JP4771837B2 - Wavelength converter and the light emitting device - Google Patents

Wavelength converter and the light emitting device Download PDF

Info

Publication number
JP4771837B2
JP4771837B2 JP2006061353A JP2006061353A JP4771837B2 JP 4771837 B2 JP4771837 B2 JP 4771837B2 JP 2006061353 A JP2006061353 A JP 2006061353A JP 2006061353 A JP2006061353 A JP 2006061353A JP 4771837 B2 JP4771837 B2 JP 4771837B2
Authority
JP
Grant status
Grant
Patent type
Prior art keywords
semiconductor particles
wavelength
wavelength conversion
liquid
wavelength converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006061353A
Other languages
Japanese (ja)
Other versions
JP2007173754A (en )
Inventor
政信 石田
正人 福留
俊昭 重岡
修吾 鬼塚
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wavelength converter and a light emitting device by which degrading of a wavelength conversion efficiency of light is controlled by using nano-size semiconductor particles, and to provide a manufacturing method of the wavelength converter. <P>SOLUTION: A wavelength conversion liquid which is composed of a liquid 3 and the semiconductor particles of 0.5 to 10nm mean particle diameters existing surrounded by the liquid 3 and which has a water content of &le;o.1 mass% and the wavelength conversion efficiency of &ge;40 mass% is enclosed in a container which is at least partially transparent. Thus, the wavelength converter 9 which has the high wavelength conversion efficiency and a small change with time is provided. <P>COPYRIGHT: (C)2007,JPO&amp;INPIT

Description

本発明は、例えば、電子ディスプレイ用のバックライト電源、蛍光ランプ等の発光装置に好適に用いられる波長変換器に関し、より詳しくは、発光素子から発せられる光を波長変換して外部に取り出すために用いられる波長変換器およびこれを用いた発光装置に関するものである。 The present invention is, for example, the backlight power supply for an electronic display, relates wavelength converter is preferably used for the light emitting device such as a fluorescent lamp, and more particularly, in order to extract light emitted from the light emitting element to the outside wavelength conversion wavelength converters used and the present invention relates to a light emitting device using the same.

半導体材料からなる発光素子(以後、LEDチップと言うこともある)は、小型で電力効率が良く鮮やかな色の発光を生ずる。 Emitting element made of a semiconductor material (hereinafter, sometimes referred to as LED chips) yields a luminous power efficiency is good vivid colors compact. LEDチップは、製品寿命が長い、オン・オフ点灯の繰り返しに強い、消費電力が低い、という優れた特徴を有するため、液晶などのバックライト光源や蛍光ランプ等の照明用光源への応用が期待されている。 LED chips, product life is long, strong repetition of on-off lighting, consumption is low power, since it has an excellent feature that, its application to the illumination light source such as a backlight source and a fluorescent lamp such as a liquid crystal is expected It is.

近年では、紫外発光素子(発光波長400nm以下)上に3種類の蛍光体を含有する波長変換部を形成することにより幅広い範囲で発光波長をカバーし、演色性を向上した白色の発光装置を得る試みがなされている。 In recent years, it covers emission wavelength in a wide range by forming a wavelength conversion unit which contains three kinds of phosphors on ultraviolet light-emitting device (emission wavelength 400nm or less) to obtain a white light emitting device with improved color rendering properties attempts have been made.

これに用いる蛍光体として、平均粒子径が10nm以下の半導体粒子が検討されている(例えば、非特許文献1参照)。 As the phosphor used therein, the following semiconductor particles having an average particle diameter of 10nm have been studied (for example, see Non-Patent Document 1). この方法によると、半導体粒子の平均粒子径を10nm程度の適切な値に設定すれば、半導体粒子のエネルギー準位が離散的となり、半導体粒子のバンドギャップエネルギーが半導体粒子の粒子径に合わせて変化する。 According to this method, by setting the average particle diameter of semiconductor particles to a suitable value of about 10 nm, the energy level of the semiconductor particles are discrete, the band gap energy of the semiconductor particles in accordance with the particle diameter of semiconductor particles changes to. そのため半導体粒子の粒子径を変えることで、赤(長波長)から青(短波長)まで様々な発光を得ることができる。 Therefore by changing the particle diameter of semiconductor particles, it is possible to obtain various emission from red (long wavelength) to blue (shorter wavelength). 例えば、セレン化カドミウムは平均粒子径を2nmから10nmの範囲で変化させることにより、その平均粒子径に応じて赤(波長700nm)から青(波長450nm)の蛍光を発する。 For example, cadmium selenide by varying in the range of 10nm average particle size from 2 nm, emits blue fluorescence (wavelength 450 nm) from red (wavelength 700 nm) depending on the average particle size. 従ってこの手法を用いると演色性が高く、効率のよい発光装置を作ることができると期待されている。 Therefore high color rendering property using this approach, it is expected to be able to make efficient light-emitting device.

LEDチップと蛍光体とを組み合わせて発光装置とするには、蛍光体をエポキシ樹脂、アクリル樹脂、シリコーン樹脂などの樹脂に混合した後、これをLEDチップ上で固める方法が取られる(例えば、特許文献1〜7参照)。 To the light-emitting device by combining the LED chip and the phosphor is prepared by mixing a phosphor epoxy resin, an acrylic resin, a resin such as a silicone resin, a method of solidifying it on the LED chip are taken (for example, patent references 1-7).

しかしながら、平均粒子径が10nm以下の半導体粒子を特許文献1〜7に記載の樹脂に混合して作製した波長変換器や、あるいは平均粒子径が10nm以下の半導体粒子を結合剤樹脂及び溶剤と混合した蛍光体ペーストをガラスなどに塗布、乾燥して得られる波長変換器を使用することで演色性の高い発光装置を作ることは可能であるものの、このようにして作製した波長変換器では十分な波長変換効率を得ることは困難であるため、LEDチップは出力の大きなものを準備する必要があるばかりか、このため発光装置が発熱によって高温になりやすいという問題があった。 However, and wavelength converters average particle diameter of the following semiconductor particles 10nm prepared by mixing the resin described in Patent Document 1 to 7, or an average particle size of less than the semiconductor particles a binder resin and a solvent 10nm mixed applying a fluorescent paste including a glass, although the use of wavelength converter obtained by drying it is possible to make a high color rendering light emitting device, sufficient in wavelength converter produced in this way for obtaining the wavelength conversion efficiency is difficult, LED chips not only it is necessary to prepare one large output and therefore the light emitting device has a problem that tends to become hot due to heat generation.

このようにして作られる波長変換器の波長変換効率が低い理由は、一つには半導体粒子と樹脂との間に、製造上の問題、長期間の使用での熱応力、あるいは樹脂劣化により隙間ができやすく、この隙間となった部分で光の反射がおこり、光の伝達効率が悪くなるためである。 Why wavelength conversion efficiency of the wavelength converter made in this way is low, the gap between the semiconductor particles and the resin into one, manufacturing issues, the prolonged thermal stress at use or resin deterioration, easily it can, occurs reflection of light at the portion becomes the gap, because the transmission efficiency of the light deteriorates.

また、半導体粒子の表面積は、現在、主に使用されている平均粒子径が数μmの蛍光体の表面積に比べて非常に大きい。 Further, the surface area of ​​the semiconductor particles, now is much larger than the surface area of ​​the phosphor of several μm average particle size that has been mainly used. 例えば半導体粒子を真球と仮定した場合には体積に対する表面積(比表面積)は平均粒子径2nmの半導体粒子は平均粒子径2μmの蛍光体の1000倍と非常に大きくなる。 For example the surface area to volume in the case where the semiconductor particles assuming sphericity (specific surface area) of the semiconductor particles having an average particle diameter of 2nm is very large and 1000 times the phosphor having an average particle size of 2 [mu] m. このため、平均粒子径が10nm以下の半導体粒子と平均粒子径が数μmの蛍光体において、同じ表面積に同じ割合で粒子表面の欠陥が存在する場合には平均粒子径が10nm以下の半導体粒子では波長変換効率がはるかに低下することとなる。 Therefore, in the phosphor of an average particle size of less semiconductor particles 10nm average particle diameter of several [mu] m, in the semiconductor particles having an average particle size of less 10nm if defects same rate at the particle surface in the same area exists wavelength conversion efficiency is to be much reduced.

この粒子表面の欠陥による波長変換効率を向上する目的で、有機アミンなどの有機物を半導体粒子の表面に結合させて表面欠陥を電気化学的に修復し、離散化したバンドギャップエネルギーの準位を安定化し、平均粒子径が10nm以下の半導体粒子の波長変換効率を高める試みが行なわれている(例えば、非特許文献2、特許文献8参照)。 The purpose of improving the wavelength conversion efficiency due to defects in the particle surface by binding organic material such as an organic amine to the surface of semiconductor particles electrochemically repair surface defects, stabilize the level of the discretized bandgap energy However, the average particle diameter is an attempt to increase the wavelength conversion efficiency of the following semiconductor particles 10nm has been performed (for example, non-Patent Document 2, Patent Document 8).

この平均粒径0.5から10nmの半導体粒子の合成法にはTOPO、ドデシルアミンなどの水を含まない有機溶媒中で合成を行なうホットソープ法がある他、一方で、水を意図的に存在させた系で合成する逆ミセル法(非特許文献3、4)がある。 This synthesis of semiconductor particles from an average particle diameter of 0.5 10 nm is TOPO, presents a hot soap method of performing synthesis in an organic solvent free from water, such as dodecylamine, while the deliberately presence of water it is reversed micelle method (non-Patent documents 3 and 4) to synthesize in a system is.
特開2005−235847号 Japanese Unexamined Patent Publication No. 2005-235847 特開2005−105177号 Japanese Unexamined Patent Publication No. 2005-105177 特開2005−93097号 Japanese Unexamined Patent Publication No. 2005-93097 特開2005−93191号 Japanese Unexamined Patent Publication No. 2005-93191 特開2005−93712号 Japanese Unexamined Patent Publication No. 2005-93712 特開2005−19662号 Japanese Unexamined Patent Publication No. 2005-19662 特開2004−253745号 Japanese Unexamined Patent Publication No. 2004-253745 特開2005−103746号 Japanese Unexamined Patent Publication No. 2005-103746

しかしながら、これらの方法で粒子表面に有機アミンを結合した半導体粒子をシリコーン樹脂などの樹脂に混合して波長変換器を作製しても、十分に波長変換効率の高い波長変換器を作ることはできない。 However, even when the semiconductor particles bound organic amine on the particle surface by these methods to produce the wavelength converter by mixing a resin such as silicone resin, it is impossible to make a sufficient wavelength conversion efficient wavelength converter .

その原因として、有機アミンを結合した半導体粒子を樹脂と混合すると、有機アミンと樹脂との親和力により有機アミンが半導体粒子から脱離して樹脂中に拡散してしまうことが考えられる。 As the cause, when mixing semiconductor particles bound organic amine resin, it is conceivable that diffuses desorbed organic amine from the semiconductor particles in the resin by affinity with organic amines and resins. このとき、半導体粒子表面に存在する欠陥は有機アミンが脱離することによって有機アミンによる電気的な修復の効果を失い、その結果、波長変換効率が低くなるのである。 At this time, defects present in the semiconductor particle surface loses the effect of electrical repair organic amines by organic amine is eliminated, with the result that the wavelength conversion efficiency is lowered.

また、あるいは有機アミンを結合した半導体粒子を樹脂と混合した場合には半導体粒子に結合した有機アミンは樹脂から親和力、あるいは斥力を受ける。 Also, or organic amines bound to the semiconductor particles when the semiconductor particles bound organic amine is mixed with the resin is subjected to affinity or repulsion, from the resin. そのため、有機アミンは半導体粒子との距離が局所的に変化することとなる。 Therefore, the organic amine is a distance between the semiconductor particles is changing locally. その結果、半導体粒子表面には欠陥の補修効果が弱められる部分が生じることとなり、バンドギャップエネルギーの準位が低い部分が発生することとなる。 As a result, it may occur that portion that is weakened repair effect of defects on the semiconductor particle surface level is lower portions of the band gap energy is to be generated. その結果、半導体粒子の波長変換効率は低下し、この半導体粒子の波長変換効率の低下によって、高い波長変換効率の波長変換器とすることが困難となっている。 As a result, the wavelength conversion efficiency of the semiconductor particles is reduced, by a reduction in wavelength conversion efficiency of the semiconductor particles, be a wavelength converter high wavelength conversion efficiency has become difficult.

特に、非特許文献3、非特許文献4あるいは特許文献8に記載された方法により水溶液中で半導体粒子を合成した場合には半導体粒子の波長変換効率はせいぜい10%以下と低いものとなる。 In particular, non-patent document 3, the wavelength conversion efficiency of the semiconductor particles when synthesizing the semiconductor particles in an aqueous solution by the method described in Non-Patent Document 4 or Patent Document 8 becomes at most 10% or less and low. 従って、このようにして水溶液中で合成した半導体粒子を用いて波長変換器を製造したとしても波長変換器の波長変換効率は当然10%以下となり、照明用の発光装置への適用は到底おぼつかない。 Thus, in this way also the wavelength conversion efficiency of the wavelength converter of course be 10% or less to produce a wavelength converter using the synthesized semiconductor particles in aqueous solution, is applied to the light emitting device for illumination hardly uncertain.

また、このように水を多量に含んだ含水系溶媒で合成した半導体粒子を非水系溶媒に可溶な状態に置換した場合であっても半導体粒子は一旦、水と接触しているため、半導体粒子は水と化学反応して半導体粒子の表面が変質し、半導体粒子表面はOH基で被覆された状態となっている。 Also, in this manner semiconductor particles even when the semiconductor particles synthesized in large quantity inclusive hydrous solvent of water was replaced by soluble state to a non-aqueous solvent once, since it is in contact with water, the semiconductor particles altered the surface of the water and chemical reaction to the semiconductor particles, semiconductor particles surface is in a state of being coated with an OH group. そして半導体粒子表面のOH基により半導体粒子は親水性が高くなり波長変換器へ大気から侵入する水分を取り込みやすくなる。 The semiconductor particles by OH groups of the semiconductor particle surfaces can easily capture moisture penetrating from the atmosphere into the wavelength converter becomes highly hydrophilic. このように一旦、半導体粒子の表面に付いた水は除去しがたく、溶媒を置換したとしても水を半導体粒子表面から完全に除去することは難しい。 Thus once the surface water Gataku was removed with the semiconductor particles, it is difficult to completely remove even water from the semiconductor particle surface as the solvent was replaced.

そのため、水溶液中で合成した半導体粒子を波長変換器に用いる場合には、励起光照射時に半導体粒子が表面に存在する水と化学反応して波長変換効率が極端に低下するという問題がある。 Therefore, when using the combined semiconductor particles in an aqueous solution to the wavelength converter has a problem that the excitation light irradiation semiconductor particles in water chemistry on the surface wavelength conversion efficiency when is extremely lowered. このような問題は、半導体粒子を生体マーカーなどの用途として用いる場合には、波長変換効率が低くても検出できる程度の波長変換効率があれば充分であるため問題にされていない。 Such a problem, when using the semiconductor particles as applications such as biological markers have not been a problem since the wavelength conversion efficiency is sufficient if the wavelength conversion efficiency that can be detected even at low. また、生体マーカーとして用いる場合には半導体粒子の親水性が高いことも要求されるために水溶液中で半導体粒子を合成することが常識であり、照明用途に利用できる十分に高い波長変換効率を有する波長変換器は提供されていない。 Furthermore, it is common knowledge to synthesize semiconductor particles in an aqueous solution in order also required that the higher the hydrophilicity of the semiconductor particles in the case of using as a biomarker, with a sufficiently high wavelength conversion efficiency available for lighting applications wavelength converter is not provided.

本発明は、平均粒子径が10nm以下の半導体粒子をLEDチップと組み合わせた発光装置に用いるための波長変換器とする場合、波長変換効率の高いものを得るのが困難であるという問題を解決し、波長変換効率の高い波長変換器および発光装置を提供することを目的とする。 The present invention, when the average particle diameter of the wavelength converter for use in the light emitting device in combination with a LED chip below the semiconductor particles 10 nm, to solve the problem that it is difficult to obtain a high wavelength conversion efficiency , and to provide a high wavelength converter and a light-emitting device the wavelength conversion efficiency.

本発明の波長変換器は、 オレイルアミン,ドデシルアミン,2−エチルヘキサン酸,ドデカンチオールおよびオレイン酸の少なくとも1種からなる液体と該液体に取り囲まれて存在する平均粒径0.5〜10nmの半導体粒子とからなり、含水率が0.1質量%以下であって波長変換効率が40%以上の波長変換液を、少なくとも一部が透光性の器の中に封入してなることを特徴とする。 Wavelength converter according to the present invention, oleylamine, dodecylamine, 2-ethylhexanoic acid, a semiconductor having an average particle size of 0.5~10nm present is surrounded by the liquid and the liquid comprising at least one of dodecanethiol and oleic acid consists of a particle, the water content is not more than 0.1 mass% the wavelength conversion efficiency of 40% or more wavelength conversion solution, and wherein at least a part is formed by sealing in a transparent vessel to.

また、本発明の波長変換器は、前記液体は水の溶解度が0.1質量%以下であることが望ましい。 The wavelength converter of the present invention, the liquid is preferably the solubility of water is less than 0.1 wt%.

本発明の発光装置は、発光素子と、該発光素子からの光を波長変換する前記波長変換器とを具備することを特徴とする。 The light emitting device of the present invention is characterized by comprising a light emitting element and the wavelength converter for wavelength-converting the light from the light emitting element.

これまでLEDチップと蛍光体を具備する波長変換器を組み合わせて作る発光装置では、波長変換器は蛍光体粉末をエポキシ樹脂、アクリル樹脂、シリコーン樹脂に練り込んで、これをLEDチップ上に流し込み、あるいはLEDチップとは別に冷却、溶剤除去、化学反応などを行ない硬化させて作る方法をとるのが常識であった。 Until now the light emitting device for making a combination of the wavelength converter comprising an LED chip and a phosphor, the wavelength converter epoxy resin phosphor powder, an acrylic resin, kneaded into a silicone resin, pouring it on the LED chip, or alternatively cooling the LED chip, the solvent removed, to take a method of making cured performs chemical reaction was common sense. しかし、この方法では、高い演色性が得られる平均粒径10nm以下の半導体粒子で波長変換器を作ることは困難であった。 However, in this method, it is difficult to make the wavelength converter in the following semiconductor particles having an average particle size of 10nm high color rendering property can be obtained.

本発明の波長変換器は、固体の樹脂に変えて、オレイルアミン,ドデシルアミン,2−エチルヘキサン酸,ドデカンチオールおよびオレイン酸の少なくとも1種からなる液体を用い、半導体粒子をこの液体中に分散させた波長変換液を少なくとも一部が透光性の器の中に封入する構成とすることで、半導体粒子と液体との間に隙間ができることがなく、容易に表面欠陥を液体によって補修することもでき、しかもその状態を維持することができることから、波長変換効率が高く、性能の低下の少ない波長変換器を作ることができる。 Wavelength converter according to the present invention, instead of the solid resin, oleylamine, dodecylamine, 2-ethylhexanoic acid, with a liquid comprising at least one of dodecanethiol and oleic acid, is dispersed semiconductor particles to the liquid at least a portion of the wavelength conversion solution was that in the structure where encapsulated in transparent vessels, without a gap between the semiconductor particles and the liquid, also be repaired easily surface defects by liquid can, moreover since it is possible to maintain that state, high wavelength conversion efficiency can be made less wavelength converter of reduced performance. さらに、この波長変換液の含水率を0.1質量%以下とすることで、比表面積が大きく、表面活性の高い半導体粒子を用いた場合であっても、半導体粒子が水分により変質することを抑制することができる。 Furthermore, the moisture content of the wavelength conversion solution by 0.1 wt% or less, the specific surface area is large, even with a high surface active semiconductor particles, the semiconductor particles is deteriorated due to moisture it can be suppressed. このような波長変換液は実質的に水の無い環境で合成した半導体粒子を使用することで波長変換効率が40%以上と高い波長変換液を作製することができる。 Such wavelength conversion solution may be wavelength conversion efficiency by using the combined semiconductor particles substantially free of water environment to produce a 40% or more and high wavelength conversion solution. これに対して含水系溶媒中で合成した半導体粒子を使用して波長変換液を作製した場合には、せいぜい波長変換効率が10%以下の波長変換液しか作製することができない。 When using the synthesized semiconductor particles in water-containing solvent to prepare a wavelength conversion solution for this, it is impossible to most wavelength conversion efficiency to produce only the wavelength conversion solution 10% or less.

また、液体の水の溶解度を0.1質量%以下とすることで、長期間湿度の高い場所で使用、あるいは保管しても波長変換液に過剰に水が溶解することがないため、半導体粒子の変質を抑制することができる。 Furthermore, the solubility of liquid water by 0.1 mass% or less, since there can be excessive dissolution water to the wavelength conversion solution used for a long period of time in high humidity, or storage, semiconductor particles it is possible to suppress the deterioration.

以上説明した波長変換器を具備する本発明の発光装置は、波長変換効率の高い発光装置となる。 The light emitting device of the present invention will become light-emitting device with high wavelength conversion efficiency having a wavelength converter described above.

本発明の波長変換器は、例えば図1(a)に示すように、少なくとも平均粒径0.5〜10nmの光の波長変換可能な半導体粒子1と、この半導体粒子1を取り囲むように配設された液体3とからなる含水率が0.1質量%以下の波長変換液5を具備するもので、図1(a)の例では、この波長変換液5を少なくとも一部が透光性を有する器7に封入して波長変換器9が構成されている。 Wavelength converter according to the present invention, for example, as shown in FIG. 1 (a), at least the average particle size semiconductor particles 1 possible wavelength conversion of the light 0.5 to 10 nm, disposed so as to surround the semiconductor particles 1 in which the water content consisting of liquid 3 which is provided with a wavelength conversion solution 5 of 0.1 wt%, in the example of FIG. 1 (a), at least partially translucent to the wavelength conversion solution 5 wavelength converter 9 by sealing the vessel 7 with is configured.

なお、半導体粒子1を液体が取り囲むとは、言い換えると水や−OH基を介さずに半導体粒子1の表面を水を除く液体が取り囲んでいることを意味している。 Incidentally, the semiconductor particles 1 and surrounding liquid has a surface of semiconductor particles 1 without passing through the other words water or -OH group means that surrounds the liquid except for water. すなわち、本発明における半導体粒子1は実質的に水のない環境で合成されたものであり、本発明の波長変換器は半導体粒子1が水と接触することを避けて作製されたものと言える。 That is, the semiconductor particles 1 of the present invention has been synthesized in a substantially water-free environment, the wavelength converter of the present invention can be said to have been produced by avoiding the semiconductor particles 1 are in contact with water. そして、このようにして製造した波長変換液では波長変換効率が40%以上のものを得ることができる。 Then, in the wavelength conversion solution prepared in this way can the wavelength conversion efficiency is obtained of not less than 40%.

図1(b)に示すように、発光素子11からの光が波長変換器9に照射されるように、発光素子11を搭載した発光素子用配線基板13に波長変換器9を組み合わせることで本発明の発光装置15となる。 As shown in FIG. 1 (b), so that the light from the light emitting element 11 is irradiated to the wavelength converter 9, the by combining a wavelength converter 9 to the light emitting element wiring board 13 mounted with the light emitting element 11 the light emitting device 15 of the invention. なお、発光素子用配線基板13には、発光素子11の電力を供給するための配線回路17が配設され、この配線回路17と発光素子11の端子(図示せず)とがワイヤ19を介して接続されている。 Note that the light emitting element wiring board 13, the wiring circuit 17 for supplying electric power of the light emitting element 11 is disposed, and the through wires 19 terminals of the wiring circuit 17 and the light-emitting element 11 (not shown) It is connected Te. また、発光素子11は、半田や樹脂などの接着層21により発光素子用配線基板13に固定されている。 The light emitting element 11 is fixed to the light emitting element wiring board 13 by the adhesive layer 21 such as solder or resin. また、発光素子11を保護するために発光素子11を覆うように被覆樹脂23が形成されている。 Further, the coating resin 23 to cover the light emitting element 11 to protect the light emitting element 11 is formed.

また、本発明の発光装置15の他の形態として、例えば図2に示すように発光素子用配線基板13の凹部の中に波長変換液5を充填して、器7で封止した形態を例示することができる。 Further, exemplified as another form of light emitting device 15 of the present invention, for example by filling a wavelength conversion solution 5 in the recess of the light-emitting element wiring board 13 as shown in FIG. 2, the form sealed with the vessel 7 can do. この場合には波長変換液5と器7と発光素子用配線基板13とで波長変換器9を形成していると言える。 It said to form a wavelength converter 9 in the wavelength conversion solution 5 and vessel 7 and the light emitting element wiring board 13 in this case.

本発明の波長変換器9は、発光素子11から発せられる光を波長変換する機能を有する物で、半導体粒子1を液体3で取り囲んだ波長変換液5を備えることが重要で、また、この波長変換液5の含水率が0.1質量%以下であることが重要である。 Wavelength converter 9 of the present invention, as it has a function of converting the wavelength of light emitted from the light emitting element 11, the semiconductor particles 1 is important to include a wavelength conversion solution 5 surrounded by the liquid 3, and the wavelength it is important that the water content of the conversion solution 5 is less than 0.1 wt%.

このように、波長変換器に従来用いられていた蛍光体を保持するための固体の樹脂に換えて、固体に比べ格段に容易に変形可能な液体3を用いることで、半導体粒子1と液体3との間に応力が発生することがなく、半導体粒子1と液体3との間に隙間ができることもない。 Thus, instead of the solid resin for holding the phosphor which has been conventionally used in the wavelength converter, by using a much easier deformable liquid 3 as compared to a solid, semiconductor particles 1 and the liquid 3 without stress is generated between the not be a gap between the semiconductor particles 1 and the liquid 3. そのため、半導体粒子1の波長変換効率を向上させることができる。 Therefore, it is possible to improve the wavelength conversion efficiency of the semiconductor particles 1. また、波長変換液5が流動性を有するため、発光素子11の熱により対流が発生した場合には冷却性能も向上する。 Further, the wavelength conversion solution 5 for a flowable, when the convection by the heat of the light emitting element 11 occurs also improves cooling performance.

さらに、波長変換液5の含水率を0.1質量%以下とすることで、水の影響により半導体粒子1が変質して波長変換効率が低下することを抑制することができる。 Further, by the water content of the wavelength converting liquid 5 and 0.1 wt% or less, the semiconductor particle 1 due to the influence of water may deteriorate the wavelength conversion efficiency can be suppressed from being lowered. この波長変換液5の含水率は、短期的な波長変換効率の低下に影響するもので、さらに0.05質量%以下、特に0.01質量%以下とすることが望ましい。 The water content of the wavelength converting liquid 5 is intended to affect the reduction in the short-term wavelength conversion efficiency, further 0.05% or less, it is desirable in particular to 0.01% by mass or less.

また、半導体粒子1を取り囲む液体3として水の溶解度が0.1質量%以下のものを用いることで、仮に水分の多い雰囲気に曝されたとしても水は半導体粒子1には容易に到達し得ないため、長期にわたって波長変換器9の波長変換効率および発光装置15の発光効率の低下を抑制することができる。 Further, since the solubility of water as the liquid 3 surrounding the semiconductor particles 1 used the following 0.1 wt%, obtained easily reach even the water in the semiconductor particles 1 as if exposed to high ambient moisture no, it is possible to suppress a decrease in luminous efficiency of the wavelength conversion efficiency and light-emitting device 15 of the wavelength converter 9 for a long time. この液体3として水の溶解度は、長期的な波長変換効率の低下に影響するもので、0.05質量%以下、特に0.02質量%以下とすることが望ましい。 The solubility of water as the liquid 3, those that affect the reduction of long-term wavelength conversion efficiency, it is desirable to 0.05 mass% or less, particularly 0.02 wt% or less.

このように液体3は、半導体粒子1の濃度を適当に調整する機能や、半導体粒子1を水や大気などの雰囲気から遮断する機能を備えている。 The liquid 3 as has function for adjusting the concentration of the semiconductor particles 1 appropriately, the function of shielding the semiconductor particles 1 from the atmosphere, such as water and air.

本発明の液体3として用いることができるものとして、オレイルアミン、2−エチルへキサン酸、ドデカンチオール、オレイン酸およびドデシルアミンを挙げることができる。 As those which can be used as the liquid 3 of the present invention, mention may be made of Au Reiruamin, 2-ethylhexanoic acid, dodecanethiol, oleic acid and dodecylamine.

レイルアミンおよびドデシルアミンのように、液体3として高い極性を有するものを用いることにより 、液体3が半導体粒子表面の欠陥補修の効果を果たすことができるため、予め半導体表面の欠陥を有機アミンなどにより補修しなくて済む As Oh Reiruamin and dodecylamine, by using a material having a high polarity as a liquid 3, since the liquid 3 can perform the effect of the defect repairing semiconductor particle surface, such as by defects organic amines advance semiconductor surface it is not necessary to repair. また 、半導体表面の欠陥補修している化合物が脱離した場合にも、半導体粒子の周囲に存在する液体3が変わって半導体粒子表面の欠陥を補修できるため、長期の使用に対しても半導体粒子表面の欠陥補修は損なわれることが無いため、長期にわたり安定した波長変換器とすることができる。 Further, even when the compounds are defect repair of the semiconductor surface are eliminated, it is possible to repair defects of the semiconductor particle surface changes the liquid 3 to be present around the semiconductor particles, semiconductor particles against long-term use for defect repair surface is not impaired, Ru can be a long time stable wavelength converter.

また、液体3は、複数の種類の半導体粒子1あるいは半導体粒子1と半導体粒子以外の蛍光体、その他例えば屈折率を調整するための機能性材料粒子とを組み合わせて波長変換器を構成する場合にはこれらが偏り、あるいは凝集することなく保持する機能を備えていることが望ましい。 The liquid 3, when configuring wavelength converter by combining a plurality of kinds of semiconductor particles 1 or the semiconductor particles 1 and the phosphor other than the semiconductor particles, and a functional material particles for adjusting the other example, a refractive index it is desirable to have a function to hold without these biases, or aggregate.

また、この液体3はLEDチップが出力した光が半導体粒子まで届く光路、および半導体粒子1が波長変換した光が発光装置外部へ出るまでの光路となるため、これらの光の透過率が高いことが望ましい。 Further, the liquid 3 is an optical path reaching the light LED chip has output to the semiconductor particles, and since the light semiconductor particles 1 has wavelength conversion is an optical path until exiting the light emitting device outside, the transmittance of light is high It is desirable また、LEDチップが出力した光やおよび半導体粒子1が波長変換した光、あるいはLEDチップが発生した熱により変質しないことが望ましい。 It is also desirable to light or and semiconductor particles 1 LED chip is output is not deteriorated by heat light or LED chips has occurred and wavelength conversion. また、この液体3は、何も単一の成分からなる必要は無く、複数の成分からなるものでもよい。 Further, the liquid 3, nothing need not composed of a single component, may consist of multiple components.

また、水や空気などの雰囲気に対する遮断能力が高い器7を用いることも、長期的な波長変換効率の低下を抑制する効果がある。 Moreover, the use of the interruption capability is high bowl 7 against the atmosphere, such as water or air is also an effect of suppressing the lowering of long-term wavelength conversion efficiency. そのため、例えば器7としてガラスを用いたり、ポリテトラフルオロエチレン、ポリエチレンなどの樹脂を用いてもよい。 Therefore, for example, by the use of glass as the vessel 7, polytetrafluoroethylene, it may be used resins such as polyethylene. なお、器7は、波長変換液5を溜めるおけ状の下側の器7aと、蓋状の上側の器7bとで材質を換えてもよいことはいうまでもない。 Incidentally, vessel 7, and the lower vessel 7a put shaped accumulating wavelength conversion solution 5, may of course be replaced with a material with a lid-shaped upper vessel 7b. また、器7はLEDチップが出力する光、あるいは波長変換器9が波長変換した光の光路となるため、これらの光の透過率が高いことが望ましい。 Furthermore, vessel 7 since light LED chip is output or wavelength converter 9, is an optical path of the light wavelength conversion, it is desirable that the transmittance of these light is high.

透明な器7の材質としてはシリコーン樹脂、ポリエチレン樹脂、アクリル樹脂(メタクリル酸などのエステルを含む)、エポキシ樹脂、ポリスチレン樹脂などを用いることができる。 Transparent vessel 7 Material As the silicone resins, polyethylene resins, (including esters such as methacrylic acid) acrylic resins, epoxy resins, etc. can be used polystyrene resin. この容器はLEDチップが出力する光、あるいは波長変換器が波長変換した光の光路となるため、これらの光の透過率が高いことが望ましい。 The container for light LED chip is output or wavelength converter, it becomes the light path of the light wavelength conversion, it is desirable that the transmittance of these light is high.

本発明の波長変換器9ならびに発光装置15に用いられる半導体粒子1としては、発光素子11からの光を波長変換する能力を有することが必要で、例えばCdSeなどが例示される。 As the semiconductor particles 1 used in the wavelength converter 9 and the light emitting device 15 of the present invention, the light from the light emitting element 11 needs to have the ability to wavelength conversion, for example, CdSe and the like are exemplified. また、波長変換液5には、必要に応じて所謂数μmサイズの蛍光体を含有させてもよい。 Further, the wavelength conversion solution 5 may contain a phosphor so-called number μm size as needed.

半導体粒子1は光源である発光素子11より発せられた光を吸収し、この光の波長を変えて放出する機能を持つものであり、CdSeなどの組成からなる粒径0.5〜10nmのナノサイズの蛍光体である。 Semiconductor particles 1 absorbs light emitted from the light emitting element 11 is a light source, which has the function of emitting by changing the wavelength of the light, the nano-particle size 0.5~10nm having a composition such as CdSe a phosphor of size. ここで半導体粒子1の組成は何もCdSeに限定されるものではない。 Wherein the composition of the semiconductor particles 1 is not nothing is limited to CdSe.

他の半導体粒子1としては、周期表第14族元素と周期表第16族元素との化合物、周期表第13族元素と周期表第15族元素との化合物、周期表第13族元素と周期表第16族元素との化合物、周期表第13族元素と周期表第17族元素との化合物、周期表第12族元素と周期表第16族元素との化合物、周期表第15族元素と周期表第16族元素との化合物、周期表第11族元素と周期表第16族元素との化合物、周期表第11族元素と周期表第17族元素との化合物、周期表第10族元素と周期表第16族元素との化合物、周期表第9族元素との周期表第16族元素との化合物、 Other semiconductor particles 1, the compounds of the periodic table group 14 element and Periodic Table Group 16 element, a compound of periodic table group 13 elements and Periodic Table Group 15 element of the periodic table Group 13 element and period Table compound of group 16 element, a compound of periodic table group 13 elements and the periodic table halogen, the periodic Table compounds of a group 12 element and periodic Table group 16 element, a periodic table group 15 element the compounds of the periodic table group 16 element, a compound of periodic table group 11 element and periodic table group 16 element of the periodic table compounds of a group 11 element and periodic table group 17 element of the periodic table group 10 element the compounds of the periodic table group 16 element and a compound of a periodic table group 16 element of the periodic table group 9 element,
周期表第8族元素と周期表第16族元素との化合物、周期表第7族元素と周期表第16族元素との化合物、周期表第6族元素と周期表第16族元素との化合物、周期表第5族元素と周期表第16族元素との化合物、周期表第4族元素との周期表第16族元素との化合物、 Periodic table compounds of the group VIII element and the Periodic Table Group 16 element of the Periodic Table compounds of a group 7 element and Periodic Table Group 16 element of the Periodic Table compounds of a group 6 element and Periodic Table Group 16 element , compounds of the periodic table group 5 element and the periodic table group 16 element, a compound of periodic table group 16 element of the periodic table group 4 element,
周期表第2族元素と周期表第16族元素との化合物、カルコゲンスピネル類等が挙げられる。 Periodic table The compounds of the second group elements and Periodic Table Group 16 element, chalcogen spinels and the like.

具体的には、周期表第14族元素と周期表第16族元素との化合物として酸化錫(IV)(SnO )、硫化錫(II,IV)(Sn(II)Sn(IV)S )、硫化錫(IV)(SnS )、硫化錫(II)(SnS)、セレン化錫(II)(SnSe)、テルル化錫(II)(SnTe)、硫化鉛(PbS)、セレン化鉛(PbSe)、テルル化鉛(PbTe)等、周期表第13族元素と周期表第15族元素との化合物として、窒化ホウ素(BN)、リン化ホウ素(BP)、砒化ホウ素(BAs)、窒化アルミニウム(AlN)、リン化アルミニウム(AlP)、砒化アルミニウム(AlAs)、アンチモン化アルミニウム(AlSb)、窒化ガリウム(GaN)、リン化ガリウム(GaP)、砒化ガリウム(GaAs)、アンチ Specifically, as the tin oxide compound with a periodic table group 14 element and Periodic Table Group 16 element (IV) (SnO 2), tin sulfide (II, IV) (Sn ( II) Sn (IV) S 3 ), tin sulfide (IV) (SnS 2), tin sulfide (II) (SnS), selenium tin (II) (SnSe), tellurium tin (II) (SnTe), lead sulfide (PbS), lead selenide (PbSe), and the like lead telluride (PbTe), as compounds of the periodic table group 13 element and periodic table group 15 element, boron nitride (BN), boron phosphide (BP), arsenide boron (BAs), nitride aluminum (AlN), aluminum phosphide (AlP), aluminum arsenide (AlAs), aluminum antimonide (AlSb), gallium nitride (GaN), gallium phosphide (GaP), gallium arsenide (GaAs), anti ン化ガリウム(GaSb)、窒化インジウム(InN)、リン化インジウム(InP)、砒化インジウム(InAs)、アンチモン化インジウム(InSb)等、周期表第13族元素と周期表第16族元素との化合物として、硫化アルミニウム(Al )、セレン化アルミニウム(Al Se )、硫化ガリウム(Ga )、セレン化ガリウム(Ge Se )、テルル化ガリウム(Ga Te )、酸化インジウム(In )、硫化インジウム(In )、セレン化インジウム(In Se )、テルル化インジウム(In Te )等、 Emissions gallium (GaSb), there are indium nitride (InN), indium phosphide (InP), indium arsenide (InAs), indium antimonide (InSb), etc., periodic table compounds of Group 13 elements and the periodic table Group 16 element as, aluminum sulfide (Al 2 S 3), aluminum selenide (Al 2 Se 3), gallium sulfide (Ga 2 S 3), gallium selenide (Ge 2 Se 3), telluride gallium (Ga 2 Te 3), indium oxide (In 2 O 3), indium sulfide (In 2 S 3), indium selenide (In 2 Se 3), telluride, indium (In 2 Te 3) or the like,
周期表第13族元素と周期表第17族元素との化合物として、塩化タリウム(I)(TlCl)、臭化タリウム(I)(TlBr)、ヨウ化タリウム(I)(TlI)等、周期表第12族元素と周期表第16族元素との化合物として、酸化亜鉛(ZnO)、硫化亜鉛(ZnS)、セレン化亜鉛(ZnSe)、テルル化亜鉛(ZnTe)、酸化カドミウム(CdO)、硫化カドミウム(CdS)、セレン化カドミウム(CdSe)、テルル化カドミウム(CdTe)、硫化水銀(HgS)、セレン化水銀(HgSe)、テルル化水銀(HgTe)等、周期表第15族元素と周期表第16族元素との化合物として、硫化アンチモン(III)(Sb )、セレン化アンチモン(III)(Sb Se )、テルル化アンチモン(III As compounds of the periodic table group 13 elements and the periodic table halogen, thallium chloride (I) (TlCl), thallium bromide (I) (TlBr), etc. thallium iodide (I) (TlI), the periodic table as the compounds of the group 12 element and periodic table group 16 element, zinc oxide (ZnO), zinc sulfide (ZnS), zinc selenide (ZnSe), zinc telluride (ZnTe), cadmium oxide (CdO), cadmium sulfide (CdS), cadmium selenide (CdSe), cadmium telluride (CdTe), mercury sulfide (HgS), mercury selenide (HgSe), mercury telluride (HgTe), etc., periodic table group 15 element and the periodic table 16 as the compounds of the group elements, antimony sulfide (III) (Sb 2 S 3 ), selenium antimony (III) (Sb 2 Se 3 ), antimony telluride (III (Sb Te )、硫化ビスマス(III)(Bi )、セレン化ビスマス(III)(Bi Se )テルル化ビスマス(III)(Bi Te )等、周期表第11族元素と周期表第16族元素との化合物として、酸化銅(I)(Cu O)等、周期表第11族元素と周期表第17族元素との化合物として、塩化銅(I)(CuCl)、臭化銅(I)(CuBr)、ヨウ化銅(I)(CuI)、ヨウ化銀(AgI)、塩化銀(AgCl)、臭化銀(AgBr)等、周期表第10族元素と周期表第16族元素との化合物として、酸化ニッケル(II)(NiO)等、周期表第9族元素との周期表第16族元素との化合物として、酸化コバルト(II)(CoO)、硫化コバルト(II)(CoS)等、周期表第8族元素と (Sb 2 Te 3), bismuth sulfide (III) (Bi 2 S 3 ), bismuth selenide (III) (Bi 2 Se 3 ) and the like bismuth telluride (III) (Bi 2 Te 3 ), periodic table group 11 as compounds of elements and periodic table group 16 element, such as copper oxide (I) (Cu 2 O) , as a compound of a periodic table group 11 element and periodic table group 17 element, copper chloride (I) (CuCl ), copper bromide (I) (CuBr), copper iodide (I) (CuI), silver iodide (AgI), silver chloride (AgCl), silver bromide (AgBr) or the like, a periodic table group 10 element as compounds of the periodic table group 16 element, such as nickel oxide (II) (NiO), a compound of the periodic table group 16 element of the periodic table group 9 element, cobalt oxide (II) (CoO), sulfide cobalt (II) (CoS) or the like, a periodic table group 8 element 周期表第16族元素との化合物として、四酸化三鉄(Fe )、硫化鉄(II)(FeS)等、周期表第7族元素と周期表第16族元素との化合物として、酸化マンガン(II)(MnO)等、周期表第6族元素と周期表第16族元素との化合物として、硫化モリブデン(IV)(MoS )、酸化タングステン(IV)(WO )等、周期表第5族元素と周期表第16族元素との化合物として、酸化バナジウム(II)(VO)、酸化バナジウム(II)(VO )、酸化タンタル(V)(Ta )等、周期表第4族元素との周期表第16族元素との化合物として、酸化チタン(TiO 、Ti 、Ti 、Ti 等)等、周期表第2族元素と周期表第16族元素との化合物として、硫化マグネシ As compounds of the periodic table Group 16 element, triiron tetraoxide (Fe 3 O 4), such as iron sulfide (II) (FeS), as compounds of the periodic table group 7 element and Periodic Table Group 16 element, like manganese oxide (II) (MnO), as compounds of the periodic table group 6 element and periodic table group 16 element, molybdenum sulfide (IV) (MoS 2), tungsten oxide (IV) (WO 2) or the like, the period as Table group 5 element and a periodic table group 16 compounds with elements, vanadium oxide (II) (VO), vanadium oxide (II) (VO 2), tantalum oxide (V) (Ta 2 O 5 ) or the like, the period as Table compound of periodic table group 16 element of the fourth group element, such as titanium oxide (TiO 2, Ti 2 O 5 , Ti 2 O 3, Ti 5 O 9 , etc.), the group 2 element of the periodic Table and period Table as a compound of group 16 element, sulfide magnesium ム(MgS)、セレン化マグネシウム(MgSe)等、カルコゲンスピネル類として、酸化カドミウム(II)クロム(III)(CdCr )、セレン化カドミウム(II)クロム(III)(CdCr Se )、硫化銅(II)クロム(III)(CuCr )、セレン化水銀(II)クロム(III)(HgCr Se )等が挙げられる。 Beam (MgS), magnesium selenide (MgSe), etc., as chalcogen spinels, cadmium oxide (II) chromium (III) (CdCr 2 O 4 ), cadmium selenide (II) chromium (III) (CdCr 2 Se 4 ) , copper sulfide (II) chromium (III) (CuCr 2 S 4 ), such as mercury selenide (II) chromium (III) (HgCr 2 Se 4 ) can be mentioned.

上述した中でも特に、AgI等の第11−17族化合物半導体、CdSe、CdS、ZnS、ZnSe等の第12−16族化合物半導体、InAs、InP等の第13−15族化合物半導体を主体とする化合物半導体のいずれかが望ましい。 Among the above, the 11-17 group compound such as AgI semiconductor, CdSe, CdS, ZnS, 12-16 compound such as ZnSe semiconductor, InAs, compounds mainly the 13-15 group compound semiconductor such as InP any of the semiconductor is desirable. なお、本発明で使用する周期表は、IUPAC無機化学命名法1990年規則に従うものとする。 The period table to be used in the present invention is subject to the IUPAC Nomenclature of Inorganic Chemistry 1990 rules.

この半導体粒子1の表面には、表面の欠陥を電気的に補修する目的で、アミノ基、メルカプト基、カルボキシル基などの官能基をもつ有機化合物などを結合させることができる。 On the surface of the semiconductor particles 1, the surface defects in electrically repair purposes, an amino group, a mercapto group, can be bonded to an organic compound having a functional group such as a carboxyl group.

この場合、アミノ基、メルカプト基、カルボキシル基などの官能基をもつ有機化合物には半導体粒子表面に存在する欠陥を補修する効果があるため、半導体粒子1の波長変換効率を高めることができる。 In this case, since the amino group, a mercapto group, the organic compound having a functional group such as a carboxyl group has the effect of repairing the defects present in the semiconductor particle surfaces, it is possible to increase the wavelength conversion efficiency of the semiconductor particles 1.

以下に本発明の波長変換器9の製造方法について説明する。 A method for manufacturing a wavelength converter 9 of the present invention are described below.

本発明の波長変換器9の製造方法においては、実質的に水のない環境で半導体粒子1を作製することが重要であり、また、半導体粒子1が水に接触することを避けて波長変換器を作製することが重要である。 In the method of manufacturing a wavelength converter 9 of the present invention, it is important to produce semiconductor particles 1 in a substantially water free environment, also, the wavelength converter avoids semiconductor particles 1 is in contact with the water it is important to be prepared. このような波長変換器9は例えば、以下のようにして作製することができる。 Such wavelength converters 9, for example, can be produced as follows.

以下、セレン化カドミウムを例にして説明する。 It will be described below with cadmium selenide as an example. 波長変換器9を作製する方法としては、後述する第1の液体と、トリオクチルフォスフィンおよび酢酸カドミウムを混合して200〜300℃に加熱し、これにトリオクチルフォスフィンとセレンの混合物を加え、さらに同じ温度で加熱することにより平均粒径0.5〜10nmのセレン化カドミウム粒子を合成する。 As a method of manufacturing a wavelength converter 9 has a first liquid to be described later, a mixture of trioctyl phosphine and cadmium acetate were heated to 200 to 300 [° C., this mixture of trioctylphosphine selenide added further synthesized cadmium selenide particles having an average particle diameter 0.5~10nm by heating at the same temperature. このとき、第1の液体としては脱水したドデシルアミン、オレイルアミン等を用いることができる。 At this time, the first liquid can be used dehydrated dodecylamine, oleylamine and the like. なお、ドデシルアミン、オレイルアミンは減圧下で加熱し、予め水分を十分除去しておくことが望ましい。 Incidentally, dodecylamine, oleylamine was heated under reduced pressure, it is desirable to advance the moisture sufficiently removed.

このようにして得られたセレン化カドミウム粒子に必要に応じて例えばエタノールなどの貧溶媒を加えて遠心分離機にかけ、セレン化カドミウム粒子を沈殿させて精製する(デカンテーション)。 Thus centrifuged by adding a poor solvent such as ethanol optionally in the resulting cadmium selenide particles, purified by precipitating cadmium selenide particles (decantation). このとき用いるエタノールは五酸化りんなどにより十分脱水したものを用いることが望ましい。 Ethanol used in this case it is desirable to use those sufficiently dehydrated due phosphorus pentoxide.

セレン化カドミウム粒子をデカンテーションにより精製した場合には再びセレン化カドミウム粒子をドデシルアミン、オレイルアミンなどの第2の液体に分散する。 Dodecylamine cadmium selenide particles again when cadmium selenide particles were purified by decantation, dispersed in Oreiruami emissions of which the second liquid. このときの第2の液体はセレン化カドミウム粒子を合成したときに使用したときの液体(第1の液体)と同じであっても、また別のものであってもなんら差し支えない。 Even when the second liquid at this time is the same as the liquid (first liquid) when used when synthesizing the cadmium selenide particles, also no problem even another. このとき、ドデシルアミン、オレイルアミンは減圧下で加熱し、水分を0.1質量%以下にまで除去しておく At this time, dodecylamine, Oreiruami emissions was heated under reduced pressure in advance to remove moisture to less than 0.1 wt%.

このようにして得られ、液体3とこの液体に分散した半導体粒子1であるセレン化カドミウム粒子とを波長変換液5としてガラスもしくは、ポリテトラフルオロエチレン、ポリエチレンなどの樹脂からなるおけ状の下側の器7aに注入し、これをガラスもしくは、ポリテトラフルオロエチレン、ポリエチレンなどの樹脂からなる蓋状の上側の器7bで封入して波長変換器9とする。 Thus obtained, glass or polytetrafluoroethylene, lower put like made of a resin such as polyethylene and cadmium selenide particles are semiconductor particles 1 dispersed liquid 3 in the liquid as the wavelength conversion solution 5 of injected into vessel 7a, which or glass, polytetrafluoroethylene, and sealed with a lid-shaped upper vessel 7b made of resin such as polyethylene and wavelength converter 9. 封入は熱圧着の方法を用いることができるほか、接着剤を用いることも可能である。 Sealed except that it is possible to use a method of thermocompression bonding, it is also possible to use an adhesive.

以上、本発明の波長変換器9の製造方法の一例について説明したが、半導体粒子1の製造工程において、水が実質的にない環境を整えることが非常に重要である。 Having described an example of a method of manufacturing wavelength converters 9 of the present invention, in the process of manufacturing semiconductor particles 1, the water that is arrange substantially free environment is very important. 水が存在する環境で作製した半導体粒子は、はじめから波長変換効率が著しく低く、生体マーカーとしては機能しうるものの照明用途には全く適さないものとなる。 Semiconductor particles prepared in an environment where water is present, significantly lower wavelength conversion efficiency from the beginning, and those completely unsuitable for lighting applications as it can function as a biomarker.

まず、CdSe半導体粒子ならびにZnS粒子を水が混入しない方法を用いて合成した。 First, a CdSe semiconductor particles and ZnS particles were synthesized using the methods water is not mixed.

CdSe半導体粒子の合成は次のように行なった。 Synthesis of CdSe semiconductor particles was carried out as follows. 五酸化りんで乾燥させた窒素雰囲気のグローブボックス中でフラスコにトリオクチルフォスフィン12.5gとセレン0.395gを加え、これを1時間攪拌した。 Five trioctyl phosphine 12.5g selenium 0.395g added to the flask in a glove box with a nitrogen atmosphere and dried under oxidizing forest, which was stirred for 1 hour. 次に、これにトリオクチルフォスフィン20g、酢酸カドミウム0.266g、ドデシルアミン(第1の液体)20mlを予め130℃で混合したものを加えた。 Then, to this was added trioctylphosphine 20g, cadmium acetate 0.266 g, a mixture with previously 130 ° C. dodecylamine (first liquid) 20 ml. これを200℃に加熱し、撹拌しながらそのまま200℃に維持して10分間攪拌してCdSe半導体粒子を合成した。 This was heated to 200 ° C., was synthesized CdSe semiconductor particles and the mixture was stirred for 10 min and maintained as it 200 ° C. with stirring.

また、ZnS粒子の合成は次のように行なった。 Further, synthesis of ZnS particles was carried out as follows. 五酸化りんで乾燥させた窒素雰囲気のグローブボックス中でフラスコにトリオクチルフォスフィン12.5gと硫黄0.16gを加え、これを1時間攪拌した。 Five trioctyl phosphine 12.5g of sulfur 0.16g was added to the flask in a glove box with a nitrogen atmosphere and dried under oxidizing forest, which was stirred for 1 hour. 次に、これにトリオクチルフォスフィン20g、酢酸亜鉛0.212g、ドデシルアミン(第1の液体)20mlを予め130℃で混合したものを加えた。 Then, to this was added trioctylphosphine 20g, zinc acetate 0.212 g, a mixture with previously 130 ° C. dodecylamine (first liquid) 20 ml. これを200℃に加熱し、撹拌しながらそのまま200℃に維持して10分間攪拌してCdSe半導体粒子を合成した。 This was heated to 200 ° C., was synthesized CdSe semiconductor particles and the mixture was stirred for 10 min and maintained as it 200 ° C. with stirring.

なお、溶媒として用いたドデシルアミン(第1の液体)は、予め酸化カルシウムを加えて2時間還留した後に蒸留して水を除去したものを用いた。 Incidentally, dodecylamine was used as the solvent (first liquid) was used after removal of water by distillation after 2 hours refluxing added beforehand calcium oxide. また、比較例として含水溶媒系でZnS半導体粒子を合成した。 Also synthesized are the ZnS semiconductor particles in aqueous solvent system as a comparative example. ヘプタン15mlにビス(2−エチルヘキシル)スルホこはく酸ナトリウム1.6gを溶解し、これに水0.518gを添加した。 Heptane 15ml to dissolve the bis (2-ethylhexyl) sodium sulfosuccinate 1.6g, water was added 0.518g thereto. これに硫化ナトリウム1.17gを加えた。 It was added sodium sulfide 1.17g thereto. また、これとは別にヘプタン15mlにビス(2−エチルヘキシル)スルホこはく酸ナトリウム1.6gを溶解し、これに水0.518gを添加した。 Also, at the dissolves separately heptane 15ml bis (2-ethylhexyl) sodium sulfosuccinate 1.6g, water was added 0.518g thereto. これに酢酸亜鉛を5.5g溶解した。 Zinc acetate was dissolved 5.5g thereto. つぎにこれら2つの溶液を混合して24時間攪拌してZnS半導体粒子を合成した。 Was then synthesized ZnS semiconductor particles were stirred for 24 hours in a mixture of these two solutions.

これらの方法で作製したCdSe並びにZnS半導体粒子の粒径は次のようにして確認している。 The particle size of the CdSe and ZnS semiconductor particles produced by these methods has been confirmed in the following manner. 粒子濃度が0.002〜0.02モル/リットルの範囲の半導体粒子分散液を調整する。 Particle concentration to adjust the semiconductor particle dispersion in the range of 0.002 to 0.02 mol / liter. 溶媒はIPAやトルエンを用いる。 The solvent used IPA and toluene.

なお、半導体粒子の粒径は、合成温度や合成時間によって制御することができ、合成温度を高くする、あるいは合成時間を長くすることで半導体粒子の粒径を大きくすることができる。 The particle size of the semiconductor particles can be controlled by the synthesis temperature and the synthesis time, increasing the synthesis temperature, or it is possible to increase the diameter of the semiconductor particles by long synthesis time.

次に、TEM観察用マイクログリッドをこの粒子分散液に浸して半導体粒子を付着させ、常温でデシケーター中に静置して半導体粒子分散液を乾燥させ、半導体粒子が表面に付着したTEM観察用マイクログリッドを作成して測定に供する。 Then, by adhering the semiconductor particles by soaking the microgrid for TEM observation in this particle dispersion was allowed to stand in a desiccator at room temperature to dry the semiconductor particle dispersion, TEM observation micro the semiconductor particles adhere to the surface subjected to measurement to create a grid.

この半導体粒子の粒径をJEOL製透過型電子顕微鏡(TEM)JEM2010Fにより、加速電圧200kVで観察した。 The particle diameter of semiconductor particles manufactured by JEOL transmission electron microscope (TEM) JEM2010F, were observed at an acceleration voltage 200 kV.

倍率は500000倍から1000000倍で、粒子の格子縞が見えるように焦点を合わせ、得られたTEM像の拡大写真上で200個以上の粒子を試料として、粒径を測定した。 Magnification is 1000000 times 500,000 times, focused as seen plaid particles, as a sample 200 or more particles on enlarged photograph of the obtained TEM image, the particle size was determined. 粒子径が大きくて粒子全体が視野に入らない場合は、格子縞が見える高倍率で1次粒子であることを確認した後、粒子全体が視野に入る倍率でTEM像を観察し、粒径を測定した。 If not enter the field of view across particles larger particle size, after confirming that the primary particles at high magnification lattice stripes appear to observe a TEM image at a magnification of the entire particles entering the field of view, the particle size measured did.

この際、半導体粒子は格子縞が見えている部分のみを対象としており、粒子表面に吸着している有機配位子などの有機物は粒径に換算されてはいない。 At this time, the semiconductor particles is intended for only the portion lattice fringes are visible, organic substance such as an organic ligand which is adsorbed to the particle surface is not been converted to particle size.

また、半導体粒子に比べて十分に大きいサブミクロン以上の粒子は、樹脂の破断面を走査型電子顕微鏡で観察することで、200個以上の粒子について粒径を測定した。 Also, sufficiently large submicron more particles than that of the semiconductor particles, by observing the fracture surface of the resin with a scanning electron microscope to measure the particle size for 200 or more particles. この際、粒子の直径は、破断面表面に露出している部分の直径に対し、係数1.5を掛けて粒子全体の直径として扱った(インターセプト法、「セラミックスのキャラクタリゼーション技術」pp.7〜8、社団法人窯業協会編)。 In this case, the diameter of the particles, relative to the diameter of the portion exposed on the fracture surface surface, served as the entire particle diameter multiplied by a factor 1.5 (intercept method, "ceramic characterization techniques" pp.7 8, Japan ceramic Association of Japan).

測定した粒子の直径は、ヒストグラムを書いて統計的に計算することで、長さ平均径を算出した。 The diameter of the measured particles by statistically calculating write a histogram was calculated length average diameter. 長さ平均径の算出方法は、粒子径区に属する個数をカウントし、粒子径区の中心値と個数のそれぞれの積の和を、測定した粒子の個数の総数で割るという方法を用いた(平均粒子径の形状とその計算式、「セラミックの製造プロセス」pp.11〜12、窯業協会編集委員会講座小委員会編)。 The method of calculating the length mean diameter counts the number belonging to the particle size range, the sum of the product of the central value and the number of particles size range, using a method of dividing the total number of the number of particles measured ( shape and its calculation formula of average particle diameter, "ceramic manufacturing process" pp.11~12, ceramic Association Editorial Board course subcommittee ed.). このようにして計算した長さ平均径を平均粒子径として扱った。 Thus the average length of diameters were calculated treated as average particle diameter.

なお、TEM観察で得られた像を透明な樹脂フィルムシートに写し取り、画像解析処理装置によって、粒子の平均粒子径を求める方法でも測定は可能であることを確認した。 Incidentally, Utsushitori images obtained by TEM observation in a transparent resin film sheet, the image analysis processing apparatus, it was confirmed that the measurement be a method of determining the average particle diameter of the particles is possible.

先の水が混入しない方法を用いて合成したCdSe並びにZnS半導体粒子および含水系溶媒中で合成したZnS半導体粒子の平均粒径をこの方法で測定したところ、その平均粒径はいずれも3.5nmであった。 Measurement of the average particle size of the previous water was synthesized using a method not mixed CdSe and ZnS semiconductor particles and synthesized ZnS semiconductor particles with aqueous-based solvent in this way, both the average particle diameter 3.5nm Met.

以下、水が混入しない方法を用いて合成したCdSeならびにZnS半導体粒子を分散させた波長変換器の製造方法をCdSe半導体粒子を例にとり説明する。 Hereinafter, a manufacturing method of the synthesized CdSe and the wavelength converter are dispersed ZnS semiconductor particles will be described taking a CdSe semiconductor particles in Examples using the method of water is not mixed. 合成したCdSe半導体粒子の精製を行った。 Purification of synthesized CdSe semiconductor particles was carried out. CdSeを合成した反応液にモレキュラーシーブ3Aで脱水したエタノールをCdSe半導体粒子が凝集体を形成するまで加え、続いてこれを遠心分離機にかけてCdSe半導体粒子を完全に沈殿させたのち上澄みのエタノール溶液を取り除くことにより、CdSe半導体粒子から原料未反応物や副生成物を除去した。 Adding ethanol which had been dehydrated by a molecular sieve 3A in the reaction solution to synthesize a CdSe until CdSe semiconductor particles to form aggregates, subsequently the supernatant ethanol solution after it was allowed to completely precipitate the CdSe semiconductor particles centrifuged to by removing to remove the raw material unreacted materials and by-products from the CdSe semiconductor particles.

沈殿させたCdSe半導体粒子に対して、表1に示す第2の液体を加えて分散させて波長変換液を作製した。 Respect precipitated was a CdSe semiconductor particles, to produce a wavelength conversion solution is dispersed by adding a second liquid shown in Table 1. このとき加える第2の液体の量は半導体粒子の濃度が0.5質量%となる量とした。 The amount of the second liquid added at this time was the amount of density of semiconductor particles is 0.5 mass%.

なお、第2の液体には、予め、表1の含水量となるように水を加えておいた。 Note that the second liquid, previously, had been added to water so that the water content of Table 1.

この波長変換液の含水率は、JIS K 0068に規定されたカールフィッシャー滴定法(水分気化法)により求めた。 The water content of the wavelength conversion solution was determined by Karl Fischer titration method specified in JIS K 0068 (water vaporization).

また、液体の溶解度は、40℃における値を、それぞれの液体に対して体積で等量の水を加え、24時間撹拌し、その後、液体を必要に応じ遠心分離してJIS K 0068に規定されたカールフィッシャー滴定法(水分気化法)により求めた。 Further, the solubility of the liquid, the value at 40 ° C., an equal volume of water was added in a volume for each of the liquid, and stirred for 24 hours, then, is prescribed in JIS K 0068 was centrifuged if necessary liquid It was determined by Karl Fischer titration method (moisture vaporization method).

次に、厚み1mmのポリエチレン製フィルムからなる直径5mm、深さ2mmの容器に作製した波長変換液を充填した。 It was then filled with polyethylene film made of a diameter of 5 mm, a wavelength conversion solution prepared in a container depth of 2mm thickness 1 mm. これに厚み0.3mmのポリエチレン製フィルムでラミネーターを用いて蓋をした後、ラミネート部分を幅2mm残して切り取り形を整えて波長変換器とした。 After this was capped with a laminator at polyethylene film having a thickness of 0.3mm to and a wavelength converter established a cut form a laminated portion, leaving a width 2 mm.

次に、含水系溶媒中で合成したZnS半導体粒子を分散させた波長変換器の製造方法を説明する。 Next, a method for manufacturing a wavelength converter of the synthesized ZnS semiconductor particles are dispersed in water based solvent.

まず、合成したZnS半導体粒子の精製を行った。 First, it was purified synthesized ZnS semiconductor particles. ZnS半導体粒子を合成した反応液にチオフェノールをZnS半導体粒子が凝集体を形成するまで加え、続いてこれを遠心分離機にかけてZnS半導体粒子を完全に沈殿させたのち上澄み液を取り除くことにより、ZnS半導体粒子から原料未反応物や副生成物を除去した。 Added thiophenol ZnS semiconductor particles in the synthesis reaction mixture to ZnS semiconductor particles to form aggregates followed this by removing the supernatant liquid mixture was allowed to complete precipitation of ZnS semiconductor particles centrifuged, ZnS to remove starting material unreacted materials and by-products from the semiconductor particles.

沈殿させたZnS半導体粒子に対して、表1に示す第2の液体を加えて分散させて波長変換液を作製した。 Respect precipitated was a ZnS semiconductor particles, to produce a wavelength conversion solution is dispersed by adding a second liquid shown in Table 1. このとき加える第2の液体の量は半導体粒子の濃度が0.5質量%となる量とした。 The amount of the second liquid added at this time was the amount of density of semiconductor particles is 0.5 mass%. なお、第2の液体には、予め、表1の含水量となるように水を加えておいた。 Note that the second liquid, previously, had been added to water so that the water content of Table 1.

これらの波長変換器を波長395nmの光を出力するサイズ0.3×0.3mmのIn−Ga−N組成LEDチップ上に載せて波長変換効率を測定した。 It was measured wavelength conversion efficiency by placing these wavelength converters in size 0.3 × 0.3 mm of an In-Ga-N composition LED chip that outputs light of wavelength 395 nm. 測定はLabsphere社製全光束測定システムで行った。 Measurements were carried out at Labsphere Inc. total luminous flux measurement system.

まず、波長変換器を測定装置に入れずに、(1)LEDチップの出力エネルギーを求めるとともに、LEDチップの出力波長の最大値を求めた。 First, without a wavelength converter to the measuring device, (1) together with obtaining the output energy of the LED chip to determine the maximum value of the output wavelength of the LED chip. この出力波長の最大値は、430nmであった。 The maximum value of the output wavelength was 430 nm.

次に波長変換器を測定装置に入れ、LEDチップを発光させ、波長変換器に光を照射し、波長変換器から出力された220〜1100nmの範囲の光を積分球で回収して、その(2)回収エネルギーを求めた。 Then placed wavelength converter to the measuring device, the LED chip to emit light, the light is irradiated to the wavelength converter, and collect the light in the range of 220~1100nm output from the wavelength converter in the integrating sphere, the ( 2) was determined to recover energy. このエネルギーのうち、LEDチップの出力波長の最大値である430nm以下の波長のエネルギーは(3)未変換のエネルギーとして取り扱う。 Of this energy, 430 nm or less of the energy of a wavelength which is the maximum value of the output wavelength of the LED chip is treated as energy (3) unconverted. これらの(1)LEDチップの出力エネルギーと、(2)回収エネルギーと、(3)未変換のエネルギーとを、以下の式の通りに取り扱い、波長変換器の波長変換効率を求めた。 The output energy of these (1) LED chip, (2) and recovering energy, the energy of (3) unconverted were determined handled, the wavelength conversion efficiency of the wavelength converter as in the following equation.

100×((2)−(3))÷((1)−(3)) 100 × ((2) - (3)) ÷ ((1) - (3))
なお、測定して表に示した測定値はいずれも器を備えた波長変換器に関する値である。 The measurement values ​​shown in Table measured is a value related to a wavelength converter having a both vessels.

次いで、100時間後に再度、波長変換効率を測定し、初期値に対する100時間後の値の割合表1に100時間後の波長変換効率の維持率として表した。 Then, again after between 100 hours to measure the wavelength conversion efficiency, the ratio of the value after 100 hours relative to the initial value, expressed in Table 1 as maintenance of the wavelength conversion efficiency after 100 hours.

本発明の範囲外である水溶液中で合成した試料No. Samples were synthesized in the range in which the aqueous solution of the present invention No. 19では、初期の波長変換効率が格段に低く、しかも100時間後に、波長変換効率が初期の波長変換効率に対して42%以下にまで低下した。 In 19, the initial is much lower wavelength conversion efficiency, yet after 100 hours, the wavelength conversion efficiency is lowered to below 42% relative to the initial wavelength conversion efficiency.

また、本発明の範囲外である波長変換液の含水量が、0.1質量%を越える試料No. Further, the water content of the wavelength converting liquid outside the scope of the present invention, Sample No. exceeding 0.1 wt% 15、16では、100時間後に、波長変換効率が48%以下にまで低下した。 In 15 and 16, after 100 hours, the wavelength conversion efficiency is decreased to less than 48%.

一方、本発明の試料No. On the other hand, specimen of the present invention No. ,13,14および17では、いずれも100時間後波長変換効率初期に対して59%を維持している。 1, the 13, 14 and 17, both the wavelength conversion efficiency after 100 hours while maintaining 59% of the initial.

本発明の波長変換器および発光装置を説明する断面図である。 It is a cross-sectional view illustrating a wavelength converter and the light emitting device of the present invention. 本発明の他の形態の波長変換器および発光装置を説明する断面図である。 It is a cross-sectional view illustrating a wavelength converter and the light emitting device of another embodiment of the present invention.

符号の説明 DESCRIPTION OF SYMBOLS

1・・・半導体粒子3・・・液体5・・・波長変換液7・・・器9・・・波長変換器11・・発光素子13・・・発光素子用配線基板15・・・発光装置 1 ... semiconductor particles 3 ... Liquid 5 ... wavelength conversion solution 7 ... 9 ... wavelength converter 11 ... light-emitting element 13 ... light emitting element wiring board 15 ... light-emitting device

Claims (3)

  1. オレイルアミン,ドデシルアミン,2−エチルヘキサン酸,ドデカンチオールおよびオレイン酸の少なくとも1種からなる液体と該液体に取り囲まれて存在する平均粒径0.5〜10nmの半導体粒子とからなり、含水率が0.1質量%以下であって波長変換効率が40%以上の波長変換液を、少なくとも一部が透光性の器の中に封入してなることを特徴とする波長変換器。 Oleylamine, dodecylamine, 2-ethylhexanoic acid, consisting an average particle size 0.5~10nm semiconductor particles present is surrounded by the liquid and the liquid comprising at least one of dodecanethiol and oleic acid, moisture content the a 0.1 wt% or less wavelength conversion efficiency of 40% or more of the wavelength conversion solution, a wavelength converter, characterized in that at least a portion formed by sealing in a transparent vessel.
  2. 前記液体は水の溶解度が0.1質量%以下であることを特徴とする請求項1に記載の波長変換器。 Wavelength converter according to claim 1 wherein the liquid, wherein the solubility of water is less than 0.1 wt%.
  3. 発光素子と、該発光素子からの光を波長変換する請求項1 または2に記載の波長変換器とを具備することを特徴とする発光装置。 A light emitting element, the light emitting device characterized by comprising a wavelength converter according to claim 1 or 2, the wavelength conversion light from the light emitting element.
JP2006061353A 2005-11-28 2006-03-07 Wavelength converter and the light emitting device Active JP4771837B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005342876 2005-11-28
JP2005342876 2005-11-28
JP2006061353A JP4771837B2 (en) 2005-11-28 2006-03-07 Wavelength converter and the light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006061353A JP4771837B2 (en) 2005-11-28 2006-03-07 Wavelength converter and the light emitting device

Publications (2)

Publication Number Publication Date
JP2007173754A true JP2007173754A (en) 2007-07-05
JP4771837B2 true JP4771837B2 (en) 2011-09-14

Family

ID=38299871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006061353A Active JP4771837B2 (en) 2005-11-28 2006-03-07 Wavelength converter and the light emitting device

Country Status (1)

Country Link
JP (1) JP4771837B2 (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4863745B2 (en) * 2005-11-28 2012-01-25 京セラ株式会社 Phosphor particles and the wavelength converter and the light emitting device
JP4960644B2 (en) * 2006-03-28 2012-06-27 京セラ株式会社 Phosphor particles and the wavelength converter and the light emitting device
KR100990303B1 (en) 2007-11-19 2010-10-26 삼성전자주식회사 Nanocrystal Light Emitting Device
KR101458077B1 (en) 2008-05-01 2014-11-04 삼성전자 주식회사 Light Emitting Device and Preparing Method thereof
KR101593653B1 (en) * 2008-06-26 2016-02-12 서울반도체 주식회사 A light emitting module and a light emitting module manufacturing method
KR101505430B1 (en) * 2008-06-30 2015-03-31 서울반도체 주식회사 Led package
KR100982991B1 (en) 2008-09-03 2010-09-17 삼성엘이디 주식회사 Quantum dot-wavelength conversion device, preparing method of the same and light-emitting device comprising the same
KR100982992B1 (en) 2008-09-08 2010-09-17 삼성엘이디 주식회사 A light emitting device including the quantum dot wavelength conversion sheet, and a quantum dot wavelength conversion sheet
KR101018111B1 (en) * 2008-10-07 2011-02-25 삼성엘이디 주식회사 Quantum dot-matal oxide complex, preparing method of the same and light-emitting device comprising the same
WO2010077226A1 (en) * 2008-12-30 2010-07-08 Nanosys, Inc. Methods for encapsulating nanocrystals and resulting compositions
US8343575B2 (en) 2008-12-30 2013-01-01 Nanosys, Inc. Methods for encapsulating nanocrystals and resulting compositions
KR101060762B1 (en) * 2009-07-15 2011-08-31 삼성엘이디 주식회사 Method of manufacturing a light-emitting device
KR20110136676A (en) * 2010-06-14 2011-12-21 삼성엘이디 주식회사 Light emitting device package using quantum dot, illumination apparatus and dispaly apparatus
KR101156096B1 (en) 2010-07-20 2012-06-20 엘지이노텍 주식회사 Back ligtht unit for quantum dot sheet and manufacturing method thereof
EP2638321A4 (en) 2010-11-10 2014-05-07 Nanosys Inc Quantum dot films, lighting devices, and lighting methods
KR101210066B1 (en) 2011-01-31 2012-12-07 엘지이노텍 주식회사 Light deflecting member and a display device including the same
KR101644051B1 (en) * 2011-05-20 2016-08-01 삼성전자 주식회사 Optoelectronic device and laminated structure
KR101305696B1 (en) 2011-07-14 2013-09-09 엘지이노텍 주식회사 Display device and optical member
KR20130009020A (en) 2011-07-14 2013-01-23 엘지이노텍 주식회사 Optical member, display device having the same and method of fabricating the same
KR101893494B1 (en) 2011-07-18 2018-08-30 엘지이노텍 주식회사 Optical member and display device having the same
KR101241549B1 (en) 2011-07-18 2013-03-11 엘지이노텍 주식회사 Optical member, display device having the same and method of fabricating the same
KR101262520B1 (en) 2011-07-18 2013-05-08 엘지이노텍 주식회사 An optical member and a display device including the same
KR101294415B1 (en) 2011-07-20 2013-08-08 엘지이노텍 주식회사 Optical member and display device having the same
KR101644050B1 (en) 2011-09-09 2016-08-01 삼성전자 주식회사 Case including semiconductor nanocrystal and optoelectronic device including the same
JP2015516691A (en) * 2012-05-14 2015-06-11 コーニンクレッカ フィリップス エヌ ヴェ Light-emitting device having a nanostructure phosphor
KR101364170B1 (en) * 2012-06-05 2014-02-20 포항공과대학교 산학협력단 White light emitting diode
EP3068845A2 (en) * 2013-11-13 2016-09-21 Nanoco Technologies Ltd Led cap containing quantum dot phosphors
CN103681990B (en) 2013-12-11 2017-09-01 深圳市华星光电技术有限公司 Package and method of making Led
US9708532B2 (en) * 2014-03-28 2017-07-18 Nanoco Technologies Ltd. Quantum dot compositions
JP2015226002A (en) * 2014-05-29 2015-12-14 日亜化学工業株式会社 The light-emitting device
JP2016076634A (en) * 2014-10-08 2016-05-12 エルジー ディスプレイ カンパニー リミテッド Led package, backlight unit, and liquid crystal display device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4071724B2 (en) * 2004-02-09 2008-04-02 株式会社東芝 Led lighting device
JP4543712B2 (en) * 2004-03-17 2010-09-15 日亜化学工業株式会社 Method for manufacturing a light emitting device

Also Published As

Publication number Publication date Type
JP2007173754A (en) 2007-07-05 application

Similar Documents

Publication Publication Date Title
Nag et al. White light from Mn2+-doped CdS nanocrystals: A new approach
Protesescu et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut
US8057706B1 (en) Moisture-resistant phosphor and associated method
Steckel et al. Blue luminescence from (CdS) ZnS core–shell nanocrystals
US20100123155A1 (en) Semiconductor nanoparticle-based light-emitting devices and associated materials and methods
US20070012928A1 (en) Light emitting diode comprising semiconductor nanocrystal complexes and powdered phosphors
Althues et al. Synthesis and characterization of transparent luminescent ZnS: Mn/PMMA nanocomposites
Sun et al. Efficient and Stable White LEDs with Silica‐Coated Inorganic Perovskite Quantum Dots
US20080230750A1 (en) Powdered quantum dots
US7374807B2 (en) Nanocrystal doped matrixes
US20140022779A1 (en) White light emitting device
US20070246734A1 (en) Multilayered white light emitting diode using quantum dots and method of fabricating the same
Li et al. Non-heavy-metal ZnS quantum dots with bright blue photoluminescence by a one-step aqueous synthesis
US8283412B2 (en) Functionalized matrices for dispersion of nanostructures
US20100140551A1 (en) Nanocrystal doped matrixes
Kim et al. Photoenhancement of a quantum dot nanocomposite via UV annealing and its application to white LEDs
WO2014068440A1 (en) Led-based device with wide color gamut
US20120175588A1 (en) Semiconductor nanocrystals used with led sources
Song et al. Photoluminescent (CdSe) ZnS quantum dot–polymethylmethacrylate polymer composite thin films in the visible spectral range
JP2007116139A (en) Member for semiconductor light-emitting device, method of manufacturing the same, and semiconductor light-emitting device using the same
JP2005277441A (en) Method of manufacturing semiconductor light emitting device
WO2003001612A1 (en) Semiconductor device and its fabriction method
WO2006093135A1 (en) Fluorescent substance and process for producing the same, and luminescent element using the same
Jun et al. Bright and stable alloy core/multishell quantum dots
Chuang et al. Emission-tunable CuInS2/ZnS quantum dots: structure, optical properties, and application in white light-emitting diodes with high color rendering index

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110621

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150