TW201231632A - Touch panel - Google Patents

Touch panel Download PDF

Info

Publication number
TW201231632A
TW201231632A TW100138878A TW100138878A TW201231632A TW 201231632 A TW201231632 A TW 201231632A TW 100138878 A TW100138878 A TW 100138878A TW 100138878 A TW100138878 A TW 100138878A TW 201231632 A TW201231632 A TW 201231632A
Authority
TW
Taiwan
Prior art keywords
metal
transparent electrode
touch panel
metal oxide
film
Prior art date
Application number
TW100138878A
Other languages
Chinese (zh)
Other versions
TWI535830B (en
Inventor
Kazuki Eguchi
Keita Murakaji
Kenichi Motoyama
Original Assignee
Nissan Chemical Ind Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Ind Ltd filed Critical Nissan Chemical Ind Ltd
Publication of TW201231632A publication Critical patent/TW201231632A/en
Application granted granted Critical
Publication of TWI535830B publication Critical patent/TWI535830B/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is a capacitance type touch panel in which the decrease in display quality that occurs in a display device when the transparent electrode pattern is visually recognized can be mitigated. The touch panel (1) includes a metal oxide layer (5) disposed over first transparent electrodes (3) and second transparent electrodes (4). The metal oxide layer (5) is formed from a coating composition obtained by hydrolyzing and condensing one or more metal alkoxides of the formula M(OR)n (M represents a metal, R represents a C1-5 alkyl, and n indicates the valence of the M) in an organic solvent in the presence of a metal salt of the formula M2(X)m (M2 represents a metal, X represents a chlorine atom, nitric acid, sulfuric acid, acetic acid, oxalic acid, a sufamic acid, a sulfonic acid, acetoacetic acid, acetylacetonato, or a basic salt of any of these, and m indicates the valence of the M2) and adding a precipitation inhibitor thereto. The metal alkoxides preferably are a mixture of a titanium alkoxide and either a silicon alkoxide or a partial condensate thereof.

Description

201231632 六、發明說明: 【發明所屬之技術領域】 本發明係關於觸控面板’詳細而言,係關於靜電電容 方式的觸控面板。 【先前技術】 近年來’隨著智慧型手機的普及,行動電話的顯示畫 面亦逐漸大型化。伴隨於此’係積極地開發可應用顯示器 的顯示來進行輸入操作之觸控面板。根據觸控面板,由於 不需按壓式的開關等輸入手段,故可達到顯示畫面的大型 化。 觸控面板,係偵測出以手指或筆等所接觸之操作面的 接觸位置。應用該功能,可將觸控面板用作爲輸入裝置。 接觸位置的偵測方式,例如有電阻膜方式和靜電電容方式 等。 電阻膜方式中,係將表面設置有透明電極之2片基板 相間離地配置爲使透明電極相互對向。亦即,由於需使用 2片基板,所以具有難以達到薄型化之問題。此外,該方 式中,係藉由按壓一方的基板,使設置在該基板之透明電 極與設置在另一方的基板之透明電極短路而偵測出按壓位 置。因此,手指所按壓之一側的基板容易產生耗損等,亦 有觸控面板的耐久性降低之問題。 另一方面,靜電電容方式,由於可僅使用1片基板而 達到薄型化,所以對於可攜式機器,可說是適合的方式。 -5- •Si* 201231632 專利文獻1中,係揭示一種靜電電容方式的觸控面 板。該觸控面板中,係夾介電介質之玻璃來配置用以偵測 出X方向的座標之第1透明電極與用以偵測出Y方向的 座標之第2透明電極。具體而言,在!片玻璃基板之一方 的面上’相間離地配置複數個用以偵測出X方向的座標之 電極,於另一方的面上,相間離地配置複數個用以偵測出 Y方向的座標之電極。亦即在1片基板上設置各透明電極 而構成。 此外,專利文獻2中,係揭示一種其他構成之靜電電 容方式的觸控面板。該觸控面板中,係在透明基板之一方 的面上,配置用以偵測出X方向的座標之第1透明電極與 用以偵測出Y方向的座標之第2透明電極,並在各個交叉 部上夾介絕緣層使其不導通。根據該構造,不需在基板的 雙面上進行電極形成。 先前技術文獻 專利文獻 專利文獻1 :日本特開2 0 0 3 - 1 7 3 2 3 8號公報 專利文獻2 :日本特開2 0 1 0 - 2 8 1 1 5號公報 【發明內容】 (發明所欲解決之課題) 觸控面板係組裝於液晶顯示裝置等之顯示裝置,而用 作爲附有可偵測出觸控位置的觸控面板功能之顯示裝置。 爲了讓操作觸控面板之人員可通過觸控面板來觀看顯示裝 -6 - 201231632 置,透明電極係使用光穿透特性佳之構件。例如使用IT ο (氧化銦錫(Indium Tin Oxide))等之無機材料。 然而,靜電電容方式的觸控面板中,在ITO等之透明 電極的形成區域與未形成透明電極之區域上產生反射率的 不同。因而有透明電極的圖型被觀看到而使顯示性降低之 問題。 此外,以往的觸控面板中,爲人所知者有在ITO等之 透明電極上設置由丙烯酸材料所構成之丙烯酸層之技術。 該丙烯酸層,是以保護透明電極者爲目的,並未考量到折 射率特性。故對於丙烯酸層無法期待使電極圖型變得不醒 目之效果。 此外,由於丙烯酸層爲有機材料薄膜,所以作爲保護 膜之硬度並不充分。與ITO等之透明電極的密著性亦弱, 而成爲觸控面板之可靠度降低的原因之一。再者,使用丙 烯酸層時,難以使用快乾印刷等印刷技術來形成膜。因 此,於膜的形成時,必須應用步驟繁瑣的微影技術。 本發明係鑒於該問題點而創作之發明。亦即,本發明 之目的在於提供一種可減緩因觀看透明電極圖型所導致之 顯示裝置的顯示性降低之靜電電容方式的觸控面板。 此外,本發明之其他目的在於提供一種可在透明電極 上形成高硬度、與透明電極之高密著性、可應用印刷技術 來成膜之膜而構成之靜電電容方式的觸控面板。 本發明之其他目的及優點,可從以下的記載中得知。 201231632 (用以解決課題之手段) 本發明是一種觸控面板,其係在透明基板的操作區域 上形成有透明電極的圖型之靜電電容方式的觸控面板,其 特徵爲: 在由下列一般式(II)表示之金屬鹽的存在下,於有 機溶劑中使由下列一般式(I)表示之金屬烷氧化物水解 並縮合,進一步添加析出防止劑而得塗膜組成物,將由該 塗膜組成物所形成之金屬氧化物的層配置在前述透明電極 上; M, ( OR ) n ( I ) (式中1 Μι表不金屬’ R表不Cl〜C5的院基’ π表不 Μ !的價數); Μ2 ( X ) m ( II ) (式中,M2表示金屬,X表示氯、硝酸、硫酸、乙 酸、草酸、磺胺酸、磺酸、乙醯乙酸、乙醯丙酮酸或此等 之鹼性鹽,m表示M2的價數)。 此外,本發明是一種觸控面板,其係在透明基板的操 作區域上形成有透明電極的圖型之靜電電容方式的觸控面 板,其特徵爲: 在由下列一般式(Π-1 )及式(Π-1 )中所使用之金 屬的草酸鹽表示之金屬鹽的存在下,於有機溶劑中使由下 列一般式(I)表示之金屬烷氧化物水解並縮合,然後添 加析出防止劑而得塗膜組成物,將由該塗膜組成物所形成 之金屬氧化物的層配置在前述透明電極上: -8 - 201231632 Μι ( OR) „ ( I) (式中,M!表示金屬,R表示C1〜C5的烷基,n表示 M,的價數); Μ2 ( X ) m ( II-1 ) (式中’ Μ2表示金屬,χ表示氯、硝酸、硫酸、乙 酸、磺胺酸、磺酸、乙醯乙酸、乙醯丙酮酸或此等之鹼性 鹽’m表示Μ2的價數)。 本發明中’前述一般式(I)中的金屬Ml,較佳係選 自由矽(Si )、鈦(Ti )、鉬(Ta )、鉻(Zr )、硼 (B)、鋁(A1)、鎂(Mg)、錫(Sn)及鋅(Zn)所組 成之群組的至少1種。 此外,本發明中,前述一般式(II)及(II-1)中的 金屬M2,較佳係選自由鋁(A1 )、銦(ln )、鋅 (Zn)、锆(Zr)、鉍(Bi)、鑭(La)、钽(Ta)、釔 (Y)及铈(C e )所組成之群組的至少1種。 本發明中’前述金屬氧化物的層,較佳者其折射率爲 1·50~1·70’該金屬氧化物之層的厚度(以下亦將層的厚度 稱爲膜厚)爲 40nm〜170nm。前述金屬氧化物的層,其折 射率特佳爲1.54〜1.68。 本發明中,前述金屬烷氧化物爲烷氧化矽或其部分縮 合物與烷氧化鈦之混合物。 本發明中,前述析出防止劑,較佳係選自由N-甲基-吡咯啶酮、乙二醇、二甲基甲醯胺、二甲基乙醯胺、二乙 二醇、丙二醇、己二醇及此等之衍生物所組成之群組的至 -9 - 201231632 少1種。 本發明中,前述塗膜組成物中所含有之金屬烷氧化物 的金屬原子(JVh)與金屬鹽的金屬原子(m2)之莫耳 比,較佳爲 0.01SM2/(Mi + M2) $0_7。 本發明中,前述金屬鹽,較佳係選自由金屬硝酸鹽、 金屬硫酸鹽、金屬乙酸鹽、金屬氯化物、金屬草酸鹽、金 屬磺胺酸鹽、金屬磺酸鹽、金屬乙醯乙酸鹽、金屬乙醯丙 酮酸鹽及此等之鹼性鹽所組成之群組的至少1種。 本發明中,前述有機溶劑較佳係含有烷二醇類或其單 醚衍生物。 本發明中,前述透明電極較佳係具有用以偵測出至少 2個不同方向的位置之第1透明電極及第2透明電極。 本發明中,前述第1透明電極及前述第2透明電極較 佳係配置在與透明基板相同之面上。 本發明中,前述第1透明電極及前述第2透明電極較 佳係分別配置在透明基板之不同的面上。 發明之效果: 根據本發明,係提供一種可減緩因觀看透明電極圖型 所導致之顯示裝置的顯示性降低之靜電電容方式的觸控面 板。 【實施方式】 因觀看透明電極圖型而導致顯示裝置的顯示性降低 -10 - 201231632 者,是起因於透明電極的折射率與基板的折射率不同者。 透明電極,通常是由無機金屬氧化物的ιτο(氧化銦 錫(Indium Tin Oxide ))所構成。ΙΤΟ的折射率約爲 1.8〜2.1。另一方面,玻璃基板的折射率約爲1.5,與ITO 的折射率有極大的不同。該折射率的不同,會在形成有透 明電極之區域與未形成之區域之間產生光反射特性的不 同。亦即,伴隨著干涉之界面反射特性,在形成有透明電 極之區域與未形成之區域上有所不同,而在畫面顯示上使 電極圖型變得醒目。 因此,本發明者們係對於使電極圖型變得不醒目之方 式進行精心探討,結果發現到,在基板上所配置之透明電 極上形成折射率與膜厚被控制在既定範圍內之層者乃爲有 效。藉由設置該層,可抑制於觸控面板上觀看到未被預料 到的電極圖型之現象。 觸控面板中,如上所述,爲人所知者有在透明電極上 設置丙烯酸層之技術。該丙烯酸層,是以保護透明電極者 爲目的,並未考量到折射率特性。故對於丙烯酸層無法期 待使電極圖型變得不醒目之效果。此外,由於丙烯酸層爲 有機材料薄膜,所以硬度低,且與ITO之密著性亦弱,故 機械強度亦不足。再者,由於未在觸控面板之框緣部的配 線部上配置絕緣膜,而需進行圖型形成,故難以使用快乾 印刷等印刷技術來形成膜。因此,於膜的形成時,必須應 用步驟繁瑣的微影技術。 從上述內容中,可得知較佳是以上述折射率與膜厚被 -11 - 201231632 控制在既定範圍內之層來取代丙烯酸層。亦即,較佳係具 有保護透明電極之功能,具體而言爲機械強度佳,可保護 透明電極免受手指等的多數次按壓所造成之破壞。此外, 較佳係可使用快乾印刷等印刷技術,在基板上簡便地形成 透明電極圖型。 本發明者們,於形成可滿足上述性能之層時,係發現 到可適當地使用:在金屬鹽的存在下,於有機溶劑中使金 屬烷氧化物水解並縮合,然後添加析出防止劑而得之塗膜 組成物。藉由在透明電極上(亦即覆蓋透明電極)形成使 用該塗膜組成物所形成之金屬氧化物層,可在觸控面板上 保護透明電極並且使電極圖型變得不醒目。 以下,首先說明本實施形態之觸控面板。接著說明應 用在該觸控面板之金屬氧化物層,以及該金屬氧化物層的 形成時所使用之塗膜組成物。 <觸控面板> 第1圖及第2圖爲本實施形態的第1例之觸控面板之 構成圖,第1圖爲俯視圖,第2圖爲沿著第1圖的A1-A1' 線之剖面圖。 如第1圖所示,觸控面板1具有:透明基板2、用以 偵測出X方向的座標之第1透明電極3、以及用以偵測出 Y方向的座標之第2透明電極4。第1透明電極3與第2 透明電極4是由設置在基板2的同一面上之同一層所形 成。 -12- 201231632 基板2,係使用玻璃、丙烯酸樹脂、聚酯樹脂、聚對 苯二甲酸乙二酯樹脂、聚碳酸酯樹脂、聚偏二氯乙烯樹 脂、聚甲基丙烯酸甲酯樹脂、三乙酸纖維素樹脂及聚萘二 甲酸乙二酯樹脂等透明材料所構成。特佳爲選擇適合於後 述金屬氧化物層5、6的形成之具備耐熱性與耐藥性之材 料。基板2的厚度,使用玻璃時例如爲0.1 mm~2 mm,使 用樹脂薄膜時例如爲ΙΟμιη〜2000μιη。 第1透明電極3與第2透明電極4,係形成於相當於 觸控面板1的操作面之位置上。第1透明電極3在沿著X 方向之複數個區域上分離地設置,第2透明電極4在沿著 Υ方向之複數個區域上分離地設置。藉由構成此般構造, 可提高觸控位置偵測的精度。 第1圖中,第1透明電極3與第2透明電極4,係以 各個複數的電極墊部21爲構成要素,各電極墊部21分別 平面地相間離,且配置爲使各電極墊部2 1間的間隙變 小。亦即,在X軸方向上呈行之電極墊部21與在γ軸方 向上呈列之電極墊部21,係儘可能地縮小此等相互交叉之 區域來配置在操作面的全體上。電極墊部21例如可形成 爲菱形、矩形及六角形等之多角形形狀,此等例如可互爲 不同或配置爲串聯狀。此外,分離(相間離)之電極的個 數亦不限於第1圖的例子,可因應操作面的大小與所要求 之偵測位置的精度來決定。 第1透明電極3與第2透明電極4,係使用至少對可 見光具有高穿透率且具有導電性之透明電極材料來形成。 -13- 201231632 此般具有導電性之透明電極材料,例如可列舉出ITO (氧 化銦錫(Indium Tin Oxide) ) ' IZO ( Indium Zinc201231632 VI. Description of the Invention: [Technical Field] The present invention relates to a touch panel in detail, and relates to a capacitive touch panel. [Prior Art] In recent years, with the popularization of smart phones, the display screen of mobile phones has also been gradually enlarged. Along with this, a touch panel that can perform an input operation by applying a display of a display is actively developed. According to the touch panel, since the input means such as a push switch is not required, the display screen can be enlarged. The touch panel detects the contact position of the operation surface that is contacted by a finger or a pen. With this function, the touch panel can be used as an input device. The detection method of the contact position is, for example, a resistive film method and an electrostatic capacitance method. In the resistive film method, two substrates having transparent electrodes on their surfaces are disposed apart from each other such that the transparent electrodes face each other. That is, since two substrates are used, it is difficult to achieve a problem of thinning. Further, in this method, by pressing one of the substrates, the transparent electrode provided on the substrate and the transparent electrode provided on the other substrate are short-circuited to detect the pressing position. Therefore, the substrate on one side of the finger pressing is likely to be worn out, and the durability of the touch panel is lowered. On the other hand, since the electrostatic capacitance method can be made thinner by using only one substrate, it is a suitable method for a portable device. -5- • Si* 201231632 Patent Document 1 discloses a capacitive touch panel. In the touch panel, a glass sandwiching a dielectric medium is provided with a first transparent electrode for detecting a coordinate in the X direction and a second transparent electrode for detecting a coordinate in the Y direction. Specifically, at! On one side of the glass substrate, a plurality of electrodes for detecting the coordinates of the X direction are disposed apart from each other, and on the other surface, a plurality of coordinates for detecting the Y direction are disposed apart from each other. electrode. That is, each of the transparent electrodes is provided on one substrate. Further, Patent Document 2 discloses a touch panel of another electrostatic capacitance type. In the touch panel, a first transparent electrode for detecting a coordinate in the X direction and a second transparent electrode for detecting a coordinate in the Y direction are disposed on one side of the transparent substrate, and The insulating layer is interposed on the intersection to make it non-conductive. According to this configuration, it is not necessary to perform electrode formation on both sides of the substrate. PRIOR ART DOCUMENT PATENT DOCUMENT PATENT DOCUMENT 1 Patent Publication No. JP-A-2002-A. Patent Publication No. 2: Japanese Patent Application Publication No. JP-A No. 2 0 1 0 - 2 8 1 1 5 The problem to be solved is that the touch panel is incorporated in a display device such as a liquid crystal display device, and is used as a display device with a touch panel function capable of detecting a touch position. In order to allow the person who operates the touch panel to view the display device through the touch panel, the transparent electrode is a member with good light transmission characteristics. For example, an inorganic material such as IT ο (Indium Tin Oxide) is used. However, in the capacitive touch panel, the difference in reflectance occurs in a region where the transparent electrode of ITO or the like is formed and a region where the transparent electrode is not formed. Therefore, there is a problem that the pattern of the transparent electrode is observed to lower the display property. Further, among conventional touch panels, there is a technique in which an acrylic layer made of an acrylic material is provided on a transparent electrode such as ITO. The acrylic layer is intended to protect the transparent electrode, and the refractive index characteristics are not considered. Therefore, the effect of making the electrode pattern unobtrusive to the acrylic layer cannot be expected. Further, since the acrylic layer is an organic material film, the hardness as a protective film is not sufficient. The adhesion to a transparent electrode such as ITO is also weak, which is one of the causes of the reliability reduction of the touch panel. Further, when an acrylic layer is used, it is difficult to form a film by a printing technique such as fast drying printing. Therefore, in the formation of a film, it is necessary to apply a cumbersome lithography technique. The present invention has been made in view of this problem. That is, an object of the present invention is to provide a capacitive touch panel which can alleviate a decrease in displayability of a display device caused by viewing a transparent electrode pattern. Further, another object of the present invention is to provide a capacitive touch panel which can be formed on a transparent electrode and which has a high hardness and a high adhesion to a transparent electrode and can be formed into a film by a printing technique. Other objects and advantages of the present invention will be apparent from the following description. 201231632 (Means for Solving the Problem) The present invention relates to a touch panel which is a capacitive touch panel of a pattern in which a transparent electrode is formed on an operation area of a transparent substrate, and is characterized by the following In the presence of a metal salt represented by the formula (II), the metal alkoxide represented by the following general formula (I) is hydrolyzed and condensed in an organic solvent, and a precipitation preventing agent is further added to obtain a coating film composition, which is obtained from the coating film. A layer of a metal oxide formed by the composition is disposed on the transparent electrode; M, (OR) n (I) (wherein 1 Μι is not a metal 'R is not a base of Cl~C5' π is not awkward! The valence of )2 ( X ) m ( II ) (wherein M 2 represents a metal and X represents chlorine, nitric acid, sulfuric acid, acetic acid, oxalic acid, sulfamic acid, sulfonic acid, acetoacetic acid, acetylpyruvate or the like The basic salt, m represents the valence of M2). In addition, the present invention is a touch panel which is a capacitive touch panel of a pattern in which a transparent electrode is formed on an operation area of a transparent substrate, and is characterized by the following general formula (Π-1) and The metal alkoxide represented by the following general formula (I) is hydrolyzed and condensed in an organic solvent in the presence of a metal salt represented by the oxalate of the metal used in the formula (Π-1), and then a precipitation preventing agent is added. To obtain a coating composition, a layer of a metal oxide formed by the coating composition is disposed on the transparent electrode: -8 - 201231632 Μι (OR) „ (I) (wherein M! represents a metal, R An alkyl group of C1 to C5, n represents a valence of M); Μ2 ( X ) m ( II-1 ) (wherein Μ 2 represents a metal, and χ represents chlorine, nitric acid, sulfuric acid, acetic acid, sulfamic acid, sulfonic acid Ethylacetic acid, acetoacetic acid or the basic salt 'm represents the valence of ruthenium 2). In the present invention, the metal M1 in the above general formula (I) is preferably selected from ruthenium (Si), Titanium (Ti), molybdenum (Ta), chromium (Zr), boron (B), aluminum (A1), magnesium (Mg), tin (Sn) and zinc (Zn) Further, in the present invention, the metal M2 in the above general formulas (II) and (II-1) is preferably selected from the group consisting of aluminum (A1), indium (ln), and zinc ( At least one of the group consisting of Zn), zirconium (Zr), bismuth (Bi), lanthanum (La), lanthanum (Ta), yttrium (Y), and cerium (C e ). The layer of the material preferably has a refractive index of from 1.50 to 1.70'. The thickness of the layer of the metal oxide (hereinafter, the thickness of the layer is also referred to as a film thickness) is from 40 nm to 170 nm. In the present invention, the metal alkoxide is a mixture of alkoxide or a partial condensate thereof and a titanium alkoxide. In the present invention, the precipitation inhibitor is preferably selected from the group consisting of Groups of N-methyl-pyrrolidone, ethylene glycol, dimethylformamide, dimethylacetamide, diethylene glycol, propylene glycol, hexanediol, and the like -9 - 201231632 One less. In the present invention, the metal atom (JVh) of the metal alkoxide contained in the coating film composition and the metal atom (m2) of the metal salt are in the form of a metal atom (m2). The ratio is preferably 0.01SM2/(Mi + M2) $0_7. In the present invention, the metal salt is preferably selected from the group consisting of metal nitrates, metal sulfates, metal acetates, metal chlorides, metal oxalates, At least one of the group consisting of a metal sulfonate, a metal sulfonate, a metal acetoacetate, a metal acetoacetate, and a basic salt thereof. In the present invention, the organic solvent is preferably contained. In the present invention, the transparent electrode preferably has a first transparent electrode and a second transparent electrode for detecting at least two positions in different directions. In the present invention, the first transparent electrode and the second transparent electrode are preferably disposed on the same surface as the transparent substrate. In the present invention, the first transparent electrode and the second transparent electrode are preferably disposed on different surfaces of the transparent substrate. Advantageous Effects of Invention According to the present invention, there is provided an electrostatic capacitance type touch panel which can alleviate a decrease in displayability of a display device caused by viewing a transparent electrode pattern. [Embodiment] The display performance of the display device is lowered by viewing the transparent electrode pattern -10 - 201231632 because the refractive index of the transparent electrode is different from the refractive index of the substrate. The transparent electrode is usually composed of ITO (Indium Tin Oxide) of an inorganic metal oxide. The refractive index of ruthenium is about 1.8 to 2.1. On the other hand, the refractive index of the glass substrate is about 1.5, which is greatly different from the refractive index of ITO. The difference in refractive index causes a difference in light reflection characteristics between a region where the transparent electrode is formed and an unformed region. That is, the interface reflection characteristic with interference differs between the region where the transparent electrode is formed and the region where the transparent electrode is formed, and the electrode pattern is made conspicuous on the screen display. Therefore, the present inventors have intensively studied how to make the electrode pattern unobtrusive, and as a result, it has been found that a layer having a refractive index and a film thickness controlled within a predetermined range is formed on the transparent electrode disposed on the substrate. It is effective. By providing the layer, it is possible to suppress the phenomenon that an undesired electrode pattern is viewed on the touch panel. In the touch panel, as described above, there is a technique of providing an acrylic layer on a transparent electrode. The acrylic layer is intended to protect the transparent electrode, and the refractive index characteristics are not considered. Therefore, the effect of the electrode pattern on the acrylic layer cannot be expected to be unobtrusive. Further, since the acrylic layer is an organic material film, the hardness is low and the adhesion to ITO is also weak, so the mechanical strength is also insufficient. Further, since the insulating film is not disposed on the wiring portion of the frame edge portion of the touch panel, pattern formation is required, and it is difficult to form the film by a printing technique such as quick-drying printing. Therefore, in the formation of a film, it is necessary to apply a cumbersome lithography technique. From the above, it is understood that the acrylic layer is preferably replaced by a layer having a refractive index and a film thickness controlled by -11 - 201231632 within a predetermined range. That is, it is preferable to have a function of protecting a transparent electrode, specifically, a mechanical strength, which protects the transparent electrode from damage caused by a majority of pressing of a finger or the like. Further, it is preferable to form a transparent electrode pattern on the substrate simply by using a printing technique such as fast drying printing. The present inventors have found that a layer which satisfies the above properties can be suitably used: in the presence of a metal salt, a metal alkoxide is hydrolyzed and condensed in an organic solvent, and then a precipitation preventing agent is added. Coating film composition. By forming a metal oxide layer formed using the coating film composition on the transparent electrode (i.e., covering the transparent electrode), the transparent electrode can be protected on the touch panel and the electrode pattern can be made inconspicuous. Hereinafter, the touch panel of this embodiment will be described first. Next, the metal oxide layer applied to the touch panel and the coating film composition used in the formation of the metal oxide layer will be described. <Touch Panel> Figs. 1 and 2 are a configuration diagram of a touch panel according to a first example of the present embodiment, and Fig. 1 is a plan view, and Fig. 2 is a view along the line A1-A1' of Fig. 1 Sectional view of the line. As shown in Fig. 1, the touch panel 1 has a transparent substrate 2, a first transparent electrode 3 for detecting a coordinate in the X direction, and a second transparent electrode 4 for detecting a coordinate in the Y direction. The first transparent electrode 3 and the second transparent electrode 4 are formed by the same layer provided on the same surface of the substrate 2. -12- 201231632 Substrate 2, using glass, acrylic resin, polyester resin, polyethylene terephthalate resin, polycarbonate resin, polyvinylidene chloride resin, polymethyl methacrylate resin, triacetic acid It is composed of a transparent material such as cellulose resin or polyethylene naphthalate resin. It is particularly preferable to select a material having heat resistance and chemical resistance suitable for formation of the metal oxide layers 5 and 6 to be described later. The thickness of the substrate 2 is, for example, 0.1 mm to 2 mm when glass is used, and ΙΟμηη to 2000 μιη when the resin film is used. The first transparent electrode 3 and the second transparent electrode 4 are formed at positions corresponding to the operation surface of the touch panel 1. The first transparent electrode 3 is provided separately in a plurality of regions along the X direction, and the second transparent electrode 4 is provided separately in a plurality of regions along the x direction. By constructing such a structure, the accuracy of touch position detection can be improved. In the first embodiment, the first transparent electrode 3 and the second transparent electrode 4 have a plurality of electrode pad portions 21 as constituent elements, and the electrode pad portions 21 are spaced apart from each other in plane, and are arranged such that the electrode pad portions 2 are arranged. The gap between 1 is small. In other words, the electrode pad portion 21 which is formed in the X-axis direction and the electrode pad portion 21 which is arranged in the γ-axis direction are arranged such that the mutually intersecting regions are reduced as much as possible and disposed on the entire operation surface. The electrode pad portion 21 can be formed, for example, in a polygonal shape such as a rhombus, a rectangle, or a hexagon, and the like, for example, may be different from each other or arranged in a series. Further, the number of separated (phase-to-phase) electrodes is not limited to the example of Fig. 1, and can be determined in accordance with the size of the operation surface and the accuracy of the required detection position. The first transparent electrode 3 and the second transparent electrode 4 are formed using a transparent electrode material having a high transmittance and a conductivity at least for visible light. -13- 201231632 Such a transparent electrode material having conductivity, for example, ITO (Indium Tin Oxide) ' IZO (Indium Zinc)

Oxide )或ZnO (氧化鋅)等。使用ITO時,較佳係將厚 度設爲1 0〜20Onm以確保充分的導電性。 第1透明電極3與第2透明電極4,例如以下列方式 來形成。 首先從濺鍍法、真空蒸鍍法、離子蒸鍍法、噴霧法、 浸泡法或 CVD( Chemical Vapor Deposition)法等當中, 選擇出考量到作爲底層之基板2的材質之方法使透明導電 膜成膜。接著使用微影技術,對上述透明導電膜進行圖型 形成。或者是,使用使由上述材料所構成之導電性塡充劑 等分散於有機溶劑而成之塗料,並藉由印刷法來形成期望 的圖型。 透明電極的形成步驟中爲重要者,爲是否可精度佳地 控制膜厚者。因此,透明電極的形成時,特佳是選擇可形 成期望膜厚且可形成透明性佳之低電阻的膜之方法。 如第1圖及第2圖所示,第1透明電極3與第2透明 電極4係形成於基板2的同一面上而構成同一層。因此, 第1透明電極3與第2透明電極4在複數個場所交叉而形 成交叉部1 8。 本實施形態中,交叉部上,係以使第1透明電極3與 第2透明電極4中的任一方不與另一方接觸之方式來分 開。亦即,如第2圖所示,在複數個交叉部1 8的任一個 上’雖然第2透明電極4連接,但第1透明電極3被分 -14- 201231632 開。爲了連接第1透明電極3的分開處,係設置橋接電極 20,於橋接電極20與第2透明電極4之間,設置有由絕 緣性物質所構成之層間絕緣膜1 9。以下係參考第1圖及第 2圖來詳細說敘述。 如第2圖所示,在交叉部18的第2透明電極4上, 形成有光穿透性的層間絕緣膜1 9。層間絕緣膜1 9 ,可使 用Si02等之無機材料或感光性丙烯酸樹脂等之有機材 料。使用Si02時,例如可藉由採用遮罩之濺鍍法,構成 爲僅在交叉部18的第2透明電極4上形成有Si02膜之構 造。此外,使用感光性丙烯酸樹脂時,亦可應用微影技術 來形成同樣構造。 於層間絕緣膜19的上層設置有橋接電極20。橋接電 極20,是將交叉部18上所分開之第1透明電極3彼此予 以電性連接者,乃藉由光穿透性的材料所形成。藉由設置 橋接電極20,可在Y方向上電性連接第1透明電極3。 如第1圖所示’第1透明電極3與第2透明電極4係 形成爲縱向或橫向地排列複數個菱形電極墊部2 1之形 狀。第2透明電極4上,位於交叉部18之連接部分,成 爲寬度較第2透明電極4的菱形電極墊部21更窄之形 狀。此外,橋接電極20亦形成爲寬度較菱形電極墊部21 更窄之長條狀。 如第1圖及第2圖所示,本實施形態之觸控面板1 中,在第1透明電極3與第2透明電極4上(亦即覆蓋第 1透明電極3與第2透明電極4)形成有金屬氧化物層5。 -15- 201231632 並覆蓋相當於觸控面板1的操作面之部分上之透明電極的 形成區域與非形成區域。金屬氧化物層5,其硬度高且與 第1透明電極3與第2透明電極4之密著性佳。 金屬氧化物層5的形成時,係使用:在金屬鹽(例如 鋁鹽)的存在下,於有機溶劑中使金屬烷氧化物水解並縮 合,然後添加析出防止劑而得之塗膜組成物。該塗膜組成 物的詳細內容將於之後說明。 觸控面板1中,根據本說明書的實施例欄中所說明之 探討結果,係選擇金屬氧化物層5的折射率與膜厚以使第 1透明電極3與第2透明電極4的各電極圖型變得不醒 目。具體而言,金屬氧化物層5的折射率較佳位於 1.50〜1 .70的範圍內,尤佳位於1.54〜1 .68的範圍內。膜厚 較佳位於40nm〜170nm的範圍內。當金屬氧化物層5的折 射率爲 1.54以上且小於 1.60時,膜厚更佳位於 60nm〜150nm的範圍內。此外,當金屬氧化物層5的折射 率爲 1.60 以上且小於 1.68 時,膜厚更佳位於 40nm~170nm的範圍內。爲了不導通第1透明電極3與第 2透明電極4,金屬氧化物層5係從具有絕緣性且可見光 透明性高之金屬氧化物層來選擇。 觸控面板1中,金屬氧化物層5例如是由含有烷氧化 矽與烷氧化鈦之塗膜組成物所形成者,折射率爲1 .60,膜 厚爲80nm 。 如第2圖所示,觸控面板1,係夾介使用丙烯酸系光 硬化性樹脂等之黏著層9,來疊合形成有第1透明電極3 •16- 201231632 等之一面與顯示面板ι〇之觀看側的最上方層,藉此可構 成1個顯示裝置。在此,黏著層9係設置在金屬氧化物層 5 ° 上述顯示裝置,係具有觸控面板1與顯示面板10,並 可因應必要具有背光。第2圖中雖省略其詳細內容,但顯 示面板10可具有與一般所知的顯示裝置相同之構成。例 如爲液晶顯示裝置時,顯示面板10可構成爲2片透明基 板間夾持有液晶層之構造。在各透明基板之與液晶層接觸 之一側相反的一側上,可分別設置偏光板。此外,各透明 基板上,爲了控制液晶的狀態,可形成分段電極或共通電 極。液晶層是藉由各透明基板與密封材所密封。 如第1圖所示,觸控面板1中,在第1透明電極3與 第2透明電極4的端部上,分別設置有端子(圖中未顯 示),並從該端子中拉出複數條拉出配線11。拉出配線 1 1,除了銀、鋁、鉻、銅、鉬之外,亦可使用 Mo-Nb (鉬-鈮)合金等之含有此等金屬的合金等來構成不透明 金屬配線。拉出配線1 1,係連接於對第1透明電極3與第 2透明電極4進行電壓施加或偵測出觸控位置之控制電路 (圖中未顯示)。 具有以上構成之觸控面板1中,係.依序將電壓施加於 複數個第1透明電極3與第2透明電極4來賦予電荷。當 作爲導電體的手指碰觸於操作面的任一處時,可藉由指尖 與第1透明電極3及第2透明電極4之間的靜電電容耦合 來形成電容器。因此,可藉由掌握指尖之接觸位置上的電 -17- 201231632 荷變化,來偵測出手指碰觸於哪個場所。 此外,觸控面板1,亦可藉由控制電路(圖中未顯 示)的控制,選擇性地將電壓施加於第1透明電極3與第 2透明電極4中的任一方。此時,在施加有電壓之透明電 極上形成電場,當在該狀態下以手指等碰觸時,接觸位置 經由人體的靜電電容而接地。結果會在成爲對象之第1透 明電極3或第2透明電極4的端子(圖中未顯示)與接觸 位置之間產生電阻値的變化。該電阻値,由於和接觸位置 與成爲對象之第1透明電極3或第2透明電極4的端子之 距離呈正比,故可藉由使控制電路偵測出接觸位置、與在 成爲對象之第1透明電極3或第2透明電極4的端子之間 所流通之電流値,來求取接觸位置的座標。 本實施形態之觸控面板1中,藉由第1及第2透明電 極3、4上所設置之金屬氧化物層5的效果,在操作面上 可抑制電極圖型變得醒目。 接著說明本實施形態之觸控面板1的製造方法。 第3圖(a )〜(d )係顯示本實施形態的第1例之觸 控面板的製造方法之步驟剖面圖。 首先製備玻璃基板等之透明基板2。基板2可因應必 要裁切爲期望形狀並進行洗淨。此外,有時亦在基板2與 透明導電膜之間形成SiOx、SiNx、SiON等之中間層。接 著在基板2的一面上形成透明導電膜。透明導電膜例如爲 ITO,可使用濺鑛法或真空蒸鍍法等,以1〇〜200nm的厚 度來成膜。然後在將由感光性樹脂等所構成之蝕刻遮罩形 -18- 201231632 成於透明導電膜的上層側之狀態下,對透明導電膜進行触 刻而形成第1透明電極3與第2透明電極4的圖型。藉由 去除蝕刻遮罩,可得第3圖(a)所示之透明導電膜基板 14。 在此,在透明導電膜基板14的交叉部18上’第2透 明電極4經由連接部分所連接,但第1透明電極3被分 開。 接著在設置有第1透明電極3與第2透明電極4之一 側上,塗佈感光性樹脂後進行曝光顯影,藉此在第2透明 電極 4的連接部分上形成層間絕緣膜19(第 3圖 (b ))。用以形成層間絕緣膜1 9之感光性樹脂,係使用 具有透明性與耐熱性者。例如可使用丙烯酸樹脂等。此 外,當使用Si 02來形成層間絕緣膜1 9時,可藉由使用遮 罩之濺鍍法來形成同樣構造。 在層間絕緣膜1 9上形成透明導電膜後,在將由感光 性樹脂等所構成之蝕刻遮罩形成於透明導電膜的表面之狀 態下,對透明導電膜進行鈾刻。然後去除蝕刻遮罩,而在 層間絕緣膜1 9的上層上形成連接第1透明電極3的分開 部份之橋接電極20。藉此可得第3圖(c )所示之構造。 形成於層間絕緣膜1 9上之透明導電膜,例如可列舉出 ITO膜,此時,橋接電極20較佳亦藉由ITO所形成。 關於前述拉出配線1 1,可在後續步驟中使用銀墨等來 形成。然而,上述步驟中對透明導電膜進行蝕刻時,亦可 沿著第1透明電極3與第2透明電極4之外周緣的各周緣 -19- 201231632 使透明導電膜殘留而形成拉出配線1 1。 接著藉由快乾印刷,將金屬氧化物層形成用的塗膜組 成物塗佈於第1透明電極3、第2透明電極4及橋接電極 20上。在此,塗膜組成物,係在金屬鹽(例如鋁鹽)的存 在下,於有機溶劑中使金屬烷氧化物水解並縮合,然後添 加析出防止劑所得。接著將形成有塗膜組成物的塗膜之基 板2,在40〜150°C (例如60°C )之例如加熱板上進行乾 燥。接著在100〜3 00°C (例如200°C )之例如烤爐內進行 加熱,而在第1透明電極3、第2透明電極4及橋接電極 20上形成金屬氧化物層5。藉此可得第3圖(d )所示之 觸控面板基板3 0。亦可在例如加熱板上使基板2上的塗膜 乾燥後,對該塗膜照射紫外線後,再於烤爐內進行加熱。 從第1透明電極3與第2透明電極4之端部的端子 (圖中未顯示)中,藉由銀墨等來形成拉出配線Π,而構 成觸控面板1。觸控面板1係經由拉出配線11而連接於觸 控面板的控制電路(圖中未顯示)。 完成的觸控面板1,係夾介丙烯酸系透明黏著劑等之 黏著層9而安裝於顯示面板10的前面。此時可因應必 要,在基板2或顯示面板10的邊角上設置對準標記來進 行對位。 在安裝於顯示面板10之觸控面板1中,藉由設置金 屬氧化物層5,可使第1透明電極3與第2透明電極4的 電極圖型處於在觸控面板1的操作面上不易被觀看之狀 態。 -20- 201231632 接著說明本實施形態的其他例子之觸控面板丨〇 1。 第4圖及第5圖爲本實施形態的第2例之觸控面板之 構成圖,第4圖爲俯視圖,第5圖爲沿著第4圖的Β1-Β1· 線之剖面圖。 如第4圖所示,觸控面板101具有:透明基板1〇2、 用以偵測出形成於基板1 02的一面上之X方向的座標之第 1透明電極1 03、以及用以偵測出形成於基板丨02的另— 面上之Υ方向的座標之第2透明電極104。以下說明中, 係以基板102之一方的面爲上方,以基板1〇2之另一方的 面爲下方。此外,此時基板102之另一方的面係成爲安裝 於顯示面板1 1 〇之一側的面。 基板102爲電介質基板。基板102的材料,可使用玻 璃 '丙烯酸樹脂、聚酯樹脂、聚對苯二甲酸乙二酯樹脂、 聚碳酸酯樹脂、聚偏二氯乙烯樹脂、聚甲基丙烯酸甲酯樹 脂及聚萘二甲酸乙二酯樹脂等透明材料。特佳爲選擇適合 於後述金屬氧化物層1 05、1 06的形成之具備耐熱性與耐 藥性之材料。基板102的厚度,使用玻璃時可爲 0.1mm〜2mm,使用樹脂薄膜時可爲ΙΟμπι〜2000μιτι。 如第4圖所示,第1透明電極103與第2透明電極 104,分別由細長方形的電極所構成。第1透明電極1〇3 在X方向上延伸,第2透明電極104在Υ方向上延伸, 且各以一定間隔配設爲長條狀。此外,第1透明電極1 0 3 與第2透明電極104配設爲相互正交,全體呈方格狀。 第1透明電極1 03與第2透明電極1 04,係使用至少 -21 - 201231632 對可見光具有高穿透率且具有導電性之透明電極材料來形 成。此般具有導電性之透明電極材料,例如可使用IT 0或 ZnO等。使用ITO時,較佳係將厚度設爲5〜lOOnm以確 保充分的導電性。 第1透明電極103與第2透明電極104,可從濺鍍 法 '真空蒸鍍法、離子蒸鍍法、噴霧法、浸泡法或CVD 法等當中,考量到作爲底層之基板102的材質來選擇最適 方法而形成。 例如有應用微影技術並藉由蝕刻法對形成爲面狀之透 明電極進行圖型形成之方法,或者是使用使由上述材料所 構成之導電性塡充劑等分散於有機溶劑而成之塗料,並藉 由印刷法直接形成期望的圖型之方法等。因此,透明電極 的形成步驟中,重要的是否可精度佳地控制膜厚。因此, 形成時,特佳是選擇可形成期望膜厚且可形成透明性佳之 低電阻的膜之方法。 如第4圖及第5圖所示,於第1透明電極1〇3上形成 金屬氧化物層1〇5。金屬氧化物層105係覆蓋相當於觸控 面板101的操作面之部分上之第1透明電極的形成區域與 非形成區域。此外,如第5圖所示,於第2透明電極1 04 上(圖中爲下側)亦形成金屬氧化物層1 06。金屬氧化物 層106係覆蓋相當於觸控面板101的操作面之部分上之透 明電極的形成區域與非形成區域。金屬氧化物層105、 106,其硬度高且與第1透明電極103與第2透明電極104 之密著性佳。 -22- 201231632 金屬氧化物層105、106的形成時,係使用:在金屬 鹽(例如鋁鹽)的存在下,於有機溶劑中使金屬烷氧化物 水解並縮合,然後添加析出防止劑而得之塗膜組成物。該 塗膜組成物的詳細內容將於之後說明。 觸控面板101中,根據本說明書的實施例欄中所說明 之探討結果,係選擇金屬氧化物層105、106的折射率與 膜厚以使第1透明電極103與第2透明電極104的各電極 圖型變得不醒目。具體而言,金屬氧化物層105、106的 折射率較佳分別位於1.5〇〜1.7〇的範圍內,尤佳位於 1.54〜1.68的範圍內。膜厚較佳分別位於40nm〜170nm的 範圍內。當金屬氧化物層105、106的折射率爲1.54以上 且小於1·60時,膜厚更佳位於60nm〜150nm的範圍內。此 外,當金屬氧化物層1 0 5、1 0 6的折射率爲1.6 0以上且小 於1·68的範圍內時,膜厚更佳位於40nm〜170nm的範圍 內。 此時,爲了分別不與第1透明電極103與第2透明電 極104導通,金屬氧化物層105、106係從具有絕緣性且 可見光透明性高之金屬氧化物層來選擇。 觸控面板101中,第1透明電極103與第2透明電極 104,例如分別爲膜厚10~200nm的ITO膜。該觸控面板 1 〇 1中,第1透明電極103與第2透明電極104,例如分 別由膜厚28nm的ITO膜所構成,金屬氧化物層105、106 分別由使用烷氧化矽與烷氧化鈦所調製之塗膜組成物所形 成者,折射率爲1.6,膜厚爲80nm。 -23- 201231632 如第5圖所示,於基板102之一方的面上,設置有由 丙烯酸系透明黏著劑所構成之黏著層1〇8。此外,在黏著 層108上黏著有由透明樹脂所構成之覆蓋薄膜1〇7。第4 圖中,係省略覆蓋薄膜107。 覆蓋薄膜107,係具有第1透明電極103與金屬氧化 物層1 05的保護膜之功能。亦可塗佈透明樹脂來取代覆蓋 薄膜107。此時可省略黏著層108。 於基板102之另一方的面上,係夾介由丙烯酸系透明 黏著劑所構成之黏著層109而安裝有顯示面板110。 第5圖中雖省略其詳細內容,但顯示面板110可具有 與一般所知的顯示裝置相同之構成。例如爲液晶顯示裝置 時,顯示面板11 0可構成爲2片透明基板間夾持有液晶層 之構造。在各透明基板之與液晶層接觸之一側相反的一側 上,可分別設置偏光板。此外,各透明基板上,爲了控制 液晶的狀態,可形成分段電極或共通電極。液晶層是藉由 各透明基板與密封材所密封。 觸控面板101中,在第1透明電極103與第2透明電 極104的端部上,分別設置有端子(圖中未顯示),並從 該端子中拉出複數條拉出配線(圖中未顯示)。拉出配線 可成爲使用銀、鋁、鉻、銅或含有此等金屬的合金等之不 透明金屬配線。拉出配線,係連接於對第1透明電極1 03 與第2透明電極1 04進行電壓施加或偵測出觸控位置之控 制電路(圖中未顯示)。 具有以上構成之觸控面板101中,當作爲導電體的手 -24 - 201231632 指碰觸於操作面的任一處時,可藉由指尖與第 1 03及第2透明電極1 04之間的靜電電容耦合 器。因此,可藉由掌握指尖之接觸位置上的電 偵測出手指碰觸於哪個場所。 觸控面板101中,藉由第1透明電極103 電極104上所設置之金屬氧化物層105、106 操作面上可抑制電極圖型變得醒目。 第6圖爲本實施形態的第3例之觸控面板 之剖面圖。 如第6圖所示,觸控面板201中,係將顯 視爲第1基板,並在顯示面板210的表面設置 極203。此外,在另外製備之第2基板212之 設置第2透明電極204。以下說明中,係以第 之一方的面爲上方,以另一方的面爲下方。此3 板212之另一方的面係成爲安裝於顯示面板21 第6圖中雖省略其詳細內容,但顯示面板 與一般所知的顯示裝置相同之構成。例如爲液 時,顯示面板2 1 0可構成爲2片透明基板間夾 之構造。在各透明基板之與液晶層接觸之一側 上,可分別設置偏光板。此外,各透明基板上 液晶的狀態,可形成分段電極或共通電極。液 各透明基板與密封材所密封。 於第1透明電極203上形成金屬氧化物層 氧化物層205係覆蓋相當於觸控面板201的操 1透明電極 來形成電容 荷變化,來 與第2透明 的效果,在 的槪略構成 示面板2 1 0 第1透明電 一方的面上 2基板212 卞,第2基 〕之一側。 210可具有 晶顯示裝置 持有液晶層 相反的一側 ,爲了控制 晶層是藉由 205 。金屬 作面之部分 -25- 201231632 上之透明電極的形成區域與非形成區域。同樣的,於第2 透明電極204上亦形成金屬氧化物層206。金屬氧化物層 2 06係覆蓋相當於觸控面板201的操作面之部分上之透明 電極的形成區域與非形成區域。金屬氧化物層205、206 ’ 其硬度高且與第1透明電極203與第2透明電極204之密 著性佳。 金屬氧化物層2 05、206的形成時,係使用:在金屬 鹽(例如鋁鹽)的存在下,於有機溶劑中使金屬烷氧化物 水解並縮合,然後添加析出防止劑而得之塗膜組成物。該 塗膜組成物的詳細內容將於之後說明。 觸控面板201中,根據本說明書的實施例欄中所說明 之探討結果,係選擇金屬氧化物層205、206的折射率與 膜厚以使第1透明電極203與第2透明電極204的各電極 圖型變得不醒目》具體而言,金屬氧化物層205、206的 折射率較佳分別位於 1.50〜70的範圍內,尤佳位於 1.54〜1.68的範圍內。膜厚較佳分別位於40nm〜170nm的 範圍內。當金屬氧化物層205、206的折射率爲1.54以上 且小於1.60時,膜厚更佳位於60nm〜1 50nm的範圍內。此 外,當金屬氧化物層205、206的折射率爲1.60以上且小 於1.68的範圍內時,膜厚更佳位於40nm〜170nm的範圍 內。此時,爲了分別不與第1透明電極203與第2透明電 極204導通,金屬氧化物層2 05、206係從具有絕緣性且 可見光透明性高之金屬氧化物層來選擇。 觸控面板201中,第1透明電極203與第2透明電極 -26- 201231632 204,例如分別爲膜厚10〜200nm的ITO膜。該觸控面板 201中,第1透明電極2〇3與第2透明電極204,例如分 別由膜厚28nm的ΙΤΟ膜所構成,金屬氧化物層205、206 分別由使用烷氧化矽與烷氧化鈦所調製之塗膜組成物所形 成者,折射率爲1.6,膜厚爲80nm。 如第6圖所示,於第2基板212之一方的面上,設置 有由丙烯酸系透明黏著劑所構成之黏著層208。此外,在 黏著層208上黏著有由透明樹脂所構成之覆蓋薄膜207。 覆蓋薄膜207係具有保護膜之功能。亦可塗佈透明樹脂來 取代覆蓋薄膜207。此時可省略黏著層208。第1透明電 極203與第2透明電極204等,係與第4圖及第5圖所說 明者相同。 觸控面板201中,藉由第1透明電極2 03與第2透明 電極204上所設置之金屬氧化物層205、206的效果,在 操作面上可抑制電極圖型變得醒目。 第7圖爲本實施形態的第4例之觸控面板的槪略構成 之剖面圖。 如第7圖所示,觸控面板301中,係將顯示面板310 視爲第1基板,並在顯示面板310的表面設置第1透明電 極303。此外,在另外製備之第2基板312之一方的面上 設置第2透明電極3 04。以下說明中,係以第2基板312 之一方的面爲下方,以另一方的面爲上方。此外,第2基 板312之另一方的面係成爲對觸控面板301進行觸控操作 之一面。 -27- 201231632 第7圖中雖省略其詳細內容,但顯示面板310可具有 與一般所知的顯示裝置相同之構成。例如爲液晶顯示裝置 時,顯示面板310可構成爲2片透明基板間夾持有液晶層 之構造。在各透明基板之與液晶層接觸之一側相反的一側 上,可分別設置偏光板。此外,各透明基板上,爲了控制 液晶的狀態,可形成分段電極或共通電極。液晶層是藉由 各透明基板與密封材所密封。 於第1透明電極303上設置金屬氧化物層305。金屬 氧化物層305係覆蓋相當於觸控面板301的操作面之部分 上之透明電極的形成區域與非形成區域。同樣的,於第2 透明電極3〇4上(第7圖中係顯示爲下方側)亦形成金屬 氧化物層3 06。金屬氧化物層3 06係覆蓋相當於觸控面板 301的操作面之部分上之透明電極的形成區域與非形成區 域。金屬氧化物層305、306,其硬度高且與第1透明電極 3 03與第2透明電極3 04之密著性佳。 金屬氧化物層305、3 06的形成時,係使用··在金屬 鹽(例如鋁鹽)的存在下,於有機溶劑中使金屬烷氧化物 水解並縮合,然後添加析出防止劑而得之塗膜組成物。該 塗膜組成物的詳細內容將於之後說明。 於金屬氧化物層3 05與金屬氧化物層306之間,設置 有由丙烯酸系透明黏著劑所構成之黏著層3 08。藉由該黏 著層308’將第2基板312安裝於顯示面板310。 觸控面板3 0 1中,根據本說明書的實施例欄中所說明 之探討結果,係選擇金屬氧化物層305、306的折射率與 -28- 201231632 膜厚以使第1透明電極303與第2透明電極3〇4的各電極 圖型變得不醒目。具體而言,金屬氧化物層305、306的 折射率較佳分別位於1 . 5 0 ~ 1 · 7 0的範圍內,尤佳位於 1.54〜1.68的範圍內。膜厚較佳分別位於 40nm〜170nm的 範圍內。當金屬氧化物層305、306的折射率爲1.54以上 且小於1 .60時,膜厚更佳位於60nm~l 50nm的範圍內。此 外,當金屬氧化物層305、306的折射率爲1.60以上且小 於1.68的範圍內時,膜厚更佳位於40nm〜170nm的範圍 內。此時,爲了分別不與第1透明電極303與第2透明電 極3 04導通,金屬氧化物層3 05、306亦從具有絕緣性且 可見光透明性高之金屬氧化物層來選擇。 觸控面板301中,第1透明電極3 03與第2透明電極 304,例如分別爲膜厚10〜200nm的ITO膜。該觸控面板 301中,第1透明電極303與第2透明電極304,例如分 別由膜厚28nm的ITO膜所構成,金屬氧化物層305、306 分別由使用烷氧化矽與烷氧化鈦所調製之塗膜組成物所形 成者,折射率爲1.6,膜厚爲8 0 nm。 觸控面板301中,藉由第1透明電極3 03與第2透明 電極3 04上所設置之金屬氧化物層305、306的效果,在 操作面上可抑制電極圖型變得醒目。 第8圖爲本實施形態的第5例之觸控面板的槪略構成 之剖面圖。 如第8圖所示,觸控面板401具有透明基板402。於 基板402的上層設置有用以分別偵測出2個不同方向的位 -29 - 201231632 置之第1透明電極403及第2透明電極404。 第1透明電極403與第2透明電極404 ,係使用至少 對可見光具有高穿透率且具有導電性之透明電極材料來形 成。此般具有導電性之透明電極材料,例如可使用IT Ο或 ZnO等。使用ITO時,較佳係將厚度設爲5~100nm以確 保充分的導電性。 第1透明電極403與第2透明電極404,可從濺鍍 法、真空蒸鍍法、離子蒸鍍法、噴霧法、浸泡法或CVD 法等當中,考量到作爲底層之透明基板402或後述保護層 407來選擇最適方法而形成。 例如有應用微影技術並藉由蝕刻法對形成爲面狀之透 明電極進行圖型形成之方法,或者是使用使由上述材料所 構成之導電性塡充劑等分散於有機溶劑而成之塗料,並藉 由印刷法直接形成期望的圖型之方法等。透明電極的形成 步驟中爲重要者,爲是否可精度佳地控制膜厚者。因此, 透明電極的形成時,特佳是選擇可形成期望膜厚且可形成 透明性佳之低電阻的膜之方法。 如第8圖所示,第1透明電極403配置在基板402 上。於第1透明電極403上形成金屬氧化物層405。金屬 氧化物層405係覆蓋相當於觸控面板401的操作面之部分 上之第1透明電極403的形成區域與非形成區域。 於金屬氧化物層405上設置有保護層407。保護層 407係使用透明性高的丙烯酸樹脂。 如第8圖所示,第2透明電極404配置在保護層407 -30- 201231632 上。於第2透明電極404上形成金屬氧化物層406。金屬 氧化物層406係覆蓋相當於觸控面板401的操作面之部分 上之透明電極的形成區域與非形成區域。金屬氧化物層 40 5、406,其硬度高且與第1透明電極403與第2透明電 極404之密著性佳。 金屬氧化物層405、406的形成時,係使用:在金屬 鹽(例如鋁鹽)的存在下,於有機溶劑中使金屬烷氧化物 水解並縮合,然後添加析出防止劑而得之塗膜組成物。該 塗膜組成物的詳細內容將於之後說明。 觸控面板401中,根據本說明書的實施例欄中所說明 之探討結果,係選擇金屬氧化物層405、406的折射率與 膜厚以使第1透明電極403與第2透明電極404的各電極 圖型變得不醒目。具體而言,金屬氧化物層405、406的 折射率較佳分別位於1.50〜1.70的範圍內,尤佳位於 1.54〜1.68的範圍內。膜厚較佳分別位於40nm〜170nm的 範圍內。當金屬氧化物層405、406的折射率爲1.54以上 且小於1.60時,膜厚更佳位於60nm~l5〇nm的範圍內。此 外,當金屬氧化物層405、406的折射率爲1.60以上且小 於1.68的範圍內時,膜厚更佳位於40nm〜170nm的範圍 內。此時,爲了分別不與第1透明電極403與第2透明電 極404導通,金屬氧化物層4〇5、4〇6亦從具有絕緣性且 可見光透明性高之金屬氧化物層來選擇。 觸控面板401中,第1透明電極403與第2透明電極 404,例如分別爲膜厚10〜200nm的ITO膜。該觸控面板 -31 - 201231632 4〇1中,第1透明電極403與第2透明電極4〇4,例如分 別由膜厚28nm的ITO膜所構成,金屬氧化物層405、406 分別由使用烷氧化矽與烷氧化鈦所調製之塗膜組成物所形 成者,折射率爲1.60,膜厚爲80nm。 如第8圖所示,於金屬氧化物層406的面上,設置有 由丙烯酸系透明黏著劑所構成之黏著層408。觸控面板 401係夾介該黏著層40 8而安裝有顯示面板110。 具有以上構成之觸控面板401中,當作爲導電體的手 指碰觸於操作面的任一處時,可藉由指尖與第1透明電極 403及第2透明電極404之間的靜電電容耦合來形成電容 器。因此,可藉由掌握指尖之接觸位置上的電荷變化,來 偵測出手指碰觸於哪個場所。 觸控面板401中,藉由第1透明電極403與第2透明 電極404上所設置之金屬氧化物層405、406的效果,在 操作面上可抑制電極圖型變得醒目。 以上係說明本實施形態之觸控面板,但本發明並不限 定於上述實施形態。對於使用ITO等透明電極之多樣型式 的觸控面板,藉由在該透明電極上設置折射率與膜厚經理 想地選擇之金屬氧化物層,可得到上述效果。 接著說明用以形成金屬氧化物層之塗膜組成物。 <塗膜組成物> 用以形成金屬氧化物層之塗膜組成物,是在金屬鹽的 存在下,於有機溶劑中使金屬烷氧化物水解並縮合,然後 -32- 201231632 添加析出防止劑而得之塗膜組成物。 塗膜組成物中所使用之金屬烷氧化物,可列舉出矽 (Si )、鈦(Ti )、担(Ta )、锆(Zr )、硼(B )、鋁 (A1)、鎂(Mg)、錫(Sn)及鋅(Zn)等之金屬的烷 氧化物。當中,就取得容易性與塗膜組成物的貯藏穩定性 之觀點來看,較佳爲選自烷氧化矽、烷氧化矽的部分縮合 物、以及烷氧化鈦之至少1種。 塗膜組成物,如上述般,是在金屬鹽的存在下,於有 機溶劑中使此等金屬烷氧化物水解並縮合而得之塗膜組成 物。該塗膜組成物含有添加析出防止劑。析出防止劑係具 有在形成塗佈被膜時防止金屬鹽析出於塗膜中之效果。 當塗膜組成物中含有烷氧化鈦成分時,較佳係含有在 有機溶劑中具有可使烷氧化鈦成分達到穩定化之效果之烷 二醇類或其單醚類。 於製造出含有烷氧化鈦成分之塗膜組成物時,爲了使 烷氧化鈦成分達到穩定化並提高塗膜組成物的貯藏穩定 性,在混合烷氧化鈦與烷二醇類或其單醚而達到穩定化 後,係單獨使用烷氧化鈦或與烷氧化矽混合,並在金屬鹽 的存在下進行水解並縮合。 當塗膜組成物中含有烷氧化鈦與烷氧化矽兩成分時, 較佳係在金屬鹽的存在下使烷氧化矽水解後,再混合先前 混合有烷二醇類或其單醚類而達到穩定化之烷氧化鈦。 塗膜組成物中所使用之金屬烷氧化物,是由一般式 (I)表示。 -33- 201231632 Μ ( 〇R ) η ") (式中,Μ表示金屬,R表示Cl〜C 5的烷基,η表示 Μ的價數) 尤其是,烷氧化矽或其部分縮合物,係使用選自由一 •般式(III)表示之化合物的1種或2種以上及部分縮合物 (五聚物以下)的至少!種°Oxide) or ZnO (zinc oxide). When ITO is used, it is preferred to set the thickness to 10 to 20 nm to ensure sufficient conductivity. The first transparent electrode 3 and the second transparent electrode 4 are formed, for example, in the following manner. First, from the sputtering method, the vacuum evaporation method, the ion evaporation method, the spray method, the immersion method, or the CVD (Chemical Vapor Deposition) method, a method of considering the material of the substrate 2 as the underlayer is selected so that the transparent conductive film is formed. membrane. The above transparent conductive film is then patterned using lithography. Alternatively, a coating material obtained by dispersing a conductive chelating agent or the like composed of the above materials in an organic solvent is used, and a desired pattern is formed by a printing method. It is important in the step of forming the transparent electrode, whether or not the film thickness can be controlled with high precision. Therefore, in the formation of a transparent electrode, it is particularly preferable to select a method which can form a film having a desired film thickness and which can form a low-resistance film having good transparency. As shown in Figs. 1 and 2, the first transparent electrode 3 and the second transparent electrode 4 are formed on the same surface of the substrate 2 to constitute the same layer. Therefore, the first transparent electrode 3 and the second transparent electrode 4 intersect at a plurality of places to form the intersection portion 18. In the present embodiment, the intersection portion is separated such that one of the first transparent electrode 3 and the second transparent electrode 4 does not contact the other. That is, as shown in Fig. 2, the second transparent electrode 4 is connected to any one of the plurality of intersecting portions 18, but the first transparent electrode 3 is divided by -14 to 201231632. In order to connect the first transparent electrode 3, a bridge electrode 20 is provided, and an interlayer insulating film 19 made of an insulating material is provided between the bridge electrode 20 and the second transparent electrode 4. The following description will be described in detail with reference to Figs. 1 and 2 . As shown in Fig. 2, a light-transmitting interlayer insulating film 19 is formed on the second transparent electrode 4 of the intersection portion 18. As the interlayer insulating film 19, an inorganic material such as SiO 2 or an organic material such as a photosensitive acrylic resin can be used. When SiO 2 is used, for example, a structure in which a SiO 2 film is formed only on the second transparent electrode 4 of the intersection portion 18 can be formed by a sputtering method using a mask. Further, when a photosensitive acrylic resin is used, a lithography technique can also be applied to form the same structure. A bridge electrode 20 is provided on the upper layer of the interlayer insulating film 19. The bridge electrode 20 is formed by electrically connecting the first transparent electrodes 3 separated on the intersection portion 18 to each other by a light-transmitting material. By providing the bridge electrode 20, the first transparent electrode 3 can be electrically connected in the Y direction. As shown in Fig. 1, the first transparent electrode 3 and the second transparent electrode 4 are formed in a shape in which a plurality of rhombic electrode pad portions 2 1 are arranged in the longitudinal direction or the lateral direction. The connection portion of the second transparent electrode 4 at the intersection portion 18 has a shape narrower than the rhombic electrode pad portion 21 of the second transparent electrode 4. Further, the bridge electrode 20 is also formed in a strip shape having a narrower width than the rhombic electrode pad portion 21. As shown in FIGS. 1 and 2, in the touch panel 1 of the present embodiment, the first transparent electrode 3 and the second transparent electrode 4 (that is, the first transparent electrode 3 and the second transparent electrode 4 are covered) A metal oxide layer 5 is formed. -15- 201231632 and covering a formation region and a non-formation region of the transparent electrode on the portion corresponding to the operation surface of the touch panel 1. The metal oxide layer 5 has a high hardness and is excellent in adhesion to the first transparent electrode 3 and the second transparent electrode 4. In the formation of the metal oxide layer 5, a coating film composition obtained by hydrolyzing and condensing a metal alkoxide in an organic solvent in the presence of a metal salt (for example, an aluminum salt) and then adding a precipitation preventing agent is used. The details of the coating composition will be described later. In the touch panel 1, the refractive index and the film thickness of the metal oxide layer 5 are selected so that the respective electrodes of the first transparent electrode 3 and the second transparent electrode 4 are selected according to the results of the discussion described in the column of the embodiment of the present specification. The type has become unobtrusive. Specifically, the refractive index of the metal oxide layer 5 is preferably in the range of 1.50 to 1.70, and particularly preferably in the range of 1.54 to 1.68. The film thickness is preferably in the range of 40 nm to 170 nm. When the refractive index of the metal oxide layer 5 is 1.54 or more and less than 1.60, the film thickness is more preferably in the range of 60 nm to 150 nm. Further, when the refractive index of the metal oxide layer 5 is 1.60 or more and less than 1.68, the film thickness is more preferably in the range of 40 nm to 170 nm. In order to prevent the first transparent electrode 3 and the second transparent electrode 4 from being turned on, the metal oxide layer 5 is selected from a metal oxide layer having insulating properties and high visible light transparency. In the touch panel 1, the metal oxide layer 5 is formed, for example, of a coating film composition containing a lanthanum alkoxide and a titanium alkoxide, and has a refractive index of 1.60 and a film thickness of 80 nm. As shown in FIG. 2, the touch panel 1 is formed by laminating an adhesive layer 9 such as an acrylic photocurable resin to form a first transparent electrode 3, 16-201231632, etc., and a display panel. The uppermost layer on the viewing side can thereby constitute one display device. Here, the adhesive layer 9 is provided on the metal oxide layer 5°. The above display device has the touch panel 1 and the display panel 10, and may have a backlight as necessary. Although the details are omitted in Fig. 2, the display panel 10 may have the same configuration as a generally known display device. For example, in the case of a liquid crystal display device, the display panel 10 may have a structure in which a liquid crystal layer is sandwiched between two transparent substrates. A polarizing plate may be separately provided on a side of the transparent substrate opposite to one side of the liquid crystal layer. Further, on each of the transparent substrates, a segment electrode or a common electrode may be formed in order to control the state of the liquid crystal. The liquid crystal layer is sealed by each transparent substrate and a sealing material. As shown in FIG. 1 , in the touch panel 1 , terminals (not shown) are respectively provided on the ends of the first transparent electrode 3 and the second transparent electrode 4 , and a plurality of strips are pulled out from the terminals. Pull out the wiring 11. In addition to silver, aluminum, chromium, copper, and molybdenum, an opaque metal wiring may be formed by using an alloy containing such a metal such as a Mo-Nb (molybdenum-niobium) alloy. The pull-out wiring 1 1 is connected to a control circuit (not shown) for applying voltage to the first transparent electrode 3 and the second transparent electrode 4 or detecting a touch position. In the touch panel 1 having the above configuration, a voltage is applied to the plurality of first transparent electrodes 3 and the second transparent electrodes 4 in order to impart electric charges. When a finger as a conductor touches any of the operation faces, the capacitor can be formed by capacitive coupling between the fingertip and the first transparent electrode 3 and the second transparent electrode 4. Therefore, it is possible to detect which position the finger touches by grasping the change of the electric charge at the contact position of the fingertip. Further, the touch panel 1 can selectively apply a voltage to either of the first transparent electrode 3 and the second transparent electrode 4 by control of a control circuit (not shown). At this time, an electric field is formed on the transparent electrode to which the voltage is applied, and when it is touched by a finger or the like in this state, the contact position is grounded via the electrostatic capacitance of the human body. As a result, a change in the resistance 产生 occurs between the terminal (not shown) of the target first transparent electrode 3 or the second transparent electrode 4 and the contact position. Since the resistance 呈 is proportional to the distance between the contact position and the terminal of the first transparent electrode 3 or the second transparent electrode 4 to be targeted, the control circuit can detect the contact position and become the first target. The current flowing between the terminals of the transparent electrode 3 or the second transparent electrode 4 is determined to obtain the coordinates of the contact position. In the touch panel 1 of the present embodiment, the effect of the metal oxide layer 5 provided on the first and second transparent electrodes 3 and 4 can suppress the electrode pattern from becoming conspicuous on the operation surface. Next, a method of manufacturing the touch panel 1 of the present embodiment will be described. Fig. 3 (a) to (d) are cross-sectional views showing the steps of a method of manufacturing the touch panel of the first example of the embodiment. First, a transparent substrate 2 such as a glass substrate is prepared. The substrate 2 can be cut into a desired shape and washed as necessary. Further, an intermediate layer of SiOx, SiNx, SiON or the like may be formed between the substrate 2 and the transparent conductive film. A transparent conductive film is then formed on one surface of the substrate 2. The transparent conductive film is, for example, ITO, and can be formed into a film at a thickness of from 1 Å to 200 nm by a sputtering method or a vacuum deposition method. Then, the transparent conductive film is contact-etched to form the first transparent electrode 3 and the second transparent electrode 4 in a state in which the etching mask shape -18-201231632 composed of a photosensitive resin or the like is formed on the upper layer side of the transparent conductive film. The pattern. The transparent conductive film substrate 14 shown in Fig. 3(a) can be obtained by removing the etching mask. Here, the second transparent electrode 4 is connected to the intersection portion 18 of the transparent conductive film substrate 14 via the connection portion, but the first transparent electrode 3 is separated. Next, on one side of the first transparent electrode 3 and the second transparent electrode 4, a photosensitive resin is applied, and then exposure development is performed to form an interlayer insulating film 19 on the connection portion of the second transparent electrode 4 (third Figure (b)). The photosensitive resin for forming the interlayer insulating film 19 is used to have transparency and heat resistance. For example, an acrylic resin or the like can be used. Further, when Si 2 is used to form the interlayer insulating film 19, the same structure can be formed by sputtering using a mask. After the transparent conductive film is formed on the interlayer insulating film 19, the transparent conductive film is uranium-etched while an etching mask made of a photosensitive resin or the like is formed on the surface of the transparent conductive film. Then, the etching mask is removed, and a bridge electrode 20 connecting the separated portions of the first transparent electrode 3 is formed on the upper layer of the interlayer insulating film 19. Thereby, the configuration shown in Fig. 3(c) can be obtained. The transparent conductive film formed on the interlayer insulating film 19 is, for example, an ITO film. In this case, the bridge electrode 20 is preferably formed of ITO. The aforementioned pull-out wiring 1 1 can be formed using silver ink or the like in a subsequent step. However, when the transparent conductive film is etched in the above step, the transparent conductive film may be left along the peripheral edges -19 to 201231632 of the outer periphery of the first transparent electrode 3 and the second transparent electrode 4 to form the pull-out wiring 1 1 . . Then, a coating film composition for forming a metal oxide layer is applied onto the first transparent electrode 3, the second transparent electrode 4, and the bridge electrode 20 by rapid dry printing. Here, the coating film composition is obtained by hydrolyzing and condensing a metal alkoxide in an organic solvent in the presence of a metal salt (e.g., an aluminum salt), and then adding a precipitation preventing agent. Next, the substrate 2 on which the coating film of the coating film composition is formed is dried on, for example, a hot plate at 40 to 150 ° C (e.g., 60 ° C). Next, heating is performed in, for example, an oven at 100 to 300 ° C (e.g., 200 ° C), and a metal oxide layer 5 is formed on the first transparent electrode 3, the second transparent electrode 4, and the bridge electrode 20. Thereby, the touch panel substrate 30 shown in Fig. 3(d) can be obtained. Alternatively, the coating film on the substrate 2 may be dried on, for example, a hot plate, and then the coating film may be irradiated with ultraviolet rays and then heated in an oven. The touch panel 1 is formed by forming a pull-out wiring raft by silver ink or the like from a terminal (not shown) at the end portions of the first transparent electrode 3 and the second transparent electrode 4. The touch panel 1 is connected to a control circuit (not shown) of the touch panel via the pull-out wiring 11. The completed touch panel 1 is attached to the front surface of the display panel 10 by an adhesive layer 9 such as an acrylic transparent adhesive. At this time, alignment marks may be provided on the substrate 2 or the corners of the display panel 10 to perform alignment as necessary. In the touch panel 1 mounted on the display panel 10, by providing the metal oxide layer 5, the electrode patterns of the first transparent electrode 3 and the second transparent electrode 4 can be made difficult on the operation surface of the touch panel 1. The state being viewed. -20- 201231632 Next, a touch panel 丨〇 1 of another example of the present embodiment will be described. 4 and 5 are views showing a configuration of a touch panel according to a second example of the present embodiment, Fig. 4 is a plan view, and Fig. 5 is a cross-sectional view taken along line Β1-Β1· of Fig. 4. As shown in FIG. 4, the touch panel 101 has a transparent substrate 1 and 2, and a first transparent electrode 103 for detecting an X-direction coordinate formed on one side of the substrate 102, and for detecting The second transparent electrode 104 formed on the other surface of the substrate 丨02 in the Υ direction is formed. In the following description, one of the faces of the substrate 102 is above, and the other of the faces of the substrate 1〇2 is downward. Further, at this time, the other surface of the substrate 102 is a surface mounted on one side of the display panel 1 1 . The substrate 102 is a dielectric substrate. As the material of the substrate 102, glass 'acrylic resin, polyester resin, polyethylene terephthalate resin, polycarbonate resin, polyvinylidene chloride resin, polymethyl methacrylate resin, and polynaphthalene dicarboxylic acid can be used. A transparent material such as an ethylene glycol resin. It is particularly preferable to select a material having heat resistance and chemical resistance suitable for formation of the metal oxide layers 156 and 106 which will be described later. The thickness of the substrate 102 can be 0.1 mm to 2 mm when glass is used, and ΙΟμπι to 2000 μιτι when using a resin film. As shown in Fig. 4, the first transparent electrode 103 and the second transparent electrode 104 are each formed of a thin rectangular electrode. The first transparent electrode 1〇3 extends in the X direction, and the second transparent electrode 104 extends in the x direction, and is arranged in a strip shape at regular intervals. Further, the first transparent electrode 1 0 3 and the second transparent electrode 104 are arranged to be orthogonal to each other, and the entire shape is a checkered shape. The first transparent electrode 103 and the second transparent electrode 104 are formed using a transparent electrode material having a high transmittance and conductivity for at least -21 - 201231632. As the conductive electrode material having conductivity, for example, IT 0 or ZnO or the like can be used. When ITO is used, it is preferred to set the thickness to 5 to 100 nm to ensure sufficient conductivity. The first transparent electrode 103 and the second transparent electrode 104 can be selected from the material of the substrate 102 as the underlayer from the sputtering method, the vacuum deposition method, the ion deposition method, the spray method, the immersion method, or the CVD method. The most suitable method is formed. For example, there is a method in which a transparent electrode formed into a planar shape is formed by etching using a lithography technique, or a conductive sputum composed of the above material is dispersed in an organic solvent. And a method of directly forming a desired pattern by a printing method or the like. Therefore, in the step of forming the transparent electrode, it is important to control the film thickness with high precision. Therefore, in the formation, it is particularly preferable to select a method which can form a film having a desired film thickness and which can form a low-resistance film having good transparency. As shown in Figs. 4 and 5, a metal oxide layer 1〇5 is formed on the first transparent electrode 1〇3. The metal oxide layer 105 covers a formation region and a non-formation region of the first transparent electrode corresponding to a portion of the operation surface of the touch panel 101. Further, as shown in Fig. 5, a metal oxide layer 106 is also formed on the second transparent electrode 104 (lower side in the drawing). The metal oxide layer 106 covers a formation region and a non-formation region of the transparent electrode corresponding to a portion of the operation surface of the touch panel 101. The metal oxide layers 105 and 106 have high hardness and good adhesion to the first transparent electrode 103 and the second transparent electrode 104. -22- 201231632 The metal oxide layers 105 and 106 are formed by hydrolyzing and condensing a metal alkoxide in an organic solvent in the presence of a metal salt (for example, an aluminum salt), and then adding a precipitation preventing agent. Coating film composition. The details of the coating composition will be described later. In the touch panel 101, according to the results of the discussion described in the column of the embodiment of the present specification, the refractive indices and film thicknesses of the metal oxide layers 105 and 106 are selected so that the first transparent electrode 103 and the second transparent electrode 104 are each The electrode pattern became unobtrusive. Specifically, the refractive indices of the metal oxide layers 105, 106 are preferably in the range of 1.5 Å to 1.7 Å, and particularly preferably in the range of 1.54 to 1.68. The film thickness is preferably in the range of 40 nm to 170 nm, respectively. When the refractive index of the metal oxide layers 105, 106 is 1.54 or more and less than 1.60, the film thickness is more preferably in the range of 60 nm to 150 nm. Further, when the refractive index of the metal oxide layers 1 0 5 and 1 0 6 is in the range of 1.60 or more and less than 1.68, the film thickness is more preferably in the range of 40 nm to 170 nm. At this time, in order to prevent conduction between the first transparent electrode 103 and the second transparent electrode 104, the metal oxide layers 105 and 106 are selected from a metal oxide layer having insulating properties and high visible light transparency. In the touch panel 101, the first transparent electrode 103 and the second transparent electrode 104 are, for example, ITO films having a thickness of 10 to 200 nm. In the touch panel 1A, the first transparent electrode 103 and the second transparent electrode 104 are each formed of, for example, an ITO film having a thickness of 28 nm, and the metal oxide layers 105 and 106 are made of aluminoxane and titanium alkoxide, respectively. The formed coating film composition was formed to have a refractive index of 1.6 and a film thickness of 80 nm. -23- 201231632 As shown in Fig. 5, an adhesive layer 1〇8 made of an acrylic transparent adhesive is provided on one surface of the substrate 102. Further, a cover film 1?7 composed of a transparent resin is adhered to the adhesive layer 108. In Fig. 4, the cover film 107 is omitted. The cover film 107 has a function as a protective film of the first transparent electrode 103 and the metal oxide layer 156. Instead of the cover film 107, a transparent resin may be applied. The adhesive layer 108 can be omitted at this time. On the other surface of the substrate 102, a display panel 110 is attached to the adhesive layer 109 made of an acrylic transparent adhesive. Although the details are omitted in Fig. 5, the display panel 110 may have the same configuration as a generally known display device. For example, in the case of a liquid crystal display device, the display panel 110 may have a structure in which a liquid crystal layer is sandwiched between two transparent substrates. A polarizing plate may be separately provided on a side of the transparent substrate opposite to one side of the liquid crystal layer. Further, on each of the transparent substrates, a segment electrode or a common electrode may be formed in order to control the state of the liquid crystal. The liquid crystal layer is sealed by the respective transparent substrates and the sealing material. In the touch panel 101, terminals (not shown) are respectively provided at the ends of the first transparent electrode 103 and the second transparent electrode 104, and a plurality of pull-out wirings are pulled out from the terminals (not shown) display). Pulling out the wiring can be an opaque metal wiring using silver, aluminum, chromium, copper, or an alloy containing the metals. The pull-out wiring is connected to a control circuit (not shown) for applying voltage to the first transparent electrode 103 and the second transparent electrode 104 or detecting a touch position. In the touch panel 101 having the above configuration, when the hand-24 - 201231632 as a conductor touches any one of the operation faces, the fingertip and the first 03 and the second transparent electrode 104 can be used. Electrostatic capacitive coupler. Therefore, it is possible to detect which place the finger touches by grasping the electric power at the contact position of the fingertip. In the touch panel 101, the electrode patterns on the metal oxide layers 105 and 106 provided on the first transparent electrode 103 electrode 104 can be prevented from becoming conspicuous. Fig. 6 is a cross-sectional view showing a touch panel of a third example of the embodiment. As shown in Fig. 6, the touch panel 201 is regarded as a first substrate, and a pole 203 is provided on the surface of the display panel 210. Further, a second transparent electrode 204 is provided on the second substrate 212 which is separately prepared. In the following description, the first surface is the upper side and the other side is the lower side. The other surface of the three-plate 212 is attached to the display panel 21. Although the details are omitted in the sixth drawing, the display panel has the same configuration as a generally known display device. For example, when the liquid is used, the display panel 210 may be configured to sandwich between two transparent substrates. A polarizing plate may be separately provided on one side of each of the transparent substrates in contact with the liquid crystal layer. Further, a state of liquid crystal on each of the transparent substrates can form a segment electrode or a common electrode. Liquid Each transparent substrate is sealed with a sealing material. The metal oxide layer oxide layer 205 is formed on the first transparent electrode 203 to cover the transparent electrode corresponding to the touch panel 201 to form a capacitance change, and the second transparent effect is applied to the display panel. 2 1 0 The surface of the first transparent electric circuit is on the side of one of the two substrates 212 and 第, the second base. 210 may have a crystal display device holding the opposite side of the liquid crystal layer, in order to control the crystal layer by 205. Part of the metal surface -25- 201231632 The formation area and non-formation area of the transparent electrode. Similarly, a metal oxide layer 206 is also formed on the second transparent electrode 204. The metal oxide layer 060 covers a formation region and a non-formation region of the transparent electrode on the portion corresponding to the operation surface of the touch panel 201. The metal oxide layers 205 and 206' have high hardness and are excellent in adhesion to the first transparent electrode 203 and the second transparent electrode 204. When the metal oxide layers 2 05 and 206 are formed, a metal alkoxide is hydrolyzed and condensed in an organic solvent in the presence of a metal salt (for example, an aluminum salt), and then a precipitation preventing agent is added to obtain a coating film. Composition. The details of the coating composition will be described later. In the touch panel 201, the refractive index and the film thickness of the metal oxide layers 205 and 206 are selected so that the first transparent electrode 203 and the second transparent electrode 204 are each selected according to the results of the discussion in the column of the embodiment of the present specification. The electrode pattern becomes inconspicuous. Specifically, the refractive indices of the metal oxide layers 205 and 206 are preferably in the range of 1.50 to 70, and particularly preferably in the range of 1.54 to 1.68. The film thickness is preferably in the range of 40 nm to 170 nm, respectively. When the refractive index of the metal oxide layers 205, 206 is 1.54 or more and less than 1.60, the film thickness is more preferably in the range of 60 nm to 150 nm. Further, when the refractive index of the metal oxide layers 205, 206 is in the range of 1.60 or more and less than 1.68, the film thickness is more preferably in the range of 40 nm to 170 nm. At this time, in order to prevent conduction between the first transparent electrode 203 and the second transparent electrode 204, the metal oxide layers 205 and 206 are selected from a metal oxide layer having insulating properties and high visible light transparency. In the touch panel 201, the first transparent electrode 203 and the second transparent electrode -26-201231632 204 are, for example, ITO films each having a film thickness of 10 to 200 nm. In the touch panel 201, the first transparent electrode 2〇3 and the second transparent electrode 204 are each formed of, for example, a ruthenium film having a thickness of 28 nm, and the metal oxide layers 205 and 206 are made of a lanthanum alkoxide and a titanium alkoxide, respectively. The formed coating film composition was formed to have a refractive index of 1.6 and a film thickness of 80 nm. As shown in Fig. 6, an adhesive layer 208 made of an acrylic transparent adhesive is provided on one of the surfaces of the second substrate 212. Further, a cover film 207 made of a transparent resin is adhered to the adhesive layer 208. The cover film 207 has a function as a protective film. A cover film 207 may be replaced by a transparent resin. The adhesive layer 208 can be omitted at this time. The first transparent electrode 203, the second transparent electrode 204, and the like are the same as those described in Figs. 4 and 5. In the touch panel 201, the effect of the metal oxide layers 205 and 206 provided on the first transparent electrode 203 and the second transparent electrode 204 can suppress the electrode pattern from becoming conspicuous on the operation surface. Fig. 7 is a cross-sectional view showing the schematic configuration of a touch panel of a fourth example of the embodiment. As shown in Fig. 7, in the touch panel 301, the display panel 310 is regarded as a first substrate, and the first transparent electrode 303 is provided on the surface of the display panel 310. Further, a second transparent electrode 304 is provided on one of the surfaces of the second substrate 312 which is separately prepared. In the following description, one of the surfaces of the second substrate 312 is below and the other surface is upward. Further, the other surface of the second substrate 312 is one surface of the touch panel 301. -27- 201231632 Although the details are omitted in Fig. 7, the display panel 310 may have the same configuration as a generally known display device. For example, in the case of a liquid crystal display device, the display panel 310 may have a structure in which a liquid crystal layer is sandwiched between two transparent substrates. A polarizing plate may be separately provided on a side of the transparent substrate opposite to one side of the liquid crystal layer. Further, on each of the transparent substrates, a segment electrode or a common electrode may be formed in order to control the state of the liquid crystal. The liquid crystal layer is sealed by the respective transparent substrates and the sealing material. A metal oxide layer 305 is provided on the first transparent electrode 303. The metal oxide layer 305 covers a formation region and a non-formation region of the transparent electrode on a portion corresponding to the operation surface of the touch panel 301. Similarly, a metal oxide layer 306 is also formed on the second transparent electrode 3〇4 (shown as a lower side in Fig. 7). The metal oxide layer 306 covers a formation region and a non-formation region of the transparent electrode on the portion corresponding to the operation surface of the touch panel 301. The metal oxide layers 305 and 306 have high hardness and are excellent in adhesion to the first transparent electrode 303 and the second transparent electrode 304. When the metal oxide layers 305 and 306 are formed, the metal alkoxide is hydrolyzed and condensed in an organic solvent in the presence of a metal salt (for example, an aluminum salt), and then a precipitation inhibitor is added thereto. Membrane composition. The details of the coating composition will be described later. Between the metal oxide layer 305 and the metal oxide layer 306, an adhesive layer 308 composed of an acrylic transparent adhesive is provided. The second substrate 312 is attached to the display panel 310 by the adhesive layer 308'. In the touch panel 310, according to the results of the discussion in the column of the embodiment of the present specification, the refractive indices of the metal oxide layers 305 and 306 and the film thickness of -28-201231632 are selected to make the first transparent electrode 303 and the first transparent electrode 303 2 The electrode patterns of the transparent electrodes 3〇4 become inconspicuous. Specifically, the refractive indices of the metal oxide layers 305 and 306 are preferably in the range of 1.5 to 1 · 70, and particularly preferably in the range of 1.54 to 1.68. The film thickness is preferably in the range of 40 nm to 170 nm, respectively. When the refractive index of the metal oxide layers 305, 306 is 1.54 or more and less than 1.60, the film thickness is more preferably in the range of 60 nm to 150 nm. Further, when the refractive index of the metal oxide layers 305, 306 is in the range of 1.60 or more and less than 1.68, the film thickness is more preferably in the range of 40 nm to 170 nm. At this time, in order to prevent conduction between the first transparent electrode 303 and the second transparent electrode 309, the metal oxide layers 305 and 306 are also selected from a metal oxide layer having insulating properties and high visible light transparency. In the touch panel 301, the first transparent electrode 303 and the second transparent electrode 304 are, for example, ITO films each having a film thickness of 10 to 200 nm. In the touch panel 301, the first transparent electrode 303 and the second transparent electrode 304 are each formed of, for example, an ITO film having a thickness of 28 nm, and the metal oxide layers 305 and 306 are respectively prepared by using an alkoxyus oxide and a titanium alkoxide. The film composition was formed to have a refractive index of 1.6 and a film thickness of 80 nm. In the touch panel 301, the effect of the metal oxide layers 305 and 306 provided on the first transparent electrode 303 and the second transparent electrode 308 can suppress the electrode pattern from becoming conspicuous on the operation surface. Fig. 8 is a cross-sectional view showing the schematic configuration of a touch panel of a fifth example of the embodiment. As shown in FIG. 8, the touch panel 401 has a transparent substrate 402. The first transparent electrode 403 and the second transparent electrode 404 are provided on the upper layer of the substrate 402 to detect the positions -29 - 201231632 of the two different directions. The first transparent electrode 403 and the second transparent electrode 404 are formed using a transparent electrode material having a high transmittance and a conductivity at least for visible light. As the transparent electrode material having conductivity, for example, IT Ο or ZnO can be used. When ITO is used, it is preferable to set the thickness to 5 to 100 nm to ensure sufficient conductivity. The first transparent electrode 403 and the second transparent electrode 404 can be considered from a sputtering method, a vacuum deposition method, an ion deposition method, a spray method, a immersion method, a CVD method, or the like, to a transparent substrate 402 as a bottom layer or a protection described later. Layer 407 is formed by selecting the optimum method. For example, there is a method in which a transparent electrode formed into a planar shape is formed by etching using a lithography technique, or a conductive sputum composed of the above material is dispersed in an organic solvent. And a method of directly forming a desired pattern by a printing method or the like. In the step of forming the transparent electrode, it is important that the film thickness is controlled with high precision. Therefore, in the formation of the transparent electrode, it is particularly preferable to select a method of forming a film having a desired film thickness and forming a low-resistance film having good transparency. As shown in FIG. 8, the first transparent electrode 403 is disposed on the substrate 402. A metal oxide layer 405 is formed on the first transparent electrode 403. The metal oxide layer 405 covers a formation region and a non-formation region of the first transparent electrode 403 on a portion corresponding to the operation surface of the touch panel 401. A protective layer 407 is disposed on the metal oxide layer 405. The protective layer 407 is made of an acrylic resin having high transparency. As shown in Fig. 8, the second transparent electrode 404 is disposed on the protective layer 407 -30-201231632. A metal oxide layer 406 is formed on the second transparent electrode 404. The metal oxide layer 406 covers a formation region and a non-formation region of the transparent electrode on a portion corresponding to the operation surface of the touch panel 401. The metal oxide layers 40 5 and 406 have high hardness and good adhesion to the first transparent electrode 403 and the second transparent electrode 404. When the metal oxide layers 405 and 406 are formed, a composition of a coating film obtained by hydrolyzing and condensing a metal alkoxide in an organic solvent in the presence of a metal salt (for example, an aluminum salt) and then adding a precipitation preventing agent is used. Things. The details of the coating composition will be described later. In the touch panel 401, according to the results of the discussion described in the column of the embodiment of the present specification, the refractive indices and film thicknesses of the metal oxide layers 405 and 406 are selected such that the first transparent electrode 403 and the second transparent electrode 404 are each The electrode pattern became unobtrusive. Specifically, the refractive indices of the metal oxide layers 405 and 406 are preferably in the range of 1.50 to 1.70, and particularly preferably in the range of 1.54 to 1.68. The film thickness is preferably in the range of 40 nm to 170 nm, respectively. When the refractive index of the metal oxide layers 405, 406 is 1.54 or more and less than 1.60, the film thickness is more preferably in the range of 60 nm to 15 nm. Further, when the refractive index of the metal oxide layers 405, 406 is in the range of 1.60 or more and less than 1.68, the film thickness is more preferably in the range of 40 nm to 170 nm. At this time, in order to prevent conduction between the first transparent electrode 403 and the second transparent electrode 404, the metal oxide layers 4〇5 and 4〇6 are also selected from a metal oxide layer having insulating properties and high visible light transparency. In the touch panel 401, the first transparent electrode 403 and the second transparent electrode 404 are, for example, ITO films each having a film thickness of 10 to 200 nm. In the touch panel-31 - 201231632, the first transparent electrode 403 and the second transparent electrode 4〇4 are respectively formed of an ITO film having a film thickness of 28 nm, and the metal oxide layers 405 and 406 are respectively made of an alkane. The composition of the coating film prepared by cerium oxide and titanium alkoxide was 1.60, and the film thickness was 80 nm. As shown in Fig. 8, an adhesive layer 408 made of an acrylic transparent adhesive is provided on the surface of the metal oxide layer 406. The touch panel 401 is provided with the display panel 110 with the adhesive layer 40 8 interposed therebetween. In the touch panel 401 having the above configuration, when a finger as a conductor touches any of the operation surfaces, electrostatic coupling between the fingertip and the first transparent electrode 403 and the second transparent electrode 404 can be performed. To form a capacitor. Therefore, it is possible to detect which position the finger touches by grasping the change in the charge at the contact position of the fingertip. In the touch panel 401, the effect of the metal oxide layers 405 and 406 provided on the first transparent electrode 403 and the second transparent electrode 404 can suppress the electrode pattern from becoming conspicuous on the operation surface. The touch panel of this embodiment will be described above, but the present invention is not limited to the above embodiment. For various types of touch panels using transparent electrodes such as ITO, the above effects can be obtained by providing a metal oxide layer having a refractive index and a film thickness which are strategically selected on the transparent electrode. Next, a coating film composition for forming a metal oxide layer will be described. <Coating film composition> The coating film composition for forming a metal oxide layer is obtained by hydrolyzing and condensing a metal alkoxide in an organic solvent in the presence of a metal salt, and then adding -32-201231632 to prevent precipitation The coating composition obtained by the agent. Examples of the metal alkoxide used in the coating composition include bismuth (Si), titanium (Ti), tantalum (Ta), zirconium (Zr), boron (B), aluminum (A1), and magnesium (Mg). Alkoxides of metals such as tin (Sn) and zinc (Zn). In view of the ease of storage and the storage stability of the coating film composition, at least one selected from the group consisting of alkoxides, partial condensates of alkoxides, and titanium alkoxides is preferred. The coating film composition is a coating film composition obtained by hydrolyzing and condensing these metal alkoxides in an organic solvent in the presence of a metal salt as described above. This coating film composition contains an addition precipitation inhibitor. The precipitation preventing agent has an effect of preventing metal salt from being precipitated in the coating film when the coating film is formed. When the titanium oxide component is contained in the coating film composition, it is preferred to contain an alkylene glycol or a monoether thereof which has an effect of stabilizing the titanium alkoxide component in an organic solvent. When a coating film composition containing a titanium alkoxide component is produced, in order to stabilize the titanium alkoxide component and improve the storage stability of the coating film composition, the titanium alkoxide and the alkylene glycol or its monoether are mixed. After the stabilization is achieved, the titanium alkoxide is used alone or mixed with an alkane oxyhydroxide and hydrolyzed and condensed in the presence of a metal salt. When the coating composition contains two components of a titanium alkoxide and an alkoxylated cerium oxide, it is preferred to hydrolyze the alkoxylated cerium in the presence of a metal salt, and then mix the previously mixed alkanediol or its monoether to achieve Stabilized titanium alkoxide. The metal alkoxide used in the coating film composition is represented by the general formula (I). -33- 201231632 Μ( 〇R ) η ") (wherein Μ represents a metal, R represents an alkyl group of C1 to C 5 , and η represents a valence of ruthenium). In particular, an alkoxylated ruthenium or a partial condensate thereof, At least one or two or more kinds of the compounds represented by the general formula (III) and at least a partial condensate (pentamer or less) are used! Species

Si ( OR,)4 ( ΙΠ ) (式中,R'表示Cl〜C5的烷基) 此外,烷氧化鈦或其部分縮合物,係使用選自由一般 式(IV)表示之化合物的1種或2種以上及部分縮合物 (五聚物以下)的至少1種。 T i ( 〇 R" ) 4 (IV) (式中,R"表示C1~C5的烷基) 塗膜組成物中所使用之金屬鹽,可列舉出選自由一般 式(II)表示之化合物的至少1種。Si (OR,)4 ( ΙΠ ) (wherein R' represents an alkyl group of C1 to C5), and the titanium alkoxide or a partial condensate thereof is one selected from the group consisting of a compound represented by the general formula (IV) or At least one of two or more kinds of partial condensates (pentamer or less). T i ( 〇 R " ) 4 (IV) (wherein R" represents an alkyl group of C1 to C5) The metal salt used in the coating film composition is exemplified by a compound represented by the general formula (II). At least one.

M2 ( X) m ( ID (式中,m2表示金屬,X表示氯、硝酸、硫酸、乙 酸、草酸、磺胺酸、磺酸、乙醯乙酸、乙醯丙酮酸或此等 之鹼性鹽,m表示M2的價數) 特佳之上述塗膜組成物中所使用之金屬鹽’可列舉出 含有選自由下列一般式(II- 1 )表示之化合物的至少1種 以及下列式(Π-1 )中所使用之金屬的草酸鹽者。 M2 ( X ) m ( II-1 ) (式中,M2表示金屬,χ表示氯、硝酸、硫酸 '乙 -34- 201231632 酸、磺胺酸、磺酸、乙醯乙酸、乙醯丙酮酸或此等之鹼性 鹽,m表示M2的價數)。 由上述一般式(II)表示之金屬鹽的金屬M2,較佳係 選自由鋁(A1 ) '銦(In )、鋅(Zn )、锆(Zr )、鉍 (Bi )、鑭(La )、钽(Ta )、釔(Y )及铈(Ce )所組 成之群組的至少1種。 上述所示之化合物中,特佳爲金屬硝酸鹽、金屬氯化 物鹽、金屬草酸鹽及其鹼性鹽。當中,就取得容易性與塗 膜組成物的貯藏穩定性之觀點來看,較佳爲鋁、銦、及铈 等的金屬硝酸鹽。 塗膜組成物中所使用之有機溶劑,可列舉出甲醇、乙 醇、正丙醇、異丙醇、正丁醇、異丁醇及三級丁醇等之醇 類;乙酸乙酯等之酯類;乙二醇等之二醇類及其酯衍生 物;二乙醚等之醚類;丙酮、丁酮及環己酮等之酮類;或 是苯及甲苯等之芳香族烴類等,此等可單獨或組合使用。 當塗膜組成物中含有烷氧化鈦成分時,有機溶劑中所 含有之烷二醇類或其單醚,例如可列舉出乙二醇、二乙二 醇、丙二醇、己二醇及此等之單甲基、單乙基、單丙基、 單丁基或單苯基醚等。 塗膜組成物中所使用之有機溶劑中所含有之烷二醇類 或其單醚,該莫耳比相對於烷氧化鈦而言未達1時’對於 烷氧化鈦的穩定性所帶來之效果低’使塗膜組成物的貯藏 穩定性變差。另一方面,多量使用烷二醇類或其單醚者並 無問題。例如,塗膜組成物中所使用之有機溶劑的全部可 -35- 201231632 爲上述烷二醇類或其單醚。然而,當塗膜組成物不含烷氧 化鈦時,並不需特別含有上述烷二醇類及/或其單醚。 塗膜組成物中所含有之析出防止劑,係在形成塗佈被 膜時防止金屬鹽析出於塗膜中。析出防止劑,可列舉出選 自由N-甲基-吡咯啶酮、二甲基甲醯胺、二甲基乙醯胺、 乙二醇、二乙二醇 '丙二醇、己二醇及此等之衍生物所組 成之群組的至少1種,可使用此等至少1種以上。 析出防止劑,將金屬鹽的金屬換算爲金屬氧化物時, 係以(析出防止劑)/(金屬氧化物)2 1 (重量比)的比 率來使用。當重量比未達1時,形成塗佈被膜時防止金屬 鹽析出之效果小。另一方面,多量使用析出防止劑時,對 塗膜組成物不會有任何影響。 析出防止劑,可在金屬鹽的存在下使金屬烷氧化物, 尤其是烷氧化矽、烷氧化鈦、或是烷氧化矽與烷氧化鈦水 解並縮合時添加,或是在水解及縮合反應結束後添加。 塗膜組成物中所含有之金屬烷氧化物的金屬原子 (Vh)與金屬鹽的金屬原子(m2)之含有比率,以莫耳 比計較佳爲滿足Ο.ΟΙ^ΜίΜΜ, + Μζ) $0.7之關係。當該 値小於0.01時,所得之被膜的機械強度不足,故不佳。 另一方面,當該値超過0.7時,會使金屬氧化物層相對於 玻璃基板或透明電極等基材之密著性降低。再者,在4 5 0 °C以下的低溫下燒結時,所得之金屬氧化物層的耐藥性有 降低之傾向。·當塗膜組成物中所含有之金屬烷氧化物的金 屬原子有複數種時,上述金屬原子(M!)係意味著複數種 -36- 201231632 金屬原子的合計,此外,當塗膜組成物中所含有之金屬鹽 的金屬原子有複數種時,上述金屬原子(M2)意味著複數 種金屬原子的合計。 關於塗膜組成物中的固體成分濃度,將金屬烷氧化物 與金屬鹽換算爲金屬氧化物時,固體成分較佳位於 0.5〜20wt%的範圍內。當固體成分超過20wt%時,塗膜組 成物的貯藏穩定性變差,並且金屬氧化物層的膜厚控制變 得困難。另一方面,當固體成分爲0.5 wt%以下時,所得 之金屬氧化物層的厚度變薄,爲了得到既定膜厚,需進行 多數次塗佈。 塗膜組成物,是在金屬鹽(例如鋁鹽)的存在下,於 有機溶劑中使由M( OR) „表示之金屬烷氧化物水解並縮 合而得。烷氧化矽、烷氧化鈦、或是烷氧化矽與烷氧化鈦 的水解中所使用之水的量,相對於烷氧化矽、烷氧化鈦、 或是烷氧化矽與烷氧化鈦的總莫耳數而言,以莫耳比換算 較佳爲2〜24。尤佳爲2〜20。當莫耳比(水的量(莫耳)/ (金屬烷氧化物的總莫耳數))爲2以下時,金屬烷氧化 物的水解不足,使成膜性降低或是使所得之金屬氧化物被 膜的強度降低,故不佳。此外,當莫耳比多於24時,聚 縮合持續進行而使貯藏穩定性降低,故不隹。 使用其他金屬烷氧化物時亦相同。 此外,在使用其他金屬烷氧化物時,水的添加量較佳 亦選擇同樣條件。 在調製塗膜組成物時的水解過程中,當共存的金屬鹽 -37- 201231632 (例如鋁鹽)爲含水鹽時,由於該含水份會參與反應,所 以對於水解中所使用之水的量,需考量到金屬鹽(例如鋁 鹽)的含水份。 塗膜組成物,是使金屬烷氧化物水解並縮合而製造 出,故可藉由選擇金屬烷氧化物的組成,將所得之金屬氧 化物層的折射率調整於既定的範圍內。例如當選擇烷氧化 矽與烷氧化鈦作爲金屬烷氧化物時,藉由調整該混合比 率,可將所得之金屬氧化物層的折射率調整於後述既定的 範圍內,具體而言爲1.45〜2.1的範圍內。 換言之,當對於塗佈並燒結塗膜組成物後之金屬氧化 物層所要求之折射率被決定時,依循該折射率,可決定烷 氧化矽與烷氧化鈦的組成莫耳比。該組成莫耳比可爲任意 値,例如,藉由僅使烷氧化矽進行水解所得之塗膜組成物 之金屬氧化物層的折射率,約爲1.45之値。此外,僅使 烷氧化鈦進行水解所得之塗膜組成物之金屬氧化物層的折 射率,約爲2 . 1之値。因此,當欲將金屬氧化物層的折射 率設定在1.45〜2.1之間時,可配合該範圍內的折射率値, 以既定的比率使用烷氧化矽與烷氧化鈦來製造塗膜組成 物。 此外’使用其他金屬烷氧化物時,亦可調整所得之金 屬氧化物層的折射率。 再者,對於金屬氧化物層的折射率,除了組成條件之 外’亦可選擇成膜條件來進行調整。藉此,可實現金屬氧 化物層的高硬度,並且實現期望的折射率値。 -38- 201231632 亦即,在燒結塗膜組成物的塗膜來製造金屬氧化物層 時,隨著該燒結溫度的不同,金屬氧化物層的折射率亦會 變動。此時,燒結溫度愈高,愈可提高金屬氧化物層的折 射率。因此,藉由將燒結溫度選擇在適當的値,可調整所 得之金屬氧化物層的折射率。考量到其他觸控面板之構成 構件的耐熱性,燒結溫度較佳位於1 00 °C〜3 00 °c的範圍 內,尤佳位於150°C〜250°C的範圍內。 此外,當塗膜組成物中含有烷氧化鈦時,在燒結前將 紫外線(UV )照射至塗膜時,金屬氧化物層的折射率亦 會變動。具體而言,紫外線照射量愈多,愈可提高金屬氧 化物層的折射率。因此,爲了實現既定的折射率,可選擇 紫外線照射的照射與否。金屬氧化物層中,當可藉由組成 等的條件選擇來實現期望的折射率時,可不進行紫外線照 射。此外,當進行紫外線照射時,藉由選擇該照射量,可 調整金屬氧化物層的折射率。金屬氧化物層中,當爲了得 到期望的折射率而須進行紫外線照射時,例如可使用高壓 水銀燈。使用高壓水銀燈時,以3 65nm換算時較佳爲全部 光照射 lOOOmJ/cm2 以上的照射量,尤佳爲 3000mJ/cm2〜l〇〇〇〇mJ/cm2的照射量。此外,UV光源並無 特別指定,可使用其他UV光源。使用其他UV光源時, 只須照射與使用上述高壓水銀燈時爲同量之積算光量即 可。 然而,尤其當塗膜組成物中含有烷氧化鈦成分時,乃 具有室溫保存下黏度逐漸上升之性質。實用上雖無成爲大 -39- 201231632 問題之疑慮,但在精密地控制金屬氧化物層的厚度時,必 須對溫度等進行嚴格管理。此般黏度的上升,會隨著塗膜 組成物中之烷氧化鈦的組成比率增多而變得顯著。此可考 量爲烷氧化鈦的水解速度相對於烷氧化矽等較大,縮合反 應迅速之故。 當塗膜組成物中含有烷氧化鈦成分時,爲了降低黏度 的變化,下列2種製法乃爲有效。 1)在金屬鹽的存在下使烷氧化鈦水解時,預先充分 地混合二醇類與烷氧化鈦後,可因應必要與烷氧化矽混 合,並在有機溶劑的存在下進行水解。藉此可得黏度變化 小之塗膜組成物。 1) 的製法爲有效者,可考量如下:由於將烷氧化鈦 與二醇類混合時會放熱,所以在烷氧化鈦的烷氧基與二醇 類之間引起酯交換反應,而使得相對於水解及縮合反應可 達到穩定化。 2) 在金屬鹽的存在下預先使烷氧化矽進行水解反應 後,再混合於與二醇類混合之烷氧化鈦溶液以進行縮合反 應,而得塗膜組成物。藉此可得黏度變化小之塗膜組成 物。 2)的製法爲有效者,可考量如下。亦即,雖然垸氧 化矽的水解反應以較快速度進行,但之後的縮合反應,與 烷氧化鈦相比乃相對較慢。因此,在結束水解反應後迅速 加入烷氧化鈦時,經水解反應後之烷氧化矽的矽醇基會與 烷氧化鈦均一地反應。藉此,經水解反應後之烷氧化矽可 -40- 201231632 使烷氧化鈦的縮合反應性達到穩定化。 已有人嘗試開發出混合預先水解之烷氧化矽、與烷氧 化鈦之方法。然而,當反應中所使用之有機溶劑不含二醇 類時,無法得到貯藏穩定性之塗膜組成物。此外,2 )所 示之方法,對於從具有較快水解速度之其他金屬烷氧化物 與烷氧化矽中得到塗膜組成物之情形,亦爲有用。 以上所說明之塗膜組成物,可應用一般所進行之塗佈 法使塗膜成膜,然後形成金屬氧化物·層。塗佈法,例如可 使用浸泡塗佈法、旋轉塗佈法、噴霧塗佈法、刷毛塗刷 法、輥轉印法、網版印刷法、噴墨法或快乾印刷法等。當 中,特佳爲適合於圖型印刷之噴墨法與快乾印刷法。 實施例 以下係依循實施例來更詳細地說明本發明,但本發明 並不限定於此等。 [實施例中所使用之略稱] 以下實施例等所使用之略稱的涵義如下所述。 • TEOS :四乙氧矽烷 • TIPT :四異丙氧基鈦 • ZTB :四正丁氧化錆 • AN :硝酸鋁九水合物 • CeN :硝酸铈六水合物 • InN :硝酸銦三水合物 201231632 • eg :乙二醇 .HG : 2-甲基-2,4-戊二醇(別稱:己二醇) • BCS : 2-丁氧乙醇(別稱:丁基溶纖劑) <合成例1 > (塗膜組成物K1的合成) 將AN 12.8g、水3.0g加入於200mL容量的燒瓶中攪 拌,而得 AN 水溶液。將 EG 13.7g、HG 48.8g、BCS 37.1g、及作爲烷氧化矽之TEOS 31.1g加入於該AN水溶 液’在室溫條件下攪拌3 0分鐘而得A液。 將作爲烷氧化鈦之TIPT 4.7g裝入於3 00mL容量的燒 瓶中’將HG 48.8g加入於此,在室溫條件下攪拌30分鐘 而得B液。 接著混合上述A液及B液,在室溫條件下攪拌30分 鐘。藉此得到得塗膜組成物K 1。 <合成例2 > (塗膜組成物K2的合成) 將AN 12.1g、水2.8g加入於200mL容量的燒瓶中攪 拌,而得 AN 水溶液。將 EG 13.7g、HG 57.7g、BCS 37.2g、及作爲烷氧化矽之te〇S 22.9g加入於該AN水溶 液’在室溫條件下攪拌3〇分鐘而得C液。 將作爲烷氧化鈦之TIPT 13.4g裝入於300mL容量的 燒瓶中’將HG 40.2g加入於此,在室溫條件下攪拌30分 鐘而得D液。 接著混合上述C液及D液,在室溫條件下攪拌3 0分 -42- 201231632 鐘。藉此得到塗膜組成物K2。 <合成例3 > (塗膜組成物Κ3的合成) 將AN 11.7g、水2.8g加入於200mL容量的燒瓶中攪 拌,而得 AN 水溶液。將 EG 13.7g、HG 46.0g、BCS 37.3g、及作爲烷氧化矽之TEOS 19.1g加入於該AN水溶 液,在室溫條件下攪拌3 0分鐘而得E液。 將作爲烷氧化鈦之TIPT 17.4g裝入於3 00mL容量的 燒瓶中,將HG 52.1g加入於此,在室溫條件下攪拌30分 鐘而得F液。 接著混合上述E液及F液,在室溫條件下攪拌30分 鐘。藉此得到得塗膜組成物K3作爲金屬烷氧化物。 <合成例4 > (塗膜組成物K4的合成) 將AN 1 1.5g、水2.7g加入於200mL容量的燒瓶中攪 拌,而得 AN 水溶液。將 EG 13.7g、HG 34.5g、BCS 37.3g、及作爲烷氧化矽之TEOS 15.6g加入於該AN水溶 液,在室溫條件下攪拌3 0分鐘而得G液。 將作爲烷氧化鈦之TIPT 21.2g裝入於3 00mL容量的 燒瓶中,將HG 63.6g加入於此,在室溫條件下攪拌30分 鐘而得Η液。 接著混合上述G液及Η液,在室溫條件下攪拌30分 鐘。藉此得到得塗膜組成物Κ4。 -43- 201231632 <合成例5 > (塗膜組成物K4-1的合成) 將InN 9.2g、水2.3g加入於20 0mL容量的燒瓶中攪 拌,而得 InN 水溶液。將 EG 14.6g、HG 41.6g、BCS 39.5g、及作爲烷氧化矽之TEOS 15_9g加入於該InN水溶 液,在室溫條件下攪拌3 0分鐘而得I液。 將作爲烷氧化鈦之TIPT M.4g裝入於3 00mL容量的 燒瓶中,將HG 62.4g加入於此,在室溫條件下攪拌30分 鐘而得J液。 接著混合上述I液及J液,在室溫條件下攪拌30分 鐘。藉此得到得塗膜組成物K4-1作爲金屬烷氧化物。 <合成例6> (塗膜組成物K4-2的合成) 將CeN 10.3g、水2.1g加入於200mL容量的燒瓶中攪 拌,而得 CeN 水溶液。將 EG 14.7g、HG 42.1g、BCS 4〇.〇g、及作爲烷氧化矽之TEOS 14.5g加入於該CeN水溶 液,在室溫條件下攪拌3 0分鐘而得K液。 將作爲烷氧化鈦之TIPT 13.2g裝入於3 00mL容量的 燒瓶中,將HG 62.4g加入於此,在室溫條件下攪拌30分 鐘而得L液。 接著混合上述K液及L液,在室溫條件下攪拌30分 鐘。藉此得到得塗膜組成物K4_2作爲金屬烷氧化物。 <合成例7> (塗膜組成物Κ4-3的合成) 將AN 8.5g、水2.0g加入於200mL容量的燒瓶中攪 -44- 201231632 拌,而得 AN 水溶液。將 EG 14.3g、HG 40.8g、BCS 38.7g、及作爲烷氧化矽之TEOS 9.2g加入於該AN水溶 液,在室溫條件下攪拌3 0分鐘而得M液。 將作爲烷氧化鍩之ZTB 25.4g裝入於3 00mL容量的燒 瓶中,將HG 6 1.2g加入於此,在室溫條件下攪拌30分鐘 而得N液。 接著混合上述Μ液及N液,在室溫條件下攪拌3 0分 鐘。藉此得到得塗膜組成物Κ4-3作爲金屬烷氧化物。 <合成例8 > (塗膜組成物Κ5的合成) 將AN 15.5g、水8.9g加入於300mL容量的燒瓶中攪 拌’而得 AN 水溶液。將 EG 13.0g、HG 93.0g、BCS 35.3g、及作爲烷氧化矽之TEOS 34.3g加入於該AN水溶 液’在室溫條件下攪拌30分鐘,藉此得到得塗膜組成物 K5。 <合成例9 > (塗膜組成物K6的合成) 將AN 11.2g、水2.6g加入於200mL容量的燒瓶中攪 拌’而得 AN 水溶液。將 EG 13.7g、HG 23.9g、BCS 3 7.4g、及作爲烷氧化矽之teOS 12.1g加入於該AN水溶 液’在室溫條件下攪拌3 0分鐘而得I液。 將作爲烷氧化鈦之TIPT 24.8g裝入於3 00mL容量的 燒瓶中’將H G 7 4.4 g加入於此,在室溫條件下攪拌3 0分 鐘而得J液。 -45- 201231632 接著混合上述I液及J液,在室溫條件下攪拌3 0分 鐘。藉此得到得塗膜組成物Κ6。 接著說明使用上述塗膜組成物Κ1〜Κ6使金屬氧化物 層成膜之成膜方法的例子。亦一同說明使作爲金屬氧化物 層的比較對象之丙烯酸膜成膜於基板上之方法。 <成膜方法1> 使用上述塗膜組成物,以孔徑〇·5μηι的薄膜過濾器進 行加壓過濾,藉由旋轉塗佈法將塗膜形成於基板上。在設 定於60°C之加熱板上加熱該基板3分鐘以進行乾燥。接著 移至設定於200 °C之熱風循環式烤爐內,進行30分鐘的燒 結。如此,於基板上使金屬氧化物膜成膜(亦即,亦將金 屬氧化物層稱爲金屬氧化物膜,以下相同)。 <成膜方法II > 使用上述塗膜組成物,以孔徑0.5 μιη的薄膜過濾器進 行加壓過濾,藉由旋轉塗佈法將塗膜形成於基板上。在設 定於60°C之加熱板上加熱該基板3分鐘以進行乾燥。接著 使用紫外線照射裝置(Eye Graphics公司製UB 011-3A 型)’並使用高壓水銀燈(輸入電源l〇〇〇W ),以 50mW/cm2 (以波長3 65nm換算)的光強度照射2分鐘的 紫外線。紫外線照射量爲6000mJ/cm2。紫外線照射後,移 至設定於200 °C之熱風循環式烤爐內,進行30分鐘的燒 結。如此,於基板上使金屬氧化物膜成膜。 -46- 201231632 <成膜方法ΠΙ> 成膜方法III,是將作爲金屬氧化物膜的比較對象之 丙烯酸膜成膜於基板上之方法。 使用用以形成丙烯酸膜之丙烯酸材料組成物(K 7 ), 以孔徑〇·5μιη的薄膜過濾器進行加壓過濾,藉由旋轉塗佈 法將塗膜形成於基板上。在設定於9 0 °C之加熱板上加熱該 基板2分鐘以進行乾燥。接著移至設定於200°C之熱風循 環式烤爐內,進行3 0分鐘的燒結。如此,於基板上使丙 嫌酸膜成膜。 K ~ 11 K 物 成 組 > 膜 估塗 評述 的上 率用 射使 折 板 基 矽 用 使 並 作爲基板’應用上述成膜方法I、成膜方法Π或成膜方法 III,使金屬氧化物膜(KL1、KL2、KL3、KL4、KL5、 KL5-1、KL5-2、KL5-3、ΚΜ1 及 ΚΜ2 )成膜於矽基板上。 此外’使用丙烯酸材料組成物Κ7,並使用矽基板 (100)作爲基板’應用上述成膜方法III使丙烯酸膜 (ΚΜ3 )成膜於矽基板上。 使用此等基板’並使用橢圓測厚儀(溝尻光學工業所 公司製DVA-FLVW)來測定波長633nm時的折射率。 第1表係顯示金屬氧化物膜(KL1、KL2、KL3、 KL4、KL5、KL5-1、KL5-2、KL5-3、KM1 及 KM2)以及 丙烯酸膜(KM3 )之折射率的評估結果。從該表中,可得 -47- 201231632 知丙烯酸膜的折射率爲1.50。 第1表中之成膜方法列的記載,係顯示各膜的成膜時 所應用之成膜方法(I〜III )。 <硬度的評估> 關於金屬氧化物膜的硬度,係評估鉛筆硬度。 使用上述塗膜組成物K 1 ~K6,並使用附有ITO的玻璃 基板作爲基板,應用上述成膜方法I、成膜方法II或成膜 方法 ΠΙ,使金屬氧化物膜(KL1、KL2、KL3、KL4、 KL5、KL5-1、KL5-2、KL5-3、ΚΜ1 及 ΚΜ2)成膜於基板 上。 此外,使用丙烯酸材料組成物Κ7,並使用附有ΙΤΟ 的玻璃基板作爲基板,應用上述成膜方法III使丙烯酸膜 (ΚΜ3 )成膜於附有ΙΤΟ的玻璃基板上。 使用此等基板,並依據試驗法(JI S Κ 5 4 0 0 )來評估 鉛筆硬度。 第1表係顯示金屬氧化物膜(KL1、KL2、KL3、 KL4、KL5、KL5-1、KL5-2、KL5-3 ' ΚΜ1 及 ΚΜ2)以及 丙烯酸膜(ΚΜ 3 )之鉛筆硬度的評估結果。從該表中,可 得知丙烯酸膜的鉛筆硬度爲3Η,與金屬氧化物膜(KL1、 KL2、KL3、KL4、KL5、KL5-1、KL5-2、KL5-3、ΚΜ1 及 Κ Μ 2 )相比,該硬度較低。 -48 - 201231632M2 ( X) m (ID (where m2 represents a metal, and X represents chlorine, nitric acid, sulfuric acid, acetic acid, oxalic acid, sulfamic acid, sulfonic acid, acetoacetic acid, acetylpyruvate or an alkaline salt thereof, m The metal salt used in the above-mentioned coating film composition is particularly preferably contained in at least one selected from the compounds represented by the following general formula (II-1) and in the following formula (Π-1). The oxalate salt of the metal used. M2 ( X ) m ( II-1 ) (wherein M2 represents metal, χ represents chlorine, nitric acid, sulfuric acid 'B-34- 201231632 acid, sulfamic acid, sulfonic acid, B Indole acetic acid, acetylpyruvate or such basic salt, m represents the valence of M2. The metal M2 of the metal salt represented by the above general formula (II) is preferably selected from aluminum (A1) 'indium ( At least one of the group consisting of In ), zinc (Zn ), zirconium (Zr ), bismuth (Bi ), lanthanum (La ), lanthanum (Ta ), yttrium (Y ), and cerium (Ce ). Among the compounds, metal nitrates, metal chloride salts, metal oxalates, and basic salts thereof are particularly preferred. Among them, ease of availability and storage stability of the coating composition are obtained. From the viewpoint of the above, metal nitrates such as aluminum, indium, and antimony are preferable. Examples of the organic solvent used in the coating composition include methanol, ethanol, n-propanol, isopropanol, n-butanol, and the like. Alcohols such as butanol and tertiary butanol; esters such as ethyl acetate; glycols such as ethylene glycol and ester derivatives thereof; ethers such as diethyl ether; acetone, methyl ethyl ketone and cyclohexanone a ketone or an aromatic hydrocarbon such as benzene or toluene, etc., which may be used singly or in combination. When the coating film composition contains a titanium alkoxide component, the alkylene glycol contained in the organic solvent or Examples of the monoether include ethylene glycol, diethylene glycol, propylene glycol, hexanediol, and the like monomethyl, monoethyl, monopropyl, monobutyl or monophenyl ether. The alkanediol or its monoether contained in the organic solvent used in the material, the molar ratio is less than 1 with respect to the titanium alkoxide, and the effect on the stability of the titanium alkoxide is low. The storage stability of the coating composition is deteriorated. On the other hand, there is no problem in using a large amount of an alkanediol or a monoether thereof. For example, all of the organic solvents used in the coating film composition may be the above-mentioned alkanediols or their monoethers. However, when the coating film composition does not contain the titanium alkoxide, it is not particularly required to contain the above. The alkanediol and/or its monoether. The precipitation preventive agent contained in the coating film composition prevents the metal salt from being deposited in the coating film when the coating film is formed. The precipitation preventing agent is selected from the group consisting of N- At least one of a group consisting of methyl-pyrrolidone, dimethylformamide, dimethylacetamide, ethylene glycol, diethylene glycol 'propylene glycol, hexanediol, and the like At least one of these may be used. When the metal of the metal salt is converted into a metal oxide, the precipitation preventive agent is used in a ratio of (precipitation preventing agent) / (metal oxide) 2 1 (weight ratio). When the weight ratio is less than 1, the effect of preventing the precipitation of the metal salt when the coating film is formed is small. On the other hand, when a large amount of the precipitation preventing agent is used, there is no influence on the coating film composition. a precipitating agent which can be added in the presence of a metal salt to hydrolyze and condense a metal alkoxide, particularly an alkoxide, a titanium alkoxide, or an alkoxide and a titanium alkoxide, or to terminate the hydrolysis and condensation reaction. After adding. The content ratio of the metal atom (Vh) of the metal alkoxide contained in the coating composition to the metal atom (m2) of the metal salt is preferably satisfied by the molar ratio of 0.7.ΟΙ^ΜίΜΜ, + Μζ) $0.7 relationship. When the enthalpy is less than 0.01, the mechanical strength of the obtained film is insufficient, which is not preferable. On the other hand, when the yttrium exceeds 0.7, the adhesion of the metal oxide layer to the substrate such as the glass substrate or the transparent electrode is lowered. Further, when sintering at a low temperature of 450 ° C or lower, the chemical resistance of the obtained metal oxide layer tends to decrease. When the metal atom of the metal alkoxide contained in the coating film composition has a plurality of kinds, the metal atom (M!) means a total of -36 - 201231632 metal atoms, and in addition, when the coating film composition When there are a plurality of metal atoms of the metal salt contained in the metal salt, the metal atom (M2) means a total of a plurality of metal atoms. When the metal alkoxide and the metal salt are converted into a metal oxide in terms of the solid content concentration in the coating film composition, the solid content is preferably in the range of 0.5 to 20% by weight. When the solid content exceeds 20% by weight, the storage stability of the coating film composition is deteriorated, and the film thickness control of the metal oxide layer becomes difficult. On the other hand, when the solid content is 0.5 wt% or less, the thickness of the obtained metal oxide layer becomes thin, and in order to obtain a predetermined film thickness, a plurality of coatings are required. The coating film composition is obtained by hydrolyzing and condensing a metal alkoxide represented by M(OR) in an organic solvent in the presence of a metal salt (for example, an aluminum salt). Alkylene oxide, titanium alkoxide, or Is the amount of water used in the hydrolysis of alkoxides and titanium alkoxides, in terms of molar ratios of alkoxides, titanium alkoxides, or total moles of alkoxides and titanium alkoxides. It is preferably 2 to 24. More preferably 2 to 20. When the molar ratio (the amount of water (mole) / (the total number of moles of metal alkoxide)) is 2 or less, the hydrolysis of the metal alkoxide If it is insufficient, the film formability is lowered or the strength of the obtained metal oxide film is lowered, which is not preferable. When the molar ratio is more than 24, the polycondensation continues and the storage stability is lowered, so that it is not satisfactory. The same applies to the use of other metal alkoxides. In addition, when other metal alkoxides are used, the same conditions are preferably selected for the addition of water. In the hydrolysis process during the preparation of the coating film composition, when coexisting metal salts - 37- 201231632 (eg aluminium salt) is an aqueous salt due to the water content Will participate in the reaction, so the amount of water used in the hydrolysis, it is necessary to consider the moisture content of the metal salt (such as aluminum salt). The coating film composition is made by hydrolyzing and condensing the metal alkoxide, so it can be The refractive index of the obtained metal oxide layer is adjusted within a predetermined range by selecting the composition of the metal alkoxide. For example, when alkoxide and titanium alkoxide are selected as the metal alkoxide, the mixing ratio is adjusted. The refractive index of the obtained metal oxide layer can be adjusted within a predetermined range to be described later, specifically, in the range of 1.45 to 2.1. In other words, the metal oxide layer after coating and sintering the coating film composition When the required refractive index is determined, the compositional molar ratio of the alkoxide and the titanium alkoxide can be determined according to the refractive index. The composition molar ratio can be any enthalpy, for example, by hydrolyzing only the alkoxylated cerium oxide. The refractive index of the metal oxide layer of the coating film composition is about 1.45. Further, the refractive index of the metal oxide layer of the coating film composition obtained by only hydrolyzing the titanium alkoxide is about Therefore, when the refractive index of the metal oxide layer is set to be between 1.45 and 2.1, the refractive index 该 in the range can be matched, and the alkoxide and the titanium alkoxide are used in a predetermined ratio. To produce a coating film composition. In addition, when other metal alkoxides are used, the refractive index of the obtained metal oxide layer can be adjusted. Further, for the refractive index of the metal oxide layer, in addition to the composition conditions, The film formation conditions are selected for adjustment, whereby the high hardness of the metal oxide layer can be achieved, and the desired refractive index 値 can be achieved. -38- 201231632 That is, the coating film of the composition of the coating film is used to produce a metal oxide. In the case of the layer, the refractive index of the metal oxide layer also fluctuates depending on the sintering temperature. At this time, the higher the sintering temperature, the higher the refractive index of the metal oxide layer. Therefore, by selecting the sintering temperature at The refractive index of the resulting metal oxide layer can be adjusted by appropriate enthalpy. Considering the heat resistance of the constituent members of other touch panels, the sintering temperature is preferably in the range of 100 ° C to 300 ° C, and particularly preferably in the range of 150 ° C to 250 ° C. Further, when the coating film composition contains the titanium alkoxide, the refractive index of the metal oxide layer also changes when ultraviolet rays (UV) are applied to the coating film before sintering. Specifically, the more the ultraviolet irradiation amount, the more the refractive index of the metal oxide layer can be increased. Therefore, in order to achieve a predetermined refractive index, it is possible to select whether or not the irradiation of ultraviolet rays is irradiated. In the metal oxide layer, when a desired refractive index can be achieved by selection of conditions such as composition, ultraviolet irradiation may not be performed. Further, when ultraviolet irradiation is performed, the refractive index of the metal oxide layer can be adjusted by selecting the irradiation amount. In the metal oxide layer, when ultraviolet irradiation is required in order to obtain a desired refractive index, for example, a high pressure mercury lamp can be used. When a high-pressure mercury lamp is used, it is preferable to irradiate all of the light with an irradiation amount of 100 mJ/cm2 or more in terms of 3 65 nm, and particularly preferably an irradiation amount of 3000 mJ/cm 2 to 1 μm J/cm 2 . In addition, the UV light source is not specified, and other UV light sources can be used. When using other UV light sources, it is only necessary to illuminate the same amount of light as when using the above-mentioned high-pressure mercury lamp. However, especially when the coating film composition contains a titanium alkoxide component, it has a property of gradually increasing viscosity at room temperature. Although there is no doubt about the problem of the large -39-201231632, it is necessary to strictly control the temperature and the like when precisely controlling the thickness of the metal oxide layer. The increase in the viscosity is remarkable as the composition ratio of the titanium alkoxide in the coating composition increases. This can be considered to be that the hydrolysis rate of the titanium alkoxide is larger than that of the alkoxide, and the condensation reaction is rapid. When the composition of the coating film contains a titanium alkoxide component, the following two methods are effective in order to reduce the change in viscosity. 1) When the alkoxide is hydrolyzed in the presence of a metal salt, the diol and the titanium alkoxide are sufficiently mixed in advance, and then it is necessary to carry out hydrolysis in the presence of an organic solvent in the presence of an organic solvent. Thereby, a coating composition having a small change in viscosity can be obtained. 1) The method of preparation is effective, and can be considered as follows: since the titanium alkoxide and the diol are exothermic when mixed, a transesterification reaction is caused between the alkoxy group of the titanium alkoxide and the diol, so that relative to Hydrolysis and condensation reactions can be stabilized. 2) The alkoxylated oxime is subjected to a hydrolysis reaction in the presence of a metal salt, and then mixed with a solution of a titanium alkoxide mixed with a diol to carry out a condensation reaction to obtain a coating film composition. Thereby, a coating composition having a small change in viscosity can be obtained. 2) The method of production is effective, and can be considered as follows. That is, although the hydrolysis reaction of ruthenium oxide is carried out at a relatively fast rate, the subsequent condensation reaction is relatively slow as compared with the titanium alkoxide. Therefore, when the titanium alkoxide is rapidly added after the completion of the hydrolysis reaction, the decyl group of the alkoxylated oxime after the hydrolysis reaction is uniformly reacted with the titanium alkoxide. Thereby, the condensation reactivity of the titanium alkoxide can be stabilized by the alkoxylated oxime after the hydrolysis reaction -40 - 201231632. Attempts have been made to develop a method of mixing pre-hydrolyzed alkoxylated hafnium with titanium alkoxide. However, when the organic solvent used in the reaction does not contain a diol, a coating film composition having storage stability cannot be obtained. Further, the method shown in 2) is also useful for obtaining a coating film composition from other metal alkoxides having a faster hydrolysis rate and acridine oxide. The coating film composition described above can be formed into a film by a coating method generally employed, and then a metal oxide layer can be formed. As the coating method, for example, a dip coating method, a spin coating method, a spray coating method, a brush coating method, a roll transfer method, a screen printing method, an inkjet method, or a quick-drying printing method can be used. Among them, the inkjet method and the quick-drying printing method suitable for pattern printing are particularly preferred. EXAMPLES Hereinafter, the present invention will be described in more detail based on the examples, but the present invention is not limited thereto. [Abbreviated as used in the examples] The abbreviations used in the following examples and the like are as follows. • TEOS: tetraethoxy decane • TIPT: titanium tetraisopropoxide • ZTB: tetra-n-butyl yttrium oxide • AN: aluminum nitrate nonahydrate • CeN: cerium nitrate hexahydrate • InN: indium nitrate trihydrate 201231632 • Eg : ethylene glycol. HG : 2-methyl-2,4-pentanediol (other name: hexanediol) • BCS : 2-butoxyethanol (other name: butyl cellosolve) <Synthesis Example 1 > ( Synthesis of Coating Film Composition K1) AN 12.8 g of AN and 3.0 g of water were placed in a 200 mL flask and stirred to obtain an aqueous AN solution. EG 13.7 g, HG 48.8 g, BCS 37.1 g, and TEOS 31.1 g as an alkoxylated hafnium were added to the aqueous AN solution, and stirred at room temperature for 30 minutes to obtain a liquid A. 4.7 g of TIPT as a titanium alkoxide was placed in a 300 mL-volume flask. 48.8 g of HG was added thereto, and stirred at room temperature for 30 minutes to obtain a solution B. Then, the above liquid A and liquid B were mixed, and stirred at room temperature for 30 minutes. Thereby, the coating film composition K 1 was obtained. <Synthesis Example 2 > (Synthesis of Coating Film Composition K2) 12.1 g of AN and 2.8 g of water were placed in a 200 mL flask and stirred to obtain an aqueous AN solution. 23.7 g of EG, 57.7 g of HG, 37.2 g of BCS, and 22.9 g of te〇S as acridine oxide were added to the aqueous solution of AN, and stirred at room temperature for 3 minutes to obtain a liquid C. 13.4 g of TIPT as a titanium alkoxide was placed in a 300 mL flask. 40.2 g of HG was added thereto, and stirred at room temperature for 30 minutes to obtain a D solution. Then, the above liquid C and liquid D were mixed, and stirred at room temperature for 30 minutes - 42 - 201231632 minutes. Thereby, the coating film composition K2 was obtained. <Synthesis Example 3 > (Synthesis of Coating Film Composition Κ3) 11.7 g of AN and 2.8 g of water were placed in a 200 mL flask and stirred to obtain an aqueous AN solution. EG 13.7 g, HG 46.0 g, BCS 37.3 g, and TEOS 19.1 g as an alkoxylated hafnium were added to the aqueous AN solution, and stirred at room temperature for 30 minutes to obtain an E liquid. 17.4 g of TIPT as a titanium alkoxide was placed in a 300 mL-volume flask, and 52.1 g of HG was added thereto, and stirred at room temperature for 30 minutes to obtain an F liquid. Then, the above E liquid and F liquid were mixed, and stirred at room temperature for 30 minutes. Thereby, the coating film composition K3 was obtained as a metal alkoxide. <Synthesis Example 4 > (Synthesis of Coating Film Composition K4) 1.5 g of AN 1 and 2.7 g of water were placed in a 200 mL flask and stirred to obtain an aqueous AN solution. EG 13.7 g, HG 34.5 g, BCS 37.3 g, and TEOS 15.6 g as an alkoxylated hafnium were added to the aqueous AN solution, and stirred at room temperature for 30 minutes to obtain a G liquid. 21.2 g of TIPT as a titanium alkoxide was placed in a 300 mL-volume flask, and 63.6 g of HG was added thereto, and stirred at room temperature for 30 minutes to obtain a mash. Then, the above G liquid and mash were mixed, and stirred at room temperature for 30 minutes. Thereby, the coating film composition Κ4 was obtained. -43-201231632 <Synthesis Example 5 > (Synthesis of Coating Film Composition K4-1) 9.2 g of InN and 2.3 g of water were placed in a flask of a volume of 20 mL to be stirred to obtain an aqueous solution of InN. EG 14.6 g, HG 41.6 g, BCS 39.5 g, and TEOS 15_9 g as an alkoxylated hafnium were added to the InN aqueous solution, and stirred at room temperature for 30 minutes to obtain a liquid I. TIPT M. 4g as a titanium alkoxide was placed in a 300 mL-volume flask, and 62.4 g of HG was added thereto, and stirred at room temperature for 30 minutes to obtain a liquid J. Then, the above I liquid and J liquid were mixed, and stirred at room temperature for 30 minutes. Thus, the coating film composition K4-1 was obtained as a metal alkoxide. <Synthesis Example 6> (Synthesis of Coating Film Composition K4-2) 10.3 g of CeN and 2.1 g of water were placed in a 200 mL flask and stirred to obtain a CeN aqueous solution. EG 14.7 g, HG 42.1 g, BCS 4 〇.〇g, and TEOS 14.5 g as an alkoxylated hafnium were added to the CeN aqueous solution, and stirred at room temperature for 30 minutes to obtain a K solution. 13.2 g of TIPT as a titanium alkoxide was placed in a flask having a capacity of 300 mL, and 62.4 g of HG was added thereto, and stirred at room temperature for 30 minutes to obtain an L solution. Then, the above K liquid and L liquid were mixed, and stirred at room temperature for 30 minutes. Thus, the coating film composition K4_2 was obtained as a metal alkoxide. <Synthesis Example 7> (Synthesis of Coating Film Composition Κ4-3) 8.5 g of AN and 2.0 g of water were placed in a 200 mL-volume flask and stirred at -44 to 201231632 to obtain an aqueous AN solution. EG 14.3 g, 40.8 g of HG, 38.7 g of BCS, and 9.2 g of TEOS as acridine oxide were added to the aqueous solution of AN, and stirred at room temperature for 30 minutes to obtain M solution. 25.4 g of ZTB as acridine oxide was placed in a 300 mL-volume flask, and 1.2 g of HG 6 was added thereto, and stirred at room temperature for 30 minutes to obtain N solution. Next, the above mash and N solution were mixed, and stirred at room temperature for 30 minutes. Thus, the coating film composition Κ4-3 was obtained as a metal alkoxide. <Synthesis Example 8 > (Synthesis of Coating Film Composition Κ5) 15.5 g of AN and 8.9 g of water were placed in a 300 mL flask and stirred to obtain an AN aqueous solution. EG 13.0 g, HG 93.0 g, BCS 35.3 g, and TEOS 34.3 g as a lanthanum alkoxide were added to the aqueous AN solution, and the mixture was stirred at room temperature for 30 minutes to obtain a coating film composition K5. <Synthesis Example 9 > (Synthesis of Coating Film Composition K6) 11.2 g of AN and 2.6 g of water were placed in a 200 mL-capacity flask and stirred to obtain an AN aqueous solution. EG 13.7 g, HG 23.9 g, BCS 3 7.4 g, and teOS 12.1 g as an alkoxylated hafnium were added to the aqueous AN solution, and stirred at room temperature for 30 minutes to obtain a liquid I. 24.8 g of TIPT as a titanium alkoxide was placed in a flask having a capacity of 300 mL. Here, H G 7 4.4 g was added thereto, and the mixture was stirred at room temperature for 30 minutes to obtain a liquid J. -45-201231632 Next, the above liquid I and liquid J were mixed, and stirred at room temperature for 30 minutes. Thereby, the coating film composition Κ6 was obtained. Next, an example of a film forming method in which a metal oxide layer is formed by using the above-mentioned coating film compositions Κ1 to Κ6 will be described. A method of forming an acrylic film as a comparative object of a metal oxide layer on a substrate will also be described. <Film formation method 1> Using the above-mentioned coating film composition, pressure filtration was carried out using a membrane filter having a pore size of 5 μm, and a coating film was formed on a substrate by a spin coating method. The substrate was heated on a hot plate set at 60 ° C for 3 minutes to dry. Then, it was transferred to a hot air circulating oven set at 200 °C for 30 minutes. Thus, the metal oxide film is formed on the substrate (i.e., the metal oxide layer is also referred to as a metal oxide film, the same applies hereinafter). <Film Forming Method II> Using the above coating film composition, a film filter having a pore diameter of 0.5 μm was subjected to pressure filtration, and a coating film was formed on a substrate by a spin coating method. The substrate was heated on a hot plate set at 60 ° C for 3 minutes to dry. Then, using a UV irradiation device (Model UB 011-3A, manufactured by Eye Graphics Co., Ltd.) and using a high-pressure mercury lamp (input power supply l〇〇〇W), the ultraviolet light was irradiated for 2 minutes at a light intensity of 50 mW/cm 2 (converted at a wavelength of 3 65 nm). . The amount of ultraviolet irradiation was 6000 mJ/cm2. After the ultraviolet irradiation, the mixture was transferred to a hot air circulating oven set at 200 ° C for 30 minutes of sintering. In this manner, the metal oxide film is formed on the substrate. -46-201231632 <Film formation method ΠΙ> The film formation method III is a method of forming an acrylic film to be compared as a metal oxide film on a substrate. The acrylic material composition (K 7 ) for forming an acrylic film was subjected to pressure filtration using a membrane filter having a pore size of 5 μm, and a coating film was formed on the substrate by a spin coating method. The substrate was heated on a hot plate set at 90 °C for 2 minutes to dry. Then, it was transferred to a hot air circulating oven set at 200 ° C for 30 minutes of sintering. Thus, the acrylic acid film was formed on the substrate. K ~ 11 K grouping> The upper rate of the film evaluation is evaluated by using the film-forming substrate as the substrate. The film forming method I, the film forming method, or the film forming method III are applied to make the metal oxide. Membranes (KL1, KL2, KL3, KL4, KL5, KL5-1, KL5-2, KL5-3, ΚΜ1 and ΚΜ2) were formed on the ruthenium substrate. Further, the acrylic material composition Κ7 was used, and the ruthenium substrate (100) was used as the substrate. The above-mentioned film formation method III was applied to form an acryl film (ΚΜ3) on the ruthenium substrate. Using these substrates, the refractive index at a wavelength of 633 nm was measured using an elliptical thickness gauge (DVA-FLVW manufactured by Gully Optical Co., Ltd.). The first table shows the evaluation results of the refractive indices of the metal oxide films (KL1, KL2, KL3, KL4, KL5, KL5-1, KL5-2, KL5-3, KM1, and KM2) and the acrylic film (KM3). From the table, it is found that -47 - 201231632 the refractive index of the acrylic film is 1.50. The film formation method in the first table is a film formation method (I to III) which is applied when film formation of each film. <Evaluation of Hardness> Regarding the hardness of the metal oxide film, the pencil hardness was evaluated. Using the above-mentioned coating film compositions K 1 to K6 and using a glass substrate with ITO as a substrate, the above-described film forming method I, film forming method II or film forming method ΠΙ is used to form metal oxide films (KL1, KL2, KL3). , KL4, KL5, KL5-1, KL5-2, KL5-3, ΚΜ1 and ΚΜ2) are formed on the substrate. Further, an acrylic material composition Κ7 was used, and a glass substrate with yttrium was used as a substrate, and an acrylic film (?3) was formed on the glass substrate with ruthenium attached thereto by applying the above-mentioned film formation method III. These substrates were used and the pencil hardness was evaluated according to the test method (JI S Κ 5 4 0 0). The first table shows the evaluation results of the pencil hardness of the metal oxide film (KL1, KL2, KL3, KL4, KL5, KL5-1, KL5-2, KL5-3 'ΚΜ1 and ΚΜ2) and the acrylic film (ΚΜ3). From the table, it can be seen that the pencil hardness of the acrylic film is 3 Η, and the metal oxide film (KL1, KL2, KL3, KL4, KL5, KL5-1, KL5-2, KL5-3, ΚΜ1 and Κ Μ 2 ) In comparison, the hardness is lower. -48 - 201231632

[表1] 膜 塗膜組成物 纏方法 折射率 鉛筆W KL 1 K 1 II 1. 5 2 9H KL 2 K2 II 1. 5 5 9H KL 3 K3 II 1. 6 0 8H KL 4 K4 I 1. 6 5 8H KL 5 K4 II 1. 70 8H KL5-1 K4 — 1 II 1. 6 0 9H KL 5 -2 K4-2 II 1. 6 0 8H KL 5 -3 K4-2 I 1. 6 0 7H KM1 K5 I 1. 48 9H KM2 K6 II 1. 75 7H KM3 K7 III 1. 5 0 3H &lt;透明導電膜基板&gt; 首先製備基板上成膜有形成圖型後的透明導電膜之透 明導電膜基板。基板使用玻璃基板,透明導電膜使用 ITO。該透明導電膜基板,可使用上述本實施形態之觸控 面板1中所使用的透明導電膜基板14。在此,係準備IT Ο 圖型爲同一,且膜厚爲28 nm與75 nm之不同的2種透明 導電膜基板。 &lt;實施例1 &gt; 首先製作出在IT Ο膜厚爲28nm的透明導電膜基板上 以7 0nm的膜厚形成有金屬氧化物膜KL1之基板。將光學 黏著劑塗佈於該基板上,並貼合於〇. 7mm的鈉鈣玻璃基 板。接著使用紫外線照射裝置(Eye Graphics公司製 UB 011-3A型),並使用高壓水銀燈(輸入電源1 000W), 以5 0mW/cm2 (以波長3 65nm換算)的光強度照射80秒 的紫外線。藉此使光學黏著劑硬化而製作出評估用觸控面 -49- 201231632 板。 &lt;實施例2及3 &gt; 除了金屬氧化物膜KL1的膜厚爲80nm(實施例2) 及90nm (實施例3 )之外,其他以與實施例1相同之方法 來製作出評估用觸控面板。 &lt;實施例4 &gt; 製作出在ITO膜厚爲28nm的透明導電膜基板上以 7 Onm的膜厚形成有金屬氧化物膜KL2之基板。將光學黏 著劑塗佈於該基板上,並貼合於〇.7mm的素玻璃基板。接 著使用紫外線照射裝置(Eye Graphics公司製 UB 011-3A 型),並使用高壓水銀燈(輸入電源1000W ),以 5 0mW/cm2(以波長3 65nm換算)的光強度照射80秒的紫 外線。藉此使光學黏著劑硬化而製作出評估用觸控面板。 &lt;實施例5及6〉 除了金屬氧化物膜KL2的膜厚爲80nm(實施例5) 及90nm(實施例6)之外,其他以與實施例4相同之方法 來製作出評估用觸控面板。 &lt;實施例7 &gt; 製作出在ITO膜厚爲28nm的透明導電膜基板上以 5 Onm的膜厚形成有金屬氧化物膜KL3之基板。將光學黏 -50- 201231632 著劑塗佈於該基板上,並貼合於0.7mm的素玻璃基板。接 著使用紫外線照射裝置(Eye Graphics公司製 UB 01 1-3 A 型)’並使用高壓水銀燈(輸入電源 1 000W ),以 5〇mW/cm2 (以波長365nm換算)的光強度照射80秒的紫 外線。藉此使光學黏著劑硬化而製作出評估用觸控面板。 &lt;實施例8〜1 1 &gt; 除了金屬氧化物膜KL3的膜厚爲70nm (實施例 8 ) 、80nm (實施例 9 ) 、120nm (實施例 10 )及 150nm (實施例1 1 )之外,其他以與實施例7相同之方法來製作 出評估用觸控面板。 〈實施例1 2 &gt; 製作出在ITO膜厚爲28nm的透明導電膜基板上以 80nm的膜厚形成有金屬氧化物膜KL4之基板。將光學黏 著劑塗佈於該基板上,並貼合於〇.7mm的素玻璃基板。接 著使用紫外線照射裝置(Eye Graphics公司製 UB 01 1-3 A 型),並使用高壓水銀燈(輸入電源1 000W ),以 5〇mW/cm2(以波長3 65nm換算)的光強度照射80秒的紫 外線。藉此使光學黏著劑硬化而製作出評估用觸控面板。 &lt;實施例1 3 &gt; 除了金屬氧化物膜KL4的膜厚爲l〇〇nm之外,其他 以與實施例1 2相同之方法來製作出評估用觸控面板。 -51 - 201231632 &lt;實施例1 4 &gt; 製作出在ITO膜厚爲75nm的透明導電膜基板上以 lOOnm的膜厚形成有金屬氧化物膜KL4之基板。將光學黏 著劑塗佈於該基板上,並貼合於0.7mm的素玻璃基板。接 著使用紫外線照射裝置(Eye Graphics公司製 UB 011-3A 型)’並使用高壓水銀燈(輸入電源 1 000W ),以 50mW/cm2 (以波長3 65nm換算)的光強度照射80秒的紫 外線。藉此使光學黏著劑硬化而製作出評估用觸控面板。 &lt;實施例1 5 &gt; 製作出在ITO膜厚爲75nm的透明導電膜基板上以 lOOnm的膜厚形成有金屬氧化物膜KL5之基板。將光學黏 著劑塗佈於該基板上,並貼合於〇_7mm的素玻璃基板。接 者使用紫外線照射裝置(Eye Graphics公司製 UB 011-3A 型)’並使用高壓水銀燈(輸入電源 1 000W ),以 50mW/cm2 (以波長3 6 5nm換算)的光強度照射80秒的紫 外線。藉此使光學黏著劑硬化而製作出評估用觸控面板。 &lt;實施例1 6 &gt; 製作出在ITO膜厚爲28nm的透明導電膜基板上以 lOOnm的膜厚形成有金屬氧化物膜KL5_i之基板。將光學 黏著劑塗佈於該基板上,並貼合於〇 · 7 m m的素坡璃基板。 接者使用紫外線照射裝置(Eye Graphics公司製 UB 011- -52- 201231632 3 A型),並使用高壓水銀燈(輸入電源1 〇 0 〇 W ),以 50mW/cm2 (以波長365nm換算)的光強度照射8〇秒的紫 外線。藉此使光學黏著劑硬化而製作出評估用觸控面板。 &lt;實施例1 7 &gt; 製作出在ITO膜厚爲28nm的透明導電膜基板上以 lOOnm的膜厚形成有金屬氧化物膜KL5-2之基板。將光學 黏著劑塗佈於該基板上,並貼合於0.7mm的素玻璃基板。 接著使用紫外線照射裝置(Eye Graphics公司製 UB 011-3A型),並使用高壓水銀燈(輸入電源1000W ),以 5 0mW/cm2 (以波長3 65nm換算)的光強度照射80秒的紫 外線。藉此使光學黏著劑硬化而製作出評估用觸控面板。 &lt;實施例1 8 &gt; 製作出在ITO膜厚爲28nm的透明導電膜基板上以 lOOnm的膜厚形成有金屬氧化物膜KL5-3之基板。將光學 黏著劑塗佈於該基板上,並貼合於0.7 mm的素玻璃基板。 接著使用紫外線照射裝置(Eye Graphics公司製 UB 011- 3A型),並使用高壓水銀燈(輸入電源1 000W ),以 5 0mW/cm2 (以波長3 6 5nm換算)的光強度照射80秒的紫 外線。藉此使光學黏著劑硬化而製作出評估用觸控面板。 &lt;比較例1 &gt; 在ΙΤΟ膜厚爲28nm的透明導電膜基板上未形成金屬 -53- 201231632 氧化物膜,直接塗佈光學黏著劑並貼合於0.7mm的素玻璃 基板。接著使用紫外線照射裝置(Eye Graphics公司製 UB 011-3A型)’並使用高壓水銀燈(輸入電源 1 000W ),以50mW/cm2 (以波長3 65nm換算)的光強度 照射8 0秒的紫外線。藉此使光學黏著劑硬化而製作出不 具有金屬氧化物層之評估用觸控面板》 &lt;比較例2 &gt; 在ITO膜厚爲75nm的透明導電膜基板上未形成金屬 氧化物膜,直接塗佈光學黏著劑並貼合於0.7mm的素玻璃 基板。接著使用紫外線照射裝置(Eye Graphics公司製 UB 011-3A型),並使用高壓水銀燈(輸入電源 1000W),以50mW/cm2(以波長365nm換算)的光強度 照射8 0秒的紫外線。藉此使光學黏著劑硬化而製作出不 具有金屬氧化物層之評估用觸控面板。 &lt;比較例3 &gt; 除了金屬氧化物膜KL4的膜厚爲30nm之外,其他以 與實施例12相同之方法來製作出評估用觸控面板。 &lt;比較例4〉 製作出在ITO膜厚爲28nm的透明導電膜基板上以 1 0 On m的膜厚形成有金屬氧化物膜KM1之基板。將光學 黏著劑塗佈於該基板上,並貼合於0.7mm的素玻璃基板。 -54- 201231632 接著使用紫外線照射裝置(Eye Graphics公司製 UB 011-3A型),並使用高壓水銀燈(輸入電源1000W ),以 50mW/cm2 (以波長3 65nm換算)的光強度照射80秒的紫 外線。藉此使光學黏著劑硬化而製作出評估用觸控面板。 &lt;比較例5 &gt; 製作出在ITO膜厚爲28nm的透明導電膜基板上以 lOOnm的膜厚形成有金屬氧化物膜KM2之基板。將光學 黏著劑塗佈於該基板上,並貼合於0.7mm的素玻璃基板。 接著使用紫外線照射裝置(Eye Graphics公司製 UB 01 1-3A型),並使用高壓水銀燈(輸入電源1000W ),以 50mW/cm2 (以波長3 65nm換算)的光強度照射80秒的紫 外線。藉此使光學黏著劑硬化而製作出評估用觸控面板。 &lt;比較例6 &gt; 製作出在ITO膜厚爲75nm的透明導電膜基板上以 lOOnm的膜厚形成有金屬氧化物膜KM2之基板。將光學 黏著劑塗佈於該基板上,並貼合於0.7mm的素玻璃基板。 接著使用紫外線照射裝置(Eye Graphics公司製 UB 011-3A型),並使用高壓水銀燈(輸入電源1 000W ),以 50mW/cm2(以波長3 6 5nm換算)的光強度照射80秒的紫 外線。藉此使光學黏著劑硬化而製作出評估用觸控面板。 &lt;比較例7 &gt; -55- 201231632 製作出在ITO膜厚爲75nm的透明導電膜基 2μιη的膜厚形成有丙烯酸膜KM3之基板。將光學 塗佈於該基板上,並貼合於〇.7mm的素玻璃基板。 用紫外線照射裝置(Eye Graphics公司製 UB 型),並使用高壓水銀燈(輸入電源 1 000W 50mW/cm2 (以波長3 65nm換算)的光強度照射80 外線。藉此使光學黏著劑硬化而製作出形成有丙烯 評估用觸控面板。 &lt;密著性的評估&gt; 實施例1〜實施例1 8中,係使用當製作評估用 板時在中途所製作出之成膜有金屬氧化物膜(KL1. 之基板。依據〗IS K5 6 00之密著性的橫切法,對該 電膜基板上的各金屬氧化物膜進行剝離試驗,以評 性。 同樣的,比較例3〜比較例7中,使用當製作評 控面板時在中途所製作出之成膜有金屬氧化物膜( KM1及KM2 )以及丙烯酸膜(KM3 )之基板,以評 性。 &lt;電極圖型觀看性的評估&gt; 使用實施例卜實施例1 8及比較例1〜比較例7 作出之評估用觸控面板,進行ITO電極圖型觀看 估。 板上以 黏著劑 接著使 011 -3 A )'以 秒的紫 酸膜之 觸控面 -KL5 ) 透明導 估密著 估用觸 KL4、 估密著 中所製 性的評 -56- 201231632 將各觸控面板放置在黑布上,在從上部照射 態下,以目視來進行觀察。觀察結果,以未觀看 型者爲&lt;電極圖型觀看評估◎&gt;。此外,以雖然 極圖型,但該程度與ΙΤ 〇膜上不具有金屬氧化物 例1及比較例2的觸控面板相比有所改善者爲&lt; 觀看評估〇&gt;。再者,以與比較例1及比較例2 板同等者爲 &lt; 電極圖型觀看評估△&gt;,以IT〇電 比較例1及比較例2的觸控面板更醒目者爲&lt;χ&gt; 彙總實施例1〜實施例18及比較例1~比較例 用觸控面板的電極圖型觀看性評估結果,與上述 評估結果一同顯示於第2表。 光線之狀 到電極圖 觀看到電 膜之比較 電極圖型 的觸控面 極圖型較 〇 7之評估 密著性的 -57- 201231632 [表2] 觸控面板 ITO膜厚 (nm) 金屬 氧化物膜 膜厚 (nm) 電極圖型 觀看性評估 密著性評估 窗施例1 28 KL 1 7 0 〇 0 啻施例2 28 KL 1 8 0 〇 0 窗施例3 28 KL 1 9 0 〇 0 啻施例4 28 KL 2 7 0 ◎ 0 窗施例5 2 8 KL2 8 0 ◎ 0 窗施例6 28 KL 2 9 0 ◎ 0 ΪΤ施例7 2 8 KL 3 5 0 〇 0 哲施例8 28 KL 3 7 0 ◎ 0 宵施例9 28 KL 3 8 0 ◎ 0 宵施例1 〇 28 KL 3 12 0 ◎ 0 窗施例1 1 28 KL 3 15 0 〇 0 哲施例1 2 28 KL4 8 0 ◎ 0 官施例1 3 28 KL4 1 00 ◎ 0 啻施例1 4 7 5 KL4 10 0 ◎ 0 哲施例1 5 7 5 KL 5 10 0 ◎ 0 宵施例1 6 2 8 KL5-1 100 ◎ 0 窗施例1 7 28 KL 5-2 1 00 ◎ 0 宵施例ί 8 2 8 KL 5-2 10 0 ◎ 0 比較例1 2 8 _ 一 Δ 一 比較例2 7 5 _ _ Δ 一 比較例3 2 8 KL4 3 0 Δ 0 比較例4… 28 KM1 10 0 Δ 0 比較例5 2 8 KM2 10 0 X 0 比較例6 7 5 KM2 10 0 X 0 比鉸例7 7 5 KM3 2 0 0 0 Δ 5 實施例1~實施例15的觸控面板中’電極圖型觀看性 評估的結果良好’可得知此等爲未觀看到電極圖型’或是 即使觀看到’但相較於不具有金屬氧化物膜的比較例’其 程度有所改善。因此’藉由將折射率與膜厚經調整後的金 屬氧化物膜形成於透明電極上,可改善電極圖型觀看性, 使電極變得不醒目。此外,亦可得知各金屬氧化物膜的密 著性較丙烯酸膜更高。 從第2表的結果中,可得知根據實施例1〜實施例 1 5,可得到能夠減緩因透明電極圖型較醒目所導致顯示性 -58- 201231632 的降低之觸控面板。具體而言’可抑制透明電極圖型變得 醒目,而提供本實施形態之觸控面板丨、101、201、301、 401 〇 產業上之可利用性: 本發明之觸控面板,可使電極圖型變得不醒目,且構 成構件間的密著性亦良好。因此,係有用於作爲要求優異 外觀與高可靠度之顯示裝置用的觸控面板。 在此援引於2010年10月26日提出申請之日本特許 出願20 1 0-240080號之說明書、申請專利範圍、圖面及發 明摘要的全部內容,並擷取作爲本發明的發明內容。 【圖式簡單說明】 第1圖爲本實施形態的第1例之觸控面板之俯視圖》 第2圖爲沿著第1圖的A 1 - Α Γ線之剖面圖。 第3圖(a )〜(d )係顯示本實施形態的第1例之觸 控面板的製造方法之步驟剖面圖。 第4圖係顯示本實施形態的第2例之觸控面板之俯視 圖。 第5圖爲沿著第4圖的B 1 -B Γ線之剖面圖。 第6圖係顯示本實施形態的第3例之觸控面板的槪略 構成之剖面圖。 第7圖係顯示本實施形態的第4例之觸控面板的槪略 構成之剖面圖。 -59- 201231632 第8圖係顯示本實施形態的第5例之觸控面板的槪略 構成之剖面圖。 【主要元件符號說明】 1、 101、 201、 301、 401 :觸控面板 2、 102、402 :基板 3、 103、 203、 303、 403:第 1 透明電極 4、 104、204、304、404 :第 2 透明電極 5 、 6 、 105 、 106 、 205 、 206 、 305 、 306 、 405 、 406 : 金屬氧化物層 7、107、207 :覆蓋薄膜 9、 108、109、208、209、308、408 :透明黏著材 10、 110、210、310、410:顯示面板 1 1 :拉出配線 14:透明導電膜基板 18 :交叉部 1 9 :層間絕緣膜 20 :橋接電極 2 1 :電極墊部 212、312:第2基板 407 :保護層 -60-[Table 1] Film coating composition winding method refractive index pencil W KL 1 K 1 II 1. 5 2 9H KL 2 K2 II 1. 5 5 9H KL 3 K3 II 1. 6 0 8H KL 4 K4 I 1. 6 5 8H KL 5 K4 II 1. 70 8H KL5-1 K4 — 1 II 1. 6 0 9H KL 5 -2 K4-2 II 1. 6 0 8H KL 5 -3 K4-2 I 1. 6 0 7H KM1 K5 I 1. 48 9H KM2 K6 II 1. 75 7H KM3 K7 III 1. 5 0 3H &lt;Transparent Conductive Film Substrate&gt; First, a transparent conductive film substrate on which a transparent conductive film having a pattern is formed is formed on a substrate. A glass substrate is used for the substrate, and ITO is used for the transparent conductive film. As the transparent conductive film substrate, the transparent conductive film substrate 14 used in the touch panel 1 of the above-described embodiment can be used. Here, two kinds of transparent conductive film substrates having the same IT Ο pattern and having a film thickness of 28 nm and 75 nm are prepared. &lt;Example 1&gt; First, a substrate on which a metal oxide film KL1 was formed with a film thickness of 70 nm on a transparent conductive film substrate having an IT film thickness of 28 nm was produced. An optical adhesive was applied to the substrate and attached to a 7 mm soda lime glass substrate. Subsequently, an ultraviolet ray irradiation apparatus (Model UB 011-3A, manufactured by Eye Graphics Co., Ltd.) was used, and a high-pressure mercury lamp (input power supply of 1 000 W) was used, and ultraviolet rays were irradiated for 80 seconds at a light intensity of 50 mW/cm 2 (converted at a wavelength of 3 65 nm). Thereby, the optical adhesive is hardened to produce an evaluation touch surface -49-201231632. &lt;Examples 2 and 3&gt; In addition to the film thickness of the metal oxide film KL1 of 80 nm (Example 2) and 90 nm (Example 3), the evaluation touch was produced in the same manner as in Example 1. Control panel. &lt;Example 4&gt; A substrate in which a metal oxide film KL2 was formed on a transparent conductive film substrate having an ITO film thickness of 28 nm at a thickness of 7 Onm was produced. An optical adhesive was applied to the substrate and bonded to a 7. 7 mm plain glass substrate. Then, an ultraviolet ray irradiation apparatus (Model UB 011-3A, manufactured by Eye Graphics Co., Ltd.) was used, and a high-pressure mercury lamp (input power supply 1000 W) was used, and an ultraviolet ray of 80 seconds was irradiated with a light intensity of 50 mW/cm 2 (converted at a wavelength of 3 65 nm). Thereby, the optical adhesive is hardened to produce a touch panel for evaluation. &lt;Examples 5 and 6> In addition to the film thickness of the metal oxide film KL2 of 80 nm (Example 5) and 90 nm (Example 6), the evaluation touch was produced in the same manner as in Example 4. panel. &lt;Example 7&gt; A substrate in which a metal oxide film KL3 was formed on a transparent conductive film substrate having an ITO film thickness of 28 nm at a film thickness of 5 Onm was produced. An optical adhesive -50 - 201231632 primer was applied to the substrate and bonded to a 0.7 mm plain glass substrate. Then, using an ultraviolet irradiation device (UB 01 1-3 A type manufactured by Eye Graphics Co., Ltd.) and using a high-pressure mercury lamp (input power supply of 1 000 W), ultraviolet light was irradiated for 80 seconds at a light intensity of 5 〇 mW/cm 2 (converted at a wavelength of 365 nm). . Thereby, the optical adhesive is hardened to produce a touch panel for evaluation. &lt;Examples 8 to 1 1 &gt; Except that the film thickness of the metal oxide film KL3 was 70 nm (Example 8), 80 nm (Example 9), 120 nm (Example 10), and 150 nm (Example 1 1) Others, the evaluation touch panel was produced in the same manner as in the seventh embodiment. <Example 1 2> A substrate in which a metal oxide film KL4 was formed on a transparent conductive film substrate having an ITO film thickness of 28 nm at a film thickness of 80 nm was produced. An optical adhesive was applied to the substrate and bonded to a 7. 7 mm plain glass substrate. Next, an ultraviolet irradiation device (UB 01 1-3 A type manufactured by Eye Graphics Co., Ltd.) was used, and a high-pressure mercury lamp (input power supply of 1 000 W) was used, and light was irradiated for 80 seconds at a light intensity of 5 〇mW/cm 2 (converted at a wavelength of 3 65 nm). Ultraviolet light. Thereby, the optical adhesive is hardened to produce a touch panel for evaluation. &lt;Example 1 3&gt; An evaluation touch panel was produced in the same manner as in Example 12 except that the film thickness of the metal oxide film KL4 was 10 nm. -51 - 201231632 &lt;Example 1 4&gt; A substrate in which a metal oxide film KL4 was formed on a transparent conductive film substrate having an ITO film thickness of 75 nm at a film thickness of 100 nm was produced. An optical adhesive was applied to the substrate and bonded to a 0.7 mm plain glass substrate. Then, an ultraviolet ray irradiation device (Model UB 011-3A, manufactured by Eye Graphics Co., Ltd.) was used, and a high-pressure mercury lamp (input power supply of 1 000 W) was used, and ultraviolet rays were irradiated for 80 seconds at a light intensity of 50 mW/cm 2 (converted at a wavelength of 3 65 nm). Thereby, the optical adhesive is hardened to produce a touch panel for evaluation. &lt;Example 1 5&gt; A substrate in which a metal oxide film KL5 was formed on a transparent conductive film substrate having an ITO film thickness of 75 nm at a film thickness of 100 nm was produced. An optical adhesive was applied to the substrate and bonded to a 〇7 mm plain glass substrate. The receiver used an ultraviolet irradiation device (Model UB 011-3A, manufactured by Eye Graphics Co., Ltd.) and irradiated the ultraviolet ray for 80 seconds at a light intensity of 50 mW/cm 2 (converted at a wavelength of 365 nm using a high-pressure mercury lamp (input power supply of 1 000 W). Thereby, the optical adhesive is hardened to produce a touch panel for evaluation. &lt;Example 1 6 &gt; A substrate in which a metal oxide film KL5_i was formed on a transparent conductive film substrate having an ITO film thickness of 28 nm at a film thickness of 100 nm was produced. An optical adhesive was applied to the substrate and attached to a 坡 7 m m plain glass substrate. The receiver used an ultraviolet irradiation device (UB 011--52-201231632 3 A type manufactured by Eye Graphics Co., Ltd.) and used a high-pressure mercury lamp (input power supply 1 〇0 〇W) to measure the light intensity at 50 mW/cm2 (converted at 365 nm). Irradiation of 8 sec seconds of ultraviolet light. Thereby, the optical adhesive is hardened to produce a touch panel for evaluation. &lt;Example 1 7&gt; A substrate in which a metal oxide film KL5-2 was formed on a transparent conductive film substrate having an ITO film thickness of 28 nm at a film thickness of 100 nm was produced. An optical adhesive was applied to the substrate and bonded to a 0.7 mm plain glass substrate. Subsequently, an ultraviolet ray irradiation apparatus (Model UB 011-3A, manufactured by Eye Graphics Co., Ltd.) was used, and an ultraviolet ray of 80 seconds was irradiated with a light intensity of 50 mW/cm 2 (converted at a wavelength of 3 65 nm) using a high pressure mercury lamp (input power supply 1000 W). Thereby, the optical adhesive is hardened to produce a touch panel for evaluation. &lt;Example 1 8&gt; A substrate on which a metal oxide film KL5-3 was formed on a transparent conductive film substrate having an ITO film thickness of 28 nm at a film thickness of 100 nm was produced. An optical adhesive was applied to the substrate and attached to a 0.7 mm plain glass substrate. Subsequently, an ultraviolet ray irradiation apparatus (Model UB 011-3A, manufactured by Eye Graphics Co., Ltd.) was used, and an ultraviolet ray of 80 seconds was irradiated with a light intensity of 50 mW/cm 2 (converted at a wavelength of 365 nm) using a high pressure mercury lamp (input power supply of 1 000 W). Thereby, the optical adhesive is hardened to produce a touch panel for evaluation. &lt;Comparative Example 1 &gt; A metal-53-201231632 oxide film was not formed on a transparent conductive film substrate having a ruthenium film thickness of 28 nm, and an optical adhesive was directly applied thereto and bonded to a 0.7 mm plain glass substrate. Subsequently, an ultraviolet ray irradiation apparatus (Model UB 011-3A, manufactured by Eye Graphics Co., Ltd.) was used, and a high-pressure mercury lamp (input power supply of 1 000 W) was used, and ultraviolet rays of 80 seconds were irradiated at a light intensity of 50 mW/cm 2 (converted at a wavelength of 3 65 nm). Thereby, the optical adhesive was cured to produce a touch panel for evaluation without a metal oxide layer. <Comparative Example 2 &gt; A metal oxide film was not formed on a transparent conductive film substrate having an ITO film thickness of 75 nm. The optical adhesive was applied and bonded to a 0.7 mm plain glass substrate. Then, an ultraviolet ray irradiation apparatus (Model UB 011-3A, manufactured by Eye Graphics Co., Ltd.) was used, and a high-pressure mercury lamp (input power supply: 1000 W) was used to irradiate ultraviolet rays of 80 sec at a light intensity of 50 mW/cm 2 (converted at a wavelength of 365 nm). Thereby, the optical adhesive is cured to produce an evaluation touch panel having no metal oxide layer. &lt;Comparative Example 3&gt; An evaluation touch panel was produced in the same manner as in Example 12 except that the film thickness of the metal oxide film KL4 was 30 nm. &lt;Comparative Example 4> A substrate in which a metal oxide film KM1 was formed on a transparent conductive film substrate having an ITO film thickness of 28 nm at a film thickness of 10 nm was produced. An optical adhesive was applied to the substrate and bonded to a 0.7 mm plain glass substrate. -54- 201231632 Next, use an ultraviolet irradiation device (Model UB 011-3A, manufactured by Eye Graphics Co., Ltd.), and use a high-pressure mercury lamp (input power supply 1000 W) to irradiate ultraviolet rays for 80 seconds at a light intensity of 50 mW/cm 2 (converted at a wavelength of 3 65 nm). . Thereby, the optical adhesive is hardened to produce a touch panel for evaluation. &lt;Comparative Example 5&gt; A substrate in which a metal oxide film KM2 was formed on a transparent conductive film substrate having an ITO film thickness of 28 nm at a film thickness of 100 nm was produced. An optical adhesive was applied to the substrate and bonded to a 0.7 mm plain glass substrate. Subsequently, an ultraviolet ray irradiation apparatus (Model UB 01 1-3A, manufactured by Eye Graphics Co., Ltd.) was used, and an ultraviolet ray of 80 seconds was irradiated with a light intensity of 50 mW/cm 2 (converted at a wavelength of 3 65 nm) using a high pressure mercury lamp (input power supply 1000 W). Thereby, the optical adhesive is hardened to produce a touch panel for evaluation. &lt;Comparative Example 6&gt; A substrate in which a metal oxide film KM2 was formed on a transparent conductive film substrate having an ITO film thickness of 75 nm at a film thickness of 100 nm was produced. An optical adhesive was applied to the substrate and bonded to a 0.7 mm plain glass substrate. Subsequently, an ultraviolet ray irradiation apparatus (Model UB 011-3A, manufactured by Eye Graphics Co., Ltd.) was used, and a high-pressure mercury lamp (input power supply of 1 000 W) was used, and ultraviolet rays of 80 seconds were irradiated at a light intensity of 50 mW/cm 2 (converted at a wavelength of 365 nm). Thereby, the optical adhesive is hardened to produce a touch panel for evaluation. &lt;Comparative Example 7 &gt; -55-201231632 A substrate in which an acrylic film KM3 was formed in a film thickness of 2 μm of an ITO film having a thickness of 75 nm was produced. The optical coating was applied to the substrate and bonded to a 7. 7 mm plain glass substrate. An ultraviolet ray irradiation apparatus (UB type manufactured by Eye Graphics Co., Ltd.) was used to irradiate the external light line with a high-pressure mercury lamp (input power supply of 1 000 W 50 mW/cm 2 (converted at a wavelength of 3 65 nm). Thereby, the optical adhesive was hardened to form a film. There is a touch panel for acryl evaluation. &lt;Evaluation of Adhesiveness&gt; In the examples 1 to 18, a metal oxide film (KL1) formed in the middle of the production of the evaluation plate was used. The substrate was subjected to a peeling test on each of the metal oxide films on the electric film substrate in accordance with the cross-cutting method of the adhesion of IS K5 6 00 to evaluate the properties. Similarly, in Comparative Example 3 to Comparative Example 7, The substrate formed with the metal oxide film (KM1 and KM2) and the acrylic film (KM3) which was formed in the middle of the production of the evaluation panel was evaluated. &lt;Evaluation of Electrode Pattern Viewability&gt; Using the touch panel of the evaluation example 18 and Comparative Example 1 to Comparative Example 7, the ITO electrode pattern was evaluated. The adhesive was then applied to the plate with an adhesive of 011 -3 A ) in seconds. Film touch surface - KL5) Transparent guide evaluation Estimate the use of touch KL4, estimate the nature of the system -56-201231632 Place each touch panel on a black cloth, and observe it visually from the upper illumination state. The observation results were as follows: the unviewed type was &lt;electrode pattern viewing evaluation ◎&gt;. Further, in the case of the polar pattern, the degree is improved as compared with the touch panel in which the metal oxide is not present on the ruthenium film, and the touch panel of Comparative Example 1 and Comparative Example 2 is &lt;view evaluation 〇&gt;. Further, the same as those of Comparative Example 1 and Comparative Example 2, &lt;electrode pattern viewing evaluation Δ&gt;, and the touch panel of the comparative example 1 and the comparative example 2 of the IT 〇 is more prominent &lt;χ&gt; The results of the electrode pattern visibility evaluation of the touch panels of Examples 1 to 18 and Comparative Examples 1 to 1 were summarized in the second table together with the evaluation results. The shape of the light to the electrode diagram is compared with the electrode pattern. The touch surface pattern of the electrode pattern is better than that of the evaluation of the 〇7-57-201231632 [Table 2] ITO film thickness of the touch panel (nm) Metal oxidation Film Thickness (nm) Electrode Pattern Viewability Evaluation Adhesion Evaluation Window Example 1 28 KL 1 7 0 〇0 啻 Example 2 28 KL 1 8 0 〇0 Window Example 3 28 KL 1 9 0 〇0 Example 4 28 KL 2 7 0 ◎ 0 Window Example 5 2 8 KL2 8 0 ◎ 0 Window Example 6 28 KL 2 9 0 ◎ 0 ΪΤ Example 7 2 8 KL 3 5 0 〇0 哲例例 8 28 KL 3 7 0 ◎ 0 宵 Example 9 28 KL 3 8 0 ◎ 0 宵 Example 1 〇28 KL 3 12 0 ◎ 0 Window Example 1 1 28 KL 3 15 0 〇0 Zhe Shi 1 2 28 KL4 8 0 ◎ 0 Official application 1 3 28 KL4 1 00 ◎ 0 啻 Example 1 4 7 5 KL4 10 0 ◎ 0 Zhe Shi 1 1 5 7 5 KL 5 10 0 ◎ 0 宵 Example 1 6 2 8 KL5-1 100 ◎ 0 Window Example 1 7 28 KL 5-2 1 00 ◎ 0 宵 Example ί 8 2 8 KL 5-2 10 0 ◎ 0 Comparative Example 1 2 8 _ A Δ A Comparative Example 2 7 5 _ _ Δ A Comparative Example 3 2 8 KL4 3 0 Δ 0 Comparative Example 4... 28 KM1 10 0 Δ 0 Comparative Example 5 2 8 KM2 10 0 X 0 Comparative Example 6 7 5 KM2 10 0 X 0 Hinge Example 7 7 5 KM3 2 0 0 0 Δ 5 In the touch panels of Embodiments 1 to 15, the results of the 'electrode pattern visibility evaluation are good', and it can be known that these are the electrode patterns not viewed' or Even if it was observed, it was improved in comparison with the comparative example having no metal oxide film. Therefore, by forming a metal oxide film having a refractive index and a film thickness adjusted on the transparent electrode, the electrode pattern visibility can be improved and the electrode can be made inconspicuous. Further, it was also found that the adhesion of each metal oxide film was higher than that of the acrylic film. From the results of the second table, it can be seen that according to the first to fifth embodiments, it is possible to obtain a touch panel capable of reducing the decrease in displayability -58 - 201231632 due to the conspicuous appearance of the transparent electrode pattern. Specifically, it is possible to suppress the transparent electrode pattern and become conspicuous, and provide the touch panel 本, 101, 201, 301, and 401 of the present embodiment. Industrial Applicability: The touch panel of the present invention can make an electrode The pattern becomes inconspicuous and the adhesion between the constituent members is also good. Therefore, there is a touch panel for use as a display device which requires an excellent appearance and high reliability. The entire contents of the specification, the scope of the application, the drawings and the abstract of the invention are hereby incorporated by reference. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a plan view of a touch panel according to a first example of the present embodiment. Fig. 2 is a cross-sectional view taken along line A 1 - Α 第 of Fig. 1. Fig. 3 (a) to (d) are cross-sectional views showing the steps of a method of manufacturing the touch panel of the first example of the embodiment. Fig. 4 is a plan view showing a touch panel of a second example of the embodiment. Fig. 5 is a cross-sectional view taken along line B1-B of Fig. 4. Fig. 6 is a cross-sectional view showing a schematic configuration of a touch panel of a third example of the embodiment. Fig. 7 is a cross-sectional view showing a schematic configuration of a touch panel of a fourth example of the embodiment. -59-201231632 Fig. 8 is a cross-sectional view showing a schematic configuration of a touch panel of a fifth example of the embodiment. [Description of main component symbols] 1, 101, 201, 301, 401: touch panel 2, 102, 402: substrates 3, 103, 203, 303, 403: first transparent electrodes 4, 104, 204, 304, 404: Second transparent electrode 5, 6, 105, 106, 205, 206, 305, 306, 405, 406: metal oxide layer 7, 107, 207: cover film 9, 108, 109, 208, 209, 308, 408: Transparent adhesive material 10, 110, 210, 310, 410: display panel 1 1 : pull-out wiring 14: transparent conductive film substrate 18: intersection portion 19: interlayer insulating film 20: bridge electrode 2 1 : electrode pad portion 212, 312 : 2nd substrate 407 : Protective layer - 60-

Claims (1)

201231632 七、申請專利範圍: 1· 一種觸控面板,其係在透明基板的操作區域上形成 有透明電極的圖型之靜電電容方式的觸控面板,其特徵 爲· 在由下列一般式(II)表示之金屬鹽的存在下,於有 機溶劑中使由下列一般式(I )表示之金屬烷氧化物水解 並縮合,進一步添加析出防止劑而得塗膜組成物,將由該 塗膜組成物所形成之金屬氧化物的層配置在前述透明電極 上; ( OR) n (I) (式中,Μ,表示金屬,R表示Cl〜C5的烷基,η表示 M i的價數); M2 ( X) m ( II) (式中,M2表示金屬,X表示氯、硝酸、硫酸、乙 酸、草酸、磺胺酸、磺酸、乙醯乙酸、乙醯丙酮酸或此等 之鹼性鹽,m表示M2的價數)。 2.—種觸控面板,其係在透明基板的操作區域上形成 有透明電極的圖型之靜電電容方式的觸控面板,其特徵 爲. 在由下列一般式(II-1 )及式(Π-1 )中所使用之金 屬的草酸鹽表示之金屬鹽的存在下,於有機溶劑中使由下 列一般式(I)表示之金屬烷氧化物水解並縮合,然後添 加析出防止劑而得塗膜組成物,將由該塗膜組成物所形成 之金屬氧化物的層配置在前述透明電極上; -61 - 201231632 Μ, ( OR) „ ( I) (式中,Mi表示金屬,R表示Cl〜C5的烷基,n表示 Μ!的價數); Μ2 ( X) m ( II-l ) (式中,m2表示金屬,X表示氯、硝酸、硫酸、乙 酸、磺胺酸、磺酸、乙醯乙酸、乙醯丙酮酸或此等之鹼性 鹽,m表示M2的價數)。 3.如申請專利範圍第1或2項之觸控面板,其中上述 一般式(I)中的金屬 M,,係選自由矽(Si)、鈦 (Ti)、鉬(Ta)、錯(Zr)、硼(B)、鋁(A1)、鎂 (Mg)、錫(Sn)及辞(Ζπ)所組成之群組的至少1 種。 4 ·如申請專利範圍第1至3項中任一項之觸控面板, 其中上述一般式(II)及(ΙΙ-1)中的金屬Μ2,係選自由 鋁(Α1) '銦(In)、鋅(Zn)、銷(Zr)、鉍(Bi)、 鑭(La )、鉬(Ta )、釔(Y )及鈽(Ce )所組成之群組 的至少1種。 5 ·如申請專利範圍第1至4項中任—項之觸控面板, 其中前述金屬氧化物的層’其折射率爲1.50~1.70,該層 的膜厚爲40nm~170nm。 6 ·如申請專利範圍第1至5項中任一項之觸控面板, 其中前述金屬氧化物的層,其折射率爲1.54〜1·68,該層 的膜厚爲40nm〜170nm。 7.如申請專利範圍第1至6項中任—項之觸控面板, -62- 201231632 金屬烷氧化物爲烷氧化矽或其部分縮合物與烷氧 化鈦之混合物。 8. 如申請專利範圍第1至7項中任一項之觸控面板, 其中前述析出防止劑,係選自由Ν-甲基-吡咯啶酮、乙二 醇、二甲基甲醯胺、二甲基乙醯胺、二乙二醇、丙二醇、 己二醇及此等之衍生物所組成之群組的至少1種。 9. 如申請專利範圍第1至8項中任一項之觸控面板, 其中前述塗膜組成物中所含有之金屬烷氧化物的金屬原子 (Μ!)與金屬鹽的金屬原子(μ2)之莫耳比,爲0.01$ M2/ ( MJM2 ) $ 0.7。 1 〇·如申請專利範圍第1至9項中任一項之觸控面 板,其中前述金屬鹽,係選自由金屬硝酸鹽、金屬硫酸 鹽、金屬乙酸鹽、金屬氯化物、金屬草酸鹽、金屬磺胺酸 鹽、金屬磺酸鹽、金屬乙醯乙酸鹽、金屬乙醯丙酮酸鹽及 此等之鹼性鹽所組成之群組的至少1種。 1 1 ·如申請專利範圍第1至1 〇項中任一項之觸控面 板,其中前述有機溶劑係含有烷二醇類或其單醚衍生物。 1 2 ·如申請專利範圍第1至1 1項中任一項之觸控面 板,其中前述透明電極,係具有用以偵測出至少2個不同 方向的位置之第1透明電極及第2透明電極。 1 3 .如申請專利範圍第1 2項之觸控面板,其中前述第 1透明電極及前述第2透明電極係配置在與前述透明基板 相同之面上。 14.如申請專利範圍第12項之觸控面板,其中前述第 -63- 201231632 1透明電極及前述第2透明電極係分別配置在與前述透明 基板不同之面上。 -64-201231632 VII. Patent application scope: 1. A touch panel which is a capacitive touch panel formed with a transparent electrode on an operation area of a transparent substrate, and is characterized by the following general formula (II) In the presence of a metal salt, the metal alkoxide represented by the following general formula (I) is hydrolyzed and condensed in an organic solvent, and a precipitation preventing agent is further added to obtain a coating film composition, which is composed of the coating film composition. a layer of the formed metal oxide is disposed on the transparent electrode; (OR) n (I) (wherein, Μ represents a metal, R represents an alkyl group of C1 to C5, and η represents a valence of M i ); X) m ( II) (wherein M2 represents a metal, and X represents chlorine, nitric acid, sulfuric acid, acetic acid, oxalic acid, sulfamic acid, sulfonic acid, acetoacetic acid, acetylpyruvate or the like, and m represents The price of M2). 2. A touch panel, which is a capacitive touch panel of a pattern in which a transparent electrode is formed on an operation area of a transparent substrate, and is characterized by the following general formula (II-1) and In the presence of a metal salt of the metal salt used in Π-1), the metal alkoxide represented by the following general formula (I) is hydrolyzed and condensed in an organic solvent, and then a precipitation preventing agent is added. a coating film composition in which a layer of a metal oxide formed by the coating film composition is disposed on the transparent electrode; -61 - 201231632 Μ, (OR) „ (I) (wherein Mi represents a metal and R represents a Cl ~C5 alkyl, n represents the valence of Μ!); Μ2 ( X) m ( II-l ) (wherein m2 represents a metal, and X represents chlorine, nitric acid, sulfuric acid, acetic acid, sulfamic acid, sulfonic acid, B Indoleacetic acid, acetoacetic acid or such an alkaline salt, m represents the valence of M2. 3. The touch panel of claim 1 or 2, wherein the metal M in the above general formula (I) , selected from bismuth (Si), titanium (Ti), molybdenum (Ta), erbium (Zr), boron (B), aluminum (A1), magnesium (Mg), tin At least one of the group consisting of Sn) and (辞π). The touch panel of any one of claims 1 to 3, wherein the above general formula (II) and (ΙΙ-1) The metal ruthenium 2 is selected from the group consisting of aluminum (Α1) 'indium (In), zinc (Zn), pin (Zr), bismuth (Bi), lanthanum (La), molybdenum (Ta), yttrium (Y) and yttrium ( At least one of the group consisting of: Ce. The touch panel of any one of claims 1 to 4, wherein the layer of the aforementioned metal oxide has a refractive index of 1.50 to 1.70, the layer The touch panel of any one of the above-mentioned metal oxides, wherein the layer of the metal oxide has a refractive index of 1.54 to 1.68, the film of the layer is a film having a thickness of from 40 nm to 170 nm. The thickness is from 40 nm to 170 nm. 7. The touch panel according to any one of claims 1 to 6, the -62-201231632 metal alkoxide is a mixture of alkoxide or a partial condensate thereof and a titanium alkoxide. 8. The touch panel according to any one of claims 1 to 7, wherein the precipitating agent is selected from the group consisting of Ν-methyl-pyrrolidone, ethylene glycol, and dimethyl group. At least one of a group consisting of guanamine, dimethylacetamide, diethylene glycol, propylene glycol, hexanediol, and the like. 9. As in any of claims 1 to 8 The touch panel of the present invention, wherein the molar ratio of the metal atom of the metal alkoxide (Μ!) contained in the coating film composition to the metal atom of the metal salt (μ2) is 0.01$ M2 / ( MJM2 ) $ 0.7. The touch panel of any one of claims 1 to 9, wherein the metal salt is selected from the group consisting of metal nitrates, metal sulfates, metal acetates, metal chlorides, metal oxalates, At least one of the group consisting of a metal sulfonate, a metal sulfonate, a metal acetoacetate, a metal acetoacetate, and the like. The touch panel according to any one of claims 1 to 1, wherein the organic solvent contains an alkanediol or a monoether derivative thereof. The touch panel of any one of claims 1 to 11, wherein the transparent electrode has a first transparent electrode and a second transparent layer for detecting at least two positions in different directions. electrode. The touch panel of claim 12, wherein the first transparent electrode and the second transparent electrode are disposed on the same surface as the transparent substrate. 14. The touch panel of claim 12, wherein the transparent electrode of the -63-201231632 1 and the second transparent electrode are disposed on a surface different from the transparent substrate. -64-
TW100138878A 2010-10-26 2011-10-26 Touch panel TWI535830B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010240080 2010-10-26

Publications (2)

Publication Number Publication Date
TW201231632A true TW201231632A (en) 2012-08-01
TWI535830B TWI535830B (en) 2016-06-01

Family

ID=45993871

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100138878A TWI535830B (en) 2010-10-26 2011-10-26 Touch panel

Country Status (5)

Country Link
JP (1) JP5920220B2 (en)
KR (1) KR101871527B1 (en)
CN (1) CN103270477B (en)
TW (1) TWI535830B (en)
WO (1) WO2012057165A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI480782B (en) * 2013-01-31 2015-04-11 Henghao Technology Co Ltd Touch panel
CN104812569A (en) * 2012-11-30 2015-07-29 富士胶片株式会社 Transfer film, transparent laminate, method for producing transfer film, method for producing transparent laminate, capacitive input device, and image display device
TWI612453B (en) * 2016-09-01 2018-01-21 友達光電股份有限公司 Touch panel
TWI620108B (en) * 2016-09-01 2018-04-01 友達光電股份有限公司 Touch panel
TWI645324B (en) * 2014-01-29 2018-12-21 日商愛發科股份有限公司 Touch panel

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9632640B2 (en) 2012-07-03 2017-04-25 Fujifilm Corporation Transparent laminate, capacitance type input device, and image display device
JP5901451B2 (en) 2012-07-03 2016-04-13 富士フイルム株式会社 Transparent laminate, capacitance input device, and image display device
KR20150064152A (en) * 2012-10-03 2015-06-10 닛산 가가쿠 고교 가부시키 가이샤 Application liquid capable of fine application, for forming inorganic oxide coating film, and method for manufacturing fine inorganic oxide coating film
WO2014058018A1 (en) * 2012-10-11 2014-04-17 日産化学工業株式会社 Coating liquid for forming inorganic oxide coating film, inorganic oxide coating film, and display device
JP6206637B2 (en) * 2013-02-12 2017-10-04 大日本印刷株式会社 Touch panel substrate and display device
JP6751271B2 (en) * 2015-02-24 2020-09-02 日産化学株式会社 Laminated body, touch panel, and patterning method for laminated body
KR102412096B1 (en) 2015-08-20 2022-06-24 삼성디스플레이 주식회사 Touch panel, display device having the same, and fabrication method of the touch panel

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2881847B2 (en) * 1988-12-15 1999-04-12 日産化学工業株式会社 Coating composition and method for producing the same
JP3825813B2 (en) * 1992-07-17 2006-09-27 日産化学工業株式会社 Coating liquid for forming high refractive index insulating coating for liquid crystal display
JPH06264008A (en) * 1993-03-12 1994-09-20 Nissan Chem Ind Ltd Coating fluid composition for forming antibacterial, and algicidal transparent coating film
JP3388099B2 (en) * 1996-07-10 2003-03-17 帝人株式会社 Transparent conductive laminate and transparent tablet
JP3626624B2 (en) * 1999-04-19 2005-03-09 帝人株式会社 Transparent conductive laminate and transparent tablet
JP2003173238A (en) 2001-12-05 2003-06-20 Sharp Corp Touch sensor and display device with touch sensor
JP2003241172A (en) * 2002-02-22 2003-08-27 Konica Corp Metal/plastic composite film and optical film
JPWO2008041506A1 (en) * 2006-09-29 2010-02-04 株式会社きもと Optical film, transparent conductive member using the same, and transparent touch panel
WO2009011224A1 (en) * 2007-07-18 2009-01-22 Konica Minolta Holdings, Inc. Method for producing metal oxide semiconductor, and thin film transistor obtained from the metal oxide semiconductor
JP2009205379A (en) * 2008-02-27 2009-09-10 Seiko Instruments Inc Display device with touch panel
WO2009119563A1 (en) * 2008-03-25 2009-10-01 東レ株式会社 Electrically conductive complex and process for production thereof
KR20100006987A (en) * 2008-07-11 2010-01-22 삼성모바일디스플레이주식회사 Touch screen panel and fabricating method for the same
US9342176B2 (en) 2008-07-21 2016-05-17 Samsung Display Co., Ltd. Organic light emitting display device
CN101576793A (en) * 2009-01-12 2009-11-11 深圳市中显微电子有限公司 Capacitance touch screen and preparation method thereof
JP5484891B2 (en) * 2009-03-04 2014-05-07 株式会社ジャパンディスプレイ Display device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104812569A (en) * 2012-11-30 2015-07-29 富士胶片株式会社 Transfer film, transparent laminate, method for producing transfer film, method for producing transparent laminate, capacitive input device, and image display device
CN104812569B (en) * 2012-11-30 2017-09-05 富士胶片株式会社 Transfer film and Sparent laminate, their manufacture method, capacitive input device and image display device
TWI480782B (en) * 2013-01-31 2015-04-11 Henghao Technology Co Ltd Touch panel
TWI645324B (en) * 2014-01-29 2018-12-21 日商愛發科股份有限公司 Touch panel
TWI612453B (en) * 2016-09-01 2018-01-21 友達光電股份有限公司 Touch panel
TWI620108B (en) * 2016-09-01 2018-04-01 友達光電股份有限公司 Touch panel

Also Published As

Publication number Publication date
KR20140009193A (en) 2014-01-22
WO2012057165A1 (en) 2012-05-03
CN103270477B (en) 2016-11-09
CN103270477A (en) 2013-08-28
JP5920220B2 (en) 2016-05-18
KR101871527B1 (en) 2018-06-26
TWI535830B (en) 2016-06-01
JPWO2012057165A1 (en) 2014-05-12

Similar Documents

Publication Publication Date Title
TWI535830B (en) Touch panel
TWI542648B (en) A coating composition for a touch panel, a coating film, and a touch panel
JP6155537B2 (en) CONDUCTIVE PATTERN LAMINATE, MANUFACTURING METHOD THEREOF, AND ELECTRONIC DEVICE AND TOUCH SCREEN CONTAINING CONDUCTIVE PATTERN LAMINATE
TWI541701B (en) A display panel device with touch input function
TW201443733A (en) Touch screen and method for preparing the same
CN104163577A (en) ITO (indium tin oxide) conducting glass and preparation method thereof
JP5463678B2 (en) Transparent conductive film
JP4349794B2 (en) Method for producing conductive transparent substrate with multilayer antireflection film
JP2013246976A (en) Supporting material for conductive optical member, conductive optical member including the same, and electronic device including conductive optical member
JP2013246610A (en) Electrostatic capacitance type touch panel substrate, display device and method of manufacturing electrostatic capacitance type touch panel substrate
TW201917010A (en) Transfer material, touch sensor and manufacturing method therefor, and image display device
JP6206063B2 (en) Touch panel sensor and display device with touch panel
JP6880714B2 (en) Decorative member, display device using it, and manufacturing method of decorative member
TWI615751B (en) Patterning method of laminate, touch panel and laminate
TWI483158B (en) Touch panel and touch display panel using the same
JP2013174787A (en) Optical member
CN105260075A (en) Touch panel and touch display applying same
JP2014199565A (en) Electrode member for touch panel and manufacturing method of electrode member for touch panel
KR102552063B1 (en) Electrode structure, touch sensor, window laminate and image display device therewith
CN114446208B (en) Display panel and display device comprising same
KR20160030637A (en) Touch window and touch device
TW201245752A (en) Conductive film