JP4771837B2 - Wavelength converter and light emitting device - Google Patents

Wavelength converter and light emitting device Download PDF

Info

Publication number
JP4771837B2
JP4771837B2 JP2006061353A JP2006061353A JP4771837B2 JP 4771837 B2 JP4771837 B2 JP 4771837B2 JP 2006061353 A JP2006061353 A JP 2006061353A JP 2006061353 A JP2006061353 A JP 2006061353A JP 4771837 B2 JP4771837 B2 JP 4771837B2
Authority
JP
Japan
Prior art keywords
semiconductor particles
liquid
wavelength conversion
wavelength
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006061353A
Other languages
Japanese (ja)
Other versions
JP2007173754A (en
Inventor
俊昭 重岡
修吾 鬼塚
政信 石田
正人 福留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2006061353A priority Critical patent/JP4771837B2/en
Publication of JP2007173754A publication Critical patent/JP2007173754A/en
Application granted granted Critical
Publication of JP4771837B2 publication Critical patent/JP4771837B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wavelength converter and a light emitting device by which degrading of a wavelength conversion efficiency of light is controlled by using nano-size semiconductor particles, and to provide a manufacturing method of the wavelength converter. <P>SOLUTION: A wavelength conversion liquid which is composed of a liquid 3 and the semiconductor particles of 0.5 to 10nm mean particle diameters existing surrounded by the liquid 3 and which has a water content of &le;o.1 mass% and the wavelength conversion efficiency of &ge;40 mass% is enclosed in a container which is at least partially transparent. Thus, the wavelength converter 9 which has the high wavelength conversion efficiency and a small change with time is provided. <P>COPYRIGHT: (C)2007,JPO&amp;INPIT

Description

本発明は、例えば、電子ディスプレイ用のバックライト電源、蛍光ランプ等の発光装置に好適に用いられる波長変換器に関し、より詳しくは、発光素子から発せられる光を波長変換して外部に取り出すために用いられる波長変換器およびこれを用いた発光装置に関するものである。   The present invention relates to a wavelength converter suitable for use in a light-emitting device such as a backlight power source for an electronic display and a fluorescent lamp, and more specifically, to convert the light emitted from a light-emitting element to the outside by converting the wavelength. The present invention relates to a wavelength converter used and a light emitting device using the same.

半導体材料からなる発光素子(以後、LEDチップと言うこともある)は、小型で電力効率が良く鮮やかな色の発光を生ずる。LEDチップは、製品寿命が長い、オン・オフ点灯の繰り返しに強い、消費電力が低い、という優れた特徴を有するため、液晶などのバックライト光源や蛍光ランプ等の照明用光源への応用が期待されている。   A light emitting element made of a semiconductor material (hereinafter sometimes referred to as an LED chip) emits light of a bright color with a small size and high power efficiency. LED chips have excellent features such as long product life, strong on / off lighting repeatability, and low power consumption, so they are expected to be applied to backlight sources such as liquid crystals and lighting sources such as fluorescent lamps. Has been.

近年では、紫外発光素子(発光波長400nm以下)上に3種類の蛍光体を含有する波長変換部を形成することにより幅広い範囲で発光波長をカバーし、演色性を向上した白色の発光装置を得る試みがなされている。   In recent years, by forming a wavelength conversion unit containing three types of phosphors on an ultraviolet light emitting element (emission wavelength of 400 nm or less), a white light emitting device that covers a wide range of emission wavelengths and has improved color rendering is obtained. Attempts have been made.

これに用いる蛍光体として、平均粒子径が10nm以下の半導体粒子が検討されている(例えば、非特許文献1参照)。この方法によると、半導体粒子の平均粒子径を10nm程度の適切な値に設定すれば、半導体粒子のエネルギー準位が離散的となり、半導体粒子のバンドギャップエネルギーが半導体粒子の粒子径に合わせて変化する。そのため半導体粒子の粒子径を変えることで、赤(長波長)から青(短波長)まで様々な発光を得ることができる。例えば、セレン化カドミウムは平均粒子径を2nmから10nmの範囲で変化させることにより、その平均粒子径に応じて赤(波長700nm)から青(波長450nm)の蛍光を発する。従ってこの手法を用いると演色性が高く、効率のよい発光装置を作ることができると期待されている。   As phosphors used for this, semiconductor particles having an average particle diameter of 10 nm or less have been studied (for example, see Non-Patent Document 1). According to this method, if the average particle diameter of the semiconductor particles is set to an appropriate value of about 10 nm, the energy level of the semiconductor particles becomes discrete, and the band gap energy of the semiconductor particles changes according to the particle diameter of the semiconductor particles. To do. Therefore, by changing the particle diameter of the semiconductor particles, various light emission from red (long wavelength) to blue (short wavelength) can be obtained. For example, cadmium selenide emits fluorescence from red (wavelength 700 nm) to blue (wavelength 450 nm) according to the average particle diameter by changing the average particle diameter in the range of 2 nm to 10 nm. Therefore, it is expected that an efficient light-emitting device can be manufactured by using this method with high color rendering properties.

LEDチップと蛍光体とを組み合わせて発光装置とするには、蛍光体をエポキシ樹脂、アクリル樹脂、シリコーン樹脂などの樹脂に混合した後、これをLEDチップ上で固める方法が取られる(例えば、特許文献1〜7参照)。   In order to make a light emitting device by combining an LED chip and a phosphor, a method is adopted in which the phosphor is mixed with a resin such as an epoxy resin, an acrylic resin, or a silicone resin and then solidified on the LED chip (for example, a patent) Reference 1-7).

しかしながら、平均粒子径が10nm以下の半導体粒子を特許文献1〜7に記載の樹脂に混合して作製した波長変換器や、あるいは平均粒子径が10nm以下の半導体粒子を結合剤樹脂及び溶剤と混合した蛍光体ペーストをガラスなどに塗布、乾燥して得られる波長変換器を使用することで演色性の高い発光装置を作ることは可能であるものの、このようにして作製した波長変換器では十分な波長変換効率を得ることは困難であるため、LEDチップは出力の大きなものを準備する必要があるばかりか、このため発光装置が発熱によって高温になりやすいという問題があった。   However, a wavelength converter produced by mixing semiconductor particles having an average particle diameter of 10 nm or less with the resin described in Patent Documents 1 to 7, or semiconductor particles having an average particle diameter of 10 nm or less are mixed with a binder resin and a solvent. Although it is possible to make a light emitting device with high color rendering properties by using a wavelength converter obtained by applying and drying the phosphor paste on glass etc., the wavelength converter produced in this way is sufficient Since it is difficult to obtain the wavelength conversion efficiency, it is necessary not only to prepare a LED chip having a large output, but also, there is a problem that the light emitting device is likely to become high temperature due to heat generation.

このようにして作られる波長変換器の波長変換効率が低い理由は、一つには半導体粒子と樹脂との間に、製造上の問題、長期間の使用での熱応力、あるいは樹脂劣化により隙間ができやすく、この隙間となった部分で光の反射がおこり、光の伝達効率が悪くなるためである。   One reason for the low wavelength conversion efficiency of wavelength converters made in this way is that there are gaps between the semiconductor particles and the resin due to manufacturing problems, thermal stress during long-term use, or resin deterioration. This is because light is reflected at the gap portion and the light transmission efficiency is deteriorated.

また、半導体粒子の表面積は、現在、主に使用されている平均粒子径が数μmの蛍光体の表面積に比べて非常に大きい。例えば半導体粒子を真球と仮定した場合には体積に対する表面積(比表面積)は平均粒子径2nmの半導体粒子は平均粒子径2μmの蛍光体の1000倍と非常に大きくなる。このため、平均粒子径が10nm以下の半導体粒子と平均粒子径が数μmの蛍光体において、同じ表面積に同じ割合で粒子表面の欠陥が存在する場合には平均粒子径が10nm以下の半導体粒子では波長変換効率がはるかに低下することとなる。   Further, the surface area of the semiconductor particles is very large compared to the surface area of a phosphor having an average particle diameter of several μm which is mainly used at present. For example, assuming that the semiconductor particles are true spheres, the surface area (specific surface area) relative to the volume is as large as 1000 times that of the phosphors having an average particle diameter of 2 μm. For this reason, in semiconductor particles having an average particle size of 10 nm or less and phosphors having an average particle size of several μm, when there are defects on the particle surface at the same ratio in the same surface area, semiconductor particles having an average particle size of 10 nm or less The wavelength conversion efficiency will be greatly reduced.

この粒子表面の欠陥による波長変換効率を向上する目的で、有機アミンなどの有機物を半導体粒子の表面に結合させて表面欠陥を電気化学的に修復し、離散化したバンドギャップエネルギーの準位を安定化し、平均粒子径が10nm以下の半導体粒子の波長変換効率を高める試みが行なわれている(例えば、非特許文献2、特許文献8参照)。   In order to improve the wavelength conversion efficiency due to defects on the surface of the particles, organic substances such as organic amines are bonded to the surface of the semiconductor particles to repair the surface defects electrochemically and stabilize the level of the discrete band gap energy. Attempts have been made to increase the wavelength conversion efficiency of semiconductor particles having an average particle diameter of 10 nm or less (see, for example, Non-Patent Document 2 and Patent Document 8).

この平均粒径0.5から10nmの半導体粒子の合成法にはTOPO、ドデシルアミンなどの水を含まない有機溶媒中で合成を行なうホットソープ法がある他、一方で、水を意図的に存在させた系で合成する逆ミセル法(非特許文献3、4)がある。
特開2005−235847号 特開2005−105177号 特開2005−93097号 特開2005−93191号 特開2005−93712号 特開2005−19662号 特開2004−253745号 特開2005−103746号 R.N.Bhargava,Phys.Rev.Lett.,72,416(1994) Dmitri V.Talapin,Andrey L.Rogach, Ivo Mekis,Stephan Haubold,Andreas Kornowski,Markus Haase,Horst Weller,Colloids and Surfaces A,202,145,(2002) 磯部徹彦,表面化学,22,315,(2001) Ageeth A.Bol and Andries Meijerink,j.Phys.Chem.B,105,10197, (2001)
In addition to the hot soap method in which the semiconductor particles having an average particle size of 0.5 to 10 nm are synthesized in an organic solvent not containing water such as TOPO and dodecylamine, water is intentionally present. There is a reverse micelle method (Non-patent Documents 3 and 4) for synthesizing in a system that has been prepared.
JP-A-2005-235847 JP 2005-105177 A JP-A-2005-93097 JP-A-2005-93191 JP-A-2005-93712 JP 200519662 JP 2004-253745 A JP 2005-103746 A RNBhargava, Phys. Rev. Lett., 72, 416 (1994) Dmitri V. Talapin, Andrey L. Rogach, Ivo Mekis, Stephan Haubold, Andreas Kornowski, Markus Haase, Horst Weller, Colloids and Surfaces A, 202, 145, (2002) Tetsuhiko Isobe, Surface Chemistry, 22, 315, (2001) Ageeth A. Bol and Andries Meijerink, j. Phys. Chem. B, 105, 10197, (2001)

しかしながら、これらの方法で粒子表面に有機アミンを結合した半導体粒子をシリコーン樹脂などの樹脂に混合して波長変換器を作製しても、十分に波長変換効率の高い波長変換器を作ることはできない。   However, it is not possible to produce a wavelength converter with sufficiently high wavelength conversion efficiency even when semiconductor particles having organic amines bonded to the particle surface by these methods are mixed with a resin such as silicone resin to produce a wavelength converter. .

その原因として、有機アミンを結合した半導体粒子を樹脂と混合すると、有機アミンと樹脂との親和力により有機アミンが半導体粒子から脱離して樹脂中に拡散してしまうことが考えられる。このとき、半導体粒子表面に存在する欠陥は有機アミンが脱離することによって有機アミンによる電気的な修復の効果を失い、その結果、波長変換効率が低くなるのである。   As the cause, when semiconductor particles bonded with organic amine are mixed with resin, it is considered that the organic amine is detached from the semiconductor particles and diffuses into the resin due to the affinity between the organic amine and the resin. At this time, the defects present on the surface of the semiconductor particles lose the effect of electrical repair by the organic amine due to the elimination of the organic amine, and as a result, the wavelength conversion efficiency is lowered.

また、あるいは有機アミンを結合した半導体粒子を樹脂と混合した場合には半導体粒子に結合した有機アミンは樹脂から親和力、あるいは斥力を受ける。そのため、有機アミンは半導体粒子との距離が局所的に変化することとなる。その結果、半導体粒子表面には欠陥の補修効果が弱められる部分が生じることとなり、バンドギャップエネルギーの準位が低い部分が発生することとなる。その結果、半導体粒子の波長変換効率は低下し、この半導体粒子の波長変換効率の低下によって、高い波長変換効率の波長変換器とすることが困難となっている。   Alternatively, when semiconductor particles bonded with organic amine are mixed with resin, the organic amine bonded to the semiconductor particles receives affinity or repulsive force from the resin. For this reason, the distance between the organic amine and the semiconductor particles changes locally. As a result, a portion where the defect repair effect is weakened is generated on the surface of the semiconductor particle, and a portion having a low band gap energy level is generated. As a result, the wavelength conversion efficiency of the semiconductor particles is reduced, and it is difficult to obtain a wavelength converter with high wavelength conversion efficiency due to the decrease in the wavelength conversion efficiency of the semiconductor particles.

特に、非特許文献3、非特許文献4あるいは特許文献8に記載された方法により水溶液中で半導体粒子を合成した場合には半導体粒子の波長変換効率はせいぜい10%以下と低いものとなる。従って、このようにして水溶液中で合成した半導体粒子を用いて波長変換器を製造したとしても波長変換器の波長変換効率は当然10%以下となり、照明用の発光装置への適用は到底おぼつかない。   In particular, when semiconductor particles are synthesized in an aqueous solution by the method described in Non-Patent Document 3, Non-Patent Document 4 or Patent Document 8, the wavelength conversion efficiency of the semiconductor particles is as low as 10% or less at most. Therefore, even if the wavelength converter is manufactured using the semiconductor particles synthesized in the aqueous solution in this way, the wavelength conversion efficiency of the wavelength converter is naturally 10% or less, and the application to the light emitting device for illumination is hardly realized.

また、このように水を多量に含んだ含水系溶媒で合成した半導体粒子を非水系溶媒に可溶な状態に置換した場合であっても半導体粒子は一旦、水と接触しているため、半導体粒子は水と化学反応して半導体粒子の表面が変質し、半導体粒子表面はOH基で被覆された状態となっている。そして半導体粒子表面のOH基により半導体粒子は親水性が高くなり波長変換器へ大気から侵入する水分を取り込みやすくなる。このように一旦、半導体粒子の表面に付いた水は除去しがたく、溶媒を置換したとしても水を半導体粒子表面から完全に除去することは難しい。   In addition, even when the semiconductor particles synthesized with a water-containing solvent containing a large amount of water are replaced with a state soluble in a non-aqueous solvent, the semiconductor particles are once in contact with water. The particles chemically react with water to alter the surface of the semiconductor particles, and the surface of the semiconductor particles is covered with OH groups. The OH groups on the surface of the semiconductor particles make the semiconductor particles highly hydrophilic and easily take in moisture that enters the wavelength converter from the atmosphere. Thus, once the water attached to the surface of the semiconductor particles is difficult to remove, it is difficult to completely remove the water from the surface of the semiconductor particles even if the solvent is replaced.

そのため、水溶液中で合成した半導体粒子を波長変換器に用いる場合には、励起光照射時に半導体粒子が表面に存在する水と化学反応して波長変換効率が極端に低下するという問題がある。このような問題は、半導体粒子を生体マーカーなどの用途として用いる場合には、波長変換効率が低くても検出できる程度の波長変換効率があれば充分であるため問題にされていない。また、生体マーカーとして用いる場合には半導体粒子の親水性が高いことも要求されるために水溶液中で半導体粒子を合成することが常識であり、照明用途に利用できる十分に高い波長変換効率を有する波長変換器は提供されていない。   Therefore, when semiconductor particles synthesized in an aqueous solution are used for a wavelength converter, there is a problem that the wavelength conversion efficiency is extremely lowered due to a chemical reaction between the semiconductor particles and water existing on the surface when irradiated with excitation light. Such a problem is not a problem when semiconductor particles are used as a biomarker or the like because it is sufficient if the wavelength conversion efficiency is such that it can be detected even if the wavelength conversion efficiency is low. In addition, when used as a biomarker, since it is also required that the semiconductor particles have high hydrophilicity, it is common knowledge to synthesize semiconductor particles in an aqueous solution and has sufficiently high wavelength conversion efficiency that can be used for lighting applications. No wavelength converter is provided.

本発明は、平均粒子径が10nm以下の半導体粒子をLEDチップと組み合わせた発光装置に用いるための波長変換器とする場合、波長変換効率の高いものを得るのが困難であるという問題を解決し、波長変換効率の高い波長変換器および発光装置を提供することを目的とする。   The present invention solves the problem that it is difficult to obtain a high wavelength conversion efficiency when used as a wavelength converter for use in a light emitting device in which semiconductor particles having an average particle size of 10 nm or less are combined with an LED chip. An object of the present invention is to provide a wavelength converter and a light emitting device with high wavelength conversion efficiency.

本発明の波長変換器は、オレイルアミン,ドデシルアミン,2−エチルヘキサン酸,ドデカンチオールおよびオレイン酸の少なくとも1種からなる液体と該液体に取り囲まれて存在する平均粒径0.5〜10nmの半導体粒子とからなり、含水率が0.1質量%以下であって波長変換効率が40%以上の波長変換液を、少なくとも一部が透光性の器の中に封入してなることを特徴とする。
The wavelength converter of the present invention includes a liquid composed of at least one of oleylamine, dodecylamine, 2-ethylhexanoic acid, dodecanethiol and oleic acid, and a semiconductor having an average particle diameter of 0.5 to 10 nm surrounded by the liquid. A wavelength conversion liquid comprising particles and having a water content of 0.1% by mass or less and a wavelength conversion efficiency of 40% or more is characterized in that it is at least partially sealed in a translucent vessel. To do.

また、本発明の波長変換器は、前記液体は水の溶解度が0.1質量%以下であることが望ましい。   In the wavelength converter of the present invention, it is desirable that the liquid has a water solubility of 0.1% by mass or less.

本発明の発光装置は、発光素子と、該発光素子からの光を波長変換する前記波長変換器とを具備することを特徴とする。
The light emitting device of the present invention is characterized by comprising a light emitting element and the wavelength converter for wavelength-converting the light from the light emitting element.

これまでLEDチップと蛍光体を具備する波長変換器を組み合わせて作る発光装置では、波長変換器は蛍光体粉末をエポキシ樹脂、アクリル樹脂、シリコーン樹脂に練り込んで、これをLEDチップ上に流し込み、あるいはLEDチップとは別に冷却、溶剤除去、化学反応などを行ない硬化させて作る方法をとるのが常識であった。しかし、この方法では、高い演色性が得られる平均粒径10nm以下の半導体粒子で波長変換器を作ることは困難であった。   Until now, in a light emitting device made by combining a wavelength converter equipped with an LED chip and a phosphor, the wavelength converter kneads phosphor powder into an epoxy resin, an acrylic resin, and a silicone resin, and pours this onto the LED chip, Or it was common sense to take the method of making it hardened by performing cooling, solvent removal, a chemical reaction, etc. separately from LED chip. However, with this method, it has been difficult to make a wavelength converter with semiconductor particles having an average particle size of 10 nm or less that can provide high color rendering properties.

本発明の波長変換器は、固体の樹脂に変えて、オレイルアミン,ドデシルアミン,2−エチルヘキサン酸,ドデカンチオールおよびオレイン酸の少なくとも1種からなる液体を用い、半導体粒子をこの液体中に分散させた波長変換液を少なくとも一部が透光性の器の中に封入する構成とすることで、半導体粒子と液体との間に隙間ができることがなく、容易に表面欠陥を液体によって補修することもでき、しかもその状態を維持することができることから、波長変換効率が高く、性能の低下の少ない波長変換器を作ることができる。さらに、この波長変換液の含水率を0.1質量%以下とすることで、比表面積が大きく、表面活性の高い半導体粒子を用いた場合であっても、半導体粒子が水分により変質することを抑制することができる。このような波長変換液は実質的に水の無い環境で合成した半導体粒子を使用することで波長変換効率が40%以上と高い波長変換液を作製することができる。これに対して含水系溶媒中で合成した半導体粒子を使用して波長変換液を作製した場合には、せいぜい波長変換効率が10%以下の波長変換液しか作製することができない。
The wavelength converter of the present invention uses a liquid composed of at least one of oleylamine, dodecylamine, 2-ethylhexanoic acid, dodecanethiol and oleic acid instead of a solid resin, and disperses semiconductor particles in this liquid. The wavelength conversion liquid is sealed at least partially in a translucent container, so that there is no gap between the semiconductor particles and the liquid, and surface defects can be easily repaired with the liquid. In addition, since this state can be maintained, it is possible to make a wavelength converter with high wavelength conversion efficiency and little deterioration in performance. Furthermore, by setting the water content of the wavelength conversion liquid to 0.1% by mass or less, even when semiconductor particles having a large specific surface area and high surface activity are used, the semiconductor particles are altered by moisture. Can be suppressed. By using semiconductor particles synthesized in an environment substantially free of water, a wavelength conversion liquid having a wavelength conversion efficiency as high as 40% or more can be produced. In contrast, when a wavelength conversion liquid is prepared using semiconductor particles synthesized in a hydrous solvent, only a wavelength conversion liquid having a wavelength conversion efficiency of 10% or less can be prepared.

また、液体の水の溶解度を0.1質量%以下とすることで、長期間湿度の高い場所で使用、あるいは保管しても波長変換液に過剰に水が溶解することがないため、半導体粒子の変質を抑制することができる。   In addition, when the solubility of liquid water is 0.1% by mass or less, the semiconductor particles are not excessively dissolved in the wavelength conversion liquid even when used or stored in a place with high humidity for a long period of time. Can be prevented.

以上説明した波長変換器を具備する本発明の発光装置は、波長変換効率の高い発光装置となる。   The light emitting device of the present invention having the wavelength converter described above is a light emitting device with high wavelength conversion efficiency.

本発明の波長変換器は、例えば図1(a)に示すように、少なくとも平均粒径0.5〜10nmの光の波長変換可能な半導体粒子1と、この半導体粒子1を取り囲むように配設された液体3とからなる含水率が0.1質量%以下の波長変換液5を具備するもので、図1(a)の例では、この波長変換液5を少なくとも一部が透光性を有する器7に封入して波長変換器9が構成されている。   The wavelength converter of the present invention, for example, as shown in FIG. 1A, is disposed so as to surround the semiconductor particles 1 and semiconductor particles 1 capable of converting the wavelength of light having an average particle size of at least 0.5 to 10 nm. In the example shown in FIG. 1 (a), at least a part of the wavelength conversion liquid 5 is translucent. A wavelength converter 9 is configured by being enclosed in a container 7.

なお、半導体粒子1を液体が取り囲むとは、言い換えると水や−OH基を介さずに半導体粒子1の表面を水を除く液体が取り囲んでいることを意味している。すなわち、本発明における半導体粒子1は実質的に水のない環境で合成されたものであり、本発明の波長変換器は半導体粒子1が水と接触することを避けて作製されたものと言える。そして、このようにして製造した波長変換液では波長変換効率が40%以上のものを得ることができる。   In addition, that the liquid surrounds the semiconductor particle 1 means that the liquid excluding water surrounds the surface of the semiconductor particle 1 without passing through water or an —OH group. That is, it can be said that the semiconductor particles 1 in the present invention were synthesized in an environment substantially free of water, and the wavelength converter of the present invention was produced by avoiding the semiconductor particles 1 from coming into contact with water. And the wavelength conversion liquid manufactured in this way can obtain a wavelength conversion efficiency of 40% or more.

図1(b)に示すように、発光素子11からの光が波長変換器9に照射されるように、発光素子11を搭載した発光素子用配線基板13に波長変換器9を組み合わせることで本発明の発光装置15となる。なお、発光素子用配線基板13には、発光素子11の電力を供給するための配線回路17が配設され、この配線回路17と発光素子11の端子(図示せず)とがワイヤ19を介して接続されている。また、発光素子11は、半田や樹脂などの接着層21により発光素子用配線基板13に固定されている。また、発光素子11を保護するために発光素子11を覆うように被覆樹脂23が形成されている。   As shown in FIG. 1B, the wavelength converter 9 is combined with the light emitting element wiring board 13 on which the light emitting element 11 is mounted so that the light from the light emitting element 11 is irradiated to the wavelength converter 9. It becomes the light-emitting device 15 of invention. The light emitting element wiring board 13 is provided with a wiring circuit 17 for supplying power of the light emitting element 11, and the wiring circuit 17 and a terminal (not shown) of the light emitting element 11 are connected via a wire 19. Connected. The light emitting element 11 is fixed to the light emitting element wiring substrate 13 by an adhesive layer 21 such as solder or resin. In addition, a coating resin 23 is formed so as to cover the light emitting element 11 in order to protect the light emitting element 11.

また、本発明の発光装置15の他の形態として、例えば図2に示すように発光素子用配線基板13の凹部の中に波長変換液5を充填して、器7で封止した形態を例示することができる。この場合には波長変換液5と器7と発光素子用配線基板13とで波長変換器9を形成していると言える。   Further, as another form of the light emitting device 15 of the present invention, for example, as shown in FIG. 2, a form in which the wavelength conversion liquid 5 is filled in the concave portion of the light emitting element wiring substrate 13 and sealed by the vessel 7 is illustrated. can do. In this case, it can be said that the wavelength converter 9 is formed by the wavelength conversion liquid 5, the device 7, and the light emitting element wiring substrate 13.

本発明の波長変換器9は、発光素子11から発せられる光を波長変換する機能を有する物で、半導体粒子1を液体3で取り囲んだ波長変換液5を備えることが重要で、また、この波長変換液5の含水率が0.1質量%以下であることが重要である。   The wavelength converter 9 of the present invention has a function of converting the wavelength of light emitted from the light emitting element 11, and it is important that the wavelength converter 9 includes the wavelength conversion liquid 5 in which the semiconductor particles 1 are surrounded by the liquid 3. It is important that the water content of the conversion liquid 5 is 0.1% by mass or less.

このように、波長変換器に従来用いられていた蛍光体を保持するための固体の樹脂に換えて、固体に比べ格段に容易に変形可能な液体3を用いることで、半導体粒子1と液体3との間に応力が発生することがなく、半導体粒子1と液体3との間に隙間ができることもない。そのため、半導体粒子1の波長変換効率を向上させることができる。また、波長変換液5が流動性を有するため、発光素子11の熱により対流が発生した場合には冷却性能も向上する。   As described above, the semiconductor particles 1 and the liquid 3 can be obtained by using the liquid 3 that can be remarkably easily deformed compared with the solid resin instead of the solid resin for holding the phosphor conventionally used in the wavelength converter. No stress is generated between the semiconductor particles 1 and the liquid 3, and no gap is formed between the semiconductor particles 1 and the liquid 3. Therefore, the wavelength conversion efficiency of the semiconductor particles 1 can be improved. Moreover, since the wavelength conversion liquid 5 has fluidity, the cooling performance is improved when convection is generated by the heat of the light emitting element 11.

さらに、波長変換液5の含水率を0.1質量%以下とすることで、水の影響により半導体粒子1が変質して波長変換効率が低下することを抑制することができる。この波長変換液5の含水率は、短期的な波長変換効率の低下に影響するもので、さらに0.05質量%以下、特に0.01質量%以下とすることが望ましい。   Furthermore, by setting the water content of the wavelength conversion liquid 5 to 0.1% by mass or less, it is possible to suppress degradation of the wavelength conversion efficiency due to the alteration of the semiconductor particles 1 due to the influence of water. The water content of the wavelength conversion liquid 5 affects the short-term decrease in wavelength conversion efficiency, and is preferably 0.05% by mass or less, particularly 0.01% by mass or less.

また、半導体粒子1を取り囲む液体3として水の溶解度が0.1質量%以下のものを用いることで、仮に水分の多い雰囲気に曝されたとしても水は半導体粒子1には容易に到達し得ないため、長期にわたって波長変換器9の波長変換効率および発光装置15の発光効率の低下を抑制することができる。この液体3として水の溶解度は、長期的な波長変換効率の低下に影響するもので、0.05質量%以下、特に0.02質量%以下とすることが望ましい。   In addition, by using a liquid 3 surrounding the semiconductor particles 1 having a water solubility of 0.1% by mass or less, water can easily reach the semiconductor particles 1 even if exposed to an atmosphere with a lot of moisture. Therefore, a decrease in the wavelength conversion efficiency of the wavelength converter 9 and the light emission efficiency of the light emitting device 15 can be suppressed over a long period of time. The solubility of water as the liquid 3 affects the long-term decrease in wavelength conversion efficiency, and is preferably 0.05% by mass or less, particularly 0.02% by mass or less.

このように液体3は、半導体粒子1の濃度を適当に調整する機能や、半導体粒子1を水や大気などの雰囲気から遮断する機能を備えている。   As described above, the liquid 3 has a function of appropriately adjusting the concentration of the semiconductor particles 1 and a function of blocking the semiconductor particles 1 from an atmosphere such as water or air.

本発明の液体3として用いることができるものとして、オレイルアミン、2−エチルへキサン酸、ドデカンチオール、オレイン酸およびドデシルアミンを挙げることができる。
As those which can be used as the liquid 3 of the present invention, mention may be made of Au Reiruamin, 2-ethylhexanoic acid, dodecanethiol, oleic acid and dodecylamine.

レイルアミンおよびドデシルアミンのように、液体3として高い極性を有するものを用いることにより、液体3が半導体粒子表面の欠陥補修の効果を果たすことができるため、予め半導体表面の欠陥を有機アミンなどにより補修しなくて済む。また、半導体表面の欠陥補修している化合物が脱離した場合にも、半導体粒子の周囲に存在する液体3が変わって半導体粒子表面の欠陥を補修できるため、長期の使用に対しても半導体粒子表面の欠陥補修は損なわれることが無いため、長期にわたり安定した波長変換器とすることができる。
As Oh Reiruamin and dodecylamine, by using a material having a high polarity as a liquid 3, since the liquid 3 can perform the effect of the defect repairing semiconductor particle surface, such as by defects organic amines advance semiconductor surface No need to repair . Further , even when a compound repairing a defect on the semiconductor surface is detached, the liquid 3 present around the semiconductor particle can be changed to repair the defect on the surface of the semiconductor particle. for defect repair surface is not impaired, Ru can be a long time stable wavelength converter.

また、液体3は、複数の種類の半導体粒子1あるいは半導体粒子1と半導体粒子以外の蛍光体、その他例えば屈折率を調整するための機能性材料粒子とを組み合わせて波長変換器を構成する場合にはこれらが偏り、あるいは凝集することなく保持する機能を備えていることが望ましい。   The liquid 3 is used when a wavelength converter is configured by combining a plurality of types of semiconductor particles 1 or a combination of semiconductor particles 1 and phosphors other than semiconductor particles, for example, functional material particles for adjusting the refractive index. It is desirable that they have a function of holding them without being biased or agglomerated.

また、この液体3はLEDチップが出力した光が半導体粒子まで届く光路、および半導体粒子1が波長変換した光が発光装置外部へ出るまでの光路となるため、これらの光の透過率が高いことが望ましい。また、LEDチップが出力した光やおよび半導体粒子1が波長変換した光、あるいはLEDチップが発生した熱により変質しないことが望ましい。また、この液体3は、何も単一の成分からなる必要は無く、複数の成分からなるものでもよい。   In addition, since the liquid 3 serves as an optical path for the light output from the LED chip to reach the semiconductor particles and an optical path for the light whose wavelength is converted by the semiconductor particles 1 to be emitted to the outside of the light emitting device, the transmittance of these lights is high Is desirable. Further, it is desirable that the LED chip does not deteriorate due to light output from the LED chip, light obtained by wavelength conversion of the semiconductor particles 1, or heat generated by the LED chip. The liquid 3 need not be composed of a single component, and may be composed of a plurality of components.

また、水や空気などの雰囲気に対する遮断能力が高い器7を用いることも、長期的な波長変換効率の低下を抑制する効果がある。そのため、例えば器7としてガラスを用いたり、ポリテトラフルオロエチレン、ポリエチレンなどの樹脂を用いてもよい。なお、器7は、波長変換液5を溜めるおけ状の下側の器7aと、蓋状の上側の器7bとで材質を換えてもよいことはいうまでもない。また、器7はLEDチップが出力する光、あるいは波長変換器9が波長変換した光の光路となるため、これらの光の透過率が高いことが望ましい。   In addition, using the vessel 7 having a high blocking ability against an atmosphere such as water or air has an effect of suppressing a long-term decrease in wavelength conversion efficiency. Therefore, for example, glass may be used as the vessel 7, or a resin such as polytetrafluoroethylene or polyethylene may be used. Needless to say, the material of the vessel 7 may be changed between the lower vessel 7a for storing the wavelength conversion liquid 5 and the upper vessel 7b having a lid shape. Moreover, since the device 7 serves as an optical path for light output from the LED chip or light converted by the wavelength converter 9, it is desirable that the transmittance of these light is high.

透明な器7の材質としてはシリコーン樹脂、ポリエチレン樹脂、アクリル樹脂(メタクリル酸などのエステルを含む)、エポキシ樹脂、ポリスチレン樹脂などを用いることができる。この容器はLEDチップが出力する光、あるいは波長変換器が波長変換した光の光路となるため、これらの光の透過率が高いことが望ましい。   As the material of the transparent vessel 7, silicone resin, polyethylene resin, acrylic resin (including esters such as methacrylic acid), epoxy resin, polystyrene resin, etc. can be used. Since this container serves as an optical path for the light output from the LED chip or the light subjected to wavelength conversion by the wavelength converter, it is desirable that the transmittance of these light is high.

本発明の波長変換器9ならびに発光装置15に用いられる半導体粒子1としては、発光素子11からの光を波長変換する能力を有することが必要で、例えばCdSeなどが例示される。また、波長変換液5には、必要に応じて所謂数μmサイズの蛍光体を含有させてもよい。   The semiconductor particles 1 used in the wavelength converter 9 and the light emitting device 15 of the present invention are required to have the ability to convert the wavelength of light from the light emitting element 11, and examples thereof include CdSe. Further, the wavelength conversion liquid 5 may contain a so-called several μm size phosphor as required.

半導体粒子1は光源である発光素子11より発せられた光を吸収し、この光の波長を変えて放出する機能を持つものであり、CdSeなどの組成からなる粒径0.5〜10nmのナノサイズの蛍光体である。ここで半導体粒子1の組成は何もCdSeに限定されるものではない。   The semiconductor particle 1 has a function of absorbing light emitted from the light emitting element 11 as a light source and emitting the light by changing the wavelength of the light. The nano particle having a particle diameter of 0.5 to 10 nm made of a composition such as CdSe. A size phosphor. Here, the composition of the semiconductor particles 1 is not limited to CdSe.

他の半導体粒子1としては、周期表第14族元素と周期表第16族元素との化合物、周期表第13族元素と周期表第15族元素との化合物、周期表第13族元素と周期表第16族元素との化合物、周期表第13族元素と周期表第17族元素との化合物、周期表第12族元素と周期表第16族元素との化合物、周期表第15族元素と周期表第16族元素との化合物、周期表第11族元素と周期表第16族元素との化合物、周期表第11族元素と周期表第17族元素との化合物、周期表第10族元素と周期表第16族元素との化合物、周期表第9族元素との周期表第16族元素との化合物、
周期表第8族元素と周期表第16族元素との化合物、周期表第7族元素と周期表第16族元素との化合物、周期表第6族元素と周期表第16族元素との化合物、周期表第5族元素と周期表第16族元素との化合物、周期表第4族元素との周期表第16族元素との化合物、
周期表第2族元素と周期表第16族元素との化合物、カルコゲンスピネル類等が挙げられる。
Other semiconductor particles 1 include compounds of Group 14 elements of the periodic table and Group 16 elements of the periodic table, compounds of Group 13 elements of the periodic table and Group 15 elements of the periodic table, Group 13 elements of the periodic table and period Compound with group 16 element, compound with group 13 element of periodic table and group 17 element of periodic table, compound of group 12 element and group 16 element of periodic table, group 15 element of periodic table with Compound with group 16 element of periodic table, compound with group 11 element of periodic table and group 16 element of periodic table, compound of group 11 element and group 17 element of periodic table, group 10 element of periodic table A compound with a group 16 element of the periodic table, a compound with a group 16 element of the periodic table with a group 9 element of the periodic table,
Compound of periodic table group 8 element and periodic table group 16 element, periodic table group 7 element and periodic table group 16 element, periodic table group 6 element and periodic table group 16 element A compound of a periodic table group 5 element and a periodic table group 16 element, a compound of a periodic table group 4 element and a periodic table group 16 element,
Examples include compounds of Group 2 elements of the periodic table and Group 16 elements of the periodic table, chalcogen spinels, and the like.

具体的には、周期表第14族元素と周期表第16族元素との化合物として酸化錫(IV)(SnO)、硫化錫(II,IV)(Sn(II)Sn(IV)S)、硫化錫(IV)(SnS)、硫化錫(II)(SnS)、セレン化錫(II)(SnSe)、テルル化錫(II)(SnTe)、硫化鉛(PbS)、セレン化鉛(PbSe)、テルル化鉛(PbTe)等、周期表第13族元素と周期表第15族元素との化合物として、窒化ホウ素(BN)、リン化ホウ素(BP)、砒化ホウ素(BAs)、窒化アルミニウム(AlN)、リン化アルミニウム(AlP)、砒化アルミニウム(AlAs)、アンチモン化アルミニウム(AlSb)、窒化ガリウム(GaN)、リン化ガリウム(GaP)、砒化ガリウム(GaAs)、アンチモン化ガリウム(GaSb)、窒化インジウム(InN)、リン化インジウム(InP)、砒化インジウム(InAs)、アンチモン化インジウム(InSb)等、周期表第13族元素と周期表第16族元素との化合物として、硫化アルミニウム(Al)、セレン化アルミニウム(AlSe)、硫化ガリウム(Ga)、セレン化ガリウム(GeSe)、テルル化ガリウム(GaTe)、酸化インジウム(In)、硫化インジウム(In)、セレン化インジウム(InSe)、テルル化インジウム(InTe)等、
周期表第13族元素と周期表第17族元素との化合物として、塩化タリウム(I)(TlCl)、臭化タリウム(I)(TlBr)、ヨウ化タリウム(I)(TlI)等、周期表第12族元素と周期表第16族元素との化合物として、酸化亜鉛(ZnO)、硫化亜鉛(ZnS)、セレン化亜鉛(ZnSe)、テルル化亜鉛(ZnTe)、酸化カドミウム(CdO)、硫化カドミウム(CdS)、セレン化カドミウム(CdSe)、テルル化カドミウム(CdTe)、硫化水銀(HgS)、セレン化水銀(HgSe)、テルル化水銀(HgTe)等、周期表第15族元素と周期表第16族元素との化合物として、硫化アンチモン(III)(Sb)、セレン化アンチモン(III)(SbSe)、テルル化アンチモン(III)(SbTe)、硫化ビスマス(III)(Bi)、セレン化ビスマス(III)(BiSe)テルル化ビスマス(III)(BiTe)等、周期表第11族元素と周期表第16族元素との化合物として、酸化銅(I)(CuO)等、周期表第11族元素と周期表第17族元素との化合物として、塩化銅(I)(CuCl)、臭化銅(I)(CuBr)、ヨウ化銅(I)(CuI)、ヨウ化銀(AgI)、塩化銀(AgCl)、臭化銀(AgBr)等、周期表第10族元素と周期表第16族元素との化合物として、酸化ニッケル(II)(NiO)等、周期表第9族元素との周期表第16族元素との化合物として、酸化コバルト(II)(CoO)、硫化コバルト(II)(CoS)等、周期表第8族元素と周期表第16族元素との化合物として、四酸化三鉄(Fe)、硫化鉄(II)(FeS)等、周期表第7族元素と周期表第16族元素との化合物として、酸化マンガン(II)(MnO)等、周期表第6族元素と周期表第16族元素との化合物として、硫化モリブデン(IV)(MoS)、酸化タングステン(IV)(WO)等、周期表第5族元素と周期表第16族元素との化合物として、酸化バナジウム(II)(VO)、酸化バナジウム(II)(VO)、酸化タンタル(V)(Ta)等、周期表第4族元素との周期表第16族元素との化合物として、酸化チタン(TiO、Ti、Ti、Ti等)等、周期表第2族元素と周期表第16族元素との化合物として、硫化マグネシウム(MgS)、セレン化マグネシウム(MgSe)等、カルコゲンスピネル類として、酸化カドミウム(II)クロム(III)(CdCr)、セレン化カドミウム(II)クロム(III)(CdCrSe)、硫化銅(II)クロム(III)(CuCr)、セレン化水銀(II)クロム(III)(HgCrSe)等が挙げられる。
Specifically, tin oxide (IV) (SnO 2 ), tin sulfide (II, IV) (Sn (II) Sn (IV) S 3 ) as a compound of a group 14 element of the periodic table and a group 16 element of the periodic table. ), Tin sulfide (IV) (SnS 2 ), tin sulfide (II) (SnS), tin (II) selenide (SnSe), tin telluride (II) (SnTe), lead sulfide (PbS), lead selenide (PbSe), lead telluride (PbTe), etc., compounds of group 13 elements of the periodic table and group 15 elements of the periodic table include boron nitride (BN), boron phosphide (BP), boron arsenide (BAs), nitride Aluminum (AlN), Aluminum phosphide (AlP), Aluminum arsenide (AlAs), Aluminum antimonide (AlSb), Gallium nitride (GaN), Gallium phosphide (GaP), Gallium arsenide (GaAs), Anti Compound of periodic table group 13 element and periodic table group 16 element such as gallium phosphide (GaSb), indium nitride (InN), indium phosphide (InP), indium arsenide (InAs), indium antimonide (InSb), etc. As aluminum sulfide (Al 2 S 3 ), aluminum selenide (Al 2 Se 3 ), gallium sulfide (Ga 2 S 3 ), gallium selenide (Ge 2 Se 3 ), gallium telluride (Ga 2 Te 3 ), Indium oxide (In 2 O 3 ), indium sulfide (In 2 S 3 ), indium selenide (In 2 Se 3 ), indium telluride (In 2 Te 3 ), etc.
As a compound of a periodic table group 13 element and a periodic table group 17 element, thallium chloride (I) (TlCl), thallium bromide (I) (TlBr), thallium iodide (I) (TlI), etc. As compounds of Group 12 elements and Group 16 elements of the periodic table, zinc oxide (ZnO), zinc sulfide (ZnS), zinc selenide (ZnSe), zinc telluride (ZnTe), cadmium oxide (CdO), cadmium sulfide (CdS), cadmium selenide (CdSe), cadmium telluride (CdTe), mercury sulfide (HgS), mercury selenide (HgSe), mercury telluride (HgTe), etc. as the compounds of the group elements, antimony sulfide (III) (Sb 2 S 3 ), selenium antimony (III) (Sb 2 Se 3 ), antimony telluride (III (Sb 2 Te 3), bismuth sulfide (III) (Bi 2 S 3 ), bismuth selenide (III) (Bi 2 Se 3 ) and the like bismuth telluride (III) (Bi 2 Te 3 ), periodic table group 11 As a compound of an element and a group 16 element of the periodic table, copper (I) (Cu 2 O), etc. As a compound of a group 11 element of the periodic table and a group 17 element of the periodic table, copper (I) (CuCl ), Copper (I) bromide (CuBr), copper (I) iodide (CuI), silver iodide (AgI), silver chloride (AgCl), silver bromide (AgBr), etc. As a compound with a group 16 element of the periodic table, as a compound with a group 16 element of the periodic table with a group 9 element of the periodic table, such as nickel (II) (NiO), cobalt (II) oxide (CoO), sulfide Cobalt (II) (CoS) and other Group 8 elements of the periodic table As a compound with group 16 element of the periodic table, as a compound of group 7 element of periodic table and group 16 element of periodic table, such as triiron tetroxide (Fe 3 O 4 ), iron (II) sulfide (FeS), As a compound of a periodic table group 6 element and a periodic table group 16 element, such as manganese oxide (II) (MnO), molybdenum sulfide (IV) (MoS 2 ), tungsten oxide (IV) (WO 2 ), etc. As a compound of Table Group 5 element and Periodic Group 16 element, vanadium oxide (II) (VO), vanadium oxide (II) (VO 2 ), tantalum oxide (V) (Ta 2 O 5 ), etc. Periodic Table with Group 4 Elements As compounds with Group 16 elements, titanium oxide (TiO 2 , Ti 2 O 5 , Ti 2 O 3 , Ti 5 O 9, etc.), etc. Magnesium sulfide as a compound with Table 16 group elements Beam (MgS), magnesium selenide (MgSe), etc., as chalcogen spinels, cadmium oxide (II) chromium (III) (CdCr 2 O 4 ), cadmium selenide (II) chromium (III) (CdCr 2 Se 4 ) , Copper sulfide (II) chromium (III) (CuCr 2 S 4 ), mercury selenide (II) chromium (III) (HgCr 2 Se 4 ) and the like.

上述した中でも特に、AgI等の第11−17族化合物半導体、CdSe、CdS、ZnS、ZnSe等の第12−16族化合物半導体、InAs、InP等の第13−15族化合物半導体を主体とする化合物半導体のいずれかが望ましい。なお、本発明で使用する周期表は、IUPAC無機化学命名法1990年規則に従うものとする。   Among the above-described compounds, compounds mainly composed of Group 11-17 compound semiconductors such as AgI, Group 12-16 compound semiconductors such as CdSe, CdS, ZnS and ZnSe, and Group 13-15 compound semiconductors such as InAs and InP Any of the semiconductors is desirable. In addition, the periodic table used by this invention shall follow the IUPAC inorganic chemical nomenclature 1990 rule.

この半導体粒子1の表面には、表面の欠陥を電気的に補修する目的で、アミノ基、メルカプト基、カルボキシル基などの官能基をもつ有機化合物などを結合させることができる。   An organic compound having a functional group such as an amino group, a mercapto group, or a carboxyl group can be bonded to the surface of the semiconductor particle 1 for the purpose of electrically repairing surface defects.

この場合、アミノ基、メルカプト基、カルボキシル基などの官能基をもつ有機化合物には半導体粒子表面に存在する欠陥を補修する効果があるため、半導体粒子1の波長変換効率を高めることができる。   In this case, since the organic compound having a functional group such as amino group, mercapto group, or carboxyl group has an effect of repairing defects existing on the surface of the semiconductor particle, the wavelength conversion efficiency of the semiconductor particle 1 can be increased.

以下に本発明の波長変換器9の製造方法について説明する。   Below, the manufacturing method of the wavelength converter 9 of this invention is demonstrated.

本発明の波長変換器9の製造方法においては、実質的に水のない環境で半導体粒子1を作製することが重要であり、また、半導体粒子1が水に接触することを避けて波長変換器を作製することが重要である。このような波長変換器9は例えば、以下のようにして作製することができる。   In the manufacturing method of the wavelength converter 9 of the present invention, it is important to produce the semiconductor particles 1 in an environment substantially free of water, and the wavelength converter avoids the semiconductor particles 1 from coming into contact with water. It is important to make. Such a wavelength converter 9 can be manufactured as follows, for example.

以下、セレン化カドミウムを例にして説明する。波長変換器9を作製する方法としては、後述する第1の液体と、トリオクチルフォスフィンおよび酢酸カドミウムを混合して200〜300℃に加熱し、これにトリオクチルフォスフィンとセレンの混合物を加え、さらに同じ温度で加熱することにより平均粒径0.5〜10nmのセレン化カドミウム粒子を合成する。このとき、第1の液体としては脱水したドデシルアミン、オレイルアミン等を用いることができる。なお、ドデシルアミン、オレイルアミンは減圧下で加熱し、予め水分を十分除去しておくことが望ましい。   Hereinafter, cadmium selenide will be described as an example. As a method for producing the wavelength converter 9, a first liquid described later, trioctylphosphine and cadmium acetate are mixed and heated to 200 to 300 ° C., and a mixture of trioctylphosphine and selenium is added thereto. Further, cadmium selenide particles having an average particle diameter of 0.5 to 10 nm are synthesized by heating at the same temperature. At this time, dehydrated dodecylamine, oleylamine, or the like can be used as the first liquid. In addition, it is desirable that dodecylamine and oleylamine are heated under reduced pressure to sufficiently remove moisture in advance.

このようにして得られたセレン化カドミウム粒子に必要に応じて例えばエタノールなどの貧溶媒を加えて遠心分離機にかけ、セレン化カドミウム粒子を沈殿させて精製する(デカンテーション)。このとき用いるエタノールは五酸化りんなどにより十分脱水したものを用いることが望ましい。   If necessary, a poor solvent such as ethanol is added to the cadmium selenide particles thus obtained, and the mixture is subjected to a centrifuge to precipitate and purify the cadmium selenide particles (decantation). It is desirable to use ethanol that has been sufficiently dehydrated with phosphorus pentoxide or the like.

セレン化カドミウム粒子をデカンテーションにより精製した場合には再びセレン化カドミウム粒子をドデシルアミン、オレイルアミンなどの第2の液体に分散する。このときの第2の液体はセレン化カドミウム粒子を合成したときに使用したときの液体(第1の液体)と同じであっても、また別のものであってもなんら差し支えない。このとき、ドデシルアミン、オレイルアミンは減圧下で加熱し、水分を0.1質量%以下にまで除去しておく
Dodecylamine cadmium selenide particles again when cadmium selenide particles were purified by decantation, dispersed in Oreiruami emissions of which the second liquid. The second liquid at this time may be the same as or different from the liquid (first liquid) used when the cadmium selenide particles are synthesized. At this time, dodecylamine, Oreiruami emissions was heated under reduced pressure in advance to remove moisture to less than 0.1 wt%.

このようにして得られ、液体3とこの液体に分散した半導体粒子1であるセレン化カドミウム粒子とを波長変換液5としてガラスもしくは、ポリテトラフルオロエチレン、ポリエチレンなどの樹脂からなるおけ状の下側の器7aに注入し、これをガラスもしくは、ポリテトラフルオロエチレン、ポリエチレンなどの樹脂からなる蓋状の上側の器7bで封入して波長変換器9とする。封入は熱圧着の方法を用いることができるほか、接着剤を用いることも可能である。   The lower side of the mosquito made of glass or a resin such as polytetrafluoroethylene or polyethylene as the wavelength conversion liquid 5 with the liquid 3 and the cadmium selenide particles which are the semiconductor particles 1 dispersed in the liquid thus obtained. The wavelength converter 9 is filled with a lid-like upper vessel 7b made of glass or a resin such as polytetrafluoroethylene or polyethylene. Encapsulation can be performed using a thermocompression bonding method or an adhesive.

以上、本発明の波長変換器9の製造方法の一例について説明したが、半導体粒子1の製造工程において、水が実質的にない環境を整えることが非常に重要である。水が存在する環境で作製した半導体粒子は、はじめから波長変換効率が著しく低く、生体マーカーとしては機能しうるものの照明用途には全く適さないものとなる。   As mentioned above, although the example of the manufacturing method of the wavelength converter 9 of this invention was demonstrated, in the manufacturing process of the semiconductor particle 1, it is very important to prepare the environment which does not have water substantially. Semiconductor particles produced in an environment where water is present have remarkably low wavelength conversion efficiency from the beginning, and can function as a biomarker, but are completely unsuitable for lighting applications.

まず、CdSe半導体粒子ならびにZnS粒子を水が混入しない方法を用いて合成した。   First, CdSe semiconductor particles and ZnS particles were synthesized using a method in which water was not mixed.

CdSe半導体粒子の合成は次のように行なった。五酸化りんで乾燥させた窒素雰囲気のグローブボックス中でフラスコにトリオクチルフォスフィン12.5gとセレン0.395gを加え、これを1時間攪拌した。次に、これにトリオクチルフォスフィン20g、酢酸カドミウム0.266g、ドデシルアミン(第1の液体)20mlを予め130℃で混合したものを加えた。これを200℃に加熱し、撹拌しながらそのまま200℃に維持して10分間攪拌してCdSe半導体粒子を合成した。   CdSe semiconductor particles were synthesized as follows. In a glove box with a nitrogen atmosphere dried with phosphorus pentoxide, 12.5 g of trioctylphosphine and 0.395 g of selenium were added to the flask, and the mixture was stirred for 1 hour. Next, 20 g of trioctylphosphine, 0.266 g of cadmium acetate, and 20 ml of dodecylamine (first liquid) previously mixed at 130 ° C. were added thereto. This was heated to 200 ° C., maintained at 200 ° C. while stirring, and stirred for 10 minutes to synthesize CdSe semiconductor particles.

また、ZnS粒子の合成は次のように行なった。五酸化りんで乾燥させた窒素雰囲気のグローブボックス中でフラスコにトリオクチルフォスフィン12.5gと硫黄0.16gを加え、これを1時間攪拌した。次に、これにトリオクチルフォスフィン20g、酢酸亜鉛0.212g、ドデシルアミン(第1の液体)20mlを予め130℃で混合したものを加えた。これを200℃に加熱し、撹拌しながらそのまま200℃に維持して10分間攪拌してCdSe半導体粒子を合成した。   The synthesis of ZnS particles was performed as follows. In a glove box in a nitrogen atmosphere dried with phosphorus pentoxide, 12.5 g of trioctylphosphine and 0.16 g of sulfur were added to the flask, and this was stirred for 1 hour. Next, 20 g of trioctylphosphine, 0.212 g of zinc acetate, and 20 ml of dodecylamine (first liquid) previously mixed at 130 ° C. were added thereto. This was heated to 200 ° C., maintained at 200 ° C. while stirring, and stirred for 10 minutes to synthesize CdSe semiconductor particles.

なお、溶媒として用いたドデシルアミン(第1の液体)は、予め酸化カルシウムを加えて2時間還留した後に蒸留して水を除去したものを用いた。また、比較例として含水溶媒系でZnS半導体粒子を合成した。ヘプタン15mlにビス(2−エチルヘキシル)スルホこはく酸ナトリウム1.6gを溶解し、これに水0.518gを添加した。これに硫化ナトリウム1.17gを加えた。また、これとは別にヘプタン15mlにビス(2−エチルヘキシル)スルホこはく酸ナトリウム1.6gを溶解し、これに水0.518gを添加した。これに酢酸亜鉛を5.5g溶解した。つぎにこれら2つの溶液を混合して24時間攪拌してZnS半導体粒子を合成した。   In addition, the dodecylamine (1st liquid) used as a solvent used what removed the water by distilling, after adding calcium oxide previously and carrying out 2-hour return distillation. As a comparative example, ZnS semiconductor particles were synthesized in a hydrous solvent system. 1.6 g of sodium bis (2-ethylhexyl) sulfosuccinate was dissolved in 15 ml of heptane, and 0.518 g of water was added thereto. To this was added 1.17 g of sodium sulfide. Separately, 1.6 g of sodium bis (2-ethylhexyl) sulfosuccinate was dissolved in 15 ml of heptane, and 0.518 g of water was added thereto. In this solution, 5.5 g of zinc acetate was dissolved. Next, these two solutions were mixed and stirred for 24 hours to synthesize ZnS semiconductor particles.

これらの方法で作製したCdSe並びにZnS半導体粒子の粒径は次のようにして確認している。粒子濃度が0.002〜0.02モル/リットルの範囲の半導体粒子分散液を調整する。溶媒はIPAやトルエンを用いる。   The particle diameters of CdSe and ZnS semiconductor particles produced by these methods are confirmed as follows. A semiconductor particle dispersion having a particle concentration in the range of 0.002 to 0.02 mol / liter is prepared. As the solvent, IPA or toluene is used.

なお、半導体粒子の粒径は、合成温度や合成時間によって制御することができ、合成温度を高くする、あるいは合成時間を長くすることで半導体粒子の粒径を大きくすることができる。   The particle size of the semiconductor particles can be controlled by the synthesis temperature and the synthesis time, and the semiconductor particle size can be increased by increasing the synthesis temperature or increasing the synthesis time.

次に、TEM観察用マイクログリッドをこの粒子分散液に浸して半導体粒子を付着させ、常温でデシケーター中に静置して半導体粒子分散液を乾燥させ、半導体粒子が表面に付着したTEM観察用マイクログリッドを作成して測定に供する。   Next, the TEM observation microgrid is immersed in the particle dispersion to attach the semiconductor particles, and is left in a desiccator at room temperature to dry the semiconductor particle dispersion, and the semiconductor particles are adhered to the surface. Create a grid for measurement.

この半導体粒子の粒径をJEOL製透過型電子顕微鏡(TEM)JEM2010Fにより、加速電圧200kVで観察した。   The particle diameter of the semiconductor particles was observed at an accelerating voltage of 200 kV using a JEOL transmission electron microscope (TEM) JEM2010F.

倍率は500000倍から1000000倍で、粒子の格子縞が見えるように焦点を合わせ、得られたTEM像の拡大写真上で200個以上の粒子を試料として、粒径を測定した。粒子径が大きくて粒子全体が視野に入らない場合は、格子縞が見える高倍率で1次粒子であることを確認した後、粒子全体が視野に入る倍率でTEM像を観察し、粒径を測定した。   The magnification was 500,000 to 1,000,000 times, focusing was performed so that the lattice pattern of the particles could be seen, and the particle size was measured using 200 or more particles as a sample on the enlarged photograph of the obtained TEM image. If the particle size is large and the entire particle does not enter the field of view, after confirming that it is a primary particle at a high magnification at which lattice fringes can be seen, observe the TEM image at a magnification that allows the entire particle to enter the field of view and measure the particle size did.

この際、半導体粒子は格子縞が見えている部分のみを対象としており、粒子表面に吸着している有機配位子などの有機物は粒径に換算されてはいない。   At this time, the semiconductor particles are intended only for the portions where the lattice stripes are visible, and organic substances such as organic ligands adsorbed on the particle surfaces are not converted into particle sizes.

また、半導体粒子に比べて十分に大きいサブミクロン以上の粒子は、樹脂の破断面を走査型電子顕微鏡で観察することで、200個以上の粒子について粒径を測定した。この際、粒子の直径は、破断面表面に露出している部分の直径に対し、係数1.5を掛けて粒子全体の直径として扱った(インターセプト法、「セラミックスのキャラクタリゼーション技術」pp.7〜8、社団法人窯業協会編)。   Further, the particle size of submicron or larger particles sufficiently larger than the semiconductor particles was measured for 200 or more particles by observing the fracture surface of the resin with a scanning electron microscope. At this time, the diameter of the particle was handled as the diameter of the whole particle by multiplying the diameter of the portion exposed on the surface of the fracture surface by a factor of 1.5 (intercept method, “ceramics characterization technology” pp. 7). ~ 8, Ceramics Association).

測定した粒子の直径は、ヒストグラムを書いて統計的に計算することで、長さ平均径を算出した。長さ平均径の算出方法は、粒子径区に属する個数をカウントし、粒子径区の中心値と個数のそれぞれの積の和を、測定した粒子の個数の総数で割るという方法を用いた(平均粒子径の形状とその計算式、「セラミックの製造プロセス」pp.11〜12、窯業協会編集委員会講座小委員会編)。このようにして計算した長さ平均径を平均粒子径として扱った。   The diameter of the measured particles was calculated statistically by writing a histogram, thereby calculating the length average diameter. The length average diameter was calculated by counting the number of particles belonging to the particle diameter group and dividing the sum of the product of the center value and the number of particle diameter groups by the total number of particles measured ( Average particle diameter shape and its calculation formula, “Ceramic Manufacturing Process”, pp. 11-12, edited by the Ceramic Industry Association Editorial Committee Lecture Subcommittee). The length average diameter thus calculated was treated as the average particle diameter.

なお、TEM観察で得られた像を透明な樹脂フィルムシートに写し取り、画像解析処理装置によって、粒子の平均粒子径を求める方法でも測定は可能であることを確認した。   The image obtained by TEM observation was copied onto a transparent resin film sheet, and it was confirmed that the measurement was possible by a method of obtaining the average particle diameter of the particles using an image analysis processor.

先の水が混入しない方法を用いて合成したCdSe並びにZnS半導体粒子および含水系溶媒中で合成したZnS半導体粒子の平均粒径をこの方法で測定したところ、その平均粒径はいずれも3.5nmであった。   When the average particle size of CdSe and ZnS semiconductor particles synthesized using the above-mentioned method in which water is not mixed and ZnS semiconductor particles synthesized in a water-containing solvent was measured by this method, the average particle size was 3.5 nm. Met.

以下、水が混入しない方法を用いて合成したCdSeならびにZnS半導体粒子を分散させた波長変換器の製造方法をCdSe半導体粒子を例にとり説明する。合成したCdSe半導体粒子の精製を行った。CdSeを合成した反応液にモレキュラーシーブ3Aで脱水したエタノールをCdSe半導体粒子が凝集体を形成するまで加え、続いてこれを遠心分離機にかけてCdSe半導体粒子を完全に沈殿させたのち上澄みのエタノール溶液を取り除くことにより、CdSe半導体粒子から原料未反応物や副生成物を除去した。   Hereinafter, a method for producing a wavelength converter in which CdSe and ZnS semiconductor particles synthesized using a method in which water is not mixed is dispersed will be described by taking CdSe semiconductor particles as an example. The synthesized CdSe semiconductor particles were purified. Ethanol dehydrated with molecular sieve 3A was added to the reaction solution in which CdSe was synthesized until CdSe semiconductor particles formed aggregates, and then this was centrifuged to completely precipitate CdSe semiconductor particles, and then the supernatant ethanol solution was added. By removing, raw material unreacted substances and by-products were removed from the CdSe semiconductor particles.

沈殿させたCdSe半導体粒子に対して、表1に示す第2の液体を加えて分散させて波長変換液を作製した。このとき加える第2の液体の量は半導体粒子の濃度が0.5質量%となる量とした。   A wavelength conversion liquid was prepared by adding and dispersing the second liquid shown in Table 1 to the precipitated CdSe semiconductor particles. The amount of the second liquid added at this time was such that the concentration of the semiconductor particles was 0.5% by mass.

なお、第2の液体には、予め、表1の含水量となるように水を加えておいた。   In addition, water was added to the second liquid in advance so that the water content shown in Table 1 was obtained.

この波長変換液の含水率は、JIS K 0068に規定されたカールフィッシャー滴定法(水分気化法)により求めた。   The water content of this wavelength conversion solution was determined by the Karl Fischer titration method (water vaporization method) defined in JIS K 0068.

また、液体の溶解度は、40℃における値を、それぞれの液体に対して体積で等量の水を加え、24時間撹拌し、その後、液体を必要に応じ遠心分離してJIS K 0068に規定されたカールフィッシャー滴定法(水分気化法)により求めた。   In addition, the solubility of the liquid is defined in JIS K 0068 by adding an equal volume of water to each liquid and stirring for 24 hours, and then centrifuging the liquid as necessary. Obtained by the Karl Fischer titration method (water vaporization method).

次に、厚み1mmのポリエチレン製フィルムからなる直径5mm、深さ2mmの容器に作製した波長変換液を充填した。これに厚み0.3mmのポリエチレン製フィルムでラミネーターを用いて蓋をした後、ラミネート部分を幅2mm残して切り取り形を整えて波長変換器とした。   Next, the prepared wavelength conversion liquid was filled in a container having a diameter of 5 mm and a depth of 2 mm made of a polyethylene film having a thickness of 1 mm. This was covered with a 0.3 mm thick polyethylene film using a laminator, then the laminate was left 2 mm in width, and the cut shape was adjusted to obtain a wavelength converter.

次に、含水系溶媒中で合成したZnS半導体粒子を分散させた波長変換器の製造方法を説明する。   Next, a method for manufacturing a wavelength converter in which ZnS semiconductor particles synthesized in a hydrous solvent are dispersed will be described.

まず、合成したZnS半導体粒子の精製を行った。ZnS半導体粒子を合成した反応液にチオフェノールをZnS半導体粒子が凝集体を形成するまで加え、続いてこれを遠心分離機にかけてZnS半導体粒子を完全に沈殿させたのち上澄み液を取り除くことにより、ZnS半導体粒子から原料未反応物や副生成物を除去した。   First, the synthesized ZnS semiconductor particles were purified. By adding thiophenol to the reaction solution obtained by synthesizing the ZnS semiconductor particles until the ZnS semiconductor particles form aggregates, this is then centrifuged to completely precipitate the ZnS semiconductor particles, and then the supernatant is removed. Unreacted raw materials and by-products were removed from the semiconductor particles.

沈殿させたZnS半導体粒子に対して、表1に示す第2の液体を加えて分散させて波長変換液を作製した。このとき加える第2の液体の量は半導体粒子の濃度が0.5質量%となる量とした。なお、第2の液体には、予め、表1の含水量となるように水を加えておいた。   A wavelength conversion liquid was prepared by adding and dispersing the second liquid shown in Table 1 to the precipitated ZnS semiconductor particles. The amount of the second liquid added at this time was such that the concentration of the semiconductor particles was 0.5% by mass. In addition, water was added to the second liquid in advance so that the water content shown in Table 1 was obtained.

これらの波長変換器を波長395nmの光を出力するサイズ0.3×0.3mmのIn−Ga−N組成LEDチップ上に載せて波長変換効率を測定した。測定はLabsphere社製全光束測定システムで行った。   These wavelength converters were mounted on an In—Ga—N composition LED chip having a size of 0.3 × 0.3 mm that outputs light having a wavelength of 395 nm, and the wavelength conversion efficiency was measured. The measurement was performed with a total sphere measuring system manufactured by Labsphere.

まず、波長変換器を測定装置に入れずに、(1)LEDチップの出力エネルギーを求めるとともに、LEDチップの出力波長の最大値を求めた。この出力波長の最大値は、430nmであった。   First, without putting a wavelength converter into a measuring device, (1) While calculating | requiring the output energy of a LED chip, the maximum value of the output wavelength of a LED chip was calculated | required. The maximum value of this output wavelength was 430 nm.

次に波長変換器を測定装置に入れ、LEDチップを発光させ、波長変換器に光を照射し、波長変換器から出力された220〜1100nmの範囲の光を積分球で回収して、その(2)回収エネルギーを求めた。このエネルギーのうち、LEDチップの出力波長の最大値である430nm以下の波長のエネルギーは(3)未変換のエネルギーとして取り扱う。これらの(1)LEDチップの出力エネルギーと、(2)回収エネルギーと、(3)未変換のエネルギーとを、以下の式の通りに取り扱い、波長変換器の波長変換効率を求めた。   Next, the wavelength converter is put in a measuring device, the LED chip is caused to emit light, the light is irradiated on the wavelength converter, and the light in the range of 220 to 1100 nm output from the wavelength converter is collected by an integrating sphere, 2) The recovered energy was determined. Among these energies, energy having a wavelength of 430 nm or less, which is the maximum value of the output wavelength of the LED chip, is treated as (3) unconverted energy. These (1) LED chip output energy, (2) recovered energy, and (3) unconverted energy were handled as in the following equations, and the wavelength conversion efficiency of the wavelength converter was determined.

100×((2)−(3))÷((1)−(3))
なお、測定して表に示した測定値はいずれも器を備えた波長変換器に関する値である。
100 × ((2) − (3)) ÷ ((1) − (3))
The measured values shown in the table are all values related to the wavelength converter provided with the device.

次いで、100時間後に再度、波長変換効率を測定し、初期値に対する100時間後の値の割合表1に100時間後の波長変換効率の維持率として表した。

Figure 0004771837
Then, again after between 100 hours to measure the wavelength conversion efficiency, the ratio of the value after 100 hours relative to the initial value, expressed in Table 1 as maintenance of the wavelength conversion efficiency after 100 hours.
Figure 0004771837

本発明の範囲外である水溶液中で合成した試料No.19では、初期の波長変換効率が格段に低く、しかも100時間後に、波長変換効率が初期の波長変換効率に対して42%以下にまで低下した。   Sample No. synthesized in an aqueous solution outside the scope of the present invention. In No. 19, the initial wavelength conversion efficiency was remarkably low, and after 100 hours, the wavelength conversion efficiency decreased to 42% or less of the initial wavelength conversion efficiency.

また、本発明の範囲外である波長変換液の含水量が、0.1質量%を越える試料No.15、16では、100時間後に、波長変換効率が48%以下にまで低下した。   In addition, Sample No. in which the water content of the wavelength conversion liquid which is outside the scope of the present invention exceeds 0.1 mass%. In 15 and 16, the wavelength conversion efficiency decreased to 48% or less after 100 hours.

一方、本発明の試料No.1,13,14および17では、いずれも100時間後波長変換効率初期に対して59%を維持している。 On the other hand, specimen of the present invention No. 1, the 13, 14 and 17, both the wavelength conversion efficiency after 100 hours while maintaining 59% of the initial.

本発明の波長変換器および発光装置を説明する断面図である。It is sectional drawing explaining the wavelength converter and light-emitting device of this invention. 本発明の他の形態の波長変換器および発光装置を説明する断面図である。It is sectional drawing explaining the wavelength converter and light-emitting device of the other form of this invention.

符号の説明Explanation of symbols

1・・・半導体粒子
3・・・液体
5・・・波長変換液
7・・・器
9・・・波長変換器
11・・発光素子
13・・・発光素子用配線基板
15・・・発光装置
DESCRIPTION OF SYMBOLS 1 ... Semiconductor particle 3 ... Liquid 5 ... Wavelength conversion liquid 7 ... Device 9 ... Wavelength converter 11, ... Light emitting element 13 ... Light emitting element wiring board 15 ... Light emitting device

Claims (3)

オレイルアミン,ドデシルアミン,2−エチルヘキサン酸,ドデカンチオールおよびオレイン酸の少なくとも1種からなる液体と該液体に取り囲まれて存在する平均粒径0.5〜10nmの半導体粒子とからなり、含水率が0.1質量%以下であって波長変換効率が40%以上の波長変換液を、少なくとも一部が透光性の器の中に封入してなることを特徴とする波長変換器。 It consists of a liquid composed of at least one of oleylamine, dodecylamine, 2-ethylhexanoic acid, dodecanethiol and oleic acid and semiconductor particles having an average particle diameter of 0.5 to 10 nm surrounded by the liquid, and having a water content A wavelength converter comprising: a wavelength conversion liquid having a wavelength conversion efficiency of 0.1% by mass or less and a wavelength conversion efficiency of 40% or more at least partially enclosed in a translucent device. 前記液体は水の溶解度が0.1質量%以下であることを特徴とする請求項1に記載の波長変換器。   The wavelength converter according to claim 1, wherein the liquid has a water solubility of 0.1 mass% or less. 発光素子と、該発光素子からの光を波長変換する請求項1または2に記載の波長変換器とを具備することを特徴とする発光装置。 A light emitting element, the light emitting device characterized by comprising a wavelength converter according to claim 1 or 2, the wavelength conversion light from the light emitting element.
JP2006061353A 2005-11-28 2006-03-07 Wavelength converter and light emitting device Active JP4771837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006061353A JP4771837B2 (en) 2005-11-28 2006-03-07 Wavelength converter and light emitting device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005342876 2005-11-28
JP2005342876 2005-11-28
JP2006061353A JP4771837B2 (en) 2005-11-28 2006-03-07 Wavelength converter and light emitting device

Publications (2)

Publication Number Publication Date
JP2007173754A JP2007173754A (en) 2007-07-05
JP4771837B2 true JP4771837B2 (en) 2011-09-14

Family

ID=38299871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006061353A Active JP4771837B2 (en) 2005-11-28 2006-03-07 Wavelength converter and light emitting device

Country Status (1)

Country Link
JP (1) JP4771837B2 (en)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4863745B2 (en) * 2005-11-28 2012-01-25 京セラ株式会社 Phosphor particles, wavelength converter and light emitting device
JP4960644B2 (en) * 2006-03-28 2012-06-27 京セラ株式会社 Phosphor particles, wavelength converter and light emitting device
KR100990303B1 (en) 2007-11-19 2010-10-26 삼성전자주식회사 Nanocrystal Light Emitting Device
KR101458077B1 (en) 2008-05-01 2014-11-04 삼성전자 주식회사 Light Emitting Device and Preparing Method thereof
KR101593653B1 (en) * 2008-06-26 2016-02-12 서울반도체 주식회사 Module of light emitting device and method of manufacturing the module
KR101505430B1 (en) * 2008-06-30 2015-03-31 서울반도체 주식회사 LED package
KR100982991B1 (en) * 2008-09-03 2010-09-17 삼성엘이디 주식회사 Quantum dot-wavelength conversion device, preparing method of the same and light-emitting device comprising the same
KR100982992B1 (en) 2008-09-08 2010-09-17 삼성엘이디 주식회사 Light emitting device comprising quantum dot wavelength conversion sheet, and quantum dot wavelength conversion sheet
KR101018111B1 (en) * 2008-10-07 2011-02-25 삼성엘이디 주식회사 Quantum dot-matal oxide complex, preparing method of the same and light-emitting device comprising the same
US10214686B2 (en) 2008-12-30 2019-02-26 Nanosys, Inc. Methods for encapsulating nanocrystals and resulting compositions
US8343575B2 (en) 2008-12-30 2013-01-01 Nanosys, Inc. Methods for encapsulating nanocrystals and resulting compositions
WO2010077226A1 (en) * 2008-12-30 2010-07-08 Nanosys, Inc. Methods for encapsulating nanocrystals and resulting compositions
US11198270B2 (en) 2008-12-30 2021-12-14 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods
KR101060762B1 (en) * 2009-07-15 2011-08-31 삼성엘이디 주식회사 Manufacturing method of light emitting device
KR20110136676A (en) * 2010-06-14 2011-12-21 삼성엘이디 주식회사 Light emitting device package using quantum dot, illumination apparatus and dispaly apparatus
KR101156096B1 (en) 2010-07-20 2012-06-20 엘지이노텍 주식회사 Back ligtht unit for quantum dot sheet and manufacturing method thereof
WO2012064562A1 (en) 2010-11-10 2012-05-18 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods
KR101210066B1 (en) 2011-01-31 2012-12-07 엘지이노텍 주식회사 Light conversion member and display device having the same
KR101644051B1 (en) * 2011-05-20 2016-08-01 삼성전자 주식회사 Optoelectronic device and laminated structure
KR101305696B1 (en) 2011-07-14 2013-09-09 엘지이노텍 주식회사 Display device and optical member
KR20130009020A (en) 2011-07-14 2013-01-23 엘지이노텍 주식회사 Optical member, display device having the same and method of fabricating the same
KR101241549B1 (en) 2011-07-18 2013-03-11 엘지이노텍 주식회사 Optical member, display device having the same and method of fabricating the same
KR101262520B1 (en) 2011-07-18 2013-05-08 엘지이노텍 주식회사 Display device and mrthod of fabricating the same
KR101893494B1 (en) 2011-07-18 2018-08-30 엘지이노텍 주식회사 Optical member and display device having the same
KR101294415B1 (en) 2011-07-20 2013-08-08 엘지이노텍 주식회사 Optical member and display device having the same
KR101644050B1 (en) * 2011-09-09 2016-08-01 삼성전자 주식회사 Case including semiconductor nanocrystal and optoelectronic device including the same
KR101251815B1 (en) 2011-11-07 2013-04-09 엘지이노텍 주식회사 Optical sheet and display device having the same
KR20200013093A (en) * 2012-05-14 2020-02-05 루미리즈 홀딩 비.브이. Light emitting device with remote nanostructured phosphor
KR101364170B1 (en) * 2012-06-05 2014-02-20 포항공과대학교 산학협력단 White light emitting diode
US9202996B2 (en) * 2012-11-30 2015-12-01 Corning Incorporated LED lighting devices with quantum dot glass containment plates
JP6340422B2 (en) * 2013-11-13 2018-06-06 ナノコ テクノロジーズ リミテッド LED cap including quantum dot phosphor
CN103681990B (en) * 2013-12-11 2017-09-01 深圳市华星光电技术有限公司 LED encapsulation piece and preparation method thereof
US9708532B2 (en) * 2014-03-28 2017-07-18 Nanoco Technologies Ltd. Quantum dot compositions
JP2015226002A (en) * 2014-05-29 2015-12-14 日亜化学工業株式会社 Light-emitting device
JP2016076634A (en) 2014-10-08 2016-05-12 エルジー ディスプレイ カンパニー リミテッド Led package, backlight unit, and liquid crystal display device
DE102019104268A1 (en) * 2018-02-20 2019-08-22 Epistar Corporation Light-emitting device and manufacturing method therefor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4071724B2 (en) * 2004-02-09 2008-04-02 株式会社東芝 LED lighting device
JP4543712B2 (en) * 2004-03-17 2010-09-15 日亜化学工業株式会社 Method for manufacturing light emitting device

Also Published As

Publication number Publication date
JP2007173754A (en) 2007-07-05

Similar Documents

Publication Publication Date Title
JP4771837B2 (en) Wavelength converter and light emitting device
JP4863745B2 (en) Phosphor particles, wavelength converter and light emitting device
JP4960644B2 (en) Phosphor particles, wavelength converter and light emitting device
JP4960645B2 (en) Wavelength converter and light emitting device
JP4653662B2 (en) Wavelength converter, light emitting device, method for manufacturing wavelength converter, and method for manufacturing light emitting device
US7518160B2 (en) Wavelength converter, lighting system, and lighting system assembly
JP7070826B2 (en) Semiconductor nanoparticles and their manufacturing methods and light emitting devices
JP4969088B2 (en) Phosphor, wavelength converter and light emitting device
US20200308483A1 (en) Semiconductor nanoparticles and method of producing semiconductor nanoparticles
JP6393043B2 (en) Red lamp with quantum dot layer
JP4838005B2 (en) Light emitting device
JP5682902B2 (en) High luminous efficiency nanoparticles with water dispersibility
JP2007157798A (en) Light emitting device
JP2007123390A (en) Light emitting device
JP2007146154A (en) Wavelength converter, lighting system, and lighting system assembly
JP2007103512A (en) Light emitting device
KR20230163570A (en) Semiconductor nanoparticle, method for producing same, and light-emitting device
JP7278371B2 (en) Quantum dot, wavelength conversion material, backlight unit, image display device, and method for manufacturing quantum dot
Chang et al. A water–ethanol phase assisted co-precipitation approach toward high quality quantum dot–inorganic salt composites and their application for WLEDs
JP4969100B2 (en) Manufacturing method of semiconductor phosphor
JP2024022662A (en) Near-infrared light-emitting phosphor and light-emitting device
JP2007197612A (en) Fluorescent substance, wavelength converter, and light emitting device
US11981849B2 (en) Semiconductor nanoparticles, method of producing the semiconductor nanoparticles, and light-emitting device
JP2006054313A (en) Semiconductor light-emitting device
TWI683794B (en) Method for manufacturing glass powder with phosphor attached and wavelength conversion member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4771837

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150