JP5881318B2 - Method for manufacturing light emitting device package - Google Patents

Method for manufacturing light emitting device package Download PDF

Info

Publication number
JP5881318B2
JP5881318B2 JP2011132453A JP2011132453A JP5881318B2 JP 5881318 B2 JP5881318 B2 JP 5881318B2 JP 2011132453 A JP2011132453 A JP 2011132453A JP 2011132453 A JP2011132453 A JP 2011132453A JP 5881318 B2 JP5881318 B2 JP 5881318B2
Authority
JP
Japan
Prior art keywords
light emitting
light
emitting device
emitting element
device package
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011132453A
Other languages
Japanese (ja)
Other versions
JP2012004567A (en
JP2012004567A5 (en
Inventor
ジン リー、ヒョ
ジン リー、ヒョ
ウー パク、イル
ウー パク、イル
フーン クワク、チャン
フーン クワク、チャン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JP2012004567A publication Critical patent/JP2012004567A/en
Publication of JP2012004567A5 publication Critical patent/JP2012004567A5/en
Application granted granted Critical
Publication of JP5881318B2 publication Critical patent/JP5881318B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0083Processes for devices with an active region comprising only II-VI compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Led Device Packages (AREA)

Description

本発明は、量子点を利用した発光素子パッケージの製造方法に関する。 The present invention relates to a method for manufacturing a light emitting device package using quantum dots.

量子点は、約10nm以下の直径を有する半導体物質のナノ結晶であって、量子閉じ込め(Quantum confinement)効果を示す物質である。量子点は通常の蛍光体より強い光を狭い波長帯で発生させる。量子点の発光は伝導帯から価電子帯に浮いた状態の電子が転移することで発生するが、同じ物質の場合にも粒子のサイズによって波長が変わる特性を示す。量子点のサイズが小さくなるほど短い波長の光を発光するため、サイズを調節することで所望の波長領域の光を得ることができる。   A quantum dot is a nanocrystal of a semiconductor material having a diameter of about 10 nm or less, and exhibits a quantum confinement effect. Quantum dots generate light in a narrow wavelength band that is stronger than ordinary phosphors. The light emission of the quantum dots is generated by the transfer of electrons in a state of floating from the conduction band to the valence band, but even in the case of the same substance, the wavelength changes depending on the particle size. Light with a shorter wavelength is emitted as the size of the quantum dot becomes smaller. Therefore, light in a desired wavelength region can be obtained by adjusting the size.

このような量子点は有機溶媒に自然に配位された形態で分散され維持されるが、完全に分散されなかったり、酸素、或いは水分に露出される場合、発光効率が減少するという問題点がある。以上のような問題を解決するために、量子点を有機物で囲む方案が開発された。しかし、量子点自体を有機物でキャッピングしたり、バンドギャップがより大きい他の物質で囲む方法は、工程や費用の面でその効用性に問題が提起された。従って、さらに安定して発光性能も向上した量子点を利用できる方法の開発が求められた。例えば、これを解決するたためにポリマーセル(Polymer Cell)やガラスセル(Glass Cell)の内部に量子点が分散された有機溶媒、ポリマー等を含入させて酸素或いは水分から量子点を安全に保護する試みが進められている。   Such quantum dots are dispersed and maintained in a naturally coordinated form in an organic solvent. However, when they are not completely dispersed or exposed to oxygen or moisture, there is a problem in that luminous efficiency decreases. is there. In order to solve the above problems, a method for enclosing quantum dots with organic substances has been developed. However, the method of capping the quantum dots themselves with an organic substance or surrounding them with other materials having a larger band gap has raised problems in terms of utility in terms of process and cost. Accordingly, there has been a demand for the development of a method that can use quantum dots that are more stable and have improved luminous performance. For example, in order to solve this problem, an organic solvent or polymer in which quantum dots are dispersed is contained in a polymer cell or glass cell, so that the quantum dots can be safely protected from oxygen or moisture. An attempt to do so is underway.

本発明の目的は、量子点を安定した形態で利用できる発光素子パッケージの製造方法を提供することにある。 An object of the present invention is to provide a method for manufacturing a light emitting device package in which quantum dots can be used in a stable form.

上記した目的を達成するためになされた本発明による発光素子パッケージの製造方法は、複数の第1透明部材が相互連結された第1透明部材アレイを設ける段階と、前記複数の第1透明部材のそれぞれに量子点が分散された液体を注入する段階と、複数の第2透明部材が相互連結された第2透明部材アレイを設ける段階と、それぞれ前記複数の第1透明部材に対応するように前記複数の第2透明部材を配置し、前記複数の第1透明部材と前記複数の第2透明部材を実質的に同じ曲率を有する凸レンズ状の形状をなすように圧着して前記液体を密封することにより、複数の波長変換部を有する密封部材アレイを形成する段階と、複数の発光素子がそれぞれ前記複数の波長変換部に対応するように前記密封部材アレイを前記複数の発光素子上に配置して発光素子パッケージアレイを形成する段階と、前記発光素子パッケージアレイをダイシングして複数の発光素子パッケージを形成する段階と、を含むことを特徴とするA method of manufacturing a light emitting device package according to the present invention to achieve the above object includes a step of providing a first transparent member array in which a plurality of first transparent members are interconnected, and a plurality of the first transparent members. Injecting a liquid having quantum dots dispersed therein, providing a second transparent member array in which a plurality of second transparent members are interconnected, and corresponding to the plurality of first transparent members, respectively. A plurality of second transparent members are arranged, and the liquid is sealed by pressing the plurality of first transparent members and the plurality of second transparent members so as to form a convex lens shape having substantially the same curvature. Forming a sealing member array having a plurality of wavelength conversion parts, and arranging the sealing member array on the plurality of light emitting elements so that the plurality of light emitting elements respectively correspond to the plurality of wavelength conversion parts. Characterized in that it comprises by the steps of forming a light emitting device package array, forming a plurality of light emitting device packages by dicing the light emitting device package array.

本発明に係る発光素子パッケージの製造方法によれば、レンズ形状の密封部材アレイをまずレンズ形態で形成し、これを発光素子と結合させることにより、工程効率性が向上することができ、また、密封部材アレイを発光素子と別に形成することにより、波長変換部の厚さがより精密に制御することができ、発光素子パッケージの全体にわたって均一な色座標を有するようにできる According to the method for manufacturing a light emitting device package according to the present invention, the process efficiency can be improved by first forming a lens-shaped sealing member array in the form of a lens and combining it with the light emitting device. By forming the sealing member array separately from the light emitting element, the thickness of the wavelength conversion portion can be controlled more precisely, and the color coordinates can be uniform throughout the light emitting element package .

さらに、このような発光素子パッケージを照光装置、ディスプレイ装置等に適用することで、装置の信頼性及び効率を向上させるようになる。   Furthermore, by applying such a light emitting device package to an illumination device, a display device, etc., the reliability and efficiency of the device are improved.

本発明の一実施形態による発光素子パッケージを概略的に示した断面図である。1 is a cross-sectional view schematically showing a light emitting device package according to an embodiment of the present invention. 本発明の他の実施形態による発光素子パッケージを概略的に示した断面図である。FIG. 6 is a cross-sectional view schematically illustrating a light emitting device package according to another embodiment of the present invention. 図1の構造を有する発光素子パッケージの製造方法の一例を概略的に示した工程別断面図である。FIG. 3 is a cross-sectional view for each process schematically showing an example of a method for manufacturing a light emitting device package having the structure of FIG. 1. 図1の構造を有する発光素子パッケージの製造方法の一例を概略的に示した工程別断面図である。FIG. 3 is a cross-sectional view for each process schematically showing an example of a method for manufacturing a light emitting device package having the structure of FIG. 1. 図2の構造を有する発光素子パッケージの製造方法の一例を概略的に示した工程別断面図である。FIG. 3 is a cross-sectional view for each process schematically showing an example of a method for manufacturing a light emitting device package having the structure of FIG. 2. 図2の構造を有する発光素子パッケージの製造方法の一例を概略的に示した工程別断面図である。FIG. 3 is a cross-sectional view for each process schematically showing an example of a method for manufacturing a light emitting device package having the structure of FIG. 2. 図2の構造を有する発光素子パッケージの製造方法の一例を概略的に示した工程別断面図である。FIG. 3 is a cross-sectional view for each process schematically showing an example of a method for manufacturing a light emitting device package having the structure of FIG. 2. 図2の構造を有する発光素子パッケージの製造方法の一例を概略的に示した工程別断面図である。FIG. 3 is a cross-sectional view for each process schematically showing an example of a method for manufacturing a light emitting device package having the structure of FIG. 2. 本発明の他の実施形態による製造方法を概略的に示した工程別断面図である。It is sectional drawing according to process which showed the manufacturing method by other embodiment of this invention roughly. 本発明の他の実施形態による製造方法を概略的に示した工程別断面図である。It is sectional drawing according to process which showed the manufacturing method by other embodiment of this invention roughly. 本発明の他の実施形態による製造方法を概略的に示した工程別断面図である。It is sectional drawing according to process which showed the manufacturing method by other embodiment of this invention roughly. 本発明の他の実施形態による製造方法を概略的に示した工程別断面図である。It is sectional drawing according to process which showed the manufacturing method by other embodiment of this invention roughly. 本発明の他の実施形態による製造方法を概略的に示した工程別断面図である。It is sectional drawing according to process which showed the manufacturing method by other embodiment of this invention roughly. 本発明のさらに他の実施例による発光素子パッケージの製造方法を概略的に示した工程別断面図である。FIG. 5 is a cross-sectional view schematically illustrating a method of manufacturing a light emitting device package according to another embodiment of the present invention. 本発明のさらに他の実施例による発光素子パッケージの製造方法を概略的に示した工程別断面図である。FIG. 5 is a cross-sectional view schematically illustrating a method of manufacturing a light emitting device package according to another embodiment of the present invention. 本発明のさらに他の実施例による発光素子パッケージの製造方法を概略的に示した工程別断面図である。FIG. 5 is a cross-sectional view schematically illustrating a method of manufacturing a light emitting device package according to another embodiment of the present invention. 本発明のさらに他の実施例による発光素子パッケージの製造方法を概略的に示した工程別断面図である。FIG. 5 is a cross-sectional view schematically illustrating a method of manufacturing a light emitting device package according to another embodiment of the present invention. 本発明のさらに他の実施形態による発光素子パッケージを概略的に示した断面図である。FIG. 6 is a cross-sectional view schematically illustrating a light emitting device package according to another embodiment of the present invention. 本発明のさらに他の実施形態による発光素子パッケージを概略的に示した断面図である。FIG. 6 is a cross-sectional view schematically illustrating a light emitting device package according to another embodiment of the present invention. 本発明のさらに他の実施形態による発光素子パッケージを概略的に示した断面図である。FIG. 6 is a cross-sectional view schematically illustrating a light emitting device package according to another embodiment of the present invention. 本発明の一実施形態による発光素子パッケージから放出される光における波長帯別光強度の一例を示したグラフである。3 is a graph illustrating an example of light intensity by wavelength band in light emitted from a light emitting device package according to an embodiment of the present invention. 本発明の一実施形態による発光素子パッケージから放出される光の色座標領域を示す図面である。4 is a view illustrating a color coordinate area of light emitted from a light emitting device package according to an embodiment of the present invention. 本発明で提案する発光素子パッケージの使用例を概略的に示した構成図である。It is the block diagram which showed schematically the usage example of the light emitting element package proposed by this invention.

以下、添付された図面を参照し、本発明の好ましい実施形態を説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

しかし、本発明の実施形態は、様々な他の形態に変形されることができ、本発明の範囲は以下に説明する実施形態に限定されるものではない。また、本発明の実施形態は当技術分野において平均的な知識を有する者に本発明をより完全に説明するために提供されるものである。従って、図面における要素の形状及び大きさ等は、より明確な説明のために誇張されることがあり、図面において同一の符号で表示される要素は同一の要素である。   However, the embodiments of the present invention can be modified in various other forms, and the scope of the present invention is not limited to the embodiments described below. In addition, the embodiments of the present invention are provided to explain the present invention more completely to those skilled in the art. Accordingly, the shape and size of elements in the drawings may be exaggerated for a clearer description, and elements denoted by the same reference numerals in the drawings are the same elements.

図1は、本発明の一実施形態による発光素子パッケージを概略的に示した断面図である。図1を参照すると、本実施形態による発光素子パッケージ100は、発光素子101、一対のリードフレーム102a、102b、パッケージ本体103、レンズ状の密封部材104、波長変換部105及び透明封止材106を含む構造である。発光素子101は、電気信号の印加時に光を放出する光電素子であれば制限なく適用可能であり、代表的なものとしてはLEDチップが挙げられる。一例として、発光素子101は青色光を放出する窒化ガリウム(GaN)系LEDチップであることができ、後述するように、上記青色光の少なくとも一部は波長変換部105により、他の色の光に変換されることができる。   FIG. 1 is a cross-sectional view schematically illustrating a light emitting device package according to an embodiment of the present invention. Referring to FIG. 1, the light emitting device package 100 according to the present embodiment includes a light emitting device 101, a pair of lead frames 102 a and 102 b, a package body 103, a lens-shaped sealing member 104, a wavelength conversion unit 105, and a transparent sealing material 106. It is a structure including. The light-emitting element 101 can be applied without limitation as long as it is a photoelectric element that emits light when an electric signal is applied, and a typical example is an LED chip. As an example, the light emitting device 101 may be a gallium nitride (GaN) LED chip that emits blue light. As described later, at least a part of the blue light is emitted by the wavelength conversion unit 105 to light of other colors. Can be converted to

一対のリードフレーム102a、102bは、導電性ワイヤWを介して発光素子101と電気的に接続され、外部の電気信号を印加するための端子として利用されることができる。このために、一対のリードフレーム102a、102bは電気伝導性に優れた金属物質からなることができる。図1に示したように、一対のリードフレーム102a、102bのうち一方は発光素子101の実装領域として提供されることができる。但し、本実施形態では、発光素子101と接続された一対の電極(図示せず)が上部、即ち、密封部材104が配置された方向に位置し、一対の導電性ワイヤWを介してリードフレーム102a、102bと接続された構造を示しているが、その接続方式は実施形態によって異なる。例えば、発光素子101は実装領域として提供されるリードフレーム102aとワイヤを用いることなく直接に電気的に接続され、他のリードフレーム102bとだけ導電性ワイヤWで接続されてもよい。また、導電性ワイヤWなしに、所謂、フリップチップ(flip−chip)ボンディング方式により発光素子101が配置されてもよい。一方、本実施形態では、1つの発光素子101のみが示されているが、発光素子101は2つ以上備えられてもよい。また、配線構造の一例として導電性ワイヤWを示しているが、電気信号の伝達機能を果たすことが可能であれば、他の形態の配線構造、例えば、金属ラインにより適切に代替されてもよい。   The pair of lead frames 102a and 102b is electrically connected to the light emitting element 101 via the conductive wire W, and can be used as terminals for applying an external electric signal. Therefore, the pair of lead frames 102a and 102b can be made of a metal material having excellent electrical conductivity. As shown in FIG. 1, one of the pair of lead frames 102 a and 102 b can be provided as a mounting region of the light emitting element 101. However, in the present embodiment, a pair of electrodes (not shown) connected to the light emitting element 101 are located in the upper part, that is, in the direction in which the sealing member 104 is disposed, and the lead frame is interposed via the pair of conductive wires W. Although the structure connected with 102a and 102b is shown, the connection system changes with embodiment. For example, the light emitting element 101 may be directly electrically connected to the lead frame 102a provided as a mounting area without using a wire, and may be connected to the other lead frame 102b only with the conductive wire W. Further, the light emitting element 101 may be disposed without the conductive wire W by a so-called flip-chip bonding method. On the other hand, in the present embodiment, only one light emitting element 101 is shown, but two or more light emitting elements 101 may be provided. In addition, although the conductive wire W is shown as an example of the wiring structure, the wiring structure may be appropriately replaced with another form of wiring structure, for example, a metal line as long as it can perform the function of transmitting an electric signal. .

パッケージ本体103は、発光素子101に対して密封部材104が配置された位置の反対側に配置し、一対のリードフレーム102a、102bを固定する役割をすることができる。パッケージ本体103を成す物質は、特に制限されるものではないが、電気絶縁性を有し、かつ熱放出性能と光反射率に優れた物質を使用することが好ましい。このような側面で、パッケージ本体103は透明樹脂及び上記透明樹脂に光反射粒子(例えば、TiO)が分散された構造を有することができる。 The package body 103 can be disposed on the opposite side of the position where the sealing member 104 is disposed with respect to the light emitting element 101, and can serve to fix the pair of lead frames 102a and 102b. The material forming the package body 103 is not particularly limited, but it is preferable to use a material that has electrical insulation and is excellent in heat release performance and light reflectance. In such a side, the package body 103 may have a structure in which light reflecting particles (for example, TiO 2 ) are dispersed in a transparent resin and the transparent resin.

密封部材104は、発光素子101から放出された光の経路上に、本実施形態の場合は発光素子101の上部に配置され、凸レンズ状を有する。具体的には、密封部材104は外部面及び発光素子101に向かう内部面を備え、上記外部面及び内部面は発光素子101の上部に向かって凸形状を有する。この場合、図1に示すように、発光素子101と導電性ワイヤWは凸状の上記内部面で囲まれるように配置されてもよく、密封部材104において、上記内部面で定義される空間にはシリコン樹脂等からなる透明封止材106が形成されてもよい。透明封止材106は発光素子101と導電性ワイヤWを保護し、発光素子101を成す物質と屈折率マッチングを具現する等の機能を行うことができるが、本発明において必ずしも必要な要件ではないため、実施形態によって除外されることもある。   The sealing member 104 is disposed on the path of light emitted from the light emitting element 101, in the case of the present embodiment, above the light emitting element 101, and has a convex lens shape. Specifically, the sealing member 104 includes an outer surface and an inner surface facing the light emitting element 101, and the outer surface and the inner surface have a convex shape toward the top of the light emitting element 101. In this case, as shown in FIG. 1, the light emitting element 101 and the conductive wire W may be disposed so as to be surrounded by the convex inner surface, and the sealing member 104 has a space defined by the inner surface. A transparent sealing material 106 made of silicon resin or the like may be formed. The transparent sealing material 106 can protect the light emitting element 101 and the conductive wire W, and can perform functions such as realizing refractive index matching with the material forming the light emitting element 101, but is not necessarily a requirement in the present invention. Therefore, it may be excluded depending on the embodiment.

波長変換部105は、密封部材104の内部に封入された構造であり、量子点(Quantum Dot)を含む。このために、密封部材104は量子点を酸素や水分のような外部の環境から保護するのに適したガラスや透明な材質の高分子物質からなることができる。この場合、必ずしも必要な事項ではないが、波長変換部105は密封部材104の外観に対応する形状を有することができる。量子点は約1〜10nmの直径を有する半導体物質のナノ結晶(nano crystal)であり、量子閉じ込め(Quantum confinement)効果を示す物質である。量子点は発光素子101から放出される光の波長を変換して波長変換光、即ち蛍光を発生させる。量子点としては、Si系ナノ結晶、II−VI族系化合物半導体ナノ結晶、III−V族系化合物半導体ナノ結晶、IV−VI族系化合物半導体ナノ結晶等が挙げられるが、本実施例では、量子点としてこれらをそれぞれ単独で、またはこれらの混合物を使用することができる。   The wavelength conversion unit 105 has a structure enclosed in the sealing member 104 and includes a quantum dot. For this reason, the sealing member 104 may be made of glass or a transparent polymer material suitable for protecting the quantum dots from the external environment such as oxygen and moisture. In this case, although not necessarily required, the wavelength conversion unit 105 can have a shape corresponding to the appearance of the sealing member 104. A quantum dot is a nanocrystal of a semiconductor material having a diameter of about 1 to 10 nm, and exhibits a quantum confinement effect. The quantum dots convert the wavelength of light emitted from the light emitting element 101 to generate wavelength converted light, that is, fluorescence. Examples of the quantum dots include Si-based nanocrystals, II-VI group compound semiconductor nanocrystals, III-V group compound semiconductor nanocrystals, IV-VI group compound semiconductor nanocrystals, etc. These can be used alone as quantum points, or a mixture thereof can be used.

量子点物質についてより具体的に説明すると、II−VI族系化合物半導体ナノ結晶は、例えば、CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HggZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、及びHgZnSTeで構成された群から選択されたいずれか1つであることができる。III−V族系化合物半導体ナノ結晶は、例えば、GaN、GaP、GaAs、AlN、AlP、AlAs、InN、InP、InAs、GaNP、GaNAs、GaPAs、AlNP、AlNAs、AlPAs、InNP、InNAs、InPAs、GaAlNP、GaAlNAs、GaAlPAs、GaInNP、GaInNAs、GaInPAs、InAlNP、InAlNAs、及びInAlPAsで構成された群から選択されたいずれか1つであることができる。IV−VI族系化合物半導体ナノ結晶は、例えばSbTeであることができる。   The quantum point material will be described in more detail. For example, CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, constructed ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HggZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe, and in HgZnSTe It can be any one selected from the group. Group III-V compound semiconductor nanocrystals are, for example, GaN, GaP, GaAs, AlN, AlP, AlAs, InN, InP, InAs, GNP, GNAs, GaPAs, AlNP, AlNAs, AlPAs, InNP, InNAs, InPAs, GaAlNP. , GaAlNAs, GaAlPAs, GaInNP, GaInNAs, GaInPAs, InAlNP, InAlNAs, and InAlPAs. The IV-VI group compound semiconductor nanocrystal can be, for example, SbTe.

量子点は、有機溶媒或いは高分子樹脂のような分散媒質に自然に配位された形態で分散され、上述したように、このような構造を有する波長変換部105は密封部材104に封入されている。この場合、分散媒質としては、量子点の波長変換性能に影響を与えず、光によって変質したり光を反射させたりせず、かつ光吸収を起こさない透明な媒質であれば制限なく使用できる。例えば、有機溶媒は、トルエン(toluene)、クロロホルム(chloroform)、及びエタノール(ethanol)のうち、少なくとも1種を含むことができ、高分子樹脂は、エポキシ(epoxy)、シリコン(silicone)、ポリスチレン(polysthylene)、及びアクリレート(acrylate)のうち、少なくとも1種を含むことができる。分散媒質として高分子樹脂が使用される場合、量子点が分散された高分子樹脂が密封部材104に注入された後に硬化させることができる。   The quantum dots are dispersed in a naturally coordinated form in a dispersion medium such as an organic solvent or a polymer resin. As described above, the wavelength conversion unit 105 having such a structure is sealed in the sealing member 104. Yes. In this case, the dispersion medium can be used without limitation as long as it is a transparent medium that does not affect the wavelength conversion performance of the quantum dots, does not deteriorate or reflect light, and does not absorb light. For example, the organic solvent may include at least one selected from toluene, chloroform, and ethanol, and the polymer resin may be epoxy, silicon, polystyrene ( It may include at least one of polystyrene and acrylate. When a polymer resin is used as the dispersion medium, the polymer resin in which the quantum dots are dispersed can be cured after being injected into the sealing member 104.

一方、量子点の発光は伝導帯から価電子帯に浮いた状態の電子が転移することで発生するが、同一物質の場合にも粒子のサイズによって波長が変わる特性を示す。量子点のサイズが小さくなるほど短い波長の光を発光するため、量子点のサイズを調節することで所望の波長領域の光を得ることができる。この場合、量子点のサイズはナノ結晶の成長条件を適切に変更することで調節できる。   On the other hand, the light emission of the quantum dots is generated by the transfer of electrons in a state of floating from the conduction band to the valence band, and even in the case of the same substance, the wavelength changes depending on the particle size. Since light with a shorter wavelength is emitted as the size of the quantum dots becomes smaller, light in a desired wavelength region can be obtained by adjusting the size of the quantum dots. In this case, the size of the quantum dots can be adjusted by appropriately changing the growth conditions of the nanocrystals.

前述したように、発光素子101は青色光を放出することができ、具体的には、約435nm〜470nmを主波長とする光を放出することができる。この場合、上記青色光を変換する量子点は、ピーク波長が緑色光の波長帯である第1量子点と、ピーク波長が赤色光の波長帯である第2量子点と、を含むことができる。このとき、第1量子点と第2量子点は、そのサイズを適当に調節して、第1量子点のピーク波長を約500〜550nm、第2量子点のピーク波長を約580〜660nmとすることができる。一方、量子点は通常の蛍光体より強い光を狭い波長帯で発生させる。これにより、本実施例の量子点は、第1量子点が約10〜60nmの半値幅(Full−Width Half−Maximum;FWHM)を有し、第2量子点が約30〜80nmの半値幅を有するようにすることができる。この場合、発光素子101は約10〜30nmの半値幅を有する青色LEDチップを採用してもよい。   As described above, the light emitting element 101 can emit blue light. Specifically, the light emitting element 101 can emit light having a main wavelength of about 435 nm to 470 nm. In this case, the quantum point for converting the blue light can include a first quantum point whose peak wavelength is a wavelength band of green light and a second quantum point whose peak wavelength is a wavelength band of red light. . At this time, the first quantum dots and the second quantum dots are appropriately adjusted in size so that the peak wavelength of the first quantum dots is about 500 to 550 nm and the peak wavelength of the second quantum dots is about 580 to 660 nm. be able to. On the other hand, quantum dots generate light that is stronger than ordinary phosphors in a narrow wavelength band. As a result, the quantum dots of the present example have a full width at half maximum of about 10 to 60 nm (Full-Width Half-Maximum; FWHM) and a second quantum point of about 30 to 80 nm. Can have. In this case, the light emitting element 101 may employ a blue LED chip having a half width of about 10 to 30 nm.

図21は、本発明の一実施形態による発光素子パッケージから放出される光における波長帯別光強度の一例を示したグラフであり、図22は、本発明の一実施形態による発光素子パッケージから放出される光の色座標領域を示す図面である。   FIG. 21 is a graph illustrating an example of light intensity by wavelength in light emitted from the light emitting device package according to the embodiment of the present invention, and FIG. 22 is emitted from the light emitting device package according to the embodiment of the present invention. It is drawing which shows the color coordinate area | region of the light to be performed.

本実施形態の場合、上述したように、発光素子パッケージに備えられる量子点の粒度を調節して波長帯を調節でき、例えば、下記の表1のような特性を有するように調節する。   In the present embodiment, as described above, the wavelength band can be adjusted by adjusting the particle size of the quantum dots provided in the light emitting device package. For example, the wavelength band is adjusted to have the characteristics shown in Table 1 below.

Figure 0005881318
Figure 0005881318

表1において、Wpは、青色光、緑色光、赤色光の主波長(dominant wavelength)を意味し、FWHMは、青色光、緑色光、赤色光の半値幅を意味する。表1を参照すると、青色光は、発光素子101自体から放出される光を、緑色光及び赤色光は、量子点から放出される光を意味し、このような青色光、緑色光及び赤色光は、図21に示した光強度の分布を有するようになる。また、使用される量子点の粒度を調節して波長帯を調節でき、粒子サイズ別に量子点の濃度を調節して色座標を調節できるという特徴を有する。これにより、本実施例は、図22に示すように、第1量子点の緑色光の色座標は、CIE1931色座標系を基準に4つの頂点(0.1270、0.8037)、(0.4117、0.5861)、(0.4197、0.5316)及び(0.2555、0.5030)により囲まれた領域A内にあり、第2量子点の赤色光の色座標は、4つの頂点(0.5448、0.4544)、(0.7200、0.2800)、(0.6427、0.2905)及び(0.4794、0.4633)により囲まれた領域B内にあるように量子点の粒度と濃度を調節することができる。このような光分布を有する発光素子パッケージは、図4に示すように、既存の蛍光体を使用した製品に比べて非常に広い領域をカバーしており、色再現性がNTSC基準に95%以上で、発光強度も非常に高いことが分かる。   In Table 1, Wp means dominant wavelengths of blue light, green light, and red light, and FWHM means half widths of blue light, green light, and red light. Referring to Table 1, blue light means light emitted from the light emitting device 101 itself, green light and red light mean light emitted from quantum dots, and such blue light, green light, and red light. Has the light intensity distribution shown in FIG. In addition, the wavelength band can be adjusted by adjusting the particle size of the quantum dots used, and the color coordinates can be adjusted by adjusting the concentration of the quantum dots for each particle size. Accordingly, in this embodiment, as shown in FIG. 22, the color coordinates of the green light of the first quantum point are four vertices (0.1270, 0.8037), (0. 4117, 0.5861), (0.4197, 0.5316) and (0.2555, 0.5030), the color coordinates of the red light of the second quantum point are four. As shown in the region B surrounded by the vertices (0.5448, 0.4544), (0.7200, 0.2800), (0.6427, 0.2905) and (0.4794, 0.4633) It is possible to adjust the particle size and concentration of the quantum dots. As shown in FIG. 4, the light emitting device package having such a light distribution covers a very wide area as compared with products using existing phosphors, and the color reproducibility is 95% or more based on NTSC standards. It can be seen that the emission intensity is also very high.

さらに、前述したように、量子点は通常の蛍光体より強い光を狭い波長帯で発生させ、第1及び第2量子点をより狭い色座標の領域内にあるようにすることができる。即ち、第1量子点の緑色光の色座標は、CIE1931色座標系を基準に4つの頂点(0.1270、0.8037)、(0.3700、0.6180)、(0.3700、0.5800)及び(0.2500、0.5500)により囲まれた領域A'内にあり、第2量子点の赤色光の色座標は、4つの頂点(0.6000、0.4000)、(0.7200、0.2800)、(0.6427、0.2905)及び(0.6000、0.4000)により囲まれた領域B'内にあるようにすることで、色再現性をさらに向上させることができる。このように、本実施例の発光素子パッケージ100は発光素子101の主波長と、第1及び第2量子点の色座標(CIE1931色座標系基準)を特定範囲または領域に限定することで、発光素子101、第1及び第2量子点の組み合わせから色再現性を向上させるようになる。   Furthermore, as described above, the quantum dots can generate light that is stronger than a normal phosphor in a narrow wavelength band, and the first and second quantum dots can be within a narrower color coordinate region. That is, the color coordinates of the green light of the first quantum point are four vertices (0.1270, 0.8037), (0.3700, 0.6180), (0.3700, 0) based on the CIE1931 color coordinate system. .5800) and (0.2500, 0.5500), the color coordinates of the red light of the second quantum point are four vertices (0.6000, 0.4000), ( 0.7200, 0.2800), (0.6427, 0.2905) and (0.6000, 0.4000) so that they are within the region B ′, the color reproducibility is further improved. Can be made. As described above, the light emitting device package 100 of this embodiment emits light by limiting the main wavelength of the light emitting device 101 and the color coordinates (CIE 1931 color coordinate system reference) of the first and second quantum dots to a specific range or region. The color reproducibility is improved from the combination of the element 101 and the first and second quantum dots.

一方、上記では発光素子パッケージ100において、発光素子101は青色LEDチップであり、量子点は青色光を赤色光及び緑色光を波長変換することを例に挙げて説明したが、本発明はこれに限定されるものではない。例えば、発光素子101は紫外線LEDチップであり、量子点はピーク波長が青色光の波長帯である第1量子点と、ピーク波長が緑色光の波長帯である第2量子点と、ピーク波長が赤色光の波長帯である第3量子点と、を含むように粒度と濃度を調節できる。この場合、発光素子101、即ち、紫外線LEDチップは白色光を放出する波長変換部105の励起光源として機能する。   On the other hand, in the light emitting device package 100 described above, the light emitting device 101 is a blue LED chip, and the quantum dots are described by taking the example of converting the wavelength of blue light into red light and green light. It is not limited. For example, the light emitting element 101 is an ultraviolet LED chip, and the quantum point has a first quantum point whose peak wavelength is a wavelength band of blue light, a second quantum point whose peak wavelength is a wavelength band of green light, and a peak wavelength is The particle size and concentration can be adjusted to include the third quantum point that is the wavelength band of red light. In this case, the light emitting element 101, that is, the ultraviolet LED chip functions as an excitation light source of the wavelength conversion unit 105 that emits white light.

本実施形態のように、個別の発光素子パッケージ100に密封された量子点を有する波長変換部105が備えられることで、複数の発光素子パッケージ100が実装されたモジュールを使用する場合に高い水準の信頼性が得られ、波長変換部105及び密封部材104がレンズ形態で提供されて指向角を適切に調節できるため、発光特性も向上するようになる。これに対し、複数の発光素子に対して量子点を有する波長変換部が一体に形成された構造の場合では、密封部材の一領域に欠陥(defect)が発生することによってモジュール全体の信頼性が低下し、形状を多様に変更して指向角を調節することにも困難がある。   As in this embodiment, the wavelength conversion unit 105 having the quantum dots sealed in the individual light emitting device packages 100 is provided, so that a high level is achieved when a module on which a plurality of light emitting device packages 100 are mounted is used. Reliability is obtained, and the wavelength conversion unit 105 and the sealing member 104 are provided in the form of a lens so that the directivity angle can be adjusted appropriately, so that the light emission characteristics are also improved. On the other hand, in the case of a structure in which wavelength conversion parts having quantum points are integrally formed with respect to a plurality of light emitting elements, the reliability of the entire module is improved by the occurrence of a defect in one region of the sealing member. It is also difficult to adjust the directivity angle by variously changing the shape.

図2は、本発明の他の実施形態による発光素子パッケージを概略的に示した断面図である。図2を参照すると、本実施形態による発光素子パッケージ200は、発光素子201、一対の外部端子202a、202b、パッケージ本体203、レンズ状の密封部材204、波長変換部205及び透明封止材206を含む構造である。同じ名称の要素は以前の実施形態と同じものと理解することができ、以下では以前の実施形態と相違する構成を中心に説明する。   FIG. 2 is a cross-sectional view schematically illustrating a light emitting device package according to another embodiment of the present invention. Referring to FIG. 2, the light emitting device package 200 according to the present embodiment includes a light emitting device 201, a pair of external terminals 202 a and 202 b, a package body 203, a lens-shaped sealing member 204, a wavelength conversion unit 205, and a transparent sealing material 206. It is a structure including. Elements having the same name can be understood as being the same as those in the previous embodiment, and the following description will focus on a configuration that differs from the previous embodiment.

本実施形態の場合、発光素子201はパッケージ本体203上に配置され、発光素子201と接続された一対の電極(図示せず)は以前の実施形態とは異なり、発光素子201の下部、即ち、密封部材204の反対側に配置されることができる。よって、図2に示したように、一対の導電性ワイヤWはパッケージ本体203内に少なくとも一部が埋め込まれた構造を有することができる。このように、光放出経路上に導電性ワイヤWが配置されなくなり、導電性ワイヤWにより発光効率が低下するという問題を最小限に抑えることができる。発光素子201に電気信号を印加するための一対の外部端子202a、202bはパッケージ本体203の側面から下面に延長された形態を有し、この場合、本発明において必ずしも求められる事項ではないが、導電性ワイヤWと外部端子202a、202bを接続するための一対の接続部207a、207bがさらに備えられてもよい。   In the case of the present embodiment, the light emitting element 201 is disposed on the package body 203, and a pair of electrodes (not shown) connected to the light emitting element 201 is different from the previous embodiment, that is, below the light emitting element 201, that is, It can be disposed on the opposite side of the sealing member 204. Therefore, as shown in FIG. 2, the pair of conductive wires W can have a structure in which at least a part is embedded in the package body 203. Thus, the problem that the conductive wire W is not disposed on the light emission path and the light emission efficiency is lowered by the conductive wire W can be minimized. A pair of external terminals 202a and 202b for applying an electrical signal to the light emitting element 201 has a form extending from the side surface of the package body 203 to the lower surface. In this case, the conductive terminals are not necessarily required in the present invention. A pair of connection portions 207a and 207b for connecting the conductive wire W and the external terminals 202a and 202b may be further provided.

本実施形態の場合にも、図1の実施形態と同様に、複数の発光素子パッケージ200が実装されたモジュールを使用する場合、高い水準の信頼性が期待でき、また、波長変換部205及び密封部材204がレンズ形態で提供されるため指向角を適切に調節でき、発光特性も向上するようになる。さらに、発光素子201の下部に反射率の高い物質(例えば、TiO)が配置されることで発光効率が向上し、この場合、TiO等の光反射粒子が分散された透明樹脂としてシリコン樹脂を使用することで高温高湿条件でパッケージの信頼性を向上させることができる。 In the case of the present embodiment, similarly to the embodiment of FIG. 1, when a module on which a plurality of light emitting device packages 200 are mounted is used, a high level of reliability can be expected. Since the member 204 is provided in the form of a lens, the directivity angle can be appropriately adjusted, and the light emission characteristics are improved. Further, a material having a high reflectance (for example, TiO 2 ) is disposed under the light emitting element 201, so that the light emission efficiency is improved. In this case, a silicon resin is used as a transparent resin in which light reflecting particles such as TiO 2 are dispersed. The package reliability can be improved under high temperature and high humidity conditions.

以下、図1及び図2の構造を有する発光素子パッケージの製造方法について説明する。先ず、図3及び図4は、図1の構造を有する発光素子パッケージの製造方法の一例を概略的に示した工程別断面図である。図3に示したように、波長変換部105が封入された密封部材104を形成する方法の例として、レンズ状を有する第1透明部材104aの内壁に沿って量子点と上記量子点を分散させるための溶媒等を含有する波長変換部105を形成する。その後、第1透明部材104aに対応する形状を有する第2透明部材104bを圧着して、波長変換部105が密封されるようにする。その次に、図4に示したように、密封部材104の内部面により形成される空間にシリコン樹脂等を用いて透明封止材106を形成し、発光素子101と結合させる。この場合、工程効率性の側面で、パッケージを構成する他の要素、即ち、リードフレーム102a、102b、パッケージ本体103、導電性ワイヤW等を全て形成した後、これらを反転させて密封部材104と結合させることが好ましい。   Hereinafter, a method for manufacturing a light emitting device package having the structure of FIGS. 1 and 2 will be described. First, FIG. 3 and FIG. 4 are cross-sectional views schematically showing a method for manufacturing a light emitting device package having the structure of FIG. As shown in FIG. 3, as an example of a method for forming the sealing member 104 in which the wavelength conversion unit 105 is enclosed, the quantum dots and the quantum dots are dispersed along the inner wall of the first transparent member 104a having a lens shape. The wavelength conversion part 105 containing the solvent for this is formed. Thereafter, the second transparent member 104b having a shape corresponding to the first transparent member 104a is pressure-bonded so that the wavelength conversion unit 105 is sealed. Next, as illustrated in FIG. 4, a transparent sealing material 106 is formed using silicon resin or the like in a space formed by the inner surface of the sealing member 104 and is bonded to the light emitting element 101. In this case, from the viewpoint of process efficiency, after forming all the other elements constituting the package, that is, the lead frames 102a and 102b, the package main body 103, the conductive wire W, etc., they are inverted to form the sealing member 104. Bonding is preferred.

図5から図8は、図2の構造を有する発光素子パッケージの製造方法の一例を概略的に示した工程別断面図である。本実施形態の場合、複数の発光素子パッケージを製造する方法を挙げて説明する。先ず、図5に示したように、波長変換部205が封入された構造の密封部材204を形成し、密封部材204がアレイ形態であることを除いては、図3において説明した方法と同様である。その次、図6に示したように、密封部材204の内部面で定義される空間に透明封止材206を充填し、発光素子201をこれに結合させる。本実施形態の場合、発光素子201を透明封止材206に結合させる工程は、複数の発光素子201がキャリアシート208に付着された状態で行われることができる。キャリアシート208は発光素子201が付着される高分子フィルム等を利用することができる。   FIGS. 5 to 8 are cross-sectional views schematically illustrating a method for manufacturing a light emitting device package having the structure of FIG. In the case of this embodiment, a method for manufacturing a plurality of light emitting device packages will be described. First, as shown in FIG. 5, the sealing member 204 having a structure in which the wavelength conversion unit 205 is enclosed is formed, and the method is the same as that described in FIG. 3 except that the sealing member 204 is in an array form. is there. Next, as shown in FIG. 6, a space defined by the inner surface of the sealing member 204 is filled with a transparent sealing material 206, and the light emitting element 201 is coupled thereto. In the case of the present embodiment, the step of bonding the light emitting element 201 to the transparent sealing material 206 can be performed in a state where the plurality of light emitting elements 201 are attached to the carrier sheet 208. As the carrier sheet 208, a polymer film or the like to which the light emitting element 201 is attached can be used.

その次に、キャリアシート208を発光素子201から分離して発光素子201を露出させ、発光素子201の露出した面に形成された一対の電極(図示せず)と接続されるように導電性ワイヤWを形成する。この場合、導電性ワイヤWは、密封部材204の表面に形成された接続部207と接触することができ、上述したように、接続部207は外部端子との接続のために提供されることができるが、実施形態によって除外されることもできる。次いで、図8に示したように、密封部材205と結合され、発光素子201及び導電性ワイヤWを覆うようにパッケージ本体203を形成する。パッケージ本体203は光反射粒子(例えば、TiO)が透明樹脂に分散された構造を有し、発光素子201から放出された光を密封部材204が位置する方向に反射させる機能を果たすことができる。パッケージ本体203の形成後にそれぞれの発光素子パッケージ単位に分離し、図示していないが、分離された状態でパッケージ本体203の側面と下面に外部端子を形成することで、図2に示した構造を完成することができる。但し、発光素子パッケージの外部端子を形成する工程は、本実施形態のように、ダイシング(dicing)段階後に行ってもよいが、その前に行っても構わない。これについては図9から図13を参照して説明する。 Next, the carrier sheet 208 is separated from the light emitting element 201 to expose the light emitting element 201, and the conductive wire is connected to a pair of electrodes (not shown) formed on the exposed surface of the light emitting element 201. W is formed. In this case, the conductive wire W can come into contact with the connection portion 207 formed on the surface of the sealing member 204, and as described above, the connection portion 207 can be provided for connection with an external terminal. It can be excluded depending on the embodiment. Next, as shown in FIG. 8, the package body 203 is formed so as to cover the light emitting element 201 and the conductive wire W by being coupled to the sealing member 205. The package body 203 has a structure in which light reflecting particles (for example, TiO 2 ) are dispersed in a transparent resin, and can function to reflect light emitted from the light emitting element 201 in a direction in which the sealing member 204 is positioned. . After the package body 203 is formed, it is separated into each light emitting device package unit. Although not shown, external terminals are formed on the side surface and the lower surface of the package body 203 in the separated state, so that the structure shown in FIG. Can be completed. However, the step of forming the external terminals of the light emitting device package may be performed after the dicing step as in the present embodiment, but may be performed before that. This will be described with reference to FIGS.

先ず、図9に示したように、波長変換部305が封入された構造の密封部材304を形成し、上述の方法、即ち、第1透明部材304aに波長変換部305を形成した後、第2透明部材304bを圧着させて密封する方法を用いることができる。但し、本実施形態における密封部材304の外観は凸レンズ状ではない直方体形状を有するようにしたが、これは密封部材304が多様な形状に変更可能なことを説明するためのものであり、密封部材304の外観が直方体形状を有すると、以前の実施形態における透明封止材を別途設けなくてもよくなる。   First, as shown in FIG. 9, the sealing member 304 having the structure in which the wavelength conversion unit 305 is enclosed is formed, and after the wavelength conversion unit 305 is formed on the first transparent member 304a, the second conversion is performed. A method of sealing the transparent member 304b by pressure bonding can be used. However, the appearance of the sealing member 304 in this embodiment has a rectangular parallelepiped shape that is not a convex lens shape, but this is for explaining that the sealing member 304 can be changed into various shapes. If the appearance of 304 has a rectangular parallelepiped shape, it is not necessary to separately provide the transparent sealing material in the previous embodiment.

その次、図10に示したように、キャリアシート308上に複数の発光素子301を配置し、導電性ワイヤW、外部端子307及びこれらを接続させる接続部307を形成する。導電性ワイヤWと外部端子307が直接接続される場合には接続部307を別途設けなくてもよくなる。次いで、図11に示したように、発光素子301等を覆うようにパッケージ本体303を形成した後、図12に示したように、波長変換部305を備える密封部材304を、発光素子301から放出された光の経路上に位置するようにパッケージ本体303に付着する。密封部材304が付着された後は発光素子パッケージ単位に分離することで、図13に示したように発光素子パッケージ300を得ることができ、各発光素子パッケージ300は一対の外部端子302a、302bと、一対の接続部307a、307bを備えることができる。   Next, as shown in FIG. 10, a plurality of light emitting elements 301 are arranged on the carrier sheet 308, and the conductive wires W, the external terminals 307, and the connection portions 307 for connecting them are formed. When the conductive wire W and the external terminal 307 are directly connected, the connection portion 307 need not be provided separately. Next, as shown in FIG. 11, after forming the package body 303 so as to cover the light emitting element 301 and the like, the sealing member 304 including the wavelength conversion unit 305 is emitted from the light emitting element 301 as shown in FIG. It adheres to the package body 303 so as to be positioned on the light path. After the sealing member 304 is attached, the light emitting element package 300 is obtained by separating the light emitting element package unit as shown in FIG. 13, and each light emitting element package 300 includes a pair of external terminals 302a and 302b. A pair of connection portions 307a and 307b can be provided.

図14から図17は、本発明のさらに他の実施例による発光素子パッケージの製造方法を概略的に示した工程別断面図である。本実施形態では、図14に示したように、密封部材404の一部に発光素子401を配置することで工程をより簡素化することができる。具体的には、第1透明部材404aに波長変換部405を形成した後、第2透明部材404bを圧着させて密封部材404を形成する方法は類似するが、第2透明部材404b上に発光素子401及びこれに電気信号を印加するための手段、即ち、導電性ワイヤW及び接続部407を直接形成する。この場合、密封部材404の外観は図14のように凸レンズ状を有するか、または、他の形状、例えば直方体形状を有することができる。   14 to 17 are cross-sectional views schematically illustrating a method of manufacturing a light emitting device package according to another embodiment of the present invention. In the present embodiment, as shown in FIG. 14, the process can be further simplified by disposing the light emitting element 401 in a part of the sealing member 404. Specifically, the method of forming the sealing member 404 by pressing the second transparent member 404b after forming the wavelength conversion unit 405 on the first transparent member 404a is similar, but the light emitting element is formed on the second transparent member 404b. 401 and a means for applying an electric signal thereto, that is, the conductive wire W and the connecting portion 407 are directly formed. In this case, the outer appearance of the sealing member 404 may have a convex lens shape as shown in FIG. 14, or may have another shape, for example, a rectangular parallelepiped shape.

一方、図14では第2透明部材404bに発光素子401を配置した後、波長変換部405を密封する手順を示しているが、密封段階を先に行った上で発光素子401を配置してもよい。このような方式で密封部材404が発光素子401と結合された状態が図15に示しており、その後、図16に示したようにパッケージ本体403を形成する。本実施形態では、パッケージ本体403が発光素子401ごとに別途に形成された構造を示しているが、必ずしもこれに限定されるものではなく、以前の実施形態のように、発光素子401全体に対して一体に形成された後、後続のダイシング工程によりパッケージ単位に分離されてもよい。その次に、図17に示したように、パッケージ本体403の表面に外部端子407を形成し、パッケージ単位に分離することで発光素子パッケージを完成することができる。この場合、図17に示すものとは異なり、外部端子407はパッケージ単位に分離された後に形成されてもよく、パッケージ本体403の側面以外の他の面まで延長されて形成されてもよい。   On the other hand, FIG. 14 shows a procedure for sealing the wavelength conversion unit 405 after the light emitting element 401 is disposed on the second transparent member 404b. However, the light emitting element 401 may be disposed after the sealing step is performed first. Good. FIG. 15 shows a state in which the sealing member 404 is coupled to the light emitting element 401 in this manner, and then the package body 403 is formed as shown in FIG. In the present embodiment, a structure in which the package main body 403 is separately formed for each light emitting element 401 is shown. However, the present invention is not necessarily limited to this, and the light emitting element 401 as a whole is not limited to this. Then, they may be separated into package units by a subsequent dicing process. Next, as shown in FIG. 17, external terminals 407 are formed on the surface of the package body 403 and separated into package units, whereby the light emitting device package can be completed. In this case, unlike the one shown in FIG. 17, the external terminals 407 may be formed after being separated into package units, or may be formed extending to other surfaces other than the side surfaces of the package body 403.

図18から図20は、本発明のさらに他の実施形態による発光素子パッケージを概略的に示した断面図である。先ず、図18に示す実施形態の場合、発光素子501の光放出経路上に提供される少なくとも1つの面には密封部材504が配置され、前述したように、密封部材504の内部には量子点を含む波長変換部505が封入される。発光素子501は基板501a、第1導電型半導体層501b、活性層501c及び第2導電型半導体層501dが積層された発光ダイオード構造であることができる。発光素子501において密封部材504の反対側には一対の電極が配置され、図18に示したように、一対の電極はバンプボールBであることができる。本実施形態によるパッケージ構造500は、図19に示したように、フリップチップボンディングにより基板509に実装され、発光素子501から放出された光は波長変換部505を経て外部に放出されることができ、一対のバンプボールBは基板上に形成された配線パターン510a、510bと接続される。この場合、基板509に実装される発光素子パッケージは、図18に示した構造で単位パッケージに分離された状態、即ち、図19に示した状態で実装されてもよく、これと異なり、分離されていない状態、即ち、図18の状態のまま実装されてもよい。   18 to 20 are cross-sectional views schematically illustrating a light emitting device package according to another embodiment of the present invention. First, in the embodiment shown in FIG. 18, the sealing member 504 is disposed on at least one surface provided on the light emission path of the light emitting element 501, and as described above, the quantum dot is disposed inside the sealing member 504. A wavelength conversion unit 505 including is enclosed. The light emitting element 501 may have a light emitting diode structure in which a substrate 501a, a first conductive semiconductor layer 501b, an active layer 501c, and a second conductive semiconductor layer 501d are stacked. In the light emitting element 501, a pair of electrodes is disposed on the opposite side of the sealing member 504, and the pair of electrodes can be bump balls B as shown in FIG. As shown in FIG. 19, the package structure 500 according to the present embodiment is mounted on a substrate 509 by flip chip bonding, and light emitted from the light emitting element 501 can be emitted to the outside through the wavelength conversion unit 505. The pair of bump balls B are connected to wiring patterns 510a and 510b formed on the substrate. In this case, the light emitting device package mounted on the substrate 509 may be mounted in a state of being separated into unit packages with the structure shown in FIG. 18, that is, in a state shown in FIG. It may be mounted in the state that is not, that is, in the state of FIG.

また、図20に示した発光素子パッケージ600は複数の発光素子601を含み、複数の発光素子601に対して密封部材604及び波長変換部605が一体に形成された構造を有する。各発光素子601は、一対の電極、例えば、バンプボールBを備えることができ、バンプボールBはパッケージ本体603の表面に沿って形成された外部端子602と接続されることができる。この場合、バンプボールBと外部端子602は発光素子601間の電気的接続(直列、並列またはこれらの組み合わせ)を考慮して適切に配置されることができ、図20に示した例は各発光素子601が互いに直列に接続された構造である。一方、複数の発光素子601において、密封部材604が付着された面を除いた面を覆うようにパッケージ本体603が形成されることができ、パッケージ本体603は発光素子601から放出された光を密封部材604が位置する方向に反射するように光反射物質を含むことができる。   20 includes a plurality of light emitting elements 601, and has a structure in which a sealing member 604 and a wavelength conversion unit 605 are integrally formed with respect to the plurality of light emitting elements 601. The light emitting element package 600 illustrated in FIG. Each light emitting element 601 can include a pair of electrodes, for example, a bump ball B, and the bump ball B can be connected to an external terminal 602 formed along the surface of the package body 603. In this case, the bump ball B and the external terminal 602 can be appropriately arranged in consideration of the electrical connection (series, parallel, or a combination thereof) between the light emitting elements 601. The example shown in FIG. In this structure, the elements 601 are connected to each other in series. On the other hand, the package body 603 may be formed so as to cover a surface of the plurality of light emitting elements 601 except for the surface to which the sealing member 604 is attached, and the package body 603 seals light emitted from the light emitting element 601. A light reflecting material may be included to reflect in the direction in which the member 604 is located.

本実施形態のように、互いに異なる発光素子601に対して密封部材604及び波長変換部605を一体に形成することで、発光素子パッケージ600全体にわたって放出される光の色座標が均一になる。互いに異なる色を発光する量子点を混合して使用するとき、混合される量子点の色の比率を変えると観察者側では他の波長の光に見えることもある。これを防止するためには正確な濃度の物質を正確な比率で混合する必要があり、混合に当たっては、量子点の濃度だけでなく発光効率も考慮しなければならない。量子点をモールディング樹脂と混合して使用する単品発光素子パッケージをアレイ形態で使用する白色光源の場合は、混合される量子点の濃度や均一性、及び混合された比率を調節することに限界があるため、単品発光素子パッケージ間に色座標ばらつきが発生することがある。これと異なり、本実施形態の発光素子パッケージ600は、一体に形成された密封部材604及び波長変換部605を発光素子601とは別途に設けることで、発光素子パッケージ600全体にわたって均一な色座標を有するようにすることができる。   As in the present embodiment, by integrally forming the sealing member 604 and the wavelength conversion unit 605 with respect to the light emitting elements 601 different from each other, the color coordinates of the light emitted over the entire light emitting element package 600 become uniform. When quantum dots emitting different colors are mixed and used, if the color ratio of the mixed quantum dots is changed, the viewer may see light of other wavelengths. In order to prevent this, it is necessary to mix substances having an accurate concentration at an accurate ratio. In mixing, it is necessary to consider not only the concentration of quantum dots but also the luminous efficiency. In the case of a white light source that uses a single light emitting device package mixed with a molding resin and used as an array, there is a limit to adjusting the concentration and uniformity of the mixed quantum dots and the mixing ratio. Therefore, color coordinate variations may occur between single light emitting device packages. Unlike this, the light emitting device package 600 of the present embodiment is provided with a sealing member 604 and a wavelength conversion unit 605 that are integrally formed separately from the light emitting device 601, thereby providing uniform color coordinates throughout the light emitting device package 600. Can have.

図23は、本発明で提案する発光素子パッケージの使用例を概略的に示した構成図である。図23を参照すると、照光装置700は、発光モジュール701と発光モジュール701が配置される構造物704及び電源供給部703を含んで構成され、発光モジュール701には本発明で提案した方式により得られた1つ以上の発光素子パッケージ702が配置されることができる。電源供給部703は電源が入力されるインターフェース705と発光モジュール701に供給される電源を制御する電源制御部706を含むことができる。この場合、インターフェース705は過電流を遮断するヒューズと電磁波障害信号を遮蔽する電磁波遮蔽フィルターを含むことができる。   FIG. 23 is a configuration diagram schematically showing a usage example of the light emitting device package proposed in the present invention. Referring to FIG. 23, the illumination device 700 includes a light emitting module 701, a structure 704 in which the light emitting module 701 is disposed, and a power supply unit 703. The light emitting module 701 is obtained by the method proposed in the present invention. One or more light emitting device packages 702 may be disposed. The power supply unit 703 may include an interface 705 to which power is input and a power control unit 706 that controls the power supplied to the light emitting module 701. In this case, the interface 705 may include a fuse for blocking an overcurrent and an electromagnetic wave shielding filter for shielding an electromagnetic wave interference signal.

電源制御部706は、電源に交流電源が入力される場合、交流を直流に変換する整流部と、発光モジュール701に適した電圧に変換する定電圧制御部を備えることができる。若し、電源自体が発光モジュール701に適した電圧を有する直流源(例えば、電池)であれば、整流部や定電圧制御部を省略してもよい。また、発光モジュール701自体がAC−LEDのような素子を採用する場合は、交流電源が発光モジュール701に直接供給されることができ、整流部や定電圧制御部の省略も可能である。さらに、電源制御部は色温度等を制御することで、人間の感性による照明の演出を可能にする。また、電源供給部703は、発光素子パッケージ702の発光量と予め設定された光量とを比較するフィードバック回路装置と、所望の輝度や演色性等の情報が保存されたメモリ装置を含むことができる。   The power supply control unit 706 may include a rectification unit that converts alternating current into direct current and a constant voltage control unit that converts the voltage into a voltage suitable for the light emitting module 701 when AC power is input to the power supply. If the power supply itself is a direct current source (for example, a battery) having a voltage suitable for the light emitting module 701, the rectification unit and the constant voltage control unit may be omitted. Further, in the case where the light emitting module 701 itself employs an element such as an AC-LED, AC power can be directly supplied to the light emitting module 701, and the rectification unit and the constant voltage control unit can be omitted. Furthermore, the power supply control unit controls the color temperature and the like, thereby enabling lighting effects based on human sensitivity. The power supply unit 703 may include a feedback circuit device that compares the light emission amount of the light emitting device package 702 with a preset light amount, and a memory device that stores information such as desired luminance and color rendering properties. .

このような照光装置700は、画像パネルを備える液晶表示装置等のディスプレイ装置に利用されるバックライトユニットやランプ、フラット照明等の室内照明または街灯、看板、表示板等の室外照明装置として使用でき、多様な交通手段用照明装置、例えば、自動車、船舶、航空機等にも採用できる。さらに、TV、冷蔵庫等の家電製品や医療機器等にも広く採用できる。   Such an illumination device 700 can be used as a backlight unit or lamp used in a display device such as a liquid crystal display device provided with an image panel, or an outdoor lighting device such as a street lamp, a signboard, or a display board. It can also be used in various lighting devices for transportation, for example, automobiles, ships, airplanes and the like. Furthermore, it can be widely used in home appliances such as TVs and refrigerators, medical devices, and the like.

本発明は、上述した実施形態及び添付された図面によって限定されるものではなく、添付された請求範囲によって定められる。従って、請求範囲に記載された本発明の技術的思想を外れない範囲内で多様な形態の置換、変形及び変更が可能であるということは当技術分野の通常の知識を有する者に自明であり、これも本発明の範囲に属する。   The present invention is not limited by the above-described embodiments and the accompanying drawings, but is defined by the appended claims. Accordingly, it is obvious to those skilled in the art that various forms of substitution, modification, and change are possible without departing from the technical idea of the present invention described in the claims. This also belongs to the scope of the present invention.

101:発光素子
102a、102b:リードフレーム
103:パッケージ本体
104:密封部材
105:波長変換部
106:透明封止材
101: Light-emitting elements 102a and 102b: Lead frame 103: Package body 104: Sealing member 105: Wavelength conversion unit 106: Transparent sealing material

Claims (1)

複数の第1透明部材が相互連結された第1透明部材アレイを設ける段階と、
前記複数の第1透明部材のそれぞれに量子点が分散された液体を注入する段階と、
複数の第2透明部材が相互連結された第2透明部材アレイを設ける段階と、
それぞれ前記複数の第1透明部材に対応するように前記複数の第2透明部材を配置し、前記複数の第1透明部材と前記複数の第2透明部材を実質的に同じ曲率を有する凸レンズ状の形状をなすように圧着して前記液体を密封することにより、複数の波長変換部を有する密封部材アレイを形成する段階と、
複数の発光素子がそれぞれ前記複数の波長変換部に対応するように前記密封部材アレイを前記複数の発光素子上に配置して発光素子パッケージアレイを形成する段階と、
前記発光素子パッケージアレイをダイシングして複数の発光素子パッケージを形成する段階と、
を含むことを特徴とする発光素子パッケージの製造方法。
Providing a first transparent member array in which a plurality of first transparent members are interconnected;
Injecting a liquid in which quantum dots are dispersed in each of the plurality of first transparent members;
Providing a second transparent member array in which a plurality of second transparent members are interconnected;
The plurality of second transparent members are arranged so as to correspond to the plurality of first transparent members, respectively, and the plurality of first transparent members and the plurality of second transparent members have a convex lens shape having substantially the same curvature. Forming a sealing member array having a plurality of wavelength conversion units by sealing the liquid by crimping to form a shape; and
Arranging the sealing member array on the plurality of light emitting elements so that the plurality of light emitting elements correspond to the plurality of wavelength conversion units, respectively, and forming a light emitting element package array;
Dicing the light emitting device package array to form a plurality of light emitting device packages;
A method for manufacturing a light emitting device package, comprising:
JP2011132453A 2010-06-14 2011-06-14 Method for manufacturing light emitting device package Active JP5881318B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US35442910P 2010-06-14 2010-06-14
US61/354,429 2010-06-14
KR10-2010-0102419 2010-10-20
KR1020100102419A KR20110136676A (en) 2010-06-14 2010-10-20 Light emitting device package using quantum dot, illumination apparatus and dispaly apparatus

Publications (3)

Publication Number Publication Date
JP2012004567A JP2012004567A (en) 2012-01-05
JP2012004567A5 JP2012004567A5 (en) 2014-07-31
JP5881318B2 true JP5881318B2 (en) 2016-03-09

Family

ID=45503297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011132453A Active JP5881318B2 (en) 2010-06-14 2011-06-14 Method for manufacturing light emitting device package

Country Status (3)

Country Link
JP (1) JP5881318B2 (en)
KR (1) KR20110136676A (en)
TW (1) TWI479703B (en)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI441361B (en) * 2010-12-31 2014-06-11 Interlight Optotech Corp Light emitting diode packaging structure and method for fabricating the same
WO2013061511A1 (en) * 2011-10-27 2013-05-02 パナソニック株式会社 Light-emitting device
JP2013197530A (en) * 2012-03-22 2013-09-30 Sharp Corp Light source, light emitting device, light source for backlight, display device, and manufacturing method of light source
US9634201B2 (en) 2012-05-14 2017-04-25 Koninklijke Philips N.V. Light emitting device with nanostructured phosphor
KR20130141963A (en) * 2012-06-18 2013-12-27 주식회사 큐디솔루션 Film for enhancing visibility of oled and fabrication method thereof
CN104736662B (en) 2012-08-06 2017-07-18 皇家飞利浦有限公司 The method that highly stable QD compounds for solid-state illumination and the polymerization by no initiator make the QD compounds
KR101947815B1 (en) * 2012-08-07 2019-02-14 한국전자통신연구원 The dual display device with the vertical structure
JP2014127560A (en) * 2012-12-26 2014-07-07 Kyocera Connector Products Corp Holder for semiconductor light-emitting element, semiconductor light-emitting element module, lighting fixture, and method of manufacturing holder for semiconductor light-emitting element
JP6152801B2 (en) 2014-01-21 2017-06-28 豊田合成株式会社 Light emitting device and manufacturing method thereof
KR20150092801A (en) 2014-02-05 2015-08-17 삼성디스플레이 주식회사 Light Emitting Diode Package and Method of manufacturing the same
JP2015220330A (en) * 2014-05-16 2015-12-07 日本電気硝子株式会社 Light emission device and manufacturing method for the same
KR102181888B1 (en) 2014-09-03 2020-11-24 삼성디스플레이 주식회사 Liquid crystal display device and manufacturing method thereof
JP6428089B2 (en) * 2014-09-24 2018-11-28 日亜化学工業株式会社 Light emitting device
JP6236412B2 (en) * 2014-09-30 2017-11-22 富士フイルム株式会社 Wavelength conversion member, backlight unit, liquid crystal display device, quantum dot-containing polymerizable composition, and method for producing wavelength conversion member
WO2016052627A1 (en) * 2014-09-30 2016-04-07 富士フイルム株式会社 Wavelength conversion member, backlight unit, liquid crystal display device, quantum dot-containing polymerizable composition and method for producing wavelength conversion member
JP2016103461A (en) * 2014-11-14 2016-06-02 富士フイルム株式会社 Wavelength conversion member, backlight unit and liquid crystal display device
WO2016075949A1 (en) * 2014-11-14 2016-05-19 富士フイルム株式会社 Wavelength conversion member, backlight unit including same, and liquid crystal display apparatus
JP2016102999A (en) * 2014-11-14 2016-06-02 富士フイルム株式会社 Wavelength conversion member, backlight unit including the same, and liquid crystal display device
WO2016075950A1 (en) * 2014-11-14 2016-05-19 富士フイルム株式会社 Wavelength conversion member, backlight unit including same, and liquid crystal display apparatus
DE102014117983A1 (en) * 2014-12-05 2016-06-09 Osram Opto Semiconductors Gmbh Conversion element, optoelectronic semiconductor component and method for producing conversion elements
JP6422947B2 (en) * 2014-12-26 2018-11-14 Nsマテリアルズ株式会社 Method for manufacturing wavelength conversion member
KR101983426B1 (en) 2015-01-23 2019-09-11 삼성디스플레이 주식회사 Photosensitive resin composition and display device
JP6217705B2 (en) 2015-07-28 2017-10-25 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
CN105226166B (en) * 2015-10-23 2017-11-03 易美芯光(北京)科技有限公司 A kind of quantum dot LED structure and method for packing
KR101739751B1 (en) * 2015-12-30 2017-05-26 주식회사 상보 Manufacturing method of alloy-shell quantum dot, alloy-shell quantum dot and backlight unit including same
TWI599078B (en) * 2016-08-05 2017-09-11 行家光電股份有限公司 Moisture-resistant chip scale packaging light emitting device
TW201835297A (en) 2017-01-06 2018-10-01 日商Jsr股份有限公司 Composition containing fluorescent particles, wavelength conversion layer, and production method for wavelength conversion layer
JP6705759B2 (en) * 2017-01-24 2020-06-03 富士フイルム株式会社 Wavelength conversion film
KR102389815B1 (en) 2017-06-05 2022-04-22 삼성전자주식회사 Quantum dot glass cell and light emitting device package comprising the same
JP2017224867A (en) * 2017-09-28 2017-12-21 日亜化学工業株式会社 Light-emitting device and manufacturing method therefor
US11101410B2 (en) 2018-05-30 2021-08-24 Creeled, Inc. LED systems, apparatuses, and methods
US10453827B1 (en) * 2018-05-30 2019-10-22 Cree, Inc. LED apparatuses and methods
CN112236875A (en) * 2018-06-04 2021-01-15 科锐公司 LED apparatus and method
JP6768093B2 (en) * 2019-01-11 2020-10-14 エルジー ディスプレイ カンパニー リミテッド LED package, backlight unit and liquid crystal display device
KR102391399B1 (en) * 2019-11-29 2022-04-27 (주)애니캐스팅 Micro lens array having color change function and Micro LED display module including the same
KR20220036681A (en) 2020-09-16 2022-03-23 삼성전자주식회사 Display appartus and manufacturing method of the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3350484B2 (en) * 1999-07-29 2002-11-25 株式会社シチズン電子 Light emitting diode
JP2002270901A (en) * 2001-03-12 2002-09-20 Citizen Electronics Co Ltd Light emitting diode and its manufacturing method
JP3900848B2 (en) * 2001-03-23 2007-04-04 シチズン電子株式会社 Light emitting diode
US7157839B2 (en) * 2003-01-27 2007-01-02 3M Innovative Properties Company Phosphor based light sources utilizing total internal reflection
JP4259198B2 (en) * 2003-06-18 2009-04-30 豊田合成株式会社 Method for manufacturing wavelength conversion unit for light emitting device and method for manufacturing light emitting device
JP2005259972A (en) * 2004-03-11 2005-09-22 Stanley Electric Co Ltd Surface-mounting led
JP4771837B2 (en) * 2005-11-28 2011-09-14 京セラ株式会社 Wavelength converter and light emitting device
JP2008288440A (en) * 2007-05-18 2008-11-27 Toyoda Gosei Co Ltd Integrated display device
JP2008187212A (en) * 2008-05-07 2008-08-14 Sharp Corp Surface mounting type light emitting element
KR100982991B1 (en) * 2008-09-03 2010-09-17 삼성엘이디 주식회사 Quantum dot-wavelength conversion device, preparing method of the same and light-emitting device comprising the same

Also Published As

Publication number Publication date
KR20110136676A (en) 2011-12-21
TW201214795A (en) 2012-04-01
JP2012004567A (en) 2012-01-05
TWI479703B (en) 2015-04-01

Similar Documents

Publication Publication Date Title
JP5881318B2 (en) Method for manufacturing light emitting device package
US20150171290A1 (en) Light emitting device package using quantum dot, illumination apparatus and display apparatus
EP2392852B1 (en) Light source module using quantum dots, and illumination apparatus
US20140158982A1 (en) Light-emitting device, backlight unit, display device, and manufacturing method thereof
US8513872B2 (en) Light emitting apparatus and method for manufacturing thereof
KR101101134B1 (en) Led package and backlight unit having the same
KR102166715B1 (en) Light source unit, and method for manufacturing the same, and backlight assembly including the same
US20120155115A1 (en) Light emitting module and backlight unit using the same
KR101718066B1 (en) light source module using quantum dot, backlight unit employing the light source module, display apparatus, and illumination apparatus
KR20130136259A (en) Light emitting device package using quantum dot
JP6537234B2 (en) Light emitting diode package and method of manufacturing the same
KR20120135999A (en) Light emitting device package
KR20180093149A (en) Display device and manufacturing method of the same
KR20120067541A (en) Light emitting diode package and manufacturing method thereof
JP2014199831A (en) Light-emitting device, phosphor sheet, backlight system, and process of manufacturing light-emitting device
KR20180032063A (en) Light emitting diode package and light emitting diode module
KR20190118697A (en) Display device
KR20130055223A (en) Light source module and backlight unit
KR20120060540A (en) Light emitting module and backlight unit using the same
KR20120140053A (en) Light emitting device package
KR102531370B1 (en) Lighting device
TW201908786A (en) Backlight apparatus
CN115963660A (en) Light emitting device
KR20120085038A (en) Light emitting diode package and manufacturing method thereof
KR20120085039A (en) Light emitting diode package manufacturing method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120813

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140613

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151007

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20151014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160202

R150 Certificate of patent or registration of utility model

Ref document number: 5881318

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250