JP2012036265A - Illuminating device - Google Patents

Illuminating device Download PDF

Info

Publication number
JP2012036265A
JP2012036265A JP2010175873A JP2010175873A JP2012036265A JP 2012036265 A JP2012036265 A JP 2012036265A JP 2010175873 A JP2010175873 A JP 2010175873A JP 2010175873 A JP2010175873 A JP 2010175873A JP 2012036265 A JP2012036265 A JP 2012036265A
Authority
JP
Japan
Prior art keywords
phosphor
wavelength conversion
conversion unit
lighting device
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010175873A
Other languages
Japanese (ja)
Inventor
Kazunori Annen
一規 安念
Makoto Izumi
真 和泉
Kenichi Yoshimura
健一 吉村
Hiroshi Fukunaga
浩史 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2010175873A priority Critical patent/JP2012036265A/en
Priority to CN2011102153277A priority patent/CN102376860A/en
Priority to US13/198,432 priority patent/US8513872B2/en
Publication of JP2012036265A publication Critical patent/JP2012036265A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item

Landscapes

  • Led Device Packages (AREA)
  • Luminescent Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-performance illuminating device which prevents performance decline and degradation while utilizing the characteristics of a nanocrystalline phosphor.SOLUTION: The illuminating device 10 includes a light emitting device 4 emitting primary light and a wavelength conversion unit absorbing a part of the primary light to emit secondary light. The wavelength conversion unit includes a first wavelength conversion unit 6 containing at least the nanocrystalline phosphor and a second wavelength conversion unit 7 containing a rare-earth-activated phosphor or a transition-metal-element-activated phosphor. In the light emitting device 4, the first wavelength conversion unit 6 and the second wavelength conversion unit 7 are closely stacked in order.

Description

本発明は照明装置に関し、特に、光源から発せられた光により励起される蛍光体を用いた照明装置に好適なものである。   The present invention relates to a lighting device, and is particularly suitable for a lighting device using a phosphor excited by light emitted from a light source.

消費電力、小型、且つ高輝度が期待される次世代の照明装置として、ナノ結晶の蛍光体と、その蛍光体を励起する一次光を発する光源とからなる照明装置の開発が盛んに行われている。蛍光体にナノ結晶を用いることにより、従来の蛍光体と比較して発光効率の向上が期待されている。ナノ結晶の蛍光体の特徴として、量子サイズ効果によりナノ結晶の粒子サイズを変えることで青(短波長)から赤(長波長)まで自在に発光する色を制御できる。そして、作製条件を最適化させることでナノ結晶の粒子サイズ分布のばらつきをなくし、ほぼ均一な粒子サイズのナノ結晶の蛍光体が得られるため、細い発光スペクトルを得ることが出来る。   As a next-generation lighting device that is expected to have low power consumption, small size, and high brightness, a lighting device comprising a nanocrystalline phosphor and a light source that emits primary light that excites the phosphor has been actively developed. Yes. The use of nanocrystals for the phosphor is expected to improve the light emission efficiency as compared with conventional phosphors. As a feature of the nanocrystal phosphor, the color of light emitted from blue (short wavelength) to red (long wavelength) can be controlled freely by changing the nanocrystal particle size by the quantum size effect. Then, by optimizing the manufacturing conditions, the dispersion of the nanocrystal particle size distribution is eliminated, and the nanocrystal phosphor having a substantially uniform particle size is obtained, so that a narrow emission spectrum can be obtained.

このようなナノ結晶の蛍光体を用いた照明装置の一例が、特許文献1の特開2004−71357号公報に開示されている。図8は、特許文献1に示された照明装置の概略側面図である。この照明装置は、波長変換部を構成する蛍光体として粒径の異なるナノ結晶を用いて、光路順に、粒径の大きい蛍光体順に積層している。具体的には、赤色発光する粒径を有し、最も粒径の大きいInN系ナノ結晶である赤色蛍光体と、緑色発光する粒径を有し、中間の粒径のInN系ナノ結晶である緑色蛍光体と、青色発光する粒径を有し、最も粒径の小さいInN系ナノ結晶である青色蛍光体とが積層され、波長変換部を構成している。これら蛍光体は光源に近い順に、赤色蛍光体、緑色蛍光体、青色蛍光体が積層されている。   An example of an illumination device using such a nanocrystalline phosphor is disclosed in Japanese Patent Application Laid-Open No. 2004-71357. FIG. 8 is a schematic side view of the illumination device disclosed in Patent Document 1. As shown in FIG. In this illuminating device, nanocrystals having different particle diameters are used as the phosphors constituting the wavelength conversion unit, and are stacked in the order of the optical paths and the phosphors having the larger particle diameters. Specifically, it is a red phosphor that has a particle size that emits red light and has the largest particle size, and an InN-based nanocrystal that has a particle size that emits green light and has an intermediate particle size. A green phosphor and a blue phosphor, which is an InN-based nanocrystal having the smallest particle diameter and emitting blue light, are laminated to constitute a wavelength conversion unit. In these phosphors, a red phosphor, a green phosphor, and a blue phosphor are laminated in the order closer to the light source.

特開2004−71357号公報JP 2004-71357 A

しかしながら、上記特許文献1に記載されている照明装置は、波長変換部として粒径の異なるナノ結晶を単一材料として用いているため、最後に積層された青色蛍光体は、その上面が大気にさらされた状態となる。もともと、ナノ結晶の蛍光体は酸素や水分に弱いため、最上層の蛍光体は直接空気に触れ、劣化する虞がある。これは、照明装置の性能低下につながり、問題となる。   However, since the illumination device described in Patent Document 1 uses nanocrystals having different particle diameters as a single material as a wavelength converter, the top surface of the blue phosphor layered last is in the atmosphere. It will be exposed. Originally, nanocrystalline phosphors are vulnerable to oxygen and moisture, so that the uppermost layer phosphor may directly touch air and deteriorate. This leads to a decrease in the performance of the lighting device and causes a problem.

本発明は、上記の問題点に鑑みてなされたものであり、その目的は、ナノ結晶の蛍光体の特性を生かしつつ、性能低下や劣化を防ぐことができる、長寿命の照明装置を実現することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to realize a long-life lighting device capable of preventing performance degradation and deterioration while utilizing the characteristics of a nanocrystalline phosphor. There is.

本発明に係る照明装置は、一次光を発光する発光素子と、前記一次光の一部を吸収して二次光を発光する波長変換部を備えた照明装置において、前記波長変換部は、少なくともナノ結晶蛍光体を含む第1の波長変換部と、希土類付活蛍光体もしくは遷移金属元素付活蛍光体を含む第2の波長変換部とから構成され、前記発光素子には、第1の波長変換部、第2の波長変換部が順に近接して積層されていることを特徴とする。   An illumination device according to the present invention includes a light emitting element that emits primary light and a wavelength conversion unit that absorbs part of the primary light and emits secondary light, and the wavelength conversion unit includes at least The light emitting device includes a first wavelength conversion unit including a nanocrystalline phosphor and a second wavelength conversion unit including a rare earth activated phosphor or a transition metal element activated phosphor. The conversion unit and the second wavelength conversion unit are stacked in close proximity to each other.

また、本発明に係る照明装置は、前記ナノ結晶蛍光体は、InおよびPを含むIII―V族化合物半導体または、CdおよびSeを含むII―VI化合物半導体よりなることを特徴とする。   In the illumination device according to the present invention, the nanocrystalline phosphor is made of a III-V group compound semiconductor containing In and P or an II-VI compound semiconductor containing Cd and Se.

また、本発明に係る照明装置は、前記ナノ結晶蛍光体は、InPまたはCdSeのうち、少なくとも一つを含むことを特徴とする。   The illumination device according to the present invention is characterized in that the nanocrystalline phosphor includes at least one of InP and CdSe.

また、本発明に係る照明装置は、前記希土類付活蛍光体は、付活剤としてCeもしくはEuを含むことを特徴とする。   In the illumination device according to the present invention, the rare earth activated phosphor includes Ce or Eu as an activator.

また、本発明に係る照明装置は、前記希土類付活蛍光体は、窒化物系蛍光体であることを特徴とする。   The lighting device according to the present invention is characterized in that the rare earth-activated phosphor is a nitride-based phosphor.

また、本発明に係る照明装置は、前記希土類付活蛍光体は、サイアロン蛍光体であることを特徴とする。   Moreover, the lighting device according to the present invention is characterized in that the rare earth activated phosphor is a sialon phosphor.

また、本発明に係る照明装置は、前記一次光の光路順に、ピーク波長の長い蛍光体順に積層することを特徴とする。   Moreover, the illuminating device according to the present invention is characterized by laminating in order of phosphors having a long peak wavelength in the order of the optical path of the primary light.

本発明の照明装置によれば、ナノ結晶の蛍光体の特性を生かしつつ、性能低下や劣化を防止し、長寿命の照明装置を実現することができる。   According to the illuminating device of the present invention, it is possible to realize a long-life illuminating device while making use of the characteristics of the nanocrystalline phosphor while preventing performance degradation and deterioration.

照明装置の断面図である。It is sectional drawing of an illuminating device. 照明装置の製造工程を示す図である。It is a figure which shows the manufacturing process of an illuminating device. 照明装置の製造工程を示す図である。It is a figure which shows the manufacturing process of an illuminating device. 照明装置の発光スペクトルを示す図である。It is a figure which shows the emission spectrum of an illuminating device. 実施例に対する比較例を示す図である。It is a figure which shows the comparative example with respect to an Example. 実施例に対する比較例を示す図である。It is a figure which shows the comparative example with respect to an Example. 照明装置の時間経過に伴う発光積算強度の測定結果である。It is a measurement result of the light emission integrated intensity | strength with the time passage of an illuminating device. 従来の照明装置の構成図である。It is a block diagram of the conventional illuminating device.

以下、本発明の実施の形態について図1〜図7を用いて以下に説明する。なお、本発明の図面において、同一の参照符号は、同一部分または相当部分を表わすものとする。本明細書において、「ナノ結晶」とは結晶サイズを励起子ボーア半径程度まで小さくし、量子サイズ効果による励起子の閉じ込めやバンドギャップの増大が観測される結晶を指すものとする。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. In the drawings of the present invention, the same reference numerals represent the same or corresponding parts. In this specification, “nanocrystal” refers to a crystal in which the crystal size is reduced to about the exciton Bohr radius, and exciton confinement or band gap increase due to the quantum size effect is observed.

<実施形態1>
図1は、本実施形態に係る照明装置の断面図である。照明装置10は、電極1が形成された基板2と、電極1上に設けられたパッケージ3および発光素子4と、発光素子4と電極1を接続するワイヤ5、発光素子4の光路順に半導体ナノ粒子を含有する第1の波長変換部6とEu付活β型サイアロン蛍光体を含有する第2の波長変換部7が積層されたものとで構成される。
<Embodiment 1>
FIG. 1 is a cross-sectional view of the lighting device according to the present embodiment. The illuminating device 10 includes a substrate 2 on which the electrode 1 is formed, a package 3 and a light emitting element 4 provided on the electrode 1, a wire 5 that connects the light emitting element 4 and the electrode 1, and a semiconductor nanostructure in the optical path order of the light emitting element 4. The first wavelength conversion unit 6 containing particles and the second wavelength conversion unit 7 containing Eu-activated β-sialon phosphor are stacked.

電極1を形成する導体は、発光素子4を電気的に接続するための電導路としての機能を有し、ワイヤ5にて発光素子4と電気的に接続されている。導体としては、たとえばW、Mo、Cu、またはAg等の金属粉末を含むメタライズ層を用いることができる。基板2は、熱伝導性が高く、かつ全反射率の大きいことが求められるため、たとえばアルミナ、窒化アルミニウム等のセラミック材料のほかに、金属酸化物微粒子を分散させた高分子樹脂が好適に用いられる。   The conductor forming the electrode 1 has a function as a conductive path for electrically connecting the light emitting element 4, and is electrically connected to the light emitting element 4 by a wire 5. As the conductor, for example, a metallized layer containing metal powder such as W, Mo, Cu, or Ag can be used. Since the substrate 2 is required to have a high thermal conductivity and a high total reflectance, a polymer resin in which metal oxide fine particles are dispersed is preferably used in addition to a ceramic material such as alumina or aluminum nitride. It is done.

パッケージ3は、高い反射率を持ちつつ、封止樹脂との密着性が良いポリフタルアミドなどにより構成される。発光素子4は、光源として用いられ、たとえば450nmにピーク波長を有するGaN系発光ダイオード、ZnO系発光ダイオード、ダイヤモンド系発光ダイオード等を用いることができる。   The package 3 is made of polyphthalamide or the like having high reflectance and good adhesion to the sealing resin. The light emitting element 4 is used as a light source, and for example, a GaN light emitting diode having a peak wavelength at 450 nm, a ZnO light emitting diode, a diamond light emitting diode, or the like can be used.

第1の波長変換部6としては、InP系のナノ結晶を用いることができる。InPは粒径を小さく(ナノ結晶化)していくと量子効果によってバンドギャップを青色から赤色の範囲で制御することができる。例えば、赤色発光する粒径(620〜750nm)を有する、InP系ナノ結晶である赤色蛍光体をシリコーン樹脂中に混合し硬化させたものを用いることができる。   As the first wavelength conversion unit 6, an InP-based nanocrystal can be used. When the particle size of InP is reduced (nanocrystallization), the band gap can be controlled in the range from blue to red by the quantum effect. For example, a red phosphor, which is an InP-based nanocrystal having a red light emitting particle size (620 to 750 nm), mixed in a silicone resin and cured can be used.

このほか、波長変換部6として、InP以外のIII―V族化合物半導体やII―VI化合物半導体よりなるナノ結晶である赤色蛍光体を用いてもよい。たとえば、II―VI族化合物半導体やIII―V族化合物半導体よりなるナノ結晶の化合物半導体としては、二元系では、II−VI族化合物半導体として、CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、HgS、HgSe、HgTe、PbSe、PbS等が挙げられる。III−V族化合物半導体としては、GaN、GaP、GaAs、AlN、AlP、AlAs、InN、InP、InAs等が挙げられる。   In addition, a red phosphor that is a nanocrystal made of a III-V group compound semiconductor or II-VI compound semiconductor other than InP may be used as the wavelength conversion unit 6. For example, as a nanocrystalline compound semiconductor composed of a II-VI group compound semiconductor or a III-V group compound semiconductor, in a binary system, as a II-VI group compound semiconductor, CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, PbSe, PbS etc. are mentioned. Examples of the III-V group compound semiconductor include GaN, GaP, GaAs, AlN, AlP, AlAs, InN, InP, InAs, and the like.

また、三元系や四元系では、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、HgZnSTe、GaNP、GaNAs、GaPAs、AlNP、AlNAs、AlPAs、InNP、InNAs、InPAs、InGaN、GaAlNP、GaAlNAs、GaAlPAs、GaInNP、GaInNAs、GaInPAs、InAlNP、InAlNAs、InAlPAs等が挙げられる。   In ternary and quaternary systems, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgSe, CdHgSe, CdHgSe, CdHgSe, CdHgSe, CdHgSe, CdHgSe, CdHgSe, CdHgSe , CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTTe, HgZnSeS, HgZnSeTe, HgZnSTe, GaNP, GaNAs, GaPAs, AlNP, AlNAs, AlPAs, InNP, InNAs, InPAs, InGaN, GaAlNP , InAlPAs etc. It is.

そして、第1の波長変換部6としては、InおよびPを含むナノ結晶、または、CdおよびSeを含むナノ結晶を用いることが好ましい。その理由は、InおよびPを含むナノ結晶、または、CdおよびSeを含むナノ結晶は、可視光域(380nm〜780nm)で発光する粒径のナノ結晶を作製し易いためである。   And as the 1st wavelength conversion part 6, it is preferable to use the nanocrystal containing In and P or the nanocrystal containing Cd and Se. This is because a nanocrystal containing In and P or a nanocrystal containing Cd and Se can easily produce a nanocrystal having a particle size that emits light in the visible light region (380 nm to 780 nm).

その中でも特に、InP、またはCdSeを用いることが好ましい。理由としては、InPとCdSeは、構成する材料が少ないため作製がし易い上、高い量子収率を示す材料であり、LEDの光を照射した際、高い発光効率を示すからである。ここでの量子収率とは、吸収した光子数に対する蛍光として発光した光子数の割合のことである。   Among them, it is particularly preferable to use InP or CdSe. The reason is that InP and CdSe are easy to manufacture because there are few constituent materials, and also show high quantum yield, and show high luminous efficiency when irradiated with LED light. The quantum yield here is the ratio of the number of photons emitted as fluorescence to the number of absorbed photons.

さらに言えば、第1の波長変換部6として、強い毒性を示すCdを含まないInPを用いることが好ましい。   Furthermore, it is preferable to use InP which does not contain Cd which shows strong toxicity as the first wavelength conversion unit 6.

また、第2の波長変換部7としては、希土類付活蛍光体もしくは遷移金属元素付活蛍光体が好適である。これらの蛍光体は、酸素や水分の影響で蛍光体の発光効率が低下しにくい蛍光体であり、たとえば、蛍光体母体がイットリウム・アルミニウム・ガーネット(YAG)に付活剤としてセリウム(Ce)を導入したYAG:Ceなどが挙げられる。   Further, as the second wavelength conversion unit 7, a rare earth activated phosphor or a transition metal element activated phosphor is suitable. These phosphors are phosphors in which the luminous efficiency of the phosphor is unlikely to decrease due to the influence of oxygen or moisture. For example, the phosphor matrix is made of yttrium, aluminum, garnet (YAG) with cerium (Ce) as an activator. Examples include YAG: Ce introduced.

さらに、これらの蛍光体は希土類や遷移金属元素を付活された窒化物系蛍光体であることが望ましい。窒化物系蛍光体は、高温下でも発光効率の低下が起きにくい特徴を持つ。窒化物系蛍光体としては、たとえば、サイアロン蛍光体が考えられ、β型サイアロン(SiAlON)に希土類元素や遷移金属元素を付活した蛍光体が知られている。Tb、Yb、Agを付活したβ型サイアロンは525nmから545nmの緑色を発光する蛍光体となる。さらに、β型サイアロンにEu2+を付活した緑色の蛍光体が知られている。Eu付活β型サイアロン蛍光体は、従来の公知の方法にて製造することが出来る。具体的には、たとえばEu、EuN等の光学活性元素Euを含有する金属化合物と窒化アルミニウム(AlN)粉末と窒化珪素粉末(Si)とを均一に混合し、1800〜2000℃程度の温度で焼成することで得られる。これら原料粉末の混合比は、焼成後の蛍光体の組成比を考慮して適宜選択される。 Further, these phosphors are desirably nitride phosphors activated with rare earth elements or transition metal elements. Nitride-based phosphors have a feature that light emission efficiency is not easily lowered even at high temperatures. As the nitride-based phosphor, for example, a sialon phosphor can be considered, and a phosphor obtained by activating a rare earth element or a transition metal element in β-type sialon (SiAlON) is known. Β-sialon activated Tb, Yb, Ag becomes a phosphor emitting green light of 525 nm to 545 nm. Furthermore, a green phosphor in which Eu 2+ is activated on β-type sialon is known. The Eu-activated β-sialon phosphor can be produced by a conventionally known method. Specifically, for example, a metal compound containing an optically active element Eu such as Eu 2 O 3 or EuN, an aluminum nitride (AlN) powder, and a silicon nitride powder (Si 3 N 4 ) are uniformly mixed, and 1800 to 2000 are mixed. It can be obtained by firing at a temperature of about ℃. The mixing ratio of these raw material powders is appropriately selected in consideration of the composition ratio of the phosphor after firing.

次に、照明装置10の製造方法の一例を以下に説明する。図2および図3は、照明装置10の製造工程を説明する図である。まず、図2に示されるように電極1、基板2、パッケージ3、発光素子4、そしてワイヤ5が備わったLEDパッケージを用意する。   Next, an example of a method for manufacturing the lighting device 10 will be described below. 2 and 3 are diagrams illustrating a manufacturing process of the lighting device 10. First, as shown in FIG. 2, an LED package including an electrode 1, a substrate 2, a package 3, a light emitting element 4, and a wire 5 is prepared.

次に、重量比で樹脂:ナノ結晶である赤色蛍光体=1000:4.62の比になるよう樹脂とナノ結晶である赤色蛍光体を含有するトルエン溶液を混合する。ナノ結晶である赤色蛍光体には、InP結晶からなるものを使用した。また、シリコーン樹脂は、信越化学工業株式会社製SCR1011を使用した。SCR1011以外でも、ナノ結晶である赤色蛍光体が均一に分散される樹脂であって、透明であり、熱や光に強い樹脂であれば使用することが出来る。そして、図3に示すように、上記LEDパッケージにナノ結晶である赤色蛍光体を含有した樹脂を滴下し、所定の時間で硬化させることで第1の波長変換部6を作製した。   Next, the toluene solution containing the resin and the nanocrystalline red phosphor is mixed so that the weight ratio of resin: nanocrystalline red phosphor = 1000: 4.62. As the red phosphor that is a nanocrystal, an InP crystal was used. As the silicone resin, SCR 1011 manufactured by Shin-Etsu Chemical Co., Ltd. was used. In addition to SCR 1011, any resin can be used as long as it is a resin in which the red phosphor that is a nanocrystal is uniformly dispersed and is transparent and resistant to heat and light. And as shown in FIG. 3, the resin containing the red fluorescent substance which is a nanocrystal was dripped at the said LED package, and the 1st wavelength conversion part 6 was produced by making it harden | cure in predetermined time.

次に、重量比で樹脂:Eu付活β型サイアロン蛍光体=1000:200の比で混合する。シリコーン樹脂は、信越化学工業株式会社製SCR1011を使用した。SCR1011以外でも、Eu付活β型サイアロン蛍光体が均一に分散される樹脂であって、透明であり、熱や光に強い樹脂であれば使用することが出来る。   Next, the resin: Eu-activated β-sialon phosphor is mixed at a weight ratio of 1000: 200. SCR1011 manufactured by Shin-Etsu Chemical Co., Ltd. was used as the silicone resin. Other than SCR 1011, any resin can be used as long as it is a resin in which the Eu-activated β-sialon phosphor is uniformly dispersed and is transparent and resistant to heat and light.

その後、第1の波長変換部6が形成されているLEDパッケージにEu付活β型サイアロン蛍光体を含有する樹脂を滴下し、所定の時間で硬化させることで第2の波長変換部7を作製した。今回は、第1の波長変換部6と第2の波長変換部7の一次光の光路方向の厚みは、同じになるよう調整したが、所望の色バランスに応じて厚みを適宜設定すればよい。上記のようにして、図1に示すような照明装置10が作製される。なお、製造方法については、第1の波長変換部6上に、第2の波長変換部7が形成される方法であれば、上記の方法に限られるものではない。また、本実施形態では、第1の波長変換部6上に連続して第2の波長変換部7を積層しているが、第1の波長変換部6と第2の波長変換部7の間にこれら以外の層が積層されていても構わない。   Thereafter, a resin containing Eu-activated β-sialon phosphor is dropped onto the LED package on which the first wavelength conversion unit 6 is formed, and the second wavelength conversion unit 7 is produced by curing in a predetermined time. did. This time, the thickness of the primary light in the optical path direction of the primary light of the first wavelength conversion unit 6 and the second wavelength conversion unit 7 is adjusted to be the same, but the thickness may be set as appropriate according to the desired color balance. . As described above, the illumination device 10 as shown in FIG. 1 is manufactured. The manufacturing method is not limited to the above method as long as the second wavelength conversion unit 7 is formed on the first wavelength conversion unit 6. Further, in the present embodiment, the second wavelength conversion unit 7 is continuously stacked on the first wavelength conversion unit 6, but between the first wavelength conversion unit 6 and the second wavelength conversion unit 7. Layers other than these may be laminated.

上記の手順により作製された照明装置10の発光スペクトルを、大塚電子株式会社製分光光度計MCPD−7000にて測定した。   The emission spectrum of the illumination device 10 produced by the above procedure was measured with a spectrophotometer MCPD-7000 manufactured by Otsuka Electronics Co., Ltd.

図4は、照明装置10の発光スペクトルを示したグラフである。ナノ結晶である赤色蛍光体を用いたことにより、従来の赤色蛍光体よりも細い発光スペクトルが得られ、従来に比べて、NTSC(National Television System Commitee)比が向上し、色再現性が改善された。   FIG. 4 is a graph showing an emission spectrum of the lighting device 10. By using a red phosphor, which is a nanocrystal, an emission spectrum narrower than that of a conventional red phosphor can be obtained, and the NTSC (National Television System Committee) ratio is improved and color reproducibility is improved as compared with the conventional phosphor. It was.

なお、本実施形態では、第1の波長変換部、第2の波長変換部のみで形成される照明装置10の作製方法について示したが、さらに、別の蛍光体よりなる波長変換部が積層されてもよい。ここで、各波長変換部における蛍光体は、それぞれの励起エネルギーより大きいエネルギーを有した光を全て吸収し、蛍光として二次光を発色する。励起エネルギーの大きい蛍光体(例えば青色)で発光した二次光は、励起エネルギーの小さい蛍光体(例えば赤色)に吸収されてしまい、所望の色バランスを得るのが難しくなる。このような場合には、一次光の光路順にピーク波長の長い蛍光体順に積層することで、各蛍光体から発光した二次光は、他色を発光する蛍光体に再度吸収されることがほとんど無く、所望の色バランスを容易に得ることができる。   In addition, in this embodiment, although the manufacturing method of the illuminating device 10 formed only with a 1st wavelength conversion part and a 2nd wavelength conversion part was shown, the wavelength conversion part which consists of another fluorescent substance is laminated | stacked further. May be. Here, the phosphor in each wavelength conversion unit absorbs all light having energy larger than the respective excitation energy, and develops secondary light as fluorescence. Secondary light emitted from a phosphor with high excitation energy (for example, blue) is absorbed by the phosphor with low excitation energy (for example, red), making it difficult to obtain a desired color balance. In such a case, the secondary light emitted from each phosphor is mostly absorbed again by the phosphors emitting other colors by laminating in order of the phosphors having the long peak wavelengths in the order of the optical path of the primary light. The desired color balance can be easily obtained.

<実施形態2>
次に、上述の方法および材料により作製された、数種類の照明装置10を用い、発光強度とその発光強度の経時変化を測定した。まず、第1の波長変換部6上に、第2の波長変換部7を積層し、該第2の波長変換部のシリコーン樹脂に含まれるEu付活β型サイアロン蛍光体の量を変化させたものを3種類作製した。即ち、第2の波長変換部7のシリコーン樹脂SCR1011の1g当たりに含まれるEu付活β型サイアロン蛍光体の量が(イ)0.03g、(ロ)0.1g、(ハ)0.3gの3種類である。
<Embodiment 2>
Next, using several kinds of lighting devices 10 manufactured by the above-described methods and materials, the emission intensity and the change with time of the emission intensity were measured. First, the second wavelength conversion unit 7 was laminated on the first wavelength conversion unit 6, and the amount of Eu-activated β-sialon phosphor contained in the silicone resin of the second wavelength conversion unit was changed. Three kinds of things were produced. That is, the amount of Eu-activated β-sialon phosphor contained in 1 g of the silicone resin SCR1011 of the second wavelength conversion unit 7 is (A) 0.03 g, (B) 0.1 g, (C) 0.3 g There are three types.

(比較例)
次に、比較例として、第1の波長変換部6上にシリコーン樹脂のみを積層した照明装置(ニ)、第1の波長変換部上にはシリコーン樹脂も何も積層せず、空気中にさらした状態の照明装置(ホ)を作製した。図5は、第1の波長変換部6上に、シリコーン樹脂8を積層した照明装置10a(二)を示している。シリコーン樹脂8は、上述したSCR1011を用い、図1に示した第2の波長変換部とほぼ同じ厚みになるように積層した。図6は、第1の波長変換部6上には何も積層しない照明装置10b(ホ)を示している。つまり、第1の波長変換部6は、その上面は、空気中にさらされた状態である。
(Comparative example)
Next, as a comparative example, a lighting device (d) in which only a silicone resin is laminated on the first wavelength conversion unit 6, and no silicone resin is laminated on the first wavelength conversion unit and exposed to the air. The lighting device (e) in the state was prepared. FIG. 5 shows an illumination device 10 a (2) in which a silicone resin 8 is laminated on the first wavelength conversion unit 6. The silicone resin 8 was laminated using the SCR 1011 described above so as to have substantially the same thickness as that of the second wavelength conversion unit shown in FIG. FIG. 6 shows an illumination device 10 b (e) in which nothing is stacked on the first wavelength conversion unit 6. That is, the upper surface of the first wavelength conversion unit 6 is exposed to the air.

(測定結果)
そこで、上記(イ)〜(ホ)の照明装置について、照明装置の作製直後、および一定時間経過後の発光積算強度を比較測定した結果を図7に示す。本実施形態では、分光光度計MCPD−7000を用いて発光スペクトルを測定し、波長630nm〜780nmの発光強度を積算した。それぞれの照明装置の作製時におけるナノ結晶である赤色蛍光体の発光積算強度を100とし、作製後30日経過した時点で、同様にしてナノ結晶である赤色蛍光体の発光積算強度を計算した。
(Measurement result)
Accordingly, FIG. 7 shows the results of comparative measurements of the integrated emission intensities immediately after the manufacture of the illumination device and after a lapse of a certain period of time for the illumination devices (A) to (E). In this embodiment, the emission spectrum was measured using a spectrophotometer MCPD-7000, and the emission intensities at wavelengths of 630 nm to 780 nm were integrated. The integrated emission intensity of the red phosphor, which is a nanocrystal at the time of manufacturing each lighting device, was set to 100, and the integrated emission intensity of the red phosphor, which was a nanocrystal, was calculated in the same manner when 30 days had elapsed after the preparation.

図7の(イ)〜(ハ)に示すように、シリコーン樹脂にEu付活β型サイアロン蛍光体を混合すると、作製直後のナノ結晶蛍光体の発光積算強度を基準とした場合、作製してから30日経過しても、基準値の約半分の発光積算強度の低下で抑えられることがわかる。また、(ホ)0(シリコーン樹脂を積層せず)では、発光積算強度が30.5a.u.(arb unit)となり、時間経過によりかなり劣化が進んでいる。また、(ニ)0(シリコーン樹脂のみ積層)では、発光積算強度が32.3a.u.であり、何も積層しないものに比べて、やや発光積算強度の劣化が抑えられている。このことから、シリコーン樹脂8が、ナノ結晶である赤色蛍光体を空気中の酸素や水分から守る働きを有していることがわかる。   As shown in (a) to (c) of FIG. 7, when Eu-activated β-sialon phosphor is mixed with silicone resin, it is produced based on the integrated emission intensity of the nanocrystal phosphor immediately after production. It can be seen that even after 30 days have elapsed, the light emission integrated intensity can be suppressed by a decrease of about half of the reference value. Further, (e) 0 (no silicone resin is laminated), the luminous intensity is 30.5 a. u. (Arb unit), and the deterioration has progressed considerably over time. In addition, (d) 0 (laminated only with a silicone resin) has a cumulative emission intensity of 32.3 a. u. Therefore, the deterioration of the accumulated light emission intensity is somewhat suppressed as compared with the case where nothing is laminated. This shows that the silicone resin 8 has a function of protecting the red phosphor, which is a nanocrystal, from oxygen and moisture in the air.

そして、経時変化を見ると、シリコーン樹脂8にEu付活β型サイアロン蛍光体を混合し、積層したもの(イ)〜(ハ)は、混合される量がいずれの場合も、ナノ結晶である赤色蛍光体上にシリコーン樹脂8のみを積層(ニ)したか、何も積層しない(ホ)場合よりも、発光積算強度が高くなっている。特に、(ハ)シリコーン樹脂1gあたりEu付活β型サイアロン蛍光体0.3gを混合したものは、発光積算強度は55.5a.u.であり、優れた劣化防止効果をあげている。希土類付活、あるいは遷移金属元素付活蛍光体は、酸素や水分に強い性質を有するため、これを樹脂に含ませて積層することで、その下のナノ結晶である蛍光体を封止し、保護する働きが向上する。さらに、希土類付活、あるいは遷移金属元素付活蛍光体の濃度をあげることで、より効果が高まることが実験により明らかになった。   When the change over time is seen, the Eu-activated β-sialon phosphors mixed with the silicone resin 8 and laminated (i) to (iii) are nanocrystals in any amount mixed. The accumulated emission intensity is higher than when only the silicone resin 8 is laminated (d) on the red phosphor or nothing is laminated (e). In particular, (c) a mixture of 0.3 g of Eu-activated β-sialon phosphor per gram of silicone resin has a cumulative emission intensity of 55.5 a. u. And has an excellent anti-deterioration effect. Since the rare earth activated or transition metal element activated phosphor has a property resistant to oxygen and moisture, by laminating it by including it in a resin, the phosphor that is the nanocrystal below it is sealed, The protective function is improved. Furthermore, it has been clarified through experiments that the effect is further enhanced by increasing the concentration of the rare earth activated or transition metal element activated phosphor.

以上のように、ナノ結晶である蛍光体上に、希土類付活、あるいは遷移金属元素付活蛍光体を用いた場合、希土類付活、あるいは遷移金属元素付活蛍光体が、従来の蛍光体の働きと、ナノ結晶である蛍光体ナノ結晶を保護する働きを兼ね備えているので、ナノ結晶である蛍光体を酸素や水分から守るために樹脂などの特別な積層構造やキャップを用いる必要が無いため、製造工程が増えることもない。このように、本発明によれば、ナノ結晶である蛍光体の特性を生かしつつ、ナノ結晶である蛍光体を酸素や水分から保護し、照明装置の劣化を防ぎ、耐性に優れた照明装置を効率的に得ることができる。   As described above, when a rare earth activated or transition metal element activated phosphor is used on a nanocrystalline phosphor, the rare earth activated or transition metal element activated phosphor is not a conventional phosphor. Because it has both the function and the function of protecting the nanocrystal phosphor nanocrystal, there is no need to use a special laminated structure or cap such as a resin to protect the nanocrystal phosphor from oxygen and moisture. The manufacturing process does not increase. As described above, according to the present invention, while making use of the characteristics of a phosphor that is a nanocrystal, the phosphor that is a nanocrystal is protected from oxygen and moisture, the deterioration of the illumination device is prevented, and an illumination device having excellent durability is provided. Can be obtained efficiently.

1 電極
2 基板
3 パッケージ
4 発光素子
5 ワイヤ
6 第1の波長変換部
7 第2の波長変換部
8 シリコーン樹脂
10、10a、10b 照明装置
DESCRIPTION OF SYMBOLS 1 Electrode 2 Board | substrate 3 Package 4 Light emitting element 5 Wire 6 1st wavelength conversion part 7 2nd wavelength conversion part 8 Silicone resin 10, 10a, 10b Illuminating device

Claims (7)

一次光を発光する発光素子と、
前記一次光の一部を吸収して二次光を発光する波長変換部を備えた照明装置において、
前記波長変換部は、少なくともナノ結晶蛍光体を含む第1の波長変換部と、希土類付活蛍光体もしくは遷移金属元素付活蛍光体を含む第2の波長変換部とから構成され、
前記発光素子には、第1の波長変換部、第2の波長変換部が順に近接して積層されていることを特徴とする照明装置。
A light emitting element that emits primary light;
In a lighting device including a wavelength conversion unit that absorbs part of the primary light and emits secondary light,
The wavelength conversion unit is composed of a first wavelength conversion unit including at least a nanocrystalline phosphor, and a second wavelength conversion unit including a rare earth activated phosphor or a transition metal element activated phosphor,
The lighting device, wherein the light emitting element includes a first wavelength conversion unit and a second wavelength conversion unit stacked in close proximity to each other.
前記ナノ結晶蛍光体は、InおよびPを含むIII―V族化合物半導体または、CdおよびSeを含むII―VI化合物半導体よりなることを特徴とする請求項1に記載の照明装置。   The illumination device according to claim 1, wherein the nanocrystalline phosphor is made of a III-V compound semiconductor containing In and P or a II-VI compound semiconductor containing Cd and Se. 前記ナノ結晶蛍光体は、InPまたはCdSeのうち、少なくとも一つを含むことを特徴とする請求項2に記載の照明装置。   The lighting device according to claim 2, wherein the nanocrystalline phosphor includes at least one of InP and CdSe. 前記希土類付活蛍光体は、付活剤としてCeもしくはEuを含むことを特徴とする請求項1に記載の照明装置。   The lighting device according to claim 1, wherein the rare earth activated phosphor includes Ce or Eu as an activator. 前記希土類付活蛍光体は、窒化物系蛍光体であることを特徴とする請求項4に記載の照明装置。   The lighting device according to claim 4, wherein the rare earth activated phosphor is a nitride-based phosphor. 前記希土類付活蛍光体は、サイアロン蛍光体であることを特徴とする請求項5に記載の照明装置。   The lighting device according to claim 5, wherein the rare earth activated phosphor is a sialon phosphor. 前記一次光の光路順に、ピーク波長の長い蛍光体順に積層することを特徴とする請求項1〜6のいずれか1項に記載の照明装置。   The lighting device according to claim 1, wherein the lighting devices are stacked in the order of phosphors having a long peak wavelength in the order of the optical path of the primary light.
JP2010175873A 2010-08-05 2010-08-05 Illuminating device Pending JP2012036265A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010175873A JP2012036265A (en) 2010-08-05 2010-08-05 Illuminating device
CN2011102153277A CN102376860A (en) 2010-08-05 2011-07-29 Light emitting apparatus and method for manufacturing thereof
US13/198,432 US8513872B2 (en) 2010-08-05 2011-08-04 Light emitting apparatus and method for manufacturing thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010175873A JP2012036265A (en) 2010-08-05 2010-08-05 Illuminating device

Publications (1)

Publication Number Publication Date
JP2012036265A true JP2012036265A (en) 2012-02-23

Family

ID=45848605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010175873A Pending JP2012036265A (en) 2010-08-05 2010-08-05 Illuminating device

Country Status (1)

Country Link
JP (1) JP2012036265A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018506079A (en) * 2014-12-22 2018-03-01 スリーエム イノベイティブ プロパティズ カンパニー Down conversion film elements
JP2018056552A (en) * 2016-08-05 2018-04-05 マブン オプトロニックス カンパニー リミテッドMaven Optronics Co., Ltd. Moisture-resistant chip scale packaging light-emitting device
US10230027B2 (en) 2016-08-05 2019-03-12 Maven Optronics Co., Ltd. Moisture-resistant chip scale packaging light-emitting device
JP2020127038A (en) * 2012-05-14 2020-08-20 ルミレッズ ホールディング ベーフェー Light emitting device with nanostructured phosphor

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002510866A (en) * 1998-04-01 2002-04-09 マサチューセッツ・インスティテュート・オブ・テクノロジー Quantum dot white and colored light emitting diodes
JP2002531956A (en) * 1998-11-30 2002-09-24 ゼネラル・エレクトリック・カンパニイ Light emitting device having phosphor composition
JP2004071357A (en) * 2002-08-06 2004-03-04 Shigeo Fujita Lighting device
JP2004083653A (en) * 2002-08-23 2004-03-18 Sharp Corp Light emitting device, phosphor and method for producing the same
DE10261428A1 (en) * 2002-12-30 2004-07-22 Osram Opto Semiconductors Gmbh Radiation emitting semiconductor element with semiconductor body having number of layers in the radiation direction useful in semiconductor technology
WO2005071039A1 (en) * 2004-01-26 2005-08-04 Kyocera Corporation Wavelength converter, light-emitting device, wavelength converter manufacturing method, and light-emitting device manufacturing method
JP2005228996A (en) * 2004-02-13 2005-08-25 Matsushita Electric Works Ltd Light-emitting device
JP2005255895A (en) * 2004-03-12 2005-09-22 National Institute For Materials Science Phosphor and its manufacturing method
JP2006114900A (en) * 2004-10-14 2006-04-27 Agilent Technol Inc Device and method of emitting output light using quantum dot and non-quantum fluorescence material
JP2007039517A (en) * 2005-08-02 2007-02-15 Sharp Corp Blue light-emitting phosphor and light emitter using the same
JP2007103512A (en) * 2005-09-30 2007-04-19 Kyocera Corp Light emitting device
JP2007123390A (en) * 2005-10-26 2007-05-17 Kyocera Corp Light emitting device
JP2008544553A (en) * 2005-06-23 2008-12-04 レンセレイアー ポリテクニック インスティテュート Package design to generate white light with short wavelength LED and down conversion material

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002510866A (en) * 1998-04-01 2002-04-09 マサチューセッツ・インスティテュート・オブ・テクノロジー Quantum dot white and colored light emitting diodes
JP2002531956A (en) * 1998-11-30 2002-09-24 ゼネラル・エレクトリック・カンパニイ Light emitting device having phosphor composition
JP2004071357A (en) * 2002-08-06 2004-03-04 Shigeo Fujita Lighting device
JP2004083653A (en) * 2002-08-23 2004-03-18 Sharp Corp Light emitting device, phosphor and method for producing the same
DE10261428A1 (en) * 2002-12-30 2004-07-22 Osram Opto Semiconductors Gmbh Radiation emitting semiconductor element with semiconductor body having number of layers in the radiation direction useful in semiconductor technology
WO2005071039A1 (en) * 2004-01-26 2005-08-04 Kyocera Corporation Wavelength converter, light-emitting device, wavelength converter manufacturing method, and light-emitting device manufacturing method
JP2005228996A (en) * 2004-02-13 2005-08-25 Matsushita Electric Works Ltd Light-emitting device
JP2005255895A (en) * 2004-03-12 2005-09-22 National Institute For Materials Science Phosphor and its manufacturing method
JP2006114900A (en) * 2004-10-14 2006-04-27 Agilent Technol Inc Device and method of emitting output light using quantum dot and non-quantum fluorescence material
JP2008544553A (en) * 2005-06-23 2008-12-04 レンセレイアー ポリテクニック インスティテュート Package design to generate white light with short wavelength LED and down conversion material
JP2007039517A (en) * 2005-08-02 2007-02-15 Sharp Corp Blue light-emitting phosphor and light emitter using the same
JP2007103512A (en) * 2005-09-30 2007-04-19 Kyocera Corp Light emitting device
JP2007123390A (en) * 2005-10-26 2007-05-17 Kyocera Corp Light emitting device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020127038A (en) * 2012-05-14 2020-08-20 ルミレッズ ホールディング ベーフェー Light emitting device with nanostructured phosphor
JP2018506079A (en) * 2014-12-22 2018-03-01 スリーエム イノベイティブ プロパティズ カンパニー Down conversion film elements
JP2018056552A (en) * 2016-08-05 2018-04-05 マブン オプトロニックス カンパニー リミテッドMaven Optronics Co., Ltd. Moisture-resistant chip scale packaging light-emitting device
US10230027B2 (en) 2016-08-05 2019-03-12 Maven Optronics Co., Ltd. Moisture-resistant chip scale packaging light-emitting device
JP2021044554A (en) * 2016-08-05 2021-03-18 マブン オプトロニックス カンパニー リミテッドMaven Optronics Co., Ltd. Moisture resistant chip scale package light emitting element
JP7100383B2 (en) 2016-08-05 2022-07-13 マブン オプトロニックス カンパニー リミテッド Moisture resistant chip scale package light emitting element

Similar Documents

Publication Publication Date Title
US8513872B2 (en) Light emitting apparatus and method for manufacturing thereof
US10158052B2 (en) LED based device with wide color gamut
JP5889646B2 (en) Phosphor plate, light emitting device using phosphor plate, and method of manufacturing phosphor plate
US8251528B2 (en) Wavelength conversion plate and light emitting device using the same
US8502441B2 (en) Light emitting device having a coated nano-crystalline phosphor and method for producing the same
KR100982992B1 (en) Light emitting device comprising quantum dot wavelength conversion sheet, and quantum dot wavelength conversion sheet
US20130228812A1 (en) Light emitting device and backlight system using the same
JP2013172041A (en) Light-emitting device
KR101942042B1 (en) Moisture-resistant chip scale packaging light-emitting device
US20130193837A1 (en) Phosphor plate, light emitting device and method for manufacturing phosphor plate
JP2014082416A (en) Light-emitting device
JP2012099788A (en) Semiconductor light-emitting element
JP2010061098A (en) Quantum dot wavelength converter, method for manufacturing quantum dot wavelength converter, and light emitting device including quantum dot wavelength converter
US9410082B2 (en) Semiconductor phosphor nanoparticle and light-emitting device including the same
WO2013024684A1 (en) Light emitting device, phosphor sheet, backlight system, and method of producing phosphor sheet
KR20120067541A (en) Light emitting diode package and manufacturing method thereof
KR102301723B1 (en) Hybrid wavelength conversion device, preparation method thereof and light-emitting device comprising the same
JP5231609B2 (en) Light emitting device and manufacturing method thereof
KR20180032063A (en) Light emitting diode package and light emitting diode module
KR20120140052A (en) Light emitting device
JP2012036265A (en) Illuminating device
KR20130057354A (en) White light emitting diode and lighting apparatus including the same
JP2012195552A (en) Light-emitting device and manufacturing method therefor
US20150214443A1 (en) Phosphor coating method for producing wavelength converting light-emitting devices
JP7361602B2 (en) Composite material with red emitting phosphor

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20120413

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20120611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120810

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121113