベンゾエート、α-アミロキシムエステル、テトラメチルチュウラムモノサルファイド、チオキサントン類等が挙げられる。好ましくは、イルガキュア184(BASF社製の1-ヒドロキシ-シクロヘキシル-フェニル-ケトン)である。
また、光増感剤を混合して用いることが好ましく、その具体例としては、例えば、n-ブチルアミン、トリエチルアミン、ポリ-n-ブチルホスフィン等が挙げられる。
When the ionizing radiation curable resin is used as an ultraviolet curable resin, it is preferable to use a photopolymerization initiator.
Examples of the photopolymerization initiator include acetophenones, benzophenones, Michler benzoyl benzoate, α-amyloxime ester, tetramethylchuram monosulfide, thioxanthones, and the like. Irgacure 184 (1-hydroxy-cyclohexyl-phenyl-ketone manufactured by BASF) is preferable.
Further, it is preferable to use a mixture of photosensitizers, and specific examples thereof include n-butylamine, triethylamine, poly-n-butylphosphine and the like.
上記電離放射線硬化型樹脂と混合して非反応性のポリマーが使用されてもよい。上記非反応性のポリマーとしては、例えば、ポリアクリル酸、ポリメタクリル酸、ポリアクリレート、ポリメタクリレート、ポリオレフィン、ポリスチロール、ポリアミド、ポリイミド、ポリビニルクロライド、ポリビニルアルコール、ポリビニルブチラール、ポリカーボネート等が挙げられる。これらの非反応性のポリマーを添加することにより、カールを抑制することができる。 A non-reactive polymer may be used by mixing with the ionizing radiation curable resin. Examples of the non-reactive polymer include polyacrylic acid, polymethacrylic acid, polyacrylate, polymethacrylate, polyolefin, polystyrene, polyamide, polyimide, polyvinyl chloride, polyvinyl alcohol, polyvinyl butyral, and polycarbonate. By adding these non-reactive polymers, curling can be suppressed.
上記熱硬化性樹脂としては、例えば、フェノール樹脂、尿素樹脂、ジアリルフタレート樹脂、メラニン樹脂、グアナミン樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、アミノアルキッド樹脂、メラミン-尿素共縮合樹脂、ケイ素樹脂、ポリシロキサン樹脂等が挙げられる。
上記熱硬化性樹脂を用いる場合、必要に応じて、架橋剤、重合開始剤等の硬化剤、重合促進剤、溶剤、粘度調整剤等を更に添加して使用することができる。
Examples of the thermosetting resin include phenol resin, urea resin, diallyl phthalate resin, melanin resin, guanamine resin, unsaturated polyester resin, polyurethane resin, epoxy resin, aminoalkyd resin, melamine-urea cocondensation resin, silicon resin. And polysiloxane resin.
When using the said thermosetting resin, as needed, hardening agents, such as a crosslinking agent and a polymerization initiator, a polymerization accelerator, a solvent, a viscosity modifier, etc. can be further added and used.
上記ハードコート層は、上述した各材料を用いて調製したハードコート層用組成物を、上記光透過性基材上に塗布して形成した塗膜を、必要に応じて乾燥し、電離放射線照射又は加熱等により硬化させることで形成することができる。
なお、上記ハードコート層用組成物の調製方法及び塗膜の形成方法等は、上述した低屈折率層と同様の方法が挙げられる。
The hard coat layer is formed by applying the composition for hard coat layer prepared using each of the above-mentioned materials on the light-transmitting substrate, and if necessary, dried, and irradiated with ionizing radiation. Alternatively, it can be formed by curing by heating or the like.
In addition, the preparation method of the said composition for hard-coat layers, the formation method of a coating film, etc. can mention the method similar to the low-refractive-index layer mentioned above.
上記ハードコート層には、更に公知の帯電防止剤、高屈折率剤等の高硬度・低カール材料等が含まれていてもよい。 The hard coat layer may further contain a high hardness / low curl material such as a known antistatic agent or high refractive index agent.
光透過性基材
本発明の反射防止フィルムは、光透過性基材を有する。
上記光透過性基材は、平滑性、耐熱性を備え、機械的強度に優れたものが好ましい。光透過性基材を形成する材料の具体例としては、例えば、ポリエステル(ポリエチレンテレフタレート、ポリエチレンナフタレート)、セルローストリアセテート、セルロースジアセテート、セルロースアセテートブチレート、ポリエステル、ポリアミド、ポリイミド、ポリエーテルスルフォン、ポリスルフォン、ポリプロピレン、ポリメチルペンテン、ポリ塩化ビニル、ポリビニルアセタール、ポリエーテルケトン、ポリメタクリル酸メチル、ポリカーボネート、アクリル基材(PMMA)又はポリウレタン等の熱可塑性樹脂が挙げられる。好ましくは、ポリエステル(ポリエチレンテレフタレート、ポリエチレンナフタレート)、セルローストリアセテートが挙げられる。
Light transmissive substrate The antireflection film of the present invention has a light transmissive substrate.
The light transmissive substrate preferably has smoothness and heat resistance and is excellent in mechanical strength. Specific examples of the material forming the light-transmitting substrate include, for example, polyester (polyethylene terephthalate, polyethylene naphthalate), cellulose triacetate, cellulose diacetate, cellulose acetate butyrate, polyester, polyamide, polyimide, polyethersulfone, poly Examples thereof include thermoplastic resins such as sulfone, polypropylene, polymethylpentene, polyvinyl chloride, polyvinyl acetal, polyether ketone, polymethyl methacrylate, polycarbonate, acrylic base material (PMMA), and polyurethane. Preferably, polyester (polyethylene terephthalate, polyethylene naphthalate) and cellulose triacetate are used.
上記光透過性基材は、上記熱可塑性樹脂を柔軟性に富んだフィルム状体として使用することが好ましいが、硬化性が要求される使用態様に応じて、これら熱可塑性樹脂の板を使用することも可能であり、又は、ガラス板の板状体のものを使用してもよい。 The light-transmitting substrate preferably uses the thermoplastic resin as a flexible film-like body, but uses a plate of these thermoplastic resins depending on the use mode in which curability is required. It is also possible, or a glass plate plate may be used.
その他、上記光透過性基材としては、脂環構造を有した非晶質オレフィンポリマー(Cyclo-Olefin-Polymer:COP)フィルムを挙げられる。これは、ノルボルネン系重合体、単環の環状オレフィン系重合体、環状共役ジエン系重合体、ビニル脂環式炭化水素系重合体等が用いられる基材で、例えば、日本ゼオン社製のゼオネックスやゼオノア(ノルボルネン系樹脂)、住友ベークライト社製のスミライトFS-1700、JSR社製のアートン(変性ノルボルネン系樹脂)、三井化学社製のアペル(環状オレフィン共重合体)、Ticona社製のTopas(環状オレフィン共重合体)、日立化成社製のオプトレッツOZ-1000シリーズ(脂環式アクリル樹脂)等が挙げられる。
また、トリアセチルセルロースの代替基材として旭化成ケミカルズ社製のFVシリーズ(低複屈折率、低光弾性率フィルム)も好ましい。
In addition, examples of the light transmissive substrate include an amorphous olefin polymer (Cyclo-Olefin-Polymer: COP) film having an alicyclic structure. This is a base material in which a norbornene polymer, a monocyclic olefin polymer, a cyclic conjugated diene polymer, a vinyl alicyclic hydrocarbon polymer, and the like are used. ZEONOR (norbornene resin), Sumitrite FS-1700 manufactured by Sumitomo Bakelite, Arton (modified norbornene resin) manufactured by JSR, Appel (cyclic olefin copolymer) manufactured by Mitsui Chemicals, Topas (cyclic) manufactured by Ticona Olefin copolymer), Optretz OZ-1000 series (alicyclic acrylic resin) manufactured by Hitachi Chemical.
Further, the FV series (low birefringence, low photoelastic modulus film) manufactured by Asahi Kasei Chemicals is also preferable as an alternative base material for triacetylcellulose.
上記光透過性基材の厚さとしては、3~300μmであることが好ましく、より好ましくは下限が20μmであり、上限が100μmである。光透過性基材が板状体の場合には、これらの厚さを超える厚さであってもよい。上記光透過性基材は、その上に上記ハードコート層等を形成するのに際して、接着性向上のために、コロナ放電処理、酸化処理等の物理的な処理のほか、アンカー剤又はプライマーと呼ばれる塗料の塗布が予め行われていてもよい。 The thickness of the light transmissive substrate is preferably 3 to 300 μm, more preferably the lower limit is 20 μm and the upper limit is 100 μm. When the light-transmitting substrate is a plate-like body, the thickness may exceed these thicknesses. The light-transmitting substrate is called an anchor agent or a primer in addition to physical treatment such as corona discharge treatment and oxidation treatment in order to improve adhesiveness when forming the hard coat layer or the like thereon. Application of the paint may be performed in advance.
上記光透過性基材と低屈折率層との間に上記ハードコート層が形成された構造の本発明の反射防止フィルムは、更に、上記ハードコート層と光透過性基材との間に、公知の帯電防止剤とバインダー樹脂とからなる帯電防止層が形成された構造であってもよい。 The antireflection film of the present invention having a structure in which the hard coat layer is formed between the light transmissive substrate and the low refractive index layer is further provided between the hard coat layer and the light transmissive substrate. A structure in which an antistatic layer comprising a known antistatic agent and a binder resin is formed may be used.
また、本発明の反射防止フィルムは、必要に応じて任意の層として、上述したハードコート層とは異なる他のハードコート層、防汚染層、高屈折率層、中屈折率層等を備えてなるものであってよい。上記防汚染層、高屈折率層、中屈折率層は、一般に使用される防汚染剤、高屈折率剤、中屈折率剤、低屈折率剤や樹脂等を添加した組成物を調製し、それぞれの層を公知の方法により形成するとよい。 Moreover, the antireflection film of the present invention includes other hard coat layers different from the above-described hard coat layer, antifouling layer, high refractive index layer, medium refractive index layer, etc. as optional layers as necessary. It may be. The antifouling layer, the high refractive index layer, and the medium refractive index layer are prepared by adding a commonly used antifouling agent, a high refractive index agent, a medium refractive index agent, a low refractive index agent or a resin, Each layer may be formed by a known method.
本発明の反射防止フィルムの全光線透過率は、90%以上であることが好ましい。90%未満であると、ディスプレイ表面に装着した場合において、色再現性や視認性を損なうおそれがある。上記全光線透過率は、93%以上であることがより好ましく、95%以上であることが更に好ましい。
本発明の反射防止フィルムのヘイズは、1%未満であることが好ましく、0.5%未満であることがより好ましい。
The total light transmittance of the antireflection film of the present invention is preferably 90% or more. If it is less than 90%, color reproducibility and visibility may be impaired when it is mounted on the display surface. The total light transmittance is more preferably 93% or more, and still more preferably 95% or more.
The haze of the antireflection film of the present invention is preferably less than 1%, and more preferably less than 0.5%.
本発明の反射防止フィルムの製造方法は、光透過性基材上に、上述したハードコート層用組成物を塗布してハードコート層を形成する工程、及び、形成したハードコート層上に上述した低屈折率層用組成物を塗布して低屈折率層を形成する工程を有する方法が挙げられる。
上記ハードコート層及び低屈折率層を形成する方法としては、上述したとおりである。
The method for producing an antireflection film of the present invention includes the steps of forming the hard coat layer by applying the above-described hard coat layer composition on the light-transmitting substrate, and the above-described hard coat layer. The method which has the process of apply | coating the composition for low refractive index layers and forming a low refractive index layer is mentioned.
The method for forming the hard coat layer and the low refractive index layer is as described above.
本発明の反射防止フィルムは、偏光素子の表面に、本発明による反射防止フィルムを該反射防止フィルムにおける低屈折率層が存在する面と反対の面に設けることによって、偏光板とすることができる。このような偏光板も、本発明の一つである。 The antireflection film of the present invention can be made into a polarizing plate by providing the antireflection film according to the present invention on the surface of the polarizing element opposite to the surface where the low refractive index layer is present in the antireflection film. . Such a polarizing plate is also one aspect of the present invention.
上記偏光素子としては特に限定されず、例えば、ヨウ素等により染色し、延伸したポリビニルアルコールフィルム、ポリビニルホルマールフィルム、ポリビニルアセタールフィルム、エチレン-酢酸ビニル共重合体系ケン化フィルム等が挙げられる。
上記偏光素子と本発明の反射防止フィルムとのラミネート処理においては、光透過性基材(好ましくは、トリアセチルセルロースフィルム)にケン化処理を行うことが好ましい。ケン化処理によって、接着性が良好になり帯電防止効果も得ることができる。
The polarizing element is not particularly limited, and examples thereof include a polyvinyl alcohol film, a polyvinyl formal film, a polyvinyl acetal film, and an ethylene-vinyl acetate copolymer saponified film that are dyed and stretched with iodine.
In the laminating process between the polarizing element and the antireflection film of the present invention, it is preferable to saponify the light-transmitting substrate (preferably a triacetyl cellulose film). By the saponification treatment, the adhesiveness is improved and an antistatic effect can be obtained.
本発明は、上記反射防止フィルム又は上記偏光板を備えてなる画像表示装置でもある。上記画像表示装置は、LCD、PDP、FED、ELD(有機EL、無機EL)、CRT、タッチパネル、タブレットPC、電子ペーパー等の画像表示装置であってもよい。 The present invention is also an image display device comprising the antireflection film or the polarizing plate. The image display device may be an image display device such as an LCD, PDP, FED, ELD (organic EL, inorganic EL), CRT, touch panel, tablet PC, or electronic paper.
上記LCDは、透過性表示体と、該透過性表示体を背面から照射する光源装置とを備えてなるものである。本発明の画像表示装置がLCDである場合、この透過性表示体の表面に、本発明の反射防止フィルム又は本発明の偏光板が形成されてなるものである。 The LCD includes a transmissive display and a light source device that irradiates the transmissive display from the back. In the case where the image display device of the present invention is an LCD, the antireflection film of the present invention or the polarizing plate of the present invention is formed on the surface of the transmissive display.
本発明が上記反射防止フィルムを有する液晶表示装置の場合、光源装置の光源は光学積層体の下側から照射される。なお、STN型の液晶表示装置には、液晶表示素子と偏光板との間に、位相差板が挿入されてよい。この液晶表示装置の各層間には必要に応じて接着剤層が設けられてよい。 When the present invention is a liquid crystal display device having the antireflection film, the light source of the light source device is irradiated from the lower side of the optical laminate. Note that in the STN liquid crystal display device, a retardation plate may be inserted between the liquid crystal display element and the polarizing plate. An adhesive layer may be provided between the layers of the liquid crystal display device as necessary.
上記PDPは、表面ガラス基板(表面に電極を形成)と当該表面ガラス基板に対向して間に放電ガスが封入されて配置された背面ガラス基板(電極及び、微小な溝を表面に形成し、溝内に赤、緑、青の蛍光体層を形成)とを備えてなるものである。本発明の画像表示装置がPDPである場合、上記表面ガラス基板の表面、又は、その前面板(ガラス基板又はフィルム基板)に上述した反射防止フィルムを備えるものでもある。 The PDP has a front glass substrate (formed with an electrode on the surface) and a rear glass substrate (disposed with discharge gas sealed between the front glass substrate and the electrode and minute grooves formed on the surface). A red, green, and blue phosphor layer is formed in the groove). When the image display device of the present invention is a PDP, the surface of the surface glass substrate or the front plate (glass substrate or film substrate) is provided with the antireflection film described above.
上記画像表示装置は、電圧をかけると発光する硫化亜鉛、ジアミン類物質:発光体をガラス基板に蒸着し、基板にかける電圧を制御して表示を行うELD装置、又は、電気信号を光に変換し、人間の目に見える像を発生させるCRTなどの画像表示装置であってもよい。この場合、上記のような各表示装置の最表面又はその前面板の表面に上述した反射防止フィルムを備えるものである。 The above image display device is a zinc sulfide or diamine substance that emits light when a voltage is applied: a light emitting material is deposited on a glass substrate, and an ELD device that performs display by controlling the voltage applied to the substrate, or converts an electrical signal into light Alternatively, it may be an image display device such as a CRT that generates an image visible to human eyes. In this case, the antireflection film described above is provided on the outermost surface of each display device as described above or the surface of the front plate.
本発明の画像表示装置は、いずれの場合も、テレビジョン、コンピュータ、ワードプロセッサなどのディスプレイ表示に使用することができる。特に、CRT、タッチパネル、タブレットPC、電子ペーパー、液晶パネル、PDP、ELD、FEDなどの高精細画像用ディスプレイの表面に好適に使用することができる。 In any case, the image display apparatus of the present invention can be used for display display of a television, a computer, a word processor, or the like. In particular, it can be suitably used for the surface of high-definition image displays such as CRT, touch panel, tablet PC, electronic paper, liquid crystal panel, PDP, ELD, and FED.
本発明の反射防止フィルムは、低屈折率層が、その表面近傍に偏在した反応性シリカ微粒子を有することにより表面硬度が優れたものとなる。また、従来の反射防止フィルムは、低屈折率層の表面に微小な凹凸が存在していたことが耐擦傷性に劣る原因の一つであったが、上記構造の低屈折率層は、中空状シリカ微粒子が密に充填された状態にあるため、極めて均一な表面を有する。このため、本発明の反射防止フィルムは、表面硬度に極めて優れたものとなる。更に、本発明の反射防止フィルムは、低屈折率層が上記中空状シリカ微粒子と反応性シリカ微粒子で主に構成されるため、屈折率を充分に低いものとすることができ、優れた反射防止性能を有するものとすることができる。
このため、本発明の反射防止フィルムは、陰極線管表示装置(CRT)、液晶ディスプレイ(LCD)、プラズマディスプレイ(PDP)、エレクトロルミネッセンスディスプレイ(ELD)、フィールドエミッションディスプレイ(FED)、タッチパネル、タブレットPC、電子ペーパー等に好適に適用することができる。
The antireflective film of the present invention has excellent surface hardness due to the low refractive index layer having reactive silica fine particles that are unevenly distributed in the vicinity of the surface thereof. In addition, the conventional antireflection film was one of the causes of inferior scratch resistance due to the presence of minute irregularities on the surface of the low refractive index layer, but the low refractive index layer having the above structure is hollow. Since the silica fine particles are in a closely packed state, it has a very uniform surface. For this reason, the antireflection film of the present invention is extremely excellent in surface hardness. Furthermore, the antireflective film of the present invention has a low refractive index layer mainly composed of the hollow silica fine particles and the reactive silica fine particles, so that the refractive index can be made sufficiently low and excellent antireflective properties. It can have performance.
For this reason, the antireflection film of the present invention includes a cathode ray tube display (CRT), a liquid crystal display (LCD), a plasma display (PDP), an electroluminescence display (ELD), a field emission display (FED), a touch panel, a tablet PC, It can be suitably applied to electronic paper and the like.
実施例1に係る反射防止フィルムの断面の顕微鏡写真である。2 is a micrograph of a cross section of an antireflection film according to Example 1. 実施例7に係る反射防止フィルムの断面の顕微鏡写真である。10 is a micrograph of a cross section of an antireflection film according to Example 7. 比較例1に係る反射防止フィルムの断面の顕微鏡写真である。2 is a micrograph of a cross section of an antireflection film according to Comparative Example 1. 比較例2に係る反射防止フィルムの断面の顕微鏡写真である。4 is a micrograph of a cross section of an antireflection film according to Comparative Example 2.
本発明の内容を下記の実施例により説明するが、本発明の内容はこれらの実施態様に限定して解釈されるものではない。特別に断りの無い限り、「部」及び「%」は質量基準である。更に、特に断りの無い限り、各成分量は固形分量である。 The contents of the present invention will be described with reference to the following examples, but the contents of the present invention should not be construed as being limited to these embodiments. Unless otherwise specified, “part” and “%” are based on mass. Further, unless otherwise specified, each component amount is a solid content amount.
(ハードコート層用組成物(1)の調製)
下記に示す各成分を混合してハードコート層用組成物(1)を調製した。
反応性シリカ微粒子(Z7537、JSR社製、固形分50%、反応性シリカ微粒子60%含有品) 10質量部
ウレタンアクリレート(UV1700B、日本合成社製、10官能)
5.7質量部
重合開始剤(イルガキュア184;BASF社製) 0.6質量部
メチルエチルケトン 3.3質量部
メチルイソブチルケトン 2.3質量部
なお、ハードコート層用組成物(1)中のレベリング剤の固形分質量比は0.10%であった。
(Preparation of composition for hard coat layer (1))
The components shown below were mixed to prepare a hard coat layer composition (1).
Reactive silica fine particles (Z7537, manufactured by JSR, solid content 50%, product containing reactive silica fine particles 60%) 10 parts by mass urethane acrylate (UV1700B, manufactured by Nippon Gosei Co., Ltd., 10 functional)
5.7 parts by mass polymerization initiator (Irgacure 184; manufactured by BASF) 0.6 parts by mass methyl ethyl ketone 3.3 parts by mass methyl isobutyl ketone 2.3 parts by mass In addition, the leveling agent in the composition for hard coat layer (1) The solid content mass ratio was 0.10%.
(ハードコート層用組成物(2)の調製)
下記に示す各成分を混合してハードコート層用組成物(2)を調製した。
ポリエステルアクリレート(アロニックスM-9050、東亞合成社製、3官能) 5質量部
ウレタンアクリレート(UV1700B、日本合成社製、10官能)
11質量部
重合開始剤(イルガキュア184;BASF社製) 0.5質量部
メチルエチルケトン 10質量部
なお、ハードコート層用組成物(2)中のレベリング剤の固形分質量比は0.10%であった。
(Preparation of composition for hard coat layer (2))
The components shown below were mixed to prepare a hard coat layer composition (2).
Polyester acrylate (Aronix M-9050, manufactured by Toagosei Co., Ltd., trifunctional) 5 parts by mass urethane acrylate (UV1700B, manufactured by Nihon Gosei Co., Ltd., 10 functional)
11 parts by mass polymerization initiator (Irgacure 184; manufactured by BASF) 0.5 parts by mass methyl ethyl ketone 10 parts by mass The solid content mass ratio of the leveling agent in the hard coat layer composition (2) was 0.10%. It was.
(ハードコート層用組成物(3)の調製)
下記に示す各成分を混合してハードコート層用組成物(3)を調製した。
反応性シリカ微粒子(Z7537、JSR社製、固形分50%、反応性シリカ微粒子60%含有品) 4質量部
ウレタンアクリレート(UV1700B、日本合成社製、10官能)
5.7質量部
重合開始剤(イルガキュア184;BASF社製) 0.6質量部
メチルエチルケトン 3.3質量部
メチルイソブチルケトン 2.3質量部
なお、ハードコート層用組成物(3)中のレベリング剤の固形分質量比は0.10%であった。
(Preparation of composition for hard coat layer (3))
The components shown below were mixed to prepare a hard coat layer composition (3).
Reactive silica fine particles (Z7537, manufactured by JSR, solid content 50%, product containing 60% reactive silica fine particles) 4 parts by mass urethane acrylate (UV1700B, Nippon Gosei Co., Ltd., 10 functional)
5.7 parts by mass polymerization initiator (Irgacure 184; manufactured by BASF) 0.6 parts by mass methyl ethyl ketone 3.3 parts by mass methyl isobutyl ketone 2.3 parts by mass In addition, the leveling agent in the composition for hard coat layer (3) The solid content mass ratio was 0.10%.
(低屈折率層用組成物(1)の調製)
下記に示す成分を混合して低屈折率層用組成物(1)を調製した。
中空状シリカ微粒子(該中空状シリカ微粒子の固形分:20質量%溶液;メチルイソブチルケトン、平均粒子径:55nm、平均空隙率:23.3%)
0.8質量部
ペンタエリスリトールトリアクリレート(PETA) 0.05質量部
ジペンタエリスリトールヘキサアクリレート(DPHA) 0.05質量部
反応性シリカ微粒子(該反応性シリカ微粒子の固形分:30質量%溶液;メチルイソブチルケトン、平均粒子径:12nm) 0.1質量部
防汚剤(X-22-164E、信越化学工業社製) 0.01質量部
重合開始剤(イルガキュア127;BASF社製) 0.01質量部
MIBK 3質量部
PGME 2質量部
(Preparation of composition for low refractive index layer (1))
The following components were mixed to prepare a composition for low refractive index layer (1).
Hollow silica fine particles (solid content of the hollow silica fine particles: 20% by mass solution; methyl isobutyl ketone, average particle diameter: 55 nm, average porosity: 23.3%)
0.8 parts by mass pentaerythritol triacrylate (PETA) 0.05 parts by mass dipentaerythritol hexaacrylate (DPHA) 0.05 parts by mass reactive silica fine particles (solid content of the reactive silica fine particles: 30% by mass solution; methyl Isobutyl ketone, average particle size: 12 nm) 0.1 parts by mass antifouling agent (X-22-164E, manufactured by Shin-Etsu Chemical Co., Ltd.) 0.01 parts by mass polymerization initiator (Irgacure 127; manufactured by BASF) 0.01 mass Part MIBK 3 parts by mass PGME 2 parts by mass
(低屈折率層用組成物(2)の調製)
下記に示す成分を混合して低屈折率層用組成物(2)を調製した。
中空状シリカ微粒子(該中空状シリカ微粒子の固形分:20質量%溶液;メチルイソブチルケトン、平均粒子径:60nm、平均空隙率:29.6%)
0.8質量部
ペンタエリスリトールトリアクリレート(PETA) 0.1質量部
反応性シリカ微粒子(該反応性シリカ微粒子の固形分:30質量%溶液;メチルイソブチルケトン、平均粒子径:12nm) 0.1質量部
防汚剤(RS-74、DIC社製、20質量%溶液;メチルエチルケトン)
0.01質量部
防汚剤(TU2225、JSR社製、15質量%溶液;メチルイソブチルチルケトン) 0.01質量部
重合開始剤(イルガキュア127;BASF社製) 0.01質量部
MIBK 3質量部
PGME 2質量部
(Preparation of composition for low refractive index layer (2))
The following components were mixed to prepare a low refractive index layer composition (2).
Hollow silica fine particles (solid content of hollow silica fine particles: 20% by mass solution; methyl isobutyl ketone, average particle size: 60 nm, average porosity: 29.6%)
0.8 part by mass pentaerythritol triacrylate (PETA) 0.1 part by mass reactive silica fine particles (solid content of the reactive silica fine particles: 30% by mass solution; methyl isobutyl ketone, average particle size: 12 nm) 0.1 mass Antifouling agent (RS-74, manufactured by DIC, 20% by mass solution; methyl ethyl ketone)
0.01 parts by mass Antifouling agent (TU2225, manufactured by JSR, 15% by mass solution; methyl isobutyl butyl ketone) 0.01 parts by mass polymerization initiator (Irgacure 127; manufactured by BASF) 0.01 parts by mass MIBK 3 parts by mass 2 parts by mass of PGME
(低屈折率層用組成物(3)の調製)
下記に示す成分を混合して低屈折率層用組成物(3)を調製した。
中空状シリカ微粒子(該中空状シリカ微粒子の固形分:20質量%溶液;メチルイソブチルケトン、平均粒子径:55nm、平均空隙率:23.3%)
0.8質量部
ペンタエリスリトールトリアクリレート(PETA) 0.08質量部
ジペンタエリスリトールヘキサアクリレート(DPHA) 0.08質量部
反応性シリカ微粒子(該反応性シリカ微粒子の固形分:30質量%溶液;メチルイソブチルケトン、平均粒子径:12nm) 0.1質量部
防汚剤(X-22-164E、信越化学工業社製) 0.01質量部
重合開始剤(イルガキュア127;BASF社製) 0.01質量部
MIBK 3質量部
PGME 2質量部
(Preparation of composition (3) for low refractive index layer)
The following components were mixed to prepare a composition for low refractive index layer (3).
Hollow silica fine particles (solid content of the hollow silica fine particles: 20% by mass solution; methyl isobutyl ketone, average particle diameter: 55 nm, average porosity: 23.3%)
0.8 parts by mass pentaerythritol triacrylate (PETA) 0.08 parts by mass dipentaerythritol hexaacrylate (DPHA) 0.08 parts by mass reactive silica fine particles (solid content of the reactive silica fine particles: 30% by mass solution; methyl Isobutyl ketone, average particle size: 12 nm) 0.1 parts by mass antifouling agent (X-22-164E, manufactured by Shin-Etsu Chemical Co., Ltd.) 0.01 parts by mass polymerization initiator (Irgacure 127; manufactured by BASF) 0.01 mass Part MIBK 3 parts by mass PGME 2 parts by mass
(低屈折率層用組成物(4)の調製)
下記に示す成分を混合して低屈折率層用組成物(4)を調製した。
中空状シリカ微粒子(該中空状シリカ微粒子の固形分:20質量%溶液;メチルイソブチルケトン、平均粒子径:60nm、平均空隙率:29.6%)
0.8質量部
ペンタエリスリトールトリアクリレート(PETA) 0.17質量部
反応性シリカ微粒子(該反応性シリカ微粒子の固形分:30質量%溶液;メチルイソブチルケトン、平均粒子径:12nm) 0.2質量部
防汚剤(RS-74、DIC社製、20質量%溶液;メチルエチルケトン)
0.01質量部
防汚剤(TU2225、JSR社製、15質量%溶液;メチルイソブチルチルケトン) 0.01質量部
重合開始剤(イルガキュア127;BASF社製) 0.01質量部
MIBK 3質量部
PGME 2質量部
(Preparation of composition for low refractive index layer (4))
The following components were mixed to prepare a composition for low refractive index layer (4).
Hollow silica fine particles (solid content of hollow silica fine particles: 20% by mass solution; methyl isobutyl ketone, average particle size: 60 nm, average porosity: 29.6%)
0.8 parts by mass of pentaerythritol triacrylate (PETA) 0.17 parts by mass of reactive silica fine particles (solid content of the reactive silica fine particles: 30% by mass solution; methyl isobutyl ketone, average particle size: 12 nm) 0.2 mass Antifouling agent (RS-74, manufactured by DIC, 20% by mass solution; methyl ethyl ketone)
0.01 parts by mass Antifouling agent (TU2225, manufactured by JSR, 15% by mass solution; methyl isobutyl butyl ketone) 0.01 parts by mass polymerization initiator (Irgacure 127; manufactured by BASF) 0.01 parts by mass MIBK 3 parts by mass 2 parts by mass of PGME
(低屈折率層用組成物(5)の調製)
下記に示す成分を混合して低屈折率層用組成物(5)を調製した。
中空状シリカ微粒子(該中空状シリカ微粒子の固形分:20質量%溶液;メチルイソブチルケトン、平均粒子径:60nm、平均空隙率:29.6%)
0.8質量部
ペンタエリスリトールトリアクリレート(PETA) 0.1質量部
反応性シリカ微粒子(該反応性シリカ微粒子の固形分:30質量%溶液;メチルイソブチルケトン、平均粒子径:12nm) 0.02質量部
防汚剤(RS-74、DIC社製、20質量%溶液;メチルエチルケトン)
0.01質量部
防汚剤(TU2225、JSR社製、15質量%溶液;メチルイソブチルチルケトン) 0.01質量部
重合開始剤(イルガキュア127;BASF社製) 0.01質量部
MIBK 3質量部
PGME 2質量部
(Preparation of composition (5) for low refractive index layer)
The following components were mixed to prepare a composition for low refractive index layer (5).
Hollow silica fine particles (solid content of hollow silica fine particles: 20% by mass solution; methyl isobutyl ketone, average particle size: 60 nm, average porosity: 29.6%)
0.8 part by mass pentaerythritol triacrylate (PETA) 0.1 part by mass reactive silica fine particles (solid content of the reactive silica fine particles: 30% by mass solution; methyl isobutyl ketone, average particle size: 12 nm) 0.02 mass Antifouling agent (RS-74, manufactured by DIC, 20% by mass solution; methyl ethyl ketone)
0.01 parts by mass Antifouling agent (TU2225, manufactured by JSR, 15% by mass solution; methyl isobutyl butyl ketone) 0.01 parts by mass polymerization initiator (Irgacure 127; manufactured by BASF) 0.01 parts by mass MIBK 3 parts by mass 2 parts by mass of PGME
(低屈折率層用組成物(6)の調製)
下記に示す成分を混合して低屈折率層用組成物(6)を調製した。
中空状シリカ微粒子(該中空状シリカ微粒子の固形分:20質量%溶液;メチルイソブチルケトン、平均粒子径:55nm、平均空隙率:23.3%)
0.8質量部
ペンタエリスリトールトリアクリレート(PETA) 0.05質量部
ジペンタエリスリトールヘキサアクリレート(DPHA) 0.05質量部
反応性シリカ微粒子(該反応性シリカ微粒子の固形分:30質量%溶液;メチルイソブチルケトン、平均粒子径:12nm) 0.1質量部
防汚剤(RS-74、DIC社製、20質量%溶液;メチルエチルケトン)
0.01質量部
防汚剤(TU2225、JSR社製、15質量%溶液;メチルイソブチルチルケトン) 0.01質量部
重合開始剤(イルガキュア127;BASF社製) 0.01質量部
MIBK 4質量部
PGMEA 1質量部
(Preparation of composition for low refractive index layer (6))
The following components were mixed to prepare a composition for low refractive index layer (6).
Hollow silica fine particles (solid content of the hollow silica fine particles: 20% by mass solution; methyl isobutyl ketone, average particle diameter: 55 nm, average porosity: 23.3%)
0.8 parts by mass pentaerythritol triacrylate (PETA) 0.05 parts by mass dipentaerythritol hexaacrylate (DPHA) 0.05 parts by mass reactive silica fine particles (solid content of the reactive silica fine particles: 30% by mass solution; methyl Isobutyl ketone, average particle size: 12 nm) 0.1 parts by mass antifouling agent (RS-74, manufactured by DIC, 20% by mass solution; methyl ethyl ketone)
0.01 parts by mass Antifouling agent (TU2225, manufactured by JSR, 15% by mass solution; methyl isobutyl butyl ketone) 0.01 parts by mass polymerization initiator (Irgacure 127; manufactured by BASF) 0.01 parts by mass MIBK 4 parts by mass 1 part by weight of PGMEA
(低屈折率層用組成物(7)の調製)
下記に示す成分を混合して低屈折率層用組成物(7)を調製した。
中空状シリカ微粒子(該中空状シリカ微粒子の固形分:20質量%溶液;メチルイソブチルケトン、平均粒子径:60nm、平均空隙率:29.6%)
0.8質量部
ペンタエリスリトールトリアクリレート(PETA) 0.2質量部
反応性シリカ微粒子(該反応性シリカ微粒子の固形分:30質量%溶液;メチルイソブチルケトン、平均粒子径:12nm) 0.1質量部
防汚剤(RS-74、DIC社製、20質量%溶液;メチルエチルケトン)
0.01質量部
防汚剤(TU2225、JSR社製、15質量%溶液;メチルイソブチルチルケトン) 0.01質量部
重合開始剤(イルガキュア127;BASF社製) 0.01質量部
MIBK 3質量部
PGME 2質量部
(Preparation of composition for low refractive index layer (7))
The following components were mixed to prepare a composition for low refractive index layer (7).
Hollow silica fine particles (solid content of hollow silica fine particles: 20% by mass solution; methyl isobutyl ketone, average particle size: 60 nm, average porosity: 29.6%)
0.8 parts by mass pentaerythritol triacrylate (PETA) 0.2 parts by mass reactive silica fine particles (solid content of the reactive silica fine particles: 30% by mass solution; methyl isobutyl ketone, average particle size: 12 nm) 0.1 mass Antifouling agent (RS-74, manufactured by DIC, 20% by mass solution; methyl ethyl ketone)
0.01 parts by mass Antifouling agent (TU2225, manufactured by JSR, 15% by mass solution; methyl isobutyl butyl ketone) 0.01 parts by mass polymerization initiator (Irgacure 127; manufactured by BASF) 0.01 parts by mass MIBK 3 parts by mass 2 parts by mass of PGME
(低屈折率層用組成物(8)の調製)
下記に示す成分を混合して低屈折率層用組成物(8)を調製した。
中空状シリカ微粒子(該中空状シリカ微粒子の固形分:20質量%溶液;メチルイソブチルケトン、平均粒子径:60nm、平均空隙率:29.6%)
0.8質量部
ペンタエリスリトールトリアクリレート(PETA) 0.1質量部
反応性シリカ微粒子(該反応性シリカ微粒子の固形分:30質量%溶液;メチルイソブチルケトン、平均粒子径:12nm) 0.25質量部
防汚剤(RS-74、DIC社製、20質量%溶液;メチルエチルケトン)
0.01質量部
防汚剤(TU2225、JSR社製、15質量%溶液;メチルイソブチルチルケトン) 0.01質量部
重合開始剤(イルガキュア127;BASF社製) 0.01質量部
MIBK 3質量部
PGME 2質量部
(Preparation of composition for low refractive index layer (8))
The following components were mixed to prepare a low refractive index layer composition (8).
Hollow silica fine particles (solid content of hollow silica fine particles: 20% by mass solution; methyl isobutyl ketone, average particle size: 60 nm, average porosity: 29.6%)
0.8 part by mass pentaerythritol triacrylate (PETA) 0.1 part by mass reactive silica fine particles (solid content of the reactive silica fine particles: 30% by mass solution; methyl isobutyl ketone, average particle size: 12 nm) 0.25 mass Antifouling agent (RS-74, manufactured by DIC, 20% by mass solution; methyl ethyl ketone)
0.01 parts by mass Antifouling agent (TU2225, manufactured by JSR, 15% by mass solution; methyl isobutyl butyl ketone) 0.01 parts by mass polymerization initiator (Irgacure 127; manufactured by BASF) 0.01 parts by mass MIBK 3 parts by mass 2 parts by mass of PGME
(低屈折率層用組成物(9)の調製)
下記に示す成分を混合して低屈折率層用組成物(9)を調製した。
中空状シリカ微粒子(該中空状シリカ微粒子の固形分:20質量%溶液;メチルイソブチルケトン、平均粒子径:60nm、平均空隙率:29.6%)
0.8質量部
ペンタエリスリトールトリアクリレート(PETA) 0.1質量部
反応性シリカ微粒子(該反応性シリカ微粒子の固形分:30質量%溶液;メチルイソブチルケトン、平均粒子径:12nm) 0.22質量部
防汚剤(RS-74、DIC社製、20質量%溶液;メチルエチルケトン)
0.01質量部
防汚剤(TU2225、JSR社製、15質量%溶液;メチルイソブチルチルケトン) 0.01質量部
重合開始剤(イルガキュア127;BASF社製) 0.01質量部
MIBK 3質量部
PGME 2質量部
(Preparation of composition for low refractive index layer (9))
The following components were mixed to prepare a composition for low refractive index layer (9).
Hollow silica fine particles (solid content of hollow silica fine particles: 20% by mass solution; methyl isobutyl ketone, average particle size: 60 nm, average porosity: 29.6%)
0.8 part by mass pentaerythritol triacrylate (PETA) 0.1 part by mass reactive silica fine particles (solid content of the reactive silica fine particles: 30% by mass solution; methyl isobutyl ketone, average particle size: 12 nm) 0.22 mass Antifouling agent (RS-74, manufactured by DIC, 20% by mass solution; methyl ethyl ketone)
0.01 parts by mass Antifouling agent (TU2225, manufactured by JSR, 15% by mass solution; methyl isobutyl butyl ketone) 0.01 parts by mass polymerization initiator (Irgacure 127; manufactured by BASF) 0.01 parts by mass MIBK 3 parts by mass 2 parts by mass of PGME
(低屈折率層用組成物(10)の調製)
下記に示す成分を混合して低屈折率層用組成物(10)を調製した。
中空状シリカ微粒子(該中空状シリカ微粒子の固形分:20質量%溶液;メチルイソブチルケトン、平均粒子径:60nm、平均空隙率:29.6%)
0.8質量部
ペンタエリスリトールトリアクリレート(PETA) 0.1質量部
反応性シリカ微粒子(該反応性シリカ微粒子の固形分:30質量%溶液;メチルイソブチルケトン、平均粒子径:12nm) 0.01質量部
防汚剤(RS-74、DIC社製、20質量%溶液;メチルエチルケトン)
0.01質量部
防汚剤(TU2225、JSR社製、15質量%溶液;メチルイソブチルチルケトン) 0.01質量部
重合開始剤(イルガキュア127;BASF社製) 0.01質量部
MIBK 3質量部
PGME 2質量部
(Preparation of composition for low refractive index layer (10))
The following components were mixed to prepare a composition for low refractive index layer (10).
Hollow silica fine particles (solid content of hollow silica fine particles: 20% by mass solution; methyl isobutyl ketone, average particle size: 60 nm, average porosity: 29.6%)
0.8 parts by mass of pentaerythritol triacrylate (PETA) 0.1 parts by mass of reactive silica fine particles (solid content of the reactive silica fine particles: 30% by mass solution; methyl isobutyl ketone, average particle size: 12 nm) 0.01 mass Antifouling agent (RS-74, manufactured by DIC, 20% by mass solution; methyl ethyl ketone)
0.01 parts by mass Antifouling agent (TU2225, manufactured by JSR, 15% by mass solution; methyl isobutyl butyl ketone) 0.01 parts by mass polymerization initiator (Irgacure 127; manufactured by BASF) 0.01 parts by mass MIBK 3 parts by mass 2 parts by mass of PGME
(低屈折率層用組成物(11)の調製)
下記に示す成分を混合して低屈折率層用組成物(11)を調製した。
中空状シリカ微粒子(該中空状シリカ微粒子の固形分:20質量%溶液;メチルイソブチルケトン、平均粒子径:55nm、平均空隙率:23.3%)
0.8質量部
ペンタエリスリトールトリアクリレート(PETA) 0.05質量部
ジペンタエリスリトールヘキサアクリレート(DPHA) 0.05質量部
反応性シリカ微粒子(該反応性シリカ微粒子の固形分:30質量%溶液;メチルイソブチルケトン、平均粒子径:12nm) 0.1質量部
防汚剤(RS-74、DIC社製、20質量%溶液;メチルエチルケトン)
0.01質量部
防汚剤(TU2225、JSR社製、15質量%溶液;メチルイソブチルチルケトン) 0.01質量部
重合開始剤(イルガキュア127;BASF社製) 0.01質量部
MIBK 1質量部
MEK 4質量部
(Preparation of composition (11) for low refractive index layer)
The following components were mixed to prepare a composition for low refractive index layer (11).
Hollow silica fine particles (solid content of the hollow silica fine particles: 20% by mass solution; methyl isobutyl ketone, average particle diameter: 55 nm, average porosity: 23.3%)
0.8 parts by mass pentaerythritol triacrylate (PETA) 0.05 parts by mass dipentaerythritol hexaacrylate (DPHA) 0.05 parts by mass reactive silica fine particles (solid content of the reactive silica fine particles: 30% by mass solution; methyl Isobutyl ketone, average particle size: 12 nm) 0.1 parts by mass antifouling agent (RS-74, manufactured by DIC, 20% by mass solution; methyl ethyl ketone)
0.01 parts by mass Antifouling agent (TU2225, manufactured by JSR, 15% by mass solution; methyl isobutyl butyl ketone) 0.01 parts by mass polymerization initiator (Irgacure 127; manufactured by BASF) 0.01 parts by mass MIBK 1 part by mass MEK 4 parts by mass
(実施例1)
セルローストリアセテートフィルム(厚み80μm)の片面に、ハードコート層用組成物(1)を湿潤重量30g/m(乾燥重量15g/m)塗布した。50℃にて30秒乾燥し、紫外線50mJ/cmを照射してハードコート層を形成した。
次に、形成したハードコート層の上に、低屈折率層用組成物(1)を、乾燥(25℃×30秒-70℃×30秒)後の膜厚が0.1μmとなるように塗布した。そして、紫外線照射装置(フュージョンUVシステムジャパン社製、光源Hバルブ)を用いて、照射線量192mJ/mで紫外線照射を行って硬化させて、反射防止フィルムを得た。膜厚は、反射率の極小値が波長550nm付近になるように調整して行った。
得られた反射防止フィルムの低屈折率層において、中空状シリカ微粒子の(メタ)アクリル樹脂に対する配合比(中空状シリカ微粒子の含有量/(メタ)アクリル樹脂の含有量)は1.60であった。
Example 1
The composition for hard coat layer (1) was applied on one side of a cellulose triacetate film (thickness: 80 μm) with a wet weight of 30 g / m 2 (dry weight of 15 g / m 2 ). It dried for 30 seconds at 50 degreeC, and irradiated the ultraviolet-ray 50mJ / cm < 2 >, and formed the hard-coat layer.
Next, on the formed hard coat layer, the composition (1) for the low refractive index layer is dried (25 ° C. × 30 seconds−70 ° C. × 30 seconds) so that the film thickness becomes 0.1 μm. Applied. And using the ultraviolet irradiation device (The fusion UV system Japan company make, light source H bulb), it irradiated with ultraviolet irradiation with the irradiation dose of 192 mJ / m < 2 >, and it was made to harden, and the antireflection film was obtained. The film thickness was adjusted so that the minimum value of reflectivity was around 550 nm.
In the low refractive index layer of the obtained antireflection film, the blending ratio of hollow silica fine particles to (meth) acrylic resin (content of hollow silica fine particles / content of (meth) acrylic resin) was 1.60. It was.
(実施例2)
低屈折率層用組成物(1)に代えて、低屈折率層用組成物(2)を用いた以外は、実施例1と同様にして、反射防止フィルムを得た。
得られた反射防止フィルムの低屈折率層において、中空状シリカ微粒子の(メタ)アクリル樹脂に対する配合比(中空状シリカ微粒子の含有量/(メタ)アクリル樹脂の含有量)は1.60であった。
(Example 2)
An antireflection film was obtained in the same manner as in Example 1 except that the low refractive index layer composition (2) was used instead of the low refractive index layer composition (1).
In the low refractive index layer of the obtained antireflection film, the blending ratio of hollow silica fine particles to (meth) acrylic resin (content of hollow silica fine particles / content of (meth) acrylic resin) was 1.60. It was.
(実施例3)
セルローストリアセテートフィルム(厚み80μm)の片面に、ハードコート層用組成物(2)を湿潤重量30g/m(乾燥重量15g/m)塗布してハードコート層を形成し、次いで、形成したハードコート層の上に、低屈折率層用組成物(2)を用いて低屈折率層を形成した以外は、実施例1と同様にして反射防止フィルムを得た。
(Example 3)
The hard coat layer composition (2) was applied on one side of a cellulose triacetate film (thickness: 80 μm) to form a hard coat layer by applying a wet weight of 30 g / m 2 (dry weight of 15 g / m 2 ). An antireflection film was obtained in the same manner as in Example 1 except that the low refractive index layer was formed on the coating layer using the composition for low refractive index layer (2).
(実施例4)
低屈折率層用組成物(1)に代えて、低屈折率層用組成物(3)を用いた以外は、実施例1と同様にして、反射防止フィルムを得た。
得られた反射防止フィルムの低屈折率層において、中空状シリカ微粒子の(メタ)アクリル樹脂に対する配合比(中空状シリカ微粒子の含有量/(メタ)アクリル樹脂の含有量)は1.00であった。
Example 4
An antireflection film was obtained in the same manner as in Example 1 except that the low refractive index layer composition (3) was used instead of the low refractive index layer composition (1).
In the low refractive index layer of the obtained antireflection film, the mixing ratio of hollow silica fine particles to (meth) acrylic resin (content of hollow silica fine particles / content of (meth) acrylic resin) was 1.00. It was.
(実施例5)
低屈折率層用組成物(1)に代えて、低屈折率層用組成物(4)を用いた以外は、実施例1と同様にして、反射防止フィルムを得た。
得られた反射防止フィルムの低屈折率層において、中空状シリカ微粒子の(メタ)アクリル樹脂に対する配合比(中空状シリカ微粒子の含有量/(メタ)アクリル樹脂の含有量)は0.94であった。
(Example 5)
An antireflection film was obtained in the same manner as in Example 1 except that the low refractive index layer composition (4) was used instead of the low refractive index layer composition (1).
In the low refractive index layer of the obtained antireflection film, the mixing ratio of hollow silica fine particles to (meth) acrylic resin (content of hollow silica fine particles / content of (meth) acrylic resin) was 0.94. It was.
(実施例6)
低屈折率層用組成物(1)に代えて、低屈折率層用組成物(5)を用いた以外は、実施例1と同様にして、反射防止フィルムを得た。
得られた反射防止フィルムの低屈折率層において、中空状シリカ微粒子の(メタ)アクリル樹脂に対する配合比(中空状シリカ微粒子の含有量/(メタ)アクリル樹脂の含有量)は1.60であった。
(Example 6)
An antireflection film was obtained in the same manner as in Example 1 except that the low refractive index layer composition (5) was used instead of the low refractive index layer composition (1).
In the low refractive index layer of the obtained antireflection film, the blending ratio of hollow silica fine particles to (meth) acrylic resin (content of hollow silica fine particles / content of (meth) acrylic resin) was 1.60. It was.
(実施例7)
セルローストリアセテートフィルム(厚み80μm)の片面に、ハードコート層用組成物(3)を湿潤重量30g/m(乾燥重量15g/m)塗布してハードコート層を形成し、次いで、形成したハードコート層の上に、低屈折率層用組成物(2)を用いて低屈折率層を形成した以外は、実施例1と同様にして反射防止フィルムを得た。
(Example 7)
The hard coat layer composition (3) was applied on one side of a cellulose triacetate film (thickness: 80 μm) to form a hard coat layer by applying a wet weight of 30 g / m 2 (dry weight: 15 g / m 2 ). An antireflection film was obtained in the same manner as in Example 1 except that the low refractive index layer was formed on the coating layer using the composition for low refractive index layer (2).
(実施例8)
低屈折率層用組成物(1)に代えて、低屈折率層用組成物(6)を用いた以外は、実施例1と同様にして、反射防止フィルムを得た。
得られた反射防止フィルムの低屈折率層において、中空状シリカ微粒子の(メタ)アクリル樹脂に対する配合比(中空状シリカ微粒子の含有量/(メタ)アクリル樹脂の含有量)は1.60であった。
(Example 8)
An antireflection film was obtained in the same manner as in Example 1 except that the low refractive index layer composition (6) was used instead of the low refractive index layer composition (1).
In the low refractive index layer of the obtained antireflection film, the blending ratio of hollow silica fine particles to (meth) acrylic resin (content of hollow silica fine particles / content of (meth) acrylic resin) was 1.60. It was.
(比較例1)
低屈折率層用組成物(1)に代えて、低屈折率層用組成物(11)を用い、該低屈折率層用組成物(11)の乾燥条件を120℃×1分として低屈折率層を形成した以外は、実施例1と同様にして反射防止フィルムを得た。
(Comparative Example 1)
The low refractive index layer composition (11) is used in place of the low refractive index layer composition (1), and the low refractive index layer composition (11) is dried at 120 ° C. for 1 minute. An antireflection film was obtained in the same manner as in Example 1 except that the rate layer was formed.
(比較例2)
反応性シリカ微粒子を含有しない以外は、低屈折率層用組成物(1)と同様の組成の低屈折率層用組成物(12)を調製し、該低屈折率層用組成物(12)を用いた以外は、実施例1と同様にして反射防止フィルムを得た。
(Comparative Example 2)
A low refractive index layer composition (12) having the same composition as the low refractive index layer composition (1) except that the reactive silica fine particles are not contained is prepared, and the low refractive index layer composition (12) is prepared. An antireflection film was obtained in the same manner as in Example 1 except that was used.
(比較例3)
低屈折率層用組成物(1)において、反応性シリカ微粒子を表面に反応性官能基を有さないシリカ微粒子(MEK-ST、日産化学工業社製)とした低屈折率層用組成物(13)を調製し、該低屈折層用組成物(13)を用いた以外は、実施例1と同様にして反射防止フィルムを得た。
(Comparative Example 3)
In the composition for low refractive index layer (1), the composition for low refractive index layer (MEK-ST, manufactured by Nissan Chemical Industries, Ltd.) having reactive silica fine particles having no reactive functional group on the surface (1) 13) was prepared, and an antireflection film was obtained in the same manner as in Example 1 except that the composition for low refractive layer (13) was used.
(参考例1)
低屈折率層用組成物(1)に代えて、低屈折率層用組成物(7)を用いた以外は、実施例1と同様にして、反射防止フィルムを得た。得られた反射防止フィルムの低屈折率層において、中空状シリカ微粒子の(メタ)アクリル樹脂に対する配合比(中空状シリカ微粒子の含有量/(メタ)アクリル樹脂の含有量)は0.80であった。
(Reference Example 1)
An antireflection film was obtained in the same manner as in Example 1 except that the low refractive index layer composition (7) was used instead of the low refractive index layer composition (1). In the low refractive index layer of the obtained antireflection film, the mixing ratio of hollow silica fine particles to (meth) acrylic resin (content of hollow silica fine particles / content of (meth) acrylic resin) was 0.80. It was.
(参考例2)
低屈折率層用組成物(1)に代えて、低屈折率層用組成物(8)を用いた以外は、実施例1と同様にして、反射防止フィルムを得た。
得られた反射防止フィルムの低屈折率層において、中空状シリカ微粒子の(メタ)アクリル樹脂に対する配合比(中空状シリカ微粒子の含有量/(メタ)アクリル樹脂の含有量)は1.60であった。なお、低屈折率層における反応性シリカ微粒子の含有量が、(メタ)アクリル樹脂100質量部に対して、75質量部であった。
(Reference Example 2)
An antireflection film was obtained in the same manner as in Example 1 except that the low refractive index layer composition (8) was used instead of the low refractive index layer composition (1).
In the low refractive index layer of the obtained antireflection film, the blending ratio of hollow silica fine particles to (meth) acrylic resin (content of hollow silica fine particles / content of (meth) acrylic resin) was 1.60. It was. The content of reactive silica fine particles in the low refractive index layer was 75 parts by mass with respect to 100 parts by mass of the (meth) acrylic resin.
(参考例3)
低屈折率層用組成物(1)に代えて、低屈折率層用組成物(9)を用いた以外は、実施例1と同様にして、反射防止フィルムを得た。
得られた反射防止フィルムの低屈折率層において、中空状シリカ微粒子の(メタ)アクリル樹脂に対する配合比(中空状シリカ微粒子の含有量/(メタ)アクリル樹脂の含有量)は1.60であった。なお、低屈折率層における反応性シリカ微粒子の含有量が、(メタ)アクリル樹脂100質量部に対して、65質量部であった。
(Reference Example 3)
An antireflection film was obtained in the same manner as in Example 1 except that the low refractive index layer composition (9) was used instead of the low refractive index layer composition (1).
In the low refractive index layer of the obtained antireflection film, the blending ratio of hollow silica fine particles to (meth) acrylic resin (content of hollow silica fine particles / content of (meth) acrylic resin) was 1.60. It was. In addition, content of the reactive silica fine particle in a low-refractive-index layer was 65 mass parts with respect to 100 mass parts of (meth) acrylic resins.
(参考例4)
低屈折率層用組成物(1)に代えて、低屈折率層用組成物(10)を用いた以外は、実施例1と同様にして、反射防止フィルムを得た。
得られた反射防止フィルムの低屈折率層において、中空状シリカ微粒子の(メタ)アクリル樹脂に対する配合比(中空状シリカ微粒子の含有量/(メタ)アクリル樹脂の含有量)は1.60であった。なお、低屈折率層における反応性シリカ微粒子の含有量が、(メタ)アクリル樹脂100質量部に対して、3質量部であった。
(Reference Example 4)
An antireflection film was obtained in the same manner as in Example 1 except that the low refractive index layer composition (10) was used instead of the low refractive index layer composition (1).
In the low refractive index layer of the obtained antireflection film, the blending ratio of hollow silica fine particles to (meth) acrylic resin (content of hollow silica fine particles / content of (meth) acrylic resin) was 1.60. It was. In addition, content of the reactive silica fine particle in a low-refractive-index layer was 3 mass parts with respect to 100 mass parts of (meth) acrylic resins.
(評価)
実施例及び比較例で得られた反射防止フィルムについて、以下に示す各評価を行った。結果を表1に示した。
(Evaluation)
Each evaluation shown below was performed about the antireflection film obtained by the Example and the comparative example. The results are shown in Table 1.
(反射率の測定)
得られた各反射防止フィルムの裏面反射を防止するための黒色テープを貼り、低屈折率層の面から、島津製作所製、分光反射率測定機「MCP3100」を用い、 波長域380~780nmでの5°正反射Y値を測定した。結果を下記の基準にて評価した。5°正反射Y値は、5°正反射率を380~780nmまでの波長範囲で測定し、その後、人間が目で感じる明度として換算するソフト(MCP3100に内蔵)で算出される、視感反射率で示す値である。
評価基準
○:5°正反射Y値が、1.5%未満
×:5°正反射Y値が、1.5%以上
(Measurement of reflectance)
A black tape for preventing back reflection of each antireflection film obtained was applied, and from the surface of the low refractive index layer, using a spectral reflectance measuring device “MCP3100” manufactured by Shimadzu Corporation, in a wavelength range of 380 to 780 nm. The 5 ° specular reflection Y value was measured. The results were evaluated according to the following criteria. The 5 ° specular reflection Y value is calculated by software (built in the MCP3100) that measures 5 ° specular reflectance in the wavelength range from 380 to 780 nm and then converts it to the brightness that humans perceive. It is a value indicated by a rate.
Evaluation criteria ○: 5 ° regular reflection Y value is less than 1.5% ×: 5 ° regular reflection Y value is 1.5% or more
(耐擦傷性)
実施例及び比較例で得られた反射防止フィルムの低屈折率層の表面を、#0000番のスチールウールを用いて、所定の摩擦荷重300g/cmで10往復摩擦し、その後の塗膜の剥がれの有無を目視し、結果を下記の基準にて評価した。
:傷なし
○:傷が僅かにある
×:傷あり
(Abrasion resistance)
The surface of the low refractive index layer of the antireflection film obtained in Examples and Comparative Examples was rubbed 10 times with a predetermined friction load of 300 g / cm 2 using # 0000 steel wool. The presence or absence of peeling was visually observed, and the results were evaluated according to the following criteria.
: No scratch ○: Slight scratch ×: Scratch
(防汚性)
実施例及び比較例で得られた反射防止フィルムの表面に、指紋を付着させた後、日本製紙クレシア社製キムワイプ(登録商標)を、150g/cm荷重で30往復させて拭き取り、拭き取り性(指紋の残り具合)を、黒テープを貼り、蛍光灯下で目視にて下記の基準にて評価した。
◎:指紋が残らない
○:指紋が僅かに残っている
×:指紋が残っている
(Anti-fouling property)
After attaching fingerprints to the surfaces of the antireflection films obtained in the examples and comparative examples, the wipes of Nippon Paper Crecia Co., Ltd. Kimwipe (registered trademark) were reciprocated 30 times at a load of 150 g / cm 2 and wiped off ( The remaining state of the fingerprint) was evaluated by visual observation under a fluorescent lamp with a black tape and the following criteria.
◎: Fingerprints do not remain ○: Fingerprints remain slightly ×: Fingerprints remain
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(低屈折率層の断面観察)
実施例及び比較例で得られた反射防止フィルムを厚さ方向に切断し、それぞれの断面をSTEM(印加電圧:30.0kV、倍率:20万倍)で観察した。実施例1の結果を図1、実施例7の結果を図2、比較例1の結果を図3、比較例2の結果を図4にそれぞれ示した。なお、比較例1で得られた反射防止フィルムは、断面観察時に厚さ約150nmのカーボンからなる蒸着層を形成した。また、図1~4の右下には、1目盛が20nmのスケールを示している。
(Section observation of low refractive index layer)
The antireflection films obtained in Examples and Comparative Examples were cut in the thickness direction, and the respective cross sections were observed with STEM (applied voltage: 30.0 kV, magnification: 200,000 times). The result of Example 1 is shown in FIG. 1, the result of Example 7 is shown in FIG. 2, the result of Comparative Example 1 is shown in FIG. 3, and the result of Comparative Example 2 is shown in FIG. The antireflection film obtained in Comparative Example 1 formed a vapor deposition layer made of carbon having a thickness of about 150 nm during cross-sectional observation. Further, in the lower right of FIGS. 1 to 4, one scale indicates a scale of 20 nm.
図1、2より、実施例1に係る反射防止フィルムは、低屈折率層のハードコート層と反対側の界面近傍に偏在した反応性シリカ微粒子が確認され、また、実施例7に係る反射防止フィルムは、低屈折率層のハードコート層側の界面近傍及び該ハードコート層と反対側の界面近傍に偏在した反応性シリカ微粒子が確認され、いずれも中空状シリカ微粒子が密に充填された状態にあり、低屈折率層の表面が極めて均一な状態であった。
また、図示しないが、実施例3に係る反射防止フィルムは、低屈折率層のハードコート層側の界面近傍に偏在した反応性シリカ微粒子が確認され、中空状シリカ微粒子も密に充填された状態にあり、低屈折率層の表面が極めて均一な状態にあった。また、図示しないが、実施例2、4~6、8に係る反射防止フィルムは、いずれも、低屈折率層のハードコート層と反対側の界面近傍に偏在した反応性シリカ微粒子が確認され、中空状シリカ微粒子も密に充填された状態にあり、低屈折率層の表面が極めて均一な状態であった。
また、表1より、実施例に係る反射防止フィルムは、いずれも充分な防汚性、反射防止性能及び耐擦傷性を有していた。
実施例の結果より、耐擦傷性は、以下の場合に最も良好となることが分かった。
反応性シリカ微粒子が低屈折率層のハードコート層と反対側に偏在しており、かつ、偏在している反応性シリカ微粒子量が最適((メタ)アクリル樹脂100質量部に対して30質量部以上)である場合。
ハードコート層にも反応性シリカ微粒子が含有されていることで、低屈折率層の下地となる層(光透過性基材及びハードコート層)全体の硬度が高い場合。
また、防汚性については、反応性シリカ微粒子が低屈折率層のハードコート層側に偏在している場合に最も良好となることが分かった。これは、低屈折率層の最表面に反応性シリカ微粒子がない分、防汚剤自身が低屈折率層の表面に出てきやすく、低屈折率層の最表面全体に防汚剤が存在しているためと推測される。
1 and 2, the antireflection film according to Example 1 is confirmed to have reactive silica fine particles unevenly distributed in the vicinity of the interface opposite to the hard coat layer of the low refractive index layer. Further, the antireflection film according to Example 7 is confirmed. In the film, reactive silica fine particles unevenly distributed in the vicinity of the interface on the hard coat layer side of the low refractive index layer and in the vicinity of the interface opposite to the hard coat layer were confirmed, both of which were filled with hollow silica fine particles densely And the surface of the low refractive index layer was extremely uniform.
Although not shown, the antireflection film according to Example 3 has a state in which reactive silica fine particles unevenly distributed in the vicinity of the interface on the hard coat layer side of the low refractive index layer are confirmed, and hollow silica fine particles are also densely packed. The surface of the low refractive index layer was in a very uniform state. Although not shown in the drawings, the antireflection films according to Examples 2, 4 to 6, and 8 were all confirmed to have reactive silica fine particles unevenly distributed in the vicinity of the interface opposite to the hard coat layer of the low refractive index layer, The hollow silica fine particles were also densely packed, and the surface of the low refractive index layer was extremely uniform.
Moreover, from Table 1, all of the antireflection films according to the examples had sufficient antifouling properties, antireflection performance and scratch resistance.
From the results of the examples, it was found that the scratch resistance was the best in the following cases.
The reactive silica fine particles are unevenly distributed on the side opposite to the hard coat layer of the low refractive index layer, and the amount of the reactive silica fine particles unevenly distributed is optimal (30 parts by mass with respect to 100 parts by mass of the (meth) acrylic resin) Or more).
When the hard coat layer also contains reactive silica fine particles, the hardness of the entire layer (light-transmitting substrate and hard coat layer) serving as the base of the low refractive index layer is high.
Further, it was found that the antifouling property is best when the reactive silica fine particles are unevenly distributed on the hard coat layer side of the low refractive index layer. This is because the antifouling agent itself tends to come out on the surface of the low refractive index layer because there is no reactive silica fine particle on the outermost surface of the low refractive index layer, and the antifouling agent exists on the entire outermost surface of the low refractive index layer. It is presumed that.
一方、図3に示すように、比較例1に係る反射防止フィルムは、低屈折率層中に反応性シリカ微粒子が満遍なく存在しており、低屈折率層のハードコート層側、又は、ハードコート層と反対側の界面近傍に偏在した反応性シリカ微粒子は認められず、また、その表面も均一ではなかった。これは、用いた溶剤や乾燥条件が適切ではなく乾燥速度が速かったことが原因と推測している。更に、比較例1に係る反射防止フィルムは、防汚性にも劣るものであった。また、図4に示すように、比較例2に係る反射防止フィルムは、中空状シリカ微粒子が密に充填された状態にあり表面が均一であったものの、低屈折率層に反応性シリカ微粒子が含まれないため耐擦傷性に劣るものであった。また、図示しないが、比較例3に係る反射防止フィルムは、中空状シリカ微粒子が密に充填された状態にあり表面が均一であったものの、低屈折率層に反応性官能基を有さないシリカ微粒子を含有するものであったため耐擦傷性に劣るものであった。
また、参考例1に係る反射防止フィルムは、低屈折率層の(メタ)アクリル樹脂に対する中空状シリカ微粒子の割合が小さく、反射防止性能に劣るものであった。また、参考例2及び3に係る反射防止フィルムは、低屈折率層中の反応性シリカ微粒子の含有量が多く、反応性シリカ微粒子の偏在が不充分で低屈折率層中に満遍なく存在しており、中空状シリカ微粒子も密に充填された状態となっておらず、耐擦傷性及び防汚性に劣るものであった。また、参考例4に係る反射防止フィルムは、低屈折率層中の反応性シリカ微粒子の含有量が少なく、反応性シリカ微粒子の偏在が不充分で低屈折率層中に満遍なく存在しており、中空状シリカ微粒子も密に充填された状態となっておらず、耐擦傷性及び防汚性に劣るものであった。
On the other hand, as shown in FIG. 3, in the antireflection film according to Comparative Example 1, reactive silica fine particles are uniformly present in the low refractive index layer, and the hard coating layer side of the low refractive index layer, or the hard coating layer Reactive silica fine particles unevenly distributed in the vicinity of the interface opposite to the layer were not observed, and the surface thereof was not uniform. This is presumably because the solvent and drying conditions used were not appropriate and the drying speed was high. Furthermore, the antireflection film according to Comparative Example 1 was also poor in antifouling properties. Further, as shown in FIG. 4, the antireflection film according to Comparative Example 2 is in a state where the hollow silica fine particles are densely packed and the surface is uniform, but the reactive silica fine particles are present in the low refractive index layer. Since it was not included, the scratch resistance was poor. Although not shown, the antireflection film according to Comparative Example 3 is in a state where the hollow silica fine particles are densely packed and the surface is uniform, but does not have a reactive functional group in the low refractive index layer. Since it contained silica fine particles, it was inferior in scratch resistance.
Moreover, the ratio of the hollow silica fine particle with respect to the (meth) acrylic resin of the low refractive index layer was small, and the antireflection film according to Reference Example 1 was inferior in antireflection performance. In addition, the antireflection films according to Reference Examples 2 and 3 have a high content of reactive silica fine particles in the low refractive index layer, and the reactive silica fine particles are insufficiently distributed and exist uniformly in the low refractive index layer. Further, the hollow silica fine particles were not in a densely packed state and were inferior in scratch resistance and antifouling property. Further, the antireflection film according to Reference Example 4 has a low content of reactive silica fine particles in the low refractive index layer, the uneven distribution of reactive silica fine particles is insufficient, and is uniformly present in the low refractive index layer, The hollow silica fine particles were not in a densely packed state and were inferior in scratch resistance and antifouling properties.
本発明の反射防止フィルムは、上述した構成からなる低屈折率層を有するため、反射防止性能及び表面硬度に優れたものである。そのため、本発明の反射防止フィルムは、陰極線管表示装置(CRT)、液晶ディスプレイ(LCD)、プラズマディスプレイ(PDP)、エレクトロルミネッセンスディスプレイ(ELD)、フィールドエミッションディスプレイ(FED)、タッチパネル、タブレットPC、電子ペーパー等に好適に適用することができる。
 
Since the antireflection film of the present invention has the low refractive index layer having the above-described configuration, it has excellent antireflection performance and surface hardness. Therefore, the antireflection film of the present invention is a cathode ray tube display (CRT), a liquid crystal display (LCD), a plasma display (PDP), an electroluminescence display (ELD), a field emission display (FED), a touch panel, a tablet PC, an electronic It can be suitably applied to paper or the like.

Claims (11)

  1. 光透過性基材の上にハードコート層が形成され、前記ハードコート層の上に低屈折率層が形成された反射防止フィルムであって、
    前記低屈折率層は、(メタ)アクリル樹脂、中空状シリカ微粒子、反応性シリカ微粒子及び防汚剤を含有し、かつ、
    前記低屈折率層中の反応性シリカ微粒子は、前記ハードコート層側の界面近傍及び/又は前記ハードコート層と反対側の界面近傍に偏在している
    ことを特徴とする反射防止フィルム。
    An antireflection film in which a hard coat layer is formed on a light-transmitting substrate, and a low refractive index layer is formed on the hard coat layer,
    The low refractive index layer contains (meth) acrylic resin, hollow silica fine particles, reactive silica fine particles and an antifouling agent, and
    The reactive silica fine particles in the low refractive index layer are unevenly distributed near the interface on the hard coat layer side and / or near the interface on the opposite side to the hard coat layer.
  2. 低屈折率層中の反応性シリカ微粒子は、ハードコート層側と反対側の界面近傍に偏在しており、前記ハードコート層は、前記低屈折率層側の界面近傍で該界面方向に整列した反応性シリカ微粒子を有する請求項1記載の反射防止フィルム。 The reactive silica fine particles in the low refractive index layer are unevenly distributed in the vicinity of the interface opposite to the hard coat layer side, and the hard coat layer is aligned in the interface direction near the interface on the low refractive index layer side. The antireflection film according to claim 1, comprising reactive silica fine particles.
  3. 低屈折率層中の反応性シリカ微粒子の含有量が、(メタ)アクリル樹脂100質量部に対して、5~60質量部である請求項1又は2記載の反射防止フィルム。 The antireflection film according to claim 1 or 2, wherein the content of the reactive silica fine particles in the low refractive index layer is 5 to 60 parts by mass with respect to 100 parts by mass of the (meth) acrylic resin.
  4. 中空状シリカ微粒子は、平均粒子径が40~80nmであり、更に、(メタ)アクリル樹脂に対する配合比(中空状シリカ微粒子の含有量/(メタ)アクリル樹脂の含有量)が、0.90~1.60である請求項1、2又は3記載の反射防止フィルム。 The hollow silica fine particles have an average particle diameter of 40 to 80 nm, and the blending ratio to the (meth) acrylic resin (content of hollow silica fine particles / content of (meth) acrylic resin) is 0.90 to The antireflection film according to claim 1, which is 1.60.
  5. 防汚剤は、低屈折率層のハードコート層と反対側の界面近傍に偏在している請求項1、2、3又は4記載の反射防止フィルム。 5. The antireflection film according to claim 1, wherein the antifouling agent is unevenly distributed in the vicinity of the interface opposite to the hard coat layer of the low refractive index layer.
  6. 防汚剤は、反応性官能基と、フッ素原子及び/又はケイ素原子とを含有する化合物である請求項1、2、3、4又は5記載の反射防止フィルム。 The antireflection film according to claim 1, 2, 3, 4, or 5, wherein the antifouling agent is a compound containing a reactive functional group and a fluorine atom and / or a silicon atom.
  7. (メタ)アクリル樹脂は、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、及び、イソシアヌル酸トリ(メタ)アクリレートからなる群より選択される少なくとも1種のモノマーの重合体又は共重合体である請求項1、2、3、4、5又は6記載の反射防止フィルム。 (Meth) acrylic resin is pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, trimethylolpropane tri (meth) acrylate, 2. A polymer or copolymer of at least one monomer selected from the group consisting of dipentaerythritol tetra (meth) acrylate and isocyanuric acid tri (meth) acrylate. Or the antireflection film of 6.
  8. 低屈折率層は、フッ素原子含有樹脂を更に含有する請求項1、2、3、4、5、6又は7記載の反射防止フィルム。 The antireflective film according to claim 1, wherein the low refractive index layer further contains a fluorine atom-containing resin.
  9. ハードコート層中の反応性シリカ微粒子の含有量が、(メタ)アクリル樹脂100質量部に対して、15~60質量部である請求項1、2、3、4、5、6、7又は8記載の反射防止フィルム。 The content of the reactive silica fine particles in the hard coat layer is 15 to 60 parts by mass with respect to 100 parts by mass of the (meth) acrylic resin, 1, 2, 3, 4, 5, 6, 7 or 8 The antireflection film as described.
  10. 偏光素子を備えてなる偏光板であって、
    前記偏光板は、偏光素子表面に請求項1、2、3、4、5、6、7、8又は9記載の反射防止フィルムを備えることを特徴とする偏光板。
    A polarizing plate comprising a polarizing element,
    The polarizing plate is provided with the antireflection film according to claim 1, 2, 3, 4, 5, 6, 7, 8, or 9 on the surface of a polarizing element.
  11. 請求項1、2、3、4、5、6、7、8若しくは9記載の反射防止フィルム、又は、請求項10記載の偏光板を備えることを特徴とする画像表示装置。
     
    An image display device comprising the antireflection film according to claim 1, 2, 3, 4, 5, 6, 7, 8, or 9, or the polarizing plate according to claim 10.
PCT/JP2012/060000 2011-04-26 2012-04-12 Antireflection film, polarizing plate, and image display device WO2012147527A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177021088A KR101871135B1 (en) 2011-04-26 2012-04-12 Antireflection film, polarizing plate, and image display device
JP2013512005A JP6011527B2 (en) 2011-04-26 2012-04-12 Antireflection film, polarizing plate and image display device
CN201280017337.2A CN103460079B (en) 2011-04-26 2012-04-12 Antireflection film, polaroid and image display device
KR1020137022588A KR20140006922A (en) 2011-04-26 2012-04-12 Antireflection film, polarizing plate, and image display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011098112 2011-04-26
JP2011-098112 2011-04-26

Publications (1)

Publication Number Publication Date
WO2012147527A1 true WO2012147527A1 (en) 2012-11-01

Family

ID=47072049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060000 WO2012147527A1 (en) 2011-04-26 2012-04-12 Antireflection film, polarizing plate, and image display device

Country Status (5)

Country Link
JP (1) JP6011527B2 (en)
KR (2) KR101871135B1 (en)
CN (1) CN103460079B (en)
TW (1) TWI542899B (en)
WO (1) WO2012147527A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014091835A1 (en) * 2012-12-14 2014-06-19 中井工業株式会社 Hard coat film
JP2014142443A (en) * 2013-01-23 2014-08-07 Kyocera Corp Imaging optical system
JP2018530770A (en) * 2016-01-13 2018-10-18 エルジー・ケム・リミテッド Antireflection film and method for producing the same
WO2018199257A1 (en) * 2017-04-28 2018-11-01 大日本印刷株式会社 Molded body and display device using same
JP2018533068A (en) * 2016-03-09 2018-11-08 エルジー・ケム・リミテッド Antireflection film
JP2018536886A (en) * 2016-02-19 2018-12-13 エルジー・ケム・リミテッド Photocurable coating composition for forming a low refractive layer
JP2019508753A (en) * 2016-07-14 2019-03-28 エルジー・ケム・リミテッド Antireflective film
JP2019144579A (en) * 2015-11-04 2019-08-29 エルジー・ケム・リミテッド Antireflection film and manufacturing method thereof
CN110494773A (en) * 2017-04-10 2019-11-22 日东电工株式会社 Optical laminate, polarizing film and image display device
CN110520765A (en) * 2017-04-10 2019-11-29 日东电工株式会社 Optical laminate, polarizing film and image display device
US10663623B2 (en) 2016-07-14 2020-05-26 Lg Chem, Ltd. Anti-reflective film
US10823883B2 (en) 2016-09-27 2020-11-03 Lg Chem, Ltd. Antireflection film
JP2020535462A (en) * 2018-01-24 2020-12-03 エルジー・ケム・リミテッド Anti-reflective film, polarizing plate and display device
JP2021515273A (en) * 2018-05-18 2021-06-17 エルジー・ケム・リミテッド Anti-reflective film, polarizing plate, and display device
US11353628B2 (en) 2017-04-28 2022-06-07 Lg Chem, Ltd. Anti-reflective film
US11428848B2 (en) 2018-01-24 2022-08-30 Lg Chem, Ltd. Anti-reflective film, polarizing plate, and display apparatus
JP7161836B2 (en) 2015-12-18 2022-10-27 デクセリアルズ株式会社 Antifogging antifouling laminate, article, and method for producing the same
JP7235623B2 (en) 2019-09-05 2023-03-08 エルジー ディスプレイ カンパニー リミテッド flexible display

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102340255B1 (en) * 2016-01-13 2021-12-15 주식회사 엘지화학 Anti-reflective film and preparation method of the same
JP2017146492A (en) * 2016-02-18 2017-08-24 リンテック株式会社 Film with protective film for laminating transparent conductive film, and method of manufacturing transparent conductive film
WO2017142291A1 (en) * 2016-02-19 2017-08-24 주식회사 엘지화학 Photocurable coating composition for forming low refractive layer
WO2017155337A1 (en) * 2016-03-09 2017-09-14 주식회사 엘지화학 Anti-reflection film
KR101790240B1 (en) * 2016-03-11 2017-10-26 주식회사 엘지화학 Anti-refractive film
KR101906492B1 (en) * 2016-03-14 2018-12-05 주식회사 엘지화학 Anti-reflective film
CN115185021A (en) * 2017-09-08 2022-10-14 株式会社大赛璐 Anti-reflection film
WO2019221573A1 (en) * 2018-05-18 2019-11-21 주식회사 엘지화학 Anti-reflective film, polarizing plate, and display apparatus
KR102194998B1 (en) 2018-06-26 2020-12-24 주식회사 엘지화학 Anti-reflective film, polarizing plate, and display apparatus
CN109473045A (en) * 2018-12-17 2019-03-15 武汉华星光电半导体显示技术有限公司 A kind of optical cement, its manufacturing method and its flexible display screen
CN113272136B (en) * 2019-01-10 2023-07-14 大日本印刷株式会社 Antireflection member, and polarizing plate, image display device and antireflection article each comprising the antireflection member
KR102449532B1 (en) * 2019-07-30 2022-09-29 히가시야마 필름 가부시키가이샤 anti-reflection film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009086360A (en) * 2007-09-28 2009-04-23 Dainippon Printing Co Ltd Antireflection film
JP2009265658A (en) * 2008-04-03 2009-11-12 Dainippon Printing Co Ltd Optical film and method for manufacturing method thereof
JP2010085983A (en) * 2008-09-05 2010-04-15 Dainippon Printing Co Ltd Optical layered body, polarizer and image display
JP2010122325A (en) * 2008-11-17 2010-06-03 Dainippon Printing Co Ltd Optical sheet and method of manufacturing the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69428199T2 (en) * 1993-12-28 2002-05-16 Daikin Ind Ltd COATING COMPOSITION AND COATED ARTICLES
JP3864361B2 (en) * 1998-09-01 2006-12-27 清水建設株式会社 Viscous damping wall mounting structure and mounting method
JP4324344B2 (en) * 2002-05-02 2009-09-02 富士フイルム株式会社 Antireflection film and method for forming the same, polarizing plate, and image display device
JP2005181543A (en) * 2003-12-17 2005-07-07 Bridgestone Corp Antireflection film
US20080032052A1 (en) * 2006-08-04 2008-02-07 Kostantinos Kourtakis Low refractive index composition
JP5320703B2 (en) * 2007-08-10 2013-10-23 大日本印刷株式会社 Hard coat film
KR101378603B1 (en) * 2009-10-16 2014-03-25 다이니폰 인사츠 가부시키가이샤 Optical film and display panel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009086360A (en) * 2007-09-28 2009-04-23 Dainippon Printing Co Ltd Antireflection film
JP2009265658A (en) * 2008-04-03 2009-11-12 Dainippon Printing Co Ltd Optical film and method for manufacturing method thereof
JP2010085983A (en) * 2008-09-05 2010-04-15 Dainippon Printing Co Ltd Optical layered body, polarizer and image display
JP2010122325A (en) * 2008-11-17 2010-06-03 Dainippon Printing Co Ltd Optical sheet and method of manufacturing the same

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014091835A1 (en) * 2012-12-14 2017-01-05 中井工業株式会社 Hard coat film
WO2014091835A1 (en) * 2012-12-14 2014-06-19 中井工業株式会社 Hard coat film
JP2014142443A (en) * 2013-01-23 2014-08-07 Kyocera Corp Imaging optical system
US11415726B2 (en) 2015-11-04 2022-08-16 Lg Chem, Ltd. Anti-reflective film and manufacturing method thereof
JP2021076849A (en) * 2015-11-04 2021-05-20 エルジー・ケム・リミテッド Antireflection film and manufacturing method thereof
US10627548B2 (en) 2015-11-04 2020-04-21 Lg Chem, Ltd. Anti-reflective film and manufacturing method thereof
JP2019144579A (en) * 2015-11-04 2019-08-29 エルジー・ケム・リミテッド Antireflection film and manufacturing method thereof
JP7161836B2 (en) 2015-12-18 2022-10-27 デクセリアルズ株式会社 Antifogging antifouling laminate, article, and method for producing the same
US10605960B2 (en) 2016-01-13 2020-03-31 Lg Chem, Ltd. Antireflection film containing inorganic particles and manufacturing method thereof
JP2018530770A (en) * 2016-01-13 2018-10-18 エルジー・ケム・リミテッド Antireflection film and method for producing the same
EP3385070A4 (en) * 2016-01-13 2018-12-26 LG Chem, Ltd. Antireflective film and manufacturing method therefor
JP2018536886A (en) * 2016-02-19 2018-12-13 エルジー・ケム・リミテッド Photocurable coating composition for forming a low refractive layer
US11262481B2 (en) 2016-03-09 2022-03-01 Lg Chem, Ltd. Anti-reflective film
JP2018533068A (en) * 2016-03-09 2018-11-08 エルジー・ケム・リミテッド Antireflection film
JP2020024467A (en) * 2016-03-09 2020-02-13 エルジー・ケム・リミテッド Antireflection film
JP2020024468A (en) * 2016-03-09 2020-02-13 エルジー・ケム・リミテッド Antireflection film
JP7344865B2 (en) 2016-03-09 2023-09-14 エルジー・ケム・リミテッド anti-reflection film
US10627547B2 (en) 2016-03-09 2020-04-21 Lg Chem, Ltd. Anti-reflective film
JP2019015954A (en) * 2016-03-09 2019-01-31 エルジー・ケム・リミテッド Antireflection film
US10983252B2 (en) 2016-03-09 2021-04-20 Lg Chem, Ltd. Anti-reflective film
US10802178B2 (en) 2016-03-09 2020-10-13 Lg Chem, Ltd. Anti-reflective film
JP7344866B2 (en) 2016-03-09 2023-09-14 エルジー・ケム・リミテッド anti-reflection film
JP2021076848A (en) * 2016-03-09 2021-05-20 エルジー・ケム・リミテッド Antireflection film
US10895667B2 (en) 2016-03-09 2021-01-19 Lg Chem, Ltd. Antireflection film
US11275199B2 (en) 2016-03-09 2022-03-15 Lg Chem, Ltd. Anti-reflective film
JP2021076847A (en) * 2016-03-09 2021-05-20 エルジー・ケム・リミテッド Antireflection film
US10663623B2 (en) 2016-07-14 2020-05-26 Lg Chem, Ltd. Anti-reflective film
JP2019508753A (en) * 2016-07-14 2019-03-28 エルジー・ケム・リミテッド Antireflective film
US10823883B2 (en) 2016-09-27 2020-11-03 Lg Chem, Ltd. Antireflection film
US10908323B2 (en) 2016-09-27 2021-02-02 Lg Chem, Ltd. Antireflection film and method for preparing same
US10962686B2 (en) 2016-09-27 2021-03-30 Lg Chem, Ltd. Antireflection film
CN110494773A (en) * 2017-04-10 2019-11-22 日东电工株式会社 Optical laminate, polarizing film and image display device
CN110520765B (en) * 2017-04-10 2021-12-10 日东电工株式会社 Optical laminate, polarizing plate, and image display device
CN110520765A (en) * 2017-04-10 2019-11-29 日东电工株式会社 Optical laminate, polarizing film and image display device
CN110494773B (en) * 2017-04-10 2022-09-06 日东电工株式会社 Optical laminate, polarizing plate, and image display device
WO2018199257A1 (en) * 2017-04-28 2018-11-01 大日本印刷株式会社 Molded body and display device using same
JP7020277B2 (en) 2017-04-28 2022-02-16 大日本印刷株式会社 Molded body and display device using it
JP2018187927A (en) * 2017-04-28 2018-11-29 大日本印刷株式会社 Molded body and display device using the same
US11353628B2 (en) 2017-04-28 2022-06-07 Lg Chem, Ltd. Anti-reflective film
JP7138892B2 (en) 2017-04-28 2022-09-20 エルジー・ケム・リミテッド anti-reflection film
US11428848B2 (en) 2018-01-24 2022-08-30 Lg Chem, Ltd. Anti-reflective film, polarizing plate, and display apparatus
US11506820B2 (en) 2018-01-24 2022-11-22 Lg Chem, Ltd. Anti-reflective film, polarizing plate, and display apparatus
JP2020535462A (en) * 2018-01-24 2020-12-03 エルジー・ケム・リミテッド Anti-reflective film, polarizing plate and display device
JP7205815B2 (en) 2018-05-18 2023-01-17 エルジー・ケム・リミテッド Antireflection films, polarizers, and display devices
US11732142B2 (en) 2018-05-18 2023-08-22 Lg Chem, Ltd. Anti-reflective film, polarizing plate, and display apparatus
JP2021515273A (en) * 2018-05-18 2021-06-17 エルジー・ケム・リミテッド Anti-reflective film, polarizing plate, and display device
JP7235623B2 (en) 2019-09-05 2023-03-08 エルジー ディスプレイ カンパニー リミテッド flexible display

Also Published As

Publication number Publication date
CN103460079B (en) 2016-01-20
KR20170092702A (en) 2017-08-11
JPWO2012147527A1 (en) 2014-07-28
KR20140006922A (en) 2014-01-16
KR101871135B1 (en) 2018-06-25
CN103460079A (en) 2013-12-18
TWI542899B (en) 2016-07-21
TW201245756A (en) 2012-11-16
JP6011527B2 (en) 2016-10-19

Similar Documents

Publication Publication Date Title
JP6011527B2 (en) Antireflection film, polarizing plate and image display device
JP5531509B2 (en) Optical laminate, polarizing plate, and image display device
JP6070195B2 (en) Antireflection film, method for producing antireflection film, polarizing plate and image display device
JP6268692B2 (en) Optical laminate, polarizing plate, and image display device
JP5983410B2 (en) Optical laminate, polarizing plate, and image display device
JP4788830B1 (en) Antiglare film, method for producing antiglare film, polarizing plate and image display device
WO2007116831A1 (en) Optical laminated body
JP2009086660A (en) Optical layered body, method of producing the same, polarizer and image display device
WO2019139150A1 (en) Optical layered body, polarizing plate, display panel, and image display device
JP4985049B2 (en) Optical laminate
JP5076763B2 (en) Optical laminate manufacturing method, optical laminate, polarizing plate, and image display device
JP5051088B2 (en) Optical laminate, polarizing plate, and image display device
JP2009075354A (en) Optical laminate, polarizing plate, and image display
JP2007322877A (en) Optical laminated body
JP2009069429A (en) Optical laminate, manufacturing method of optical laminate, polarizing plate, and image display device
KR101627915B1 (en) Optical layered body with touch panel, polarizer, image display device and method for suppressing newton&#39;s rings generation
JP6589425B2 (en) Optical laminate
JP2008024874A (en) Curable composition, antireflection film, and polarizing plate and image display device, using the same
JP2008250265A (en) Optical film
JP6589274B2 (en) Optical laminated body with touch panel, polarizing plate, image display device, and method for suppressing generation of Newton ring
JP4934381B2 (en) Antireflection film, polarizing plate and image display device using the antireflection film, and method for producing the antireflection film
JP2012177700A (en) Method for evaluating state of suppression of antifouling agent bleed-out in optical laminate
JP2007122034A (en) Antireflection film, and polarizing plate and image display apparatus using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12776548

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013512005

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137022588

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12776548

Country of ref document: EP

Kind code of ref document: A1