TW201214795A - Light emitting device package using quantum dot, illumination apparatus and display apparatus - Google Patents

Light emitting device package using quantum dot, illumination apparatus and display apparatus Download PDF

Info

Publication number
TW201214795A
TW201214795A TW100120506A TW100120506A TW201214795A TW 201214795 A TW201214795 A TW 201214795A TW 100120506 A TW100120506 A TW 100120506A TW 100120506 A TW100120506 A TW 100120506A TW 201214795 A TW201214795 A TW 201214795A
Authority
TW
Taiwan
Prior art keywords
light
illuminating device
package
device package
quantum dot
Prior art date
Application number
TW100120506A
Other languages
Chinese (zh)
Other versions
TWI479703B (en
Inventor
Hyo-Jin Lee
Il-Woo Park
Chang-Hoon Kwak
Original Assignee
Samsung Led Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Led Co Ltd filed Critical Samsung Led Co Ltd
Publication of TW201214795A publication Critical patent/TW201214795A/en
Application granted granted Critical
Publication of TWI479703B publication Critical patent/TWI479703B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0083Processes for devices with an active region comprising only II-VI compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Abstract

There is provided a light emitting device package using a quantum dot, an illumination apparatus and a display apparatus. The light emitting device package includes a light emitting device; a sealing part disposed in a path of light emitted from the light emitting device and having a lens shape; and a wavelength conversion part sealed within the sealing part and including a quantum dot. The light emitting device package uses the quantum dot as the wavelength conversion part to thereby achieve superior color reproducibility and light emission efficiency, and facilitates the control of color coordinates by adjusting the particle size and concentration of the quantum dot.

Description

201214795 六、發明說明: [相關申請案之交互參考] 本案係主張2010年6月14日向美國專利商標局申請 之美國臨時申請案第61/354,429號以及向韓國智慧財產 局申請之韓國專利申請案第10-2010-0102419號之優先 權,其揭示内容以引用方式併入本案。 發明背景 【發明所屬之技術領域】 本發明係關於一種使用量子點之發光裝置封裝件、照 明設備及顯示設備。 【先前技術】 量子點係為具有約10奈米(nm)或更少直徑的半導體 奈米晶體(nanocrystal ),且產生量子侷限效應(quantum confinement effect)。該量子點可發射的光較強於内部有 狹波長帶之一般螢光體(phosphor)所發射的光。藉由受激 電子(excited electrons)由傳導帶(conduction band)至 價帶(valence band)的轉換,可實現藉由量子點的光發 射。甚至於相同材料之量子點的情況中,量子點根據其粒 子尺寸(particle size)可發射具有不同波長的光。當減少 量子點之尺寸時,量子點可發射短波長的光。因此,藉由 調整量子點之粒子尺寸可得到具有所需波長帶的光。 在有機溶劑中藉由配位鍵(coordinate bond)可分散 量子點。在量子點未適當地分散或曝露到氧氣或溼氣的情 況中,可能減少其光發射效率。為了解決此問題,已藉由 4 95250 201214795 有機物質來囊封(encapsulate)量子點。然而,使用機物質 或其他具有相對高帶隙(band gap)之材料,來包覆量子點 本身’在製程及成本效率方面是有問題的。因此,增加了 對使用量子點以促成改善穩定性及光發射效率之方法的要 求。如同嘗試滿足此需求的範例,將具有量子點分散其中 之有機溶劑、聚合物或等等注入至聚合物電池或玻璃單元 (glass cell)内,從而保護該量子點免於曝露到氧氣或漫 氣。 【發明内容】 本發明之一態樣提供一種穩定使用量子點之發光裂置 封裝件、照明設備及顯示設備。 根據本發明之一個態樣,提供一種發光裝置封裝件, 包括:發光裝置;密封部,係安置在由該發光裝置所發射 之光的路徑中且具有透鏡形狀;以及波長轉換部,係密封 在該密封部内且包含量子點。 該密封部可具有外表面及面向該發光裝置之内表面, 且該外和内表面可具有朝該發光裝置之上部部分的凸向形 狀。 該發光裝置可安置成被具該凸向形狀之該内表面密 閉。 該發光裝置封裝件可復包括透明囊封部 (encapsulation part),其係填充由該密封部之該内表面 所界定的空間。 該發光裝置封裝件可復包括一對導線架,且可提供該 95250 5 201214795 對導線架之一者作為該發光裝置的安裝地區。 該發光裝置封裝件復包括一對導電性導線,係電性連 接該發光裝置至該對導線架,且該對導電性導線可安置成 被具該凸向形狀之該内表面密閉。 該發光裝置封裝件可復包括封裝體,其係提供該發光 裝置的安裝地區,且以安置該密封部之方向反射由該發光 裝置所發射之光。 該封裝體可包括透明樹脂、以及分散於該透明樹脂中 之光反射粒子。 該發光裝置封裝件可復包括導電性導線,其係傳遞電 子訊號至該發光裝置,且部分該導電性導線可安置於該封 裝體内。 該發光裝置封裝件可復包括一對外部端子,係由該封 裝體之側邊表面延伸至其下部表面,且電性連接至該發光 裝置。 該密封部可由玻璃或聚合物材料所形成。 該波長轉換部可復包括有機溶劑或具該量子點分散其 中之聚合物樹脂。 該有機溶劑可包括曱苯、三氣甲烷及乙醇之至少一者。 該聚合物樹脂可包括環氧樹脂、矽氧樹脂、聚苯乙烯 樹脂及丙稀酸樹脂之至少一者。 該量子點可包括矽基奈米晶體、ΙΙ-VI族化合物半導 體奈米晶體、III-V族化合物半導體奈米晶體、IV-VI族化 合物半導體奈米晶體或其混合之至少一者。 6 95250 201214795 該ΙΙ-VI族化合物半導體奈米晶體可選自由CdS、 CdSe、CdTe、ZnS、ZnSe、ZnTe、HgS、HgSe、HgTe、CdSeS、 CdSeTe、CdSTe、ZnSeS、ZnSeTe,ZnSTe、HgSeS、HgSeTe、 HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、 HgZnS、HgZnSe、HggZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、 CdHgSeS 、 CdHgSeTe 、 CdHgSTe 、 HgZnSeS 、 HgZnSeTe 及 HgZnSTe所組成之群組。 該III-V族化合物半導體奈米晶體可選自由GaN、201214795 VI. Invention Description: [Reciprocal Reference of Related Applications] This case is a US patent application No. 61/354,429 filed with the US Patent and Trademark Office on June 14, 2010 and a Korean patent application filed with the Korea Intellectual Property Office. The priority of the Japanese Patent Application No. 10-2010-01024, the disclosure of which is incorporated herein by reference. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light-emitting device package, a lighting device, and a display device using quantum dots. [Prior Art] The quantum dot system is a semiconductor nanocrystal having a diameter of about 10 nanometers (nm) or less, and produces a quantum confinement effect. The quantum dots can emit light that is stronger than light emitted by a typical phosphor having a narrow wavelength band. Light emission by quantum dots can be achieved by the conversion of conduction bands to valence bands of excited electrons. Even in the case of quantum dots of the same material, quantum dots can emit light having different wavelengths depending on their particle size. When reducing the size of a quantum dot, a quantum dot can emit light of a short wavelength. Therefore, light having a desired wavelength band can be obtained by adjusting the particle size of the quantum dots. Quantum dots can be dispersed by a coordinate bond in an organic solvent. In the case where the quantum dots are not properly dispersed or exposed to oxygen or moisture, their light emission efficiency may be reduced. In order to solve this problem, quantum dots have been encapsulated by 4 95250 201214795 organic substances. However, the use of organic matter or other materials having a relatively high band gap to coat the quantum dots themselves is problematic in terms of process and cost efficiency. Therefore, the need for a method of using quantum dots to promote stability and light emission efficiency has been increased. As an example of attempting to meet this need, an organic solvent, polymer or the like having quantum dots dispersed therein is injected into a polymer battery or a glass cell to protect the quantum dot from exposure to oxygen or gas. . SUMMARY OF THE INVENTION One aspect of the present invention provides a light-emitting splicing package, a lighting device, and a display device that stably use quantum dots. According to an aspect of the present invention, a light emitting device package includes: a light emitting device; a sealing portion disposed in a path of light emitted by the light emitting device and having a lens shape; and a wavelength converting portion sealed The sealing portion contains quantum dots therein. The seal portion may have an outer surface and an inner surface facing the light emitting device, and the outer and inner surfaces may have a convex shape toward an upper portion of the light emitting device. The illuminating device can be disposed to be sealed by the inner surface having the convex shape. The illuminating device package can include a transparent encapsulation portion that fills the space defined by the inner surface of the sealing portion. The illuminating device package can include a pair of lead frames, and the one of the 95250 5 201214795 pair of lead frames can be provided as the mounting area of the illuminating device. The illuminating device package further comprises a pair of conductive wires electrically connected to the illuminating device to the pair of lead frames, and the pair of conductive wires can be disposed to be sealed by the inner surface having the convex shape. The illuminating device package may further include a package that provides a mounting area of the illuminating device and reflects light emitted by the illuminating device in a direction in which the sealing portion is disposed. The package may include a transparent resin and light-reflecting particles dispersed in the transparent resin. The illuminating device package can further include a conductive wire that transmits an electronic signal to the illuminating device, and a portion of the conductive wire can be disposed in the package. The illuminating device package may include a pair of external terminals extending from a side surface of the package to a lower surface thereof and electrically connected to the illuminating device. The seal can be formed from a glass or polymeric material. The wavelength converting portion may further comprise an organic solvent or a polymer resin having the quantum dot dispersed therein. The organic solvent may include at least one of toluene, tri-methane, and ethanol. The polymer resin may include at least one of an epoxy resin, a silicone resin, a polystyrene resin, and an acrylic resin. The quantum dot may include at least one of a ruthenium nanocrystal, a yttrium-VI compound semiconductor nanocrystal, a III-V compound semiconductor nanocrystal, an IV-VI compound semiconductor nanocrystal, or a mixture thereof. 6 95250 201214795 The yttrium-VI compound semiconductor nanocrystals can be selected from CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, A group consisting of HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HggZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe, and HgZnSTe. The III-V compound semiconductor nanocrystal can be selected from GaN,

GaP、GaAs、AlN、A1P、AlAs、InN、InP、InAs、GaNP、GaNAs、 GaPAs、A1NP、AlNAs、AlPAs、InNP、InNAs、InPAs、GaAlNP、 GaAlNAs、GaAlPAs、GalnNP、GalnNAs、GalnPAs、InAlNP、GaP, GaAs, AlN, A1P, AlAs, InN, InP, InAs, GaNP, GaNAs, GaPAs, A1NP, AlNAs, AlPAs, InNP, InNAs, InPAs, GaAlNP, GaAlNAs, GaAlPAs, GalnNP, GalnNAs, GalnPAs, InAlNP,

InAlNAs、及InAlPAs所組成之群組。 該IV-VI族化合物半導體奈米晶體可為sbTe。 該量子點可包括具有在綠色光波長帶内部之峰值波長 的第一量子點。 該量子點可包括具有在紅色光波長帶内部之峰值波長 的第二量子點。 該發光裝置係發射藍色光,且該量子點包括具有在綠 色光波長帶内部之峰值波長的第一量子點、以及具有在紅 色光波長帶内部之峰值波長的第二量子點。 由該發光裝置所發射之光具有435nm到470nm的波 長,由該第一量子點所發射之綠色光可具有的顏色座標落 於由四個基於CIE 1931色度圖之座標點(〇. 1270, 0.8037)、(〇·4117, 0.5861M0.4197, 0.5316)和(0.2555, 95250 7 201214795 0. 5030)界定之區域内,且由該第二量子點所發射之紅色光 可具有的顏色座標落於由四個基於CIE 1931色度圖之座標 點(0.5448, 0.4544)、(0.7200, 0.2800)、(0.6427, 0.2905) 和(0.4794,0.4633)界定之區域内。 由該第一量子點所發射之綠色光可具有的顏色座標落 於由四個基於CIE 1931色度圖之座標點(〇. 1270, 0.8037)、(0.3700, 0.6180)、(0.3700, 0.5800)和(0.2500, 0. 5500)界定之區域内,且由該第二量子點所發射之紅色光 可具有的顏色座標落於由四個基於CIE1931色度圖之座標 點(0.6000, 0.4000)、(0.7200, 0.2800)、(0.6427, 0.2905) 和(0.6000,0.4000)界定之區域内。 由該發光裝置所發射之光可具有1〇ηιη到3〇nm之半高 全寬(ful卜width half-maximum),由該第一量子點所發射 之光可具有10nm到60nm之半高全寬,且由該第二量子點 所發射之光可具有30nm到80nm之半高全寬。 該發光裝置可發射紫外線光,且該量子點可包括具有 在藍色光波長帶内部之峰值波長的第一量子點、具有在綠 色光波長帶内部之峰值波長的第二量子點、以及具有在紅 色光波長帶内部之峰值波長的第三量子點。 根據本發明之另一態樣,提供一種發光裝置封襄件, 包括:發光裝置;密封部,係附接至該發光裝置之表面; 波長轉換部,係密封在該密封部内且包含量子點;以及一 對電極,安置在該發光裝置上成相對於該密封部。 該發光裝置封裝件可復包括封裝體,係覆蓋附接於該 95250 8 201214795 密^部之該發光裝置之表面以外的該發光裝置之表面,並 以女置該③封部之方向反射由該發光裝置所發射之光。 該封裝體可包括透明樹脂、以及分散於該透明樹脂中 之光反射粒子。 該封裝體可允許一對電極於向外曝露。 該密封部具有凸向祕形狀或長方體(⑽卿― parallelepiped)形狀。 該波長轉換部可具有與該密封部形狀相對應之形狀。 ”亥發光裝置可包括複數發光袈置,每一個具有該對電 極。 體成型地形成為有關該 該密封部和該波長轉換部可一 複數發光裝置之單件。 —該發歧置封1件可復包括封裝體,係覆蓋附接於該 密封部之發光裝置之表面以外的每—該複數發光裝置之表 面,並以安置該密封部之方向反射由該發絲置所發射之 光。違發光裝置封裝件可復包括外部端子,其係沿著該 裝體之表面提供且連接至該對電極。 根據本發明之另-態樣,提供一種照明設備,包括. 如前面所述之發光裂置封裝件;以及電源供應單元,_ 應電源至發光裝置封裝件。 " 該電源供應單元可包括:介面,係接收電源;以及電 源控制部,係控制供應至該發光裝置封裝件之電源。 根據本發明之另一態樣,提供一種顯示設備,包括: 如前面所述之發光裝置封裝件;以及顯示面板,係顯示影 95250 9 201214795 像及接收由該發光裝置封裝件所發射之光。 【實施方式】 現在將參照所附圖式詳細說明本發明之實施例。 然而,本發明可以用許多不同的形式實施,並且將不 解釋為受本文中所提出之實施例之限制。而是,提供該等 實施例使得此揭示之内容將是徹底和完整的,並且將完全 傳達本發明之範疇給所屬領域中的技術人員。 於各圖式中’為了清楚起見’元件的形狀和尺寸可以 誇大’以及相同的元件符號將使用於各圖中以指示相同或 者相似的元件。 第1圖係說明根據本發明之一實施例之發光裝置封農 件的橫截面圖。請參照第1圖,根據本發明之此實施例的 發光裝置封裝件1〇〇’可包括發光裝置1〇1、一對導線架 102a、102b、封裝體1〇3、具有透鏡形狀的密封部1〇4、波 長轉換部105、以及透明囊封部106。當對其施加電子訊號 時’該發光裝置1〇1可利用光電裝置發射光。發光二極體 (LED)晶片可為代表性的發光裝置。舉例來說,為此,可使 用發射藍色光之氮化鎵系列發光二極體晶片。藉由該波長 轉換部105’至少部份該藍色光可轉換為不同顏色的光, 之後將下面敘述。 該對導線架l〇2a、102b可藉由一對導電性導線W電性 連接至該發光裝置1〇1,且可使用作為外部電子訊號之應 用的端子。為此目的,該對導線架l〇2a、102b可由具優越 導電性之金屬來形成。如第1圖所示,該對導線架l〇2a、 10 95250 201214795 102b之一者可提供作為該發光裝置101的安裝地區。在本 實施例中’連接至該發光裝置101之一對電極(未圖示)以 安置該密封部104之方向安置於該發光裝置101之上部部 分’且利用該對導電性導線W使該發光裝置101連接至該 對導線架102a、102b。然而,根據本發明之實施例可變化 其連接方法。舉例來說,該發光裝置101可直接電性連接 至提供作為其安裝地區的一導線架102a而無需使用導 線’只要連接至另一導線架102b使用導線。如另一範例, 該發光裝置101可以覆晶接合方式安置而無需導電性導線 W。同時,在本實施例中係提供單一發光裝置;然而,可提 供兩個或更多發光裝置。再者,使用導電性導線作為佈線 構造的範例;然而,可以許多型態的佈線結構來取代,例 如,金屬線,只要電子訊號可通過其中傳遞。 該封裝體103可相對於與該發光裝置1〇1有關之該密 封部104而安置,並可供固定該對導線架1〇2a、1〇肋。該 F體1Q3 了以具電絕緣之材料而形成,只要有優越的熱 放射率(emissivity)及光反射性之特性;然而,特別地^ 封裝體103之材料不受此限制。據此,該封裝體1〇3可由 透明樹脂形成,且具有其中光反射粒子,例如,二氧化鈦, 分散在該透明樹脂内之結構。 在本實施例中’密封部1〇4可安置在發光裝置1〇1上 ^由發光裝置1G1發射之光的路徑中,且具有凸向透鏡形 。特別地’該密封部綱具有外表面及面向該發光 1〇1之内表面,且該外和内表面可具有朝向該發光裝置叫 95250 11 201214795 之上部部分的凸向形狀。在此情況中,如第i圖所示,發 光裝置101和導電性導線W安置成,由具凸向形狀之内表 面來密閉。可將由矽氧樹脂或等等所形成之透明囊封部 106,提供在該密封部之内表面所界定的空間内。透明囊封 部106可保護發光裝置ιοί及導電性導線w,且提供與該 發光裝置101之材料相配的折射率(refracti〇n index)。 該透明囊封部106並非必要的,所以依據本發明之實施例 是可被省略。 該波長轉換部105係密封在該密封部1〇4内部並且包 括量子點。為此目的,該密封部1〇4可由玻璃或適用於保 護該量子點免於曝露到氧氣或溼氣之透明聚合物材料所形 成。於此’該波長轉換部105可具有與該密封部1〇4相對 應之形狀’但非必要需求。該量子點為具有約lnm到l〇nm 之直徑的半導體奈米晶體,並呈現量子侷限效應。該量子 點轉換由該發光裝置101所發出光之波長,從而產生已轉 換波長之光(wave 1 ength-converted light),即,螢光。 舉例來說,該量子點可為如矽基奈米晶體、II-VI族化合 物半導體奈米晶體、III-V族化合物半導體奈米晶體、IV-VI 族化合物半導體奈米晶體等等之奈米晶體。在本實施例中 前述該量子點之範例可單獨地或結合的使用。 更具體地,II-VI.族化合物半導體奈米晶體可為選自 由 CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、HgS、HgSe、HgTe、 CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe,ZnSTe、HgSeS、 HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS, CdHgSe、 12 95250 201214795A group of InAlNAs, and InAlPAs. The IV-VI compound semiconductor nanocrystal may be sbTe. The quantum dot can include a first quantum dot having a peak wavelength within the green light wavelength band. The quantum dot can include a second quantum dot having a peak wavelength within the red light wavelength band. The illuminating device emits blue light, and the quantum dot includes a first quantum dot having a peak wavelength inside the green light wavelength band, and a second quantum dot having a peak wavelength inside the red light wavelength band. The light emitted by the illuminating device has a wavelength of 435 nm to 470 nm, and the green light emitted by the first quantum dot may have a color coordinate falling on a coordinate point based on four CIE 1931 chromaticity diagrams (〇. 1270, In the region defined by 0.8037), (〇·4117, 0.5861M0.4197, 0.5316) and (0.2555, 95250 7 201214795 0. 5030), the red color emitted by the second quantum dot may have a color coordinate falling within It is defined by four coordinates based on the coordinate points (0.5448, 0.4544), (0.7200, 0.2800), (0.6427, 0.2905) and (0.4794, 0.4633) of the CIE 1931 chromaticity diagram. The green light emitted by the first quantum dot may have a color coordinate that falls on the coordinate points (〇. 1270, 0.8037), (0.3700, 0.6180), (0.3700, 0.5800) and based on four CIE 1931 chromaticity diagrams. (0.2500, 0. 5500) within the defined area, and the red color emitted by the second quantum dot may have a color coordinate that falls on the coordinate points (0.6000, 0.4000), (0.7200) based on four CIE1931 chromaticity diagrams. Within the area defined by 0.2800), (0.6427, 0.2905) and (0.6000, 0.4000). The light emitted by the illuminating device may have a full width at half maximum of 1 〇 ηη to 3 〇 nm, and the light emitted by the first quantum dot may have a full width at half maximum of 10 nm to 60 nm, and The light emitted by the second quantum dot may have a full width at half maximum of 30 nm to 80 nm. The light emitting device can emit ultraviolet light, and the quantum dot can include a first quantum dot having a peak wavelength inside a blue light wavelength band, a second quantum dot having a peak wavelength inside the green light wavelength band, and having a red color A third quantum dot of the peak wavelength inside the optical wavelength band. According to another aspect of the present invention, a light emitting device package is provided, comprising: a light emitting device; a sealing portion attached to a surface of the light emitting device; a wavelength converting portion sealed in the sealing portion and containing quantum dots; And a pair of electrodes disposed on the light emitting device opposite to the sealing portion. The illuminating device package may further include a package covering the surface of the illuminating device attached to the surface of the illuminating device attached to the 95250 8 201214795, and reflected by the female portion. Light emitted by the illuminating device. The package may include a transparent resin and light-reflecting particles dispersed in the transparent resin. The package can allow a pair of electrodes to be exposed to the outside. The sealing portion has a convex shape or a rectangular parallelepiped shape. The wavelength converting portion may have a shape corresponding to the shape of the sealing portion. The illuminating device may include a plurality of illuminating devices each having the pair of electrodes. The body forming is formed as a single piece of the plurality of illuminating devices relating to the sealing portion and the wavelength converting portion. The package includes a surface covering each of the plurality of light-emitting devices except the surface of the light-emitting device attached to the sealing portion, and reflects the light emitted by the hairline in a direction in which the sealing portion is disposed. The device package may further include an external terminal provided along the surface of the package and connected to the pair of electrodes. According to another aspect of the present invention, an illumination device is provided, including: the illuminating splicing as described above a package; and a power supply unit, _ should be powered to the illuminator package. " The power supply unit can include: an interface that receives power; and a power control unit that controls power supplied to the illuminator package. In another aspect of the present invention, a display device is provided, comprising: a light emitting device package as described above; and a display panel showing a shadow 95250 9 2012 14795 Image and receiving light emitted by the illuminating device package. [Embodiment] Embodiments of the present invention will now be described in detail with reference to the drawings. However, the invention may be embodied in many different forms and will not be construed The present invention is intended to be limited to the scope of the embodiments disclosed herein. The embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In the drawings, 'the shapes and sizes of the elements may be exaggerated' and the same element symbols will be used in the drawings to indicate the same or similar elements. FIG. 1 is a diagram illustrating illumination according to an embodiment of the present invention. A cross-sectional view of a device closure member. Referring to FIG. 1, a light-emitting device package 1' according to this embodiment of the present invention may include a light-emitting device 1〇1, a pair of lead frames 102a, 102b, and a package 1 〇3, a sealing portion 1〇4 having a lens shape, a wavelength converting portion 105, and a transparent encapsulating portion 106. When an electronic signal is applied thereto, the illuminating device 1〇1 can utilize light The electric device emits light. The light emitting diode (LED) wafer can be a representative light emitting device. For example, a gallium nitride series light emitting diode chip emitting blue light can be used for this purpose. At least a portion of the blue light can be converted into light of a different color, which will be described later. The pair of lead frames 10a, 102b can be electrically connected to the light-emitting device 1〇1 by a pair of conductive wires W, And a terminal for an application of an external electronic signal can be used. For this purpose, the pair of lead frames 10a, 102b can be formed of a metal having superior conductivity. As shown in Fig. 1, the pair of lead frames 10a, 2a, One of 10 95250 201214795 102b may be provided as a mounting area of the light emitting device 101. In the present embodiment, a pair of electrodes (not shown) connected to the light emitting device 101 are disposed in the direction in which the sealing portion 104 is disposed. The upper portion ' of the light-emitting device 101' and the light-emitting device 101 are connected to the pair of lead frames 102a, 102b by the pair of conductive wires W. However, the connection method can be changed according to an embodiment of the present invention. For example, the illuminating device 101 can be directly electrically connected to a lead frame 102a provided as a mounting area thereof without using a wire 'as long as it is connected to another lead frame 102b using a wire. As another example, the light emitting device 101 can be placed in a flip-chip bonding manner without the need for a conductive wire W. Meanwhile, a single light-emitting device is provided in the present embodiment; however, two or more light-emitting devices may be provided. Further, a conductive wire is used as an example of a wiring structure; however, it can be replaced by a plurality of types of wiring structures, for example, metal wires, as long as an electronic signal can be transmitted therethrough. The package body 103 can be disposed relative to the sealing portion 104 associated with the light-emitting device 101 and can be used to fix the pair of lead frames 1 2a, 1 ribs. The F body 1Q3 is formed of a material having electrical insulation as long as it has superior emissivity and light reflectivity; however, the material of the package body 103 is not particularly limited. According to this, the package 1〇3 can be formed of a transparent resin and has a structure in which light-reflecting particles such as titanium oxide are dispersed in the transparent resin. In the present embodiment, the sealing portion 1〇4 can be disposed in the path of the light emitted from the light-emitting device 1G1 on the light-emitting device 1〇1, and has a convex lens shape. Specifically, the sealing portion has an outer surface and an inner surface facing the light emitting surface 1, and the outer and inner surfaces may have a convex shape toward an upper portion of the light emitting device called 95250 11 201214795. In this case, as shown in Fig. i, the light-emitting device 101 and the conductive wire W are disposed to be sealed by the inner surface having a convex shape. A transparent encapsulant 106 formed of a silicone resin or the like may be provided in a space defined by the inner surface of the sealing portion. The transparent encapsulation portion 106 protects the light-emitting device ιοί and the conductive wire w and provides a refractive index (refracti〇n index) that matches the material of the light-emitting device 101. The transparent encapsulation portion 106 is not essential, so embodiments in accordance with the present invention may be omitted. The wavelength converting portion 105 is sealed inside the sealing portion 1?4 and includes quantum dots. For this purpose, the sealing portion 〇4 may be formed of glass or a transparent polymeric material suitable for protecting the quantum dots from exposure to oxygen or moisture. Here, the wavelength converting portion 105 may have a shape 'corresponding to the sealing portion 1'4, but is not necessarily required. The quantum dots are semiconductor nanocrystals having a diameter of about 1 nm to 1 〇 nm and exhibit quantum confinement effects. The quantum dots convert the wavelength of the light emitted by the illuminating device 101, thereby generating wave 1 ength-converted light, i.e., fluorescent light. For example, the quantum dot may be a nanometer such as a fluorenyl nanocrystal, a II-VI compound semiconductor nanocrystal, a III-V compound semiconductor nanocrystal, an IV-VI compound semiconductor nanocrystal, or the like. Crystal. In the present embodiment, the aforementioned examples of the quantum dots may be used singly or in combination. More specifically, the II-VI. group compound semiconductor nanocrystal may be selected from the group consisting of CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, 12 95250 201214795

CdHgTe、HgZnS、HgZnSe、HggZnTe、CdZnSeS、CdZnSeTe、CdHgTe, HgZnS, HgZnSe, HggZnTe, CdZnSeS, CdZnSeTe,

CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe 及HgZnSTe所組成之群組^ III-V族化合物半導體奈米晶 體可為選自由 GaN、GaP、GaAs、AIN、A1P、AlAs、InN、 InP、InAs、GaNP、GaNAs、GaPAs、A1NP、AlNAs、AlPAs、 InNP、InNAs、InPAs、GaAlNP、GaAlNAs、GaAlPAs、GaInNP、 GalnNAs、GalnPAs, InAlNP、InAlNAs、及 InAlPAs 所組成 之群組。IV-VI族化合物半導體奈米晶體可為SbTe。 -可藉由配位鍵,將量子點分散在如有機溶劑或聚合物 樹脂之分散媒介中。如上所述,將具有此結構之該波長轉 換部105,密封在該密封部1〇4的内部。於此,該分散媒 介可利用具不影響該量子點之波長轉換功能的透明媒介。 舉例來說,該有機溶劑可包括甲苯(t〇iuene)、三氯甲烷 (chloroform)及乙醇(ethanol)之至少一者,且該聚合物樹 脂可包括環氧樹脂(epoxy resin)、矽氧樹脂(silicone resin)、聚苯乙稀樹脂(p〇iySthylene resin)及丙烯酸樹 脂(acrylate resin)之至少一者。在使用該聚合物樹脂作 為分散媒介的情況中,可注入具有該量子點分散其中之該 聚合物樹脂至該該密封部104内並之後硬化。 同時,藉由受激電子由傳導帶至價帶的轉換,可實現 以該量子點的光發射。甚至於相同材料之量子點的情況 中,該量子點根據其粒子尺寸可發射具有不同波長的光。 當減少該量子點之尺寸時,該量子點可發射短波長的光。 藉由調整該量子點之尺寸可得到具有所需波長帶的光。於 95250 13 201214795 此,該量子點之尺寸可藉由適當地改變奈米晶體的生長狀 態而加以調整。 如上所述,該發光裝置101可發射藍色光,更具體地, 係具有約435nm到470nm之主波長的光。在此情況中,該 量子點可包括具有在綠色光波長帶内部之峰值波長(peak wavelength)的第一量子點,以及具有在紅色光波長帶内部 之峰值波長的第二量子點。於此,可適當地調整該第一和 第一直子點之尺寸,以導致該第一量子點具有約50Omn到 550nm之峰值波長且導致該第二量子點具有約580nm.到 660ηπι之峰值波長。同時,該量子點可發射的光較強於内 部有狹波長帶之一般螢光體所發射的光。因此,在根據本 實施例之該量子點中,該第一量子點可具有約l〇nm到6〇nm 之半尚全寬(ful 1-width half-maximum,FWHM),且該第二 量子點可具有約30nm到80nm之半高全寬。在此情況中, 該發光裝置101可利用具有約l〇nm到30nm之半高全寬 (FWHM)的藍色發光二極體晶片。 第21圖係表示根據本發明之一實施例之取決於由發 光裝置封敦件所發射光之波長帶的光度之圖式。第22圖係 表示根據本發明之一實施例之由發光裝置封裝件所發射之 光的顏色座標之色度圖。 如上所述,根據本實施例,可藉由調整在發光裝置封 裝件中所提供量子點之粒子尺寸來控制先之波長帶。舉例 來說’可控制該波長帶以呈現在表1所述的特性。 95250 201214795 表1 藍色 綠色 紅色 主波長(Wp)(nm) 455 535 630 半高全寬(FWHM)(nm) 20 30 54 在表1中,Wp表示藍色、綠色及紅色光的主波長, 且FWHM表示藍色、綠色及紅色光的半高全寬。請參照表卜 由該發光裝置101發射藍色光,且由該量子點發射綠色和 紅色光。該藍色、綠色及紅色光可具有如第21圖所示之光 強度分佈(1 ight intensity distribution)。另外,可調 整所使用之該量子點的粒子尺寸從而控制波長帶,且可調 整根據其粒子尺寸的該量子點之集中性(concentration) 從而控制顏色座標。因此,如第22圖所示,可調整該量子 點之粒子尺寸及集中性,如此由該第一量子點所發射之綠 色光係具有落於由四個基於CIE 1931色度圖之座標點 (0.1270, 0.8037)、(0.4117, 0.5861)、(0.4197, 0.5316) 和(0.2555,0.5030)界定之區域A内的顏色座標,且由該 第二量子點所發射之紅色光係具有落於由四個基於CIE 1931 色度圖之座標點(0. 5448, 0. 4544)、(0. 7200, 0.2800)、(0.6427,0.2905)和(0.4794,0.4633)界定之區 域B内的顏色座標。如第22圖所示,具有此分佈的該發光 裝置封裝件相較於使用現有螢光體之產品有相對地寬的區 域,並基於美國國家電視標準委員會(NTSC)標準呈現95% 或更大色彩重現性及非常高光強度。 15 95250 201214795 如上所述,由於該量子點發射的光較強於内部有狹波 長帶之一般螢光體所發射的光,該第一和第二量子點可具 有落在進一步的狹區域。亦即,由該第一量子點所發射之 綠色光係具有落於由四個基於CIE 1931色度圖之座標點 (0. 1270, 0. 8037)、(0. 3700, 0. 6180)、(〇. 3700, 0. 5800)Group III-V compound semiconductor nanocrystals composed of CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe and HgZnSTe may be selected from the group consisting of GaN, GaP, GaAs, AIN, AlP, AlAs, InN, InP, InAs, A group consisting of GaNP, GaNAs, GaPAs, A1NP, AlNAs, AlPAs, InNP, InNAs, InPAs, GaAlNP, GaAlNAs, GaAlPAs, GaInNP, GalnNAs, GalnPAs, InAlNP, InAlNAs, and InAlPAs. The IV-VI compound semiconductor nanocrystal can be SbTe. - The quantum dots can be dispersed in a dispersion medium such as an organic solvent or a polymer resin by a coordination bond. As described above, the wavelength conversion portion 105 having this configuration is sealed inside the sealing portion 1?4. Here, the dispersion medium can utilize a transparent medium having a wavelength conversion function that does not affect the quantum dots. For example, the organic solvent may include at least one of toluene, chloroform, and ethanol, and the polymer resin may include epoxy resin or epoxy resin. At least one of a silicone resin, a p〇iySthylene resin, and an acrylate resin. In the case where the polymer resin is used as a dispersion medium, the polymer resin having the quantum dot dispersed therein may be injected into the sealing portion 104 and then hardened. At the same time, the light emission of the quantum dots can be realized by the conversion of the excited electrons from the conduction band to the valence band. Even in the case of quantum dots of the same material, the quantum dots can emit light having different wavelengths depending on their particle size. When the size of the quantum dot is reduced, the quantum dot can emit light of a short wavelength. Light having a desired wavelength band can be obtained by adjusting the size of the quantum dot. At 95250 13 201214795, the size of the quantum dots can be adjusted by appropriately changing the growth state of the nanocrystals. As described above, the light-emitting device 101 can emit blue light, more specifically, light having a dominant wavelength of about 435 nm to 470 nm. In this case, the quantum dot may include a first quantum dot having a peak wavelength inside a green light wavelength band, and a second quantum dot having a peak wavelength inside the red light wavelength band. Here, the size of the first and first straight sub-points may be appropriately adjusted to cause the first quantum dot to have a peak wavelength of about 50 nm to 550 nm and cause the second quantum dot to have a peak wavelength of about 580 nm to 660 ηπι . At the same time, the quantum dots can emit light that is stronger than that emitted by a general phosphor having a narrow wavelength band inside. Therefore, in the quantum dot according to the embodiment, the first quantum dot may have a full width Width 1-width half-maximum (FWHM) of about 1 〇 nm to 6 〇 nm, and the second quantum The dots may have a full width at half maximum of about 30 nm to 80 nm. In this case, the light-emitting device 101 can utilize a blue light-emitting diode wafer having a full width at half maximum (FWHM) of about 10 nm to 30 nm. Figure 21 is a diagram showing the luminosity of a wavelength band depending on the light emitted by the light-emitting device seal member according to an embodiment of the present invention. Figure 22 is a chromaticity diagram showing the color coordinates of light emitted by a light-emitting device package in accordance with an embodiment of the present invention. As described above, according to the present embodiment, the preceding wavelength band can be controlled by adjusting the particle size of the quantum dots provided in the illuminating device package. For example, the wavelength band can be controlled to exhibit the characteristics described in Table 1. 95250 201214795 Table 1 Blue Green Red Main Wavelength (Wp) (nm) 455 535 630 Full width at half maximum (FWHM) (nm) 20 30 54 In Table 1, Wp represents the dominant wavelength of blue, green and red light, and FWHM Indicates the full width at half maximum of blue, green, and red light. Referring to the table, blue light is emitted from the light-emitting device 101, and green and red light is emitted from the quantum dots. The blue, green and red light may have a light intensity distribution as shown in Fig. 21. In addition, the particle size of the quantum dot used is adjusted to control the wavelength band, and the concentration of the quantum dot according to its particle size can be adjusted to control the color coordinates. Therefore, as shown in FIG. 22, the particle size and concentration of the quantum dot can be adjusted, such that the green light system emitted by the first quantum dot has a coordinate point falling on four chromaticity diagrams based on CIE 1931 ( 0.1270, 0.8037), (0.4117, 0.5861), (0.4197, 0.5316) and (0.2555, 0.5030) define the color coordinates in the region A, and the red light system emitted by the second quantum dot has a Color coordinates in region B defined by coordinate points (0. 5448, 0. 4544), (0. 7200, 0.2800), (0.6427, 0.2905), and (0.4794, 0.4633) of the CIE 1931 chromaticity diagram. As shown in Fig. 22, the illuminating device package having this distribution has a relatively wide area compared to the product using the existing phosphor, and is 95% or more based on the National Television Standards Committee (NTSC) standard. Color reproducibility and very high light intensity. 15 95250 201214795 As described above, since the quantum dots emit light that is stronger than light emitted by a general phosphor having a narrow band of internal light, the first and second quantum dots may have a further narrow region. That is, the green light system emitted by the first quantum dot has a coordinate point (0.11, 0. 8037), (0.3700, 0.6018), which is based on four CIE 1931 chromaticity diagrams. (〇. 3700, 0. 5800)

和(0. 2500,0. 5500)界定之區域A’内的顏色座標,且由該 第二量子點所發射之紅色光係具有落於由四個基於CIE 1931 色度圖之座標點(〇. 6000, 〇. 4〇〇〇)、(〇. 7200, 0.2800)、(0.6427,0.2905)和(0.6000, 0.4000)界定之區 域B’内的顏色座標,因此可更提升色彩重現性(c〇1〇r reproducibility)。根據本實施例之該發光裝置封裝件 100’可導致該發光裝置101具有内有特定範圍之主波長, 並導致該第一和第二量子點具有落在特定區域内的顏色座 標(基於CIE1931色度圖)’因此,藉由該發光裝置ιοί和 該第一和第二量子點之結合而改善色彩重現性。 同時’該上述的發光裝置封裝件1〇〇可利用藍色發光 一極體晶片作為該發光裝置1〇1且量子點轉換藍色光的波 長,從而產生紅色和綠色光;然而,本發明不受此限制。 舉例來說’該發光裝置101可為紫外線(ultraviolet)發光 一極體晶片’且可5周整ΐ子點之粒子尺寸和集中性,該量 子點包括具有在藍色光波長帶内部之峰值波長的第一量子 點、具有在綠色光波長帶内部之峰值波長的第二量子點, 以及具有在紅色光波長帶内部之峰值波長的第三量子點。 在此情況中,該發光裝置101,即,該紫外線發光二極體 16 95250 201214795 晶片可作為用於該波長轉換部105發射白色光之激發 (excitation)的光源。 在使用具有複數發光裝置封裝件1〇〇安裝其中之發光 模組的情況中,每一發光裝置封裝件100包括具有該量子 點密封於其中之波長轉換部105,可預期高可靠性。另外, 由於以透鏡形狀提供該波長轉換部105和該密封部1〇4, 從而適當地調整光的方向角(orientation angle),所以可 提升光發射效率。相反地,在具有量子點之波長轉換部係 一體成型地形成有關複數發光裝置之單件(single piece) 的情況中,若部分密封部為有缺陷的,可能降低該整個模 組之可靠度’且難以藉由改變該波長轉換部和該密封部而 調整光的方向角。 第2圖係說明根據本發明之另一實施例之發光裝置封 裝件的橫截面圖。請參照第2圖,根據本實施例之發光裝 置封裝件200可包括發光裝置201、一對外部端子2〇2a、 202b、封裝體203、具有透鏡形狀的密封部204、波長轉換 部205、以及透明囊封部206。可理解的是,以相同名詞定 義之元件係為在先前實施例中所述之相同元件。下文中, 將主要詳述不同的元件。 在本實施例中,可安置該發光裝置201在該封裝體203 上,且連接至該發光裝置201之一對電極(未圖示)可安置 在該發光裝置201之下部部分,不同於先前實施例,即, 相對於該密封部204。因此,如第2圖所示,一對導電性 導線W可具有至少部分埋藏於該封裴體203中之結構。在 95250 17 201214795 此方式中’該對導電性導線w並未安置在發射光的路捏 中,從而將可能由該對導電性導線w所造成的光發射效率 劣化減到最小。該對外部端子202a、202b施加電子訊號至 該發光裝置201 ’且可由該封裝體203之侧邊表面延伸至 其下部表面。在此情況中,一對連接部207a、207b,並非 必要的’可進一步提供以便連接該導電性導線W至該外部 端子 202a、202b。 根據本實施例,相同於第1圖之先前實施例,在使用 具有複數發光裝置封裝件2〇〇安裝其中之發光模組的情況 中,可預期咼可靠性。另外,以透鏡形狀提供該波長轉換 部205和該密封部2〇4,從而適當地調整光的方向角 (orientation angle),如此可提升光發射效率。再者,該 發光裝置201在其該下部部分可擁有具高反射性之材料 (例如二氧化鈦)’並因此提升其光發射效率。在此情沉中, 使用石夕氧樹脂作為具有光反射粒子之透明樹脂,像是二氧 化鈦分散於其巾,II以可改善該發光裝置封裝件之可靠 性,甚至在南溫或高溼氣的情況中。 下文中,將詳述一種製造第1和2圖之發光裝置封# 件之方法。 第3和4圖係說明-種製造第1圖之發光褒置封裝件 之方法.的橫截面圖。如第3圖所示,u形成具有波長 轉換部105密封其中的密封部1Q4之方法的範例,該波長 轉換部105包含量子點和祕該量子點分散之分散媒介, 該ϊ子點可沿著第-透明部分1()4a之内壁形成。之後,擠 95250 201214795 第透月。卩分l〇4a和具有與該第一透明部分i〇4a相 ί應之I狀的第二透明部分1Q4b,從而允許該波長轉換部 ,岔封於其之間。之後’如第4圖所示,形成該透明 二封°*5 1G6於由該密封部1G4之内表面所形成空間中,該 &、封P 104係使用發氧樹脂或等等且該透明囊封部1〇6 發光裝置lQl相結合。在製程效率方面,在該發光裝 置封裝件之其他元件後,即,形成該導線架n、1〇2b、 二裝體103 1¾導電性導線w全部,它們可以倒轉方式與 密封部104相結合。 第至8圖係說明一種製造第2圖之發光裝置封裝件 之方法的域面圖。在本實施射’將敘述—種製造複數 發光裝置封裝件之方法。首先,第5圖所示,除了以陣列 形式提供該密封部2G4彳,使用在第3圖之實施例中所述 =方法,形成該密封部204以將該各別的波長轉換部205 岔封於其中。接著,如第6圖所示,形成該透明囊封部206 以填充由该役封部204之内表面所界定的空間,且該透明 囊封部206與該發光裝置201相結合。在本實施例中,該 發光裝置201和該透明囊封部206之結合可於複數發光裝 置201附著至載體薄片208之狀態中執行。該載體薄片208 可為聚合物膜或等等,以使該發光裝置201為可附加的。 之後,該載體薄片208由該發光裝置201分離,從而 提供曝露該發光裝置201。形成導電性導線W以與形成在 該發光裝置201之已曝露表面上的該對電極(未圖示)產生 連結。在此情況中,該導電性導線W可連結至形成在該密 19 95250 201214795 封4 204之表面上的該連接部2〇7。如上所述,提供該連 接部207用於與該外部端子產生連結;然而,依據本發明 之實施例是可被省略。之後,如第8圖所示,可形成該封 裝體203以便與該密封部2〇4結合並覆蓋該發光裝置2〇1 及該導電性導線W。該縣體2Q3可具有内含光反射粒子, 例如,二氧化鈦,分散在透明樹脂内之結構,且供由該發 光裝置201所發射之光以安置該密封部2〇4之方向而反 射。在該封裝體203形成後,執行切割製程(dicingpr〇cess) 以形成個別的發光裝置封裝件。雖然未圖示,但是,關於 每-該分離的發光裝置封裝件,可形成該外部端子於該封 裝體203之侧邊和下部表面上,從而形成如第2圖所示之 結構。該發光裝置封裝件之該外部端子的形成可在本實施 例所述之切割製程之後或者在下面參照第9至13圖所描述 之切割製程之前來執行。 如第9圖所述’形成密封部3〇4以具有使用前述方法 將波長轉換部305密封在密封部3〇4之内的結構,在第一 透明部分304a内形成該波長轉換部3〇5且藉由擠壓製程使 第一透明部分304b對其附接。在本實施例中,該密封部 304 可具有長方體(rectangular parallelepiped)形狀而 不是凸向透鏡形狀’說明了該密封部3〇4可被修改成許多 形狀。由於該密封部3.04具有該長方體形狀,在先前實施 例所述之該透明囊封部可能不需要。 接著’如第10圖所示,將複數發光裝置3〇1配置在載 體薄片308上,且形成導電性導線w、外部端子302及連 20 95250 201214795 接部307之間產生連接。在該導電性導線W和該外部端子 302彼此直接連接的情況中’可不需要該連接部307。之 後,如第11圖所示,形成封裝體303以覆蓋該發光裝置 301。之後’如第12圖所示,具有該波長轉換部3〇5於其 中之該密封部304是附接至該封裝體303,以安置在由該 發光裝置301所發射光之路徑中。在該密封部3〇4附接之 後,執行切割製程以分割該發光裝置301成為封裝件單 元。得到如第13圖所示之個別的發光裝置封裝件3〇〇。於 此,該個別的發光裝置封裝件300可具有一對外部端子 302a、302b 以及一對連接部 307a、307b。 第14至17圖係說明根據本發明之另一實施例之一種 製造發光裝置封裝件之方法的橫截面圖。在本實施例中, 如第14圖所示,發光裝置401係直接安置在部分密封部 404上,從而達到製程簡化。具體地,在第一透明部分404a 内形成波長轉換部405且之後第二透明部分404b對其擠 壓,從而形成該密封部404 ’係相似於在先前實施例所述 之方法;然而,該發光裝置401和元件施加電子訊號於其 中’即’導電性導線W和連接部407係直接形成在該第二 透明部分404b上。在此情況中,該密封部404可具有凸向 透鏡形狀,如第14圖所示,或如長方體形狀的其他形狀。 同時,在第14圖中,在安置該發光裝置401於該第二 透明部分404b上之後,從而密封該波長轉換部405。然而, 該密封製程可於安置該發光裝置401於該第二透明部分 404b上之前事先執行。在此方式中,如第15圖所示的結 95250 21 201214795 2 = : 404及該發光裝置仙。接著,如第_所示, 乂成封裝體403。在本實施例中,該封 光裝置4〇1分別地形成。然而’並非限制ΤΙ: = = :,該封裝體可對該個別的發光裝置4〇1 之整體-體成型地形成單件4之後藉 〇3之表面上形成外部端子4〇7’且執行切割製程以分割該 心光裝置纽成為封裝件單元,並因此形成個別的發光裝 置封裝件。在第Π圖不同方式中,可在切割製程之後形成 該外部端子4G7,且該外部端子407除了可延伸至該封裝 體403之其他表面外還有其侧邊表面。 第18至20圖係說明根據本發明之另—實施例之發光 裝置封装件的橫截面圖。在第18圖之實施例中,在發光裝 置501之至少一表面上安置密封部5〇4,該發光裝^ 5〇1 提供由此的光發射路徑,且具有量子點之波長轉換部5〇5 係密封在如上述的該密封部504内。該發光裝置5〇1可具 其中堆疊有板材501a、第一導電型半導體層5〇lb、主動層 501c、以及第二導電型半導體層501d的發光二極體結構。 在該發光裝置501上以相對於該密封部504之方向安置一 對電極。如第18圖所示’該對電極可為凸塊鮮球(bump balls)。在本實施例中之該發光裝置封裝件5〇〇,如第19 圖所示,可藉由覆晶接合安裝在板材509上,且由該發光 裝置501所發射之光可傳遞經過該波長轉換部505,並向 外發射出。連接該對凸塊銲球B至形成於該板材509上的 22 95250 201214795 佈線圖樣510a、510b。於此,該發光裝置封裝件可以第18 圖之結構分割為如第19圖所示之封裝件單元;或者,如未 分割的第18圖所示結構之狀態安裝在該板材5〇9上。 第20圖之發光裝置封裝件6〇〇包括複數發光裝置 601、 以及密封部604和波長轉換部6〇5係一體成型地形成 有關於該複數發光裝置601之單件。該個別的發光裝置6〇1 可具有一對電極,例如,一對凸塊銲球B。該凸塊銲球B 可連接至分別地形成在封裝體603之表面上的外部端子 602。 於此,該凸塊銲球B和該外部端子6〇2可以考慮該發 光裝置601之間的連接而適當地安置(串聯連接、並聯連接 或其組合)。第20圖係表示該發光裝置601以串聯彼此連 接。同時’除了該密封部604附接於該發光裝置6〇1之表 面,形成該封裝體603以覆蓋該發光裝置6〇1之剩餘表面。 該封裝體603可包括以女置該密封部6〇4之方向反射由兮 發光裝置601所發射之光的光反射材料。 如本實施例中所述,該密封部604和該波長轉換部6〇5 係一體成型地形成有關於该複數發光裝置6 〇 1之單件,、士 樣由該發光裝置封裝件600整體所發射之光的顏色座標= 一致的。當混合不同顏色的量子點發射光,在其混合比率 的變化可導致觀測者看見具不同波長的光。為了^免這 -樣,需以精確比率及具精確集中性來執行混合製程。在此 混合製程中,光發射效率和該量子點之集中性一樣需納入 考量。在使用以陣列形式所提供個別的發光裝置封敦件^ 白色光源的情況中,異混合有成形樹脂(m〇lding 95250 23 201214795 之量子點的每一封裝件,對調整該量子點的集中性、一致 性和混合比率是有限制,且如此,可產生在該發光裝置封 裝件之間顏色座標的變化。然而’在本實施例之該發光裝 置封裝件600中,該一體成型地形成密封部604和波長轉 換部605係分別地有關於該發光裝置601而準備,藉以得 到該發光裝置封裝件600整體一致的顏色座標。 第23圖係說明根據本發明之一實施例之發光裝置封 裝件之配置範例的截面圖。請參照第23圖,照明設備700 可包括發光模組701、具該發光模組安置其中之結構704、 以及電源供應單元703。該發光模組701可具有至少一藉 由前面實施例所提出之方法而得到之發光裝置封裝件 702。該電源供應單元703可包括接收電源之介面705以及 控制電源供應至該發光模組701之電源控制部706。於此, 該介面705可包括熔絲(fuse)阻隔過量電流以及電磁干擾 (electromagnetic interference,EMI)過濾阻隔 EMI 訊號。 當該電源控制部706接收交流電源(AC power)作為輪 入電源時,該電源控制部706可具有整流部分(rectifying portion)轉換AC電源成為直流電源(pc p0Wer),且定壓控 制部分(constant v〇itage contr〇lling p〇rti〇n)轉換該 DC電源成為適合該發光模組7〇1的電壓。若該電源供應單 元703.可為DC電源來源,像是電池/蓄電池,具有適合該 發光模組701的電壓,則可省略該整流部分和該定壓控制 部分。在利用AC發光二極體裝置作為該發光模組7〇1的情 況中,可直接提供Ac電源至該發光模組7〇1,在此情況下, 95250 24 201214795 可省略該整流部分和該定壓控制部分。另外,該電源控制 4 706 了控制色彩熱度(c〇i〇r 或等等,這樣 根據人類敏感性可達到照度位準(iUuminati〇n levels) 的多變性。同樣地,該電源供應單元7〇3可包括比較由該 發光裝置封裝件702所發射之光的數量與預定光的數量之 回饋電路,以及儲存關於所需明度(brightness)4現色特 性(color rendering proper ties)之記憶體。 該照明設備700可用於作為背光單元或者用於在如具 顯示面板之液晶顯示裝置(L c D )之顯示裝置、如平板照明裝 置或等等之照明設備、以及如路燈、電信號(electric sign) 或等等之戶外照明設備的燈具(lamp)。該照明設備7〇〇也 可使用在用於像是汽車、船、飛機或等等之交通工具的各 式各樣照明裝置。再者,該照明設備7〇〇也可使用在像是 電視、冰箱或等等器具,以及醫療設備或等等。 如上面所提出,根據本發明之實施例,發光裝置封裝 件使用置子點作為波長轉換部從而達到較好色彩重現性及 光發射效率’且藉由調整該量子點之粒子尺寸及集中性來 促進顏色座標的控制。具有該量子點分散其中之有機溶劑 或聚合物可密封在密封部中從而阻擋氧氣或溼氣的影響。 因此,甚至在高溫氣氛下,或在高溫及高溼度狀況下,發 光模組可穩固地操作。 另外’使用這樣的發光裝置封裝件在照明設備、顯示 設備或等等’藉以可提升該設備的可靠度及效率。 雖然本發明已經顯示和說明了相關之實施例,但是很 95250 25 201214795 顯然的’對於熟悉此項技術者而言,可以作修飾和改變而 仍不偏離由所附申請專利範圍所定義之本發明之精神與範 脅。 【圖式簡單說明】 由以上之詳細說明,配合所附圖式,將更清楚了解本 么明之上述和其他的態樣、特徵和其他的優點,其中: 第1圖係說明根據本發明之一實施例之發光梦 件的橫截面圖; 圖係說明根據本發明之另一實施例之發光裝置 裝件的橫截面圖; 第3和4圖係說明一種製造第1圖之發光裝置封裝件 之方法的橫戴面圖; 第5至8圖係說明一種製造第2圖之發光裝置封裝件 之方法的橫截面圖; 第9至13圖係說明根據本發明之另一實施例之一種製 造發光裝置封裝件之方法的橫截面圖; 第14至17圖係說明根據本發明之另一實施例之一種 製造發光裝置封裝件之方法的橫截面圖; 第丨8至20圖係說明根據本發明之另一實施例之發光 裝置封裝件的橫戴面圖; ........—第21圖係表示根據本發明之一實施例之取決於由發 光裝置封裝件所發射光之波長帶的光度之圖式; 第22圖係表示根據本發明之一實施例之由發光裝置 封裝件所發射之光的顏色座標之色度圖 ;以及 26 95250 201214795 第23圖係說明根據本發明之一實施例之發光裳置封 裝件之配置範例的截面圖。 【主要元件符號說明】 100、 200、300、500、600、702 發光裝置封裝件 101、 201、301、401、5(H、601 發光裝置 102a、102b 導線架 103、 203、303、403、603 封裝體 104、 204、304、404、504、604 密封部 104a、104b 透明部分 105、 205、305、405、505、605 波長轉換部 106、 206 透明囊封部 202a、202b、302、302a、302b、407、602 外部端子 207、207a、207b、307、307a、307b 連接部 208 、 308 304a ' 404a 304b ' 404b 501a、509 501b 501c 501d 510a、510b 700 701 703 載體薄片 第一透明部分 第二透明部分 板材 第一導電型半導體層 主動層 第二導電型半導體層 佈線圖樣 照明設備 發光模組 電源供應單元 95250 27 201214795 704 結構 705 介面 706 電源控制部 B 凸塊銲球 W 導電性導線 28 95250And the color coordinates in the area A' defined by (0. 2500, 0. 5500), and the red light system emitted by the second quantum dot has a coordinate point falling on the four chromaticity diagrams based on CIE 1931 (〇 . 6000, 〇. 4〇〇〇), (〇. 7200, 0.2800), (0.6427, 0.2905) and (0.6000, 0.4000) define the color coordinates in the area B', thus improving color reproducibility (c 〇1〇r reproducibility). The light emitting device package 100' according to the present embodiment may cause the light emitting device 101 to have a specific range of dominant wavelengths therein, and cause the first and second quantum dots to have color coordinates falling within a specific region (based on CIE1931 color) Figure 2) Thus, color reproducibility is improved by the combination of the illumination device ιοί and the first and second quantum dots. Meanwhile, the above-described light-emitting device package 1 can use a blue light-emitting one-pole wafer as the light-emitting device 1〇1 and the quantum dots convert the wavelength of the blue light, thereby generating red and green light; however, the present invention is not This limit. For example, 'the illuminating device 101 can be an ultraviolet illuminating one-pole wafer' and the particle size and concentration of the scorpion point can be 5 weeks, and the quantum dot includes a peak wavelength inside the blue light wavelength band. a first quantum dot, a second quantum dot having a peak wavelength within the green light wavelength band, and a third quantum dot having a peak wavelength within the red light wavelength band. In this case, the light-emitting device 101, i.e., the ultraviolet light-emitting diode 16 95250 201214795, can serve as a light source for excitation of the white light emitted by the wavelength conversion portion 105. In the case of using a light-emitting module in which a plurality of light-emitting device packages 1 are mounted, each of the light-emitting device packages 100 includes a wavelength conversion portion 105 having the quantum dots sealed therein, and high reliability can be expected. Further, since the wavelength conversion portion 105 and the sealing portion 1〇4 are provided in a lens shape, the orientation angle of the light is appropriately adjusted, so that the light emission efficiency can be improved. Conversely, in the case where a wavelength conversion portion having quantum dots is integrally formed to form a single piece of a plurality of light-emitting devices, if a portion of the sealing portion is defective, the reliability of the entire module may be lowered' It is also difficult to adjust the direction angle of the light by changing the wavelength conversion portion and the sealing portion. Fig. 2 is a cross-sectional view showing a light-emitting device package according to another embodiment of the present invention. Referring to FIG. 2, the light emitting device package 200 according to the present embodiment may include a light emitting device 201, a pair of external terminals 2〇2a, 202b, a package body 203, a sealing portion 204 having a lens shape, a wavelength conversion portion 205, and Transparent encapsulation 206. It will be understood that elements identified by the same noun are the same elements as described in the previous embodiments. In the following, different components will be mainly described in detail. In this embodiment, the light emitting device 201 can be disposed on the package body 203, and a pair of electrodes (not shown) connected to the light emitting device 201 can be disposed at a lower portion of the light emitting device 201, which is different from the previous implementation. For example, relative to the sealing portion 204. Therefore, as shown in Fig. 2, the pair of conductive wires W may have a structure at least partially buried in the sealing body 203. In the manner of 95250 17 201214795, the pair of conductive wires w are not disposed in the path of the emitted light, thereby minimizing deterioration of light emission efficiency which may be caused by the pair of conductive wires w. The pair of external terminals 202a, 202b apply an electrical signal to the light emitting device 201' and may extend from a side surface of the package 203 to a lower surface thereof. In this case, a pair of connecting portions 207a, 207b, which are not necessary, may be further provided to connect the conductive wires W to the external terminals 202a, 202b. According to the present embodiment, in the same manner as the previous embodiment of Fig. 1, in the case of using the light-emitting module in which the plurality of light-emitting device packages 2 are mounted, the reliability can be expected. Further, the wavelength conversion portion 205 and the sealing portion 2〇4 are provided in a lens shape, thereby appropriately adjusting the orientation angle of the light, so that the light emission efficiency can be improved. Further, the light-emitting device 201 can have a highly reflective material (e.g., titanium dioxide) in its lower portion and thus enhance its light emission efficiency. In this case, the use of shixi oxygen resin as a transparent resin having light-reflecting particles, such as titanium dioxide dispersed in the towel thereof, can improve the reliability of the illuminating device package, even in the south or high humidity. In the case. Hereinafter, a method of manufacturing the light-emitting device package of Figs. 1 and 2 will be described in detail. 3 and 4 are cross-sectional views showing a method of manufacturing the light-emitting device package of Fig. 1. As shown in FIG. 3, u forms an example of a method having a sealing portion 1Q4 in which the wavelength converting portion 105 is sealed, the wavelength converting portion 105 including a quantum dot and a dispersion medium in which the quantum dot is dispersed, the dice point may be along The inner wall of the first transparent portion 1 () 4a is formed. After that, squeeze 95250 201214795 the first month. The minute portion 104a and the second transparent portion 1Q4b having an I shape corresponding to the first transparent portion i〇4a allow the wavelength conversion portion to be sealed therebetween. Then, as shown in FIG. 4, the transparent two seals *5 1G6 are formed in the space formed by the inner surface of the sealing portion 1G4, and the & P 104 is made of an oxygen generating resin or the like and the transparent The encapsulating portion 1〇6 is combined with the light-emitting device lQ1. In terms of process efficiency, after the other components of the illuminating device package, i.e., the lead frame n, 1 〇 2b, and the second ferrule 103 13⁄4 conductive wires w are formed, they can be combined with the sealing portion 104 in an inverted manner. Figures 8 through 8 are perspective views of a method of fabricating the light-emitting device package of Figure 2; In the present embodiment, a method of manufacturing a plurality of light-emitting device packages will be described. First, as shown in Fig. 5, in addition to providing the sealing portion 2G4 in an array form, the sealing portion 204 is formed to seal the respective wavelength converting portions 205 using the method described in the embodiment of Fig. 3. In it. Next, as shown in Fig. 6, the transparent encapsulation portion 206 is formed to fill the space defined by the inner surface of the echelon seal portion 204, and the transparent encapsulation portion 206 is combined with the illumination device 201. In the present embodiment, the combination of the light-emitting device 201 and the transparent encapsulation portion 206 can be performed in a state where the plurality of light-emitting devices 201 are attached to the carrier sheet 208. The carrier sheet 208 can be a polymeric film or the like to make the illumination device 201 attachable. Thereafter, the carrier sheet 208 is separated by the light emitting device 201 to provide exposure to the light emitting device 201. A conductive wire W is formed to be coupled to the pair of electrodes (not shown) formed on the exposed surface of the light-emitting device 201. In this case, the conductive wire W can be joined to the connecting portion 2〇7 formed on the surface of the seal 19 204201214795. As described above, the connecting portion 207 is provided for connection with the external terminal; however, an embodiment according to the present invention may be omitted. Thereafter, as shown in Fig. 8, the package body 203 can be formed to be combined with the sealing portion 2A4 to cover the light-emitting device 2?1 and the conductive wire W. The county body 2Q3 may have a structure containing light-reflecting particles, for example, titanium oxide, dispersed in a transparent resin, and the light emitted by the light-emitting device 201 is reflected in a direction in which the sealing portion 2〇4 is disposed. After the package 203 is formed, a dicing process is performed to form individual illuminating device packages. Although not shown, the outer terminal can be formed on the side and lower surfaces of the package body 203 for each of the separated light-emitting device packages, thereby forming the structure as shown in Fig. 2. The formation of the external terminal of the light-emitting device package can be performed after the cutting process described in the embodiment or before the cutting process described below with reference to Figures 9 to 13. The formation of the sealing portion 3〇4 as shown in FIG. 9 has a structure in which the wavelength converting portion 305 is sealed within the sealing portion 3〇4 by the aforementioned method, and the wavelength converting portion 3〇5 is formed in the first transparent portion 304a. And the first transparent portion 304b is attached thereto by an extrusion process. In the present embodiment, the sealing portion 304 may have a rectangular parallelepiped shape instead of a convex lens shape, which indicates that the sealing portion 3〇4 can be modified into a plurality of shapes. Since the sealing portion 3.04 has the rectangular parallelepiped shape, the transparent encapsulation portion described in the previous embodiment may not be required. Next, as shown in Fig. 10, the plurality of light-emitting devices 3〇1 are disposed on the carrier sheet 308, and a connection is formed between the conductive wires w, the external terminals 302, and the junctions 307. The connection portion 307 may not be required in the case where the conductive wire W and the external terminal 302 are directly connected to each other. Thereafter, as shown in Fig. 11, a package 303 is formed to cover the light-emitting device 301. Thereafter, as shown in Fig. 12, the sealing portion 304 having the wavelength converting portion 3〇5 is attached to the package body 303 to be disposed in the path of the light emitted by the light-emitting device 301. After the sealing portion 3〇4 is attached, a cutting process is performed to divide the light-emitting device 301 into a package unit. An individual light emitting device package 3A as shown in Fig. 13 is obtained. Thus, the individual light emitting device package 300 can have a pair of external terminals 302a, 302b and a pair of connecting portions 307a, 307b. 14 to 17 are cross-sectional views illustrating a method of manufacturing a light emitting device package in accordance with another embodiment of the present invention. In the present embodiment, as shown in Fig. 14, the light-emitting device 401 is directly disposed on the partial sealing portion 404, thereby achieving process simplification. Specifically, the wavelength converting portion 405 is formed in the first transparent portion 404a and then the second transparent portion 404b is pressed thereto, thereby forming the sealing portion 404' similar to the method described in the previous embodiment; however, the illuminating The device 401 and the component apply an electronic signal in which the 'i' conductive wire W and the connecting portion 407 are directly formed on the second transparent portion 404b. In this case, the sealing portion 404 may have a convex lens shape as shown in Fig. 14, or other shapes such as a rectangular parallelepiped shape. Meanwhile, in Fig. 14, after the light-emitting device 401 is placed on the second transparent portion 404b, the wavelength converting portion 405 is sealed. However, the sealing process can be performed before the illuminating device 401 is placed on the second transparent portion 404b. In this manner, the knot shown in Fig. 15 is 95250 21 201214795 2 = : 404 and the illuminating device. Next, as shown in the _th, the package 403 is formed. In the present embodiment, the light-sealing devices 4〇1 are formed separately. However, 'not limited to: = = :, the package can form a single piece 4 integrally formed by the individual light-emitting device 4〇1, and then form an external terminal 4〇7' on the surface of the substrate 3 and perform cutting The process divides the core device into a package unit and thus forms individual light device packages. In a different manner of the second drawing, the external terminal 4G7 can be formed after the cutting process, and the external terminal 407 has its side surface in addition to the other surfaces of the package 403. 18 through 20 are cross-sectional views illustrating a light emitting device package in accordance with another embodiment of the present invention. In the embodiment of Fig. 18, a sealing portion 5〇4 is disposed on at least one surface of the light-emitting device 501, and the light-emitting device provides a light-emitting path and a wavelength conversion portion of the quantum dot. The 5 series is sealed in the sealing portion 504 as described above. The light-emitting device 5〇1 may have a light-emitting diode structure in which a plate member 501a, a first conductive type semiconductor layer 5〇1b, an active layer 501c, and a second conductive type semiconductor layer 501d are stacked. A pair of electrodes are disposed on the light-emitting device 501 in a direction opposite to the sealing portion 504. As shown in Fig. 18, the pair of electrodes may be bump balls. In the embodiment, the light emitting device package 5A, as shown in FIG. 19, can be mounted on the board 509 by flip chip bonding, and the light emitted by the light emitting device 501 can be transmitted through the wavelength conversion. Part 505, and emitted outward. The pair of bump solder balls B are connected to 22 95250 201214795 wiring patterns 510a, 510b formed on the board 509. Here, the light-emitting device package can be divided into the package unit as shown in Fig. 19 by the structure of Fig. 18; or, the state of the structure shown in Fig. 18, which is not divided, is mounted on the sheet 5〇9. The light-emitting device package 6A of Fig. 20 includes a plurality of light-emitting devices 601, and a sealing portion 604 and a wavelength converting portion 6〇5 integrally form a single piece relating to the plurality of light-emitting devices 601. The individual illumination device 6〇1 may have a pair of electrodes, for example, a pair of bump solder balls B. The bump solder balls B may be connected to external terminals 602 formed on the surface of the package body 603, respectively. Here, the bump solder ball B and the external terminal 6〇2 may be appropriately disposed in consideration of the connection between the light-emitting devices 601 (series connection, parallel connection, or a combination thereof). Fig. 20 shows that the light-emitting devices 601 are connected to each other in series. At the same time, the package 603 is formed to cover the remaining surface of the light-emitting device 6〇1 except that the sealing portion 604 is attached to the surface of the light-emitting device 6〇1. The package body 603 may include a light reflecting material that reflects light emitted by the xenon light emitting device 601 in a direction in which the sealing portion 6〇4 is placed. As described in the embodiment, the sealing portion 604 and the wavelength converting portion 6〇5 are integrally formed with a single piece about the plurality of light-emitting devices 6 〇1, and the light-emitting device package 600 is integrally formed by the light-emitting device package 600. The color coordinates of the emitted light = consistent. When a quantum dot of a different color is mixed to emit light, a change in its mixing ratio may cause the observer to see light having a different wavelength. In order to avoid this, the mixing process needs to be performed with precise ratio and precise concentration. In this hybrid process, the efficiency of light emission is as much a consideration as the concentration of the quantum dots. In the case of using individual light-emitting device seals provided in an array form, a white light source is mixed with a molding resin (each package of quantum dots of m〇lding 95250 23 201214795, for adjusting the concentration of the quantum dots) There is a limit to the consistency and the mixing ratio, and as such, a change in color coordinates between the illuminating device packages can be produced. However, in the illuminating device package 600 of the present embodiment, the sealing portion is integrally formed. 604 and the wavelength conversion unit 605 are separately prepared for the light-emitting device 601, thereby obtaining the color coordinates of the light-emitting device package 600 as a whole. FIG. 23 illustrates a light-emitting device package according to an embodiment of the present invention. A cross-sectional view of the configuration example. Referring to Figure 23, the lighting device 700 can include a light-emitting module 701, a structure 704 having the light-emitting module disposed therein, and a power supply unit 703. The light-emitting module 701 can have at least one The light emitting device package 702 obtained by the method proposed in the previous embodiment. The power supply unit 703 can include an interface 705 for receiving power and The power supply is supplied to the power control unit 706 of the lighting module 701. Here, the interface 705 may include a fuse to block excessive current and an electromagnetic interference (EMI) filter to block the EMI signal. When the 706 receives the AC power as the wheeled power source, the power control unit 706 may have a rectifying portion to convert the AC power source into a DC power source (pc p0Wer), and the constant voltage control portion (constant v〇itage contr〇) The lling p〇rti〇n) converts the DC power source into a voltage suitable for the lighting module 7〇1. If the power supply unit 703. can be a DC power source, such as a battery/battery, has a suitable lighting module 701. For the voltage, the rectifying portion and the constant voltage control portion may be omitted. In the case of using the AC light emitting diode device as the light emitting module 7〇1, the Ac power source may be directly supplied to the light emitting module 7〇1, In this case, the rectifying portion and the constant voltage control portion may be omitted from 95250 24 201214795. In addition, the power control 4 706 controls the color heat (c〇i〇r or the like, such that The variability of illumination levels (iUuminati〇n levels) can be achieved according to human sensitivity. Likewise, the power supply unit 〇3 can include comparing the amount of light emitted by the illuminator package 702 with the amount of predetermined light. The feedback circuit, and the memory for storing the desired brightness rendering properties. The lighting device 700 can be used as a backlight unit or a display device for a liquid crystal display device (L c D ) such as a display panel, a lighting device such as a flat panel lighting device or the like, and such as a street lamp, an electric signal (electric sign) Or the lighting of outdoor lighting equipment. The lighting device 7 can also be used in a wide variety of lighting devices for vehicles such as automobiles, boats, airplanes, and the like. Furthermore, the lighting device 7 can also be used in appliances such as televisions, refrigerators, and the like, as well as medical devices or the like. As proposed above, according to an embodiment of the present invention, a light-emitting device package uses a set point as a wavelength conversion portion to achieve better color reproducibility and light emission efficiency' and by adjusting particle size and concentration of the quantum dot To promote the control of color coordinates. The organic solvent or polymer having the quantum dots dispersed therein can be sealed in the sealing portion to block the influence of oxygen or moisture. Therefore, the light-emitting module can be operated stably even under a high temperature atmosphere or under high temperature and high humidity conditions. In addition, the use of such a illuminating device package in a lighting device, display device or the like can enhance the reliability and efficiency of the device. While the present invention has been shown and described with respect to the embodiments of the present invention, it is apparent that the present invention may be modified and altered without departing from the scope of the invention as defined by the appended claims. The spirit and the norm. BRIEF DESCRIPTION OF THE DRAWINGS The above and other aspects, features and other advantages of the present invention will become more apparent from the aspects of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 3 is a cross-sectional view showing a light-emitting device package according to another embodiment of the present invention; FIGS. 3 and 4 are views showing a light-emitting device package of the first embodiment; Cross-sectional view of the method; FIGS. 5 to 8 are cross-sectional views showing a method of manufacturing the light-emitting device package of FIG. 2; and FIGS. 9 to 13 illustrate a method of manufacturing light according to another embodiment of the present invention. A cross-sectional view of a method of fabricating a device package; FIGS. 14 through 17 are cross-sectional views illustrating a method of fabricating a light emitting device package in accordance with another embodiment of the present invention; and FIGS. 8 to 20 are diagrams illustrating the present invention A cross-sectional view of a light-emitting device package of another embodiment; . . . - Figure 21 shows a wavelength dependent on light emitted by the light-emitting device package in accordance with an embodiment of the present invention a pattern of luminosity; Figure 22 is a chromaticity diagram showing the color coordinates of light emitted by a light-emitting device package in accordance with an embodiment of the present invention; and 26 95250 201214795 Figure 23 illustrates a light-emitting arrangement in accordance with an embodiment of the present invention A cross-sectional view of a configuration example of a package. [Description of main component symbols] 100, 200, 300, 500, 600, 702 illuminating device packages 101, 201, 301, 401, 5 (H, 601 illuminating devices 102a, 102b lead frames 103, 203, 303, 403, 603 Packages 104, 204, 304, 404, 504, 604 Sealing portions 104a, 104b Transparent portions 105, 205, 305, 405, 505, 605 Wavelength converting portions 106, 206 Transparent encapsulating portions 202a, 202b, 302, 302a, 302b 407, 602 external terminal 207, 207a, 207b, 307, 307a, 307b connection portion 208, 308 304a '404a 304b' 404b 501a, 509 501b 501c 501d 510a, 510b 700 701 703 carrier sheet first transparent portion second transparent portion Sheet First Conductive Semiconductor Layer Active Layer Second Conductive Semiconductor Layer Wiring Pattern Lighting Equipment Light Module Power Supply Unit 95250 27 201214795 704 Structure 705 Interface 706 Power Control B Bump Solder Ball W Conductive Conductor 28 95250

Claims (1)

201214795 七、申請專利範圍: 1. 一種發光裝置封裝件,包括: 發光裝置; 密封部,係安置在由該發光裝置所發射之光的路徑 中且具有透鏡形狀;以及 波長轉換部,係密封在該密封部内且包含量子點。 2. 如申請專利範圍第1項所述之發光裝置封裝件,其中, 該密封部具有外表面及面向該發光裝置之内表面, 其中,該外和内表面具有朝向該發光裝置之上部部 分的凸向形狀。 3. 如申請專利範圍第2項所述之發光裝置封裝件,其中, 該發光裝置安置成被具該凸向形狀之該内表面密閉。 4. 如申請專利範圍第3項所述之發光裝置封裝件,復包括 透明囊封部,係填充由該密封部之該内表面所界定的空 間。 5. 如申請專利範圍第1項所述之發光裝置封裝件,復包括 一對導線架, 其中,提供該對導線架之一者作為該發光裝置的安 裝地區。 6. 如申請專利範圍第5項所述之發光裝置封裝件,復包括 一對導電性導線,係電性連接該發光裝置至該對導線 架, 其中,該對導電性導線安置成被具該凸向形狀之該 内表面密閉。 95250 201214795 7. 如申請專利範圍第1項所述之發光裝置封裝件,復包括 封裝體,係提供用於該發光裝置的安裝地區,且以安置 該密封部之方向反射由該發光裝置所發射之光。 8. 如申請專利範圍第7項所述之發光裝置封裝件,其中, 該封裝體包括: 透明樹脂;以及 光反射粒子,係分散於該透明樹脂中。 9. 如申請專利範圍第7項所述之發光裝置封裝件,復包括 導電性導線,係傳遞電子訊號至該發光裝置, 其中,部分該導電性導線安置於該封裝體内。 10. 如申請專利範圍第7項所述之發光裝置封裝件,復包括 一對外部端子,係由該封裝體之側邊表面延伸至其下部 表面,且電性連接至該發光裝置。 11. 如申請專利範圍第1項所述之發光裝置封裝件,其中, 該密封部係由玻璃或聚合物材料所形成。 12. 如申請專利範圍第1項所述之發光裝置封裝件,其中, 該波長轉換部復包括有機溶劑或具該量子點分散其中 之聚合物樹脂。 13. 如申請專利範圍第12項所述之發光裝置封裝件,其 中,該有機溶劑包括曱苯、三氣曱烷及乙醇之至少一者。 14. 如申請專利範圍第_ 12項所述之發光裝置封裝件,其 中,該聚合物樹脂包括環氧樹脂、矽氧樹脂、聚苯乙烯 樹脂及丙烯酸樹脂之至少一者。 15. 如申請專利範圍第1項所述之發光裝置封裝件,其中, 2 95250 201214795 該量子點包括矽基奈米晶體、ΙΙ-VI族化合物半導體奈 米晶體、III-V族化合物半導體奈米晶體、IV-VI族化 合物半導體奈米晶體或其混合之至少一者。 16. 如申請專利範圍第15項所述之發光裝置封裝件,其 中,該ΙΙ-VI族化合物半導體奈米晶體係選自由CdS、 CdSe、CdTe、ZnS、ZnSe、ZnTe、HgS、HgSe、HgTe、CdSeS、 CdSeTe、CdSTe、ZnSeS、ZnSeTe,ZnSTe、HgSeS、HgSeTe、 HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、 HgZnS、HgZnSe、HggZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、 CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe 及 HgZnSTe所組成之群組。 17. 如申請專利範圍第15項所述之發光裝置封裝件,其 中,該III-V族化合物半導體奈米晶體係選自由GaN、 GaP、GaAs、AIN、A1P、AlAs、InN、InP、InAs、GaNP、 GaNAs、GaPAs、A1NP、AlNAs、AlPAs、InNP、InNAs、 InPAs、GaAlNP、GaAlNAs、GaAlPAs、GalnNP、GalnNAs、 GalnPAs、InAlNP、InAlNAs、及 InAlPAs 所組成之群組。 18. 如申請專利範圍第15項所述之發光裝置封裝件,其 中,該IV-VI族化合物半導體奈米晶體為SbTe。 19. 如申請專利範圍第1項所述之發光裝置封裝件,其中, s亥篁子點係包括具有在綠色光波長帶内部之峰值波長 的第一量子點。 20·如申請專利範圍第丨項所述之發光裝置封裝件,其中, 該量子點係包括具有在紅色光波長帶内部之峰值波長 95250 3 201214795 的第二量子點。 21. 如申請專利範圍第1項所述之發光裝置封裝件,其中, 該發光裝置係發射藍色光,且 該量子點包括具有在綠色光波長帶内部之峰值波 長的第一量子點、以及具有在紅色光波長帶内部之峰值 波長的第二量子點。 22. 如申請專利範圍第21項所述之發光裝置封裝件,其 中,由該發光裝置所發射之光具有435nm到470nm的波 長, 由該第一量子點所發射之綠色光具有的顏色座標 落於由四個基於CIE 1931色度圖之座標點(0.1270, 0.8037)、(0.4117,0.5861)、(0.4197,0.5316)和 (0.2555, 0.5030)界定之區域内;以及 由該第二量子點所發射之紅色光具有的顏色座標 落於由四個基於CIE 1931色度圖之座標點(0.5448, 0.4544)、(0.7200,0.2800)、(0.6427,0.2905)和 (0.4794,0.4633)界定之區域内。 23. 如申請專利範圍第22項所述之發光裝置封裝件,其 中,由該第一量子點所發射之綠色光具有的顏色座標落 於由四個基於CIE 1931色度圖之座標點(0.1270, ' 0, 80.37) ' C0. 3700, .0. .61.8.0) λ (0. 3700, 0. 5800)和 (0.2500,0.5500)界定之區域内;以及 由該第二量子點所發射之紅色光具有的顏色座標 落於由四個基於CIE 1931色度圖之座標點(0.6000, 4 95250 201214795 0.4000)、(0.7200,0.2800)、(0.6427,0.2905)和 (0.6000,0.4000)界定之區域内。 24. 如申凊專利範圍第21項所述之發光裝置封裝件,其 中,由該發光裝置所發射之光具有1 〇nm到別⑽之半高 全寬(fuU-width half-maximum), 由該第一量子點所發射之光具有1〇11111到6〇nm之半 高全寬,且 由該第二量子點所發射之光具有30nm到80nm之半 高全寬。 25. 如申請專利範圍第1項所述之發光裝置封裝件,其中, 該發光裝置係發射紫外線光,且 該量子點係包括具有在藍色光波長帶内部之峰值 波長的第一量子點、具有在綠色光波長帶内部之峰值波 長的第二量子點、以及具有在紅色光波長帶内部之峰值 波長的第三量子點。 26. —種發光裝置封裝件,包括: 發光裝置; 密封部’係附接至該發光裝置之表面; 波長轉換部’係密封在該密封部内且包含量子點; 以及 一對電極’安置在該發光裝置上相對於該密封部。 27. 如申請專利範園第26項所述之發光裝置封裝件,復包 括封裝體,係覆蓋附接於該密封部之該發光裝置之表面 以外的該發光裴置之表面,炎以安置該密封部之方向反 5 95250 201214795 射由該發光裝置所發射之光。 28.如申請專利範圍第2? 中,該封裝體包括: 以發光裝置封裝件,其 透明樹脂;以及 光反射粒子,係分散於該 29·如申請專利範圍第27 月樹月曰中。 中,1封f 項所述之發光裝置封裝件,其 中補裝體允對電極向 卯·如申請專利範圍第2β 七露。 中,該密封有發輕置封裝件,其 31 ·如申請專利範圍第26項所、+、 中,該密封部具有長方體之發咖 32.如申請專利範圍第26項所 33 ^…_置封裝件,其 中祕先裝置包括複數發光裝置,每-個具均有該對 電極。 34·如申請專利範圍第33項所述之發光裝置封裝件,其 中’該密封部和該波長轉換部係—體成型地形成有關該 複數發光裝置之單件。 35. 如申請專利範圍第33項所述之發光裝置封裝件,復包 括封裝體,係覆蓋附接於該密封部之該發光裝置之表面 以外的每一該複數發光裝置之表面,並以安置該密封部 之方向反射由該發光裝置所發射之光。 36. 如申請專利範圍第35項所述之發光裝置封裝件,復包 95250 6 201214795 =部端子’係沿著該封裝體之表面提供錢接至該對 37· —種照明設備,包括·· 申請專利範圍第1項之發光裝置封裝件,·以及 電源供應單元,係供應電源至該發光裝置封裝件。 队如申請專利範圍第37項所述之照明設備 源供應單元包括: T該電 介面’係接收電源;以及 原電源控制部,係控制供應至該發光裝置封裝件之電 39· 一種顯示設備,包括: 申請專利範圍第1項之該發光裝置封裝件;以及 _不面板,係顯示影像及接收由該發光裝置封 所發射之光。 、 95250201214795 VII. Patent application scope: 1. A light-emitting device package comprising: a light-emitting device; a sealing portion disposed in a path of light emitted by the light-emitting device and having a lens shape; and a wavelength conversion portion sealed in The sealing portion contains quantum dots therein. 2. The illuminating device package of claim 1, wherein the sealing portion has an outer surface and an inner surface facing the illuminating device, wherein the outer and inner surfaces have an upper portion facing the illuminating device Convex shape. 3. The illuminating device package of claim 2, wherein the illuminating device is disposed to be sealed by the inner surface having the convex shape. 4. The illuminating device package of claim 3, further comprising a transparent encapsulation portion filling the space defined by the inner surface of the sealing portion. 5. The illuminating device package of claim 1, further comprising a pair of lead frames, wherein one of the pair of lead frames is provided as an installation area of the illuminating device. 6. The illuminating device package of claim 5, further comprising a pair of conductive wires electrically connecting the illuminating device to the pair of lead frames, wherein the pair of conductive wires are disposed to be The inner surface of the convex shape is hermetically sealed. The illuminating device package of claim 1, further comprising a package for providing a mounting area for the illuminating device, and reflecting in the direction in which the sealing portion is disposed is emitted by the illuminating device Light. 8. The light emitting device package of claim 7, wherein the package comprises: a transparent resin; and light reflecting particles dispersed in the transparent resin. 9. The illuminating device package of claim 7, further comprising a conductive wire for transmitting an electronic signal to the illuminating device, wherein a portion of the conductive wire is disposed in the package. 10. The illuminating device package of claim 7, further comprising a pair of external terminals extending from a side surface of the package to a lower surface thereof and electrically connected to the illuminating device. 11. The illuminating device package of claim 1, wherein the sealing portion is formed of a glass or a polymer material. 12. The illuminating device package of claim 1, wherein the wavelength converting portion further comprises an organic solvent or a polymer resin having the quantum dot dispersed therein. 13. The illuminating device package of claim 12, wherein the organic solvent comprises at least one of toluene, trioxane, and ethanol. 14. The light emitting device package of claim 12, wherein the polymer resin comprises at least one of an epoxy resin, a silicone resin, a polystyrene resin, and an acrylic resin. 15. The illuminating device package of claim 1, wherein: 2 95250 201214795 the quantum dot comprises a ruthenium nanocrystal, a ΙΙ-VI compound semiconductor nanocrystal, a III-V compound semiconductor nano At least one of a crystal, an IV-VI compound semiconductor nanocrystal, or a mixture thereof. 16. The illuminating device package of claim 15, wherein the bismuth-VI compound semiconductor nanocrystal system is selected from the group consisting of CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HggZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, A group consisting of HgZnSeTe and HgZnSTe. 17. The illuminating device package of claim 15, wherein the III-V compound semiconductor nanocrystal system is selected from the group consisting of GaN, GaP, GaAs, AIN, AlP, AlAs, InN, InP, InAs, Groups of GaNP, GaNAs, GaPAs, A1NP, AlNAs, AlPAs, InNP, InNAs, InPAs, GaAlNP, GaAlNAs, GaAlPAs, GalnNP, GalnNAs, GalnPAs, InAlNP, InAlNAs, and InAlPAs. 18. The illuminating device package of claim 15, wherein the IV-VI compound semiconductor nanocrystal is SbTe. 19. The illuminating device package of claim 1, wherein the shovel point comprises a first quantum dot having a peak wavelength within the green light wavelength band. The illuminating device package of claim 2, wherein the quantum dot system comprises a second quantum dot having a peak wavelength of 95250 3 201214795 within a red light wavelength band. The illuminating device package of claim 1, wherein the illuminating device emits blue light, and the quantum dot comprises a first quantum dot having a peak wavelength inside a green light wavelength band, and A second quantum dot at a peak wavelength within the red light wavelength band. 22. The illuminating device package of claim 21, wherein the light emitted by the illuminating device has a wavelength of 435 nm to 470 nm, and the green light emitted by the first quantum dot has a color coordinate Within four regions defined by the coordinate points (0.1270, 0.8037), (0.4117, 0.5861), (0.4197, 0.5316), and (0.2555, 0.5030) of the CIE 1931 chromaticity diagram; and emitted by the second quantum dot The red light has a color coordinate that falls within the area defined by four coordinate points (0.5448, 0.4544), (0.7200, 0.2800), (0.6427, 0.2905), and (0.4794, 0.4633) based on the CIE 1931 chromaticity diagram. 23. The illuminating device package of claim 22, wherein the green light emitted by the first quantum dot has a color coordinate that falls on a coordinate point based on four CIE 1931 chromaticity diagrams (0.1270). , ' 0, 80.37) ' C0. 3700, .0. .61.8.0) λ (0. 3700, 0. 5800) and (0.2500, 0.5500) defined regions; and emitted by the second quantum dot The red light has a color coordinate that falls within the four regions defined by the coordinates of the CIE 1931 chromaticity diagram (0.6000, 4 95250 201214795 0.4000), (0.7200, 0.2800), (0.6427, 0.2905), and (0.6000, 0.4000). . 24. The illuminating device package of claim 21, wherein the light emitted by the illuminating device has a half-maximum width from 1 〇 nm to another (10), by the first The light emitted by a quantum dot has a full width at half maximum of 1 〇 11111 to 6 〇 nm, and the light emitted by the second quantum dot has a full width at half maximum of 30 nm to 80 nm. 25. The illuminating device package of claim 1, wherein the illuminating device emits ultraviolet light, and the quantum dot system comprises a first quantum dot having a peak wavelength within a blue light wavelength band, having a second quantum dot having a peak wavelength inside the green light wavelength band, and a third quantum dot having a peak wavelength inside the red light wavelength band. 26. A light emitting device package comprising: a light emitting device; a sealing portion 'attached to a surface of the light emitting device; a wavelength converting portion' sealed within the sealing portion and including quantum dots; and a pair of electrodes 'positioned thereon The light emitting device is opposite to the sealing portion. 27. The illuminating device package of claim 26, further comprising a package covering a surface of the illuminating device other than a surface of the illuminating device attached to the sealing portion, The direction of the seal is reversed. 5 95250 201214795 The light emitted by the illuminating device is emitted. 28. The scope of claim 2, wherein the package comprises: a light-emitting device package, a transparent resin thereof; and light-reflecting particles dispersed in the 27th month of the patent application. In the light-emitting device package described in the item f, the supplementary body is allowed to be opposite to the electrode. In the seal, there is a light-emitting package, and 31. As claimed in claim 26, +, the seal portion has a rectangular parallelepiped hair 32. As claimed in claim 26, The package, wherein the secret device comprises a plurality of light-emitting devices, each of which has the pair of electrodes. The illuminating device package of claim 33, wherein the sealing portion and the wavelength converting portion form a single piece of the plurality of illuminating devices. 35. The illuminating device package of claim 33, further comprising a package covering a surface of each of the plurality of illuminating devices other than a surface of the illuminating device attached to the sealing portion, and being disposed The direction of the sealing portion reflects the light emitted by the illuminating device. 36. The illuminating device package of claim 35, wherein the package 95250 6 201214795 = part terminal is provided along the surface of the package to the pair of lighting devices, including The illuminating device package of the first application of the patent scope, and the power supply unit, supply power to the illuminating device package. The lighting source source supply unit of the team as claimed in claim 37 includes: T the dielectric interface is a receiving power source; and the original power source control unit controls the power supplied to the light emitting device package 39. A display device, The method includes: the illuminating device package of claim 1; and _ no panel, which displays an image and receives light emitted by the illuminating device. , 95250
TW100120506A 2010-06-14 2011-06-13 Light emitting device package using quantum dot, illumination apparatus and display apparatus TWI479703B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US35442910P 2010-06-14 2010-06-14
KR1020100102419A KR20110136676A (en) 2010-06-14 2010-10-20 Light emitting device package using quantum dot, illumination apparatus and dispaly apparatus

Publications (2)

Publication Number Publication Date
TW201214795A true TW201214795A (en) 2012-04-01
TWI479703B TWI479703B (en) 2015-04-01

Family

ID=45503297

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100120506A TWI479703B (en) 2010-06-14 2011-06-13 Light emitting device package using quantum dot, illumination apparatus and display apparatus

Country Status (3)

Country Link
JP (1) JP5881318B2 (en)
KR (1) KR20110136676A (en)
TW (1) TWI479703B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI576409B (en) * 2012-08-06 2017-04-01 皇家飛利浦有限公司 Highly stable qds-composites for solid state lighting and the method of making them through initiator-free polymerization
TWI580888B (en) * 2012-12-26 2017-05-01 Kyocera Connector Prod Corp A support for a semiconductor light emitting element, a semiconductor light emitting element module, and an illuminator And a method for manufacturing a support for a semiconductor light-emitting element
WO2019231843A1 (en) * 2018-05-30 2019-12-05 Cree, Inc. Led apparatus and method
WO2019236325A1 (en) * 2018-06-04 2019-12-12 Cree, Inc. Led apparatuses, and method
US11101410B2 (en) 2018-05-30 2021-08-24 Creeled, Inc. LED systems, apparatuses, and methods

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI441361B (en) * 2010-12-31 2014-06-11 Interlight Optotech Corp Light emitting diode packaging structure and method for fabricating the same
JPWO2013061511A1 (en) * 2011-10-27 2015-04-02 パナソニック株式会社 Light emitting device
JP2013197530A (en) * 2012-03-22 2013-09-30 Sharp Corp Light source, light emitting device, light source for backlight, display device, and manufacturing method of light source
WO2013171610A1 (en) 2012-05-14 2013-11-21 Koninklijke Philips N.V. Light emitting device with remote nanostructured phosphor
KR20130141963A (en) * 2012-06-18 2013-12-27 주식회사 큐디솔루션 Film for enhancing visibility of oled and fabrication method thereof
KR101947815B1 (en) * 2012-08-07 2019-02-14 한국전자통신연구원 The dual display device with the vertical structure
JP6152801B2 (en) 2014-01-21 2017-06-28 豊田合成株式会社 Light emitting device and manufacturing method thereof
KR20150092801A (en) 2014-02-05 2015-08-17 삼성디스플레이 주식회사 Light Emitting Diode Package and Method of manufacturing the same
JP2015220330A (en) * 2014-05-16 2015-12-07 日本電気硝子株式会社 Light emission device and manufacturing method for the same
KR102181888B1 (en) 2014-09-03 2020-11-24 삼성디스플레이 주식회사 Liquid crystal display device and manufacturing method thereof
JP6428089B2 (en) * 2014-09-24 2018-11-28 日亜化学工業株式会社 Light emitting device
WO2016052627A1 (en) * 2014-09-30 2016-04-07 富士フイルム株式会社 Wavelength conversion member, backlight unit, liquid crystal display device, quantum dot-containing polymerizable composition and method for producing wavelength conversion member
JP6236412B2 (en) * 2014-09-30 2017-11-22 富士フイルム株式会社 Wavelength conversion member, backlight unit, liquid crystal display device, quantum dot-containing polymerizable composition, and method for producing wavelength conversion member
WO2016075950A1 (en) * 2014-11-14 2016-05-19 富士フイルム株式会社 Wavelength conversion member, backlight unit including same, and liquid crystal display apparatus
WO2016075949A1 (en) * 2014-11-14 2016-05-19 富士フイルム株式会社 Wavelength conversion member, backlight unit including same, and liquid crystal display apparatus
JP2016103461A (en) * 2014-11-14 2016-06-02 富士フイルム株式会社 Wavelength conversion member, backlight unit and liquid crystal display device
JP2016102999A (en) * 2014-11-14 2016-06-02 富士フイルム株式会社 Wavelength conversion member, backlight unit including the same, and liquid crystal display device
DE102014117983A1 (en) * 2014-12-05 2016-06-09 Osram Opto Semiconductors Gmbh Conversion element, optoelectronic semiconductor component and method for producing conversion elements
EP3240051B1 (en) * 2014-12-26 2020-03-18 NS Materials Inc. Method for manufacturing a wavelength conversion member
KR101983426B1 (en) 2015-01-23 2019-09-11 삼성디스플레이 주식회사 Photosensitive resin composition and display device
JP6217705B2 (en) 2015-07-28 2017-10-25 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
CN105226166B (en) * 2015-10-23 2017-11-03 易美芯光(北京)科技有限公司 A kind of quantum dot LED structure and method for packing
KR101739751B1 (en) * 2015-12-30 2017-05-26 주식회사 상보 Manufacturing method of alloy-shell quantum dot, alloy-shell quantum dot and backlight unit including same
TWI599078B (en) * 2016-08-05 2017-09-11 行家光電股份有限公司 Moisture-resistant chip scale packaging light emitting device
TW201835297A (en) 2017-01-06 2018-10-01 日商Jsr股份有限公司 Composition containing fluorescent particles, wavelength conversion layer, and production method for wavelength conversion layer
JP6705759B2 (en) * 2017-01-24 2020-06-03 富士フイルム株式会社 Wavelength conversion film
KR102389815B1 (en) 2017-06-05 2022-04-22 삼성전자주식회사 Quantum dot glass cell and light emitting device package comprising the same
JP2017224867A (en) * 2017-09-28 2017-12-21 日亜化学工業株式会社 Light-emitting device and manufacturing method therefor
JP6768093B2 (en) * 2019-01-11 2020-10-14 エルジー ディスプレイ カンパニー リミテッド LED package, backlight unit and liquid crystal display device
KR102391399B1 (en) * 2019-11-29 2022-04-27 (주)애니캐스팅 Micro lens array having color change function and Micro LED display module including the same
KR20220036681A (en) 2020-09-16 2022-03-23 삼성전자주식회사 Display appartus and manufacturing method of the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3350484B2 (en) * 1999-07-29 2002-11-25 株式会社シチズン電子 Light emitting diode
JP2002270901A (en) * 2001-03-12 2002-09-20 Citizen Electronics Co Ltd Light emitting diode and its manufacturing method
JP3900848B2 (en) * 2001-03-23 2007-04-04 シチズン電子株式会社 Light emitting diode
US20040159900A1 (en) * 2003-01-27 2004-08-19 3M Innovative Properties Company Phosphor based light sources having front illumination
JP4259198B2 (en) * 2003-06-18 2009-04-30 豊田合成株式会社 Method for manufacturing wavelength conversion unit for light emitting device and method for manufacturing light emitting device
JP2005259972A (en) * 2004-03-11 2005-09-22 Stanley Electric Co Ltd Surface-mounting led
JP4771837B2 (en) * 2005-11-28 2011-09-14 京セラ株式会社 Wavelength converter and light emitting device
JP2008288440A (en) * 2007-05-18 2008-11-27 Toyoda Gosei Co Ltd Integrated display device
JP2008187212A (en) * 2008-05-07 2008-08-14 Sharp Corp Surface mounting type light emitting element
KR100982991B1 (en) * 2008-09-03 2010-09-17 삼성엘이디 주식회사 Quantum dot-wavelength conversion device, preparing method of the same and light-emitting device comprising the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI576409B (en) * 2012-08-06 2017-04-01 皇家飛利浦有限公司 Highly stable qds-composites for solid state lighting and the method of making them through initiator-free polymerization
US9909738B2 (en) 2012-08-06 2018-03-06 Koninklijke Philips N.V. Highly stable QDS-composites for solid state lighting and the method of making them through initiator-free polymerization
TWI580888B (en) * 2012-12-26 2017-05-01 Kyocera Connector Prod Corp A support for a semiconductor light emitting element, a semiconductor light emitting element module, and an illuminator And a method for manufacturing a support for a semiconductor light-emitting element
WO2019231843A1 (en) * 2018-05-30 2019-12-05 Cree, Inc. Led apparatus and method
US11101410B2 (en) 2018-05-30 2021-08-24 Creeled, Inc. LED systems, apparatuses, and methods
WO2019236325A1 (en) * 2018-06-04 2019-12-12 Cree, Inc. Led apparatuses, and method

Also Published As

Publication number Publication date
KR20110136676A (en) 2011-12-21
TWI479703B (en) 2015-04-01
JP5881318B2 (en) 2016-03-09
JP2012004567A (en) 2012-01-05

Similar Documents

Publication Publication Date Title
TWI479703B (en) Light emitting device package using quantum dot, illumination apparatus and display apparatus
US20150171290A1 (en) Light emitting device package using quantum dot, illumination apparatus and display apparatus
EP2392852B1 (en) Light source module using quantum dots, and illumination apparatus
US8513872B2 (en) Light emitting apparatus and method for manufacturing thereof
US20140158982A1 (en) Light-emitting device, backlight unit, display device, and manufacturing method thereof
US8926114B2 (en) Light emitting device package, light source module, backlight unit, display apparatus, television set, and illumination apparatus
KR101726807B1 (en) Light Emitting Device
KR100982992B1 (en) Light emitting device comprising quantum dot wavelength conversion sheet, and quantum dot wavelength conversion sheet
TWI421433B (en) Light source module using quantum dots, backlight unit employing the light source module, display apparatus, and illumination apparatus
KR20130136259A (en) Light emitting device package using quantum dot
US20130193837A1 (en) Phosphor plate, light emitting device and method for manufacturing phosphor plate
JP2013153105A (en) Phosphor plate, light-emitting device using phosphor plate, and manufacturing method of phosphor plate
TWI504979B (en) Optical member, display device and light emitting device having the same
JP2013172041A (en) Light-emitting device
CN108051952A (en) A kind of high colour gamut down straight aphototropism mode set of uniform in light emission and preparation method thereof
KR20120140052A (en) Light emitting device
KR20130055223A (en) Light source module and backlight unit
KR20120060540A (en) Light emitting module and backlight unit using the same
KR20120140053A (en) Light emitting device package
KR20120084526A (en) Light emitting device package
KR20120085039A (en) Light emitting diode package manufacturing method
KR20120085038A (en) Light emitting diode package and manufacturing method thereof