WO2017142291A1 - Photocurable coating composition for forming low refractive layer - Google Patents

Photocurable coating composition for forming low refractive layer Download PDF

Info

Publication number
WO2017142291A1
WO2017142291A1 PCT/KR2017/001609 KR2017001609W WO2017142291A1 WO 2017142291 A1 WO2017142291 A1 WO 2017142291A1 KR 2017001609 W KR2017001609 W KR 2017001609W WO 2017142291 A1 WO2017142291 A1 WO 2017142291A1
Authority
WO
WIPO (PCT)
Prior art keywords
low refractive
inorganic nanoparticles
layer
coating composition
refractive index
Prior art date
Application number
PCT/KR2017/001609
Other languages
French (fr)
Korean (ko)
Inventor
변진석
김재영
김부경
장석훈
장영래
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170019349A external-priority patent/KR102077797B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP17753452.6A priority Critical patent/EP3336604B1/en
Priority to CN201780003681.9A priority patent/CN108139668B/en
Priority to JP2018515203A priority patent/JP6812630B2/en
Priority to US15/762,383 priority patent/US11680172B2/en
Publication of WO2017142291A1 publication Critical patent/WO2017142291A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators

Definitions

  • the present invention relates to a photocurable coating composition for forming a low refractive index, a method for producing an antireflective film using the photocurable coating composition, and an antireflective film prepared using the photocurable coating composition.
  • a flat panel display device such as a PDP or LCD is equipped with an anti-reflection film for minimizing reflection of light incident from the outside.
  • a method for minimizing the reflection of light a method of dispersing a filler such as inorganic fine particles in a resin and coating on a base film and imparting irregularities (ant i-glare: AG coating); There are a method of forming a plurality of layers having different refractive indices on a base film to use interference of light (ant i-ref lect ion: AR coating), or a method of using them in common.
  • the absolute amount of reflected light is equivalent to that of a general hard coating, but a low reflection effect can be obtained by reducing the amount of light entering the eye by using light scattering through unevenness.
  • the AG coating has poor screen clarity due to surface irregularities, many studies on AR coatings have been made recently.
  • the film using the AR coating a multilayer structure in which a hard coating layer (high refractive layer), a low refractive layer, and the like are laminated on a base film is commercially available.
  • the method of forming a plurality of layers as described above has a disadvantage in that scratch resistance is inferior due to weak adhesion between the layers (interface ' adhesive force) as a separate process of forming each layer.
  • a method of adding various particles having a nanometer size for example, particles of silica, alumina, zeolite, etc.
  • the present invention provides a photocurable coating composition for forming a low refractive layer.
  • the present invention also provides a method for producing an antireflective film using the photocurable coating composition.
  • the present invention also provides an antireflection film prepared using the photocurable coating composition.
  • the present inventors have conducted research on the antireflection film, so that the hollow inorganic nanoparticles and the surface-treated solid inorganic nanoparticles are surface-treated in a binder resin in which the low refractive layer of the anti-reflection film can be combined with the hard coating layer.
  • the present invention was completed by confirming that having a structure distributed so as to distinguish from each other can realize high scratch resistance and antifouling property while showing very low reflectance and high light transmittance.
  • a photocurable coating composition for forming a low refractive layer according to a specific embodiment of the present invention, a method for producing an antireflection film for forming a low refractive layer using the photocurable coating composition and an antireflection film prepared by the method This will be described.
  • the invention comprises two or more photopolymerizable compounds, photoinitiators, surface-treated hollow inorganic nanoparticles and surface-treated solid inorganic nanoparticles, one or more of the two or more photopolymerizable compounds
  • the compound is provided with a photocurable coating composition for forming a low refractive index layer represented by the formula (1).
  • R 1 is 2 ⁇
  • X is hydrogen, a monovalent moiety derived from an aliphatic hydrocarbon having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and an alkoxycarbonyl group having 1 to 4 carbon atoms,
  • Y is a single bond, -co- or -coo-
  • R 2 is a divalent moiety derived from an aliphatic hydrocarbon having 1 to 20 carbon atoms, or at least one hydrogen of the divalent moiety is a divalent moiety substituted with a hydroxy, carboxyl or epoxy group, or at least one of the divalent moieties. Divalent residues substituted with -0-, -C0-0-, -0-C0- or -0-C0-0- so that -C3 ⁇ 4-oxygen atoms are not directly linked,
  • A is any of monovalent residues derived from hydrogen and aliphatic hydrocarbons having 1 to 6 carbon atoms,
  • B is any one of monovalent residues derived from aliphatic hydrocarbons having 1 to 6 carbon atoms
  • n is an integer of 0-2.
  • the photopolymerizable compound which may be included in the photocurable coating composition according to the embodiment may include a monomer or oligomer including a (meth) acryloyl group or a vinyl group.
  • a photopolymerizable compound is collectively referred to as a compound that causes polymerization reaction when irradiated with light, for example, visible light or ultraviolet light.
  • (meth) acryloyl [(meth) acryloyl] is acryloyl (acryloyl) And methacryloyl.
  • the photocurable coating composition according to the embodiment comprises two or more such photopolymerizable compounds, and one or more photopolymerizable compounds (hereinafter referred to as ' ⁇ photopolymerizable compound 1 ') of two or more photopolymerizable compounds. It includes a compound represented by the formula (1).
  • the monovalent moiety derived from an aliphatic hydrocarbon having 1 to 6 carbon atoms may be a straight chain, branched chain or cyclic alkyl group or an alkenyl group.
  • the monovalent moiety derived from an aliphatic hydrocarbon having 1 to 6 carbon atoms may be a straight chain alkyl group having 1 to 6 carbon atoms; Straight chain alkyl groups having 1 to 3 carbon atoms; Branched or cyclic alkyl groups having 3 to 6 carbon atoms; Straight chain alkenyl group having 2 to 6 carbon atoms; Or a branched or cyclic alkenyl group having 3 to 6 carbon atoms.
  • the monovalent residue derived from an aliphatic hydrocarbon having 1 to 6 carbon atoms is methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, tert-butyl, n_ It may be a pentyl group, i so _ pentyl group, neo- pentyl group, n_ nucleosil group, tert- nucleosil group, is is nuclear group, ne hexyl group or cyclonuclear group.
  • the alkoxy group having 1 to 6 carbon atoms may be a straight chain, branched chain or cyclic alkoxy group.
  • the alkoxy group having 1 to 6 carbon atoms is a straight alkoxy group having 1 to 6 carbon atoms; Linear alkoxy groups having 1 to 3 carbon atoms; Or a C3-C6 branched-chain or cyclic alkoxy group.
  • the alkoxy group having 1 to 6 carbon atoms has a hydroxy group, an hydroxy group, n-propoxy group, i so-propoxy group, n-subgroup, i so-subgroup, tert-subgroup, n_pentoxy group , i so-pentoxy group, neo_phenoxy group, n_ nucleooxy group, i so-nucleooxy group, tert-nucleooxy group, neo-nucleooxy group or cyclonucleooxy group.
  • the alkoxycarbonyl group having 1 to 4 carbon atoms has a structure of —C 0 -R a and R a may be an alkoxy group having 1 to 4 carbon atoms.
  • the alkoxycarbonyl group having 1 to 4 carbon atoms may be -C0-0C3 ⁇ 4, -C0-0CH 2 CH 3 or -C0-0C3 ⁇ 4CH 2 C3 ⁇ 4 and the like.
  • a single bond means a case where no separate atom is present in the portion represented by Y.
  • the divalent residue derived from an aliphatic hydrocarbon having 1 to 20 carbon atoms is straight or branched chain. Or a cyclic alkylene group or an alkenylene group.
  • the divalent residue derived from an aliphatic hydrocarbon having 1 to 20 carbon atoms may be a straight alkylene group having 1 to 20 carbon atoms; Straight chain alkylene groups having 1 to 10 carbon atoms; Linear alkylene groups having 1 to 5 carbon atoms; Branched or cyclic alkylene groups having 3 to 20 carbon atoms; Branched or cyclic alkylene groups having 3 to 15 carbon atoms; Branched or cyclic alkylene groups having 3 to 10 carbon atoms; Linear alkenylene groups having 2 to 20 carbon atoms; Or a branched or cyclic alkenylene group having 3 to 20 carbon atoms.
  • the divalent residue derived from an aliphatic hydrocarbon having 1 to 20 carbon atoms is methylene group, ethylene group, n-propylene group, 1, 2-propylene group, n-butylene group, 1, 2-butylene group or isobutylene group And the like.
  • Non-limiting examples of the divalent residue in which at least one hydrogen of the divalent residue is substituted with a hydroxy group, a carboxyl group or an epoxy group include a 1-hydroxypropylene group and a propylene group where one hydrogen of the propylene group is substituted with a hydroxyl group.
  • the first photopolymerizable compound is a -R 1 group and a hard coating layer which may be polymerized with another photopolymerizable compound other than Chemical Formula 1 (hereinafter, referred to as ' first second photopolymerizable compound') to form a binder resin of a low refractive layer. It contains-Si (B) n (0-A) 3- thoughtsgroup that can be combined with. Accordingly, by using the first photopolymerizable compound, a low refractive index layer bonded to the hard coating layer may be formed.
  • the -Si (B) n (0-A) 3 - n group of the first photopolymerizable compound is combined with the surface-treated hollow inorganic nanoparticles and the surface-treated solid inorganic nanoparticles and the black-black interaction
  • the hollow inorganic nanoparticles surface-treated and the solid inorganic nanoparticles surface-treated may be more strongly fixed to the binder resin of the low refractive layer.
  • the first photopolymerizable compound does not include an aromatic ring in the -R 2 group can form a low refractive index layer of low refractive index.
  • a compound represented by the following Chemical Formula 2 may be used as the first photopolymerizable compound.
  • X a is hydrogen or a methyl group
  • R 3 is any one of monovalent residues derived from hydrogen and aliphatic hydrocarbons having 1 to 6 carbon atoms
  • R 4 is any one of monovalent residues derived from aliphatic hydrocarbons having 1 to 6 carbon atoms
  • n is an integer of 0-2.
  • the first photopolymerizable compound is 3-
  • the second photopolymerizable compound which is a photopolymerizable compound other than Chemical Formula 1, may include a monomer or oligomer including one or more, two or more, or three or more (meth) acryloyl groups or vinyl groups.
  • a pentaerythri is tri (meth) acrylate, a pentaerythri (tetra) (meth) acrylate, dipentaerythroxy penta (meth) acrylic acid Latent, dipentaerythride, nucleated (meth) acrylate, tripentaerythrite, hepta (meth) acrylate, triylene diisocyanate, xylene diisocyanate, Nucleated methylene diisocyanate, trimethylolpropane tri (meth) acrylate, trimethylolpropane polyethoxy tri (meth) acrylate, ethylene glycol di (meth) acrylate, butanediol di (meth) acrylate, 2-hydroxyethyl (Meth) acrylate, 2—ethylnuclear (meth) acrylate,
  • the monomer or oligomer containing the vinyl group include divinylbenzene, styrene, paramethyl styrene or oligomers obtained by polymerizing one or more of these.
  • the molecular weight of the oligomer may be adjusted to 1,000 to 10,000 g / lM) l.
  • the content of the photopolymerizable compound in the photocurable coating composition is not particularly limited, the content of the photopolymerizable compound in the solid content of the photocurable coating composition in consideration of the mechanical properties of the low refractive index layer or the anti-reflection film to be produced finally Silver can be adjusted to 5% to 80% by weight.
  • the content of the photopolymerizable compound means the sum of the contents of the first and second photopolymerizable compounds.
  • the solid content of the photocurable coating composition means only a solid component excluding a liquid component, for example, an organic solvent or the like, which may be selectively included as described below, in the photocurable coating composition.
  • first photopolymerizable compound and the second photopolymerizable compound may have a weight ratio of 0.001: 1 to 4: 1, 0.01: 1 to 3: 1, 0.1: 1 to 2: 1, or 0.5: 1 to 1.5: 1. Can be used.
  • the photocurable coating composition may further include a fluorine-containing compound including a photo-banung functional group.
  • the fluorine-containing compound including the photo-cyclic functional group has a weight average molecular weight of 2,000 g / mol or more and is represented by fluorine. Substituted compounds, which are defined as not included in the definition of the photopolymerizable compound described above.
  • At least one photoreactive functional group is introduced into the fluorine-containing compound, and the photoreactive functional group means a functional group capable of participating in the polymerization reaction by irradiation of light, for example, by irradiation of visible light or ultraviolet light.
  • the photoreactive functional group may include various functional groups known to be able to participate in the polymerization reaction by irradiation of light, and specific examples thereof include (meth) acryloyl groups, epoxy groups, vinyl (vinyl) groups, or mercaptos. And the like can be mentioned.
  • the at least one photoreactive functional group may be any one of the listed functional groups or may be composed of two or more selected from the listed functional groups.
  • the fluorine-containing compound including the photo-banung functional group is silicon; Or the side chain black derived from a silicon compound may further contain a repeating unit.
  • the content of silicon may be 0.01 wt% to 20 wt% based on the total weight of the fluorine-containing compound.
  • Silicon contained in the fluorine-containing compound including the photo-banung functional group may increase compatibility with other components included in the photocurable coating composition of the embodiment, and thus haze occurs in the low refractive layer to be finally manufactured. It can play a role of increasing transparency by preventing it.
  • the content of silicon in the fluorine-containing compound including the photoreactive functional group is too high, the compatibility between the other components included in the photocurable coating composition and the fluorine-containing compound may be rather deteriorated, thus the final manufacturing
  • the low refractive index layer or the antireflection film does not exhibit a sufficient light transmittance or antireflection performance, and the antifouling property of the surface may also be reduced.
  • the fluorine-containing compound including the photo-banung functional group may have a weight average molecular weight of 2,000 to 200, 000 g / mol or 5,000 to 100, 000 g / nl. If the weight average molecular weight of the fluorine-containing compound including the photoreactive functional group is too small, the fluorine-containing compound is not uniformly arranged on the surface of the low refractive layer obtained from the photocurable coating composition, and thus is placed therein so that the antifouling property of the low refractive layer This decreases, and the crosslinking density of the low refractive index layer is lowered, and thus mechanical properties such as overall strength and scratch resistance of the antireflection film may be lowered.
  • the photobanungseong When the weight average molecular weight of the fluorine-containing compound including the functional group is too large, compatibility with other components included in the photocurable coating composition may be low, thereby increasing the haze of the low refractive layer to be manufactured and light transmittance. In addition, the strength of the low refractive layer may also be lowered.
  • the weight average molecular weight means a conversion value with respect to standard polystyrene measured by gel permeat ion chromatograph (GPC).
  • the fluorine-containing compound including the photoreactive functional group is i) an aliphatic compound or aliphatic ring compound substituted with at least one photoreactive functional group, at least one hydrogen is substituted with fluorine; ii) silicon-based compounds in which at least one carbon of the aliphatic compound or aliphatic ring compound is substituted with silicon; iii) a siloxane compound in which at least one carbon of the aliphatic compound or aliphatic ring compound is substituted with silicon and at least one -CH 2 -is substituted with oxygen; iv) fluoropolyethers substituted with one or more -C 3 -oxygens of the aliphatic compound or aliphatic ring compound; Or two or more kinds thereof, or a polymer.
  • the photocurable coating composition may include a fluorine-containing compound including 20 to 300 parts by weight of the photoreactive functional group based on 100 parts by weight of the photopolymerizable compound.
  • a fluorine-containing compound including 20 to 300 parts by weight of the photoreactive functional group based on 100 parts by weight of the photopolymerizable compound When the fluorine-containing compound containing the photoreactive functional group is added to the photopolymerizable compound in an excessive amount, the coating property of the photocurable coating composition is reduced or the low refractive layer obtained from the photocurable coating composition has excellent durability or scratch resistance. May not have.
  • the amount of the fluorine-containing compound containing the photo-banung functional group relative to the photopolymerizable compound is too small, the low refractive index layer obtained from the photocurable coating composition may not have sufficient antifouling resistance or scratch resistance.
  • the photocurable coating composition according to the embodiment includes the surface-treated hollow inorganic nanoparticles and the surface-treated solid inorganic nanoparticles.
  • the inorganic nanoparticles refer to inorganic nanoparticles having a size of several nm to several hundred nm derived from (organic) metal compound or (organic) metalloid compound
  • hollow inorganic nanoparticles refer to inorganic nanoparticles.
  • solid inorganic nano Particle means a particle having a form in which no empty space exists.
  • the surface-treated solid inorganic nanoparticles are distributed close to the interface between the low refractive layer and the hard coating layer, and the surface-treated hollow inorganic nanoparticles are the low refractive index. It is distributed close to the surface, which is the back side of the surface in contact with the hard coating layer of the layer. Due to the specific distribution of such surface-treated hollow inorganic nanoparticles and surface-treated solid inorganic nanoparticles, it is possible to provide an antireflection film having lower reflectance and improved scratch resistance and antifouling property.
  • a hollow inorganic surface-treated with a solid inorganic nanoparticles surface-treated for the specific distribution of the surface-treated hollow inorganic nanoparticles and the surface-treated solid inorganic nanoparticles may be used. Due to this density difference, when the low refractive layer is formed of the photocurable coating composition, solid inorganic nanoparticles surface-treated on the surface close to the hard coating layer are mainly distributed, and hollow inorganic nanoparticles surface-treated on the surface far from the hard coating layer Mainly distributed.
  • the surface-treated hollow inorganic nanoparticles may be used as a surface-treated inorganic nanoparticles having a density of 1.50 to 3.50 g / cm 3
  • the surface-treated solid inorganic nanoparticles may be used from 2.00 to Surface treated inorganic nanoparticles having a density of 4.00 g / cm 3 can be used.
  • the surface-treated hollow inorganic nanoparticles are not particularly limited, but surface-treated inorganic nanoparticles having a maximum diameter of about 200 nm or less may be used. Specifically, the surface-treated hollow inorganic nanoparticles may be used surface-treated inorganic nanoparticles having a diameter of about 1 to 200 nm or 10 to 100 nm.
  • the surface-treated solid inorganic nanoparticles are not particularly limited, but surface-treated inorganic nanoparticles having a maximum diameter of about 100 nm or less may be used. Specifically, the surface-treated solid inorganic nanoparticles may be used surface-treated inorganic nanoparticles having a diameter of about 0.5 to 100 nm or 1 to 30 nm.
  • the surface-treated hollow inorganic nanoparticles may be used in an amount of 10 to 400 parts by weight, 100 to 300 parts by weight, and black of 150 to 250 parts by weight, based on 100 parts by weight of the photopolymerizable compound.
  • the surface-treated solid inorganic nanoparticles may be used in an amount of 10 to 400 parts by weight, 10 to 200 parts by weight, 10 to 100 parts by weight, or 10 to 50 parts by weight based on 100 parts by weight of the photopolymerizable compound.
  • the content of the surface-treated hollow inorganic nanoparticles and surface-treated solid inorganic nanoparticles is excessive, between the surface-treated hollow inorganic nanoparticles and the surface-treated solid inorganic nanoparticles when forming a low refractive index layer Phase separation may not occur sufficiently and may be common. As a result, the reflectance of the low refractive layer may be increased, and surface irregularities may be excessively generated, thereby degrading antifouling properties.
  • the surface-treated solid inorganic nanoparticles are mainly distributed in the area close to the interface between the hard coating layer and the low refractive layer.
  • the reflectance of the low refractive layer may increase.
  • particles containing the same type of metal or metalloid may be used or different. Particles containing any kind of metal or metalloid may be used.
  • hollow silica particles may be used as the hollow inorganic nanoparticles
  • solid silica particles may be used as the solid inorganic nanoparticles.
  • the hollow and solid inorganic nanoparticles may be surface treated to be included in the photocurable coating composition to form a low refractive index layer having a higher crosslinking degree, thereby further improving scratch resistance and antifouling resistance.
  • the hollow and solid inorganic nanoparticles may be surface treated by reacting with an organosilicon compound including a photoreactive functional group.
  • the photo-reflective functional group examples include a (meth) acryloyl group epoxy group, a vinyl (vinyl) group, a mercapto group, and the like.
  • the light reflection Specific examples of the organosilicon compound containing a functional group include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (2-methoxy-specific) silane, 2- (3,4-epoxycyclonuclear chamber) ethyltrimethic Cysilane, Y-glycidoxy methyltrimethic silane, ⁇ -glycidoxy methyl trie specific silane, ⁇ - glycidoxy ethyl trimethoxysilane, glycidoxy ethyl trioxy silane, glycidoxy propyl Trimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ - ( ⁇ -glycidoxyoxy) propyltrimethoxysilane,
  • (Meth) acryloyloxypropyl methyl dimethoxysilane,-(meth) acryloyloxypropyl triethoxysilane,-mercaptopropyl trimethoxysilane, etc. are mentioned.
  • the surface of the hollow or solid inorganic nanoparticles is surface-modified with one type of organosilicon compound to introduce one type of photoreactive functional group, or black or surface type is modified with two or more types of organosilicon compounds to produce two or more type of photoreactive functional groups. Can be introduced.
  • the surface-treated hollow inorganic nanoparticles and the surface-treated solid inorganic nanoparticles may be used as a colloidal phase dispersed in a dispersion medium.
  • the dispersion medium may be alcohol such as methanol, isopropyl alcohol, ethylene glycol, butanol; Ketones such as methyl ethyl ketone and methyl isobutyl ketone; Aromatic hydrocarbons such as toluene and xylene; Dimethylformamide.
  • Amides such as dimethylacetamide and N-methylpyridone; Esters such as ethyl acetate, butyl acetate and gamma butyrolactone; Ethers such as tetrahydrofuran and 1,4-dioxane; Or organic solvents such as mixtures thereof.
  • the content of the surface-treated hollow inorganic nanoparticles or the surface-treated solid inorganic nanoparticles in the colloidal phase may be appropriately determined in consideration of the content of each inorganic nanoparticle to be used and the viscosity of the photocurable coating composition.
  • the solids content of the surface-treated hollow inorganic nanoparticles or surface-treated solid inorganic nanoparticles in the colloidal phase may be about 5% to 60% by weight.
  • various initiators known in the art to which the present invention pertains may be used.
  • a photoinitiator a benzophenone type compound, an acetophenone type compound, a biimidazole type compound, a triazine type compound, an oxime type compound, or 2 or more types of these mixtures can be used.
  • the photoinitiator may be used in an amount of 1 to 100 parts by weight based on 100 parts by weight of the photopolymerizable compound. If the amount of the photoinitiator is too small, uncured monomer or oligomer may remain in the photocuring step of the photocurable coating composition. On the other hand, if the amount of the photoinitiator is too large, the mechanical properties of the antireflection film manufactured by the unreacted initiator remains as impurities or the crosslinking density is low, or the reflectance may be greatly increased.
  • the photocurable coating composition according to the embodiment may further comprise an organic solvent.
  • the organic solvent include ketones, alcohols, acetates, ethers or two or more kinds thereof.
  • Specific examples of such organic solvents include ketones such as methyl ethyl ketone, methyl isobutyl ketone acetylacetone or isobutyl ketone; Alcohols such as methanol, ethanol, diacetone alcohol, n-propanol, i-propanol, n-butanol, i-butanol, or t-butanol; Acetates such as ethyl acetate, i-propyl acetate, or polyethylene glycol monomethyl ether acetate; Ethers such as tetrahydrofuran or propylene glycol monomethyl ether; Or two or more kinds thereof.
  • the organic solvent may be included in the photocurable coating composition while being added at the time of mixing each component included in the photocurable coating composition or in the state in which each component is dispersed or mixed in the organic solvent.
  • the organic solvent may be included such that the concentration of the total solids of the components is from 1% to 50% by weight or from 2 to 20% by weight.
  • the step of applying and drying the photocurable coating composition on a hard coating layer provides a method for producing an anti-reflection film comprising the step of photocuring the dried material obtained in the above step.
  • the method of manufacturing the antireflection film of another embodiment may provide an antireflection film according to a method known in the art, in addition to forming a low refractive layer using the photocurable coating composition described above.
  • the above-mentioned photocurable coating composition may be applied to the hard coating layer.
  • the hard coating layer various types of hard coating layers known in the art may be used.
  • the hard coating layer may include a hard coating layer including a photocurable resin and an antistatic agent dispersed in the photocurable resin.
  • the photocurable resin is a polymer in which the photopolymerizable compound is polymerized by light such as ultraviolet rays, and may be a conventional resin known in the art.
  • the photocurable resin may be a polymer of a polyfunctional (meth) acrylate monomer or oligomer, wherein the number of (meth) acrylate functional groups is 2 to 10, preferably 2 to 8, more Preferably 2 to 7, it is advantageous in terms of securing physical properties of the hard coating layer.
  • the photocurable resin is pentaerythri tri (meth) acrylate, pentaerythri tetra (meth) acrylate, dipentaerythri penta (meth) acrylate, dipentaeryeri nucleus (meth Acrylates, tripentaerythrates, hepta (meth) acrylates, triylene diisocyanates, xylene diisocyanates, nuxamethylene diisocyanates, trimethyl to propane tri (meth) acrylates and trimethylolpropane polyespecial tree ( It may be a polymer of one or more polyfunctional (meth) acrylate monomers selected from the group consisting of meth) acrylates.
  • the antistatic agent is a quaternary ammonium salt compound; Pyridinium salts; Cationic compounds having from 1 to 3 amino groups; Sulfonic acid base, sulfate ester base, phosphoric acid Anionic compounds such as ester base and phosphonic acid base; Positive compounds, such as an amino acid type or amino sulfate ester type compound; Nonionic compounds such as imino alcohol compounds, glycerin compounds, and polyethylene glycol compounds; Organometallic compounds such as metal alkoxide compounds including tin or titanium; Metal chelate compounds such as acetylacetonate salts of the organometallic compounds; Two or more semi-ungmuls or polymerized compounds of these compounds; It may be a combination of two or more of these compounds.
  • the quaternary ammonium salt compound may be a compound having one or more quaternary ammonium salt groups in the molecule, it can be used without limitation low molecular type or polymer type.
  • a conductive polymer and metal oxide fine particles may also be used as the antistatic agent.
  • the conductive polymer include aromatic conjugated poly (paraphenylene), polycyclic heterocyclic conjugated system, polythiophene, aliphatic conjugated polyacetylene, and heteroatom-containing polyaniline conjugated conjugated system.
  • the metal oxide fine particles include zinc oxide, antimony oxide, tin oxide, cerium oxide, indium tin oxide, indium oxide, aluminium oxide, antimony doped tin oxide, aluminum doped zinc oxide, and the like.
  • the photocurable resin; And an antistatic agent dispersed in the photocurable resin may further include one or more compounds selected from the group consisting of alkoxy silane oligomers and metal alkoxide oligomers.
  • the alkoxy silane compound may be conventional in the art, but preferably tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methacryloxypropyl It may be at least one compound selected from the group consisting of trimethoxysilane, glycidoxypropyltrimethoxysilane and glycidoxypropyltriethoxysilane.
  • the metal alkoxide-based oligomer may be prepared through the sol-gel reaction of the composition comprising a metal alkoxide-based compound and water.
  • the sol-gel reaction may be carried out by a method similar to the method for preparing an alkoxy silane oligomer described above. Can be.
  • the sol-gel reaction may be performed by diluting the metal alkoxide-based compound in an organic solvent and slowly dropping water.
  • the molar ratio of the metal alkoxide compound to water is preferably adjusted within the range of 3 to 170.
  • the metal alkoxide-based compound may be at least one compound selected from the group consisting of titanium tetra-isopropoxide, zirconium isopropoxide and aluminum isopropoxide.
  • the hard coating layer may have a thickness of 0.1 to 100.
  • the hard coating layer may be formed on one surface of the substrate.
  • the specific kind or thickness of the substrate is not particularly limited, and a substrate known to be used in the manufacture of a low refractive index layer or an antireflection film may be used without particular limitation.
  • the photocurable coating composition may be applied to the hard coating layer using methods and apparatus known in the art.
  • the photocurable coating composition may be applied through a bar coating method such as Meyer bar, gravure coating method, 2 roll reverse coating method, vacuum slot die coating method or 2 roll coating method.
  • the photocurable coating composition may be applied so that the thickness of the low refractive layer formed after photocuring is 1 ran to 300 nm or 50 nm to 200 nm.
  • the photocurable coating composition may be dried at 35 ° C to 100 ° C after applying the photocurable coating composition. If the drying temperature is out of the above range, the phase-separated hollow inorganic nanoparticles and the surface-treated solid inorganic nanoparticles do not sufficiently undergo phase separation between the surface-treated hollow inorganic nanoparticles and the surface-treated solid inorganic nanoparticles. It is common to not only reduce scratch resistance and antifouling property of the low refractive layer, but also significantly increase the reflectance. The layered phase of the surface-treated hollow inorganic nanoparticles and the surface-treated solid inorganic nanoparticles. The drying temperature may be adjusted to about 40 ° C to 80 ° C for separation.
  • the coating film obtained by applying a photocurable coating composition comprising the same
  • the surface-treated solid inorganic nanoparticles may be mainly distributed on the surface close to the hard coating layer due to the difference in density, and the surface-treated hollow inorganic nanoparticles may be mainly distributed on the surface far from the hard coating layer. .
  • This specific distribution can provide a low refractive index layer having lower reflectance and more improved scratch resistance and stain resistance.
  • the coating film obtained by applying the photocurable coating composition may be dried for about 10 seconds to 5 minutes or 30 seconds to 4 minutes in the above-described temperature range.
  • the drying time is too short, phase separation between the surface-treated solid inorganic nanoparticles and the surface-treated hollow inorganic nanoparticles may not occur sufficiently, and when the drying time is too long, the formed The low refractive layer can be eroded into the hard coat layer.
  • the dried material of the photocurable coating composition may be photocured by irradiating ultraviolet light or visible light in the wavelength range of 200 to 400 nm.
  • the exposure amount of the irradiated light can be adjusted in the range of 100 to 4,000 mJ / cm 2 , the exposure time can be appropriately adjusted according to the exposure apparatus, the wavelength of the irradiation light or the exposure amount used.
  • Photocuring the dried material may be performed under a nitrogen atmosphere. Accordingly, black before the photocuring step may be further purged with nitrogen during the photocuring step.
  • the low refractive index layer prepared from the photocurable coating composition as described above is used in the binder resin and the binder resin formed by cross-polymerization of the first and second photopolymerizable compounds and a fluorine-containing compound including a photoreactive functional group that can be used as necessary.
  • Binding blacks include dispersed surface treated hollow inorganic nanoparticles and surface treated solid inorganic nanoparticles.
  • the binder resin is hard Can be combined with the coating layer further improves the adhesion of the low refractive layer to the hard coating layer, and serves to more strongly fix the surface-treated hollow inorganic nanoparticles and surface-treated solid inorganic nanoparticles.
  • the surface-treated hollow inorganic nanoparticles and the surface-treated solid inorganic nanoparticles are distributed so as to be distinguished from each other:
  • the low refractive index layer exhibits a lower reflectivity and a high light transmittance and simultaneously realizes high scratch resistance and antifouling resistance. Can be.
  • the hard coating layer On the other hand, according to another embodiment of the invention, the hard coating layer; And a low refractive layer formed on one surface of the hard coating layer, and including a photocurable material of the photocurable coating composition, and having a surface within 50% of the total thickness of the low refractive layer from an interface between the hard coating layer and the low refractive layer.
  • An antireflective film is provided in which at least 70% by volume of all of the treated solid inorganic nanoparticles are present.
  • the low refractive index layer comprises a photo-set product of the photocurable resin composition according to the embodiment. That is, the low refractive layer is a binder resin and the binder resin formed by crosslinking polymerization of the compound represented by Formula 1 (first photopolymerizable compound) and another photopolymerizable compound (second photopolymerizable compound) other than the compound of Formula 1 It includes the surface-treated hollow inorganic nanoparticles and surface-treated solid inorganic nanoparticles bonded or dispersed in. And, 70% by volume or more of the entire surface-treated solid inorganic nanoparticles included in the low refractive layer is present within 50% of the total thickness of the low refractive layer from the interface between the hard coating layer and the low refractive layer.
  • '70% by volume or more of the entire surface-treated solid inorganic nanoparticles are present in a specific region 1 , where the surface-treated solid inorganic nanoparticles are mostly present in the specific region in the cross-section of the low refractive index layer. It is defined as meaning. Specifically, 70% by volume or more of the total surface-treated solid inorganic nanoparticles may be confirmed by measuring the total volume of the surface-treated solid inorganic nanoparticles.
  • the content of the surface-treated inorganic nanoparticles present in a specific region except for the content of the surface-treated inorganic nanoparticles that exist over the interface of different regions, the surface-treated inorganic nanoparticles present in a specific region Determined by the content of.
  • the surface is the back surface of the surface in contact with the hard coating layer in the low refractive index layer
  • the treated hollow inorganic nanoparticles may be mainly distributed. Specifically, at least 30% by volume of the entire surface-treated hollow inorganic nanoparticles is greater than that of the solid inorganic nanoparticles having the total surface treatment. It may be present at a greater distance in the thickness direction of the low refractive index layer from the interface between. That is, only the surface-treated hollow inorganic nanoparticles are present in the region having a predetermined thickness from the surface of the low refractive layer, which is the rear surface of the surface in contact with the hard coating layer, and the content of the surface-treated hollow inorganic nanoparticles present in this region. More than 30 volumes 3 ⁇ 4> of this total.
  • At least 70% by volume of the total surface-treated solid inorganic nanoparticles may be present within 30% of the total thickness of the low refractive index from the interface between the hard coating layer and the low refractive index layer.
  • at least 70% by volume of the entire surface-treated hollow inorganic nanoparticles may be present in an area of more than 30% of the total thickness of the low refractive index layer from an interface between the hard coating layer and the low refractive index layer.
  • the surface-treated solid inorganic nanoparticles are mainly distributed near the interface between the hard coating layer and the low refractive index, and the hollow inorganic nanoparticles surface-treated to the opposite side of the interface are mainly distributed. Accordingly, two or more portions or two or more layers having different refractive indices may be formed in the low refractive layer, and thus the reflectance of the antireflection film may be lowered.
  • the low refractive layer is a first layer containing at least 70% by volume of the total surface-treated solid inorganic nanoparticles and a second containing at least 70% by volume of the total surface-treated hollow inorganic nanoparticles Layer, and the crab first layer may be located closer to the interface between the hard coating layer and the ' low refractive index layer ' than the second layer.
  • solid inorganic nanoparticles surface-treated near the interface between the hard coating layer and the low refractive layer are mainly distributed, and the hollow surface surface-treated toward the opposite side of the interface. Inorganic nanoparticles are predominantly distributed, and the areas where the surface-treated solid inorganic nanoparticles and the surface-treated hollow inorganic nanoparticles are mainly distributed are independently identified in the low refractive layer.
  • a layer can be formed.
  • Such an antireflection film can achieve a reflectance lower than the reflectance previously obtained using inorganic nanoparticles.
  • the reflective ring film may exhibit an average reflectance of 0.7% or less, 0.6% or less, or 0.55% or less in the visible light wavelength range of 380 nm to 780 nm.
  • the low refractive index layer in the anti-reflection film may have a thickness of 1 nm to 300 nm or 50 nm to 200 nm.
  • the anti-reflection film is a binder resin included in the low refractive index layer can be combined with the hard coating layer is very good adhesion between the low refractive index layer and the hard coating layer, the solid inorganic nanoparticles surface-treated in the low refractive layer Is mainly distributed near the interface between the hard coating layer and the low refractive layer, and the surface-treated hollow inorganic nanoparticles are mainly distributed near the opposite side of the interface, compared to the actual reflectivity previously obtained using the inorganic nanoparticles. Low reflectance can be achieved, and can also exhibit greatly improved scratch and stain resistance.
  • an anti-reflection film which can simultaneously realize high scratch resistance and antifouling property while exhibiting low reflectance and high light transmittance.
  • KY0EISHA salt type antistatic hard coating solution 50 wt% solids, product name: LJD-1000 was coated on a triacetylcell film with # 10 mayer bar and dried at 90 ° C for 1 minute. Thereafter, the obtained coating film was irradiated with ultraviolet light of 150 mJ / cm 2 to form a hard coating layer having a thickness of about 5 to 6 /, thereby preparing a hard coating film.
  • Example 1 Preparation of Anti-Reflection Film
  • the photocurable coating composition obtained above was coated with # 4 mayer bar on the hard coat layer of the hard coat film prepared in Preparation Example 1, and dried at 60 ° C. for 1 minute. Thereafter, the obtained coating film was irradiated with ultraviolet light of 180 mJ / cm 2 under nitrogen purge to form a low refractive layer having a thickness of 110 to 120 nm to prepare an antireflection film.
  • Example 2 Preparation of Anti-Reflection Film
  • An anti-reflection film was prepared in the same manner as in Example 1, except that 3-methacryloxypropyltrimethoxysilane was used instead of 3-methacryloxypropylmethyldimethoxysilane in Example 1.
  • Example 3 Preparation of Anti-Reflection Film
  • Example 1 except that 3-methacryloxypropyltriethoxysilane is used instead of 3-methacryloxypropylmethyldimethoxysilane in Example 1
  • An antireflection film was prepared in the same manner.
  • Example 4 Preparation of Anti-Reflection Film
  • An anti-reflection film was prepared in the same manner as in Example 1, except that 3-acryloxypropyltrimethoxysilane was used instead of 3-methacryloxypropylmethyldimethoxysilane in Example 1.
  • Example 5 Preparation of Anti-Reflection Film
  • An anti-reflection film was prepared in the same manner as in Example 1, except that 3-acryloxypropylmethyldieoxysilane was used instead of 3-methacryloxypropylmethyldimethoxysilane in Example 1. Comparative Example 1: Preparation of Anti-Reflection Film
  • An anti-reflection film was prepared in the same manner as in Example 1, except that 3-glycidoxypropylmethyldieoxysilane was used instead of 3-methacryloxypropylmethyldimethoxysilane in Example 1. Comparative Example 2: Preparation of Anti-Reflection Film
  • An anti-reflection film was prepared in the same manner as in Example 1, except that N-phenyl-3-aminopropyltrimethoxysilane was used instead of 3-methacryloxypropylmethyldimethoxysilane in Example 1. Comparative Example 3: Preparation of Anti-Reflection Film
  • An anti-reflection film was prepared in the same manner as in Example 1, except that P-styryltrimethoxysilane was used instead of 3-methacryloxypropylmethyldimethoxysilane in Example 1. Comparative Example 4: Preparation of Anti-Reflection Film
  • An anti-reflection film was prepared in the same manner as in Example 1, except that 3-methacryloxypropylmethyldimethoxysilane was not used in Example 1.
  • the average reflectance of the antireflective films obtained in Examples and Comparative Examples in the visible light region was measured using a Sol idspec 3700 (SHIMADZU) instrument.
  • the steel wool of grade # 0000 was subjected to a specific load and reciprocated 10 times at a speed of 27 rpm to rub the surface of the antireflective film obtained in the examples and the comparative examples.
  • the maximum load at which no scratches were observed visually under the LED 50W ceiling light was measured.
  • the load is defined as the weight in grams per square centimeter (2 cm 2 ) by 2 cm by 2 cm.
  • a 5 cm long straight line was drawn with a black name pen on the surface of the antireflective film obtained in Examples and Comparative Examples, and the straight line was rubbed with a dust-free cloth. At this time, the antifouling property was evaluated by counting the number of times rubbing with zero vacuum until the straight line was erased.
  • the hollow inorganic nanoparticles and the surface-treated solid inorganic nanoparticles surface-treated in the binder resin prepared from the compound represented by the formula (1) photopolymerizable compound as shown in Example 1 When distributed so as to be distinguishable, it is confirmed that the reflectance is lower than that of the phase-separated structure of the comparative example and further improved scratch resistance.
  • the first photopolymerizable compound is confirmed to further lower the reflectance and more scratch resistance of the antireflection film by providing a binder resin that can be bonded to the hard coating layer, and other reactivity such as epoxy group, amino group, styryl It is confirmed that this effect cannot be realized with a compound having a functional group.

Abstract

The present invention relates to a photocurable coating composition for forming a low refractive layer, a method for preparing an anti-reflective film using the photocurable coating composition, and an anti-reflective film prepared by using the photocurable coating composition. According to the present invention, a low refractive layer is formed of a photocurable coating composition containing two or more kinds of photo-polymerizable compounds, a photo-initiator, surface-treated hollow inorganic nanoparticles, and surface-treated solid type inorganic nanoparticles.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
저굴절층 형성용 광경화성 코팅 조성물  Photocurable coating composition for low refractive layer formation
【기술분야】  Technical Field
관련 출원 (들)과의 상호 인용  Cross Citation with Related Application (s)
본 출원은 2016년 2월 19일자 한국 특허 출원 제 10-2016-0019945 호 및 2017년 2월 13일자 한국 특허 출원 제 10-2017-0019349 호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.  This application claims the benefit of priority based on Korean Patent Application No. 10-2016-0019945 dated February 19, 2016 and Korean Patent Application No. 10-2017-0019349 dated February 13, 2017. All content disclosed in the literature is included as part of this specification.
본 발명은 저굴절층 형성용 광경화성 코팅 조성물, 상기 광경화성 코팅 조성물을 이용하여 반사 방지 필름을 제조하는 방법 및 상기 광경화성 코팅 조성물을 이용하여 제조된 반사 방지 필름에 관한 것이다.  The present invention relates to a photocurable coating composition for forming a low refractive index, a method for producing an antireflective film using the photocurable coating composition, and an antireflective film prepared using the photocurable coating composition.
【배경기술】  Background Art
일반적으로 PDP, LCD 등의 평판 디스플레이 장치에는 외부로부터 입사되는 빛의 반사를 최소화하기 위한 반사 방지 필름이 장착된다.  In general, a flat panel display device such as a PDP or LCD is equipped with an anti-reflection film for minimizing reflection of light incident from the outside.
빛의 반사를 최소화하기 위한 방법으로는 수지에 무기 미립자 등의 필러를 분산시켜 기재 필름 상에 코팅하고 요철을 부여하는 방법 (ant i-glare: AG 코팅) ; 기재 필름 상에 굴절률이 다른 다수의 층을 형성시켜 빛의 간섭을 이용하는 방법 (ant i-ref lect ion: AR 코팅) 또는 이들을 흔용하는 방법 등이 있다.  As a method for minimizing the reflection of light, a method of dispersing a filler such as inorganic fine particles in a resin and coating on a base film and imparting irregularities (ant i-glare: AG coating); There are a method of forming a plurality of layers having different refractive indices on a base film to use interference of light (ant i-ref lect ion: AR coating), or a method of using them in common.
그 중, 상기 AG 코팅의 경우 반사되는 빛의 절대량은 일반적인 하드 코팅과 동등한 수준이지만, 요철을 통한 빛의 산란을 이용해 눈에 들어오는 빛의 양을 줄임으로써 저반사 효과를 얻을 수 있다. 그러나, 상기 AG 코팅은 표면 요철로 인해 화면의 선명도가 떨어지기 때문에 최근에는 AR코팅에 대한 많은 연구가 이루어지고 있다.  Among them, in the case of the AG coating, the absolute amount of reflected light is equivalent to that of a general hard coating, but a low reflection effect can be obtained by reducing the amount of light entering the eye by using light scattering through unevenness. However, since the AG coating has poor screen clarity due to surface irregularities, many studies on AR coatings have been made recently.
상기 AR 코팅을 이용한 필름으로는 기재 필름 상에 하드 코팅층 (고굴절층), 저굴절층 등이 적층된 다층 구조인 것이 상용화되고 있다. 그러나, 상기와 같이 다수의 층을 형성시키는 방법은 각층을 형성하는 공정을 별도로 수행함에 따라 층간 밀착력 (계면 '접착력)이 약해 내스크래치성이 떨어지는 단점이 있다. 또한, 이전에는 반사 방지 필름에 포함되는 저굴절층의 내스크래치성을 향상시키기 위해서 나노미터 사이즈의 다양한 입자 (예를 들어, 실리카, 알루미나, 제올라이트 등의 입자)를 첨가하는 방법이 주로 시도되었다. 그러나, 상기와 같이 나노미터 사이즈의 입자를 사용하는 경우 저굴절층의 반사율을 낮추면서 내스크래치성을 동시에 높이기 어려운 한계가 있었으며, 나노미터의 사이즈의 입자로 인하여 저굴절층의 방오성이 크게 저하되었다. As the film using the AR coating, a multilayer structure in which a hard coating layer (high refractive layer), a low refractive layer, and the like are laminated on a base film is commercially available. However, the method of forming a plurality of layers as described above has a disadvantage in that scratch resistance is inferior due to weak adhesion between the layers (interface ' adhesive force) as a separate process of forming each layer. In addition, in order to improve scratch resistance of the low refractive layer included in the antireflection film, a method of adding various particles having a nanometer size (for example, particles of silica, alumina, zeolite, etc.) has been mainly attempted. However, in the case of using the nanometer size particles as described above, there was a limit that it is difficult to simultaneously increase the scratch resistance while lowering the reflectance of the low refractive index layer, and the antifouling property of the low refractive layer was greatly reduced due to the nanometer size particles. .
이에 따라, 외부로부터 입사되는 빛의 절대 반사량을 줄이고 표면의 내스크래치성과 함께 방오성을 향상시키기 위한 많은 연구가 이루어지고 있으나, 이에 따른 물성 개선의 정도가 미흡한 실정이다.  Accordingly, many studies have been made to reduce the absolute reflection of light incident from the outside and to improve the antifouling property together with the scratch resistance of the surface. However, the improvement of the physical properties is insufficient.
【발명의 내용】  [Content of invention]
【해결하려는 과제】  [Problem to solve]
본 발명은 저굴절층 형성용 광경화성 코팅 조성물을 제공한다.  The present invention provides a photocurable coating composition for forming a low refractive layer.
본 발명은 또한 상기 광경화성 코팅 조성물을 이용하는 반사 방지 필름의 제조 방법을 제공한다. ' The present invention also provides a method for producing an antireflective film using the photocurable coating composition. '
본 발명은 또한 상기 광경화성 코팅 조성물을 이용하여 제조되는 반사 방지 필름을 제공한다.  The present invention also provides an antireflection film prepared using the photocurable coating composition.
[과제의 해결 수단】  [Solution of problem]
기존 반사 방지 필름에서는 저굴절층에 과량의 중공 실리카를 첨가하여 저굴절률을 구현하였다. 그러나, 이러한 반사 방지 필름에서는 과량의 중공 실리카로 인하여 내스크래치성 등의 기계적 특성이 열악한문제가 있었다.  In the existing anti-reflection film, an excess of hollow silica was added to the low refractive index layer to realize a low refractive index. However, such an antireflection film had a problem of poor mechanical properties such as scratch resistance due to excess hollow silica.
이에, 본 발명자들은 반사 방지 필름에 관한 연구를 진행하여, 반사 방지 필름의 저굴절층이 하드 코팅층과 결합할 수 있는 바인더 수지 내에 표면 처리된 중공형 무기 나노 입자 및 표면 처리된 솔리드형 무기 나노 입자가 서로 구분될 수 있도록 분포된 구조를 가지면 매우 낮은 반사율 및 높은 투광율을 나타내면서 높은 내스크래치성과 방오성을 동시에 구현할 수 있다는 점을 확인하고 발명을 완성하였다.  Accordingly, the present inventors have conducted research on the antireflection film, so that the hollow inorganic nanoparticles and the surface-treated solid inorganic nanoparticles are surface-treated in a binder resin in which the low refractive layer of the anti-reflection film can be combined with the hard coating layer. The present invention was completed by confirming that having a structure distributed so as to distinguish from each other can realize high scratch resistance and antifouling property while showing very low reflectance and high light transmittance.
이하 발명의 구체적인 구현예에 따른 저굴절층을 형성하기 위한 광경화성 코팅 조성물, 상기 광경화성 코팅 조성물을 이용하여 저굴절층을 형성하는 반사 방지 필름의 제조 방법 및 상기 방법에 의해 제조되는 반사 방지 필름 등에 대해 설명하기로 한다. 발명의 일 구현예에 따르면 2 종 이상의 광중합성 화합물, 광개시제, 표면 처리된 중공형 무기 나노 입자 및 표면 처리된 솔리드형 무기 나노 입자를 포함하며, 상기 2 종 이상의 광중합성 화합물 중 1 종 이상의 광중합성 화합물은 하기 화학식 1로 표시되는 화합물인 저굴절층 형성용 광경화성 코팅 조성물이 제공된다. A photocurable coating composition for forming a low refractive layer according to a specific embodiment of the present invention, a method for producing an antireflection film for forming a low refractive layer using the photocurable coating composition and an antireflection film prepared by the method This will be described. According to one embodiment of the invention comprises two or more photopolymerizable compounds, photoinitiators, surface-treated hollow inorganic nanoparticles and surface-treated solid inorganic nanoparticles, one or more of the two or more photopolymerizable compounds The compound is provided with a photocurable coating composition for forming a low refractive index layer represented by the formula (1).
[화학식 1]
Figure imgf000004_0001
[Formula 1]
Figure imgf000004_0001
x  x
I ,  I,
상기 화학식 1에서, R12 ^ 이며, In Formula 1, R 1 is 2 ^,
상기 X는 수소, 탄소수 1 내지 6의 지방족 탄화수소 유래의 1가 잔기, 탄소수 1 내지 6의 알콕시기 및 탄소수 1 내지 4의 알콕시카르보닐기 중 어느 하나이고,  X is hydrogen, a monovalent moiety derived from an aliphatic hydrocarbon having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and an alkoxycarbonyl group having 1 to 4 carbon atoms,
상기 Y는 단일결합, -co-또는 -coo-이며,  Y is a single bond, -co- or -coo-,
R2는 탄소수 1 내지 20의 지방족 탄화수소 유래의 2가 잔기이거나, 혹은 상기 2가 잔기의 하나 이상의 수소가 하이드록시기, 카르복실기 또는 에폭시기로 치환된 2가 잔기이거나, 혹은 상기 2가 잔기의 하나 이상의 -C¾- 가산소 원자들이 직접 연결되지 않도록 -0- , -C0-0- , -0-C0- 또는 -0-C0-0-로 대체된 2가 잔기이고, R 2 is a divalent moiety derived from an aliphatic hydrocarbon having 1 to 20 carbon atoms, or at least one hydrogen of the divalent moiety is a divalent moiety substituted with a hydroxy, carboxyl or epoxy group, or at least one of the divalent moieties. Divalent residues substituted with -0-, -C0-0-, -0-C0- or -0-C0-0- so that -C¾-oxygen atoms are not directly linked,
A는 수소 및 탄소수 1 내지 6의 지방족 탄화수소 유래의 1가 잔기 중 어느 하나이며,  A is any of monovalent residues derived from hydrogen and aliphatic hydrocarbons having 1 to 6 carbon atoms,
B는 탄소수 1 내지 6의 지방족 탄화수소 유래의 1가 잔기 중 어느 하나이고,  B is any one of monovalent residues derived from aliphatic hydrocarbons having 1 to 6 carbon atoms,
n은 0 내지 2의 정수이다.  n is an integer of 0-2.
상기 일 구현예에 따른 광경화성 코팅 조성물에 포함될 수 있는 광중합성 화합물은 (메트)아크릴로일기 또는 비닐기를 포함하는 단량체 또는 올리고머를 포함할 수 있다. 본 명세서에서 광중합성 화합물은 빛이 조사되면, 예를 들어 가시 광선 또는 자외선의 조사되면 중합 반웅을 일으키는 화합물을 통칭한다. 그리고, (메트)아크릴로일 [ (meth)acryloyl ]은 아크릴로일 (acryloyl ) 및 메타크릴로일 (methacryloyl ) 양쪽 모두를 포함하는 의미이다. The photopolymerizable compound which may be included in the photocurable coating composition according to the embodiment may include a monomer or oligomer including a (meth) acryloyl group or a vinyl group. In the present specification, a photopolymerizable compound is collectively referred to as a compound that causes polymerization reaction when irradiated with light, for example, visible light or ultraviolet light. And, (meth) acryloyl [(meth) acryloyl] is acryloyl (acryloyl) And methacryloyl.
상기 일 구현예에 따른 광경화성 코팅 조성물은 이러한 광중합성 화합물을 2 종 이상 포함하며 , 2 종 이상의 광중합성 화합물 중 1 종 이상의 광중합성 화합물 (이하, '제 Γ광중합성 화합물1로 호칭한다)로 상기 화학식 1로 표시되는 화합물을 포함한다. The photocurable coating composition according to the embodiment comprises two or more such photopolymerizable compounds, and one or more photopolymerizable compounds (hereinafter referred to as 'Γ photopolymerizable compound 1 ') of two or more photopolymerizable compounds. It includes a compound represented by the formula (1).
본 명세서에서 특별한 제한이 없는 한 다음 용어는 하기와 같이 정의될 수 있다.  Unless otherwise specified herein, the following terms may be defined as follows.
탄소수 1 내지 6의 지방족 탄화수소 유래의 1가 잔기는 직쇄, 분지쇄 또는 고리형 알킬기 흑은 알케닐기일 수 있다. 구체적으로, 탄소수 1 내지 6의 지방족 탄화수소 유래의 1가 잔기는 탄소수 1 내지 6의 직쇄 알킬기; 탄소수 1 내지 3의 직쇄 알킬기; 탄소수 3 내지 6의 분지쇄 또는 고리형 알킬기; 탄소수 2 내지 6의 직쇄 알케닐기;. 또는 탄소수 3 내지 6의 분지쇄 또는 고리형 알케닐기일 수 있다. 보다 구체적으로, 탄소수 1 내지 6의 지방족 탄화수소 유래의 1가 잔기는 메틸기, 에틸기, n-프로필기, i so-프로필기, n-부틸기, i so-부틸기, tert-부틸기, n_펜틸기, i so_펜틸기, neo-펜틸기, n_핵실기, tert-핵실기, i s으핵실기, ne으헥실기 또는 사이클로핵실기 등일 수 있다. 탄소수 1 내지 6의 알콕시기는 직쇄, 분지쇄 또는 고리형 알콕시기일 수 있다. 구체적으로, 탄소수 1 내지 6의 알콕시기는 탄소수 1 내지 6의 직쇄 알콕시기; 탄소수 1 내지 3의 직쇄 알콕시기; 또는 탄소수 3 내지 6의ᅳ분지-쇄 또는 고리형 알콕시기일 수 있다. 보다 구체적으로, 탄소수 1 내지 6의 알콕시기는 메록시기, 에록시기, n-프로폭시기, i so-프로폭시기, n-부특시기, i so-부특시기, tert-부특시기, n_펜톡시기, i so-펜톡시기, neo_펜록시기, n_ 핵록시기, i so-핵록시기, tert—핵록시기, neo—핵록시기 또는 사이클로핵록시기 등일 수 있다.  The monovalent moiety derived from an aliphatic hydrocarbon having 1 to 6 carbon atoms may be a straight chain, branched chain or cyclic alkyl group or an alkenyl group. Specifically, the monovalent moiety derived from an aliphatic hydrocarbon having 1 to 6 carbon atoms may be a straight chain alkyl group having 1 to 6 carbon atoms; Straight chain alkyl groups having 1 to 3 carbon atoms; Branched or cyclic alkyl groups having 3 to 6 carbon atoms; Straight chain alkenyl group having 2 to 6 carbon atoms; Or a branched or cyclic alkenyl group having 3 to 6 carbon atoms. More specifically, the monovalent residue derived from an aliphatic hydrocarbon having 1 to 6 carbon atoms is methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, tert-butyl, n_ It may be a pentyl group, i so _ pentyl group, neo- pentyl group, n_ nucleosil group, tert- nucleosil group, is is nuclear group, ne hexyl group or cyclonuclear group. The alkoxy group having 1 to 6 carbon atoms may be a straight chain, branched chain or cyclic alkoxy group. Specifically, the alkoxy group having 1 to 6 carbon atoms is a straight alkoxy group having 1 to 6 carbon atoms; Linear alkoxy groups having 1 to 3 carbon atoms; Or a C3-C6 branched-chain or cyclic alkoxy group. More specifically, the alkoxy group having 1 to 6 carbon atoms has a hydroxy group, an hydroxy group, n-propoxy group, i so-propoxy group, n-subgroup, i so-subgroup, tert-subgroup, n_pentoxy group , i so-pentoxy group, neo_phenoxy group, n_ nucleooxy group, i so-nucleooxy group, tert-nucleooxy group, neo-nucleooxy group or cyclonucleooxy group.
탄소수 1 내지 4의 알콕시카르보닐기는 -C0-Ra의 구조로 Ra는 탄소수 1 내지 4의 알콕시기일 수 있다. 구체적으로, 탄소수 1 내지 4의 알콕시카르보닐기는 -C0-0C¾ , -C0-0CH2CH3또는 -C0-0C¾CH2C¾등일 수 있다. 단일결합은 Y로 표시되는 부분에 별도의 원자가 존재하지 않는 경우를 의미한다. The alkoxycarbonyl group having 1 to 4 carbon atoms has a structure of —C 0 -R a and R a may be an alkoxy group having 1 to 4 carbon atoms. Specifically, the alkoxycarbonyl group having 1 to 4 carbon atoms may be -C0-0C¾, -C0-0CH 2 CH 3 or -C0-0C¾CH 2 C¾ and the like. A single bond means a case where no separate atom is present in the portion represented by Y.
탄소수 1 내지 20의 지방족 탄화수소 유래의 2가 잔기는 직쇄, 분지쇄 또는 고리형 알킬렌기 (alkylene group) 혹은 알케닐렌기 (alkenylene group)일 수 있다. The divalent residue derived from an aliphatic hydrocarbon having 1 to 20 carbon atoms is straight or branched chain. Or a cyclic alkylene group or an alkenylene group.
구체적으로, 탄소수 1 내지 20의 지방족 탄화수소 유래의 2가 잔기는 탄소수 1 내지 20의 직쇄 알킬렌기; 탄소수 1 내지 10의 직쇄 알킬렌기; 탄소수 1 내지 5의 직쇄 알킬렌기; 탄소수 3 내지 20의 분지쇄 또는 고리형 알킬렌기; 탄소수 3 내지 15의 분지쇄 또는 고리형 알킬렌기; 탄소수 3 내지 10의 분지쇄 또는 고리형 알킬렌기; 탄소수 2 내지 20의 직쇄 알케닐렌기; 또는 탄소수 3 내지 20의 분지쇄 또는 고리형 알케닐렌기일 수 있다. 보다 구체적으로, 탄소수 1 내지 20의 지방족 탄화수소 유래의 2가 잔기는 메틸렌기, 에틸렌기, n-프로필렌기, 1, 2-프로필렌기, n-부틸렌기, 1 , 2-부틸렌기 또는 이소부틸렌기 등일 수 있다.  Specifically, the divalent residue derived from an aliphatic hydrocarbon having 1 to 20 carbon atoms may be a straight alkylene group having 1 to 20 carbon atoms; Straight chain alkylene groups having 1 to 10 carbon atoms; Linear alkylene groups having 1 to 5 carbon atoms; Branched or cyclic alkylene groups having 3 to 20 carbon atoms; Branched or cyclic alkylene groups having 3 to 15 carbon atoms; Branched or cyclic alkylene groups having 3 to 10 carbon atoms; Linear alkenylene groups having 2 to 20 carbon atoms; Or a branched or cyclic alkenylene group having 3 to 20 carbon atoms. More specifically, the divalent residue derived from an aliphatic hydrocarbon having 1 to 20 carbon atoms is methylene group, ethylene group, n-propylene group, 1, 2-propylene group, n-butylene group, 1, 2-butylene group or isobutylene group And the like.
상기 2가 잔기의 하나 이상의 수소가 하이드록시기, 카르복실기 또는 에폭시기로 치환된 2가 잔기의 비제한적인 예로는, 프로필렌기의 하나의 수소가 하이드록시기로 치환된 1-하이드록시프로필렌기, 프로필렌기의 하나의 수소가 카르복실기로 치환된 1—카르복실프로필렌기, 프로필렌의 두 개의 수소가 에폭시기로 치환된 1,2-에폭시프로필렌기 등을 들 수 있다.  Non-limiting examples of the divalent residue in which at least one hydrogen of the divalent residue is substituted with a hydroxy group, a carboxyl group or an epoxy group include a 1-hydroxypropylene group and a propylene group where one hydrogen of the propylene group is substituted with a hydroxyl group. 1-carboxypropylene group in which one hydrogen is substituted with a carboxyl group, and 1,2-epoxypropylene group in which two hydrogens of propylene are substituted with an epoxy group.
그리고, 상기 2가 잔기의 하나 이상의 -C¾-가 산소 원자들이 직접 연결되지 않도록 -으, -C0-0- , -0-C0- 또는 -0-C0-0-로 대체된 2가 잔기의 비제한적인 예로는, 프로필렌기의 하나의 -C¾-가 -0- , -C0-0- , -0-C0- 또는 - 0-C0-0-로 대체된 -0C¾CH2- , -C0-0CH2CH2- , -0-C0-CH2CH2- 또는 -0-C0-0CH2CH2- 등을 들 수 있다. And a ratio of divalent residues replaced with -C0-0-, -0-C0- or -0-C0-0- so that one or more -C¾-valent oxygen atoms of the divalent residues are not directly connected. limiting examples, one of -C¾- propylene group -0-, -C0-0-, -0-C0- or - a substituted 0-C0-0- -0C¾CH 2 -, -C0-0CH 2 CH 2- , -0-C0-CH 2 CH 2 -or -0-C0-0CH 2 CH 2 -and the like.
상기 제 1 광중합성 화합물은 상기 화학식 1 외의 다른 광중합성 화합물 (이하, 1제 2 광중합성 화합물 '이라 호칭한다)과 중합되어 저굴절층의 바인더 수지를 형성할 수 있는 -R1 그룹과 하드 코팅층과 결합할 수 있는 - Si (B)n(0-A)3-„ 그룹을 포함한다. 이에 따라, 상기 제 1 광중합성 화합물을 사용하면 하드 코팅층에 결합된 저굴절층을 형성할 수 있다. 또한, 상기 제 1 광중합성 화합물의 -Si (B)n(0-A)3-n 그룹은 후술하는 표면 처리된 중공형 무기 나노 입자와 표면 처리된 솔리드형 무기 나노 입자와 결합 흑은 상호 작용하여 저굴절층의 바인더 수지에 표면 처리된 중공형 무기 나노 입자와 표면 처리된 솔리드형 무기 나노 입자를 보다 강하게 고정시킬 수 있다. 이로써, 광학 제반 성능은 물론 기계적 특성이 우수한 반사 방지 필름을 제공할 수 있다. 한편, 상기 제 1 광중합성 화합물은 -R2 그룹에 방향족 고리를 포함하지 않아 낮은 굴절률의 저굴절층을 형성할 수 있다. The first photopolymerizable compound is a -R 1 group and a hard coating layer which may be polymerized with another photopolymerizable compound other than Chemical Formula 1 (hereinafter, referred to as ' first second photopolymerizable compound') to form a binder resin of a low refractive layer. It contains-Si (B) n (0-A) 3- „group that can be combined with. Accordingly, by using the first photopolymerizable compound, a low refractive index layer bonded to the hard coating layer may be formed. In addition, the -Si (B) n (0-A) 3 - n group of the first photopolymerizable compound is combined with the surface-treated hollow inorganic nanoparticles and the surface-treated solid inorganic nanoparticles and the black-black interaction Thus, the hollow inorganic nanoparticles surface-treated and the solid inorganic nanoparticles surface-treated may be more strongly fixed to the binder resin of the low refractive layer. Thus, optical It is possible to provide an antireflection film having excellent mechanical properties as well as performance. On the other hand, the first photopolymerizable compound does not include an aromatic ring in the -R 2 group can form a low refractive index layer of low refractive index.
구체적으로, 상기 제 1 광중합성 화합물로는 하기 화학식 2로 표시되는 화합물을사용할 수 있다.  Specifically, a compound represented by the following Chemical Formula 2 may be used as the first photopolymerizable compound.
Figure imgf000007_0001
Figure imgf000007_0001
상기 화학식 2에서, 상기 Xa는 수소 혹은 메틸기이고, In Formula 2, X a is hydrogen or a methyl group,
R3는 수소 및 탄소수 1 내지 6의 지방족 탄화수소 유래의 1가 잔기 중 어느 하나이며, R4는 탄소수 1 내지 6의 지방족 탄화수소 유래의 1가 잔기 중 어느 하나이고, R 3 is any one of monovalent residues derived from hydrogen and aliphatic hydrocarbons having 1 to 6 carbon atoms, R 4 is any one of monovalent residues derived from aliphatic hydrocarbons having 1 to 6 carbon atoms,
m은 2 내지 6의 정수이며, n은 0 내지 2의 정수이다.  m is an integer of 2-6, n is an integer of 0-2.
보다 구체적으로, 상기 제 1 광중합성 화합물로는 3- More specifically, the first photopolymerizable compound is 3-
(메트)아크릴옥시프로필트리메특시실란, 3- (메트)아크릴옥시프로필트리에록시실란, 3-3- (meth) acryloxypropyl trimethoxysilane, 3- (meth) acryloxypropyl triethoxysilane, 3-
(메트)아크릴옥시프로필메틸디메톡시실란, 3-3- (meth) acryloxypropylmethyldimethoxysilane, 3-
(메트)아크릴옥시프로필메틸디에톡시실란, 3-3- (meth) acryloxypropylmethyldiethoxysilane , 3-
(메트)아크릴옥시프로필트리메록시실란, 3-[3-(Meth) acryloxypropyltrimethoxysilane, 3- [3-
(메트)아크릴옥시프로필렌옥시]프로필트리메록시실란 또는 이들의 흔합물을 사용할 수 있다. (Meth) acryloxypropyleneoxy] propyltrimethoxysilane or a mixture thereof can be used.
상기 화학식 1 외의 다른 광중합성 화합물인 제 2 광중합성 화합물은 (메트)아크릴로일기 또는 비닐기를 1 이상, 2 이상 또는 3 이상 포함하는 단량체 또는 올리고머를 포함할 수 있다.  The second photopolymerizable compound, which is a photopolymerizable compound other than Chemical Formula 1, may include a monomer or oligomer including one or more, two or more, or three or more (meth) acryloyl groups or vinyl groups.
상기 (메트)아크릴로일기를 포함하는 단량체 또는 올리고머의 구체적인 예로는, 펜타에리스리를 트리 (메트)아크릴레이트, 펜타에리스리를 테트라 (메트)아크릴레이트, 디펜타에리스리를 펜타 (메트)아크릴레이트, 디펜타에리스리를 핵사 (메트)아크릴레이트, 트리펜타에리스리를 헵타 (메트)아크릴레이트, 트릴렌 디이소시아네이트, 자일렌 디이소시아네이트, 핵사메틸렌 디이소시아네이트, 트리메틸올프로판 트리 (메트)아크릴레이트, 트리메틸올프로판 폴리에록시 트리 (메트)아크릴레이트, 에틸렌글리콜 디 (메트)아크릴레이트, 부탄디올 디 (메트)아크릴레이트, 2-하이드록시에틸 (메트)아크릴레이트, 2—에틸핵실 (메트)아크릴레이트, 부틸 (메트)아크릴레이트 또는 이들의 2 종 이상의 흔합물이나, 또는 우레탄 변성 아크릴레이트 올리고머, 에폭사이드 아크릴레이트 올리고머, 에테르아크릴레이트 올리고머, 덴드리틱 아크릴레이트 올리고머, 또는 이들의 2 종 이상의 흔합물을 들 수 있다. As a specific example of the monomer or oligomer containing the said (meth) acryloyl group, a pentaerythri is tri (meth) acrylate, a pentaerythri (tetra) (meth) acrylate, dipentaerythroxy penta (meth) acrylic acid Latent, dipentaerythride, nucleated (meth) acrylate, tripentaerythrite, hepta (meth) acrylate, triylene diisocyanate, xylene diisocyanate, Nucleated methylene diisocyanate, trimethylolpropane tri (meth) acrylate, trimethylolpropane polyethoxy tri (meth) acrylate, ethylene glycol di (meth) acrylate, butanediol di (meth) acrylate, 2-hydroxyethyl (Meth) acrylate, 2—ethylnuclear (meth) acrylate, butyl (meth) acrylate or two or more kinds thereof, or urethane modified acrylate oligomers, epoxide acrylate oligomers, etheracrylate oligomers, Dendritic acrylate oligomers, or a combination of two or more thereof.
상기 비닐기를 포함하는 단량체 또는 올리고머의 구체적인 예로는, 디비닐벤젠, 스티렌, 파라메틸스티렌 또는 이들 중 1 종 이상을 중합하여 얻은 올리고머 등을 들 수 있다. 상기에서 올리고머의 분자량은 1,000 내지 10,000 g/lM)l로 조절될 수 있다.  Specific examples of the monomer or oligomer containing the vinyl group include divinylbenzene, styrene, paramethyl styrene or oligomers obtained by polymerizing one or more of these. The molecular weight of the oligomer may be adjusted to 1,000 to 10,000 g / lM) l.
상기 광경화성 코팅 조성물 중 상기 광중합성 화합물의 함량은 특별히 한정되는 것은 아니나, 최종 제조되는 저굴절층이나 반사 방지 필름의 기계적 물성 등을 고려하여 상기 광경화성 코팅 조성물의 고형분 중 상기 광중합성 화합물의 함량은 5 중량 % 내지 80 중량 %로 조절될 수 있다. 본 명세서에서, 상기 광중합성 화합물의 함량은 제 1 및 제 2 광중합성 화합물 함량의 총 합을 의미한다. 그리고, 상기 광경화성 코팅 조성물의 고형분은 상기 광경화성 코팅 조성물 중 액상의 성분, 예를 들어, 후술하는 바와 같이 선택적으로 포함될 수 있는 유기 용매 등의 성분을 제외한 고체 성분만을 의미한다.  Although the content of the photopolymerizable compound in the photocurable coating composition is not particularly limited, the content of the photopolymerizable compound in the solid content of the photocurable coating composition in consideration of the mechanical properties of the low refractive index layer or the anti-reflection film to be produced finally Silver can be adjusted to 5% to 80% by weight. In the present specification, the content of the photopolymerizable compound means the sum of the contents of the first and second photopolymerizable compounds. In addition, the solid content of the photocurable coating composition means only a solid component excluding a liquid component, for example, an organic solvent or the like, which may be selectively included as described below, in the photocurable coating composition.
또한, 상기 제 1 광중합성 화합물과 제 2 광중합성 화합물은 0.001:1 내지 4:1, 0.01:1 내지 3:1, 0.1:1 내지 2:1 혹은 0.5:1 내지 1.5:1의 중량비율로 사용될 수 있다.  In addition, the first photopolymerizable compound and the second photopolymerizable compound may have a weight ratio of 0.001: 1 to 4: 1, 0.01: 1 to 3: 1, 0.1: 1 to 2: 1, or 0.5: 1 to 1.5: 1. Can be used.
이러한 범위 내에서 하드 코팅층에 강하게 부착되며 표면 처리된 중공형 무기 나노 입자 및 표면 처리된 솔리드형 무기 나노 입자를 강하게 고정할 수 있고, 낮은 반사율을 나타내며 뛰어난 내스크래치성 및 방오성을 나타내는 저굴절층을 제공할 수 있다.  Within this range, it is possible to strongly fix the surface-treated hollow inorganic nanoparticles and the surface-treated solid inorganic nanoparticles, which are strongly attached to the hard coating layer, and have a low refractive index layer having low reflectivity and excellent scratch resistance and stain resistance. Can provide.
한편, 상기 광경화성 코팅 조성물에는 광반웅성 작용기를 포함한 함불소 화합물이 추가로 포함될 수 있다. 본 명세서에서 광반웅성 작용기를 포함한 함불소 화합물은 2,000 g/mol 이상의 중량평균분자량을 가지며 불소로 치환된 화합물을 의미하며, 이러한 화합물은 상술한 광중합성 화합물의 정의에 포함되지 않는 것으로 규정한다 . On the other hand, the photocurable coating composition may further include a fluorine-containing compound including a photo-banung functional group. In the present specification, the fluorine-containing compound including the photo-cyclic functional group has a weight average molecular weight of 2,000 g / mol or more and is represented by fluorine. Substituted compounds, which are defined as not included in the definition of the photopolymerizable compound described above.
상기 함불소 화합물에는 1 이상의 광반웅성 작용기가 도입되어 았으며, 상기 광반응성 작용기는 빛의 조사에 의하여, 예를 들어, 가시 광선 또는 자외선의 조사에 의하여 중합 반웅에 참여할 수 있는 작용기를 의미한다 . 상기 광반웅성 작용기는 빛의 조사에 의하여 중합 반웅에 참여할 수 있는 것으로 알려진 다양한 작용기를 포함할 수 있으며, 이의 구체적인 예로는 (메트)아크릴로일기, 에폭시기, 비닐 (vinyl )기 또는 머캅토 (mercapto)기 등을 들 수 있다. 상기 1 이상의 광반웅성 작용기는 나열한 작용기 중 어느 하나이거나 혹은 나열한 작용기 중에서 선택된 2 종 이상으로 구성될 수 있다. 상기 광반웅성 작용기를 포함한 함불소 화합물은 규소; 또는 규소 화합물로부터 유래한 측쇄 흑은 반복단위를 더 포함할 수 있다. 상기 함불소 화합물이 규소 흑은 규소 화합물 유래의 측쇄나 반복단위를 포함할 경우, 규소의 함량은 함불소 화합물 총 중량에 대하여 0. 1 중량 % 내지 20 중량 %일 수 있다. 상기 광반웅성 작용기를 포함한 함불소 화합물에 포함되는 규소는 상기 일 구현예의 광경화성 코팅 조성물에 포함되는 다른 성분과의 상용성을 높일 수 있으며 이에 따라 최종 제조되는 저굴절층에 헤이즈 (haze)가 발생하는 것을 방지하여 투명도를 높이는 역할을 할 수 있다. 한편, 상기 광반응성 작용기를 포함한 함불소 화합물 중 규소의 함량이 지나치게 많아지면, 상기 광경화성 코팅 조성물에 포함된 다른 성분과 상기 함불소 화합물 간의 상용성이 오히려 저하될 수 있으며, 이에 따라 최종 제조되는 저굴절층이나 반사 방지 필름이 층분한 투광도나 반사 방지 성능을 나타내지 못하고 표면의 방오성 또한 저하될 수 있다.  At least one photoreactive functional group is introduced into the fluorine-containing compound, and the photoreactive functional group means a functional group capable of participating in the polymerization reaction by irradiation of light, for example, by irradiation of visible light or ultraviolet light. The photoreactive functional group may include various functional groups known to be able to participate in the polymerization reaction by irradiation of light, and specific examples thereof include (meth) acryloyl groups, epoxy groups, vinyl (vinyl) groups, or mercaptos. And the like can be mentioned. The at least one photoreactive functional group may be any one of the listed functional groups or may be composed of two or more selected from the listed functional groups. The fluorine-containing compound including the photo-banung functional group is silicon; Or the side chain black derived from a silicon compound may further contain a repeating unit. When the fluorine-containing compound includes side chains or repeating units derived from silicon or black silicon compounds, the content of silicon may be 0.01 wt% to 20 wt% based on the total weight of the fluorine-containing compound. Silicon contained in the fluorine-containing compound including the photo-banung functional group may increase compatibility with other components included in the photocurable coating composition of the embodiment, and thus haze occurs in the low refractive layer to be finally manufactured. It can play a role of increasing transparency by preventing it. On the other hand, when the content of silicon in the fluorine-containing compound including the photoreactive functional group is too high, the compatibility between the other components included in the photocurable coating composition and the fluorine-containing compound may be rather deteriorated, thus the final manufacturing The low refractive index layer or the antireflection film does not exhibit a sufficient light transmittance or antireflection performance, and the antifouling property of the surface may also be reduced.
상기 광반웅성 작용기를 포함한 함불소 화합물은 2 , 000 내지 200, 000 g/mol 혹은 5, 000 내지 100 , 000 g/n l의 중량평균분자량을 가질 수 있다. 상기 광반응성 작용기를 포함한 함불소 화합물의 중량평균분자량이 너무 작으면, 상기 함불소 화합물이 상기 광경화성 코팅 조성물로부터 얻어진 저굴절층 표면에 균일하게 배열되지 못하고 내부에 위치하게 되어 저굴절층의 방오성이 저하되고, 저굴절층의 가교 밀도가 낮아져 반사 방지 필름의 전체 강도 및 내스크래치성 등의 기계적 물성이 저하될 수 있다. 반면, 상기 광반웅성 작용기를 포함한 함불소 화합물의 중량평균분자량이 너무 크면, 상기 광경화성 코팅 조성물에 포함된 다른 성분과 상용성이 낮아질 수 있고, 이에 따라 최종 제조되는 저굴절층의 헤이즈가 높아지고 광투광도가 낮아질 수 있으며, 상기 저굴절층의 강도 또한 저하될 수 있다. 본 명세서에서 중량평균분자량은 GPC(Gel Permeat ion Chromatograph)로 측정한 표준 폴리스티렌에 대한 환산 수치를 의미한다. The fluorine-containing compound including the photo-banung functional group may have a weight average molecular weight of 2,000 to 200, 000 g / mol or 5,000 to 100, 000 g / nl. If the weight average molecular weight of the fluorine-containing compound including the photoreactive functional group is too small, the fluorine-containing compound is not uniformly arranged on the surface of the low refractive layer obtained from the photocurable coating composition, and thus is placed therein so that the antifouling property of the low refractive layer This decreases, and the crosslinking density of the low refractive index layer is lowered, and thus mechanical properties such as overall strength and scratch resistance of the antireflection film may be lowered. On the other hand, the photobanungseong When the weight average molecular weight of the fluorine-containing compound including the functional group is too large, compatibility with other components included in the photocurable coating composition may be low, thereby increasing the haze of the low refractive layer to be manufactured and light transmittance. In addition, the strength of the low refractive layer may also be lowered. In the present specification, the weight average molecular weight means a conversion value with respect to standard polystyrene measured by gel permeat ion chromatograph (GPC).
구체적으로, 상기 광반응성 작용기를 포함한 함불소 화합물은 i ) 1 이상의 광반웅성 작용기로 치환되고, 적어도 하나의 수소가 불소로 치환된 지방족 화합물 또는 지방족 고리 화합물; ii ) 상기 지방족 화합물 또는 지방족 고리 화합물의 하나 이상의 탄소가 규소로 치환된 실리콘계 화합물; iii ) 상기 지방족 화합물 또는 지방족 고리 화합물의 하나 이상의 탄소가 규소로 치환되고 하나 이상의 -CH2-가 산소로 치환된 실록산계 화합물; iv ) 상기 지방족 화합물 또는 지방족 고리 화합물의 하나 이상의 -C¾-가산소로 치환된 플루오로폴리에테르; 또는 이들의 2 종 이상의 흔합물이거나 중합체일 수 있다. Specifically, the fluorine-containing compound including the photoreactive functional group is i) an aliphatic compound or aliphatic ring compound substituted with at least one photoreactive functional group, at least one hydrogen is substituted with fluorine; ii) silicon-based compounds in which at least one carbon of the aliphatic compound or aliphatic ring compound is substituted with silicon; iii) a siloxane compound in which at least one carbon of the aliphatic compound or aliphatic ring compound is substituted with silicon and at least one -CH 2 -is substituted with oxygen; iv) fluoropolyethers substituted with one or more -C 3 -oxygens of the aliphatic compound or aliphatic ring compound; Or two or more kinds thereof, or a polymer.
상기 광경화성 코팅 조성물은 상기 광중합성 화합물 100 중량부에 대하여 20 내지 300 중량부의 광반웅성 작용기를 포함한 함불소 화합물을 포함할 수 있다. 상기 광중합성 화합물 대비 상기 광반웅성 작용기를 포함한 함불소 화합물이 과량으로 첨가되는 경우 상기 광경화성 코팅 조성물의 코팅성이 저하되거나 상기 광경화성 코팅 조성물로부터 얻어진 저굴절층이 층분한 내구성이나 내스크래치성을 갖지 못할 수 있다. 또한 상기 광중합성 화합물 대비 상기 광반웅성 작용기를 포함한 함불소 화합물의 양이 너무 적으면, 상기 광경화성 코팅 조성물로부터 얻어진 저굴절층이 충분한 방오성이나 내스크래치성을 갖지 못할 수 있다.  The photocurable coating composition may include a fluorine-containing compound including 20 to 300 parts by weight of the photoreactive functional group based on 100 parts by weight of the photopolymerizable compound. When the fluorine-containing compound containing the photoreactive functional group is added to the photopolymerizable compound in an excessive amount, the coating property of the photocurable coating composition is reduced or the low refractive layer obtained from the photocurable coating composition has excellent durability or scratch resistance. May not have. In addition, if the amount of the fluorine-containing compound containing the photo-banung functional group relative to the photopolymerizable compound is too small, the low refractive index layer obtained from the photocurable coating composition may not have sufficient antifouling resistance or scratch resistance.
한편, 상기 일 구현예에 따른 광경화성 코팅 조성물은 표면 처리된 중공형 무기 나노 입자와 표면 처리된 솔리드형 무기 나노 입자를 포함한다. 본 명세서에서 무기 나노 입자라 함은 (유기) 금속 화합물 혹은 (유기) 준금속 화합물로부터 도출되는 수 nm 내지 수백 nm의 크기를 가지는 무기 나노 입자를 의미하며, 중공형 무기 나노 입자라 함은 무기 나노 입자의 표면 및 /또는 내부에 빈 공간이 존재하는 형태의 입자를 의미하고, 솔리드형 무기 나노 입자라 함은 그 내부에 빈 공간이 존재하지 않는 형태의 입자를 의미한다. 상기 일 구현예의 광경화성 코팅 조성물로부터 형성되는 저굴절층에서 상기 표면 처리된 솔리드형 무기 나노 입자는 저굴절층과 하드 코팅층의 계면에 가깝게 분포하고 상기 표면 처리된 중공형 무기 나노 입자는 상기 저굴절층의 하드 코팅층과 접하는 면의 이면인 표면에 가깝게 분포한다. 이러한 표면 처리된 중공형 무기 나노 입자 및 표면 처리된 솔리드형 무기 나노 입자의 특이적 분포로 인해 보다 낮은 반사율을 나타내며 내스크래치성과 방오성이 향상된 반사 방지 필름을 제공할 수 있다. Meanwhile, the photocurable coating composition according to the embodiment includes the surface-treated hollow inorganic nanoparticles and the surface-treated solid inorganic nanoparticles. In the present specification, the inorganic nanoparticles refer to inorganic nanoparticles having a size of several nm to several hundred nm derived from (organic) metal compound or (organic) metalloid compound, and hollow inorganic nanoparticles refer to inorganic nanoparticles. Refers to particles in the form of empty space on the surface and / or inside of the particles, solid inorganic nano Particle means a particle having a form in which no empty space exists. In the low refractive layer formed from the photocurable coating composition of the embodiment, the surface-treated solid inorganic nanoparticles are distributed close to the interface between the low refractive layer and the hard coating layer, and the surface-treated hollow inorganic nanoparticles are the low refractive index. It is distributed close to the surface, which is the back side of the surface in contact with the hard coating layer of the layer. Due to the specific distribution of such surface-treated hollow inorganic nanoparticles and surface-treated solid inorganic nanoparticles, it is possible to provide an antireflection film having lower reflectance and improved scratch resistance and antifouling property.
상기 표면 처리된 중공형 무기 나노 입자와 표면 처리된 솔리드형 무기 나노 입자의 특이적 분포를 위해 표면 처리된 솔리드형 무기 나노 입자로는 표면 처리된 중공형 무기. 나노 입자에 비하여 0.50 g/cm3 이상의 높은 밀도를 갖는 무기 나노 입자가 사용될 수 있다. 이러한 밀도 차이로 인해 상기 광경화성 코팅 조성물로 저굴절층을 형성하면 하드 코팅층과 가까운 면에 표면 처리된 솔리드형 무기 나노 입자가주로 분포하고 하드 코팅층과 먼 면에 표면 처리된 중공형 무기 나노 입자가주로 분포할 수 있다. 보다구체적으로, 상기 표면 처리된 중공형 무기 나노 입자로는 1.50 내지 3.50 g/cm3의 밀도를 가지는 표면 처리된 무기 나노 입자가 사용될 수 있고, 상기 표면 처리된 솔리드형 무기 나노 입자로는 2.00 내지 4.00 g/cm3의 밀도를 가지는 표면 처리된 무기 나노 입자가사용될 수 있다. A hollow inorganic surface-treated with a solid inorganic nanoparticles surface-treated for the specific distribution of the surface-treated hollow inorganic nanoparticles and the surface-treated solid inorganic nanoparticles. Inorganic nanoparticles having a high density of 0.50 g / cm 3 or more compared to the nanoparticles may be used. Due to this density difference, when the low refractive layer is formed of the photocurable coating composition, solid inorganic nanoparticles surface-treated on the surface close to the hard coating layer are mainly distributed, and hollow inorganic nanoparticles surface-treated on the surface far from the hard coating layer Mainly distributed. More specifically, the surface-treated hollow inorganic nanoparticles may be used as a surface-treated inorganic nanoparticles having a density of 1.50 to 3.50 g / cm 3 , the surface-treated solid inorganic nanoparticles may be used from 2.00 to Surface treated inorganic nanoparticles having a density of 4.00 g / cm 3 can be used.
상기 표면 처리된 중공형 무기 나노 입자로는 특별히 한정되는 것은 아니나 약 200 nm 이하의 최대 직경을 가지는 표면 처리된 무기 나노 입자를 사용할 수 있다. 구체적으로, 상기 표면 처리된 중공형 무기 나노 입자로는 약 1 내지 200 nm 또는 10 내지 100 nm의 직경을 가지는 표면 처리된 무기 나노 입자가 사용될 수 있다. 상기 표면 처리된 솔리드형 무기 나노 입자로는 특별히 한정되는 것은 아니나 약 100 nm 이하의 최대 직경을 가지는 표면 처리된 무기 나노 입자를 사용할 수 있다. 구체적으로, 상기 표면 처리된 솔리드형 무기 나노 입자로는 약 0.5 내지 100 nm또는 1 내지 30 nm의 직경을 가지는 표면 처리된 무기 나노 입자가 사용될 수 있다. 상기 표면 처리된 중공형 무기 나노 입자 및 표면 처리된 솔리드형 무기 나노 입자로 상술한 범위의 직경을 가지는 표면 처리된 무기 나노 입자를 사용하여 기계적 강도 및 광학 제반성능이 우수한 반사 방지 필름을 제공할수 있다. The surface-treated hollow inorganic nanoparticles are not particularly limited, but surface-treated inorganic nanoparticles having a maximum diameter of about 200 nm or less may be used. Specifically, the surface-treated hollow inorganic nanoparticles may be used surface-treated inorganic nanoparticles having a diameter of about 1 to 200 nm or 10 to 100 nm. The surface-treated solid inorganic nanoparticles are not particularly limited, but surface-treated inorganic nanoparticles having a maximum diameter of about 100 nm or less may be used. Specifically, the surface-treated solid inorganic nanoparticles may be used surface-treated inorganic nanoparticles having a diameter of about 0.5 to 100 nm or 1 to 30 nm. By using the surface-treated hollow inorganic nanoparticles and surface-treated solid inorganic nanoparticles having a surface-treated inorganic nanoparticles having a diameter in the above-described range, It is possible to provide an antireflection film having excellent optical performance.
상기 표면 처리된 중공형 무기 나노 입자는 상기 광중합성 화합물 100 중량부에 대해 10 내지 400 중량부, 100 내지 300 중량부 흑은 150 내지 250 중량부로 사용될 수 있다. 그리고, 상기 표면 처리된 솔리드형 무기 나노 입자는 상기 광중합성 화합물 100 중량부에 대해 10 내지 400 중량부, 10 내지 200 중량부, 10 내지 100 중량부 혹은 10 내지 50 중량부로 사용될 수 있다. 상기 표면 처리된 중공형 무기 나노 입자 및 표면 처리된 솔리드형 무기 나노 입자의 함량이 과다해지는 경우, 저굴절층 형성 시에 상기 표면 처리된 중공형 무기 나노 입자와 표면 처리된 솔리드형 무기 나노 입자 간의 상 분리가 충분히 일어나지 않고 흔재될 수 있다. 이에 따라, 저굴절층의 반사율이 높아질 수 있으며, 표면 요철이 과다하게 발생하여 방오성이 저하될 수 있다. 반면, 표면 처리된 중공형 무기 나노 입자 및 표면 처리된 솔리드형 무기 나노 입자의 함량이 지나치게 적은 경우, 하드 코팅층 및 저굴절층 간의 계면으로부터 가까운 영역에 표면 처리된 솔리드형 무기 나노 입자가 주로 분포하기 어려울 수 있으며, 이에 따라 저굴절층의 반사율이 증가할 수 있다. 상기 표면 처리된 중공형 무기 나노 입자와 표면 처리된 솔리드형 무기 나노 입자에서, 중공형 무기 나노 입자와 솔리드형 무기 나노 입자로는 동일한 종류의 금속 혹은 준금속을 포함하는 입자가 사용되거나 혹은 서로 다른 종류의 금속 혹은 준금속을 포함하는 입자가 사용될 수 있다. 일 예로, 상기 중공형 무기 나노 입자로는 중공형 실리카 입자가 사용되고, 솔리드형 무기 나노 입자로는 솔리드형 실리카 입자가사용될 수 있다.  The surface-treated hollow inorganic nanoparticles may be used in an amount of 10 to 400 parts by weight, 100 to 300 parts by weight, and black of 150 to 250 parts by weight, based on 100 parts by weight of the photopolymerizable compound. The surface-treated solid inorganic nanoparticles may be used in an amount of 10 to 400 parts by weight, 10 to 200 parts by weight, 10 to 100 parts by weight, or 10 to 50 parts by weight based on 100 parts by weight of the photopolymerizable compound. When the content of the surface-treated hollow inorganic nanoparticles and surface-treated solid inorganic nanoparticles is excessive, between the surface-treated hollow inorganic nanoparticles and the surface-treated solid inorganic nanoparticles when forming a low refractive index layer Phase separation may not occur sufficiently and may be common. As a result, the reflectance of the low refractive layer may be increased, and surface irregularities may be excessively generated, thereby degrading antifouling properties. On the other hand, when the content of the surface-treated hollow inorganic nanoparticles and surface-treated solid inorganic nanoparticles is too small, the surface-treated solid inorganic nanoparticles are mainly distributed in the area close to the interface between the hard coating layer and the low refractive layer. It may be difficult, and thus the reflectance of the low refractive layer may increase. In the surface-treated hollow inorganic nanoparticles and the surface-treated solid inorganic nanoparticles, as the hollow inorganic nanoparticles and the solid inorganic nanoparticles, particles containing the same type of metal or metalloid may be used or different. Particles containing any kind of metal or metalloid may be used. For example, hollow silica particles may be used as the hollow inorganic nanoparticles, and solid silica particles may be used as the solid inorganic nanoparticles.
이러한 중공형 및 솔리드형 무기 나노 입자를 표면 처리하지 않고 사용하면 충분한 내스크래치성 및 방오성을 나타내는 저굴절층을 제공하기 어렵다. 그러나, 상기 일 구현예에 따르면, 상기 중공형 및 솔리드형 무기 나노 입자는 표면 처리되어 광경화성 코팅 조성물에 포함됨으로써 보다 높은 가교도의 저굴절층을 형성하여 내스크래치성 및 방오성을 보다 개선할 수 있다. 상기 중공형 및 솔리드형 무기 나노 입자는 광반웅성 작용기를 포함하는 유기 규소 화합물과 반웅시켜 표면 처리될 수 있다.  When such hollow and solid inorganic nanoparticles are used without surface treatment, it is difficult to provide a low refractive index layer exhibiting sufficient scratch resistance and antifouling property. However, according to the exemplary embodiment, the hollow and solid inorganic nanoparticles may be surface treated to be included in the photocurable coating composition to form a low refractive index layer having a higher crosslinking degree, thereby further improving scratch resistance and antifouling resistance. . The hollow and solid inorganic nanoparticles may be surface treated by reacting with an organosilicon compound including a photoreactive functional group.
상기 광반웅성 작용기로는 (메트)아크릴로일기 에폭시기, 비닐 (vinyl )기 또는 머갑토 (mercapto)기 등을 예시할 수 있다. 상기 광반웅성 작용기를 포함하는 유기 규소 화합물의 구체적인 예로는 비닐트리메록시실란, 비닐트리에록시실란, 비닐트리스 (2-메록시에특시)실란, 2-(3,4- 에폭시사이클로핵실)에틸트리메특시실란, Y -글리시독시메틸트리메특시실란, γ -글리시독시메틸트리에특시실란, Υ -글리시독시에틸트리메록시실란, 글리시독시에틸트리에록시실란, 글리시독시프로필트리메록시실란, Υ - 글리시독시프로필트리에톡시실란, γ -( β - 글리시독시에록시)프로필트리메록시실란, Examples of the photo-reflective functional group include a (meth) acryloyl group epoxy group, a vinyl (vinyl) group, a mercapto group, and the like. The light reflection Specific examples of the organosilicon compound containing a functional group include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (2-methoxy-specific) silane, 2- (3,4-epoxycyclonuclear chamber) ethyltrimethic Cysilane, Y-glycidoxy methyltrimethic silane, γ -glycidoxy methyl trie specific silane, Υ- glycidoxy ethyl trimethoxysilane, glycidoxy ethyl trioxy silane, glycidoxy propyl Trimethoxysilane, Υ-glycidoxypropyltriethoxysilane, γ- (β-glycidoxyoxy) propyltrimethoxysilane,
(메트)아크릴로일옥시메틸트리메특시실란, Υ - (메트)아크릴로일옥시메틸트리에특시실란,  (Meth) acryloyloxymethyltrimethoxysilane, Υ-(meth) acryloyloxymethyltrimethoxysilane,
(메트)아크릴로일옥시에틸트리메록시실란, (Meth) acryloyloxyethyltrimethoxysilane,
(메트)아크릴로일옥시프로필트리메록시실란,  (Meth) acryloyloxypropyltrimethoxysilane,
(메트)아크릴로일옥시프로필메틸디메록시실란, Υ - (메트)아크릴로일옥시프로필트리에톡시실란 또는 ~ 머캅토프로필트리메특시실란 등을 들 수 있다. 상기 중공형 또는 솔리드형 무기 나노 입자의 표면에는 1 종의 유기 규소 화합물로 표면 개질하여 1 종의 광반응성 작용기가 도입되거나 흑은 2 종 이상의 유기 규소 화합물로 표면 개질하여 2 종 이상의 광반응성 작용기가도입될 수 있다.  (Meth) acryloyloxypropyl methyl dimethoxysilane,-(meth) acryloyloxypropyl triethoxysilane,-mercaptopropyl trimethoxysilane, etc. are mentioned. The surface of the hollow or solid inorganic nanoparticles is surface-modified with one type of organosilicon compound to introduce one type of photoreactive functional group, or black or surface type is modified with two or more types of organosilicon compounds to produce two or more type of photoreactive functional groups. Can be introduced.
상기 표면 처리된 중공형 무기 나노 입자 및 표면 처리된 솔리드형 무기 나노 입자는 분산매에 분산된 콜로이드 상으로 이용될 수 있다. 이때, 상기 분산매로는 메탄올, 이소프로필알코올, 에틸렌글리콜, 부탄올 등의 알코올류; 메틸에틸케톤, 메틸이소부틸케톤 등의 케톤류; 를루엔, 자일렌 등의 방향족 탄화수소류; 디메틸포름아미드. 디메틸아세트아미드, Ν-메틸피를리돈 등의 아미드류; 초산에틸, 초산부틸, 감마부틸로락톤 등의 에스테르류; 테트라하이드로퓨란, 1,4-디옥산 등의 에테르류; 또는 이들의 흔합물 등의 유기 용매가사용될 수 있다. 콜로이드 상 중의 표면 처리된 중공형 무기 나노 입자또는 표면 처리된 솔리드형 무기 나노 입자의 함량은사용하고자 하는 각 무기 나노 입자의 사용 함량과 광경화성 코팅 조성물의 점도 등을 고려하여 적절하게 결정될 수 있다. 비제한적인 예로, 상기 콜로이드 상 중 표면 처리된 중공형 무기 나노 입자 또는 표면 처리된 솔리드형 무기 나노 입자의 고형분 함량은 약 5 중량 %내지 60 중량%일 수 있다. 상기 광경화성 코팅 조성물에 사용되는 광개시제로는 본 발명이 속한 기술분야에 알려진 다양한 개시제가 사용될 수 있다. 비제한적인 예로, 광개시제로는 벤조페논계 화합물, 아세토페논계 화합물, 비이미다졸계 화합물, 트리아진계 화합물, 옥심계 화합물 또는 이들의 2 종 이상의 흔합물을 사용할 수 있다. The surface-treated hollow inorganic nanoparticles and the surface-treated solid inorganic nanoparticles may be used as a colloidal phase dispersed in a dispersion medium. At this time, the dispersion medium may be alcohol such as methanol, isopropyl alcohol, ethylene glycol, butanol; Ketones such as methyl ethyl ketone and methyl isobutyl ketone; Aromatic hydrocarbons such as toluene and xylene; Dimethylformamide. Amides such as dimethylacetamide and N-methylpyridone; Esters such as ethyl acetate, butyl acetate and gamma butyrolactone; Ethers such as tetrahydrofuran and 1,4-dioxane; Or organic solvents such as mixtures thereof. The content of the surface-treated hollow inorganic nanoparticles or the surface-treated solid inorganic nanoparticles in the colloidal phase may be appropriately determined in consideration of the content of each inorganic nanoparticle to be used and the viscosity of the photocurable coating composition. As a non-limiting example, the solids content of the surface-treated hollow inorganic nanoparticles or surface-treated solid inorganic nanoparticles in the colloidal phase may be about 5% to 60% by weight. As the photoinitiator used in the photocurable coating composition, various initiators known in the art to which the present invention pertains may be used. As a non-limiting example, as a photoinitiator, a benzophenone type compound, an acetophenone type compound, a biimidazole type compound, a triazine type compound, an oxime type compound, or 2 or more types of these mixtures can be used.
상기 광개시제는 상기 광중합성 화합물 100 중량부에 대하여 1 내지 100 중량부로 사용될 수 있다. 상기 광개시제의 양이 너무 작으면, 상기 광경화성 코팅 조성물의 광경화 단계에서 미경화된 단량체 혹은 올리고머가 잔류할 수 있다. 반면, 상기 광개시제의 양이 너무 많으면, 미반응 개시제가 불순물로 잔류하거나 가교 밀도가 낮아져서 제조되는 반사 방지 필름의 기계적 물성이 저하되거나 반사율이 크게 높아질 수 있다.  The photoinitiator may be used in an amount of 1 to 100 parts by weight based on 100 parts by weight of the photopolymerizable compound. If the amount of the photoinitiator is too small, uncured monomer or oligomer may remain in the photocuring step of the photocurable coating composition. On the other hand, if the amount of the photoinitiator is too large, the mechanical properties of the antireflection film manufactured by the unreacted initiator remains as impurities or the crosslinking density is low, or the reflectance may be greatly increased.
상기 일 구현예에 따른 광경화성 코팅 조성물은 유기 용매를 추가로 포함할 수 있다. 상기 유기 용매의 비제한적인 예로는, 케톤류, 알코올류, 아세테이트류, 에테르류 또는 이들의 2 종 이상의 흔합물 등을 들 수 있다. 이러한 유기 용매의 구체적인 예로는, 메틸에틸케톤, 메틸이소부틸케톤 아세틸아세톤 또는 이소부틸케톤 등의 케톤류; 메탄올, 에탄올, 디아세톤알코올, n-프로판올, i-프로판올, n-부탄올, i-부탄올, 또는 t-부탄올 등의 알코올류; 에틸아세테이트, i-프로필아세테이트, 또는 폴리에틸렌글리콜 모노메틸에테르 아세테이트 등의 아세테이트류; 테트라하이드로퓨란 또는 프로필렌글라이콜 모노메틸에테르 등의 에테르류; 또는 이들의 2 종 이상의 흔합물을 들 수 있다.  The photocurable coating composition according to the embodiment may further comprise an organic solvent. Non-limiting examples of the organic solvent include ketones, alcohols, acetates, ethers or two or more kinds thereof. Specific examples of such organic solvents include ketones such as methyl ethyl ketone, methyl isobutyl ketone acetylacetone or isobutyl ketone; Alcohols such as methanol, ethanol, diacetone alcohol, n-propanol, i-propanol, n-butanol, i-butanol, or t-butanol; Acetates such as ethyl acetate, i-propyl acetate, or polyethylene glycol monomethyl ether acetate; Ethers such as tetrahydrofuran or propylene glycol monomethyl ether; Or two or more kinds thereof.
상기 유기 용매는 상기 광경화성 코팅 조성물에 포함되는 각 성분들을 흔합하는 시기에 첨가되거나 각 성분들이 유기 용매에 분산 또는 흔합된 상태로 첨가되면서 상기 광경화성 코팅 조성물에 포함될 수 있다. 상기 광경화성 코팅 조성물 중 유기 용매의 함량이 너무 적으면, 상기 광경화성 코팅 조성물의 흐름성이 저하되어 최종 제조되는 저굴절층에 줄무늬가 생기는 등 불량이 발생할 수 있다. 또한, 상기 유기 용매를 과량 첨가시 고형분 함량이 낮아져, 코팅성이 저하되거나 균일한 코팅막의 형성이 어려워 저굴절충의 물성이나 표면 특성이 저하될 수 있고, 건조 및 경화 과정에서 불량이 발생할 수 있다. 이에 따라, 상기 광경화성 코팅 조성물은 포함되는 성분들의 전체 고형분의 농도가 1 중량 % 내지 50 중량 ¾ 또는 2 내지 20 중량 %가 되도록 유기 용매를 포함할 수 있다. The organic solvent may be included in the photocurable coating composition while being added at the time of mixing each component included in the photocurable coating composition or in the state in which each component is dispersed or mixed in the organic solvent. When the content of the organic solvent in the photocurable coating composition is too small, poor flowability may occur such that streaks occur in the low refractive layer to be finally produced due to deterioration in flowability of the photocurable coating composition. In addition, when the excessive amount of the organic solvent is added, the solid content is lowered, the coating property is lowered or the formation of a uniform coating film is difficult, the physical properties and surface properties of the low refractive index may be lowered, and defects may occur during the drying and curing process. Accordingly, the photocurable coating composition is included The organic solvent may be included such that the concentration of the total solids of the components is from 1% to 50% by weight or from 2 to 20% by weight.
한편, 발명의 다른 구현예에 따르면, 상기 광경화성 코팅 조성물을 하드 코팅층 상에 도포 및 건조하는 단계; 및 상기 단계에서 얻은 건조물을 광경화하는 단계를 포함하는 반사 방지 필름의 제조 방법이 제공된다.  On the other hand, according to another embodiment of the invention, the step of applying and drying the photocurable coating composition on a hard coating layer; And it provides a method for producing an anti-reflection film comprising the step of photocuring the dried material obtained in the above step.
상기 다른 구현예의 반사 방지 필름의 제조 방법은 상술한 광경화성 코팅 조성물을 사용하여 저굴절층을 형성하는 것 외에 본 발명이 속한 기술분야에 알려진 방법에 따라 반사 방지 필름을 제공할 수 있다.  The method of manufacturing the antireflection film of another embodiment may provide an antireflection film according to a method known in the art, in addition to forming a low refractive layer using the photocurable coating composition described above.
구체적으로, 상기 반사 방지 필름의 제조 방법에 따르면, 상술한 광경화성 코팅 조성물을 하드 코팅층에 도포할 수 있다. 이때, 상기 하드 코팅층으로는 본 발명이 속한 기술분야에 알려진 다양한 종류의 하드 코팅층이 사용될 수 있다.  Specifically, according to the manufacturing method of the anti-reflection film, the above-mentioned photocurable coating composition may be applied to the hard coating layer. In this case, as the hard coating layer, various types of hard coating layers known in the art may be used.
비제한적인 예로, 상기 하드 코팅층으로는 광경화성 수지 및 상기 광경화성 수지에 분산된 대전 방지제를 포함하는 하드 코팅층을 들 수 있다. 상기 광경화성 수지는 광중합성 화합물이 자외선 등의 광에 의해 중합된 중합체로서, 본 발명이 속한 기술분야에 알려진 통상적인 수지일 수 있다. 비제한적인 예로, 상기 광경화성 수지는 다관능성 (메트)아크릴레이트계 단량체 또는 올리고머의 중합체일 수 있고, 이때 (메트)아크릴레이트계 관능기의 수는 2 내지 10, 바람직하게는 2 내지 8, 보다 바람직하게는 2 내지 7인 것이, 하드 코팅층의 물성 확보 측면에서 유리하다. 구체적으로, 상기 광경화성 수지는 펜타에리스리를 트리 (메트)아크릴레이트, 펜타에리스리를 테트라 (메트)아크릴레이트, 디펜타에리스리를 펜타 (메트)아크릴레이트, 디펜타에리스리를 핵사 (메트)아크릴레이트, 트리펜타에리스리를 헵타 (메트)아크릴레이트, 트릴렌 디이소시아네이트, 자일렌 디이소시아네이트, 핵사메틸렌 디이소시아네이트, 트리메틸을프로판 트리 (메트)아크릴레이트 및 트리메틸올프로판 폴리에특시 트리 (메트)아크릴레이트로 아루어진 군에서 선택되는 1 종 이상의 다관능성 (메트)아크릴레이트계 단량체의 중합체일 수 있다.  As a non-limiting example, the hard coating layer may include a hard coating layer including a photocurable resin and an antistatic agent dispersed in the photocurable resin. The photocurable resin is a polymer in which the photopolymerizable compound is polymerized by light such as ultraviolet rays, and may be a conventional resin known in the art. As a non-limiting example, the photocurable resin may be a polymer of a polyfunctional (meth) acrylate monomer or oligomer, wherein the number of (meth) acrylate functional groups is 2 to 10, preferably 2 to 8, more Preferably 2 to 7, it is advantageous in terms of securing physical properties of the hard coating layer. Specifically, the photocurable resin is pentaerythri tri (meth) acrylate, pentaerythri tetra (meth) acrylate, dipentaerythri penta (meth) acrylate, dipentaeryeri nucleus (meth Acrylates, tripentaerythrates, hepta (meth) acrylates, triylene diisocyanates, xylene diisocyanates, nuxamethylene diisocyanates, trimethyl to propane tri (meth) acrylates and trimethylolpropane polyespecial tree ( It may be a polymer of one or more polyfunctional (meth) acrylate monomers selected from the group consisting of meth) acrylates.
상기 대전 방지제는 4급 암모늄염 화합물; 피리디늄염; 1 내지 3개의 아미노기를 갖는 양이온성 화합물; 설폰산 염기, 황산 에스테르 염기, 인산 에스테르 염기, 포스폰산 염기 등의 음이온성 화합물; 아미노산계 또는 아미노 황산 에스테르계 화합물 등의 양성 화합물; 이미노 알코올계 화합물, 글리세린계 화합물, 폴리에틸렌 글리콜계 화합물 등의 비이온성 화합물; 주석 또는 티타늄 등을 포함한 금속 알콕사이드 화합물 등의 유기 금속 화합물; 상기 유기 금속 화합물의 아세틸아세토네이트 염 등의 금속 킬레이트 화합물; 이러한 화합물들의 2 종 이상의 반웅물 또는 고분자화물; 이러한 화합물들의 2 종 이상의 흔합물일 수 있다. 여기서, 상기 4급 암모늄염 화합물은 분자 내에 1개 이상의 4급 암모늄염기를 가지는 화합물일 수 있으며, 저분자형 또는 고분자형을 제한 없이 사용할 수 있다. The antistatic agent is a quaternary ammonium salt compound; Pyridinium salts; Cationic compounds having from 1 to 3 amino groups; Sulfonic acid base, sulfate ester base, phosphoric acid Anionic compounds such as ester base and phosphonic acid base; Positive compounds, such as an amino acid type or amino sulfate ester type compound; Nonionic compounds such as imino alcohol compounds, glycerin compounds, and polyethylene glycol compounds; Organometallic compounds such as metal alkoxide compounds including tin or titanium; Metal chelate compounds such as acetylacetonate salts of the organometallic compounds; Two or more semi-ungmuls or polymerized compounds of these compounds; It may be a combination of two or more of these compounds. Here, the quaternary ammonium salt compound may be a compound having one or more quaternary ammonium salt groups in the molecule, it can be used without limitation low molecular type or polymer type.
또한, 상기 대전 방지제로는 도전성 고분자와 금속 산화물 미립자도 사용할 수 있다. 상기 도전성 고분자로는 방향족 공액계 폴리 (파라페닐렌), 헤테로고리식 공액계의 폴리피를, 폴리티오펜, 지방족 공액계의 폴리아세틸렌, 헤테로 원자를 함유한 공액계의 폴리아닐린, 흔합 형태 공액계의 폴리 (페닐렌 비닐렌), 분자 중에 복수의 공액 사슬을 갖는 공액계인 복쇄형 공액계 화합물, 공액 고분자 사슬을 포화 고분자에 그래프트 또는 블록 공중합시킨 도전성 복합체 등을 들 수 있다. 또한, 상기 금속 산화물 미립자로는 산화 아연, 산화 안티몬, 산화 주석, 산화 세륨, 인듐 주석 산화물, 산화 인듐, 산화 알루니뮴, 안티몬 도핑된 산화주석, 알루미늄 도핑된 산화 아연 등을 들 수 있다.  In addition, a conductive polymer and metal oxide fine particles may also be used as the antistatic agent. Examples of the conductive polymer include aromatic conjugated poly (paraphenylene), polycyclic heterocyclic conjugated system, polythiophene, aliphatic conjugated polyacetylene, and heteroatom-containing polyaniline conjugated conjugated system. Poly (phenylene vinylene), a double-chain conjugated compound that is a conjugated system having a plurality of conjugated chains in a molecule, and a conductive composite obtained by grafting or block copolymerizing a conjugated polymer chain to a saturated polymer. Further, the metal oxide fine particles include zinc oxide, antimony oxide, tin oxide, cerium oxide, indium tin oxide, indium oxide, aluminium oxide, antimony doped tin oxide, aluminum doped zinc oxide, and the like.
상기 광경화성 수지 ; 및 상기 광경화성 수지에 분산된 대전 방지제를 포함하는 하드 코팅층은 알콕시 실란계 을리고머 및 금속 알콕사이드계 올리고머로 이루어진 군에서 선택되는 1 종 이상의 화합물을 더 포함할 수 있다.  The photocurable resin; And an antistatic agent dispersed in the photocurable resin may further include one or more compounds selected from the group consisting of alkoxy silane oligomers and metal alkoxide oligomers.
상기 알콕시 실란계 화합물은 당 업계에서 통상적인 것일 수 있으나, 바람직하게는 테트라메록시실란, 테트라에록시실란, 테트라이소프로폭시실란, 메틸트리메특시실란, 메틸트리에록시실란, 메타크릴옥시프로필트리메특시실란, 글리시독시프로필트리메특시실란 및 글리시독시프로필트리에록시실란으로 이루어진 군에서 선택되는 1 종 이상의 화합물일 수 있다.  The alkoxy silane compound may be conventional in the art, but preferably tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methacryloxypropyl It may be at least one compound selected from the group consisting of trimethoxysilane, glycidoxypropyltrimethoxysilane and glycidoxypropyltriethoxysilane.
또한, 상기 금속 알콕사이드계 올리고머는 금속 알콕사이드계 화합물 및 물을 포함하는 조성물의 졸-겔 반웅을 통해 제조할 수 있다. 상기 졸-겔 반응은 전술한 알콕시 실란계 올리고머의 제조 방법에 준하는 방법으로 수행할 수 있다. In addition, the metal alkoxide-based oligomer may be prepared through the sol-gel reaction of the composition comprising a metal alkoxide-based compound and water. The sol-gel reaction may be carried out by a method similar to the method for preparing an alkoxy silane oligomer described above. Can be.
다만, 상기 금속 알콕사이드계 화합물은 물과 급격하게 반웅할 수 있으므로, 상기 금속 알콕사이드계 화합물을 유기 용매에 희석한 후 물을 천천히 드로핑하는 방법으로 상기 졸-겔 반웅을 수행할 수 있다. 이때, 반웅 효율 등을 감안하여, 물에 대한 금속 알콕사이드 화합물의 몰비 (금속이온 기준)는 3 내지 170인 범위 내에서 조절하는 것이 바람직하다.  However, since the metal alkoxide-based compound may react rapidly with water, the sol-gel reaction may be performed by diluting the metal alkoxide-based compound in an organic solvent and slowly dropping water. At this time, in consideration of reaction efficiency, the molar ratio of the metal alkoxide compound to water (based on metal ions) is preferably adjusted within the range of 3 to 170.
여기서, 상기 금속 알콕사이드계 화합물은 티타늄 테트라- 이소프로폭사이드, 지르코늄 이소프로폭사이드 및 알루미늄 이소프로폭사이드로 이루어진 군에서 선택되는 1 종 이상의 화합들일 수 있다. 상기 하드 코팅층은 0. 1 내지 100 의 두께를 가질 수 있다.  Here, the metal alkoxide-based compound may be at least one compound selected from the group consisting of titanium tetra-isopropoxide, zirconium isopropoxide and aluminum isopropoxide. The hard coating layer may have a thickness of 0.1 to 100.
상기 하드 코팅층은 기재의 일면에 형성된 것일 수 있다. 상기 기재의 구체적인 종류나 두께는 크게 한정되는 것은 아니며, 저굴절층 또는 반사 방지 필름의 제조에 사용되는 것으로 알려진 기재를 특별한 제한 없이 사용할 수 있다.  The hard coating layer may be formed on one surface of the substrate. The specific kind or thickness of the substrate is not particularly limited, and a substrate known to be used in the manufacture of a low refractive index layer or an antireflection film may be used without particular limitation.
상기 반사 방지 필름의 제조 방법에서, 광경화성 코팅 조성물은 본 발명이 속한 기술분야에 알려진 방법 및 장치를 이용하여 하드 코팅층에 도포될 수 있다. 예를 들어, 상기 광경화성 코팅 조성물은 Meyer bar 등의 바 코팅법, 그라비아 코팅법, 2 rol l reverse 코팅법, vacuum slot die 코팅법 또는 2 rol l 코팅법 등을 통해 도포될 수 있다. 이때, 상기 광경화성 코팅 조성물은 광경화 후 형성되는 저굴절층의 두께가 1 ran 내지 300 nm 또는 50 nm 내지 200 nm가 되도록 도포될 수 있다.  In the method for producing the anti-reflection film, the photocurable coating composition may be applied to the hard coating layer using methods and apparatus known in the art. For example, the photocurable coating composition may be applied through a bar coating method such as Meyer bar, gravure coating method, 2 roll reverse coating method, vacuum slot die coating method or 2 roll coating method. In this case, the photocurable coating composition may be applied so that the thickness of the low refractive layer formed after photocuring is 1 ran to 300 nm or 50 nm to 200 nm.
상기 광경화성 코팅 조성물의 도포 및 건조 단계에서는 광경화성 코팅 조성물을 도포한후 얻어진 도막을 35°C 내지 100°C에서 건조할 수 있다. 만일 건조 온도가 상기 범위를 벗어나면 표면 처리된 중공형 무기 나노 입자 및 표면 처리된 솔리드형 무기 나노 입자 간의 상 분리가 충분히 일어나지 않고 표면 처리된 중공형 무기 나노 입자 및 표면 처리된 솔리드형 무기 나노 입자가 흔재되어 저굴절층의 내스크래치성 및 방오성이 저하될 뿐만 아니라 반사율도 크게 높아질 수 있다. 상기 표면 처리된 중공형 무기 나노 입자 및 표면 처리된 솔리드형 무기 나노 입자의 층분한 상.분리를 위해 상기 건조 온도는 약 40°C 내지 80°C로 조절될 수 있다. 상술한 바와 같이 소정의 밀도 차이가 있는 무기 나노 입자를 채용하여 표면 처리된 중공형 무기 나노 입자 및 표면 처리된 솔리드형 무기 나노 입자를 준비하고, 이를 포함하는 광경화성 코팅 조성물을 도포하여 얻은 도막을 상술한 온도 범위에서 건조하면 밀도의 차이에 의해 하드 코팅층에 가까운 면에는 표면 처리된 솔리드형 무기 나노 입자가 주로 분포하고 하드 코팅층과 먼 면에는 표면 처리된 중공형 무기 나노 입자가 주로 분포할 수 있다. 이러한 특이적 분포에 의해 반사율은 더욱 낮추고 내스크래치성 및 방오성이 보다 개선된 저굴절층을 제공할 수 있다. In the coating and drying step of the photocurable coating composition may be dried at 35 ° C to 100 ° C after applying the photocurable coating composition. If the drying temperature is out of the above range, the phase-separated hollow inorganic nanoparticles and the surface-treated solid inorganic nanoparticles do not sufficiently undergo phase separation between the surface-treated hollow inorganic nanoparticles and the surface-treated solid inorganic nanoparticles. It is common to not only reduce scratch resistance and antifouling property of the low refractive layer, but also significantly increase the reflectance. The layered phase of the surface-treated hollow inorganic nanoparticles and the surface-treated solid inorganic nanoparticles. The drying temperature may be adjusted to about 40 ° C to 80 ° C for separation. By using the inorganic nanoparticles having a predetermined density difference as described above to prepare the surface-treated hollow inorganic nanoparticles and surface-treated solid inorganic nanoparticles, the coating film obtained by applying a photocurable coating composition comprising the same When dried in the above-described temperature range, the surface-treated solid inorganic nanoparticles may be mainly distributed on the surface close to the hard coating layer due to the difference in density, and the surface-treated hollow inorganic nanoparticles may be mainly distributed on the surface far from the hard coating layer. . This specific distribution can provide a low refractive index layer having lower reflectance and more improved scratch resistance and stain resistance.
상기 광경화성 코팅 조성물을 도포하여 얻은 도막은 상술한 온도 범위에서 약 10 초 내지 5 분 또는 30 초 내지 4 분간 건조될 수 있다. 상기 건조 시간이 너무 짧은 경우, 상술한 상기 표면 처리된 솔리드형 무기 나노 입자 및 표면 처리된 중공형 무기 나노 입자 간의 상 분리가 층분히 일어나지 않을 수 있으며, 상기 건조 시간이 너무 긴 경우, 상기 형성되는 저굴절층이 하드 코팅층에 침식될 수 있다.  The coating film obtained by applying the photocurable coating composition may be dried for about 10 seconds to 5 minutes or 30 seconds to 4 minutes in the above-described temperature range. When the drying time is too short, phase separation between the surface-treated solid inorganic nanoparticles and the surface-treated hollow inorganic nanoparticles may not occur sufficiently, and when the drying time is too long, the formed The low refractive layer can be eroded into the hard coat layer.
상기와 같이 광경화성 코팅 조성물을 하드 코팅층 상에 도포 및 건조하는 단계를 통해 하드 코팅층 상에 도포된 광경화성 코팅 조성물의 건조물을 얻을 수 있다. 이후, 건조물을 광경화하는 단계에서는 상기 건조물에 200 내지 400 nm 파장 영역의 자외선 또는 가시 광선을 조사하여 상기 광경화성 코팅 조성물의 건조물을 광경화시킬 수 있다. 이때, 조사되는 광의 노광량은 100 내지 4 , 000 mJ/cm2의 범위로 조절될 수 있고, 노광 시간은 사용되는 노광 장치, 조사 광선의 파장 또는 노광량에 따라 적절히 조절될 수 있다. Through the step of applying and drying the photocurable coating composition on the hard coating layer as described above it can be obtained a dried product of the photocurable coating composition applied on the hard coating layer. Subsequently, in the step of photocuring the dried material, the dried material of the photocurable coating composition may be photocured by irradiating ultraviolet light or visible light in the wavelength range of 200 to 400 nm. At this time, the exposure amount of the irradiated light can be adjusted in the range of 100 to 4,000 mJ / cm 2 , the exposure time can be appropriately adjusted according to the exposure apparatus, the wavelength of the irradiation light or the exposure amount used.
상기 건조물을 광경화하는 단계는 질소 분위기 하에서 수행될 수 있다. 이에 따라, 광경화하는 단계 전 흑은 광경화하는 단계 중에 질소 퍼징이 추가로 수행될 수 있다.  Photocuring the dried material may be performed under a nitrogen atmosphere. Accordingly, black before the photocuring step may be further purged with nitrogen during the photocuring step.
상기와 같이 광경화성 코팅 조성물로부터 제조된 저굴절층은 제 1 및 제 2 광중합성 화합물과 필요에 따라 사용될 수 있는 광반응성 작용기를 포함한 함불소 화합물이 가교 중합되어 생성되는 바인더 수지와 상기 바인더 수지에 결합 흑은 분산되어 있는 표면 처리된 중공형 무기 나노 입자 및 표면 처리된 솔리드형 무기 나노 입자를 포함한다. 특히, 상기 바인더 수지는 하드 코팅층과 결합할 수 있어 하드 코팅층에 대한 저굴절층의 밀착력을 더욱 향상시키고, 상기 표면 처리된 중공형 무기 나노 입자와 표면 처리된 솔리드형 무기 나노 입자를 더욱 강하게 고정하는 역할을 한다. 그리고, 상기 표면 처리된 중공형 무기 나노 입자 및 표면 처리된 솔리드형 무기 나노 입자는 서로 구분될 수 있도록 분포되어 :상기 저굴절층은 보다 낮은 반사율 및 높은 투광율을 나타내며 높은 내스크래치성과 방오성을 동시에 구현할 수 있다. 한편, 발명의 또 다른 구현예에 따르면, 하드 코팅층; 및 하기 하드 코팅층의 일면에 형성되며, 상술한 광경화성 코팅 조성물의 광경화물을 포함하는 저굴절층을 포함하고, 상기 하드 코팅층 및 상기 저굴절층 간의 계면으로부터 상기 저굴절층 전체 두께 50% 이내에 표면 처리된 솔리드형 무기 나노 입자 전체 중 70 부피 % 이상이 존재하는 반사 방지 필름이 제공된다. ' 상기 저굴절층은 상기 일 구현예에 따른 광경화성 수지 조성물의 광경화물을 포함한다. 즉, 저굴절층은 상기 화학식 1로 표시되는 화합물 (제 1 광중합성 화합물)과 상기 화학식 1의 화합물 외의 다른 광중합성 화합물 (제 2 광중합성 화합물)이 가교 중합되어 생성되는 바인더 수지와 상기 바인더 수지에 결합 혹은 분산되어 있는 표면 처리된 중공형 무기 나노 입자와 표면 처리된 솔리드형 무기 나노 입자를 포함한다. 그리고, 상기 저굴절층에 포함되는 표면 처리된 솔리드형 무기 나노 입자 전체 중 70 부피 % 이상은 하드 코팅층 및 저굴절층 간의 계면으로부터 저굴절층 전체 두께 50% 이내에 존재한다. The low refractive index layer prepared from the photocurable coating composition as described above is used in the binder resin and the binder resin formed by cross-polymerization of the first and second photopolymerizable compounds and a fluorine-containing compound including a photoreactive functional group that can be used as necessary. Binding blacks include dispersed surface treated hollow inorganic nanoparticles and surface treated solid inorganic nanoparticles. In particular, the binder resin is hard Can be combined with the coating layer further improves the adhesion of the low refractive layer to the hard coating layer, and serves to more strongly fix the surface-treated hollow inorganic nanoparticles and surface-treated solid inorganic nanoparticles. The surface-treated hollow inorganic nanoparticles and the surface-treated solid inorganic nanoparticles are distributed so as to be distinguished from each other: The low refractive index layer exhibits a lower reflectivity and a high light transmittance and simultaneously realizes high scratch resistance and antifouling resistance. Can be. On the other hand, according to another embodiment of the invention, the hard coating layer; And a low refractive layer formed on one surface of the hard coating layer, and including a photocurable material of the photocurable coating composition, and having a surface within 50% of the total thickness of the low refractive layer from an interface between the hard coating layer and the low refractive layer. An antireflective film is provided in which at least 70% by volume of all of the treated solid inorganic nanoparticles are present. "The low refractive index layer comprises a photo-set product of the photocurable resin composition according to the embodiment. That is, the low refractive layer is a binder resin and the binder resin formed by crosslinking polymerization of the compound represented by Formula 1 (first photopolymerizable compound) and another photopolymerizable compound (second photopolymerizable compound) other than the compound of Formula 1 It includes the surface-treated hollow inorganic nanoparticles and surface-treated solid inorganic nanoparticles bonded or dispersed in. And, 70% by volume or more of the entire surface-treated solid inorganic nanoparticles included in the low refractive layer is present within 50% of the total thickness of the low refractive layer from the interface between the hard coating layer and the low refractive layer.
본 명세서에서 '상기 표면 처리된 솔리드형 무기 나노 입자 전체 중 70 부피 % 이상이 특정 영역에 존재한다1는 상기 저굴절층의 단면에서 상기 표면 처리된 솔리드형 무기 나노 입자가 상기 특정 영역에 대부분 존재한다는 의미로 정의된다. 구체적으로 상기 표면 처리된 솔리드형 무기 나노 입자 전체 중 70 부피 % 이상은 상기 표면 처리된 솔리드형 무기 나노 입자 전체 부피를 측정하여 확인 가능하다. 본 명세서에서 특정 영역에 존재하는 표면 처리된 무기 나노 입자의 함량은, 서로 다른 영역의 경계면에 걸쳐 존재하는 표면 처리된 무기 나노 입자의 함량은 제외하고, 특정 영역 안에 존재하는 표면 처리된 무기 나노 입자의 함량으로 결정된다. In the present specification, '70% by volume or more of the entire surface-treated solid inorganic nanoparticles are present in a specific region 1 , where the surface-treated solid inorganic nanoparticles are mostly present in the specific region in the cross-section of the low refractive index layer. It is defined as meaning. Specifically, 70% by volume or more of the total surface-treated solid inorganic nanoparticles may be confirmed by measuring the total volume of the surface-treated solid inorganic nanoparticles. In the present specification, the content of the surface-treated inorganic nanoparticles present in a specific region, except for the content of the surface-treated inorganic nanoparticles that exist over the interface of different regions, the surface-treated inorganic nanoparticles present in a specific region Determined by the content of.
상기 저굴절층에서 하드 코팅층과 접하는 면의 이면인 표면에는 표면 처리된 중공형 무기 나노 입자가 주로 분포할 수 있는데, 구체적으로 상기 표면 처리된 중공형 무기 나노 입자 전체 중 30 부피 % 이상이 전체 표면 처리된 솔리드형 무기 나노 입자 보다 상기 하드 코팅층 및 상기 저굴절층 간의 계면으로부터 상기 저굴절층의 두께 방향으로 보다 먼 거리에 존재할 수 있다. 즉, 하드 코팅층과 접하는 면의 이면인 저굴절층의 표면으로부터 소정의 두께를 갖는 영역에는 표면 처리된 중공형 무기 나노 입자만 존재하며 이때 이 영역에 존재하는 표면 처리된 중공형 무기 나노 입자의 함량이 전체 중 30 부피 ¾> 이상일 수 있다. The surface is the back surface of the surface in contact with the hard coating layer in the low refractive index layer The treated hollow inorganic nanoparticles may be mainly distributed. Specifically, at least 30% by volume of the entire surface-treated hollow inorganic nanoparticles is greater than that of the solid inorganic nanoparticles having the total surface treatment. It may be present at a greater distance in the thickness direction of the low refractive index layer from the interface between. That is, only the surface-treated hollow inorganic nanoparticles are present in the region having a predetermined thickness from the surface of the low refractive layer, which is the rear surface of the surface in contact with the hard coating layer, and the content of the surface-treated hollow inorganic nanoparticles present in this region. More than 30 volumes ¾> of this total.
보다 구체적으로, 상기 하드 코팅층과 상기 저굴절층의 계면으로부터 상기 저굴절충 전체 두께 30% 이내에 상기 표면 처리된 솔리드형 무기 나노 입자 전체 중 70 부피 % 이상이 존재할 수 있다. 또한, 상기 하드 코팅층과 상기 저굴절층의 계면으로부터 상기 저굴절층 전체 두께 30% 초과의 영역에 상기 표면 처리된 중공형 무기 나노 입자 전체 중 70 부피 % 이상이 존재할 수 있다.  More specifically, at least 70% by volume of the total surface-treated solid inorganic nanoparticles may be present within 30% of the total thickness of the low refractive index from the interface between the hard coating layer and the low refractive index layer. In addition, at least 70% by volume of the entire surface-treated hollow inorganic nanoparticles may be present in an area of more than 30% of the total thickness of the low refractive index layer from an interface between the hard coating layer and the low refractive index layer.
상기 반사 방지 필름의 저굴절층 중 상기 하드 코팅층 및 상기 저굴절충 간의 계면 가까이에 표면 처리된 솔리드형 무기 나노 입자를 주로 분포시키고 상기 계면의 반대면 쪽으로 표면 처리된 중공형 무기 나노 입자를 주로 분포시킴에 따라서 , 상기 저굴절층 내에 서로 굴절률이 다른 2 개 이상의 부분 또는 2 개 이상의 층이 형성될 수 있으며, 이에 따라 상기 반사 방지 필름의 반사율이 낮아질 수 있다.  Among the low refractive layers of the antireflection film, the surface-treated solid inorganic nanoparticles are mainly distributed near the interface between the hard coating layer and the low refractive index, and the hollow inorganic nanoparticles surface-treated to the opposite side of the interface are mainly distributed. Accordingly, two or more portions or two or more layers having different refractive indices may be formed in the low refractive layer, and thus the reflectance of the antireflection film may be lowered.
구체적으로, 상기 저굴절층은 상기 표면 처리된 솔리드형 무기 나노 입자 전체 중 70 부피 % 이상이 포함된 제 1 층과 상기 표면 처리된 중공형 무기 나노 입자 전체 중 70 부피 % 이상이 포함된 제 2 층을 포함할 수 있으며, 상기 게 1 층이 제 2 층에 비하여 상기 하드 코팅층 및' 상기 저굴절층 간의 계면에 보다 가까이 위치할 수 있다. 상술한 바와 같이, 상기 반사 방지 필름의 저굴절층에서는 상기 하드 코팅층 및 상기 저굴절층 간의 계면 가까이에 표면 처리된 솔리드형 무기 나노 입자가 주로 분포하고 상기 계면의 반대면 쪽으로는 표면 처리된 중공형 무기 나노 입자가주로 분포하는데, 상기 표면 처리된 솔리드형 무기 나노 입자 및 표면 처리된 중공형 무기 나노 입자 각각이 주로 분포하는 영역이 저굴절층 내에서 가시적으로 확인되는 독립된 층을 형성할 수 있다. Specifically, the low refractive layer is a first layer containing at least 70% by volume of the total surface-treated solid inorganic nanoparticles and a second containing at least 70% by volume of the total surface-treated hollow inorganic nanoparticles Layer, and the crab first layer may be located closer to the interface between the hard coating layer and the ' low refractive index layer ' than the second layer. As described above, in the low refractive layer of the anti-reflection film, solid inorganic nanoparticles surface-treated near the interface between the hard coating layer and the low refractive layer are mainly distributed, and the hollow surface surface-treated toward the opposite side of the interface. Inorganic nanoparticles are predominantly distributed, and the areas where the surface-treated solid inorganic nanoparticles and the surface-treated hollow inorganic nanoparticles are mainly distributed are independently identified in the low refractive layer. A layer can be formed.
이와 같은 반사 방지 필름은 이전에 무기 나노 입자를 사용하여 얻어질 수 있었던 반사율 보다 낮은 반사율을 구현할 수 있다. 구체적으로 상기 반사 반지 필름은 380 nm 내지 780 nm의 가시 광선 파장대 영역에서 0.7 % 이하, 0.6 % 이하혹은 0.55 % 이하의 평균 반사율을 나타낼 수 있다.  Such an antireflection film can achieve a reflectance lower than the reflectance previously obtained using inorganic nanoparticles. Specifically, the reflective ring film may exhibit an average reflectance of 0.7% or less, 0.6% or less, or 0.55% or less in the visible light wavelength range of 380 nm to 780 nm.
상기 반사 방지 필름에서 저굴절층은 1 nm 내지 300 nm 또는 50 nm 내지 200 nm의 두께를 가질 수 있다.  The low refractive index layer in the anti-reflection film may have a thickness of 1 nm to 300 nm or 50 nm to 200 nm.
상술한 바와 같이 상기 반사 방지 필름은 저굴절층에 포함되는 바인더 수지가 하드 코팅층과 결합할 수 있어 저굴절층과 하드 코팅층의 밀착력이 매우 우수하고, 저굴절층에서 표면 처리된 솔리드형 무기 나노 입자를 하드 코팅층 및 저굴절층 간의 계면 가까이에 주로 분포시키고 표면 처리된 중공형 무기 나노 입자를 상기 계면의 반대면 가까이에 주로 분포시켜 이전에 무기 나노 입자를 사용하여 얻어질 수 있었던 실제 반사율에 비하여 보다 낮은 반사율을 달성할 수 있으며, 또한 크게 향상된 내스크래치성 및 방오성을 나타낼 수 있다.  As described above, the anti-reflection film is a binder resin included in the low refractive index layer can be combined with the hard coating layer is very good adhesion between the low refractive index layer and the hard coating layer, the solid inorganic nanoparticles surface-treated in the low refractive layer Is mainly distributed near the interface between the hard coating layer and the low refractive layer, and the surface-treated hollow inorganic nanoparticles are mainly distributed near the opposite side of the interface, compared to the actual reflectivity previously obtained using the inorganic nanoparticles. Low reflectance can be achieved, and can also exhibit greatly improved scratch and stain resistance.
【발명의 효과】  【Effects of the Invention】
본 발명에 따르면, 낮은 반사율 및 높은 투광율을 나타내면서 높은 내스크래치성과 방오성을 동시에 구현할 수 있는 반사 방지 필름을 제공할 수 있다.  According to the present invention, it is possible to provide an anti-reflection film which can simultaneously realize high scratch resistance and antifouling property while exhibiting low reflectance and high light transmittance.
【발명을 실시하기 위한 구체적인 내용】  [Specific contents to carry out invention]
이하 발명의 구체적인 실시예를 통해 발명의 작용, 효과를 보다 구체적으로 설명하기로 한다. 다만, 이는 발명의 예시로서 제시된 것으로 이에 의해 발명의 권리범위가 어떠한 의미로든 한정되는 것은 아니다. 제조예 1 : 하드 코팅 필름의 제조  Hereinafter, the operation and effects of the invention will be described in more detail with reference to specific examples. However, this is presented as an example of the invention, whereby the scope of the invention is not limited in any sense. Preparation Example 1 Preparation of Hard Coating Film
KY0EISHA사 염타입의 대전 방지 하드 코팅액 (고형분 50 중량 %, 제품명 : LJD-1000)을 트리아세틸셀를로오스 필름에 #10 mayer bar로 코팅하고 90°C에서 1 분간 건조하였다. 이후, 얻어진 도막에 150 mJ/cm2의 자외선을 조사하여 약 5 내지 6 / 의 두께를 갖는 하드 코팅층을 형성함으로써 하드 코팅 필름을 제조하였다. 실시예 1 : 반사 방지 필름의 제조 KY0EISHA salt type antistatic hard coating solution (50 wt% solids, product name: LJD-1000) was coated on a triacetylcell film with # 10 mayer bar and dried at 90 ° C for 1 minute. Thereafter, the obtained coating film was irradiated with ultraviolet light of 150 mJ / cm 2 to form a hard coating layer having a thickness of about 5 to 6 /, thereby preparing a hard coating film. Example 1: Preparation of Anti-Reflection Film
(1) 저굴절층 형성용 광경화성 코팅 조성물의 제조  (1) Preparation of Photocurable Coating Composition for Forming Low Refractive Layer
펜타에리스리틀 트리아크릴레이트 (PETA) 1 중량부에 대하여, 표면 처리된 중공형 실리카 나노 입자 (직경: 약 50 내지 60 nm, 밀도: 1.96 g/cm3 , 유기 규소 화합물: 3-메타크릴로일옥시프로필메틸디메특시실란, 상품명: THRULYA-4320 , 제조사: JGC catalyst and chemicals사) 4.14 중량부, 표면 처리된 솔리드형 실리카 나노 입자 (직경: 약 12 nm, 밀도: 2.65 g/cm3 , 유기 규소 화합물: 3-메타크릴로일옥시프로필메틸디메특시실란) 0.38 중량부, 광반웅성 작용기를 포함한 함불소 화합물 (RS-537 , DIC사) 1.67 중량부, 광개시제 ( Irgacure 127, Ciba사) 0.33 중량부, 3- 메타크릴옥시프로필메틸디메톡시실란 1. 1 중량부를 첨가하였다. 그리고, 얻어진 조성물이 3.2 중량 ¾의 고형분 농도를 갖도록 상기 조성물에 MIBK (methyl i sobutyl ketone)을 첨가하였다. Surface-treated hollow silica nanoparticles (diameter: about 50 to 60 nm, density: 1.96 g / cm 3 , organosilicon compound: 3-methacryloyl) per 1 part by weight of pentaerythreat triacrylate (PETA) Oxypropylmethyldimethoxysilane, trade name: THRULYA-4320, manufacturer: JGC catalyst and chemicals, Inc. 4.14 parts by weight, surface-treated solid silica nanoparticles (diameter: about 12 nm, density: 2.65 g / cm 3 , organic Silicon compound: 0.38 part by weight of 3-methacryloyloxypropylmethyldimethoxysilane), 1.67 parts by weight of a fluorine-containing compound (RS-537, DIC) including a photoreactive functional group, photoinitiator (Irgacure 127, Ciba) 0.33 Parts by weight, 3-methacryloxypropylmethyldimethoxysilane 1. 1 part by weight was added. Then, MIBK (methyl i sobutyl ketone) was added to the composition so that the obtained composition had a solid content concentration of 3.2 weight ¾.
(2) 저굴절층 및 반사 방지 필름의 제조 (2) Preparation of low refractive index layer and antireflection film
상기 제조예 1에서 제조한 하드 코팅 필름의 하드 코팅층 상에 상기에서 얻어진 광경화성 코팅 조성물을 #4 mayer bar로 코팅하고 60°C에서 1 분간 건조하였다. 이후, 얻어진 도막에 질소 퍼징하에서 180 mJ/cm2의 자외선을 조사하여 110 내지 120 nm의 두께를 갖는 저굴절층을 형성함으로써 반사 방지 필름을 제조하였다. 실시예 2 : 반사 방지 필름의 제조 The photocurable coating composition obtained above was coated with # 4 mayer bar on the hard coat layer of the hard coat film prepared in Preparation Example 1, and dried at 60 ° C. for 1 minute. Thereafter, the obtained coating film was irradiated with ultraviolet light of 180 mJ / cm 2 under nitrogen purge to form a low refractive layer having a thickness of 110 to 120 nm to prepare an antireflection film. Example 2: Preparation of Anti-Reflection Film
상기 실시예 1에서 3-메타크릴옥시프로필메틸디메록시실란 대신 3- 메타크릴옥시프로필트리메특시실란을 사용하는 것을 제외하고 실시예 1과 동일한 방법으로 반사 방지 필름을 제조하였다. 실시예 3 : 반사 방지 필름의 제조  An anti-reflection film was prepared in the same manner as in Example 1, except that 3-methacryloxypropyltrimethoxysilane was used instead of 3-methacryloxypropylmethyldimethoxysilane in Example 1. Example 3: Preparation of Anti-Reflection Film
상기 실시예 1에서 3-메타크릴옥시프로필메틸디메록시실란 대신 3- 메타크릴옥시프로필트리에록시실란을 사용하는 것을 제외하고 실시예 1과 동일한 방법으로 반사 방지 필름을 제조하였다. 실시예 4 : 반사 방지 필름의 제조 Example 1 except that 3-methacryloxypropyltriethoxysilane is used instead of 3-methacryloxypropylmethyldimethoxysilane in Example 1 An antireflection film was prepared in the same manner. Example 4 Preparation of Anti-Reflection Film
상기 실시예 1에서 3-메타크릴옥시프로필메틸디메록시실란 대신 3- 아크릴옥시프로필트리메특시실란을 사용하는 것을 제외하고 실시예 1과 동일한 방법으로 반사 방지 필름을 제조하였다. 실시예 5 : 반사 방지 필름의 제조  An anti-reflection film was prepared in the same manner as in Example 1, except that 3-acryloxypropyltrimethoxysilane was used instead of 3-methacryloxypropylmethyldimethoxysilane in Example 1. Example 5 Preparation of Anti-Reflection Film
상기 실시예 1에서 3-메타크릴옥시프로필메틸디메록시실란 대신 3- 아크릴옥시프로필메틸디에록시실란을 사용하는 것을 제외하고 실시예 1과 동일한 방법으로 반사 방지 필름을 제조하였다. 비교예 1 : 반사 방지 필름의 제조  An anti-reflection film was prepared in the same manner as in Example 1, except that 3-acryloxypropylmethyldieoxysilane was used instead of 3-methacryloxypropylmethyldimethoxysilane in Example 1. Comparative Example 1: Preparation of Anti-Reflection Film
상기 실시예 1에서 3-메타크릴옥시프로필메틸디메록시실란 대신 3- 글리시독시프로필메틸디에록시실란을 사용하는 것을 제외하고 실시예 1과 동일한 방법으로 반사 방지 필름을 제조하였다. 비교예 2 : 반사 방지 필름의 제조  An anti-reflection film was prepared in the same manner as in Example 1, except that 3-glycidoxypropylmethyldieoxysilane was used instead of 3-methacryloxypropylmethyldimethoxysilane in Example 1. Comparative Example 2: Preparation of Anti-Reflection Film
상기 실시예 1에서 3-메타크릴옥시프로필메틸디메록시실란 대신 N- 페닐 -3-아미노프로필트리메특시실란을 사용하는 것을 제외하고 실시예 1과 동일한 방법으로 반사 방지 필름을 제조하였다. 비교예 3 : 반사 방지 필름의 제조  An anti-reflection film was prepared in the same manner as in Example 1, except that N-phenyl-3-aminopropyltrimethoxysilane was used instead of 3-methacryloxypropylmethyldimethoxysilane in Example 1. Comparative Example 3: Preparation of Anti-Reflection Film
상기 실시예 1에서 3-메타크릴옥시프로필메틸디메특시실란 대신 P- 스티릴트리메록시실란을 사용하는 것을 제외하고 실시예 1과 동일한 방법으로 반사 방지 필름을 제조하였다. 비교예 4 : 반사 방지 필름의 제조  An anti-reflection film was prepared in the same manner as in Example 1, except that P-styryltrimethoxysilane was used instead of 3-methacryloxypropylmethyldimethoxysilane in Example 1. Comparative Example 4: Preparation of Anti-Reflection Film
상기 실시예 1에서 3-메타크릴옥시프로필메틸디메특시실란을 사용하지 않은 것을 제외하고 실시예 1과 동일한 방법으로 반사 방지 필름을 제조하였다. 시험예: 반사 방지 필름의 물성 측정 An anti-reflection film was prepared in the same manner as in Example 1, except that 3-methacryloxypropylmethyldimethoxysilane was not used in Example 1. Test Example: Measurement of Properties of Anti-Reflection Film
상기 실시예 및 비교예에서 제조한 반사 방지 필름에 대하여 다음과 같은 항목의 시험을 시행하였다.  The test of the following items was done about the antireflective film manufactured by the said Example and the comparative example.
1. 반사 방지 필름의 평균 반사율 측정 1.Measure the average reflectance of the antireflective film
실시예 및 비교예에서 얻어진 반사 방지 필름이 가시 광선 영역 (380 nm 내지 780 nm)에서 나타내는 평균 반사율을 Sol idspec 3700 (SHIMADZU) 장비를 이용하여 측정하였다.  The average reflectance of the antireflective films obtained in Examples and Comparative Examples in the visible light region (380 nm to 780 nm) was measured using a Sol idspec 3700 (SHIMADZU) instrument.
2. 내스크래치성 측정 2. Scratch resistance measurement
#0000 등급의 스틸울에 특정 하중을 걸고 27 rpm의 속도로 10 회 왕복하며 실시예 및 비교예에서 얻어진 반사 방지 필름의 표면을 문질렀다. LED 50W 천장 조명 아래에서 육안으로 관찰되는 스크래치가 발생되지 않는 최대 하중을 측정하였다. 상기 하중은 가로 2cm, 세로 2cm의 면적 (2*2cm2) 당 무게 (g)로 정의된다. The steel wool of grade # 0000 was subjected to a specific load and reciprocated 10 times at a speed of 27 rpm to rub the surface of the antireflective film obtained in the examples and the comparative examples. The maximum load at which no scratches were observed visually under the LED 50W ceiling light was measured. The load is defined as the weight in grams per square centimeter (2 cm 2 ) by 2 cm by 2 cm.
3. 방오성 측정 3. Antifouling measurement
실시예 및 비교예에서 얻어진 반사 방지 필름의 표면에 검은색 네임펜으로 5 cm 길이의 직선을 그리고, 상기 직선을 무진천으로 문질러서 지웠다. 이때, 상기 직선이 지워지기까지 무진천으로 문지른 회수를 세어 방오성을 평가하였다.  A 5 cm long straight line was drawn with a black name pen on the surface of the antireflective film obtained in Examples and Comparative Examples, and the straight line was rubbed with a dust-free cloth. At this time, the antifouling property was evaluated by counting the number of times rubbing with zero vacuum until the straight line was erased.
<측정 기준 >  <Measurement standard>
O : 10 회 이하로 문질렀을 때 지워짐  O: erased when rubbed 10 times or less
Δ : 11 회 내지 20 회 문질렀을 때 지워짐  Δ: erased when rubbed 11 to 20 times
X: 20 회를 초과하여 문질렀을 때 지워지거나혹은 지워지지 않음  X : If you rub more than 20 times, it will be erased or not erased.
4. 상 분리 여부 확인 4. Confirm phase separation
하드 코팅층으로부터 30 nm 이내에 전체 표면 처리된 솔리드형 무기 나노 입자 (표면 처리된 솔리드형 실리카 나노 입자) 중 70 부피 % 이상의 표면 처리된 솔리드형 무기 나노 입자가 존재하는 경우 상 분리가 일어난 것으로 결정하였다. 70% by volume or more of the solid inorganic nanoparticles (surface-treated solid silica nanoparticles) totally surface-treated within 30 nm of the hard coating layer It was determined that phase separation occurred when treated solid inorganic nanoparticles were present.
【표 1]  [Table 1]
Figure imgf000025_0001
상기 표 1을 참조하면, 실시예와 같이 상기 화학식 1로 표시되는 화합물 (제 1 광중합성 화합물)로부터 제조된 바인더 수지 내에 표면 처리된 중공형 무기 나노 입자 및 표면 처리된 솔리드형 무기 나노 입자가 서로 구분될 수 있도록 분포되는 경우, 비교예의 상 분리된 구조에 비하여 보다 낮은 반사율과 보다 향상된 내스크래치성을 나타내는 것이 확인된다. 이로써, 상기 제 1 광중합성 화합물은 하드 코팅층에 결합할 수 있는 바인더 수지를 제공함으로써 반사 방지 필름의 반사율을 더욱 낮추고 내스크래치성을 보다 향상시키는 것이 확인되며, 에폭시기, 아미노기, 스티릴과 같은 다른 반응성 관능기를 가지는 화합물로는 이러한 효과를 구현할 수 없음이 확인된다.
Figure imgf000025_0001
Referring to Table 1, the hollow inorganic nanoparticles and the surface-treated solid inorganic nanoparticles surface-treated in the binder resin prepared from the compound represented by the formula (1) photopolymerizable compound as shown in Example 1 When distributed so as to be distinguishable, it is confirmed that the reflectance is lower than that of the phase-separated structure of the comparative example and further improved scratch resistance. Thus, the first photopolymerizable compound is confirmed to further lower the reflectance and more scratch resistance of the antireflection film by providing a binder resin that can be bonded to the hard coating layer, and other reactivity such as epoxy group, amino group, styryl It is confirmed that this effect cannot be realized with a compound having a functional group.

Claims

【특허청구범위】 【청구항 11 2 종 이상의 광중합성 화합물, 광개시제, 표면 처리된 중공형 무기 나노 입자 및 표면 처리된 솔리드형 무기 나노 입자를 포함하며, 상기 2 종 이상의 광중합성 화합물 중 1 종 이상의 광중합성 화합물은 하기 화학식 1로 표시되는 화합물인 저굴절층 형성용 광경화성 코팅 조성물: [Claim] 11 Claim 2 or more photopolymerizable compounds, photoinitiators, surface-treated hollow inorganic nanoparticles and surface-treated solid inorganic nanoparticles, including at least one of the two or more photopolymerizable compounds Synthetic compound is a photocurable coating composition for forming a low refractive index layer represented by the formula (1):
[화학식 1]
Figure imgf000026_0001
[Formula 1]
Figure imgf000026_0001
x 상기 화학식 1에서, R1H2C=Cᅳ Y— ^이며, x in Formula 1, R 1 is H 2 C = C ᅳ Y— ^,
상기 X는 수소, 탄소수 1 내지 6의 지방족 탄화수소 유래의 1가 잔기, 탄소수 1 내지 6의 알콕시기 및 탄소수 1 내지 4의 알콕시카르보닐기 중 어느 하나이고,  X is hydrogen, a monovalent moiety derived from an aliphatic hydrocarbon having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and an alkoxycarbonyl group having 1 to 4 carbon atoms,
상기 Y는 단일결합, -co- 또는 — coo-이며,  Y is a single bond, -co- or — coo-,
R2는 탄소수 1 내지 20의 지방족 탄화수소 유래의 2가 잔기이거나, 혹은 상기 2가 잔기의 하나 이상의 수소가 하이드록시기, 카르복실기 또는 에폭시기로 치환된 2가 잔기이거나, 혹은 상기 2가 잔기와 하나 이상의 -CH2- 가산소 원자들이 직접 연결되지 않도록 -0-, -C0-0- , -0-C0-또는 -0-C0-0-로 대체된 2가 잔기이고, R 2 is a divalent moiety derived from an aliphatic hydrocarbon having 1 to 20 carbon atoms, or at least one hydrogen of the divalent moiety is a divalent moiety substituted with a hydroxy, carboxyl or epoxy group, or at least one divalent moiety Is a divalent residue substituted with -0-, -C0-0-, -0-C0- or -0-C0-0- so that the -CH 2 -oxygen atoms are not directly connected,
A는 수소 및 탄소수 1 내지 6의 지방족 탄화수소 유래의 1가 잔기 중 어느 하나이며,  A is any of monovalent residues derived from hydrogen and aliphatic hydrocarbons having 1 to 6 carbon atoms,
B는 탄소수 1 내지 6의 지방족 탄화수소 유래의 1가 잔기 중 어느 하나이고,  B is any one of monovalent residues derived from aliphatic hydrocarbons having 1 to 6 carbon atoms,
n은 0 내지 2의 정수이다. 【청구항 2】  n is an integer of 0-2. [Claim 2]
제 1 항에 있어서, 상기 화학식 1로 표시되는 화합물은 하기 화학식 2로 표시되는 화합물을 포함하는 저굴절층 형성용 광경화성 코팅 조성물: The photocurable coating composition of claim 1, wherein the compound represented by Formula 1 comprises a compound represented by Formula 2 below:
[화학식 2]
Figure imgf000027_0001
[Formula 2]
Figure imgf000027_0001
상기 화학식 2에서, 상기 Xa는 수소 혹은 메틸기이고, In Formula 2, X a is hydrogen or a methyl group,
R3는 수소 및 탄소수 1 내지 6의 지방족 탄화수소 유래의 1가 잔기 중 어느 하나이며, R4는 탄소수 1 내지 6의 지방족 탄화수소 유래의 1가 잔기 중 어느 하나이고, R 3 is any one of monovalent residues derived from hydrogen and aliphatic hydrocarbons having 1 to 6 carbon atoms, R 4 is any one of monovalent residues derived from aliphatic hydrocarbons having 1 to 6 carbon atoms,
m은 2 내지 6의 정수이며, n은 0 내지 2의 정수이다.  m is an integer of 2-6, n is an integer of 0-2.
【청구항 3] [Claim 3]
제 1 항에 있어서, 상기 2 종의 광중합성 화합물은 상기 화학식 1의 화합물 외의 다른 광중합성 화합물로, 펜타에리스리를 트리 (메트)아크릴레이트, 펜타에리스리를 테트라 (메트)아크릴레이트, 디펜타에리스리를 펜타 (메트)아크릴레이트, 디펜타에리스리를 핵사 (메트)아크릴레이트, 트리펜타에리스리를 헵타 (메트)아크릴레이트, 트릴렌 디이소시아네이트, 자일렌 디이소시아네이트, 핵사메틸렌 디이소시아네이트, 트리메틸올프로판 트리 (메트)아크릴레이트, 트리메틸을프로판 플리에록시 트리 (메트)아크릴레이트, 에틸렌글리콜 디 (메트)아크릴레이트, 부탄디올 디 (메트)아크릴레이트, 2-하이드록시에틸 (메트)아크릴레이트, 2-에틸핵실 (메트)아크릴레이트, 부틸 (메트)아크릴레이트, 디비닐벤젠, 스티렌, 파라메틸스티렌, 우레탄 변성 아크릴레이트 올리고머, 에폭사이드 아크릴레이트 을리고머, 에테르아크릴레이트 올리고머, 덴드리틱 아크릴레이트 올리고머 또는 이들의 흔합물을 포함하는 저굴절층 형성용 광경화성 코팅 조성물.  The method of claim 1, wherein the two types of photopolymerizable compounds are photopolymerizable compounds other than the compound of Formula 1, wherein pentaerythri is tri (meth) acrylate, pentaerythri tetra (meth) acrylate, dipenta Erythritol penta (meth) acrylate, dipentaerythritol nucleated (meth) acrylate, tripentaerythritol hepta (meth) acrylate, triylene diisocyanate, xylene diisocyanate, nusamethylene diisocyanate, trimethyl All propane tri (meth) acrylate, trimethyl to propane polyhydroxy tri (meth) acrylate, ethylene glycol di (meth) acrylate, butanediol di (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-ethylnuclear (meth) acrylate, butyl (meth) acrylate, divinylbenzene, styrene, paramethylstyrene, urethane A photocurable coating composition for forming a low refractive index layer comprising a carbon-modified acrylate oligomer, an epoxide acrylate oligomer, an ether acrylate oligomer, a dendritic acrylate oligomer, or a mixture thereof.
【청구항 4】 [Claim 4]
제 1 항에 있어서, 상기 화학식 1로 표시되는 화합물과 상기 화학식 1 외의 다른 광중합성 화합물을 0.001 : 1 내지 4 : 1의 중량 비율로 포함하는 저굴절층 형성용 광경화성 코팅 조성물. The photocurable coating composition of claim 1, further comprising a compound represented by Chemical Formula 1 and another photopolymerizable compound other than Chemical Formula 1 in a weight ratio of 0.001: 1 to 4: 1.
【청구항 5] [Claim 5]
제 1 항에 있어서, 광반웅성 작용기를 포함한 함불소 화합물을 추가로 포함하는 저굴절층 형성용 광경화성 코팅 조성물.  The photocurable coating composition for forming a low refractive index layer according to claim 1, further comprising a fluorine-containing compound including a photoreactive functional group.
【청구항 6】 [Claim 6]
제 5 항에 있어서, 상기 광반웅성 작용기를 포함한 함불소 화합물은 광증합성 화합물 100 중량부에 대하여 20 내지 300 중량부로 포함되는 저굴절층 형성용 광경화성 코팅 조성물.  The photocurable coating composition for forming a low refractive index layer according to claim 5, wherein the fluorine-containing compound including the photoreactive functional group is included in an amount of 20 to 300 parts by weight based on 100 parts by weight of the photopolymerizable compound.
【청구항 7】 [Claim 7]
제 1 항에 있어서, 상기 표면 처리된 솔리드형 무기 나노 입자가 상기 표면 처리된 중공형 무기 나노 입자에 비하여 0.50 g/cm3 이상 높은 밀도를 갖는 저굴절층 형성용 광경화성 코팅 조성물. The photocurable coating composition of claim 1, wherein the surface-treated solid inorganic nanoparticles have a density of 0.50 g / cm 3 or more higher than that of the surface-treated hollow inorganic nanoparticles.
【청구항 8】 [Claim 8]
제 1 항에 따른 저굴절층 형성용 광경화성 코팅 조성물을 하드 코팅층 상에 도포 및 건조하는 단계 ; 및  Applying and drying the photocurable coating composition for forming a low refractive index layer according to claim 1 on a hard coating layer; And
상기 단계에서 얻은 건조물을 광경화하는 단계를 포함하는 반사 방지 필름의 제조 방법 .  Method of producing an anti-reflection film comprising the step of photocuring the dried product obtained in the above step.
【청구항 9】 [Claim 9]
제 8 항에 있어서, 상기 광경화성 코팅 조성물을 하드 코팅층 상에 도포하고 35 °C 내지 100°C에서 건조하는, 반사 방지 필름의 제조 방법 . The method of claim 8, wherein the photocurable coating composition is applied on a hard coat layer and dried at 35 ° C. to 100 ° C. 10.
【청구항 10] [Claim 10]
하드 코팅층; 및  Hard coating layer; And
하기 하드 코팅층의 일면에 형성되며, 제 1 항에 따른 광경화성 코팅 조성물의 광경화물을 포함하는 저굴절층을 포함하고,  It is formed on one side of the hard coating layer, comprising a low refractive index layer comprising a photocurable of the photocurable coating composition according to claim 1,
상기 하드 코팅층 및 상기 저굴절층 간의 계면으로부터 상기 저굴절충 전체 두께 50% 이내에 표면 처리된 솔리드형 무기 나노 입자 전체 중 70 부피 % 이상이 존재하는 반사 방지 필름. The low refractive index from the interface between the hard coating layer and the low refractive layer An anti-reflection film containing at least 70% by volume of all the solid inorganic nanoparticles surface-treated within 50% of the total thickness.
【청구항 111 [Claim 111]
제 10 항에 있어세 상기 표면 처리된 중공형 무기 나노 입자 전체 중 The method of claim 10, wherein the entire surface-treated hollow inorganic nanoparticles
30 부피 % 이상이 전체 표면 처리된 솔리드형 무기 나노 입자 보다 상기 하드 코팅층 및 상기 저굴절층 간의 계면으로부터 상기 저굴절층의 두께 방향으로 보다 먼 거리에 존재하는, 반사 방지 필름. The antireflection film of 30 volume% or more exists in the thickness direction of the said low refractive index layer from the interface between the said hard-coat layer and the said low refractive index layer more than the solid surface-treated solid inorganic nanoparticles.
【청구항 12】 [Claim 12]
제 10 항에 있어서, 상기 하드 코팅층과 상기 저굴절층의 계면으로부터 상기 저굴절층 전체 두께 이내에 상기 표면 처리된 솔리드형 무기 나노 입자 전체 중 70 부피 % 이상이 존재하는, 반사 방지 필름.  The antireflection film according to claim 10, wherein 70% by volume or more of all the surface-treated solid inorganic nanoparticles are present within the entire thickness of the low refractive index layer from an interface between the hard coating layer and the low refractive index layer.
【청구항 13】 [Claim 13]
제 12 항에 있어서, 상기 하드 코팅층과 상기 저굴절층의 계면으로부터 상기 저굴절층 전체 두께 3 초과의 영역에 상기 표면 처라된 중공형 무기 나노 입자 전체 중 70 부피 ¾» 이상이 존재하는, 반사 방지 필름.  The antireflection according to claim 12, wherein at least 70 vol% of the entire surface-treated hollow inorganic nanoparticles are present in an area of more than 3 total thicknesses of the low refractive index layer from an interface between the hard coating layer and the low refractive index layer. film.
【청구항 14】 [Claim 14]
제 10 항에 있어서, 상기 저굴절층은 상기 표면 처리된 솔리드형 무기 나노 입자 전체 중 70 부피 % 이상이 포함된 제 1 층과 상기 표면 처리된 중공형 무기 나노 입자 전체 중 70 부피 % 이상이 포함된 제 2 층을 포함하며, 상기 제 1 층이 제 2 층에 비하여 상기 하드 코팅층 및 상기 저굴절층 간의 계면에 보다 가까이 위치하는, 반사 방지 필름.  The method of claim 10, wherein the low refractive index layer comprises at least 70% by volume of the total of the first layer and the surface-treated hollow inorganic nanoparticles and at least 70% by volume of the total surface-treated solid inorganic nanoparticles And a second layer, wherein the first layer is located closer to the interface between the hard coating layer and the low refractive layer than the second layer.
【청구항 15] [Claim 15]
제 10 항에 있어서, 상기 반사 반지 필름은 380 nm 내지 780 nm의 가시 광선 파장대 영역에서 0.7 ¾> 이하의 평균 반사율을 나타내는, 반사 방지 필름.  The antireflective film of claim 10, wherein the reflective ring film exhibits an average reflectance of 0.7 ¾> or less in the visible light wavelength range of 380 nm to 780 nm.
PCT/KR2017/001609 2016-02-19 2017-02-14 Photocurable coating composition for forming low refractive layer WO2017142291A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17753452.6A EP3336604B1 (en) 2016-02-19 2017-02-14 Photocurable coating composition for forming low refractive layer
CN201780003681.9A CN108139668B (en) 2016-02-19 2017-02-14 Photocurable coating composition for forming low refractive index layer
JP2018515203A JP6812630B2 (en) 2016-02-19 2017-02-14 Photocurable coating composition for forming a low refraction layer
US15/762,383 US11680172B2 (en) 2016-02-19 2017-02-14 Photocurable coating composition for forming low refractive layer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160019945 2016-02-19
KR10-2016-0019945 2016-02-19
KR10-2017-0019349 2017-02-13
KR1020170019349A KR102077797B1 (en) 2016-02-19 2017-02-13 Photocurable coating composition for forming low refractive layer

Publications (1)

Publication Number Publication Date
WO2017142291A1 true WO2017142291A1 (en) 2017-08-24

Family

ID=59625294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/001609 WO2017142291A1 (en) 2016-02-19 2017-02-14 Photocurable coating composition for forming low refractive layer

Country Status (1)

Country Link
WO (1) WO2017142291A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110320747A (en) * 2018-03-30 2019-10-11 太阳油墨制造株式会社 Hardening resin composition, dry film, solidfied material and printed circuit board

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090046873A (en) * 2006-08-04 2009-05-11 이 아이 듀폰 디 네모아 앤드 캄파니 Low refractive index composition
KR20110121233A (en) * 2010-04-30 2011-11-07 동국대학교 산학협력단 Anti-reflection film and method of producing the same
KR20140006922A (en) * 2011-04-26 2014-01-16 다이니폰 인사츠 가부시키가이샤 Antireflection film, polarizing plate, and image display device
KR101405076B1 (en) * 2013-09-09 2014-07-01 (주)코이즈 Index matching film and method of manufacturing the same
KR20150137198A (en) * 2014-05-28 2015-12-09 아주대학교산학협력단 Controlling impregnation method of micrometer level's particle and particle coated substrate manufactured by the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090046873A (en) * 2006-08-04 2009-05-11 이 아이 듀폰 디 네모아 앤드 캄파니 Low refractive index composition
KR20110121233A (en) * 2010-04-30 2011-11-07 동국대학교 산학협력단 Anti-reflection film and method of producing the same
KR20140006922A (en) * 2011-04-26 2014-01-16 다이니폰 인사츠 가부시키가이샤 Antireflection film, polarizing plate, and image display device
KR101405076B1 (en) * 2013-09-09 2014-07-01 (주)코이즈 Index matching film and method of manufacturing the same
KR20150137198A (en) * 2014-05-28 2015-12-09 아주대학교산학협력단 Controlling impregnation method of micrometer level's particle and particle coated substrate manufactured by the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3336604A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110320747A (en) * 2018-03-30 2019-10-11 太阳油墨制造株式会社 Hardening resin composition, dry film, solidfied material and printed circuit board
CN110320747B (en) * 2018-03-30 2024-03-08 太阳控股株式会社 Curable resin composition, dry film, cured product, and printed wiring board

Similar Documents

Publication Publication Date Title
KR101973195B1 (en) Anti-reflective film and preparation method of the same
KR101953776B1 (en) Anti-refractive film
TWI665273B (en) Anti-reflective film
KR102216567B1 (en) Anti-reflective film
KR101991928B1 (en) Anti-reflective film
KR20190043515A (en) Anti-reflective film
JP6690808B2 (en) Antireflection film and manufacturing method thereof
KR102040223B1 (en) Anti-reflective film
KR102389324B1 (en) Photocurable coating composition for forming low refractive layer
KR101977934B1 (en) Anti-reflective film
WO2017078428A1 (en) Anti-reflective film and manufacturing method therefor
KR101977933B1 (en) Anti-reflective film and preparation method of the same
WO2018062856A1 (en) Antireflection film
WO2017142291A1 (en) Photocurable coating composition for forming low refractive layer
KR20190067756A (en) Anti-reflective film
WO2017155337A1 (en) Anti-reflection film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17753452

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017753452

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2018515203

Country of ref document: JP

Ref document number: 15762383

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE