JP5889646B2 - Phosphor plate, light emitting device using phosphor plate, and method of manufacturing phosphor plate - Google Patents

Phosphor plate, light emitting device using phosphor plate, and method of manufacturing phosphor plate Download PDF

Info

Publication number
JP5889646B2
JP5889646B2 JP2012014043A JP2012014043A JP5889646B2 JP 5889646 B2 JP5889646 B2 JP 5889646B2 JP 2012014043 A JP2012014043 A JP 2012014043A JP 2012014043 A JP2012014043 A JP 2012014043A JP 5889646 B2 JP5889646 B2 JP 5889646B2
Authority
JP
Japan
Prior art keywords
phosphor
light
phosphor plate
scattering material
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012014043A
Other languages
Japanese (ja)
Other versions
JP2013153105A (en
Inventor
大野 正人
正人 大野
真 和泉
真 和泉
一規 安念
一規 安念
達也 両輪
達也 両輪
恭崇 葛本
恭崇 葛本
貴三子 三枝
貴三子 三枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2012014043A priority Critical patent/JP5889646B2/en
Priority to US13/748,936 priority patent/US20130193837A1/en
Publication of JP2013153105A publication Critical patent/JP2013153105A/en
Application granted granted Critical
Publication of JP5889646B2 publication Critical patent/JP5889646B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Description

本発明は、照明やディスプレイに用いられる発光装置に関し、特に、光源から出力された光によって励起される蛍光体を含む蛍光体板及びこれを用いた発光装置、及び蛍光体板の製造方法に関するものである。   The present invention relates to a light-emitting device used for illumination or a display, and more particularly to a phosphor plate including a phosphor excited by light output from a light source, a light-emitting device using the phosphor plate, and a method for manufacturing the phosphor plate. It is.

近年、発光ダイオード(以下、LEDと記す。)を用いた発光装置として、液晶ディスプレイのLEDバックライトやLED電球に注目が集まっている。LEDは、省電力であり、製品寿命が長いこと、また、環境に及ぼす影響が小さいといった優れた特徴を有する。LEDバックライトやLED電球の発光部は、LEDの光の一部を蛍光体が波長変換した光と、LEDの蛍光体に波長変換されなかった光を組み合わせて放出することにより、本来のLEDの光とは異なる種々の光を発光することができる。このような発光装置は、これまでの照明やディスプレイのバックライトに代わる発光装置として大いに期待され、種々の開発がなされている。   In recent years, attention has been focused on LED backlights and LED bulbs of liquid crystal displays as light emitting devices using light emitting diodes (hereinafter referred to as LEDs). LEDs have excellent characteristics such as low power consumption, long product life, and small influence on the environment. The light emitting part of the LED backlight or the LED bulb emits a combination of light obtained by wavelength-converting part of the LED light and light not wavelength-converted by the LED phosphor. Various light different from light can be emitted. Such a light-emitting device is highly expected as a light-emitting device that replaces the conventional lighting and backlights of displays, and various developments have been made.

一般に、LEDチップと蛍光体で発光装置を構成するとき、第一の方法として、蛍光体を樹脂材料に混ぜ合わせてLEDチップを覆う方法、第二の方法として、LEDチップの発光面に蛍光体を直接塗布する方法、第三の方法として、蛍光体を含んだシートをチップに載せる方法といった種々の手法がある。現在最も多く採用されているのは、第一の方法である。しかしながら、第一の方法及び第二の方法の場合、封止樹脂の厚みが大きいため、LED素子からの光が封止樹脂に吸収され光ロスが生じたり、あるいは、LEDの発光による熱が蛍光体に直接影響を与えるため、蛍光体の種類によっては、熱により劣化し波長変換効率、あるいは発光効率の低下が生じる可能性がある。   In general, when a light emitting device is composed of an LED chip and a phosphor, the first method is to cover the LED chip by mixing the phosphor with a resin material, and the second method is to apply the phosphor on the light emitting surface of the LED chip. As a third method, there are various methods such as a method of placing a phosphor-containing sheet on a chip. The most commonly used method is the first method. However, in the case of the first method and the second method, since the sealing resin has a large thickness, light from the LED element is absorbed by the sealing resin, causing light loss, or heat generated by the light emission of the LED is fluorescent. Since it directly affects the body, depending on the type of phosphor, there is a possibility that the wavelength conversion efficiency or the light emission efficiency may deteriorate due to deterioration due to heat.

このような理由により、上記第三の方法である、蛍光体を樹脂に混ぜ、その樹脂を発光装置とは別のところで固化させたシート状の蛍光体板や、無機ガラスや有機ガラスなどで蛍光体、あるいは蛍光体を含む樹脂を挟んだ蛍光体板を用いる方法が注目されている。   For this reason, the phosphor is mixed with a resin, which is the third method, and the resin is solidified separately from the light emitting device, and is fluorescent with inorganic glass or organic glass. A method of using a phosphor plate sandwiching a phosphor or a resin containing a phosphor has attracted attention.

図6は、特許文献1に開示された発光装置を示す断面図である。図6において、発光装置600は、素子収容用のパッケージ601と、このパッケージ601内に充填されてLED素子602を封止するArやNなどの不活性ガス603と、LED素子602の光取出し側に不活性ガス603を覆うように配置された蛍光体板604から構成される。蛍光体板604は、シリコーンなどの基部材中に、蛍光体と、散乱材と同様の働きをする光進行方向変換部としての気泡を含んでいる。 FIG. 6 is a cross-sectional view showing the light emitting device disclosed in Patent Document 1. As shown in FIG. In FIG. 6, a light emitting device 600 includes an element housing package 601, an inert gas 603 such as Ar or N 2 filled in the package 601 and sealing the LED element 602, and light extraction of the LED element 602. It is comprised from the fluorescent substance board 604 arrange | positioned so that the inert gas 603 may be covered by the side. The phosphor plate 604 includes bubbles as a light traveling direction changing portion that functions in the same manner as the phosphor and the scattering material in a base member such as silicone.

このような方法によれば、光取出効率を高めることができるとともに、長期間にわたって高輝度の照射光を得ることができ、かつ色むらを改善することができる。   According to such a method, the light extraction efficiency can be increased, high-intensity irradiation light can be obtained over a long period, and color unevenness can be improved.

特開2007−123438号公報 (平成19年5月17日公開)JP 2007-123438 A (published on May 17, 2007)

しかしながら、特許文献1に示された発光装置600では、蛍光体板604中において、蛍光体と気泡が全体に不規則に分散しているため、ある蛍光体の位置を基準としたとき、蛍光体板の光出射面側に気泡が多数存在することもある。この場合、上記従来の発光装置600では、蛍光体から発せられ蛍光体板の光出射面側へ向かう光が、散乱材によって後方に散乱され、蛍光体板の一次光入射面側へ戻る光が生じ、その結果、光取出し効率が低下してしまうという問題がある。   However, in the light emitting device 600 disclosed in Patent Document 1, since phosphors and bubbles are irregularly dispersed throughout the phosphor plate 604, when the position of a certain phosphor is used as a reference, the phosphor There may be many bubbles on the light exit surface side of the plate. In this case, in the conventional light emitting device 600, the light emitted from the phosphor and traveling toward the light exit surface side of the phosphor plate is scattered backward by the scattering material and returned to the primary light incident surface side of the phosphor plate. As a result, there is a problem that the light extraction efficiency is lowered.

本発明は、上記の問題点に鑑みてなされたものであり、その目的は、蛍光体の発する光の取出し効率を向上させる蛍光体板およびこれを備えた発光装置および蛍光体板の製造方法を提供することにある。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a phosphor plate that improves the extraction efficiency of light emitted by the phosphor, a light emitting device including the phosphor plate, and a method for manufacturing the phosphor plate. It is to provide.

本発明に係る蛍光体板は、基材と蛍光体と散乱材からなる蛍光体板であって、前記蛍光体は、発光素子が発する一次光を吸収し、前記一次光よりも長波長の二次光を発光するものであり、前記散乱材は、前記一次光および前記二次光を散乱するものであり、前記蛍光体板は単一の層からなり、前記蛍光体板の一方の面から前記蛍光体までの平均距離は、前記一方の面から前記散乱材までの平均距離よりも長いことを特徴とする。 The phosphor plate according to the present invention is a phosphor plate made of a base material, a phosphor, and a scattering material, and the phosphor absorbs primary light emitted from a light emitting element and has a longer wavelength than the primary light. Secondary light is emitted, the scattering material scatters the primary light and the secondary light, and the phosphor plate is composed of a single layer, from one surface of the phosphor plate. The average distance to the phosphor is longer than the average distance from the one surface to the scattering material.

た、前記散乱材の比重と、前記蛍光体の比重が異なることを特徴としてもよい。 Also, the specific gravity of the scattering material, the specific gravity of the phosphor may be characterized in different.

また、前記蛍光体は、前記一次光の波長の10分の1以下の粒径をもつことを特徴としてもよい。また、前記蛍光体は、ナノ結晶蛍光体であることを特徴としてもよい。また、前記ナノ結晶蛍光体は、InおよびPを含むIII―V族化合物半導体または、CdおよびSeを含むII―VI族化合物半導体よりなることを特徴としてもよい。また、前記ナノ結晶蛍光体は、InPまたはCdSeのうち、少なくとも一つを含むことを特徴としてもよい。   In addition, the phosphor may have a particle size of 1/10 or less of the wavelength of the primary light. The phosphor may be a nanocrystal phosphor. The nanocrystalline phosphor may be made of a III-V group compound semiconductor containing In and P or a II-VI group compound semiconductor containing Cd and Se. The nanocrystalline phosphor may include at least one of InP or CdSe.

本発明に係る発光装置は、発光素子と、前記発光素子を収容し、光取出し側に開口部を有するパッケージと、前記開口部に配設された蛍光体板を備えた発光装置であって、前記蛍光体板は、基材と蛍光体と散乱材からなる蛍光体板であって、前記蛍光体は、前記発光素子が発する一次光を吸収し、前記一次光よりも長波長の二次光を発光するものであり、前記散乱材は、前記一次光および前記二次光を散乱するものであり、前記蛍光体板は単一の層からなり、前記蛍光体板の前記一次光入射面から前記蛍光体までの平均距離は、前記一次光入射面から前記散乱材までの平均距離よりも長いことを特徴とする。また、前記発光素子は、LEDであることを特徴としてもよい。 A light-emitting device according to the present invention is a light-emitting device including a light-emitting element, a package containing the light-emitting element and having an opening on a light extraction side, and a phosphor plate disposed in the opening, The phosphor plate is a phosphor plate made of a base material, a phosphor, and a scattering material, and the phosphor absorbs primary light emitted from the light emitting element, and has secondary light having a longer wavelength than the primary light. The scattering material scatters the primary light and the secondary light, and the phosphor plate is composed of a single layer, from the primary light incident surface of the phosphor plate. The average distance to the phosphor is longer than the average distance from the primary light incident surface to the scattering material. Further, the light emitting element may be an LED.

本発明に係る基材と蛍光体と散乱材からなり単一の層からなる蛍光体板の製造方法は、ガラス基板に散乱材と蛍光体を含有する基材を塗布する工程と、前記散乱材のみを前記基材の下部に沈降させる工程と、前記基材を硬化させる工程を、この順に含むことを特徴としてもよい。また、前記散乱材は、比重が前記蛍光体よりも大きいことを特徴としてもよい。 The manufacturing method of the phosphor plate which consists of a base material, a phosphor and a scattering material according to the present invention and which consists of a single layer includes a step of applying a base material containing a scattering material and a phosphor on a glass substrate, and the scattering material It is good also as including the process of settling only in the lower part of the above-mentioned substrate, and the process of hardening said substrate in this order. The scattering material may have a specific gravity larger than that of the phosphor.

本発明によれば、蛍光体板を用いた発光装置において光の取出し効率を向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, the light extraction efficiency can be improved in the light-emitting device using a phosphor plate.

本発明の実施形態1に係る発光装置の断面図である。It is sectional drawing of the light-emitting device which concerns on Embodiment 1 of this invention. 実施形態1に係る蛍光体板の製造工程を示す図である。FIG. 5 is a diagram illustrating a manufacturing process of the phosphor plate according to the first embodiment. 本発明の実施形態2に係る発光装置の断面図である。It is sectional drawing of the light-emitting device which concerns on Embodiment 2 of this invention. 実施形態2に係る蛍光体板の製造工程を示す図である。It is a figure which shows the manufacturing process of the fluorescent substance plate which concerns on Embodiment 2. FIG. 本発明の実施形態3に係る発光装置の断面図である。It is sectional drawing of the light-emitting device which concerns on Embodiment 3 of this invention. 従来の発光装置の断面図である。It is sectional drawing of the conventional light-emitting device.

本発明の実施の形態について、図1〜図5を用いて以下に説明する。なお、本発明の図面において、同一の参照符号は、同一部分または相当部分を表わすものとする。本明細書において、「ナノ結晶」とは結晶サイズを励起子ボーア半径程度まで小さくし、量子サイズ効果による励起子の閉じ込めやバンドギャップの増大が観測される結晶を指すものとする。   Embodiments of the present invention will be described below with reference to FIGS. In the drawings of the present invention, the same reference numerals represent the same or corresponding parts. In this specification, “nanocrystal” refers to a crystal in which the crystal size is reduced to about the exciton Bohr radius, and exciton confinement or band gap increase due to the quantum size effect is observed.

<実施形態1>
図1は、本発明の第1の実施形態に係る蛍光体板を備えた発光装置100の断面図である。
発光装置100は、電極1が形成された基板2と、電極1上に設けられたパッケージ3および発光素子4と、発光素子4と電極1を接続するワイヤ5、発光素子4と対向するように配された蛍光体板6から構成される。蛍光体板6は、散乱層61と蛍光体層62を発光素子4から近い順に積層して形成される。散乱層61は散乱材611およびこれを含有する基材としての樹脂612から構成される。蛍光体層62は蛍光体621およびこれを含有する基材としての樹脂622から構成されている。
<Embodiment 1>
FIG. 1 is a cross-sectional view of a light emitting device 100 including a phosphor plate according to the first embodiment of the present invention.
The light emitting device 100 faces the substrate 2 on which the electrode 1 is formed, the package 3 and the light emitting element 4 provided on the electrode 1, the wire 5 connecting the light emitting element 4 and the electrode 1, and the light emitting element 4. The phosphor plate 6 is arranged. The phosphor plate 6 is formed by laminating a scattering layer 61 and a phosphor layer 62 in order from the light emitting element 4. The scattering layer 61 includes a scattering material 611 and a resin 612 as a base material containing the scattering material 611. The phosphor layer 62 includes a phosphor 621 and a resin 622 as a base material containing the phosphor 621.

図1に示す発光装置100は、発光素子4からの青色の一次光によって励起され、赤色ナノ結晶蛍光体と緑色ナノ結晶蛍光体とを含んでおり、励起光として用いられなかった青色の一次光と各蛍光体からの二次光が混合され、白色光を得ることができる。   The light-emitting device 100 shown in FIG. 1 is excited by blue primary light from the light-emitting element 4 and includes a red nanocrystalline phosphor and a green nanocrystalline phosphor, and is not used as excitation light. And secondary light from each phosphor can be mixed to obtain white light.

電極1を形成する導体は、発光素子4を電気的に接続するための電導路としての機能を有し、ワイヤ5にて発光素子4と電気的に接続されている。導体としては、例えばW、Mo、Cu、またはAg等の金属粉末を含むメタライズ層を用いることができる。   The conductor forming the electrode 1 has a function as a conductive path for electrically connecting the light emitting element 4, and is electrically connected to the light emitting element 4 by a wire 5. As the conductor, for example, a metallized layer containing metal powder such as W, Mo, Cu, or Ag can be used.

基板2は、熱伝導性が高く、かつ反射率の大きいことが求められるため、例えば、アルミナ、窒化アルミニウム等のセラミックス材料のほかに、金属酸化物微粒子を分散させた高分子樹脂が好適に用いられる。   Since the substrate 2 is required to have a high thermal conductivity and a high reflectance, for example, a polymer resin in which metal oxide fine particles are dispersed is suitably used in addition to a ceramic material such as alumina or aluminum nitride. It is done.

パッケージ3は、高い反射率を持ち、ポリフタルアミドなどにより構成される。   The package 3 has a high reflectance and is made of polyphthalamide or the like.

発光素子4は、光源として用いられ、ピーク波長としては360nmから470nmの範囲にあることが好ましく、例えば450nmにピーク波長を有するGaN系LED、ZnO系LED、有機EL等を用いることができる。   The light emitting element 4 is used as a light source and preferably has a peak wavelength in the range of 360 nm to 470 nm. For example, a GaN LED, ZnO LED, organic EL, or the like having a peak wavelength at 450 nm can be used.

散乱層61を構成する散乱材611は、屈折率の高い無機材料からなる粒子を用いている。例えば、酸化アルミニウム、酸化チタン、酸化ケイ素等を用いることができる。散乱材の形状は、とくに限定されないが、一般に用いられるビーズ形状のものが好ましく、その大きさは、一次光である発光素子4の波長の約10倍の粒径が好ましい。樹脂612は、シリコーン等の透光性樹脂材料からなる。シリコーン以外でも、散乱材611が均一に分散される樹脂であって、透明かつ熱や光に強い樹脂であれば使用することができる。   The scattering material 611 constituting the scattering layer 61 uses particles made of an inorganic material having a high refractive index. For example, aluminum oxide, titanium oxide, silicon oxide, or the like can be used. The shape of the scattering material is not particularly limited, but a generally used bead shape is preferable, and the size is preferably about 10 times the wavelength of the light-emitting element 4 that is primary light. The resin 612 is made of a translucent resin material such as silicone. Other than silicone, any resin can be used as long as it is a resin in which the scattering material 611 is uniformly dispersed and is transparent and resistant to heat and light.

蛍光体層62を構成する蛍光体621は、どのような蛍光体でも構わないが、例えば、希土類賦活蛍光体や遷移金属元素賦活蛍光体あるいはIII−V族化合物半導体やII−VI族化合物半導体よりなる蛍光体を用いることができる。   The phosphor 621 constituting the phosphor layer 62 may be any phosphor. For example, a rare earth activated phosphor, a transition metal element activated phosphor, a III-V group compound semiconductor, or a II-VI group compound semiconductor is used. A phosphor can be used.

蛍光体の大きさは、一次光の波長の10分の1以下の粒径が望ましい。その理由は、一次光の波長の10分の1以下の粒径の蛍光体は、可視光域(380〜780nm)の波長の10分の1以下の大きさであり、ミー散乱をほとんど起こさないため、ある蛍光体が発する二次光が他の蛍光体によって後方散乱されず、光取出し効率が向上するという利点があるからである。さらに言えば、粒径40nm以下の蛍光体が特に好ましい。   The size of the phosphor is preferably a particle size of 1/10 or less of the wavelength of the primary light. The reason is that a phosphor having a particle size of 1/10 or less of the wavelength of the primary light has a size of 1/10 or less of the wavelength in the visible light region (380 to 780 nm), and hardly causes Mie scattering. Therefore, secondary light emitted from a certain phosphor is not backscattered by other phosphors, and the light extraction efficiency is improved. Furthermore, a phosphor having a particle size of 40 nm or less is particularly preferable.

蛍光体は、さらに言えばナノ結晶を用いることが好ましい。例えば、InP系のナノ結晶を用いることができる。InPは粒径を小さくしていくと、量子サイズ効果によりバンドギャップを青色(短波長)から赤色(長波長)の範囲で制御し、発光色を自在に変化させることができる。さらに、作製条件を最適化させることで、ナノ結晶のサイズ分布のバラつきをなくし、ほぼ均一な粒子サイズのナノ結晶蛍光体が得られるため、細い発光スペクトルを得ることができる。   It is preferable to use nanocrystals as the phosphor. For example, InP-based nanocrystals can be used. When the particle size of InP is reduced, the band gap can be controlled in the range of blue (short wavelength) to red (long wavelength) by the quantum size effect, and the emission color can be freely changed. Furthermore, by optimizing the manufacturing conditions, the nanocrystal size distribution of nanocrystals is eliminated and a nanocrystal phosphor having a substantially uniform particle size is obtained, so that a narrow emission spectrum can be obtained.

このほか、蛍光体材料として、InP以外のIII−V族化合物半導体やII−VI族化合物半導体よりなるナノ結晶である蛍光体を用いてもよい。例えば、III−V族化合物半導体やII−VI化合物半導体よりなるナノ結晶の化合物半導体としては、二元系では、II−VI族化合物半導体として、CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、HgS、HgSe、HgTe、PbSe、PbS等が挙げられる。III−V族化合物半導体としては、GaN、GaP、GaAs、AlN、AlP、AlAs、InN、InP、InAs等が挙げられる。   In addition, as a phosphor material, a phosphor that is a nanocrystal made of a group III-V compound semiconductor or a group II-VI compound semiconductor other than InP may be used. For example, as a nanocrystalline compound semiconductor composed of a III-V compound semiconductor or II-VI compound semiconductor, in a binary system, as a II-VI group compound semiconductor, CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS , HgSe, HgTe, PbSe, PbS and the like. Examples of the III-V group compound semiconductor include GaN, GaP, GaAs, AlN, AlP, AlAs, InN, InP, InAs, and the like.

また、三元系や四元系では、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、HgZnSTe、GaNP、GaNAs、GaPAs、AlNP、AlNAs、AlPAs、InNP、InNAs、InPAs、InGaN、GaAlNP、GaAlNAs、GaAlPAs、GaInNP、GaInNAs、GaInPAs、InAlNP、InAlNAs、INAlPAs等が挙げられる。   In ternary and quaternary systems, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgSe, CdHgSe, CdHgSe, CdHgSe, CdHgSe, CdHgSe, CdHgSe, CdHgSe, CdHgSe , CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTTe, HgZnSeS, HgZnSeTe, HgZnSTe, GaNP, GaNAs, GaPAs, AlNP, AlNAs, AlPAs, InNP, InNAs, InPAs, InGaN, GaAlNP , INAlPAs, etc. It is.

そして、上記蛍光体621としては、InおよびPを含むナノ結晶、または、CdおよびSeを含むナノ結晶を用いることが好ましい。その理由は、InおよびPを含むナノ結晶、または、CdおよびSeを含むナノ結晶は、可視光域(380nm〜780nm)で発光する粒径のナノ結晶を作製しやすいためである。その中でも特に、InP、またはCdSeを用いることが好ましい。理由としては、InPとCdSeは、構成する材料が少なく作製しやすい上、高い量子収率を示す材料であり、LEDの光を照射した際、高い発光効率を示すからである。なお、ここでの量子収率とは、吸収した光子数に対する蛍光として発光した光子数の割合のことである。さらに言えば、蛍光体621として、強い毒性を示すCdを含まないInPを用いることが好ましい。   And as said fluorescent substance 621, it is preferable to use the nanocrystal containing In and P or the nanocrystal containing Cd and Se. The reason is that a nanocrystal containing In and P or a nanocrystal containing Cd and Se can easily produce a nanocrystal having a particle size that emits light in the visible light region (380 nm to 780 nm). Among them, it is particularly preferable to use InP or CdSe. The reason for this is that InP and CdSe are materials that have a small amount of constituent materials and are easy to produce, and also exhibit high quantum yields, and exhibit high luminous efficiency when irradiated with LED light. Here, the quantum yield is the ratio of the number of photons emitted as fluorescence to the number of absorbed photons. Furthermore, it is preferable to use InP which does not contain Cd which shows strong toxicity as the phosphor 621.

樹脂622は、シリコーン等の透光性樹脂材料からなる。シリコーン以外でも、蛍光体621が均一に分散される樹脂であって、透明かつ熱や光に強い樹脂であれば使用することができる。   The resin 622 is made of a translucent resin material such as silicone. Other than silicone, any resin can be used as long as it is a resin in which the phosphor 621 is uniformly dispersed and is transparent and resistant to heat and light.

次に、図2を参照して蛍光体板6の製造方法について説明する。まず、図2(a)に示すように、ガラス基板9に、散乱材611のみを含む樹脂612を100〜500μmの厚みで塗布し、所定の時間静置して硬化させ、散乱層61を作製する。樹脂612と散乱材611の比率は、重量比で10:1とした。また、本実施形態では、散乱材611として酸化アルミニウムを、また樹脂612として、シリコーン樹脂(信越化学工業株式会社製SCR1011)を使用した。なお、SCR1011以外でも、散乱材611が均一に分散される樹脂であって、透明であり、熱や光に強い樹脂であれば使用することが出来る。   Next, a method for manufacturing the phosphor plate 6 will be described with reference to FIG. First, as shown in FIG. 2A, a resin 612 containing only a scattering material 611 is applied to a glass substrate 9 with a thickness of 100 to 500 μm, and allowed to stand for a predetermined time to be cured to produce a scattering layer 61. To do. The ratio of the resin 612 to the scattering material 611 was 10: 1 by weight. In this embodiment, aluminum oxide is used as the scattering material 611, and silicone resin (SCR1011 manufactured by Shin-Etsu Chemical Co., Ltd.) is used as the resin 612. In addition to the SCR 1011, any resin can be used as long as it is a resin in which the scattering material 611 is uniformly dispersed and is transparent and resistant to heat and light.

樹脂612が硬化した後、図2(b)に示すように、蛍光体621のみを所定量含む樹脂622を散乱層61上に100〜500μmの厚みで塗布し、所定の時間静置して硬化させ、蛍光体層62を作製する。樹脂622と蛍光体621の比率は、重量比で10:1とした。本実施形態では、蛍光体621としてInPの赤色発光するナノ結晶蛍光体(以下、赤色ナノ結晶蛍光体と記す。)とInPの緑色発光するナノ結晶蛍光体(以下、緑色ナノ結晶蛍光体と記す。)を重量比1:20で用いた。また樹脂622としては、上記と同様のシリコーン樹脂を使用した。なお、SCR1011以外でも、蛍光体621が均一に分散される樹脂であって、透明であり、熱や光に強い樹脂であれば使用することが出来る。   After the resin 612 is cured, as shown in FIG. 2B, a resin 622 containing only a predetermined amount of the phosphor 621 is applied on the scattering layer 61 with a thickness of 100 to 500 μm, and is allowed to stand for a predetermined time to be cured. Thus, the phosphor layer 62 is produced. The ratio between the resin 622 and the phosphor 621 was 10: 1 by weight. In the present embodiment, the phosphor 621 is a nanocrystalline phosphor emitting InP red (hereinafter referred to as a red nanocrystalline phosphor) and a nanocrystalline phosphor emitting InP green (hereinafter referred to as a green nanocrystalline phosphor). Was used at a weight ratio of 1:20. As the resin 622, the same silicone resin as described above was used. In addition to the SCR 1011, any resin can be used as long as it is a resin in which the phosphor 621 is uniformly dispersed and is transparent and resistant to heat and light.

本実施形態では、散乱層61と蛍光体層62の厚みはほぼ同じになるように塗布したが、求められる光の仕様により、それぞれの厚みを適宜調整すればよい。例えば、光をより強く散乱させたい場合は、散乱層61を厚めに塗布する。また、散乱材611と樹脂612の比率、蛍光体621と樹脂622の比率、あるいは赤色ナノ結晶蛍光体と緑色ナノ結晶蛍光体の比率においても、求められる光の仕様により、その量を適宜調整すればよい。例えば、赤みがかった光を得たいときは、赤色ナノ結晶蛍光体の量を増やすなどすればよい。   In the present embodiment, the scattering layer 61 and the phosphor layer 62 are applied so as to have substantially the same thickness, but the respective thicknesses may be appropriately adjusted according to the required light specifications. For example, when it is desired to scatter light more strongly, the scattering layer 61 is applied thicker. Further, the ratio of the scattering material 611 and the resin 612, the ratio of the phosphor 621 and the resin 622, or the ratio of the red nanocrystal phosphor and the green nanocrystal phosphor can be appropriately adjusted according to the required light specifications. That's fine. For example, when it is desired to obtain reddish light, the amount of red nanocrystal phosphor may be increased.

樹脂622が硬化した後、図2(c)に示すように、ガラス基板9を蛍光体板6から剥がすことで蛍光体板6を作製できる。なお、蛍光体板6は、ガラス基板9から剥がさず、もう1枚のガラス板とで挟持してもよい。2枚のガラス基板9で挟持することで、酸素や水分から蛍光体板6を守ることができるので、劣化を防ぐことができる。   After the resin 622 is cured, the phosphor plate 6 can be produced by peeling the glass substrate 9 from the phosphor plate 6 as shown in FIG. The phosphor plate 6 may be sandwiched between another glass plate without being peeled off from the glass substrate 9. Since the phosphor plate 6 can be protected from oxygen and moisture by being sandwiched between the two glass substrates 9, deterioration can be prevented.

上記の手順にて作製された蛍光体板6は、図1に示されるような、発光素子4の備わったLEDパッケージに発光素子4に近い面が散乱層61となるように取り付けられる。ここでは発光素子4には、450nmにピーク波長を有するGaN系LEDを用いる。このように蛍光体板6を、発光素子4に近い側が散乱層61となるようにLEDパッケージに取り付けることで、発光素子4から発せられる一次光の入射面から蛍光体621までの平均距離が、散乱剤611までの平均距離よりも長くなる構成となる。このような構成とすることで、蛍光体621より発せられた光のうち、蛍光体板6の光出射面側へ向かう光の光路に散乱材611が存在しないため、蛍光体621からの光が散乱材611によって、蛍光体板6の一次光入射面側へ戻ることがなくなり、その結果、光取出し効率を向上させることができる。なお、一次光の入射面から蛍光体まで、あるいは一次光の入射面から散乱材までの距離の測定方法としては、蛍光体板の複数箇所の断面をSEM(走査型電子顕微鏡)で観察し、一次光の入射面から蛍光体、あるいは散乱材の中心までの直線距離を測定する方法などがある。   The phosphor plate 6 produced by the above procedure is attached to the LED package having the light emitting element 4 as shown in FIG. 1 so that the surface close to the light emitting element 4 becomes the scattering layer 61. Here, a GaN LED having a peak wavelength at 450 nm is used as the light emitting element 4. By attaching the phosphor plate 6 to the LED package so that the side closer to the light emitting element 4 becomes the scattering layer 61 in this way, the average distance from the incident surface of the primary light emitted from the light emitting element 4 to the phosphor 621 is The average distance to the scattering agent 611 is longer. By adopting such a configuration, since the scattering material 611 does not exist in the light path of the light emitted from the phosphor 621 toward the light emitting surface side of the phosphor plate 6, the light from the phosphor 621 is not emitted. The scattering material 611 does not return to the primary light incident surface side of the phosphor plate 6, and as a result, the light extraction efficiency can be improved. In addition, as a measuring method of the distance from the incident surface of the primary light to the phosphor, or the distance from the incident surface of the primary light to the scattering material, the cross section of a plurality of portions of the phosphor plate is observed with an SEM (scanning electron microscope), There is a method of measuring a linear distance from the incident surface of the primary light to the center of the phosphor or the scattering material.

また、発光素子4からの一次光により励起されたナノ結晶蛍光体が発する二次光のうち、蛍光体板6の一次光入射面側へ向かう光は、散乱材611によって散乱され蛍光体板6の光出射面側へ向かう。さらに、ナノ結晶蛍光体は一次光の波長の10分の1以下の粒径であり、二次光を散乱(ミー散乱)しないため、蛍光体板6の光出射面側へ向かう二次光は一次光入射面側に散乱されることなく、蛍光体板6から出射する。したがって、蛍光体621の発する光の取出し効率を向上させることができる。   Of the secondary light emitted from the nanocrystalline phosphor excited by the primary light from the light emitting element 4, the light traveling toward the primary light incident surface side of the phosphor plate 6 is scattered by the scattering material 611 and phosphor plate 6. Toward the light exit surface side. Furthermore, since the nanocrystalline phosphor has a particle size of 1/10 or less of the wavelength of the primary light and does not scatter the secondary light (Mie scattering), the secondary light directed toward the light exit surface side of the phosphor plate 6 is The light is emitted from the phosphor plate 6 without being scattered on the primary light incident surface side. Therefore, the extraction efficiency of light emitted from the phosphor 621 can be improved.

なお、本実施形態では、赤色と緑色の二種の蛍光体を用いたが、これに限定されることはなく、一種の蛍光体あるいは三種以上の蛍光体を用いてもかまわない。求められる光の色度に応じて、用いる蛍光体の種類、種類数、量、比率などは適宜調整すればよい。   In the present embodiment, two types of phosphors, red and green, are used. However, the present invention is not limited to this, and one type of phosphor or three or more types of phosphors may be used. Depending on the required chromaticity of light, the type, the number of types, the amount, the ratio, and the like of the phosphor used may be appropriately adjusted.

<実施形態2>
次に、実施形態2について説明する。本実施形態では、蛍光体板が一つの樹脂層で形成されている点が実施形態1とは異なる。
<Embodiment 2>
Next, Embodiment 2 will be described. The present embodiment is different from the first embodiment in that the phosphor plate is formed of one resin layer.

図3は、実施形態2に係る蛍光体板6Aを備えた発光装置200の断面図である。発光装置200に用いられる蛍光体板6Aは、蛍光体621と散乱材611およびこれらをともに含有する基材としての樹脂632から構成され、単一の層として形成される。   FIG. 3 is a cross-sectional view of a light emitting device 200 including the phosphor plate 6A according to the second embodiment. The phosphor plate 6A used in the light emitting device 200 is composed of the phosphor 621, the scattering material 611, and a resin 632 as a base material containing both of them, and is formed as a single layer.

図4を参照して、蛍光体板6Aの製造工程について説明する。まず、図4(a)に示すように、ガラス基板9に少なくとも1種類以上の蛍光体621と散乱材611を所定量含む樹脂632を100〜500μmの厚みで塗布する。なお、樹脂632には硬化を促進するための触媒を添加してもよい。本実施形態では、散乱材611として酸化アルミニウムを用いた。ここで、散乱材611は、その比重が蛍光体621よりも大きいことが好ましい。また、蛍光体としては、InPの赤色ナノ結晶蛍光体とInPの緑色ナノ結晶蛍光体を、樹脂622としては、シリコーン樹脂(信越化学工業株式会社製SCR1011)を使用した。樹脂の粘度は、23℃の環境下において、350mPa・sとし、樹脂632、散乱材611、蛍光体621の比率は、重量比で10:1:1とした。さらに、蛍光体621は、赤色ナノ結晶蛍光体と緑色ナノ結晶蛍光体を重量比1:20で用いた。   With reference to FIG. 4, the manufacturing process of phosphor plate 6A will be described. First, as shown in FIG. 4A, a resin 632 containing a predetermined amount of at least one phosphor 621 and a scattering material 611 is applied to a glass substrate 9 with a thickness of 100 to 500 μm. Note that a catalyst for promoting curing may be added to the resin 632. In this embodiment, aluminum oxide is used as the scattering material 611. Here, it is preferable that the specific gravity of the scattering material 611 is larger than that of the phosphor 621. InP red nanocrystalline phosphor and InP green nanocrystalline phosphor were used as the phosphor, and silicone resin (SCR1011 manufactured by Shin-Etsu Chemical Co., Ltd.) was used as the resin 622. The viscosity of the resin was 350 mPa · s in an environment of 23 ° C., and the ratio of the resin 632, the scattering material 611, and the phosphor 621 was 10: 1: 1 by weight. Further, as the phosphor 621, a red nanocrystal phosphor and a green nanocrystal phosphor were used at a weight ratio of 1:20.

次に図4(b)に示すように、所定の時間静置し、樹脂が硬化する間に、散乱材611より軽いナノ結晶蛍光体は均一に分散し、一方、蛍光体よりも比重が大きいため沈降速度の速い散乱材611は、樹脂の下部に沈降する。こうして、ナノ結晶蛍光体が散乱材611の上部にほぼ均一に分散し、散乱材611のみが樹脂632の下部に沈降している板部材ができる。樹脂632が硬化した後、図4(c)に示すように、樹脂をガラス基板から剥がすことで蛍光体板6Aを作製できる。なお、蛍光体板6は、ガラス基板9から剥がさず、もう1枚のガラス板とで挟持してもよい。2枚のガラス基板9で挟持することで、酸素や水分から蛍光体板6Aを守ることができるので、劣化を防ぐことができる。   Next, as shown in FIG. 4B, the nanocrystalline phosphor lighter than the scattering material 611 is uniformly dispersed while the resin is cured for a predetermined time, while the specific gravity is larger than that of the phosphor. Therefore, the scattering material 611 having a high sedimentation speed settles at the bottom of the resin. In this way, a plate member is obtained in which the nanocrystalline phosphor is dispersed almost uniformly on the upper portion of the scattering material 611 and only the scattering material 611 is settled on the lower portion of the resin 632. After the resin 632 is cured, as shown in FIG. 4C, the phosphor plate 6A can be manufactured by peeling the resin from the glass substrate. The phosphor plate 6 may be sandwiched between another glass plate without being peeled off from the glass substrate 9. Since the phosphor plate 6A can be protected from oxygen and moisture by being sandwiched between the two glass substrates 9, deterioration can be prevented.

なお、ここで用いたシリコーン樹脂の粘度は、ナノ結晶蛍光体が沈降せず、ほぼ均一に分散され、かつ散乱材611が沈降する粘度のものを用いたが、さらに粘度が低く、ナノ結晶蛍光体及び散乱材611の両方が沈降する粘度のものを用いても構わない。その場合、ナノ結晶蛍光体より比重の大きい散乱材611は沈降速度が速いので先に沈降し、ナノ結晶蛍光体が後に沈降するので、ほとんどの散乱材611が樹脂の下部に沈降し、ナノ結晶蛍光体がその上部に沈降するため、自然にそれぞれがほぼ積層状態となる蛍光体板を作製することができる。   The viscosity of the silicone resin used here was such that the nanocrystalline phosphor did not settle, was dispersed almost uniformly, and the scattering material 611 settled, but the viscosity was lower and the nanocrystalline fluorescence You may use the thing of the viscosity which both a body and the scattering material 611 settle. In that case, since the scattering material 611 having a specific gravity larger than that of the nanocrystalline phosphor has a fast sedimentation speed, the scattering material 611 settles first, and the nanocrystalline phosphor settles later, so that most of the scattering material 611 settles on the lower part of the resin. Since the phosphor settles on top of it, it is possible to produce a phosphor plate that is naturally substantially laminated.

上記の手順にて作製された蛍光体板6Aは、図1に示されるような、発光素子4の備わったLEDパッケージに発光素子4に近い面が散乱材のより多い面となるように取り付けられる。   The phosphor plate 6A produced by the above procedure is attached to the LED package provided with the light emitting element 4 as shown in FIG. 1 so that the surface close to the light emitting element 4 is a surface with more scattering material. .

発光装置200をこのような構成にすることで、蛍光体板6Aの製造工程を簡便化することができる。特に、蛍光体621としてナノ結晶蛍光体のように比重の軽い蛍光体を用いる場合には、極めて有効である。また、ナノ結晶蛍光体でなくても、散乱剤611の比重を蛍光体621より重く調整することにより、実現可能である。   With the light emitting device 200 having such a configuration, the manufacturing process of the phosphor plate 6A can be simplified. In particular, when a phosphor having a light specific gravity such as a nanocrystal phosphor is used as the phosphor 621, it is extremely effective. Moreover, even if it is not a nanocrystal fluorescent substance, it is realizable by adjusting the specific gravity of the scattering agent 611 more heavily than the fluorescent substance 621. FIG.

なお、本実施形態では、散乱材611の比重が蛍光体の比重より大きいものを用いたが、これに限らず、散乱材611と蛍光体の比重を異ならせ、それぞれの沈降速度の違いを利用して分離し、硬化させる方法であればよい。   In this embodiment, the specific gravity of the scattering material 611 is larger than the specific gravity of the phosphor. However, the present invention is not limited to this, and the specific gravity of the scattering material 611 is different from that of the fluorescent material, and the difference in sedimentation speed is used. Any method may be used as long as it is separated and cured.

<実施形態3>
次に、実施形態3について説明する。本実施形態では、上記実施形態2で示した方法で、赤色ナノ結晶蛍光体641のみを用いて作製した蛍光体板6B上に、別の種類のナノ結晶蛍光体を含有する蛍光体層7を積層させる点に特徴がある。
<Embodiment 3>
Next, Embodiment 3 will be described. In the present embodiment, the phosphor layer 7 containing another type of nanocrystalline phosphor is formed on the phosphor plate 6B produced using only the red nanocrystalline phosphor 641 by the method described in the second embodiment. It is characterized in that it is laminated.

図5は、実施形態3に係る発光装置300の断面図である。発光装置300は、蛍光体板6B上に別の種類の蛍光体層7が積層されている。具体的には、赤色ナノ結晶蛍光体641を含有する蛍光体板上に、緑色ナノ結晶蛍光体651を含有する樹脂を塗布し、所定の時間静置し、硬化させて作製する。本実施形態では、蛍光体板6B及び緑色発光するナノ結晶蛍光体651を含有する蛍光体層7の厚みは、同じ厚みとし、それぞれ100〜500μmとする。   FIG. 5 is a cross-sectional view of the light emitting device 300 according to the third embodiment. In the light emitting device 300, another type of phosphor layer 7 is laminated on the phosphor plate 6B. Specifically, a resin containing the green nanocrystalline phosphor 651 is applied on a phosphor plate containing the red nanocrystalline phosphor 641, left standing for a predetermined time, and cured. In the present embodiment, the phosphor layer 7 containing the phosphor plate 6B and the nanocrystalline phosphor 651 that emits green light has the same thickness, and is 100 to 500 μm.

ここで、一般に、蛍光体はそれぞれの励起エネルギーより大きいエネルギーを有した光を吸収し、蛍光として二次光を発する。例えば、青色蛍光体のように励起エネルギーの大きい蛍光体で発光した二次光は、例えば赤色蛍光体のように励起エネルギーの小さい蛍光体に吸収されてしまい、所望の色バランスを得るのが難しくなる。したがって、本実施形態のように、一次光を発する発光素子4に近い側にピーク波長のより長い蛍光体を配置することで、各蛍光体の発する二次光は、他色を発光する蛍光体に再度吸収されることがほとんどなく、所望の色バランスを容易に得ることが可能となる。   Here, in general, the phosphor absorbs light having energy larger than the respective excitation energy, and emits secondary light as fluorescence. For example, secondary light emitted from a phosphor having a large excitation energy such as a blue phosphor is absorbed by a phosphor having a small excitation energy such as a red phosphor, and it is difficult to obtain a desired color balance. Become. Therefore, as in this embodiment, by arranging phosphors having longer peak wavelengths on the side closer to the light emitting element 4 that emits primary light, the secondary light emitted by each phosphor is a phosphor that emits another color. The desired color balance can be easily obtained.

以上、それぞれの実施形態で説明したように、本発明によれば、蛍光体板を用いた発光装置において、蛍光体の発する光の取出し効率を向上させることができる   As described above, as described in each of the embodiments, according to the present invention, in the light emitting device using the phosphor plate, it is possible to improve the light extraction efficiency of the phosphor.

1 電極
2 基板
3 パッケージ
4 発光素子
5 ワイヤ
6、6A、6B 蛍光体板
7 蛍光体層
9 ガラス基板
61 散乱層
62 蛍光体層
100、200、300 発光装置
611 散乱材
612、622、632 基材
621 蛍光体
641、651 ナノ結晶蛍光体
DESCRIPTION OF SYMBOLS 1 Electrode 2 Substrate 3 Package 4 Light emitting element 5 Wire 6, 6A, 6B Phosphor plate 7 Phosphor layer 9 Glass substrate 61 Scattering layer 62 Phosphor layer 100, 200, 300 Light emitting device 611 Scattering material 612, 622, 632 Base material 621 Phosphor 641, 651 Nanocrystalline phosphor

Claims (9)

基材と蛍光体と散乱材からなる蛍光体板であって、
前記蛍光体は、発光素子が発する一次光を吸収し、前記一次光よりも長波長の二次光を発光するものであり、
前記散乱材は、前記一次光および前記二次光を散乱するものであり、
前記蛍光体板は単一の層からなり、前記蛍光体板の一方の面から前記蛍光体までの平均距離は、前記一方の面から前記散乱材までの平均距離よりも長いことを特徴とする蛍光体板。
A phosphor plate comprising a substrate, a phosphor and a scattering material,
The phosphor absorbs primary light emitted from a light emitting element, and emits secondary light having a longer wavelength than the primary light.
The scattering material scatters the primary light and the secondary light,
The phosphor plate is formed of a single layer, and an average distance from one surface of the phosphor plate to the phosphor is longer than an average distance from the one surface to the scattering material. Phosphor plate.
前記散乱材の比重と、前記蛍光体の比重が異なることを特徴とする請求項1記載の蛍光体板。   2. The phosphor plate according to claim 1, wherein the specific gravity of the scattering material is different from the specific gravity of the phosphor. 前記蛍光体は、前記一次光の波長の10分の1以下の粒径をもつことを特徴とする請求項1ないし請求項のいずれかに記載の蛍光体板。 3. The phosphor plate according to claim 1, wherein the phosphor has a particle size of 1/10 or less of the wavelength of the primary light. 前記蛍光体は、ナノ結晶蛍光体であることを特徴とする請求項記載の蛍光体板。 The phosphor plate according to claim 3 , wherein the phosphor is a nanocrystalline phosphor. 前記ナノ結晶蛍光体は、InおよびPを含むIII―V族化合物半導体または、CdおよびSeを含むII―VI族化合物半導体よりなることを特徴とする請求項記載の蛍光体板。 5. The phosphor plate according to claim 4, wherein the nanocrystalline phosphor is made of a III-V group compound semiconductor containing In and P or a II-VI group compound semiconductor containing Cd and Se. 前記ナノ結晶蛍光体は、InPまたはCdSeのうち、少なくとも一つを含むことを特徴とする請求項記載の蛍光体板。 6. The phosphor plate according to claim 5 , wherein the nanocrystalline phosphor contains at least one of InP and CdSe. 発光素子と、
前記発光素子を収容し、光取出し側に開口部を有するパッケージと、
前記開口部に配設された蛍光体板を備えた発光装置であって、
前記蛍光体板は、基材と蛍光体と散乱材からなる蛍光体板であって、
前記蛍光体は、前記発光素子が発する一次光を吸収し、前記一次光よりも長波長の二次光を発光するものであり、
前記散乱材は、前記一次光および前記二次光を散乱するものであり、
前記蛍光体板は単一の層からなり、前記蛍光体板の前記一次光入射面から前記蛍光体までの平均距離は、前記一次光入射面から前記散乱材までの平均距離よりも長いことを特徴とする発光装置。
A light emitting element;
A package containing the light emitting element and having an opening on the light extraction side;
A light emitting device including a phosphor plate disposed in the opening,
The phosphor plate is a phosphor plate made of a base material, a phosphor and a scattering material,
The phosphor absorbs primary light emitted from the light emitting element and emits secondary light having a longer wavelength than the primary light.
The scattering material scatters the primary light and the secondary light,
The phosphor plate is formed of a single layer, and an average distance from the primary light incident surface of the phosphor plate to the phosphor is longer than an average distance from the primary light incident surface to the scattering material. A light emitting device characterized.
前記発光素子は、LEDであることを特徴とする請求項記載の発光装置。 The light emitting device according to claim 7 , wherein the light emitting element is an LED. 基材と蛍光体と散乱材からなる単一の層からなる蛍光体板を製造する方法であって、
ガラス基板に散乱材と蛍光体を含有する基材を塗布する工程と、
前記散乱材のみを前記基材の下部に沈降させる工程と、
前記基材を硬化させる工程を、この順に含むことを特徴とする蛍光体板の製造方法。
A method for producing a phosphor plate comprising a single layer comprising a substrate, a phosphor and a scattering material,
Applying a base material containing a scattering material and a phosphor to a glass substrate;
Sinking only the scattering material below the substrate;
The manufacturing method of the fluorescent substance board characterized by including the process of hardening the said base material in this order.
JP2012014043A 2012-01-26 2012-01-26 Phosphor plate, light emitting device using phosphor plate, and method of manufacturing phosphor plate Expired - Fee Related JP5889646B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012014043A JP5889646B2 (en) 2012-01-26 2012-01-26 Phosphor plate, light emitting device using phosphor plate, and method of manufacturing phosphor plate
US13/748,936 US20130193837A1 (en) 2012-01-26 2013-01-24 Phosphor plate, light emitting device and method for manufacturing phosphor plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012014043A JP5889646B2 (en) 2012-01-26 2012-01-26 Phosphor plate, light emitting device using phosphor plate, and method of manufacturing phosphor plate

Publications (2)

Publication Number Publication Date
JP2013153105A JP2013153105A (en) 2013-08-08
JP5889646B2 true JP5889646B2 (en) 2016-03-22

Family

ID=49049231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012014043A Expired - Fee Related JP5889646B2 (en) 2012-01-26 2012-01-26 Phosphor plate, light emitting device using phosphor plate, and method of manufacturing phosphor plate

Country Status (1)

Country Link
JP (1) JP5889646B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6125666B2 (en) * 2013-12-25 2017-05-10 シャープ株式会社 Light emitting device
KR102157688B1 (en) * 2014-01-29 2020-09-18 엘지이노텍 주식회사 Lighting device
WO2015156227A1 (en) * 2014-04-08 2015-10-15 Nsマテリアルズ株式会社 Wavelength conversion member, molded body, wavelength conversion device, sheet member, light-emitting device, light-guide device, and display device
JP6221950B2 (en) * 2014-06-09 2017-11-01 日本電気硝子株式会社 Light emitting device
KR20160007916A (en) * 2014-07-10 2016-01-21 일진엘이디(주) Nitride based light emitting device comprising nano particle layer
JP2016076634A (en) 2014-10-08 2016-05-12 エルジー ディスプレイ カンパニー リミテッド Led package, backlight unit, and liquid crystal display device
JP2016092271A (en) * 2014-11-06 2016-05-23 シャープ株式会社 Phosphor sheet and lighting system
KR102153733B1 (en) * 2015-01-26 2020-09-08 동우 화인켐 주식회사 Color filter and image display device using the same
JP6183486B2 (en) * 2015-05-29 2017-08-23 日亜化学工業株式会社 LIGHT EMITTING DEVICE, METHOD FOR PRODUCING COVER MEMBER, AND METHOD FOR PRODUCING LIGHT EMITTING DEVICE
CN111864034A (en) 2015-05-29 2020-10-30 日亚化学工业株式会社 Light emitting device
JP6493053B2 (en) * 2015-07-17 2019-04-03 日亜化学工業株式会社 Light emitting device
JP6217705B2 (en) 2015-07-28 2017-10-25 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
JP2017174908A (en) 2016-03-22 2017-09-28 豊田合成株式会社 Method of manufacturing light emitting device
JP6747066B2 (en) * 2016-06-02 2020-08-26 セイコーエプソン株式会社 Wavelength conversion element, lighting device and projector
JP2018166197A (en) * 2017-03-28 2018-10-25 株式会社朝日ラバー Led device, fluorescent material-containing sheet for led emission color conversion, and manufacturing method of led device
JP2017224867A (en) * 2017-09-28 2017-12-21 日亜化学工業株式会社 Light-emitting device and manufacturing method therefor
CN114613896A (en) 2018-02-20 2022-06-10 晶元光电股份有限公司 Light emitting element and method for manufacturing the same
JPWO2019216333A1 (en) * 2018-05-08 2021-05-13 Jnc株式会社 Light emitting device and manufacturing method of light emitting device
US11189764B2 (en) 2018-11-22 2021-11-30 Nichia Corporation Light-emitting device and manufacturing method thereof
JP7137079B2 (en) * 2018-11-22 2022-09-14 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
JP6768093B2 (en) * 2019-01-11 2020-10-14 エルジー ディスプレイ カンパニー リミテッド LED package, backlight unit and liquid crystal display device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3690968B2 (en) * 1999-06-30 2005-08-31 日亜化学工業株式会社 LIGHT EMITTING DEVICE AND METHOD FOR FORMING THE SAME
JP2004161841A (en) * 2002-11-12 2004-06-10 Sharp Corp Phosphor and lighting system and display device containing the same
JP2005228996A (en) * 2004-02-13 2005-08-25 Matsushita Electric Works Ltd Light-emitting device
KR100682874B1 (en) * 2005-05-02 2007-02-15 삼성전기주식회사 White light emitting device
JP2011071404A (en) * 2009-09-28 2011-04-07 Kyocera Corp Light-emitting device and illumination apparatus
JP2013098458A (en) * 2011-11-04 2013-05-20 Mitsubishi Chemicals Corp Semiconductor light-emitting device and illumination instrument employing the same

Also Published As

Publication number Publication date
JP2013153105A (en) 2013-08-08

Similar Documents

Publication Publication Date Title
JP5889646B2 (en) Phosphor plate, light emitting device using phosphor plate, and method of manufacturing phosphor plate
US8513872B2 (en) Light emitting apparatus and method for manufacturing thereof
KR100982990B1 (en) wavelength conversion plate and light emitting device using the same
KR101726807B1 (en) Light Emitting Device
KR100982992B1 (en) Light emitting device comprising quantum dot wavelength conversion sheet, and quantum dot wavelength conversion sheet
US20140158982A1 (en) Light-emitting device, backlight unit, display device, and manufacturing method thereof
US8502441B2 (en) Light emitting device having a coated nano-crystalline phosphor and method for producing the same
US20130193837A1 (en) Phosphor plate, light emitting device and method for manufacturing phosphor plate
JP2014082416A (en) Light-emitting device
US20130228812A1 (en) Light emitting device and backlight system using the same
JP2013033833A (en) Wavelength conversion film and light emitting device and lighting device which use the same
KR20120067543A (en) Light emitting module and backlight unit using the same
WO2013024684A1 (en) Light emitting device, phosphor sheet, backlight system, and method of producing phosphor sheet
JP2013172041A (en) Light-emitting device
KR20120067541A (en) Light emitting diode package and manufacturing method thereof
US20150144867A1 (en) Semiconductor phosphor nanoparticle and light-emitting device including the same
KR20180032063A (en) Light emitting diode package and light emitting diode module
JP5231609B2 (en) Light emitting device and manufacturing method thereof
US9720320B2 (en) Optical sheet, method for manufacturing the same, light emitting diodes module and display using the same
KR20120140052A (en) Light emitting device
JP2012036265A (en) Illuminating device
KR102263850B1 (en) White led package for preventing insect
JP2012195552A (en) Light-emitting device and manufacturing method therefor
KR20120060540A (en) Light emitting module and backlight unit using the same
KR20120140053A (en) Light emitting device package

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140918

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150714

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160217

R150 Certificate of patent or registration of utility model

Ref document number: 5889646

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees