JP2007103512A - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP2007103512A
JP2007103512A JP2005289133A JP2005289133A JP2007103512A JP 2007103512 A JP2007103512 A JP 2007103512A JP 2005289133 A JP2005289133 A JP 2005289133A JP 2005289133 A JP2005289133 A JP 2005289133A JP 2007103512 A JP2007103512 A JP 2007103512A
Authority
JP
Japan
Prior art keywords
phosphor
light
light emitting
emitting device
conversion layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005289133A
Other languages
Japanese (ja)
Inventor
Masato Fukutome
正人 福留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2005289133A priority Critical patent/JP2007103512A/en
Publication of JP2007103512A publication Critical patent/JP2007103512A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Landscapes

  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting device which can emit white light excellent in color balance efficiently. <P>SOLUTION: The light emitting device comprises a light emitting element 3 formed on a substrate 2 and emitting excitation light in the wavelength range of 370-420 nm, and a wavelength conversion layer 4 formed to cover the light emitting element 3 in order to convert the excitation light into visible light and outputting the visible light. The wavelength conversion layer 4 includes a blue phosphor 5a emitting fluorescence of 430-490 nm, a green phosphor 5b emitting fluorescence of 500-560 nm, a yellow phosphor 5c emitting fluorescence of 540-600 nm, and red phosphor 5d emitting fluorescence of 590-700 nm wherein each phosphor has conversion efficiency of 60% or above and the difference of conversion efficiency of respective phosphors falls within 15%. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、LED(Light Emitting Diode:発光ダイオード)などの発光素子から発せられる光を波長変換して外部に取り出す発光装置、特に、電子ディスプレイ用のバックライト電源、蛍光ランプ等に好適に用いられる発光装置に関する。   INDUSTRIAL APPLICABILITY The present invention is suitably used for a light-emitting device that converts the wavelength of light emitted from a light-emitting element such as an LED (Light Emitting Diode) and extracts it to the outside, in particular, a backlight power source for an electronic display, a fluorescent lamp, and the like. The present invention relates to a light emitting device.

半導体材料からなる発光素子(以下「LEDチップ」と言うことがある)は、小型で電力効率が良く鮮やかに発色する。LEDチップは、製品寿命が長い、オン・オフ点灯の繰り返しに強い、消費電力が低い、という優れた特徴を有するため、液晶等のバックライト光源や蛍光ランプ等の照明用光源への応用が期待されている。   A light emitting element made of a semiconductor material (hereinafter sometimes referred to as “LED chip”) is small in size, has high power efficiency, and vividly develops color. LED chips have excellent characteristics such as long product life, strong on / off lighting repeatability, and low power consumption, so they are expected to be applied to backlight sources such as liquid crystals and lighting sources such as fluorescent lamps. Has been.

LEDチップの発光装置への応用は、LEDチップの光の一部を蛍光体で波長変換し、当該波長変換された光と波長変換されないLEDの光とを混合して放出することにより、LEDの光とは異なる色を発光する発光装置として既に製造されている。   The application of the LED chip to the light emitting device is that the wavelength of part of the light of the LED chip is converted with a phosphor, and the wavelength-converted light and the light of the LED that is not wavelength-converted are mixed and emitted, thereby It has already been manufactured as a light emitting device that emits a color different from that of light.

具体的には、白色光を発するために、LEDチップ表面に蛍光体を含む波長変換層を設けた発光装置が提案されている。例えば、nGaN系材料を使った青色LEDチップ上に(Y,Gd)3(Al,Ga)512の組成式で表されるYAG系蛍光体を含む波長変換層を形成した発光装置では、LEDチップから青色光が放出され、波長変換層で青色光の一部が黄色光に変化するため、青色と黄色の光が混色して白色を呈する発光装置が提案されている(特許文献1参照)。 Specifically, in order to emit white light, a light emitting device in which a wavelength conversion layer containing a phosphor is provided on the surface of an LED chip has been proposed. For example, in a light emitting device in which a wavelength conversion layer containing a YAG phosphor expressed by a composition formula of (Y, Gd) 3 (Al, Ga) 5 O 12 is formed on a blue LED chip using an nGaN-based material, Since blue light is emitted from the LED chip and a part of the blue light is changed to yellow light in the wavelength conversion layer, a light emitting device in which blue and yellow light are mixed and white is proposed (see Patent Document 1). ).

このような構成の発光装置の一例を図4に示す。図4によれば、発光装置は、電極101が形成された基板102と、基板102上に中心波長が470nmの光を発する半導体材料を具備する発光素子103と、基板102上に発光素子103を覆うように設けられた、波長変換層104とを具備し、波長変換層104が蛍光体105を含有してなるものである。なお、所望により、発光素子103と波長変換層104との側面には、光を反射する反射体106を設け、側面に逃げる光を前方に焦光し、出力光の強度を高めることもできる。   An example of such a light emitting device is shown in FIG. 4, the light-emitting device includes a substrate 102 on which an electrode 101 is formed, a light-emitting element 103 including a semiconductor material that emits light having a central wavelength of 470 nm on the substrate 102, and a light-emitting element 103 on the substrate 102. The wavelength conversion layer 104 is provided so as to cover it, and the wavelength conversion layer 104 contains the phosphor 105. If desired, a reflector 106 that reflects light may be provided on the side surfaces of the light emitting element 103 and the wavelength conversion layer 104, and the light escaping to the side surfaces may be focused forward to increase the intensity of the output light.

この発光装置では、発光素子103から発する光が蛍光体105に照射されると、蛍光体105は励起されて可視光を発し、この可視光が出力として利用される。ところが、発光素子103の明るさを変えると、青色と黄色との光量比が変化するため、白色の色調が変化し、演色性に劣るといった問題があった。   In this light emitting device, when the phosphor 105 is irradiated with light emitted from the light emitting element 103, the phosphor 105 is excited to emit visible light, and this visible light is used as an output. However, when the brightness of the light emitting element 103 is changed, the light quantity ratio between blue and yellow changes, so that there is a problem that the color tone of white changes and the color rendering property is inferior.

そこで、このような課題を解決するために、図5における発光素子103として400nm以下のピークを有する紫色LEDチップを用いるとともに、波長変換層104には3種類の蛍光体115、116および117を高分子樹脂中に混ぜ込んだ構造を採用し、紫色光を赤色、緑色、青色の各波長に変換して白色を発光することが提案されている(特許文献2参照)。これにより、演色性を向上することができる。   Therefore, in order to solve such a problem, a purple LED chip having a peak of 400 nm or less is used as the light-emitting element 103 in FIG. 5, and three types of phosphors 115, 116, and 117 are formed on the wavelength conversion layer 104. It has been proposed to adopt a structure mixed in a molecular resin and convert white light by converting violet light into red, green, and blue wavelengths (see Patent Document 2). Thereby, a color rendering property can be improved.

しかしながら、特許文献2に記載の発光装置では、励起光400nm付近の紫外域領域に対する赤色成分の蛍光体(例えば、Y23S:Eu等)の発光効率が、他の蛍光体よりも著しく低いために、赤、緑、青の発光バランスの良い白色光を得ることができないといった問題があった。そのため、発光効率の低い赤色蛍光体の混合量を増やすと、緑色および青色蛍光体から発せられた蛍光が赤色蛍光体に再吸収されるため、緑色および青系蛍光体の発光量が低く抑えられ、その結果白色発光装置の発光効率が向上しないという問題がある。 However, in the light emitting device described in Patent Document 2, the luminous efficiency of a red component phosphor (for example, Y 2 O 3 S: Eu) in the ultraviolet region near 400 nm of excitation light is significantly higher than other phosphors. Due to the low level, there is a problem that white light with a good emission balance of red, green and blue cannot be obtained. Therefore, if the amount of the red phosphor with low luminous efficiency is increased, the fluorescence emitted from the green and blue phosphors is reabsorbed by the red phosphor, so that the emission amounts of the green and blue phosphors can be kept low. As a result, there is a problem that the luminous efficiency of the white light emitting device is not improved.

また、発光効率の高い緑色、青色蛍光体の混合量を増やすことによって効率向上は図れるが、赤、緑、青の発光バランスの良い白色光を得ることができなくなるという問題がある。
特開平11−261114号公報 特開2002−314142号公報
Further, the efficiency can be improved by increasing the mixing amount of the green and blue phosphors having high luminous efficiency, but there is a problem that it is impossible to obtain white light with a good emission balance of red, green and blue.
JP 11-261114 A JP 2002-314142 A

本発明の課題は、色バランスの優れた白色光を効率良く発光させることができる発光装置を提供することにある。   An object of the present invention is to provide a light emitting device capable of efficiently emitting white light with excellent color balance.

本発明者は、上記課題を解決すべく鋭意研究を重ねた結果、一定量以上の変換効率を有し、変換効率のばらつき(差)が小さい青色蛍光体、緑色蛍光体、黄色蛍光体および赤色蛍光体を用いた場合には、色バランスの良い優れた白色光を効率良く発光することができることを見出して、本発明を完成させるに至った。   As a result of intensive studies to solve the above problems, the present inventor has blue phosphors, green phosphors, yellow phosphors and red phosphors having a conversion efficiency of a certain amount or more and a small variation (difference) in conversion efficiency. It has been found that when a phosphor is used, it is possible to efficiently emit excellent white light with good color balance, and the present invention has been completed.

すなわち、本発明の発光装置は以下の構成を有する。
(1) 基板上に、370nm〜420nmの波長範囲の励起光を発する発光素子、およびこの発光素子を覆うように形成された前記励起光を可視光に変換する波長変換層を備え、前記可視光を出力光とする発光装置であって、前記波長変換層内には、430nmから490nmの蛍光を発する青色蛍光体と、500nmから560nmの蛍光を発する緑色蛍光体と、540nmから600nmの蛍光を発する黄色蛍光体と、590nmから700nmの蛍光を発する赤色蛍光体とが含まれており、前記各蛍光体は60%以上の変換効率を有し、かつ、各蛍光体の変換効率の差が15%以内であることを特徴とする発光装置。
(2) 前記黄色蛍光体および赤色蛍光体は発光素子に近い部分に多く含有されており、前記青色蛍光体および緑色蛍光体は、黄色蛍光体および赤色蛍光体よりも発光素子から遠い部分に、多く含有されていることを特徴とする(1)に記載の発光装置。
(3) 波長変換層は1層からなることを特徴とする(2)に記載の発光装置。
(4) 前記波長変換層は、2層以上の積層構造からなり、青色蛍光体および緑色蛍光体が含まれている層よりも発光素子に近い層に、黄色蛍光体および赤色蛍光体が含まれていることを特徴とする(1)または(2)に記載の発光装置。
(5) 前記蛍光体が、珪素−酸素の結合を主体とする高分子樹脂中に分散されていることを特徴とする(1)〜(4)のいずれかに記載の発光装置。
(6) 前記出力光のピーク波長が、400〜750nmであることを特徴とする(1)〜(5)のいずれかに記載の発光装置
(7) 前記波長変換層の厚みが、0.1〜5mmであることを特徴とする(1)〜(6)のいずれかに記載の発光装置。
(8) 前記発光素子および波長変換層の側面に、発光素子から発する光を前方に出射する反射部材が設けられていることを特徴とする(1)〜(7)のいずれかに記載の発光装置。
(9) 前記青色蛍光体の平均粒子径が、0.1〜50μmであることを特徴とする(1)〜(8)のいずれかに記載の発光装置。
(10) 前記青色蛍光体が、〔(M,Mg)10(PO46Cl2:Eu〕(MはCa,SrおよびBaから選ばれる少なくとも1種)または〔BaMgAl1017:Eu〕であることを特徴とする(1)〜(9)のいずれかに記載の発光装置。
(11) 前記緑色蛍光体の平均粒子径が、0.1〜50μmであることを特徴とする(1)〜(10)のいずれかに記載の発光装置。
(12) 前記緑色蛍光体が、〔BaMgAl1017:Eu,Mn〕、〔ZnS:Cu,Al〕または〔MGa24:Eu〕であることを特徴とする(1)〜(11)のいずれかに記載の発光装置。
(13) 前記赤色蛍光体が、平均粒子径10nm以下の半導体超微粒子であることを特徴とする(1)〜(12)のいずれかに記載の発光装置。
(14) 前記赤色蛍光体が、周期律表第I族、第II族、第III族、第IV族、第V族、第VI族に属する少なくとも2種類以上の元素からなる半導体組成物であることを特徴とする(1)〜(13)のいずれかに記載の発光装置。
(15) 前記黄色蛍光体が、平均粒子径10nm以下の半導体超微粒子であることを特徴とする(1)〜(14)のいずれかに記載の発光装置。
(16) 前記黄色蛍光体が、周期律表第I族、第II族、第III族、第IV族、第V族、第VI族に属する少なくとも2種類以上の元素からなる半導体組成物であることを特徴とする(1)〜(15)のいずれかに記載の発光装置。
That is, the light emitting device of the present invention has the following configuration.
(1) A light emitting element that emits excitation light in a wavelength range of 370 nm to 420 nm on a substrate, and a wavelength conversion layer that converts the excitation light formed so as to cover the light emitting element into visible light, the visible light In the wavelength conversion layer, a blue phosphor emitting fluorescence of 430 nm to 490 nm, a green phosphor emitting fluorescence of 500 nm to 560 nm, and fluorescence of 540 nm to 600 nm are emitted in the wavelength conversion layer. A yellow phosphor and a red phosphor emitting fluorescence from 590 nm to 700 nm, each phosphor has a conversion efficiency of 60% or more, and the difference in conversion efficiency of each phosphor is 15%. A light emitting device characterized by being within.
(2) The yellow phosphor and the red phosphor are contained in a portion close to the light emitting element, and the blue phosphor and the green phosphor are located farther from the light emitting element than the yellow phosphor and the red phosphor. The light emitting device according to (1), wherein the light emitting device is contained in a large amount.
(3) The light emitting device according to (2), wherein the wavelength conversion layer is composed of one layer.
(4) The wavelength conversion layer has a laminated structure of two or more layers, and a yellow phosphor and a red phosphor are contained in a layer closer to the light emitting element than a layer containing a blue phosphor and a green phosphor. The light-emitting device according to (1) or (2), wherein
(5) The light-emitting device according to any one of (1) to (4), wherein the phosphor is dispersed in a polymer resin mainly composed of a silicon-oxygen bond.
(6) The light emitting device according to any one of (1) to (5), wherein a peak wavelength of the output light is 400 to 750 nm. (7) A thickness of the wavelength conversion layer is 0.1. The light-emitting device according to any one of (1) to (6), which is ˜5 mm.
(8) The light emitting device according to any one of (1) to (7), wherein a reflective member that emits light emitted from the light emitting device forward is provided on side surfaces of the light emitting device and the wavelength conversion layer. apparatus.
(9) The light emitting device according to any one of (1) to (8), wherein an average particle size of the blue phosphor is 0.1 to 50 μm.
(10) The blue phosphor is [(M, Mg) 10 (PO 4 ) 6 Cl 2 : Eu] (M is at least one selected from Ca, Sr and Ba) or [BaMgAl 10 O 17 : Eu]. The light-emitting device according to any one of (1) to (9), wherein
(11) The light emitting device according to any one of (1) to (10), wherein the green phosphor has an average particle size of 0.1 to 50 μm.
(12) The green phosphor is [BaMgAl 10 O 17 : Eu, Mn], [ZnS: Cu, Al] or [MGa 2 S 4 : Eu] (1) to (11) The light emitting device according to any one of the above.
(13) The light-emitting device according to any one of (1) to (12), wherein the red phosphor is a semiconductor ultrafine particle having an average particle diameter of 10 nm or less.
(14) The red phosphor is a semiconductor composition comprising at least two elements belonging to Group I, Group II, Group III, Group IV, Group V, and Group VI of the Periodic Table The light-emitting device according to any one of (1) to (13).
(15) The light-emitting device according to any one of (1) to (14), wherein the yellow phosphor is a semiconductor ultrafine particle having an average particle diameter of 10 nm or less.
(16) The yellow phosphor is a semiconductor composition comprising at least two elements belonging to Group I, Group II, Group III, Group IV, Group V, and Group VI of the Periodic Table The light emitting device according to any one of (1) to (15).

上記(1)によれば、波長変換層内に混合された、40nmから490nmの蛍光を発する青色蛍光体と、500nmから560nmの蛍光を発する緑色蛍光体と、540nmから600nmの蛍光を発する黄色蛍光体と、590nmから700nmの蛍光を発する赤色蛍光体とについて、各々の蛍光体の変換効率(量子収率)が60%以上で、かつ、各蛍光体の変換効率の差を15%以内とすることによって、出力光の演色性が向上し、かつ優れた発光効率を実現することができる。   According to the above (1), a blue phosphor emitting fluorescence of 40 nm to 490 nm, a green phosphor emitting fluorescence of 500 nm to 560 nm, and a yellow fluorescence emitting fluorescence of 540 nm to 600 nm mixed in the wavelength conversion layer. And a red phosphor emitting fluorescence of 590 nm to 700 nm, the conversion efficiency (quantum yield) of each phosphor is 60% or more, and the difference in conversion efficiency of each phosphor is within 15% As a result, the color rendering properties of the output light can be improved, and excellent luminous efficiency can be realized.

上記(2)によれば、波長変換層内の蛍光体の配置が、前記発光素子に遠い部分では青色蛍光体および緑色蛍光体が多く、前記発光素子に近い部分では黄色蛍光体および赤色蛍光体が多く含有されている。このような構成とすることにより、蛍光体間の自己吸収による発光効率の低下を抑制することできる。さらに、上記(3)のように波長変換層を1層構造とする場合は、層を複数設ける場合と比べて、層を形成する工程を少なくすることができる。   According to the above (2), the arrangement of the phosphors in the wavelength conversion layer is mostly blue phosphors and green phosphors in portions far from the light emitting elements, and yellow phosphors and red phosphors in portions near the light emitting elements. Is contained in large quantities. By setting it as such a structure, the fall of the luminous efficiency by the self absorption between fluorescent substance can be suppressed. Furthermore, when the wavelength conversion layer has a single-layer structure as in (3) above, the number of steps for forming the layer can be reduced compared to the case where a plurality of layers are provided.

上記(4)によれば、発光素子から遠い部分に青色蛍光体および緑色蛍光体が分散された層が形成され、発光素子に近い方に黄色蛍光体および赤色蛍光体が分散された層が形成されている。このような構造とすることにより、さらに上記自己吸収による効率低下を抑制することができる。波長変換層を各蛍光体が含有された2層以上の積層構造にすることにより、波長変換層の作製条件を簡略化でき、かつ信頼性に優れた波長変換層を実現できるため、有効である。
なお、波長変換層は、1層構造および多層構造のいずれでもよいが、採用する蛍光体組成や平均粒子径などにより、その最適性は異なるため、目的に応じていずれかを採用すればよい。
According to the above (4), a layer in which the blue phosphor and the green phosphor are dispersed is formed in a portion far from the light emitting element, and a layer in which the yellow phosphor and the red phosphor are dispersed is formed near the light emitting element. Has been. By setting it as such a structure, the efficiency fall by the said self absorption can be suppressed further. It is effective because the wavelength conversion layer can be made into a laminated structure of two or more layers containing each phosphor, whereby the wavelength conversion layer can be simplified and the wavelength conversion layer excellent in reliability can be realized. .
The wavelength conversion layer may be either a single-layer structure or a multilayer structure, but the optimality varies depending on the phosphor composition to be employed, the average particle diameter, and the like, and any one may be employed depending on the purpose.

上記(5)によれば、波長変換層は、珪素−酸素結合を主体とする高分子樹脂中に前記蛍光体が分散混合されている。その結果、波長変換層の耐光性、耐熱性、透明性を高め、結果発光装置の長寿命を確保することができる。   According to the above (5), in the wavelength conversion layer, the phosphor is dispersed and mixed in a polymer resin mainly composed of silicon-oxygen bonds. As a result, the light resistance, heat resistance, and transparency of the wavelength conversion layer can be increased, and as a result, the long life of the light emitting device can be ensured.

上記(6)によれば、波長変換層からの出力光のピーク波長が400〜750nmであることにより、さらに演色性に優れた発光装置を実現できる。
上記(7)によれば、波長変換層の厚みが0.1〜5mmであることにより、変換効率が高く、かつ、光が充分に透過するため、より優れた発光特性を示すことができる。
According to (6) above, when the peak wavelength of the output light from the wavelength conversion layer is 400 to 750 nm, it is possible to realize a light emitting device that is further excellent in color rendering.
According to the above (7), since the wavelength conversion layer has a thickness of 0.1 to 5 mm, the conversion efficiency is high and light is sufficiently transmitted, so that more excellent light emission characteristics can be exhibited.

上記(8)によれば、前記発光素子の周りに、発光素子から発する光を前方に出射するように設けられた側面側反射部材を有した構造とすることにより、従来、横方向や基板側に出射していた発光素子からの光を、前面から出射させることができ、発光効率を向上することができる。   According to the above (8), the lateral side or the substrate side is conventionally provided by having a structure including the side-surface reflecting member provided so as to emit light emitted from the light emitting element forward around the light emitting element. The light emitted from the light emitting element can be emitted from the front surface, and the light emission efficiency can be improved.

上記(9)、(10)によれば、青色蛍光体が所定の平均粒子径および組成を有することにより、高い変換効率を得ることができる。
上記(11)、(12)によれば、緑色蛍光体が所定の平均粒子径および組成を有することにより、高い変換効率を得ることができる。
According to the above (9) and (10), high conversion efficiency can be obtained because the blue phosphor has a predetermined average particle diameter and composition.
According to the above (11) and (12), high conversion efficiency can be obtained because the green phosphor has a predetermined average particle diameter and composition.

上記(13)、(15)によれば、平均粒子径10nm以下の半導体超微粒子である黄色蛍光体および赤色蛍光体は、370nm〜420nmの波長範囲での励起効率が高いため、優れた発光効率を得ることができる。
上記(14)、(16)によれば、さらに高い変換効率を得ることができる。
According to the above (13) and (15), yellow phosphors and red phosphors, which are semiconductor ultrafine particles having an average particle diameter of 10 nm or less, have high excitation efficiency in the wavelength range of 370 nm to 420 nm, and thus excellent luminous efficiency. Can be obtained.
According to the above (14) and (16), higher conversion efficiency can be obtained.

本発明の発光装置を、図面を用いて説明する。図1は、本発明の発光装置の一実施形態を示す概略断面図である。図1によれば、本発明の発光装置は、電極1が形成された基板2と、基板2上に設けられている発光素子3と、基板2上に発光素子3を覆うように形成された1層の波長変換層4と、光を反射する反射部材6とを備えている。   The light emitting device of the present invention will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing an embodiment of a light emitting device of the present invention. According to FIG. 1, the light emitting device of the present invention is formed so as to cover the light emitting element 3 on the substrate 2, the light emitting element 3 provided on the substrate 2, the substrate 2 on which the electrode 1 is formed. One wavelength conversion layer 4 and a reflecting member 6 that reflects light are provided.

電極1は、発光素子3を電気的に接続するための導電路としての機能を有し、導電性接合材で発光素子3と接続されている。電極1としては、例えば、W,Mo,Cu,Ag等の金属粉末を含むメタライズ層を用いることができる。電極1は、基体1がセラミックスから成る場合、その上面に配線導体がタングステン(W),モリブデン(Mo)−マンガン(Mn)等から成る金属ペーストを高温で焼成して形成され、基体1が樹脂から成る場合、銅(Cu)や鉄(Fe)−ニッケル(Ni)合金等から成るリード端子がモールド成型されて基体1の内部に設置固定される。   The electrode 1 has a function as a conductive path for electrically connecting the light emitting element 3 and is connected to the light emitting element 3 with a conductive bonding material. As the electrode 1, for example, a metallized layer containing metal powder such as W, Mo, Cu, or Ag can be used. When the substrate 1 is made of ceramic, the electrode 1 is formed by firing a metal paste made of tungsten (W), molybdenum (Mo) -manganese (Mn), etc. on the upper surface of the substrate 1 at a high temperature. , A lead terminal made of copper (Cu), iron (Fe) -nickel (Ni) alloy or the like is molded and fixed inside the substrate 1.

基板2としては、熱伝導性に優れ、かつ全反射率の大きな基板が用いられる。基板2としては、例えばアルミナ、窒素アルミニウム等のセラミック材料の他に、金属酸化物微粒子を分散させた高分子樹脂が好適に用いられる。   As the substrate 2, a substrate having excellent thermal conductivity and a large total reflectance is used. As the substrate 2, for example, a polymer resin in which metal oxide fine particles are dispersed in addition to a ceramic material such as alumina and aluminum nitride is preferably used.

発光素子3としては、370nm〜420nm、好ましくは380nm〜410nmの波長範囲の励起光を発する素子を用いることができる。発光素子3は、中心波長370nm〜420nmを発するものであれば特に制限されるものではないが、発光素子3の発光素子基板表面に、半導体材料からなる発光層を備える構造(不図示)を有していることが、高い外部量子効率を有する点で好ましい。このような半導体材料としては、ZnSeや窒化物半導体(GaN等)等種々の半導体を挙げることができるが、発光波長が上記波長範囲であれば、特に半導体材料の種類は限定されない。これらの半導体材料を有機金属気相成長法(MOCVD法)や分子線エピタキシャル成長法等の結晶成長法により、半導体材料からなる発光層を有する積層構造を、発光素子基板上に形成すれば良い。なお、図1に示す発光装置では、発光素子3として、中心波長が370nm〜420nmの波長範囲の光を発する半導体材料を具備する発光素子を形成した。   As the light-emitting element 3, an element that emits excitation light in a wavelength range of 370 nm to 420 nm, preferably 380 nm to 410 nm can be used. The light emitting element 3 is not particularly limited as long as it emits a central wavelength of 370 nm to 420 nm, but has a structure (not shown) including a light emitting layer made of a semiconductor material on the surface of the light emitting element substrate of the light emitting element 3. It is preferable that it has a high external quantum efficiency. Examples of such a semiconductor material include various semiconductors such as ZnSe and nitride semiconductor (GaN, etc.), but the type of the semiconductor material is not particularly limited as long as the emission wavelength is in the above wavelength range. A stacked structure having a light-emitting layer made of a semiconductor material may be formed over the light-emitting element substrate by a crystal growth method such as a metal organic chemical vapor deposition method (MOCVD method) or a molecular beam epitaxial growth method. In the light-emitting device illustrated in FIG. 1, a light-emitting element including a semiconductor material that emits light having a central wavelength of 370 nm to 420 nm is formed as the light-emitting element 3.

波長変換層4には、430nmから490nmの蛍光を発する青色蛍光体5a、500nmから560nmの蛍光を発する緑色蛍光体5b、540nmから600nmの蛍光を発する黄色蛍光体5c、および590nmから700nmの蛍光を発する赤色蛍光体5dが含有されている。また、図1に示す波長変換層4では、発光素子3に近い部分には黄色蛍光体5cおよび赤色蛍光体5dが偏在しており、黄色蛍光体5cおよび赤色蛍光体5dよりも発光素子3から遠い部分には、青色蛍光体5aおよび緑色蛍光体5bが偏在している。   The wavelength conversion layer 4 has a blue phosphor 5a emitting fluorescence from 430 nm to 490 nm, a green phosphor 5b emitting fluorescence from 500 nm to 560 nm, a yellow phosphor 5c emitting fluorescence from 540 nm to 600 nm, and fluorescence from 590 nm to 700 nm. The emitted red phosphor 5d is contained. Further, in the wavelength conversion layer 4 shown in FIG. 1, the yellow phosphor 5c and the red phosphor 5d are unevenly distributed in a portion close to the light emitting element 3, and the light emitting element 3 is more distant than the yellow phosphor 5c and the red phosphor 5d. In the far part, the blue phosphor 5a and the green phosphor 5b are unevenly distributed.

これに対して、蛍光体がランダムに分散されている場合、例えば、短波波長の蛍光を発する青色蛍光体及び緑色蛍光体から発せられた蛍光が、長波長蛍光を発現する黄色蛍光体及び赤色蛍光体に再吸収され、青色蛍光体及び緑色蛍光体の発光効率が低下するといったことが発生する。その結果、発光装置から出射される出力光の発光効率が低下して、発光装置全体としての発光効率が充分に高くならなかった。また、青色蛍光体及び緑色蛍光体から出射される蛍光の一部が黄色蛍光体及び赤色蛍光体に再吸収され、黄色及び赤色の蛍光を発することによって、発光装置から発せられる出力光の色バランスが大きく低下し、演色性が大きく低下する。   On the other hand, when the phosphors are randomly dispersed, for example, the fluorescent light emitted from the blue fluorescent material and the green fluorescent material that emits the short-wavelength fluorescence is converted into the yellow fluorescent material and the red fluorescent material that express the long-wavelength fluorescent light. It is reabsorbed by the body and the luminous efficiency of the blue phosphor and the green phosphor is reduced. As a result, the light emission efficiency of the output light emitted from the light emitting device is lowered, and the light emission efficiency of the light emitting device as a whole is not sufficiently increased. In addition, a part of the fluorescence emitted from the blue phosphor and the green phosphor is reabsorbed by the yellow phosphor and the red phosphor, and emits yellow and red fluorescence, thereby producing a color balance of the output light emitted from the light emitting device. Is greatly reduced, and the color rendering is greatly deteriorated.

本発明では、黄色蛍光体5cおよび赤色蛍光体5dを発光素子3の近くに含有させ、それら黄色蛍光体5cおよび赤色蛍光体5dよりも発光素子3から遠くに青色蛍光体5aおよび緑色蛍光体5bを含有させている。このように蛍光体5a〜5dを1つの層中に分離して偏在させることによって、発光素子3からの励起光を、まず黄色蛍光体5cおよび赤色蛍光体5dで黄色や赤色に変換し、次に黄色蛍光体5cおよび赤色蛍光体5dの間を通り抜けた励起光を、青色蛍光体5aおよび緑色蛍光体5bで青色や緑色に変換することができるため、蛍光体5a、5b、5cおよび5d間の自己吸収による発光効率低下を抑えて、効率よく励起光を変換することができる。   In the present invention, the yellow phosphor 5c and the red phosphor 5d are contained near the light emitting element 3, and the blue phosphor 5a and the green phosphor 5b are located farther from the light emitting element 3 than the yellow phosphor 5c and the red phosphor 5d. Is contained. As described above, the phosphors 5a to 5d are separated and unevenly distributed in one layer, whereby the excitation light from the light emitting element 3 is first converted into yellow or red by the yellow phosphor 5c and the red phosphor 5d, and then Since the excitation light that has passed between the yellow phosphor 5c and the red phosphor 5d can be converted into blue or green by the blue phosphor 5a and the green phosphor 5b, between the phosphors 5a, 5b, 5c, and 5d. It is possible to efficiently convert excitation light while suppressing a decrease in light emission efficiency due to self-absorption.

また、本発明の発光装置では、各蛍光体5a、5b、5cおよび5dの変換効率が60%以上で、かつ、それら変換効率の差が15%以内であることが好ましい。このような変換効率を有する青色蛍光体5a、緑色蛍光体5b、黄色蛍光体5cおよび赤色蛍光体5dを用いれば、バランスの取れた発光スペクトルを達成(出力光の演色性を向上)させて、非常に優れた発光効率を有する発光装置が得られる。   In the light emitting device of the present invention, it is preferable that the conversion efficiency of each phosphor 5a, 5b, 5c and 5d is 60% or more, and the difference between the conversion efficiencies is 15% or less. Using the blue phosphor 5a, the green phosphor 5b, the yellow phosphor 5c and the red phosphor 5d having such conversion efficiency, a balanced emission spectrum is achieved (improves the color rendering of the output light), A light emitting device having very excellent luminous efficiency can be obtained.

一部の蛍光体の変換効率が60%を下回る場合、最適な白色光スペクトルに対して、対応する蛍光体の蛍光強度が低下することから、発光装置から発する出力光の演色性の低下が発生すると同時に、出力光の発光効率の低下が起こる。一方、すべての蛍光体の変換効率が60%を上回っている場合でも、各蛍光体間の変換効率の差(ずれ)が大きい場合、出力光の色バランスが大きく低下し、演色性の大幅な低下が発生する。そのため、赤、緑、青の発光バランスの良い白色光を得ることができない。   When the conversion efficiency of some phosphors is less than 60%, the fluorescence intensity of the corresponding phosphors decreases for the optimal white light spectrum, resulting in a decrease in color rendering of the output light emitted from the light emitting device. At the same time, the luminous efficiency of the output light is reduced. On the other hand, even when the conversion efficiency of all the phosphors exceeds 60%, if the difference (deviation) in the conversion efficiency between the phosphors is large, the color balance of the output light is greatly reduced and the color rendering properties are greatly reduced. A decrease occurs. For this reason, it is not possible to obtain white light with a good emission balance of red, green, and blue.

なお、蛍光体の変換効率は、蛍光体から発せられた光子数を蛍光体が吸収した光子数で割った数値で定義される。光子数の測定は、非常に難しいため、一般に以下の方法を用いて、蛍光体の変換効率を求めている。変換効率が既知の参照物質を準備し、まず参照物質と蛍光体の吸光度をあわすため、トルエンやエタノール等の溶媒にて溶液濃度を調整する。参照物質と蛍光体の吸光度を合わしたあとの蛍光スペクトル面積比を求め、参照物質との相対比較により、変換効率を求めることができる。また、各蛍光体の変換効率の差は、使用する蛍光体の変換効率の平均値からのズレ(差)によって求めることができる。   The conversion efficiency of the phosphor is defined by a numerical value obtained by dividing the number of photons emitted from the phosphor by the number of photons absorbed by the phosphor. Since it is very difficult to measure the number of photons, the conversion efficiency of the phosphor is generally obtained using the following method. A reference substance with a known conversion efficiency is prepared, and first, the solution concentration is adjusted with a solvent such as toluene or ethanol in order to show the absorbance of the reference substance and the phosphor. The conversion efficiency can be obtained by obtaining the fluorescence spectrum area ratio after combining the absorbance of the reference substance and the phosphor, and comparing the relative ratio with the reference substance. Moreover, the difference in the conversion efficiency of each phosphor can be obtained by a deviation (difference) from the average value of the conversion efficiency of the phosphors used.

波長変換層4に含まれる青色蛍光体5aおよび緑色蛍光体5bは、370nm〜420nmの波長範囲の光により励起されて蛍光を発する材料であって、青色蛍光体5aは430nm〜490nmの蛍光を、緑色蛍光体5bは500nmから560nmの蛍光を発する材料であれば特に限定されない。青色蛍光体5aおよび緑色蛍光体5bは、一般的に用いられる蛍光体を採用できる。変換効率が60%以上の青色蛍光体5aおよび緑色蛍光体5bとしては、例えば、(Sr,Ca,Ba,Mg)10(PO46Cl2:Eu、BaMgAl1017:Eu,Mn、BaMgAl1017:Eu、(Ba,Eu)MgAl1017、(Sr,Ca,Ba,Mg)10(PO46Cl17:Eu、Sr10(PO46Cl12:Eu、(Ba,Sr,Eu)(Mg,Mn)Al1017、10(Sr,Ca,Ba,Eu)・6PO4・Cl2、BaMg2Al1625:Eu、Y3Al512:Tb、Y3(Al,Ga)512:Tb、Y2SiO5:Tb、Zn2SiO4:Mn、ZnS:Cu+Zn2SiO4:Mn、Gd22S:Tb、(Zn,Cd)S:Ag、Y22S:Tb、ZnS:Cu,Al+In23、(Zn,Cd)S:Ag+In23、(Zn,Mn)2SiO4、BaAl1219:Mn、(Ba,Sr,Mg)O・aAl23:Mn、LaPO4:Ce,Tb、3(Ba,Mg,Eu,Mn)O・8Al23、La23・0.2SiO2・0.9P25:Ce,Tb、CeMgAl1119:Tb、Y22S:Eu、Y23:Eu、Zn3(PO42:Mn、(Zn,Cd)S:Ag+In23、(Y,Gd、Eu)BO3、(Y,Gd、Eu)23、YVO4:Eu、La22S:Eu,Sm、YAG:Ce等が用いられる。なお、青色蛍光体5aは、〔(M,Mg)10(PO46Cl2:Eu、〕(MはCa,Sr,Baの内少なくとも1種)または〔BaMgAl1017:Eu〕が好適に用いられ、緑色蛍光体5bは、〔BaMgAl1017:Eu,Mn〕、〔ZnS:Cu,Al〕または〔MGa24:Eu〕が好適に用いられる。 The blue phosphor 5a and the green phosphor 5b included in the wavelength conversion layer 4 are materials that emit fluorescence when excited by light in a wavelength range of 370 nm to 420 nm, and the blue phosphor 5a emits fluorescence of 430 nm to 490 nm, The green phosphor 5b is not particularly limited as long as it is a material emitting fluorescence of 500 nm to 560 nm. As the blue phosphor 5a and the green phosphor 5b, commonly used phosphors can be adopted. Examples of the blue phosphor 5a and the green phosphor 5b having a conversion efficiency of 60% or more include (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 Cl 2 : Eu, BaMgAl 10 O 17 : Eu, Mn, BaMgAl 10 O 17 : Eu, (Ba, Eu) MgAl 10 O 17 , (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 Cl 17 : Eu, Sr 10 (PO 4 ) 6 Cl 12 : Eu, Ba, Sr, Eu) (Mg , Mn) Al 10 O 17, 10 (Sr, Ca, Ba, Eu) · 6PO 4 · Cl 2, BaMg 2 Al 16 O 25: Eu, Y 3 Al 5 O 12: Tb , Y3 (Al, Ga) 5 O 12: Tb, Y 2 SiO 5: Tb, Zn 2 SiO 4: Mn, ZnS: Cu + Zn 2 SiO 4: Mn, Gd 2 O 2 S: Tb, (Zn, Cd) S : Ag, Y 2 O 2 S: Tb, ZnS: Cu, Al + In 2 O 3 , (Z n, Cd) S: Ag + In 2 O 3 , (Zn, Mn) 2 SiO 4 , BaAl 12 O 19 : Mn, (Ba, Sr, Mg) O · aAl 2 O 3 : Mn, LaPO 4 : Ce, Tb, 3 (Ba, Mg, Eu, Mn) O.8Al 2 O 3 , La 2 O 3 .0.2SiO 2 .0.9P 2 O 5 : Ce, Tb, CeMgAl 11 O 19 : Tb, Y 2 O 2 S : Eu, Y 2 O 3 : Eu, Zn 3 (PO 4 ) 2 : Mn, (Zn, Cd) S: Ag + In 2 O 3 , (Y, Gd, Eu) BO 3 , (Y, Gd, Eu) 2 O 3 , YVO 4 : Eu, La 2 O 2 S: Eu, Sm, YAG: Ce, etc. are used. The blue phosphor 5a is made of [(M, Mg) 10 (PO 4 ) 6 Cl 2 : Eu] (M is at least one of Ca, Sr and Ba) or [BaMgAl 10 O 17 : Eu]. The green phosphor 5b is preferably [BaMgAl 10 O 17 : Eu, Mn], [ZnS: Cu, Al] or [MGa 2 S 4 : Eu].

青色蛍光体5aおよび緑色蛍光体5bの平均粒子径は、0.1〜50μm、好ましくは0.1〜20μm、より好ましくは1〜20μmであることが好ましい。平均粒子径が50μmより大きい場合は、波長変換層の光透過性が著しく低下することによって、蛍光体によって発せられた光が波長変換層から出射せず、結果発光装置の発光効率が著しく低下する。一方、平均粒子径が0.1μmよりも小さい場合は、表面欠陥による発光特性劣化が発生し、その結果、発光装置の発光効率が低下する。   The average particle diameter of the blue phosphor 5a and the green phosphor 5b is 0.1 to 50 μm, preferably 0.1 to 20 μm, more preferably 1 to 20 μm. When the average particle diameter is larger than 50 μm, the light transmittance of the wavelength conversion layer is remarkably lowered, so that the light emitted by the phosphor is not emitted from the wavelength conversion layer, and as a result, the luminous efficiency of the light emitting device is remarkably lowered. . On the other hand, when the average particle diameter is smaller than 0.1 μm, the light emission characteristics deteriorate due to surface defects, and as a result, the light emission efficiency of the light emitting device decreases.

波長変換層4に含まれる黄色蛍光体5cおよび赤色蛍光体5dは、半導体超微粒子からなることが好ましく、変換効率が60%以上の黄色蛍光体5cおよび赤色蛍光体5dとしては、例えば、周期律表第I族、第II族、第III族、第IV族、第V族、第VI族に属する少なくとも2種類以上の元素からなる半導体超微粒子であることがさらに好ましい。例えば、BN、BP、BAs、AlN、AlP、AlSb、GaN、GaP、GaSb、InN、InP、InSb等のIII−V族化合物半導体、ZnO、ZnS等のII−VI族化合物半導体、CuInS2、CuGaS2、CuAlS2、Cu(In1-xAlx)S2、CuInS2、Cu(In1-xGax)S2(x及びyは、それぞれ0≦x≦1、0≦y≦1で示される値)、AgInS2、AgGaS2、AgAlS2、Ag(In1-xAlx)S2、AgInS2、Ag(In1-xGax)S2、ZnAgInS2(x及びyは、それぞれ0≦x≦1、0≦y≦1で示される値)などが好適に用いられる。 The yellow phosphor 5c and the red phosphor 5d included in the wavelength conversion layer 4 are preferably composed of semiconductor ultrafine particles. Examples of the yellow phosphor 5c and the red phosphor 5d having a conversion efficiency of 60% or more include, for example, a periodic rule. More preferably, the semiconductor ultrafine particles are composed of at least two kinds of elements belonging to Tables I, II, III, IV, V, VI. For example, III-V group compound semiconductors such as BN, BP, BAs, AlN, AlP, AlSb, GaN, GaP, GaSb, InN, InP, and InSb, II-VI group compound semiconductors such as ZnO and ZnS, CuInS 2 , CuGaS 2 , CuAlS 2 , Cu (In 1-x Al x ) S 2 , CuInS 2 , Cu (In 1-x Ga x ) S 2 (x and y are 0 ≦ x ≦ 1, 0 ≦ y ≦ 1, respectively. AgInS 2 , AgGaS 2 , AgAlS 2 , Ag (In 1-x Al x ) S 2 , AgInS 2 , Ag (In 1-x Ga x ) S 2 , ZnAgInS 2 (x and y are respectively (Values represented by 0 ≦ x ≦ 1, 0 ≦ y ≦ 1) are preferably used.

本発明において、黄色蛍光体5cおよび赤色蛍光体5dの平均粒子径は、10nm以下、特に2nm〜5nmであることが好ましい。従来の黄色蛍光体は、370nm〜420nmの波長範囲での励起効率が非常に小さく、青色蛍光体から発せられた蛍光を吸収して黄色蛍光体を励起、発光させるという構造をとっていたため、青色蛍光体の発光効率が低下するという問題があったが、黄色蛍光を示す平均粒子径10nm以下の半導体超微粒子を採用することにより、上記問題点を解決して、優れた発光効率を実現できる。   In the present invention, the average particle diameter of the yellow phosphor 5c and the red phosphor 5d is preferably 10 nm or less, particularly preferably 2 nm to 5 nm. The conventional yellow phosphor has a very low excitation efficiency in the wavelength range of 370 nm to 420 nm, and has a structure in which the yellow phosphor is excited and emitted by absorbing the fluorescence emitted from the blue phosphor. There has been a problem that the luminous efficiency of the phosphor is lowered, but by adopting semiconductor ultrafine particles having an average particle diameter of 10 nm or less that exhibits yellow fluorescence, the above problems can be solved and excellent luminous efficiency can be realized.

通常の赤色蛍光体に関しても、370nm〜420nmの波長範囲での励起効率が非常に小さいという問題があるが、赤色蛍光を示す平均粒子径10nm以下の半導体超微粒子は、非常に高い発光効率を実現するため、発光効率および演色性に優れる。   Even with ordinary red phosphors, there is a problem that the excitation efficiency in the wavelength range of 370 nm to 420 nm is very small, but semiconductor ultrafine particles having an average particle diameter of 10 nm or less that exhibit red fluorescence realize very high luminous efficiency. Therefore, it is excellent in luminous efficiency and color rendering.

また、黄色蛍光体5cおよび赤色蛍光体5dは、これを構成する半導体組成物のバルク状態での化合物半導体のバンドギャップエネルギーが、温度300Kで1.5から2.5eVの範囲であることが好ましい。   Further, in the yellow phosphor 5c and the red phosphor 5d, the band gap energy of the compound semiconductor in the bulk state of the semiconductor composition constituting it is preferably in the range of 1.5 to 2.5 eV at a temperature of 300K. .

本発明における黄色蛍光体5cおよび赤色蛍光体5dは、内核(コア)と外殻(シェル)とからなる、いわゆるコアシェル構造であってもよい。コアシェル型半導体では、エキシトン吸発光帯を利用する用途に好適な場合がある。この場合、シェルの半導体粒子の組成として、禁制帯幅(バンドギャップ)がコアよりも大きなものを起用することによりエネルギー的な障壁を形成することが一般に有効である。これは、外界の影響や結晶表面での結晶格子欠陥等の理由による望ましくない表面準位等の影響を抑制する機構によるものと推測される。   The yellow phosphor 5c and the red phosphor 5d according to the present invention may have a so-called core-shell structure including an inner core (core) and an outer shell (shell). A core-shell type semiconductor may be suitable for an application utilizing an exciton absorption / emission band. In this case, it is generally effective to form an energy barrier by using a shell semiconductor particle having a forbidden band width (band gap) larger than that of the core. This is presumed to be due to a mechanism that suppresses the influence of an undesirable surface level or the like due to the influence of the outside world or crystal lattice defects on the crystal surface.

シェルに好適に用いられる半導体材料の組成としては、コア半導体結晶のバンドギャップにもよるが、バルク状態のバンドギャップが温度300Kにおいて2.5eV以上であるもの、例えばBN、BAs、GaNやGaP等のIII−V族化合物半導体、ZnO、ZnS等のII−VI族化合物半導体、MgSやMgSe等の周期表第2族元素と周期表第16族元素との化合物等が好適に用いられる。   The composition of the semiconductor material suitably used for the shell depends on the band gap of the core semiconductor crystal, but the band gap in the bulk state is 2.5 eV or more at a temperature of 300 K, such as BN, BAs, GaN, GaP, etc. III-V group compound semiconductors, II-VI group compound semiconductors such as ZnO and ZnS, and compounds of Group 2 elements of the periodic table and Group 16 elements of the periodic table such as MgS and MgSe are preferably used.

また、本発明における黄色蛍光体5cおよび赤色蛍光体5dは、有機配位子からなる表面修飾分子で覆われていても良い。表面分修飾分子覆うことにより、半導体超微粒子の凝集を抑制し、半導体超微粒子の機能を最大限に発現することができる。表面修飾分子は、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、n−ペンチル基、シクロペンチル基、n−ヘキシル基、シクロヘキシル基、オクチル基、デシル基、ドデシル基、ヘキサデシル基、オクタデシル基等の炭素数3〜20程度のアルキル基、およびフェニル基、ベンジル基、ナフチル基、ナフチルメチル基等の芳香族炭化水素基を含有する炭化水素基等を有する分子が例示され、中でもn−ヘキシル基、オクチル基、デシル基、ドデシル基、ヘキサデシル基等の炭素数6〜16程度の直鎖状アルキル基を有する分子が更に好ましい。また、メルカプト基、ジスルフィド基、チオフェン環等の硫黄原子含有官能基、アミノ基、ピリジン環、アミド結合、ニトリル基等の窒素原子含有官能基、カルボキシル基、スルホン酸基、ホスホン酸基、ホスフィン酸基等の酸性官能基、ホスフィン基やホスフィンオキシド基等のリン原子含有官能基、あるいは水酸基、カルボニル基、エステル結合、エーテル結合、ポリエチレングリコール鎖等の酸素原子含有官能基等を有する分子を用いてもよい。   Further, the yellow phosphor 5c and the red phosphor 5d in the present invention may be covered with a surface modifying molecule made of an organic ligand. By covering the surface modification molecules, aggregation of the semiconductor ultrafine particles can be suppressed, and the function of the semiconductor ultrafine particles can be expressed to the maximum. Surface modifying molecules are n-propyl, isopropyl, n-butyl, isobutyl, n-pentyl, cyclopentyl, n-hexyl, cyclohexyl, octyl, decyl, dodecyl, hexadecyl, octadecyl Examples include molecules having an alkyl group having about 3 to 20 carbon atoms, such as a group, and a hydrocarbon group containing an aromatic hydrocarbon group such as a phenyl group, a benzyl group, a naphthyl group, or a naphthylmethyl group. Molecules having a linear alkyl group having about 6 to 16 carbon atoms such as a hexyl group, octyl group, decyl group, dodecyl group, hexadecyl group and the like are more preferable. Also, sulfur atom-containing functional groups such as mercapto group, disulfide group, thiophene ring, nitrogen atom-containing functional groups such as amino group, pyridine ring, amide bond, nitrile group, carboxyl group, sulfonic acid group, phosphonic acid group, phosphinic acid Using molecules having acidic functional groups such as groups, phosphorus atom-containing functional groups such as phosphine groups and phosphine oxide groups, or oxygen atom-containing functional groups such as hydroxyl groups, carbonyl groups, ester bonds, ether bonds, polyethylene glycol chains, etc. Also good.

上記黄色蛍光体5cおよび赤色蛍光体5dは、一般的な製造方法によって製造することができる。製造法としては、例えば、火炎プロセス・プラズマプロセス・電気加熱プロセス・レーザープロセス等の気相化学反応法、物理冷却法、ゾルゲル法・アルコキシド法・共沈法・ホットソープ法・水熱合成法・噴霧熱分解法等の液相法、さらにメカノケミカルボンディング法、マイクロリアクター法、マイクロ波加熱法等が挙げられる。
合成した半導体超微粒子の平均粒子径の測定は、後述の実施例において蛍光体の平均粒子径を測定した方法を用いて測定することができる。
The yellow phosphor 5c and the red phosphor 5d can be manufactured by a general manufacturing method. Manufacturing methods include, for example, gas phase chemical reaction methods such as flame process, plasma process, electric heating process, laser process, physical cooling method, sol-gel method, alkoxide method, coprecipitation method, hot soap method, hydrothermal synthesis method, Examples include liquid phase methods such as spray pyrolysis, mechanochemical bonding, microreactor methods, and microwave heating methods.
The average particle diameter of the synthesized semiconductor ultrafine particles can be measured using the method of measuring the average particle diameter of the phosphor in the examples described later.

変換効率が60%以上の蛍光体のうち、蛍光体間の変換効率の差が15%以内となる組み合わせとしては、(1)青色蛍光体5aとして〔(Ca,Mg)10(PO46Cl2:Eu〕を、緑色蛍光体5bとして〔BaMgAl1017:Eu,Mn〕を、黄色蛍光体5cとしてZnAgInS2を、赤色蛍光体5dとしてZnAgInS2を用いる組み合わせ、(2)青色蛍光体5aとして、〔BaMgAl1017:Eu〕を、緑色蛍光体5bとして〔ZnS:Cu,Al〕を、黄色蛍光体5cとしてZnCuInS2を、赤色蛍光体5dとしてZnCuInS2を用いる組み合わせ、(3)青色蛍光体5aとして〔(Sr,Ca,Ba,Mg)10(PO46Cl2:Eu〕を、緑色蛍光体5bとして〔BaMgAl1017:Eu,Mn〕を、黄色蛍光体5cとして〔ZnAgInS2〕を、赤色蛍光体5dとして〔ZnAgInS2〕を用いる組み合わせなどが挙げられる。 Among the phosphors having a conversion efficiency of 60% or more, as a combination in which the difference in conversion efficiency between the phosphors is within 15%, (1) Blue phosphor 5a [(Ca, Mg) 10 (PO 4 ) 6 Cl 2: the Eu], as a green phosphor 5b [BaMgAl 10 O 17: Eu, Mn,], the ZnAgInS 2 as a yellow phosphor 5c, the combination of using ZnAgInS 2 as a red phosphor 5d, (2) blue phosphor as 5a,: a [BaMgAl 10 O 17 Eu], as a green phosphor 5b [ZnS: Cu, Al] and the ZnCuInS 2 as a yellow phosphor 5c, using ZnCuInS 2 as a red phosphor 5d combination, (3) [(Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 Cl 2 : Eu] is used as the blue phosphor 5a, and [BaMgAl 10 O 17 : Eu, Mn is used as the green phosphor 5b. ], A combination using [ZnAgInS 2 ] as the yellow phosphor 5c and [ZnAgInS 2 ] as the red phosphor 5d.

上記波長変換層4を作製するには、まず、青色蛍光体5a、緑色蛍光体5b、黄色蛍光体5cおよび赤色蛍光体5dをマトリックス樹脂の未硬化物に混合する。マトリックス樹脂としては、例えばエポキシ樹脂、ポリカーボネート樹脂やアクリル樹脂、珪素−酸素結合を主体とする高分子樹脂(シリコーン樹脂など)が透過率の点で好適である。   In order to produce the wavelength conversion layer 4, first, the blue phosphor 5a, the green phosphor 5b, the yellow phosphor 5c, and the red phosphor 5d are mixed with an uncured matrix resin. As the matrix resin, for example, an epoxy resin, a polycarbonate resin, an acrylic resin, or a polymer resin (silicone resin or the like) mainly composed of a silicon-oxygen bond is preferable in terms of transmittance.

特に、珪素−酸素結合を主体とする高分子樹脂は、珪素−酸素の結合エネルギーが非常に大きいため、400nm前後の光を吸収して劣化することがなく、すぐれた耐熱性、耐光性を有する。その結果、珪素−酸素結合を主体とする高分子樹脂中に蛍光体を分散混合することで、波長変換層の耐光性、耐熱性、透明性を高めることができ、発光装置の長寿命を確保することができる。よって、透過率と耐熱性を兼ね備える点でシリコーン樹脂が最も好ましい。また、分散剤として、マトリックス樹脂と化学的にカップリングするものを用いることが、硬化後の安定性の点で望ましい。   In particular, a polymer resin mainly composed of a silicon-oxygen bond has an excellent heat resistance and light resistance because it has a very large silicon-oxygen bond energy and does not deteriorate by absorbing light at around 400 nm. . As a result, by dispersing and mixing phosphors in a polymer resin mainly composed of silicon-oxygen bonds, the light conversion, heat resistance and transparency of the wavelength conversion layer can be improved, and the long life of the light emitting device is ensured. can do. Therefore, a silicone resin is most preferable because it has both transmittance and heat resistance. In addition, it is desirable to use a dispersant that is chemically coupled to the matrix resin in terms of stability after curing.

次に、青色蛍光体5a、緑色蛍光体5b、黄色蛍光体5c、赤色蛍光体5dおよびマトリックス樹脂の未硬化物の混合物を、シート状に成形する。成形方法としては、例えば、ドクターブレード法やダイコーター法、押し出し法、スピンコート法、ディップ法などのシート成形ができる成形法が挙げられ、特にドクターブレード法やダイコーター法を用いれば、生産性を向上することができる。次に、シート中の青色蛍光体5a、緑色蛍光体5b、黄色蛍光体5cおよび赤色蛍光体5dを、粒子の平均粒子径によって階層的に分散させる。蛍光体を階層的に層状に分散させるためには、沈降法や遠心分離法を用いることができる。また、蛍光体の比重、マトリクス樹脂の粘度、マトリクス樹脂の硬化温度および硬化時間の最適化により、各蛍光体間の沈降速度を変えることによって、層状に分散することができる。例えば、マトリクス樹脂としてジメチルシリコーン樹脂を、青色蛍光体5aとして〔(Ca,Mg)10(PO46Cl2:Eu〕(平均粒子径7μm)を、緑色蛍光体5bとして〔BaMgAl1017:Eu,Mn〕(平均粒子径4μm)を、黄色蛍光体5cとしてZnAgInS2(平均粒子径2.8nm)を、赤色蛍光体5dとしてZnAgInS2(平均粒子径3.8nm)を用いた場合、マトリクス樹脂の粘度を200〜1000cps、マトリクス樹脂の硬化温度を130〜170℃、マトリクス樹脂の硬化時間を5〜24時間(hour)とすることにより、各蛍光体間の沈降速度を変えて、層状に分散することができる。 Next, a mixture of the blue phosphor 5a, the green phosphor 5b, the yellow phosphor 5c, the red phosphor 5d, and an uncured matrix resin is formed into a sheet shape. Examples of the molding method include a molding method capable of forming a sheet such as a doctor blade method, a die coater method, an extrusion method, a spin coating method, a dip method, and in particular, if a doctor blade method or a die coater method is used, productivity Can be improved. Next, the blue phosphor 5a, the green phosphor 5b, the yellow phosphor 5c, and the red phosphor 5d in the sheet are hierarchically dispersed according to the average particle diameter of the particles. In order to disperse the phosphors hierarchically, a sedimentation method or a centrifugal separation method can be used. Furthermore, the phosphor can be dispersed in layers by changing the sedimentation rate between the phosphors by optimizing the specific gravity of the phosphor, the viscosity of the matrix resin, the curing temperature and the curing time of the matrix resin. For example, dimethyl silicone resin is used as the matrix resin, [(Ca, Mg) 10 (PO 4 ) 6 Cl 2 : Eu] (average particle diameter: 7 μm) is used as the blue phosphor 5a, and [BaMgAl 10 O 17 is used as the green phosphor 5b. : Eu, Mn] (average particle diameter 4 μm), ZnAgInS 2 (average particle diameter 2.8 nm) as the yellow phosphor 5c, and ZnAgInS 2 (average particle diameter 3.8 nm) as the red phosphor 5d, By setting the viscosity of the matrix resin to 200 to 1000 cps, the curing temperature of the matrix resin to 130 to 170 ° C., and the curing time of the matrix resin to 5 to 24 hours (hours), the sedimentation rate between the phosphors can be changed to form a layer Can be dispersed.

上記蛍光体5a〜5dを上記樹脂中に添加する場合の添加量は、発光素子の発光強度、発光素子の大きさ、波長変換層4の膜厚を考慮して決定すればよいが、波長変換層4の総量に対して、蛍光体の総量を10質量%〜50質量%添加することが好ましい。   The amount of the phosphors 5a to 5d to be added to the resin may be determined in consideration of the light emission intensity of the light emitting element, the size of the light emitting element, and the film thickness of the wavelength conversion layer 4. It is preferable to add 10 to 50% by mass of the total amount of the phosphor with respect to the total amount of the layer 4.

波長変換層4の厚みは、0.1〜5mm、特に0.5〜1mmであることが好ましい。この範囲であれば、発光素子3から発せられる励起光を、高効率で出力光に変換することができ、さらに変換された出力光を外部に高効率で透過させることができる。   The thickness of the wavelength conversion layer 4 is preferably 0.1 to 5 mm, particularly preferably 0.5 to 1 mm. Within this range, the excitation light emitted from the light emitting element 3 can be converted into output light with high efficiency, and the converted output light can be transmitted to the outside with high efficiency.

反射部材6は、発光素子3および波長変換層4の側面に設けられており、側面に逃げる光を前方に反射し、出力光の強度を高めることができる。反射部材6の材料としては、例えばアルミニウム(Al)、ニッケル(Ni)、銀(Ag)、クロム(Cr)、チタン(Ti)、銅(Cu)、金(Au)、鉄(Fe)およびこれらの積層構造物や合金、さらにアルミナセラミックス等のセラミックス、またはエポキシ樹脂等の樹脂を用いることができる。   The reflecting member 6 is provided on the side surfaces of the light emitting element 3 and the wavelength conversion layer 4, and can reflect the light escaping to the side surface forward to increase the intensity of the output light. Examples of the material of the reflecting member 6 include aluminum (Al), nickel (Ni), silver (Ag), chromium (Cr), titanium (Ti), copper (Cu), gold (Au), iron (Fe), and these. These laminated structures and alloys, ceramics such as alumina ceramics, or resins such as epoxy resins can be used.

上記発光装置は、波長変換層4からの出力光のピーク波長が400〜750nmであることが好ましい。このようなピーク波長を有する出力光を発光することにより、さらに演色性に優れた発光装置を実現できる。   In the light emitting device, the peak wavelength of the output light from the wavelength conversion layer 4 is preferably 400 to 750 nm. By emitting output light having such a peak wavelength, it is possible to realize a light emitting device that is further excellent in color rendering.

図2は、本発明における発光装置の他の実施形態を示す図であって、2層構造の波長変換層4を有する発光装置の概略断面図である。なお、図2中、図1に示す発光装置と同一の部材については、図1と同じ符号を付して説明を省略する。   FIG. 2 is a diagram showing another embodiment of the light emitting device according to the present invention, and is a schematic cross-sectional view of a light emitting device having a wavelength conversion layer 4 having a two-layer structure. In FIG. 2, the same members as those of the light emitting device shown in FIG. 1 are denoted by the same reference numerals as those in FIG.

図2に示す発光装置では、波長変換層40を、第一の変換層41と第二の変換層42との2層構造とし、変換層42が発光素子3の表面に、変換層41が変換層42の表面に形成されている。また、変換層41には青色蛍光体5aおよび緑色蛍光体5bが含有され、変換層42には黄色蛍光体5cおよび赤色蛍光体5dが含有されている。このような波長変換層40を形成することにより、図1の発光装置と同様、蛍光体5a〜5d間の自己吸収による発光効率低下を抑えて、効率よく励起光を変換することができる。このような2層構造の波長変換層40を形成するには、青色蛍光体5aおよび緑色蛍光体5bを含有する樹脂と、黄色蛍光体5cおよび赤色蛍光体5dを含有する樹脂とを準備して、変換層41および42を形成すればよい。このように変換層41および42を形成すれば、図1の波長変換層4を形成する場合のように、沈降法や遠心分離法を用いなくとも、所望の位置に蛍光体を配置することができる。   In the light emitting device shown in FIG. 2, the wavelength conversion layer 40 has a two-layer structure of a first conversion layer 41 and a second conversion layer 42, the conversion layer 42 is converted to the surface of the light emitting element 3, and the conversion layer 41 is converted. It is formed on the surface of the layer 42. The conversion layer 41 contains a blue phosphor 5a and a green phosphor 5b, and the conversion layer 42 contains a yellow phosphor 5c and a red phosphor 5d. By forming such a wavelength conversion layer 40, it is possible to efficiently convert excitation light while suppressing a decrease in light emission efficiency due to self absorption between the phosphors 5a to 5d, as in the light emitting device of FIG. In order to form the wavelength conversion layer 40 having such a two-layer structure, a resin containing a blue phosphor 5a and a green phosphor 5b and a resin containing a yellow phosphor 5c and a red phosphor 5d are prepared. The conversion layers 41 and 42 may be formed. If the conversion layers 41 and 42 are formed in this way, the phosphor can be arranged at a desired position without using the sedimentation method or the centrifugal separation method as in the case of forming the wavelength conversion layer 4 in FIG. it can.

波長変換層40の厚みは0.1〜5mm、変換層41の厚みは0.05〜3mm、変換層42の厚みは0.05〜3mmであることが好ましい。これにより、各層における変換効率が高く、かつ、各層からの光が充分に透過するため、より優れた発光特性を示すことができる。蛍光体により効率良く波長変換でき、かつ、変換された光が他の蛍光体により吸収されることを抑制することができるため、高効率な発光装置が得られる。   It is preferable that the wavelength conversion layer 40 has a thickness of 0.1 to 5 mm, the conversion layer 41 has a thickness of 0.05 to 3 mm, and the conversion layer 42 has a thickness of 0.05 to 3 mm. Thereby, since the conversion efficiency in each layer is high and the light from each layer is sufficiently transmitted, more excellent light emission characteristics can be exhibited. Since the wavelength can be efficiently converted by the phosphor, and the converted light can be suppressed from being absorbed by other phosphors, a highly efficient light-emitting device can be obtained.

図3は、本発明における発光装置の他の実施形態を示す図であって、4層構造の波長変換層50を有する発光装置の概略断面図である。なお、図3中、図1に示す発光装置と同一の部材については、図1と同じ符号を付して説明を省略する。   FIG. 3 is a diagram showing another embodiment of the light emitting device according to the present invention, and is a schematic cross-sectional view of a light emitting device having a wavelength conversion layer 50 having a four-layer structure. In FIG. 3, the same members as those of the light emitting device shown in FIG. 1 are denoted by the same reference numerals as those in FIG.

図3に示すように、波長変換層50は発光波長の異なる複数の変換層51、変換層52、変換層53および変換層54からなり、変換層54は発光素子3の表面に、変換層53は変換層54の表面に、変換層52は変換層53の表面に、変換層51は変換層52の表面にそれぞれ形成されている。また、それら変換層51、52、53および54は、変換層による変換光のピーク波長が、発光素子3側から外側に向かって短波長になるように配置されている。   As shown in FIG. 3, the wavelength conversion layer 50 includes a plurality of conversion layers 51, a conversion layer 52, a conversion layer 53, and a conversion layer 54 having different emission wavelengths, and the conversion layer 54 is formed on the surface of the light emitting element 3. Are formed on the surface of the conversion layer 54, the conversion layer 52 is formed on the surface of the conversion layer 53, and the conversion layer 51 is formed on the surface of the conversion layer 52. The conversion layers 51, 52, 53, and 54 are arranged so that the peak wavelength of the converted light by the conversion layer becomes shorter from the light emitting element 3 side toward the outside.

例えば、図3に示す発光装置では、変換層51は青色蛍光体5aを、変換層52は緑色蛍光体5bを、変換層53は黄色蛍光体5cを、変換層54は赤色蛍光体5dを含有している。その結果、変換層51による変換光のピーク波長が変換層52による変換光のピーク波長よりも短く、また、変換層52による変換光のピーク波長が変換層53による変換光のピーク波長よりも短く、さらに変換層53による変換光のピーク波長が変換層54による変換光のピーク波長よりも短くなるように、変換層51、52、53および54は配置されている。   For example, in the light emitting device shown in FIG. 3, the conversion layer 51 contains the blue phosphor 5a, the conversion layer 52 contains the green phosphor 5b, the conversion layer 53 contains the yellow phosphor 5c, and the conversion layer 54 contains the red phosphor 5d. is doing. As a result, the peak wavelength of the converted light by the conversion layer 51 is shorter than the peak wavelength of the converted light by the conversion layer 52, and the peak wavelength of the converted light by the conversion layer 52 is shorter than the peak wavelength of the converted light by the conversion layer 53. Further, the conversion layers 51, 52, 53 and 54 are arranged so that the peak wavelength of the converted light by the conversion layer 53 is shorter than the peak wavelength of the converted light by the conversion layer 54.

このように変換層51〜54を積層してなる波長変換層50は、4種類の蛍光体をそれぞれ含む4種類の樹脂を準備し、順に層を形成すればよい。また、各蛍光体が含有されたシートを積層構造にすることにより、波長変換層50を作製してもよい。   Thus, the wavelength conversion layer 50 formed by laminating the conversion layers 51 to 54 may be prepared by preparing four types of resins each including four types of phosphors and sequentially forming the layers. Moreover, you may produce the wavelength conversion layer 50 by making the sheet | seat containing each fluorescent substance into a laminated structure.

発光素子3から発せられた励起光は、青色蛍光体5a、緑色蛍光体5b、黄色蛍光体5cおよび赤色蛍光体5dによって変換されて変換光A、B、C、Dになるが、変換光Dは、変換光A、B、Cよりも長波長であるため、変換光Dは蛍光体5a、5b、5cを励起して可視光を発生させるのに十分なエネルギーを持たない。その結果、波長変換層50内の蛍光体同士の自己消光を低減させることができ、変換層51、52、53内の蛍光体濃度を上げなくても、高い変換効率を実現することができる。   The excitation light emitted from the light emitting element 3 is converted by the blue phosphor 5a, the green phosphor 5b, the yellow phosphor 5c, and the red phosphor 5d into the converted light A, B, C, D, but the converted light D Is longer than the converted lights A, B, and C, the converted light D does not have sufficient energy to excite the phosphors 5a, 5b, and 5c to generate visible light. As a result, self-quenching between the phosphors in the wavelength conversion layer 50 can be reduced, and high conversion efficiency can be realized without increasing the phosphor concentration in the conversion layers 51, 52, and 53.

また、同様に、変換光Cは変換光A、Bよりも長波長であるため、変換光Cは蛍光体5a、5bを励起せず、変換層51および52内で変換光Cの吸収による自己消光を低減させることができる。また、変換光Bは変換光Aよりも長波長であるため、変換光Bは青色蛍光体5aを励起せず、変換層51内で変換光Bの吸収による自己消光を低減させることができる。   Similarly, since the converted light C has a longer wavelength than the converted lights A and B, the converted light C does not excite the phosphors 5a and 5b, and the self of the converted light C is absorbed in the conversion layers 51 and 52. Quenching can be reduced. Further, since the converted light B has a longer wavelength than the converted light A, the converted light B does not excite the blue phosphor 5 a, and self-quenching due to absorption of the converted light B in the conversion layer 51 can be reduced.

従来の発光装置の場合、発光波長の異なる4種類の蛍光体が同一の波長変換層に無秩序に含有されていたため、いったん蛍光体から発せられた光を別の蛍光体が吸収してしまい、発光装置全体としての発光効率が充分に高くならなかった。これに対して、図3に示す発光装置では、波長変換層50を複数の層とし、かつ変換層51〜54の発光波長を、発光素子に近い方から遠い方に向けて順に小さくなるように、換言すれば発光素子3に近い方を長波長、遠い方を短波長とすることにより、短波長の変換光を蛍光体が吸収する現象を抑制することができ、変換層51〜54内の蛍光体5a〜5dの濃度を上げて含有量を増やさなくても、高い変換効率を得ることができる。その結果、低消費電力で高光出力を得ることが期待できる。   In the case of a conventional light emitting device, since four types of phosphors having different emission wavelengths are randomly contained in the same wavelength conversion layer, light emitted from the phosphor is once absorbed by another phosphor. The luminous efficiency of the entire device was not sufficiently high. On the other hand, in the light emitting device shown in FIG. 3, the wavelength conversion layer 50 is a plurality of layers, and the light emission wavelengths of the conversion layers 51 to 54 are sequentially decreased from the side closer to the light emitting element toward the far side. In other words, by setting the wavelength closer to the light emitting element 3 to a longer wavelength and the wavelength farther from the shorter wavelength, the phenomenon that the phosphor absorbs the converted light having a shorter wavelength can be suppressed. Even if the concentration of the phosphors 5a to 5d is not increased to increase the content, high conversion efficiency can be obtained. As a result, high light output can be expected with low power consumption.

波長変換層50の厚みは0.1〜5mm、変換層51の厚みは0.05〜1mm、変換層52の厚みは0.05〜1mm、変換層53の厚みは0.05〜1mm、変換層54の厚みは0.05〜1mmであることが好ましい。これにより、各層における変換効率が高く、かつ、各層からの光が充分に透過するため、より優れた発光特性を示すことができる。蛍光体により効率良く波長変換でき、かつ、変換された光が他の蛍光体により吸収されることを抑制することができるため、高効率な発光装置が得られる。   The wavelength conversion layer 50 has a thickness of 0.1 to 5 mm, the conversion layer 51 has a thickness of 0.05 to 1 mm, the conversion layer 52 has a thickness of 0.05 to 1 mm, and the conversion layer 53 has a thickness of 0.05 to 1 mm. The thickness of the layer 54 is preferably 0.05 to 1 mm. Thereby, since the conversion efficiency in each layer is high and the light from each layer is sufficiently transmitted, more excellent light emission characteristics can be exhibited. Since the wavelength can be efficiently converted by the phosphor, and the converted light can be suppressed from being absorbed by other phosphors, a highly efficient light-emitting device can be obtained.

[実施例]
図1の発光装置と、3層の変換層を有する発光装置とを作製した。まず、サファイア基板(発光素子基板)上に窒化物半導体を有機金属気相成長法にて形成した発光素子を準備した。
[Example]
The light-emitting device of FIG. 1 and a light-emitting device having three conversion layers were manufactured. First, a light emitting element in which a nitride semiconductor was formed on a sapphire substrate (light emitting element substrate) by metal organic vapor phase epitaxy was prepared.

この発光素子を、Cu電極が形成されたアルミナからなる基板上にフリップチップ実装法にて実装した。さらに、発光素子を覆うように、蛍光体を分散したシリコーン樹脂をディスペンサーにて塗布し、波長変換層を形成した。波長変換層は、赤色蛍光体(平均粒子径3.8nmの「ZnAgInS2」)、黄色蛍光体(平均粒子径2.8nmの「ZnAgInS2」)、緑色蛍光体(平均粒子径4μmのBaMgAl1017:Eu,Mn)、青色蛍光体(平均粒子径7μmの(Sr,Ca,Ba,Mg)10(PO46Cl2:Eu)を含有する1層構造からなるものと、3層構造からなるものを準備した。なお、3層の波長変換層は、第一変換層(層厚0.1mm)、第二変換層(層厚0.1mm)および第三変換層(層厚0.1mm)からなり、第一変換層を発光素子の表面に、第二変換層を第一変換層の表面に、第三変換層を第二変換層の表面に、それぞれ積層させた。また、第一変換層に赤色蛍光体(平均粒子径3.8nmの「ZnAgInS2」)および黄色蛍光体(平均粒子径2.8nmの「ZnAgInS2」)を、第二変換層に緑色蛍光体(平均粒子径4μmのBaMgAl1017:Eu,Mn)を、第三変換層に青色蛍光体(平均粒子径7μmの(Sr,Ca,Ba,Mg)10(PO46Cl2:Eu)を含有させた。
なお、青色蛍光体及び緑色蛍光体は、市販の蛍光体を使用した。平均粒子径は、レーザー回折散乱法を用いて、測定した。
また、黄色蛍光体、赤色蛍光体は、10nm以下の半導体超微粒子を用い、ホットソープ法にて合成した。反応時間、反応温度、後処理方法を変えることによって異なる変換効率(量子効率)を有する半導体超微粒子を合成した。用いた蛍光体の変換効率は、下記の通り、変換効率が既知の参照物質(ローダミンB)を準備し、その参照物質との相対比較により求めた。使用した半導体超微粒子の平均粒子径は、透過型電子顕微鏡(TEM)により確認した。
なお、各蛍光体の平均粒子径を確認するための詳細な方法を以下に示す。
使用した透過型電子顕微鏡はJEOL製JEM2010Fであり、以下の手順で加速電圧200kVの観察を行った。上記で得た半導体超微粒子をサンプル瓶にとり、粒子濃度が0.002〜0.02モル/リットルの範囲となる量のIPAやトルエンを加えて分散させた。これをTEM観察用マイクログリッドですくい取り、乾燥後、透過型電子顕微鏡にセットした。平均粒子径の測定は格子像より粒子を確認して行った。まず、粒子がメッシュに付着している部分を低倍率で探した。この時、蛍光体が多く付着している部分は粒子が電子線の方向に重なっているため平均粒子径の測定には適さない。また、マイクログリッドのCuメッシュの部分に付着している蛍光体も格子像が観察できないため平均粒子径の観察には適さない。従って、平均粒子径を測定する半導体超微粒子はマイクログリッドの樹脂の部分にある極力重なりの少ない部分を選んで行なった。次に、この部分を1,000,000倍程度に拡大して格子像の確認を行なう。
このとき、蛍光体の周囲に合成時に使用した有機成分が多く残っている場合には格子像がぼやけてしまうため、平均粒子径を正しく測定することができない。このような場合には場所を変えて観察を行なうか、場合によっては合成時の有機成分の除去を繰り返し行なったサンプルを準備しなおして観察を行なった。
合成時の有機成分の除去は、沈殿させた蛍光体にクロロホルム、トルエンもしくはヘキサンを加えて超音波で分散させた後、ここにアルコール(例えばエタノール)を加えて、遠心分離機にかけることで行なうことができる。合成時の有機成分は上澄みのエタノールに溶解し、蛍光体は沈殿する。必要に応じてこの操作を繰り返した。このようにして合成時に使用した有機成分の付着の少ない半導体超微粒子を探し出した後、この部分を倍率4,000,000倍として格子像の写真撮影を行なった。このとき電子線を長く当て続けると半導体超微粒子は移動してしまうため、速やかに撮影を行なった。
蛍光体の平均粒子径は撮影した格子像200個の直径を元に以下の方法で処理することにより求めた。
測定した格子像の直径を、ヒストグラムを作成して統計的に処理することで、長さ平均直径を算出した。長さ平均直径の算出方法は、直径区に属する個数をカウントし、直径区の中心値と個数のそれぞれの積の和を、測定した格子像の個数の総数で割るという方法を用いた(平均粒子径の形状とその計算式、「セラミックの製造プロセス」p.11〜12、窯業協会編集委員会講座小委員会編)。このようにして計算した長さ平均直径を蛍光体の平均粒子径とみなした。
(変換効率測定法)
(1)蛍光体と参照物質をトルエンに溶解する。このとき、それぞれの溶液濃度を、発光素子の発光波長(波長395nm)で吸光度が0.2になるように、調整した。
(2)調整したそれぞれの溶液をトルエンにて10倍に薄め、島津製作所製蛍光光度計で、発光特性を測定した。励起波長は395nmを用いた。
(3)それぞれの蛍光スペクトル面積を求めた。それぞれの面積を用いて、下記式の通り、蛍光体の変換効率を求めた。
This light emitting element was mounted on a substrate made of alumina on which a Cu electrode was formed by a flip chip mounting method. Further, a silicone resin in which a phosphor was dispersed was applied with a dispenser so as to cover the light emitting element, thereby forming a wavelength conversion layer. The wavelength conversion layer comprises a red phosphor (“ZnAgInS 2 ” with an average particle size of 3.8 nm), a yellow phosphor (“ZnAgInS 2 ” with an average particle size of 2.8 nm), and a green phosphor (BaMgAl 10 with an average particle size of 4 μm). O 17 : Eu, Mn), blue phosphor (one layer structure containing (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 Cl 2 : Eu) having an average particle diameter of 7 μm and three layers A structure was prepared. The three wavelength conversion layers consist of a first conversion layer (layer thickness 0.1 mm), a second conversion layer (layer thickness 0.1 mm), and a third conversion layer (layer thickness 0.1 mm). The conversion layer was laminated on the surface of the light emitting element, the second conversion layer was laminated on the surface of the first conversion layer, and the third conversion layer was laminated on the surface of the second conversion layer. Also, a red phosphor (“ZnAgInS 2 ” with an average particle diameter of 3.8 nm) and a yellow phosphor (“ZnAgInS 2 ” with an average particle diameter of 2.8 nm) are used for the first conversion layer, and a green phosphor is used for the second conversion layer. (BaMgAl 10 O 17 : Eu, Mn) having an average particle diameter of 4 μm is used as a blue phosphor ((Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 Cl 2 : Eu having an average particle diameter of 7 μm in the third conversion layer. ).
Note that commercially available phosphors were used as the blue phosphor and the green phosphor. The average particle diameter was measured using a laser diffraction scattering method.
The yellow phosphor and the red phosphor were synthesized by hot soap method using semiconductor ultrafine particles of 10 nm or less. Semiconductor ultrafine particles having different conversion efficiencies (quantum efficiency) were synthesized by changing the reaction time, reaction temperature, and post-treatment method. The conversion efficiency of the phosphor used was determined by preparing a reference substance (rhodamine B) having a known conversion efficiency and relative comparison with the reference substance as described below. The average particle diameter of the used semiconductor ultrafine particles was confirmed by a transmission electron microscope (TEM).
In addition, the detailed method for confirming the average particle diameter of each fluorescent substance is shown below.
The transmission electron microscope used was JEOL JEM2010F, and an acceleration voltage of 200 kV was observed according to the following procedure. The semiconductor ultrafine particles obtained above were placed in a sample bottle, and IPA or toluene in an amount such that the particle concentration was in the range of 0.002 to 0.02 mol / liter was added and dispersed. This was scooped with a TEM observation microgrid, dried, and then set on a transmission electron microscope. The average particle diameter was measured by confirming the particles from the lattice image. First, the part where the particles adhered to the mesh was searched at a low magnification. At this time, the portion where a large amount of phosphor is attached is not suitable for measurement of the average particle diameter because the particles overlap in the direction of the electron beam. Further, the phosphor adhering to the Cu mesh portion of the microgrid is not suitable for observation of the average particle diameter because the lattice image cannot be observed. Therefore, the semiconductor ultrafine particles for measuring the average particle diameter were selected by selecting a portion having as little overlap as possible in the resin portion of the microgrid. Next, this portion is enlarged to about 1,000,000 times to confirm the lattice image.
At this time, when many organic components used at the time of synthesis remain around the phosphor, the lattice image is blurred, and thus the average particle diameter cannot be measured correctly. In such a case, observation was performed by changing the location, or in some cases, a sample was prepared by repeatedly removing organic components during synthesis, and observation was performed.
Removal of organic components at the time of synthesis is performed by adding chloroform, toluene or hexane to the precipitated phosphor and dispersing it with ultrasonic waves, and then adding alcohol (for example, ethanol) thereto and centrifuging it. be able to. The organic components at the time of synthesis are dissolved in the supernatant ethanol, and the phosphor is precipitated. This operation was repeated as necessary. Thus, after searching for semiconductor ultrafine particles with less organic component adhesion used during synthesis, a lattice image was photographed at a magnification of 4,000,000. At this time, if the electron beam was kept on for a long time, the semiconductor ultrafine particles moved, and thus the image was taken promptly.
The average particle diameter of the phosphor was determined by processing according to the following method based on the diameter of 200 photographed lattice images.
A length average diameter was calculated by statistically processing the diameter of the measured lattice image by creating a histogram. The length average diameter was calculated by counting the number belonging to the diameter section and dividing the sum of the product of the center value and the number of the diameter section by the total number of measured grid images (average Particle shape and calculation formula, “Ceramic manufacturing process” p.11-12, edited by ceramic industry association editorial committee lecture subcommittee). The length average diameter thus calculated was regarded as the average particle diameter of the phosphor.
(Conversion efficiency measurement method)
(1) Dissolve phosphor and reference substance in toluene. At this time, the concentration of each solution was adjusted so that the absorbance was 0.2 at the emission wavelength (wavelength 395 nm) of the light-emitting element.
(2) Each adjusted solution was diluted 10 times with toluene, and luminescence characteristics were measured with a fluorimeter manufactured by Shimadzu Corporation. The excitation wavelength was 395 nm.
(3) Each fluorescence spectrum area was determined. Using each area, the conversion efficiency of the phosphor was determined according to the following formula.

Figure 2007103512

以上の結果を下記表1〜2に示す。
Figure 2007103512

The above results are shown in Tables 1 and 2 below.

(波長変換層の作製)
上記波長変換層の作製にあたっては、まず、ジメチルシリコーン骨格からなるシリコーン樹脂に、蛍光体総量が30質量%となるように添加混合し、蛍光体含有樹脂ペーストを作製した。また、青色蛍光体と緑色蛍光体と黄色蛍光体と赤色蛍光体との質量比は、48:48:3:3とした。
(Production of wavelength conversion layer)
In preparation of the wavelength conversion layer, first, a phosphor-containing resin paste was prepared by adding and mixing with a silicone resin having a dimethyl silicone skeleton so that the total amount of the phosphor was 30% by mass. The mass ratio of the blue phosphor, the green phosphor, the yellow phosphor and the red phosphor was 48: 48: 3: 3.

得られた蛍光体含有樹脂ペーストを平滑な基板上にディスペンサーにて塗布形成し、これをホットプレート上で150℃、5分間加熱して、仮硬化膜を作製した。続いて、これを150℃の乾燥機内に5時間入れ、表1に示す蛍光体含有フィルム(波長変換層)を作製した。この時、蛍光体含有フィルム内部の蛍光体の分散状態および平均粒子径は走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)により確認した。まず、分散状態は蛍光体含有フィルムを割り、その破断面をSEMにより500〜100,000倍で観察した。
このとき平均粒子径が0.1μm以上の粒子に関しては、200個以上の粒子を抽出し、平均粒子径を測定した。この際、粒子の直径は、破断面表面に露出している部分の直径に対し、係数1.5を掛けて粒子全体の直径として扱った(インターセプト法、「セラミックスのキャラクタリゼーション技術」p.7〜8、社団法人窯業協会編)。
一方、10nm以下の半導体超微粒子については、倍率が低いため樹脂中に粒子を見つけることができないため、この蛍光体含有フィルムをミクロトームで厚み30〜200nmを目安として薄切片加工した。切片の厚みは半導体超微粒子の平均粒子径により使い分けることが望ましく、平均粒子径の5〜10倍を目安とすると半導体超微粒子をきれいに観察することができた。この時、蛍光体含有フィルムがやわらかい場合には、薄い切片を得ることができず、液体窒素で冷却して厚み50nmを狙って切片加工を行なった。この切片の半導体超微粒子の部分を透過型電子顕微鏡で観察し、格子像を倍率4,000,000倍で写真撮影した。透過型電子顕微鏡はJEOL製JEM2010Fを使用し、加速電圧200kVの条件で観察を行った。半導体超微粒子の凝集の有無を再度500,000倍で確認した後、倍率を4,000,000倍として半導体超微粒子の格子像の観察を行なった。このとき半導体超微粒子は樹脂で完全に固定化されているためか、合成後の半導体超微粒子を観察した時に比べて電子線を長く当て続けても粒子が移動するようなことはなかった。
また、格子像の確認できた半導体超微粒子200個を選び、各々の半導体超微粒子の格子像の直径を測長した。測定した格子像の直径を、前記と同様にしてヒストグラムを作成して統計的に処理することで、長さ平均直径を算出し、これを半導体超微粒子の平均粒子径とみなした。
このとき、格子像の直径は、径の長い部分または短い部分に偏って測長することが無い様に、全ての格子像を写真紙に対して同一の方向に測長した。このようにして求めた蛍光体含有フィルムの半導体超微粒子の平均粒子径は、合成時の半導体超微粒子の平均粒子径と変わることはなかった。
(波長変換層の評価)
このフィルムを前記内部層の上面に取り付け、発光装置を得た。3層構造の波長変換層は、3つの波長変換層を内部層と同一のシリコーン樹脂と同じ材料樹脂を接着剤として介在させて形成した。
The obtained phosphor-containing resin paste was applied and formed on a smooth substrate with a dispenser, and this was heated on a hot plate at 150 ° C. for 5 minutes to prepare a temporarily cured film. Then, this was put into a 150 degreeC dryer for 5 hours, and the fluorescent substance containing film (wavelength conversion layer) shown in Table 1 was produced. At this time, the dispersion state and average particle diameter of the phosphor inside the phosphor-containing film were confirmed by a scanning electron microscope (SEM) and a transmission electron microscope (TEM). First, the dispersed state was determined by dividing the phosphor-containing film, and the fracture surface was observed by SEM at 500 to 100,000 times.
At this time, for particles having an average particle diameter of 0.1 μm or more, 200 or more particles were extracted and the average particle diameter was measured. At this time, the diameter of the particle was treated as the diameter of the entire particle by multiplying the diameter of the portion exposed on the fracture surface by a factor of 1.5 (intercept method, “ceramic characterization technology” p.7). ~ 8, Ceramics Association).
On the other hand, since the semiconductor ultrafine particles of 10 nm or less cannot be found in the resin because the magnification is low, this phosphor-containing film was processed into thin sections with a microtome with a thickness of 30 to 200 nm as a guide. It is desirable that the thickness of the slice is properly used depending on the average particle diameter of the semiconductor ultrafine particles. When the average particle diameter is 5 to 10 times as a guide, the semiconductor ultrafine particles can be clearly observed. At this time, when the phosphor-containing film was soft, a thin slice could not be obtained, and the slice processing was performed with a target of 50 nm in thickness by cooling with liquid nitrogen. The section of the semiconductor ultrafine particles in this section was observed with a transmission electron microscope, and the lattice image was photographed at a magnification of 4,000,000. As the transmission electron microscope, JEOL JEM2010F was used, and observation was performed under the condition of an acceleration voltage of 200 kV. After confirming the presence or absence of aggregation of the semiconductor ultrafine particles again at 500,000 times, the lattice image of the semiconductor ultrafine particles was observed at a magnification of 4,000,000 times. At this time, because the semiconductor ultrafine particles are completely fixed by the resin, the particles did not move even when the electron beam was applied for a longer time than when the synthesized semiconductor ultrafine particles were observed.
Further, 200 semiconductor ultrafine particles having a confirmed lattice image were selected, and the diameter of the lattice image of each semiconductor ultrafine particle was measured. The diameter of the measured lattice image was statistically processed by creating a histogram in the same manner as described above to calculate the length average diameter, and this was regarded as the average particle diameter of the semiconductor ultrafine particles.
At this time, all the lattice images were measured in the same direction with respect to the photographic paper so that the length of the lattice image was not measured with a bias toward a long portion or a short portion. The average particle size of the ultrafine semiconductor particles of the phosphor-containing film thus obtained did not change from the average particle size of the ultrafine semiconductor particles at the time of synthesis.
(Evaluation of wavelength conversion layer)
This film was attached to the upper surface of the inner layer to obtain a light emitting device. The wavelength conversion layer having a three-layer structure was formed by interposing three wavelength conversion layers with the same material resin as that of the same silicone resin as the inner layer as an adhesive.

それぞれの波長変換層からなる発光装置の発光効率は、発光装置に20mAの電流を印加し、点灯させて全光束量を測定し、この全光束を注入電流で割った値を発光装置の発光効率とした。また、演色性(Ra)は、大塚電子社製の発光特性評価装置により測定した。1層構造の波長変換層の結果を表1に、3層構造波長変換層の結果を表2に示した。   The luminous efficiency of the light-emitting device consisting of each wavelength conversion layer is determined by applying a current of 20 mA to the light-emitting device, turning it on, measuring the total luminous flux, and dividing the total luminous flux by the injected current. It was. Further, the color rendering property (Ra) was measured by a light emission characteristic evaluation apparatus manufactured by Otsuka Electronics Co., Ltd. Table 1 shows the results of the single-layer wavelength conversion layer, and Table 2 shows the results of the three-layer wavelength conversion layer.

Figure 2007103512
Figure 2007103512

Figure 2007103512
Figure 2007103512

表1〜表2によれば、比較例1および比較例5では、各蛍光体間の変換効率の差は15%以内であるが、変換効率自体が60%未満であるため、発光装置の発光効率が低くなった。また、比較例2〜4および比較例6〜8では、変換効率の差が15%以上であり、かつ一部の蛍光体の変換効率が60%未満であるため、演色性(Ra)、発光装置の変換効率ともに低くなった。   According to Tables 1 and 2, in Comparative Example 1 and Comparative Example 5, the difference in conversion efficiency between the phosphors is within 15%, but the conversion efficiency itself is less than 60%. Efficiency became low. Further, in Comparative Examples 2 to 4 and Comparative Examples 6 to 8, the difference in conversion efficiency is 15% or more, and the conversion efficiency of some phosphors is less than 60%. Therefore, color rendering properties (Ra), light emission The conversion efficiency of the device was low.

一方、本発明に係る波長変換器を具備する実施例1〜4では、90以上の演色性、30lm/W以上の発光効率を示すことが確認できた。特に、実施例1および実施例3では、50lm/W以上の高い発光効率を示した。   On the other hand, in Examples 1 to 4 including the wavelength converter according to the present invention, it was confirmed that a color rendering property of 90 or more and a luminous efficiency of 30 lm / W or more were exhibited. In particular, Example 1 and Example 3 showed high luminous efficiency of 50 lm / W or more.

なお、上記波長変換層を用いた発光装置の出力光のピーク波長は400〜700nmの範囲内に入ることを確認した。   In addition, it confirmed that the peak wavelength of the output light of the light-emitting device using the said wavelength conversion layer entered into the range of 400-700 nm.

本発明の発光装置の一例であって、1層の波長変換層を有する発光装置の構造を示す概略断面図である。It is an example of the light-emitting device of this invention, and is a schematic sectional drawing which shows the structure of the light-emitting device which has one wavelength conversion layer. 本発明の発光装置の一例であって、2層の波長変換層を有する発光装置の構造を示す概略断面図である。It is an example of the light-emitting device of this invention, and is a schematic sectional drawing which shows the structure of the light-emitting device which has two wavelength conversion layers. 本発明の発光装置の一例であって、4層の波長変換層を有する発光装置の構造を示す概略断面図である。It is an example of the light-emitting device of this invention, and is a schematic sectional drawing which shows the structure of the light-emitting device which has four wavelength conversion layers. 従来の発光装置の構造を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the conventional light-emitting device. 従来の発光装置の構造を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the conventional light-emitting device.

符号の説明Explanation of symbols

2・・・基板
3・・・発光素子
4・・・波長変換層
5・・・蛍光体
5a・・・青色蛍光体
5b・・・緑色蛍光体
5c・・・黄色蛍光体
5d・・・赤色蛍光体
6・・・反射部材
40・・・波長変換層
50・・・波長変換層

DESCRIPTION OF SYMBOLS 2 ... Substrate 3 ... Light emitting element 4 ... Wavelength conversion layer 5 ... Phosphor 5a ... Blue phosphor 5b ... Green phosphor 5c ... Yellow phosphor 5d ... Red Phosphor 6 ... reflective member 40 ... wavelength conversion layer 50 ... wavelength conversion layer

Claims (16)

基板上に、370nm〜420nmの波長範囲の励起光を発する発光素子、およびこの発光素子を覆うように形成された前記励起光を可視光に変換する波長変換層を備え、前記可視光を出力光とする発光装置であって、
前記波長変換層内には、430nmから490nmの蛍光を発する青色蛍光体と、500nmから560nmの蛍光を発する緑色蛍光体と、540nmから600nmの蛍光を発する黄色蛍光体と、590nmから700nmの蛍光を発する赤色蛍光体とが含まれており、
前記各蛍光体は60%以上の変換効率を有し、かつ、各蛍光体の変換効率の差が15%以内であることを特徴とする発光装置。
A light emitting element that emits excitation light in a wavelength range of 370 nm to 420 nm on a substrate, and a wavelength conversion layer that converts the excitation light formed so as to cover the light emitting element into visible light, and outputs the visible light as output light A light emitting device,
In the wavelength conversion layer, a blue phosphor emitting fluorescence of 430 nm to 490 nm, a green phosphor emitting fluorescence of 500 nm to 560 nm, a yellow phosphor emitting fluorescence of 540 nm to 600 nm, and a fluorescence of 590 nm to 700 nm are emitted. And a red phosphor that emits,
Each phosphor has a conversion efficiency of 60% or more, and a difference in conversion efficiency between the phosphors is 15% or less.
前記黄色蛍光体および赤色蛍光体は発光素子に近い部分に多く含有されており、
前記青色蛍光体および緑色蛍光体は、黄色蛍光体および赤色蛍光体よりも発光素子から遠い部分に、多く含有されていることを特徴とする請求項1に記載の発光装置。
The yellow phosphor and the red phosphor are mostly contained in a portion close to the light emitting element,
2. The light emitting device according to claim 1, wherein a large amount of the blue phosphor and the green phosphor are contained in a portion farther from the light emitting element than the yellow phosphor and the red phosphor.
波長変換層は1層からなることを特徴とする請求項2に記載の発光装置。   The light emitting device according to claim 2, wherein the wavelength conversion layer comprises one layer. 前記波長変換層は、2層以上の積層構造からなり、
青色蛍光体および緑色蛍光体が含まれている層よりも発光素子に近い層に、黄色蛍光体および赤色蛍光体が含まれていることを特徴とする請求項1または2に記載の発光装置。
The wavelength conversion layer has a laminated structure of two or more layers,
3. The light emitting device according to claim 1, wherein a yellow phosphor and a red phosphor are contained in a layer closer to the light emitting element than a layer containing the blue phosphor and the green phosphor.
前記蛍光体が、珪素−酸素の結合を主体とする高分子樹脂中に分散されていることを特徴とする請求項1〜4のいずれかに記載の発光装置。   The light emitting device according to claim 1, wherein the phosphor is dispersed in a polymer resin mainly composed of silicon-oxygen bonds. 前記出力光のピーク波長が、400〜750nmであることを特徴とする請求項1〜5のいずれかに記載の発光装置。   The light emitting device according to claim 1, wherein a peak wavelength of the output light is 400 to 750 nm. 前記波長変換層の厚みが、0.1〜5mmであることを特徴とする請求項1〜6のいずれかに記載の発光装置。   The light emitting device according to any one of claims 1 to 6, wherein the wavelength conversion layer has a thickness of 0.1 to 5 mm. 前記発光素子および波長変換層の側面に、発光素子から発する光を前方に出射する反射部材が設けられていることを特徴とする請求項1〜7のいずれかに記載の発光装置。   The light emitting device according to claim 1, wherein a reflection member that emits light emitted from the light emitting element forward is provided on side surfaces of the light emitting element and the wavelength conversion layer. 前記青色蛍光体の平均粒子径が、0.1〜50μmであることを特徴とする請求項1〜8のいずれかに記載の発光装置。   The light emitting device according to any one of claims 1 to 8, wherein the blue phosphor has an average particle diameter of 0.1 to 50 µm. 前記青色蛍光体が、〔(M,Mg)10(PO46Cl2:Eu〕(MはCa,SrおよびBaから選ばれる少なくとも1種)または〔BaMgAl1017:Eu〕であることを特徴とする請求項1〜9のいずれかに記載の発光装置。 The blue phosphor is [(M, Mg) 10 (PO 4 ) 6 Cl 2 : Eu] (M is at least one selected from Ca, Sr and Ba) or [BaMgAl 10 O 17 : Eu]. The light-emitting device according to claim 1. 前記緑色蛍光体の平均粒子径が、0.1〜50μmであることを特徴とする請求項1〜10のいずれかに記載の発光装置。   The light emitting device according to any one of claims 1 to 10, wherein the green phosphor has an average particle diameter of 0.1 to 50 µm. 前記緑色蛍光体が、〔BaMgAl1017:Eu,Mn〕、〔ZnS:Cu,Al〕または〔MGa24:Eu〕であることを特徴とする請求項1〜11のいずれかに記載の発光装置。 The green phosphor, [BaMgAl 10 O 17: Eu, Mn), (ZnS: Cu, Al] or: according to any one of claims 1 to 11, characterized in that the [MGa 2 S 4 Eu] Light-emitting device. 前記赤色蛍光体が、平均粒子径10nm以下の半導体超微粒子であることを特徴とする請求項1〜12のいずれかに記載の発光装置。   The light-emitting device according to claim 1, wherein the red phosphor is a semiconductor ultrafine particle having an average particle diameter of 10 nm or less. 前記赤色蛍光体が、周期律表第I族、第II族、第III族、第IV族、第V族、第VI族に属する少なくとも2種類以上の元素からなる半導体組成物であることを特徴とする請求項1〜13のいずれかに記載の発光装置。   The red phosphor is a semiconductor composition comprising at least two kinds of elements belonging to Group I, Group II, Group III, Group IV, Group V, and Group VI of the Periodic Table The light-emitting device according to claim 1. 前記黄色蛍光体が、平均粒子径10nm以下の半導体超微粒子であることを特徴とする請求項1〜14のいずれかに記載の発光装置。   The light-emitting device according to claim 1, wherein the yellow phosphor is a semiconductor ultrafine particle having an average particle diameter of 10 nm or less. 前記黄色蛍光体が、周期律表第I族、第II族、第III族、第IV族、第V族、第VI族に属する少なくとも2種類以上の元素からなる半導体組成物であることを特徴とする請求項1〜15のいずれかに記載の発光装置。


The yellow phosphor is a semiconductor composition comprising at least two kinds of elements belonging to Group I, Group II, Group III, Group IV, Group V, and Group VI of the Periodic Table The light-emitting device according to claim 1.


JP2005289133A 2005-09-30 2005-09-30 Light emitting device Pending JP2007103512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005289133A JP2007103512A (en) 2005-09-30 2005-09-30 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005289133A JP2007103512A (en) 2005-09-30 2005-09-30 Light emitting device

Publications (1)

Publication Number Publication Date
JP2007103512A true JP2007103512A (en) 2007-04-19

Family

ID=38030185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005289133A Pending JP2007103512A (en) 2005-09-30 2005-09-30 Light emitting device

Country Status (1)

Country Link
JP (1) JP2007103512A (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009078426A1 (en) * 2007-12-18 2009-06-25 Idec Corporation Wavelength converter and light emitting device
JP2009158637A (en) * 2007-12-26 2009-07-16 Kyocera Corp Light-emitting device
JP2010141119A (en) * 2008-12-11 2010-06-24 Nitto Denko Corp Sheet for sealing optical semiconductors
WO2010131402A1 (en) * 2009-05-15 2010-11-18 株式会社小糸製作所 Light-emitting module, method of producing light-emitting module, and lighting fixture unit
JP2010538453A (en) * 2007-08-31 2010-12-09 エルジー イノテック カンパニー リミテッド Light emitting device package
JP2010287680A (en) * 2009-06-10 2010-12-24 Mitsubishi Chemicals Corp Light-emitting device
WO2011090308A2 (en) * 2010-01-19 2011-07-28 Iljin Semiconductor Co., Ltd. White light-emitting device and fabricating method thereof
JP2012036265A (en) * 2010-08-05 2012-02-23 Sharp Corp Illuminating device
JP2012060192A (en) * 2011-12-26 2012-03-22 Toshiba Corp Light emitting device, method for manufacturing the light emitting device, and light emitting device manufacturing apparatus
US8221650B2 (en) 2008-08-26 2012-07-17 Shibaura Institute Of Technology AL2O3-SiO2-based oxide phosphor
JP2012517106A (en) * 2009-02-04 2012-07-26 リンデール インコーポレイテッド Diffusion device and method coated with phosphor composite
US8288783B2 (en) 2009-08-07 2012-10-16 Sharp Kabushiki Kaisha Light emitting device and image display device
JP2013046046A (en) * 2011-08-26 2013-03-04 Mitsubishi Chemicals Corp Light-emitting device
JP2013110356A (en) * 2011-11-24 2013-06-06 Sharp Corp Solar cell module and solar light power generation apparatus
US8513872B2 (en) 2010-08-05 2013-08-20 Sharp Kabushiki Kaisha Light emitting apparatus and method for manufacturing thereof
JP2013247067A (en) * 2012-05-29 2013-12-09 Nichia Chem Ind Ltd Inorganic molding article for color conversion, method of manufacturing the same and light-emitting device
KR101360624B1 (en) 2007-08-31 2014-02-07 엘지이노텍 주식회사 Lighting emitting diode package and fabrication method thereof
JP2014082527A (en) * 2009-06-23 2014-05-08 Koito Mfg Co Ltd Light-emitting module
JPWO2012131792A1 (en) * 2011-03-31 2014-07-24 パナソニック株式会社 Semiconductor light emitting device
JP2014170938A (en) * 2013-03-04 2014-09-18 Osram Sylvania Inc Red lamp with quantum dot layer
JP2014197707A (en) * 2008-02-25 2014-10-16 株式会社東芝 White led lamp, backlight and luminaire
JP2015015371A (en) * 2013-07-05 2015-01-22 日亜化学工業株式会社 Light emitting device
KR20150040933A (en) * 2012-08-08 2015-04-15 오스람 옵토 세미컨덕터스 게엠베하 Optoelectronic semiconductor component, conversion-medium lamina and method for producing a conversion-medium lamina
JP2015115507A (en) * 2013-12-12 2015-06-22 パナソニックIpマネジメント株式会社 Light source module and light source unit
JP2015115506A (en) * 2013-12-12 2015-06-22 パナソニックIpマネジメント株式会社 Illumination light source
KR20160041672A (en) * 2014-10-08 2016-04-18 서울반도체 주식회사 Light emitting diode package
KR20160060398A (en) * 2014-11-20 2016-05-30 서울반도체 주식회사 Light emitting device
US9360204B2 (en) 2011-10-27 2016-06-07 Panasonic Corporation Light-emitting device
JP2016162850A (en) * 2015-02-27 2016-09-05 豊田合成株式会社 Light-emitting device
JP2017034179A (en) * 2015-08-05 2017-02-09 株式会社小糸製作所 Light-emitting module
JP2017174908A (en) * 2016-03-22 2017-09-28 豊田合成株式会社 Method of manufacturing light emitting device
JP2017531324A (en) * 2014-10-08 2017-10-19 ソウル セミコンダクター カンパニー リミテッド Light emitting device
JP2018506079A (en) * 2014-12-22 2018-03-01 スリーエム イノベイティブ プロパティズ カンパニー Down conversion film elements
JP2019016632A (en) * 2017-07-04 2019-01-31 日亜化学工業株式会社 Light-emitting device
US10627561B2 (en) 2008-05-06 2020-04-21 Samsung Electronics Co., Ltd. Lighting systems and devices including same
JP2020533778A (en) * 2017-09-12 2020-11-19 エルジー イノテック カンパニー リミテッド Light emitting element package

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002314142A (en) * 2001-04-09 2002-10-25 Toyoda Gosei Co Ltd Light emitting device
JP2004363564A (en) * 2003-04-30 2004-12-24 Samsung Electronics Co Ltd Light emitting diode element comprising fluorescent multilayer
WO2005071039A1 (en) * 2004-01-26 2005-08-04 Kyocera Corporation Wavelength converter, light-emitting device, wavelength converter manufacturing method, and light-emitting device manufacturing method
JP2005228996A (en) * 2004-02-13 2005-08-25 Matsushita Electric Works Ltd Light-emitting device
JP2005264160A (en) * 2004-02-18 2005-09-29 Showa Denko Kk Phosphor, method for producing the same and light emitting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002314142A (en) * 2001-04-09 2002-10-25 Toyoda Gosei Co Ltd Light emitting device
JP2004363564A (en) * 2003-04-30 2004-12-24 Samsung Electronics Co Ltd Light emitting diode element comprising fluorescent multilayer
WO2005071039A1 (en) * 2004-01-26 2005-08-04 Kyocera Corporation Wavelength converter, light-emitting device, wavelength converter manufacturing method, and light-emitting device manufacturing method
JP2005228996A (en) * 2004-02-13 2005-08-25 Matsushita Electric Works Ltd Light-emitting device
JP2005264160A (en) * 2004-02-18 2005-09-29 Showa Denko Kk Phosphor, method for producing the same and light emitting device

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010538453A (en) * 2007-08-31 2010-12-09 エルジー イノテック カンパニー リミテッド Light emitting device package
KR101360624B1 (en) 2007-08-31 2014-02-07 엘지이노텍 주식회사 Lighting emitting diode package and fabrication method thereof
WO2009078426A1 (en) * 2007-12-18 2009-06-25 Idec Corporation Wavelength converter and light emitting device
JP2009158637A (en) * 2007-12-26 2009-07-16 Kyocera Corp Light-emitting device
US10886434B2 (en) 2008-02-25 2021-01-05 Kabushiki Kaisha Toshiba White LED lamp, backlight, light emitting device, display device and illumination device
JP2014197707A (en) * 2008-02-25 2014-10-16 株式会社東芝 White led lamp, backlight and luminaire
US10627561B2 (en) 2008-05-06 2020-04-21 Samsung Electronics Co., Ltd. Lighting systems and devices including same
US8221650B2 (en) 2008-08-26 2012-07-17 Shibaura Institute Of Technology AL2O3-SiO2-based oxide phosphor
US8470201B2 (en) 2008-08-26 2013-06-25 Shibaura Institute Of Technology Al2O3-SiO2-based oxide phosphor
JP2010141119A (en) * 2008-12-11 2010-06-24 Nitto Denko Corp Sheet for sealing optical semiconductors
JP2012517106A (en) * 2009-02-04 2012-07-26 リンデール インコーポレイテッド Diffusion device and method coated with phosphor composite
WO2010131402A1 (en) * 2009-05-15 2010-11-18 株式会社小糸製作所 Light-emitting module, method of producing light-emitting module, and lighting fixture unit
CN102428582A (en) * 2009-05-15 2012-04-25 株式会社小糸制作所 Light emitting module, method of producing light-emitting module, and lighting fixture unit
JP5487204B2 (en) * 2009-05-15 2014-05-07 株式会社小糸製作所 Light emitting module, method for manufacturing light emitting module, and lamp unit
JP2010287680A (en) * 2009-06-10 2010-12-24 Mitsubishi Chemicals Corp Light-emitting device
JP2014082527A (en) * 2009-06-23 2014-05-08 Koito Mfg Co Ltd Light-emitting module
US8288783B2 (en) 2009-08-07 2012-10-16 Sharp Kabushiki Kaisha Light emitting device and image display device
WO2011090308A3 (en) * 2010-01-19 2011-11-10 Iljin Semiconductor Co., Ltd. White light-emitting device and fabricating method thereof
WO2011090308A2 (en) * 2010-01-19 2011-07-28 Iljin Semiconductor Co., Ltd. White light-emitting device and fabricating method thereof
JP2012036265A (en) * 2010-08-05 2012-02-23 Sharp Corp Illuminating device
US8513872B2 (en) 2010-08-05 2013-08-20 Sharp Kabushiki Kaisha Light emitting apparatus and method for manufacturing thereof
JPWO2012131792A1 (en) * 2011-03-31 2014-07-24 パナソニック株式会社 Semiconductor light emitting device
JP2013046046A (en) * 2011-08-26 2013-03-04 Mitsubishi Chemicals Corp Light-emitting device
US9360204B2 (en) 2011-10-27 2016-06-07 Panasonic Corporation Light-emitting device
JP2013110356A (en) * 2011-11-24 2013-06-06 Sharp Corp Solar cell module and solar light power generation apparatus
JP2012060192A (en) * 2011-12-26 2012-03-22 Toshiba Corp Light emitting device, method for manufacturing the light emitting device, and light emitting device manufacturing apparatus
JP2013247067A (en) * 2012-05-29 2013-12-09 Nichia Chem Ind Ltd Inorganic molding article for color conversion, method of manufacturing the same and light-emitting device
KR20150040933A (en) * 2012-08-08 2015-04-15 오스람 옵토 세미컨덕터스 게엠베하 Optoelectronic semiconductor component, conversion-medium lamina and method for producing a conversion-medium lamina
KR102033203B1 (en) 2012-08-08 2019-10-16 오스람 옵토 세미컨덕터스 게엠베하 Optoelectronic semiconductor component, conversion-medium lamina and method for producing a conversion-medium lamina
JP2014170938A (en) * 2013-03-04 2014-09-18 Osram Sylvania Inc Red lamp with quantum dot layer
JP2015015371A (en) * 2013-07-05 2015-01-22 日亜化学工業株式会社 Light emitting device
US9455382B2 (en) 2013-07-05 2016-09-27 Nichia Corporation Light emitting device
JP2015115506A (en) * 2013-12-12 2015-06-22 パナソニックIpマネジメント株式会社 Illumination light source
JP2015115507A (en) * 2013-12-12 2015-06-22 パナソニックIpマネジメント株式会社 Light source module and light source unit
KR20160041672A (en) * 2014-10-08 2016-04-18 서울반도체 주식회사 Light emitting diode package
JP2017531324A (en) * 2014-10-08 2017-10-19 ソウル セミコンダクター カンパニー リミテッド Light emitting device
US11545599B2 (en) 2014-10-08 2023-01-03 Seoul Semiconductor Co., Ltd. Light emitting device
JP7073102B2 (en) 2014-10-08 2022-05-23 ソウル セミコンダクター カンパニー リミテッド Light emitting device
KR102256593B1 (en) 2014-10-08 2021-05-26 서울반도체 주식회사 Light emitting diode package
US10811572B2 (en) 2014-10-08 2020-10-20 Seoul Semiconductor Co., Ltd. Light emitting device
KR20160060398A (en) * 2014-11-20 2016-05-30 서울반도체 주식회사 Light emitting device
KR102288404B1 (en) 2014-11-20 2021-08-11 서울반도체 주식회사 Light emitting device
JP2018506079A (en) * 2014-12-22 2018-03-01 スリーエム イノベイティブ プロパティズ カンパニー Down conversion film elements
JP2016162850A (en) * 2015-02-27 2016-09-05 豊田合成株式会社 Light-emitting device
JP2017034179A (en) * 2015-08-05 2017-02-09 株式会社小糸製作所 Light-emitting module
JP2017174908A (en) * 2016-03-22 2017-09-28 豊田合成株式会社 Method of manufacturing light emitting device
US10505081B2 (en) 2017-07-04 2019-12-10 Nichia Corporation Light emitting device
JP2019016632A (en) * 2017-07-04 2019-01-31 日亜化学工業株式会社 Light-emitting device
JP2020533778A (en) * 2017-09-12 2020-11-19 エルジー イノテック カンパニー リミテッド Light emitting element package

Similar Documents

Publication Publication Date Title
JP2007103512A (en) Light emitting device
JP4838005B2 (en) Light emitting device
JP4653662B2 (en) Wavelength converter, light emitting device, method for manufacturing wavelength converter, and method for manufacturing light emitting device
US7518160B2 (en) Wavelength converter, lighting system, and lighting system assembly
JP2007103513A (en) Light emitting device
JP2007146154A (en) Wavelength converter, lighting system, and lighting system assembly
JP2007157798A (en) Light emitting device
KR101739851B1 (en) Light emitting device comprising wavelength conversion structures
US7675083B2 (en) Oxynitride-based fluorescent material and method for production thereof
JP2007273498A (en) Wavelength converter and light emitting device
JP2011071404A (en) Light-emitting device and illumination apparatus
JP2005264160A (en) Phosphor, method for producing the same and light emitting device
JP7226789B2 (en) light emitting device
JP2007123390A (en) Light emitting device
US7679094B2 (en) Oxynitride-based fluorescent material and method for production thereof
JP4960644B2 (en) Phosphor particles, wavelength converter and light emitting device
US20050156510A1 (en) Device and method for emitting output light using group IIB element selenide-based and group IIA element gallium sulfide-based phosphor materials
WO2012073887A1 (en) Phosphor and light emitting device
JP4969100B2 (en) Manufacturing method of semiconductor phosphor
JP2013033916A (en) Light-emitting device and manufacturing method of the same
JP5123475B2 (en) Fluorescent structure, composite, light emitting device, and light emitting device assembly
JP2010225960A (en) Light emitting device and illumination apparatus
JP2007059898A (en) Semiconductor light-emitting device
JP5566263B2 (en) Light emitting module
JP4949793B2 (en) Phosphor, wavelength converter and light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110419