WO2013024684A1 - Light emitting device, phosphor sheet, backlight system, and method of producing phosphor sheet - Google Patents

Light emitting device, phosphor sheet, backlight system, and method of producing phosphor sheet Download PDF

Info

Publication number
WO2013024684A1
WO2013024684A1 PCT/JP2012/069161 JP2012069161W WO2013024684A1 WO 2013024684 A1 WO2013024684 A1 WO 2013024684A1 JP 2012069161 W JP2012069161 W JP 2012069161W WO 2013024684 A1 WO2013024684 A1 WO 2013024684A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
light
phosphor sheet
layer
emitting device
Prior art date
Application number
PCT/JP2012/069161
Other languages
French (fr)
Japanese (ja)
Inventor
一規 安念
真 和泉
貴三子 三枝
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013024684A1 publication Critical patent/WO2013024684A1/en

Links

Images

Classifications

    • H01L33/507
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • H01L33/505
    • H01L33/60

Definitions

  • the present invention relates to a light-emitting device used for illumination and a display, and in particular, includes a light source and a phosphor sheet containing a phosphor excited by a part of light output from the light source, and the light from the light source and fluorescence
  • the present invention relates to a light emitting device that emits light from a body.
  • the present invention also relates to a phosphor sheet used in the light emitting device, a backlight system using the light emitting device, and a method for manufacturing the phosphor sheet.
  • LEDs light emitting devices using light emitting diodes
  • LEDs have excellent characteristics such as low power consumption, long product life, and small influence on the environment.
  • the light emitting part of the LED backlight or the LED bulb emits a combination of light obtained by wavelength-converting part of the LED light and light not wavelength-converted by the LED phosphor.
  • Various light different from light can be emitted.
  • Such a light-emitting device is highly expected as a light-emitting device that replaces the conventional lighting and backlights of displays, and various developments have been made.
  • a first method is to cover the blue LED chip by mixing the phosphor with a resin material
  • a second method is a light emitting surface of the blue LED chip.
  • various methods such as a method of directly applying the phosphor and a third method such as a method of placing a phosphor-containing sheet on a blue chip.
  • the most commonly used method is the first method.
  • heat due to the light emission of the blue LED directly affects the phosphor, so that depending on the type of the phosphor, the heat may cause deterioration.
  • the nanocrystalline phosphor has high emission intensity and excellent color rendering and color reproducibility, but has a low heat-resistant temperature and is easily affected by heat.
  • the surface where the phosphor is in contact with the outside is easily affected by oxygen and moisture, causing deterioration of the phosphor.
  • the resin may be deteriorated or discolored.
  • a phosphor sheet in which a phosphor or a resin containing the phosphor is sandwiched between the glass and organic glass, which is the third method, has attracted attention.
  • the phosphor sheet is easy to handle and is not easily affected by oxygen or moisture, and can be provided separately from the light emitting element, so that it is not directly affected by heat.
  • FIG. 13 is a schematic view of a light emitting device disclosed in Japanese Patent Laid-Open No. 2005-244075 (Patent Document 1).
  • the light emitting device 100 disclosed in the patent document includes a light emitting element 101 that emits primary light, and a silicone that includes a phosphor that absorbs part of the primary light and emits secondary light having a wavelength equal to or greater than the wavelength of the primary light.
  • a phosphor sheet 102 made of resin, and the phosphor sheet 102 includes two kinds of phosphors 103 and 104 having different excitation wavelength ranges.
  • FIG. 14 is a schematic diagram of a light emitting device disclosed in Japanese Patent Application Laid-Open No. 2007-317787 (Patent Document 2).
  • the light-emitting device 200 disclosed in the patent document is formed of a material in which a phosphor 204 is sandwiched between light-transmitting plates 203 and sealed with a sealant 205 on the upper surface of a substrate 202 on which a light-emitting element 201 is placed.
  • the phosphor sheet 208 is mounted via the reflection frame 206.
  • the present invention has been made in view of the above problems, and its purpose is a light-emitting device using a phosphor sheet, which reduces the loss of the amount of light emitted from the phosphor, ideal color rendering,
  • the object is to provide a light emitting device having excellent color reproducibility, a phosphor sheet used in the light emitting device, a backlight system, and a method for producing the phosphor sheet.
  • the present invention is a light emitting device including a light emitting element that emits primary light and a phosphor sheet that absorbs a part of the primary light and emits secondary light, the phosphor sheets facing each other. A light incident surface and a light emission surface, and a light reflective side surface for reflecting light from the inside of the phosphor sheet.
  • the phosphor sheet includes a light reflecting film provided on a side surface.
  • the light reflectivity is imparted by the light reflecting film.
  • the side surface of the phosphor sheet has a tapered shape that expands from the light incident surface toward the light emitting surface.
  • the light reflectivity is imparted by the tapered side surface.
  • the phosphor sheet preferably includes a phosphor layer containing a phosphor and two transparent layers provided so as to sandwich the phosphor layer.
  • the phosphor sheet includes a first phosphor layer including a first phosphor and a second phosphor that emits secondary light having a shorter wavelength than the first phosphor.
  • a second phosphor layer, and in the phosphor sheet, a first phosphor layer and a second phosphor layer are laminated in this order from the light incident surface to the light emitting surface.
  • At least one of the first phosphor and the second phosphor is preferably a phosphor made of nanocrystals.
  • the present invention is a phosphor sheet that is used in a light-emitting device including a light-emitting element that emits primary light, and absorbs a part of the primary light to emit secondary light.
  • a light-emitting element that emits primary light, and absorbs a part of the primary light to emit secondary light.
  • a light-emitting surface, and a light-reflecting side surface that reflects light from the inside of the phosphor sheet.
  • the phosphor sheet according to an embodiment of the present invention includes a light reflecting film provided on the side surface.
  • the light reflectivity is imparted by the light reflecting film.
  • the side surface has a tapered shape that expands from the light incident surface toward the light emission surface.
  • the light reflectivity is imparted by the tapered side surface.
  • the phosphor sheet of the present invention preferably includes a phosphor layer containing a phosphor and two transparent layers provided so as to sandwich the phosphor layer.
  • a first phosphor layer including a first phosphor and a second phosphor layer including a second phosphor that emits secondary light having a shorter wavelength than the first phosphor is laminated in this order from the light incident surface to the light emitting surface. At least one of the first phosphor and the second phosphor is preferably a phosphor made of nanocrystals.
  • the present invention is also a backlight system for video equipment including the above-described light emitting device.
  • the manufacturing method of the fluorescent substance sheet of this invention is a method of manufacturing the above-mentioned fluorescent substance sheet in which the 1st transparent layer, the fluorescent substance layer containing fluorescent substance, and the 2nd transparent layer were laminated
  • a step of pouring or applying the first transparent layer material into a die having a tapered shape whose side surfaces expand upward, and forming a first transparent layer; and a phosphor on the first transparent layer A step of casting or applying a phosphor layer material to form a phosphor layer, and a step of pouring or applying a second transparent layer material onto the phosphor layer to form a second transparent layer.
  • a light emitting device using a phosphor sheet it is possible to obtain a light emitting device excellent in ideal color rendering and color reproducibility by reducing the loss of the amount of light emitted from the phosphor.
  • FIG. 1 is a cross-sectional view of a light emitting device according to Embodiment 1.
  • FIG. It is the perspective view and sectional drawing of a fluorescent substance sheet. It is sectional drawing which shows the manufacturing method of a fluorescent substance sheet. It is sectional drawing which shows the example of installation of a fluorescent substance sheet. It is a figure explaining the motion of the light of a fluorescent substance sheet.
  • 6 is a cross-sectional view of a light emitting device according to Embodiment 2.
  • FIG. It is a figure which shows the manufacturing method of a fluorescent substance sheet. It is sectional drawing which shows the example of installation of a fluorescent substance sheet. It is sectional drawing of the light-emitting device which concerns on Embodiment 3.
  • FIG. 6 is a cross-sectional view of a light emitting device according to Embodiment 5.
  • FIG. It is sectional drawing of the backlight system which concerns on Embodiment 6.
  • FIG. It is the schematic of the light-emitting device of a prior art example. It is the schematic of the light-emitting device of a prior art example.
  • FIG. 1 is a cross-sectional view of a light emitting device 10 according to the present embodiment.
  • the light emitting device 10 faces the substrate 2 on which the electrode 1 is formed, the package 3 and the light emitting element 4 provided on the electrode 1, the wire 5 that connects the light emitting element 4 and the electrode 1, and the light emitting element 4.
  • the phosphor sheet 6 is arranged.
  • the phosphor sheet 6 according to the present embodiment has a configuration in which the first transparent layer 61, the phosphor layer 62, and the second transparent layer 63 are sequentially laminated, and the light reflecting film 64 is formed on the side surface 6c. ing.
  • the light reflecting film 64 is provided on the side surface 6c, the light traveling from the inner side of the phosphor sheet 6 toward the side surface 6c is reflected at a high reflectance on the side surface 6c or in the vicinity of the side surface 6c.
  • the surface of the first transparent layer 61 opposite to the phosphor layer 62 is the light incident surface 6a
  • the surface of the second transparent layer 63 opposite to the phosphor layer 62 is the light emitting surface 6b.
  • the surface 6a and the light emitting surface 6b face each other.
  • the light emission surface 6 b of the phosphor sheet 6 is also the light emission surface of the light emitting device 10.
  • the conductor forming the electrode 1 has a function as a conductive path for electrically connecting the light emitting element 4, and is electrically connected to the light emitting element 4 by the wire 5.
  • a metallized layer containing metal powder such as W, Mo, Cu, or Ag can be used.
  • the substrate 2 is required to have high thermal conductivity and a high total reflectance, for example, a polymer resin in which metal oxide fine particles are dispersed in addition to a ceramic material such as alumina or aluminum nitride is suitable. Used.
  • the light-emitting element 4 is used as a light source and preferably has a peak wavelength in the range of 360 nm to 470 nm.
  • a GaN-based light-emitting diode, ZnO-based light-emitting diode, or organic EL having a peak wavelength at 450 nm can be used.
  • FIG. 2A is a perspective view of the phosphor sheet 6, and FIG. 2B is a cross-sectional view of the phosphor sheet 6.
  • the phosphor sheet 6 includes a first transparent layer 61, a phosphor layer 62, a second transparent layer 63, and a light reflecting film 64.
  • the first transparent layer 61 and the second transparent layer 63 are preferably transparent in the visible range and high in strength.
  • organic glass such as glass mainly composed of silicate and polycarbonate can be used. Since glass containing silicic acid as a main component has a high barrier property against gas moisture, it is possible to suppress deterioration of the phosphor and resin due to oxygen and moisture adhering to the phosphor layer 62. Moreover, organic glass has a softness
  • the 1st transparent layer 61 and the 2nd transparent layer 63 may be formed with the same raw material, and may be formed with a different raw material.
  • quartz glass has a transmittance of about 95% in a wavelength region of 250 nm or more, and thus easily transmits LED light and fluorescence.
  • PMMA polymethyl methacrylate
  • PMMA has high weather resistance among organic glasses, so that deterioration such as coloring hardly occurs and it can be used for a long time.
  • the thickness of the first transparent layer 61 and the second transparent layer 63 can be appropriately determined according to the material and the like.
  • the phosphor layer 62 is composed of a resin layer containing a phosphor. Any phosphor may be used as long as it is a general phosphor. For example, a phosphor made of nanocrystals, a rare earth activated phosphor or a transition metal element activated phosphor can be used. In the present specification, “nanocrystal” refers to a crystal having a crystal diameter less than the exciton Bohr radius and in which exciton confinement or band gap increase due to the quantum size effect is observed.
  • a phosphor made of nanocrystals it is particularly preferable to use a phosphor made of nanocrystals.
  • the diameter of the nanocrystal is smaller than the wavelength of visible light, and the primary light emitted from the light emitting element is not scattered (Mie scattering), so the directivity of the primary light is not lowered.
  • the phosphor made of nanocrystals for example, InP-based nanocrystals can be used.
  • the particle size of InP is reduced (nanocrystallization)
  • the band gap can be controlled in the range from blue to red by the quantum effect.
  • a phosphor layer is formed by mixing and curing InP-based nanocrystals having a particle size that emits green light and a particle size that emits red light in a silicone resin or an acrylic resin.
  • a phosphor that is a nanocrystal made of a III-V compound semiconductor or II-VI compound semiconductor other than InP may be used as the phosphor material.
  • a nanocrystalline compound semiconductor composed of a II-VI group compound semiconductor or a III-V group compound semiconductor in a binary system, as a II-VI group compound semiconductor, CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, PbSe, PbS etc. are mentioned.
  • the III-V group compound semiconductor include GaN, GaP, GaAs, AlN, AlP, AlAs, InN, InP, InAs, and the like.
  • the nanocrystal containing In and P or the nanocrystal containing Cd and Se it is preferable to use the nanocrystal containing In and P or the nanocrystal containing Cd and Se.
  • a nanocrystal containing In and P or a nanocrystal containing Cd and Se can easily produce a nanocrystal having a particle size that emits light in the visible light region (380 nm to 780 nm).
  • InP and CdSe are easy to manufacture because of the small amount of constituent materials, and also show high quantum yield, and show high luminous efficiency when irradiated with LED light.
  • the quantum yield is the ratio of the number of photons emitted as fluorescence to the number of absorbed photons.
  • InP which does not contain Cd which shows strong toxicity as the phosphor.
  • the resin used for the phosphor layer 62 is preferably a resin in which the phosphor is uniformly dispersed, is transparent, and is resistant to heat and light.
  • the resin used in the phosphor layer 62 and the first transparent layer 61 and the second transparent layer 61 are used. It is preferable that there is no difference in the refractive index of the resin used in the transparent layer 63 or it is as small as possible.
  • the phosphor layer 62 can also be made of a difference in refractive index by using an acrylic resin.
  • acrylic resin polylauryl methacrylate (PLMA), PMMA or the like can be used.
  • the proportion of the phosphor contained in the phosphor layer 62 is not particularly limited, but can be, for example, 0.72% to 36% (weight%).
  • the thickness of the phosphor layer 62 is not particularly limited, but can be, for example, 10 ⁇ m to 500 ⁇ m.
  • the light reflecting film 64 is preferably made of a material having a high reflectivity, and for example, silver or aluminum can be used. Silver has a light reflectance of about 98% in the wavelength region of 450 nm to 700 nm, and aluminum has a light reflectance of about 90% in the wavelength region of 280 nm to 1000 nm. Light and secondary light can be reflected without waste.
  • the thickness of the light reflection film 64 is not particularly limited, it is preferable that the light reflection film 64 has a sufficient thickness so that light from the inside of the phosphor sheet 6 is reflected with high reflectance in the side surface 6c or in the vicinity of the side surface 6c.
  • the light reflecting film 64 is preferably configured to cover the entire side surface 6c. However, the portion of the side surface 6c where light from the phosphor 65 is likely to enter, for example, the phosphor layer 62 and the second transparent layer. The structure provided only in the part corresponding to the layer 63 may be sufficient.
  • FIG. 3 is a cross-sectional view illustrating a manufacturing process of the phosphor sheet 6 used in the light emitting device 10.
  • a silicone resin containing a predetermined amount of a nanocrystalline phosphor emitting red light and a nanocrystalline phosphor emitting green light is applied to the first transparent layer 61 to a thickness of 300 ⁇ m.
  • the body layer 62 is formed.
  • quartz glass having a thickness of 1 mm is used for the first transparent layer 61.
  • a silicone resin (trade name: SCR1011) manufactured by Shin-Etsu Chemical Co., Ltd. was used as the silicone resin forming the phosphor layer 62.
  • the second transparent layer 63 is placed on the phosphor layer 62 and cured at room temperature.
  • quartz glass having the same thickness as the first transparent layer 61 is used for the second transparent layer 63. In this way, the phosphor sheet 6 is formed.
  • a light reflection film 64 is formed on the side surface of the phosphor sheet 6 by forming a silver film using a resistance heating vacuum deposition apparatus.
  • the thickness of the light reflecting film 64 is 200 nm.
  • an LED package including an electrode 1, a substrate 2, a package 3, a light emitting element 4, and a wire 5 is prepared, and the phosphor sheet prepared by the above method on the LED package. 6 is installed.
  • FIG. 4 shows a state in which the phosphor sheet 6 is installed in the package 3.
  • FIG. 4A shows an example in which an adhesive 31 is applied to the upper surface of the package 3 and the phosphor sheet 6 is placed thereon.
  • the adhesive 31 may be any adhesive as long as the phosphor sheet 6 and the package 3 are securely fixed, but a silicone adhesive is preferable.
  • a method may be used in which a base 32 on which the phosphor sheet 6 is placed is placed on the upper surface of the package 3 and the phosphor sheet 6 is fitted into the base 32.
  • the surface in contact with the side surface of the phosphor sheet 6 in the base 32 may have a shape that covers all the side surfaces of the phosphor sheet 6, and this surface may be covered with a light reflecting film 64 such as silver.
  • the side surface of the phosphor sheet 6 has a characteristic of reflecting light from the inside of the phosphor sheet 6 in a state where the phosphor sheet 6 is installed in the package 3.
  • the process of forming the light reflection film 64 can be omitted in the manufacturing process of the phosphor sheet 6.
  • the upper surface of the package 3 may be processed in advance so that the phosphor sheet 6 can be accommodated, and the phosphor sheet 6 may be fitted into that portion.
  • the light emitting device is manufactured by the above procedure.
  • FIG. 5 schematically shows the movement of the secondary light when the phosphor 65 that has absorbed the primary light emitted from the light emitting element 4 emits the secondary light.
  • light is refracted at the boundary between the phosphor layer 62 and the first transparent layer 61 or the second transparent layer 62, between the phosphor sheet and the outside air. The refraction of the light of the part is omitted.
  • FIG. 5A shows a phosphor sheet 6 used in the light emitting device 10 according to this embodiment
  • FIG. 5B shows a phosphor sheet 7 of a comparative example.
  • the phosphor sheet 7 is different from the phosphor sheet 6 only in that it does not have the light reflection layer 64, and the other configuration is the same.
  • the first transparent layer 61 and the second transparent layer 63 of the phosphor sheets 6 and 7 are made of quartz
  • the resin of the phosphor layer 62 is a silicone resin (trade name: SCR1011 manufactured by Shin-Etsu Chemical Co., Ltd.). is there.
  • the refractive index of quartz is about 1.54, and the refractive index of SRC1011 is about 1.53.
  • the primary light L8 emitted from the light emitting element enters the phosphor sheet 6 from the light incident surface 6a, is absorbed by the phosphor 65, and the phosphor 65 emits secondary lights L1 to L5. .
  • the secondary lights L2 to L4 are emitted from the light exit surface 6b as they are.
  • the secondary light L1 travels while reflecting the inside of the phosphor layer 62, is reflected by the light reflecting film 64, and is emitted from the light emitting surface 6b.
  • the secondary light L ⁇ b> 5 travels while reflecting inside the phosphor layer 62 sandwiched between the first transparent layer 61 and the second transparent layer 63, and the light reflecting film 64. And is emitted from the light exit surface 6b.
  • a phosphor sheet 7 shown in FIG. 5B will be described as a comparative example.
  • the primary light L8 emitted from the light emitting element enters the phosphor sheet 7 from the light incident surface 7a, is absorbed by the phosphor 65, and the phosphor 65 emits secondary lights L1 to L5. .
  • the secondary lights L2 to L4 are emitted from the light exit surface 7b as they are.
  • the secondary light L ⁇ b> 1 travels while reflecting the inside of the phosphor layer 62 and is emitted from the side surface 7 c of the phosphor sheet 7.
  • FIG. 5B the primary light L8 emitted from the light emitting element enters the phosphor sheet 7 from the light incident surface 7a, is absorbed by the phosphor 65, and the phosphor 65 emits secondary lights L1 to L5. .
  • the secondary lights L2 to L4 are emitted from the light exit surface 7b as they are.
  • the secondary light L ⁇ b> 1 travels while reflecting
  • the secondary light L ⁇ b> 5 travels while reflecting the inside of the phosphor layer 62 sandwiched between the first transparent layer 61 and the second transparent layer 63, and the phosphor sheet 7. The light is emitted from the side surface 7c.
  • the secondary light L1 and L5 are not irradiated to the irradiated object provided facing the light emitting device, and the irradiated object is not irradiated. Irradiation light quantity will decrease. According to the phosphor sheet 6 having the light reflecting film 64 on the side surface, it is possible to prevent a decrease in the amount of light applied to the irradiated object.
  • the phosphor sheet 8 is used.
  • the phosphor sheet 8 has a tapered shape in which the side surface 8c of the phosphor sheet 8 expands upward, and the side surface is perpendicular to the light incident surface and the light emitting surface, as shown in FIG. This is different from the phosphor sheet 6 used in the light emitting device.
  • the side surface 8c is tapered so that the light exit surface 8b is larger than the light incident surface 8a.
  • the phosphor sheet 8 has a configuration in which a first transparent layer 81, a phosphor layer 82, and a second transparent layer 83 are sequentially laminated, and a light reflection film 84 is provided along the tapered side surface 8c. . Details of each component are the same as those in the first embodiment, and thus description thereof is omitted.
  • the light reflecting film 84 is provided on the side surface 8c of the phosphor sheet 8, the light traveling from the inner side of the phosphor sheet 8 toward the side surface 8c is reflected with a high reflectance near the side surface c or the side surface 6c. Furthermore, since the side surface c has a tapered shape that expands upward, the incident angle of light incident on the side surface 8 c from the inside of the phosphor sheet 8 is increased, and a large amount of light is emitted without depending on the light reflecting film 84. Reflected by the side surface 8c.
  • FIG. 7 is a diagram illustrating a manufacturing process of the phosphor sheet 8 used in the light emitting device 20.
  • a metal mold 800 is prepared.
  • the cross section of the mold 800 has a trapezoidal shape with a wide upper portion and a narrow lower portion. That is, the side surface of the mold has a tapered shape that expands upward. The angle of the tapered side surface is determined by the required shape of the light emitting sheet 8.
  • FIG. 7A a metal mold 800 is prepared.
  • the cross section of the mold 800 has a trapezoidal shape with a wide upper portion and a narrow lower portion. That is, the side surface of the mold has a tapered shape that expands upward. The angle of the tapered side surface is determined by the required shape of the light emitting sheet 8.
  • FIG. 7A a metal mold 800 is prepared.
  • the cross section of the mold 800 has a trapezoidal shape with a wide upper portion and a narrow lower portion. That is, the side surface of the mold has a tapered shape that expands
  • a silicone resin as a first transparent layer material is poured or applied to a mold 87 and cured to form a first transparent layer 81.
  • the degree of curing may not be completely cured as long as it is cured to the extent that it does not mix with the layer to be formed next.
  • a resin containing a nanocrystalline phosphor as a phosphor layer material is poured or applied onto the first transparent layer 81 and cured to form a phosphor layer 82.
  • a silicone resin is poured or applied as a second transparent layer material on the phosphor layer 82 and cured to form the second transparent layer 83.
  • the mold 87 is removed as shown in FIG. 7E, and silver is deposited as a light reflecting film 84 on the side surface 8c as shown in FIG. 7F.
  • the silver deposition method is the same as that of the first embodiment.
  • the materials used for the first resin layer 81, the phosphor layer 82, and the second resin layer 83 may be the same material, or may be different from each other or partially.
  • Organic glass may be used as the first transparent layer material and the second transparent resin material.
  • Organic glass, like resin, can be poured into a mold and cured.
  • the process of vapor-depositing silver shown in FIG.8 (f) is not performed, but in the state which arrange
  • the light reflecting film 84 is preferably formed so as to cover the entire side surface of the phosphor sheet 8, and may be formed larger than the side surface of the phosphor sheet 8. By forming in this way, it is possible to irradiate the secondary light in the target direction without waste.
  • FIG. 8 shows a state in which the phosphor sheet 8 is installed in the package 3.
  • FIG. 8A shows the case where the adhesive 31 is applied to the upper surface of the package 3 and the phosphor sheet 8 is placed thereon.
  • the adhesive 31 may be any material as long as the phosphor sheet 8 and the package are securely fixed, but a silicone-based adhesive is preferable.
  • a method may be used in which a stand 33 on which the phosphor sheet 8 is accommodated is installed on the upper surface of the package 3 and the phosphor sheet 8 is fitted into the stand 33.
  • the surface in contact with the side surface of the phosphor sheet 8 is configured to cover the entire side surface of the phosphor sheet 8.
  • the secondary light can be irradiated in the target direction more efficiently.
  • the surface of the table 33 that contacts the side surface of the phosphor sheet 8 may be covered with a light reflecting layer 84 such as silver.
  • the side surface of the phosphor sheet 8 has a characteristic of reflecting light from the inside of the phosphor sheet 8 in a state where the phosphor sheet 8 is installed in the package 3. Moreover, according to this structure, the process of forming the light reflection film 84 can be omitted in the manufacturing process of the phosphor sheet 8.
  • the upper surface of the package 3 may be processed in advance into a shape that can accommodate the phosphor sheet 6, and the phosphor sheet 6 may be fitted into that portion.
  • the light emitting device 20 is manufactured by the above procedure.
  • the component irradiated in the unnecessary direction of the secondary light of the phosphor is reflected by the side surface or the light reflection film 84, and the light of the secondary light is irradiated in the direction of the target without waste.
  • the area of the light emitting surface 8b in the second transparent layer 83 is larger than the area of the light incident surface 8a of the primary light in the first transparent layer 81, the light out of the wavelength converted by the phosphor Since part of the light traveling downward can also be reflected upward, a brighter light emitting device can be obtained as compared with the first embodiment.
  • a phosphor sheet 80 is used in the light emitting device 30 of Embodiment 3.
  • the phosphor sheet 80 is different from the phosphor sheet 8 used in the light emitting device of Embodiment 2 shown in FIG. 6 only in that the light reflecting film 84 is not provided. Details of each component are the same as those in the first and second embodiments, and thus the description thereof is omitted.
  • FIG. 9 shows the light emitting device 30 in the present embodiment.
  • the phosphor sheet 80 used in the light emitting device 30 is manufactured by the manufacturing method shown in FIG. 7 of the second embodiment, and before forming the light reflecting film 84 shown in FIG. Is in state.
  • the manufacturing method will not be limited if the side surface of the fluorescent substance sheet 80 is formed in the taper shape which expands upwards, and it is comprised so that a light-projection surface may become larger than a light-incidence surface.
  • the primary light L8 emitted from the light emitting element is absorbed by the phosphor 85, and the phosphor 85 emits secondary lights L1 to L7.
  • the secondary lights L3 to L5 are emitted as they are from the upper surface of the light emitting device 30 which is the light emitting surface 8b.
  • the secondary lights L1, L2, L6, and L7 travel through the phosphor layer 82, are reflected by the side surface 8c of the phosphor sheet 80, and are emitted from the upper surface of the light emitting device 30 that is the light emitting surface 8b.
  • the incident angle of the secondary light to the side surface becomes small. Therefore, like the secondary light L1 and the secondary light L5 shown in FIG. 5B, light is easily emitted from the side surface, and the amount of light emitted from the light emitting surface 8b is reduced.
  • the side surface of the phosphor sheet is formed in a tapered shape, and the area of the light emitting surface 8b of the phosphor sheet is larger than the area of the light incident surface 8a, thereby reducing the amount of irradiation light. It becomes possible to prevent.
  • the phosphor sheet 60 is used.
  • the phosphor sheet 60 is different from the phosphor sheet 6 used in the light emitting device of Embodiment 1 shown in FIG. 1 in that two phosphor layers are laminated.
  • a first transparent layer 61, a first phosphor layer 621, a second phosphor layer 622, and a second transparent layer 63 are laminated in order from the light incident surface 6a side.
  • the first phosphor layer 621 and the second phosphor layer 622 include different nanocrystalline phosphors.
  • the second phosphor included in the second phosphor layer 622 preferably emits secondary light having a shorter wavelength than the first phosphor included in the first phosphor layer 621.
  • the first phosphor is a nanocrystalline phosphor that emits red light
  • the second phosphor is a nanocrystalline phosphor that emits green light.
  • the reason why the second phosphor preferably emits secondary light having a shorter wavelength than the first phosphor is that the phosphor absorbs light having energy larger than the respective excitation energy, and the fluorescence As a secondary color.
  • secondary light emitted from a phosphor having a large excitation energy such as a blue phosphor is easily absorbed by a phosphor having a small excitation energy such as a red phosphor. Therefore, by laminating in order of phosphors with long peak wavelengths in the order of the optical path of the primary light, the secondary light emitted from each phosphor is hardly absorbed again by the phosphors emitting other colors, and the desired color Balance can be easily obtained. Details of each component are the same as those in the first embodiment, and thus description thereof is omitted.
  • Embodiment 5 will be described with reference to FIG.
  • a phosphor sheet 86 is used.
  • the phosphor sheet 86 is different from the phosphor sheet 8 used in the light emitting device of Embodiment 2 shown in FIG. 6 in that two phosphor layers are laminated.
  • a first transparent layer 81, a first phosphor layer 821, a second phosphor layer 822, and a second transparent layer 83 are laminated in order from the light incident surface 8a side.
  • the first phosphor layer 821 and the second phosphor layer 822 include different nanocrystalline phosphors.
  • the second phosphor included in the second phosphor layer 822 preferably emits secondary light having a shorter wavelength than the first phosphor included in the first phosphor layer 821.
  • the first phosphor is a nanocrystalline phosphor that emits red light
  • the second phosphor is a nanocrystalline phosphor that emits green light.
  • the reason why it is preferable that the second phosphor emits secondary light having a shorter wavelength than that of the first phosphor is as described in the fourth embodiment.
  • the side edge type backlight system according to Embodiment 6 includes the light emitting device 10 according to the first embodiment, the light guide plate 91, and the reflection plate 92.
  • the primary light and the secondary light emitted from the light emitting device 10 enter the light guide plate 91 and are reflected by the reflection plate 92, so that the primary light and the secondary light are transmitted from the surface facing the reflection plate 92. It has a structure to take out.
  • the backlight system of the present embodiment can be used for a backlight system of video equipment such as a television.
  • the backlight system of this embodiment the brightness of display can be improved in video equipment.
  • the example in which the light emitting device of the present invention is used in the side-edge type backlight system has been described.
  • the light emitting device 10 of the first embodiment is used, but the light emitting device of any of the above embodiments may be used.
  • a side surface having light reflectivity can be formed by using a light reflecting film on the phosphor sheet or forming a side surface in a tapered shape.
  • the light-emitting device is suitable as a light-emitting device including a semiconductor light-emitting element that emits primary light and a phosphor sheet that includes a phosphor that absorbs the primary light and emits secondary light.

Landscapes

  • Led Device Packages (AREA)
  • Planar Illumination Modules (AREA)

Abstract

Provided is a light emitting device which is reduced in loss of light quantity, said light being emitted from a phosphor. A light emitting device which is provided with: a light emitting element that emits primary light; and a phosphor sheet which absorbs some of the primary light and emits secondary light. The phosphor sheet is provided with a light incident surface and a light exit surface, which face each other, and a light-reflecting lateral surface that reflects the light from the inside of the phosphor sheet.

Description

発光装置、蛍光体シート、バックライトシステム及び蛍光体シートの製造方法Light emitting device, phosphor sheet, backlight system, and phosphor sheet manufacturing method
 本発明は、照明やディスプレイに用いられる発光装置に関し、特に、光源と、この光源から出力された光の一部によって励起される蛍光体を含む蛍光体シートとを備え、光源からの光と蛍光体からの光が出射される発光装置に関する。また、当該発光装置で用いられる蛍光体シート、当該発光装置を用いたバックライトシステム、および当該蛍光体シートの製造方法に関する。 The present invention relates to a light-emitting device used for illumination and a display, and in particular, includes a light source and a phosphor sheet containing a phosphor excited by a part of light output from the light source, and the light from the light source and fluorescence The present invention relates to a light emitting device that emits light from a body. The present invention also relates to a phosphor sheet used in the light emitting device, a backlight system using the light emitting device, and a method for manufacturing the phosphor sheet.
 近年、発光ダイオード(以下、LEDと記す。)を用いた発光装置として、液晶ディスプレイのLEDバックライトやLED電球に注目が集まっている。LEDは、省電力であり、製品寿命が長いこと、また、環境に及ぼす影響が小さいといった優れた特徴を有する。LEDバックライトやLED電球の発光部は、LEDの光の一部を蛍光体が波長変換した光と、LEDの蛍光体に波長変換されなかった光を組み合わせて放出することにより、本来のLEDの光とは異なる種々の光を発光することができる。このような発光装置は、これまでの照明やディスプレイのバックライトに代わる発光装置として大いに期待され、種々の開発がなされている。 In recent years, attention has been focused on LED backlights and LED bulbs of liquid crystal displays as light emitting devices using light emitting diodes (hereinafter referred to as LEDs). LEDs have excellent characteristics such as low power consumption, long product life, and small influence on the environment. The light emitting part of the LED backlight or the LED bulb emits a combination of light obtained by wavelength-converting part of the LED light and light not wavelength-converted by the LED phosphor. Various light different from light can be emitted. Such a light-emitting device is highly expected as a light-emitting device that replaces the conventional lighting and backlights of displays, and various developments have been made.
 一般に、青色LEDチップと蛍光体で発光装置を構成するとき、第一の方法として、蛍光体を樹脂材料に混ぜ合わせて青色LEDチップを覆う方法、第二の方法として、青色LEDチップの発光面に蛍光体を直接塗布する方法、第三の方法として、蛍光体を含んだシートを青色チップに載せる方法といった種々の手法がある。現在最も多く採用されているのは、第一の方法である。しかしながら、第一の方法及び第二の方法の場合、青色LEDの発光による熱が蛍光体に直接影響を与えるため、蛍光体の種類によっては熱により劣化を起こす可能性がある。特にナノ結晶蛍光体は、発光強度が高く、かつ、演色性、色再現性に優れているが、耐熱温度が低く、熱による影響を受けやすい。また、蛍光体と外部の接する面において、酸素や水分の影響を直接受けやすく、蛍光体の劣化の原因となる。さらに、樹脂についても劣化や変色を起こす可能性がある。 In general, when a light emitting device is configured with a blue LED chip and a phosphor, a first method is to cover the blue LED chip by mixing the phosphor with a resin material, and a second method is a light emitting surface of the blue LED chip. There are various methods such as a method of directly applying the phosphor and a third method such as a method of placing a phosphor-containing sheet on a blue chip. The most commonly used method is the first method. However, in the case of the first method and the second method, heat due to the light emission of the blue LED directly affects the phosphor, so that depending on the type of the phosphor, the heat may cause deterioration. In particular, the nanocrystalline phosphor has high emission intensity and excellent color rendering and color reproducibility, but has a low heat-resistant temperature and is easily affected by heat. In addition, the surface where the phosphor is in contact with the outside is easily affected by oxygen and moisture, causing deterioration of the phosphor. Further, the resin may be deteriorated or discolored.
 このような理由により、上記第三の方法であるガラスや有機ガラスなどで蛍光体、あるいは蛍光体を含む樹脂を挟んだ蛍光体シートが注目されている。蛍光体シートは取り扱いが容易である上、酸素や水分の影響を受けにくく、発光素子と離して設けることができるので熱の影響を直接受けることがない。 For this reason, a phosphor sheet in which a phosphor or a resin containing the phosphor is sandwiched between the glass and organic glass, which is the third method, has attracted attention. The phosphor sheet is easy to handle and is not easily affected by oxygen or moisture, and can be provided separately from the light emitting element, so that it is not directly affected by heat.
 図13は、特開2005-244075号公報(特許文献1)に示された発光装置の概略図である。該特許文献に示された発光装置100は、一次光を発する発光素子101と、一次光の一部を吸収してその一次光の波長以上の波長を有する二次光を発する蛍光体を含むシリコーン樹脂よりなる蛍光体シート102とを含み、その蛍光体シート102は互いに異なる励起波長域を有する二種類の蛍光体103,104を含んでいる。 FIG. 13 is a schematic view of a light emitting device disclosed in Japanese Patent Laid-Open No. 2005-244075 (Patent Document 1). The light emitting device 100 disclosed in the patent document includes a light emitting element 101 that emits primary light, and a silicone that includes a phosphor that absorbs part of the primary light and emits secondary light having a wavelength equal to or greater than the wavelength of the primary light. A phosphor sheet 102 made of resin, and the phosphor sheet 102 includes two kinds of phosphors 103 and 104 having different excitation wavelength ranges.
 図14は、特開2007-317787号公報(特許文献2)に示された発光装置の概略図である。該特許文献に示された発光装置200は、発光素子201を載置した基板202の上面に、透光性の板材203で蛍光体204を挟み込んでシール材205により封着した材料で形成された蛍光体シート208を反射枠体206を介して装着した構成となっている。 FIG. 14 is a schematic diagram of a light emitting device disclosed in Japanese Patent Application Laid-Open No. 2007-317787 (Patent Document 2). The light-emitting device 200 disclosed in the patent document is formed of a material in which a phosphor 204 is sandwiched between light-transmitting plates 203 and sealed with a sealant 205 on the upper surface of a substrate 202 on which a light-emitting element 201 is placed. The phosphor sheet 208 is mounted via the reflection frame 206.
 上記のような構造により、酸素や水分、熱の影響を受けにくく、劣化の少ない蛍光体を備えた発光装置を得ることができる。 With the above structure, it is possible to obtain a light-emitting device including a phosphor that is hardly affected by oxygen, moisture, and heat and has little deterioration.
特開2005-244075号公報Japanese Patent Laid-Open No. 2005-244075 特開2007-317787号公報JP 2007-317787 A
 しかしながら、上記特許文献1または特許文献2における発光装置を実際に発光させた場合、発光素子の指向性に比べ蛍光体の発光の指向性が低いため、発光素子からの光が蛍光体シートを通過する際に、蛍光体が波長変換した光が全方位に放射してしまい、その一部は蛍光体シートの側面から出射してしまう。このため、発光装置の光を所望の方向、空間に照射したい場合、蛍光体から発光される光量が減少することがある。また、側面からもれる光があるため、色バランスの崩れが生じることもあり、この場合、本来必要な色合いを得ることが出来ない。これらのことから、理想的な色再現性及び明るさを得ることは困難な場合がある。 However, when the light-emitting device in Patent Document 1 or Patent Document 2 is actually made to emit light, the light emission from the phosphor is lower than the directivity of the light-emitting element, so that the light from the light-emitting element passes through the phosphor sheet. In doing so, the wavelength-converted light of the phosphor is emitted in all directions, and part of the light is emitted from the side surface of the phosphor sheet. For this reason, when it is desired to irradiate the light of the light emitting device in a desired direction and space, the amount of light emitted from the phosphor may decrease. In addition, since there is light leaking from the side surface, the color balance may be lost. In this case, the originally required color cannot be obtained. For these reasons, it may be difficult to obtain ideal color reproducibility and brightness.
 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、蛍光体シートを用いた発光装置であって、蛍光体から発せられる光量の損失を減らし、理想的な演色性、色再現性に優れた発光装置、当該発光装置に用いられる蛍光体シート、バックライトシステム及び蛍光体シートの製造方法を提供することにある。 The present invention has been made in view of the above problems, and its purpose is a light-emitting device using a phosphor sheet, which reduces the loss of the amount of light emitted from the phosphor, ideal color rendering, The object is to provide a light emitting device having excellent color reproducibility, a phosphor sheet used in the light emitting device, a backlight system, and a method for producing the phosphor sheet.
 本発明は、一次光を発光する発光素子と、当該一次光の一部を吸収して二次光を発光する蛍光体シートとを備えた発光装置であって、当該蛍光体シートは、互いに対向する光入射面および光出射面と、前記蛍光体シートの内側からの光を反射する光反射性を有する側面とを備える。 The present invention is a light emitting device including a light emitting element that emits primary light and a phosphor sheet that absorbs a part of the primary light and emits secondary light, the phosphor sheets facing each other. A light incident surface and a light emission surface, and a light reflective side surface for reflecting light from the inside of the phosphor sheet.
 本発明の一実施形態の発光装置において、上記蛍光体シートは、側面に設けられた光反射膜を備える。当該光反射膜により上記光反射性が付与されている。 In the light emitting device according to an embodiment of the present invention, the phosphor sheet includes a light reflecting film provided on a side surface. The light reflectivity is imparted by the light reflecting film.
 本発明の一実施形態の発光装置において、上記蛍光体シートの側面は、光入射面から光出射面に向かって拡開するテーパー状である。テーパー状の側面により、上記光反射性が付与されている。 In the light emitting device according to an embodiment of the present invention, the side surface of the phosphor sheet has a tapered shape that expands from the light incident surface toward the light emitting surface. The light reflectivity is imparted by the tapered side surface.
 本発明の発光装置において、上記蛍光体シートは、好ましくは、蛍光体を含む蛍光体層と、当該蛍光体層を挟むように設けられた二つの透明層とを備える。 In the light emitting device of the present invention, the phosphor sheet preferably includes a phosphor layer containing a phosphor and two transparent layers provided so as to sandwich the phosphor layer.
 本発明の一実施形態の発光装置において、上記蛍光体シートは、第1蛍光体を含む第1蛍光体層と、第1蛍光体より短い波長の二次光を発光する第2蛍光体を含む第2蛍光体層とを備え、蛍光体シートにおいて、光入射面から光出射面の方向に、第1蛍光体層と第2蛍光体層とがこの順で積層されている。第1蛍光体と第2蛍光体の内の少なくとも一方は、ナノ結晶からなる蛍光体であることが好ましい。 In the light emitting device according to an embodiment of the present invention, the phosphor sheet includes a first phosphor layer including a first phosphor and a second phosphor that emits secondary light having a shorter wavelength than the first phosphor. A second phosphor layer, and in the phosphor sheet, a first phosphor layer and a second phosphor layer are laminated in this order from the light incident surface to the light emitting surface. At least one of the first phosphor and the second phosphor is preferably a phosphor made of nanocrystals.
 また、本発明は、一次光を発光する発光素子を備えた発光装置に用いられ、当該一次光の一部を吸収して二次光を発光する蛍光体シートであって、互いに対向する光入射面および光出射面と、蛍光体シートの内側からの光を反射する光反射性を有する側面とを備える。 In addition, the present invention is a phosphor sheet that is used in a light-emitting device including a light-emitting element that emits primary light, and absorbs a part of the primary light to emit secondary light. A light-emitting surface, and a light-reflecting side surface that reflects light from the inside of the phosphor sheet.
 本発明の一実施形態の蛍光体シートにおいて、上記側面に設けられた光反射膜を備える。当該光反射膜により上記光反射性が付与されている。 The phosphor sheet according to an embodiment of the present invention includes a light reflecting film provided on the side surface. The light reflectivity is imparted by the light reflecting film.
 本発明の一実施形態の蛍光体シートにおいて、上記側面は、光入射面から光出射面に向かって拡開するテーパー状である。テーパー状の側面により、上記光反射性が付与されている。 In the phosphor sheet according to an embodiment of the present invention, the side surface has a tapered shape that expands from the light incident surface toward the light emission surface. The light reflectivity is imparted by the tapered side surface.
 本発明の蛍光体シートは、好ましくは、蛍光体を含む蛍光体層と、前記蛍光体層を挟むように設けられた二つの透明層とを備える。 The phosphor sheet of the present invention preferably includes a phosphor layer containing a phosphor and two transparent layers provided so as to sandwich the phosphor layer.
 本発明の一実施形態の蛍光体シートにおいて、第1蛍光体を含む第1蛍光体層と、第1蛍光体より短い波長の二次光を発光する第2蛍光体を含む第2蛍光体層とを備え、光入射面から光出射面の方向に、第1蛍光体層と第2蛍光体層がこの順で積層されている。第1蛍光体と第2蛍光体の内の少なくとも一方は、ナノ結晶からなる蛍光体であることが好ましい。 In the phosphor sheet according to an embodiment of the present invention, a first phosphor layer including a first phosphor and a second phosphor layer including a second phosphor that emits secondary light having a shorter wavelength than the first phosphor. The first phosphor layer and the second phosphor layer are laminated in this order from the light incident surface to the light emitting surface. At least one of the first phosphor and the second phosphor is preferably a phosphor made of nanocrystals.
 また、本発明は、上述の発光装置を備える、映像機器用のバックライトシステムである。 The present invention is also a backlight system for video equipment including the above-described light emitting device.
 また、本発明の蛍光体シートの製造方法は、第1透明層、蛍光体を含む蛍光体層、第2透明層がこの順で積層された、上述の蛍光体シートを製造する方法であって、側面が上方に向かって拡開するテーパー状である金型内に第1透明層材料を流し込みまたは塗布して第1透明層を形成する工程と、第1透明層上に、蛍光体を含む蛍光体層材料を流し込みまたは塗布して蛍光体層を形成する工程と、蛍光体層上に、第2透明層材料を流し込みまたは塗布して第2透明層を形成する工程と、を含む。 Moreover, the manufacturing method of the fluorescent substance sheet of this invention is a method of manufacturing the above-mentioned fluorescent substance sheet in which the 1st transparent layer, the fluorescent substance layer containing fluorescent substance, and the 2nd transparent layer were laminated | stacked in this order. A step of pouring or applying the first transparent layer material into a die having a tapered shape whose side surfaces expand upward, and forming a first transparent layer; and a phosphor on the first transparent layer A step of casting or applying a phosphor layer material to form a phosphor layer, and a step of pouring or applying a second transparent layer material onto the phosphor layer to form a second transparent layer.
 本発明によれば、蛍光体シートを用いた発光装置において、蛍光体から発せられる光量の損失を減らし、理想的な演色性、色再現性に優れた発光装置を得ることができる。 According to the present invention, in a light emitting device using a phosphor sheet, it is possible to obtain a light emitting device excellent in ideal color rendering and color reproducibility by reducing the loss of the amount of light emitted from the phosphor.
実施形態1に係る発光装置の断面図である。1 is a cross-sectional view of a light emitting device according to Embodiment 1. FIG. 蛍光体シートの斜視図及び断面図である。It is the perspective view and sectional drawing of a fluorescent substance sheet. 蛍光体シートの製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of a fluorescent substance sheet. 蛍光体シートの設置例を示す断面図である。It is sectional drawing which shows the example of installation of a fluorescent substance sheet. 蛍光体シートの光の動きを説明する図である。It is a figure explaining the motion of the light of a fluorescent substance sheet. 実施形態2に係る発光装置の断面図である。6 is a cross-sectional view of a light emitting device according to Embodiment 2. FIG. 蛍光体シートの製造方法を示す図である。It is a figure which shows the manufacturing method of a fluorescent substance sheet. 蛍光体シートの設置例を示す断面図である。It is sectional drawing which shows the example of installation of a fluorescent substance sheet. 実施形態3に係る発光装置の断面図である。It is sectional drawing of the light-emitting device which concerns on Embodiment 3. FIG. 実施形態4に係る発光装置の断面図である。It is sectional drawing of the light-emitting device which concerns on Embodiment 4. FIG. 実施形態5に係る発光装置の断面図である。6 is a cross-sectional view of a light emitting device according to Embodiment 5. FIG. 実施形態6に係るバックライトシステムの断面図である。It is sectional drawing of the backlight system which concerns on Embodiment 6. FIG. 従来例の発光装置の概略図である。It is the schematic of the light-emitting device of a prior art example. 従来例の発光装置の概略図である。It is the schematic of the light-emitting device of a prior art example.
 以下、本発明の実施の形態について図1~図12を用いて以下に説明する。なお、本発明の図面において、同一の参照符号は、同一部分または相当部分を表わすものとする。 Hereinafter, embodiments of the present invention will be described with reference to FIGS. In the drawings of the present invention, the same reference numerals represent the same or corresponding parts.
 <実施形態1>
 (発光装置の構成)
 図1は、本実施形態に係る発光装置10の断面図である。発光装置10は、電極1が形成された基板2と、電極1上に設けられたパッケージ3及び発光素子4と、発光素子4と電極1を接続するワイヤ5、発光素子4と対向するように配された蛍光体シート6から構成される。そして、本実施形態にかかる蛍光体シート6は、第1透明層61、蛍光体層62、第2透明層63が順に積層された構成を有し、その側面6cに光反射膜64が形成されている。側面6cには光反射膜64が設けられているので、蛍光体シート6の内側から側面6cに向かう光は、側面6cあるいは側面6c近傍で高い反射率で反射される。第1透明層61の蛍光体層62とは反対側の表面が光入射面6aであり、第2透明層63の蛍光体層62とは反対側の表面が光出射面6bであり、光入射面6aと光出射面6bとは互いに対向する。なお、蛍光体シート6の光出射面6bは、発光装置10の発光面でもある。
<Embodiment 1>
(Configuration of light emitting device)
FIG. 1 is a cross-sectional view of a light emitting device 10 according to the present embodiment. The light emitting device 10 faces the substrate 2 on which the electrode 1 is formed, the package 3 and the light emitting element 4 provided on the electrode 1, the wire 5 that connects the light emitting element 4 and the electrode 1, and the light emitting element 4. The phosphor sheet 6 is arranged. The phosphor sheet 6 according to the present embodiment has a configuration in which the first transparent layer 61, the phosphor layer 62, and the second transparent layer 63 are sequentially laminated, and the light reflecting film 64 is formed on the side surface 6c. ing. Since the light reflecting film 64 is provided on the side surface 6c, the light traveling from the inner side of the phosphor sheet 6 toward the side surface 6c is reflected at a high reflectance on the side surface 6c or in the vicinity of the side surface 6c. The surface of the first transparent layer 61 opposite to the phosphor layer 62 is the light incident surface 6a, and the surface of the second transparent layer 63 opposite to the phosphor layer 62 is the light emitting surface 6b. The surface 6a and the light emitting surface 6b face each other. The light emission surface 6 b of the phosphor sheet 6 is also the light emission surface of the light emitting device 10.
 電極1を形成する導体は、発光素子4を電気的に接続するための電導路としての機能を有し、ワイヤ5にて発光素子4と電気的に接続されている。導体としては、たとえばW、Mo、Cu、またはAg等の金属粉末を含むメタライズ層を用いることができる。基板2は、熱伝導性が高く、かつ全反射率の大きいことが求められるため、たとえば、アルミナ、窒化アルミニウム等のセラミック材料のほかに、金属酸化物微粒子を分散させた高分子樹脂が好適に用いられる。 The conductor forming the electrode 1 has a function as a conductive path for electrically connecting the light emitting element 4, and is electrically connected to the light emitting element 4 by the wire 5. As the conductor, for example, a metallized layer containing metal powder such as W, Mo, Cu, or Ag can be used. Since the substrate 2 is required to have high thermal conductivity and a high total reflectance, for example, a polymer resin in which metal oxide fine particles are dispersed in addition to a ceramic material such as alumina or aluminum nitride is suitable. Used.
 パッケージ3は、高い反射率を持ちつつ、封止樹脂との密着性が良いポリフタルアミドなどにより構成される。発光素子4は、光源として用いられ、ピーク波長は360nmから470nmの範囲にあることが好ましく、たとえば450nmにピーク波長を有するGaN系発光ダイオード、ZnO系発光ダイオード、有機EL等を用いることができる。 Package 3 is made of polyphthalamide or the like having high reflectance and good adhesion to the sealing resin. The light-emitting element 4 is used as a light source and preferably has a peak wavelength in the range of 360 nm to 470 nm. For example, a GaN-based light-emitting diode, ZnO-based light-emitting diode, or organic EL having a peak wavelength at 450 nm can be used.
 図2(a)は蛍光体シート6の斜視図、図2(b)は蛍光体シート6の断面図である。蛍光体シート6は、第1透明層61、蛍光体層62、第2透明層63、光反射膜64より構成されている。 FIG. 2A is a perspective view of the phosphor sheet 6, and FIG. 2B is a cross-sectional view of the phosphor sheet 6. The phosphor sheet 6 includes a first transparent layer 61, a phosphor layer 62, a second transparent layer 63, and a light reflecting film 64.
 第1透明層61および第2透明層63は、可視域で透明であり、強度の高いものが好ましい。たとえば、ケイ酸塩を主成分とするガラスやポリカーボネイト等の有機ガラスを用いることができる。ケイ酸を主成分とするガラスはガス水分に対するバリア性が高いため、蛍光体層62に酸素や水分が付着し、蛍光体や樹脂が劣化することを抑制することができる。また、有機ガラスは、柔軟性を有しており、フレキシブルな蛍光体シート6を提供できる。なお、第1透明層61および第2透明層63は同一素材で形成されていてもよいし、異なる素材で形成されていてもよい。 The first transparent layer 61 and the second transparent layer 63 are preferably transparent in the visible range and high in strength. For example, organic glass such as glass mainly composed of silicate and polycarbonate can be used. Since glass containing silicic acid as a main component has a high barrier property against gas moisture, it is possible to suppress deterioration of the phosphor and resin due to oxygen and moisture adhering to the phosphor layer 62. Moreover, organic glass has a softness | flexibility and can provide the flexible fluorescent substance sheet 6. FIG. In addition, the 1st transparent layer 61 and the 2nd transparent layer 63 may be formed with the same raw material, and may be formed with a different raw material.
 上記ケイ酸塩を主成分とするガラスの中では、石英ガラスを用いることが好ましい。石英ガラスは250nm以上の波長域において透過率が95%程度であることから、LED光や、蛍光を透過し易いためである。また、上記有機ガラスの中では、PMMA(ポリメタクリル酸メチル)を用いることが好ましい。PMMAは、有機ガラスの中で高い耐候性を有するため、着色等の劣化が起きにくく、長時間使用が可能である。 Among the glasses containing silicate as a main component, it is preferable to use quartz glass. This is because quartz glass has a transmittance of about 95% in a wavelength region of 250 nm or more, and thus easily transmits LED light and fluorescence. Moreover, in the said organic glass, it is preferable to use PMMA (polymethyl methacrylate). PMMA has high weather resistance among organic glasses, so that deterioration such as coloring hardly occurs and it can be used for a long time.
 第1透明層61および第2透明層63の厚さは、材料等に応じて適宜決定することができる。 The thickness of the first transparent layer 61 and the second transparent layer 63 can be appropriately determined according to the material and the like.
 蛍光体層62は、蛍光体を含む樹脂層から構成される。蛍光体は、一般の蛍光体であればどのようなものでも構わないが、たとえば、ナノ結晶からなる蛍光体、もしくは、希土類付活蛍光体や遷移金属元素付活蛍光体を用いることが出来る。本明細書において、「ナノ結晶」とは、結晶の直径が励起子ボーア半径未満であり、量子サイズ効果による励起子の閉じ込めやバンドギャップの増大が観測される結晶を示すものとする。 The phosphor layer 62 is composed of a resin layer containing a phosphor. Any phosphor may be used as long as it is a general phosphor. For example, a phosphor made of nanocrystals, a rare earth activated phosphor or a transition metal element activated phosphor can be used. In the present specification, “nanocrystal” refers to a crystal having a crystal diameter less than the exciton Bohr radius and in which exciton confinement or band gap increase due to the quantum size effect is observed.
 中でも、特にナノ結晶からなる蛍光体を用いることが好ましい。その理由は、ナノ結晶の直径は可視光の波長より小さく、発光素子が出す一次光を散乱(ミー散乱)しないので、一次光の指向性を低くすることがないためである。ナノ結晶からなる蛍光体としては、たとえば、InP系のナノ結晶を用いることができる。InPは粒径を小さく(ナノ結晶化)していくと量子効果によってバンドギャップを青色から赤色の範囲で制御することができる。たとえば、緑色発光する粒径と赤色発光する粒径を有する、InP系ナノ結晶をシリコーン系樹脂やアクリル系樹脂中に混合し硬化させて、蛍光体層が形成される。 Among them, it is particularly preferable to use a phosphor made of nanocrystals. The reason is that the diameter of the nanocrystal is smaller than the wavelength of visible light, and the primary light emitted from the light emitting element is not scattered (Mie scattering), so the directivity of the primary light is not lowered. As the phosphor made of nanocrystals, for example, InP-based nanocrystals can be used. When the particle size of InP is reduced (nanocrystallization), the band gap can be controlled in the range from blue to red by the quantum effect. For example, a phosphor layer is formed by mixing and curing InP-based nanocrystals having a particle size that emits green light and a particle size that emits red light in a silicone resin or an acrylic resin.
 このほか、蛍光体材料として、InP以外のIII―V族化合物半導体やII―VI化合物半導体よりなるナノ結晶である蛍光体を用いてもよい。たとえば、II―VI族化合物半導体やIII―V族化合物半導体よりなるナノ結晶の化合物半導体としては、二元系では、II-VI族化合物半導体として、CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、HgS、HgSe、HgTe、PbSe、PbS等が挙げられる。III-V族化合物半導体としては、GaN、GaP、GaAs、AlN、AlP、AlAs、InN、InP、InAs等が挙げられる。 In addition, a phosphor that is a nanocrystal made of a III-V compound semiconductor or II-VI compound semiconductor other than InP may be used as the phosphor material. For example, as a nanocrystalline compound semiconductor composed of a II-VI group compound semiconductor or a III-V group compound semiconductor, in a binary system, as a II-VI group compound semiconductor, CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, PbSe, PbS etc. are mentioned. Examples of the III-V group compound semiconductor include GaN, GaP, GaAs, AlN, AlP, AlAs, InN, InP, InAs, and the like.
 また、三元系や四元系では、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、HgZnSTe、GaNP、GaNAs、GaPAs、AlNP、AlNAs、AlPAs、InNP、InNAs、InPAs、InGaN、GaAlNP、GaAlNAs、GaAlPAs、GaInNP、GaInNAs、GaInPAs、InAlNP、InAlNAs、InAlPAs等が挙げられる。 In ternary and quaternary systems, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgSe, CdHgSe, CdHgSe, CdHgSe, CdHgSe, CdHgSe, CdHgSe, CdHgSe, CdHgSe , CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTTe, HgZnSeS, HgZnSeTe, HgZnSTe, GaNP, GaNAs, GaPAs, AlNP, AlNAs, AlPAs, InNP, InNAs, InPAs, InGaN, GaAlNP InAlPAs etc. It is below.
 そして、上記蛍光体としては、InおよびPを含むナノ結晶、または、CdおよびSeを含むナノ結晶を用いることが好ましい。その理由は、InおよびPを含むナノ結晶、または、CdおよびSeを含むナノ結晶は、可視光域(380nm~780nm)で発光する粒径のナノ結晶を作製し易いためである。その中でも特に、InP、またはCdSeを用いることが好ましい。理由としては、InPとCdSeは、構成する材料が少ないため作製がし易い上、高い量子収率を示す材料であり、LEDの光を照射した際、高い発光効率を示すからである。なお、ここでの量子収率とは、吸収した光子数に対する蛍光として発光した光子数の割合のことである。さらに言えば、蛍光体として、強い毒性を示すCdを含まないInPを用いることが好ましい。 And as said fluorescent substance, it is preferable to use the nanocrystal containing In and P or the nanocrystal containing Cd and Se. The reason is that a nanocrystal containing In and P or a nanocrystal containing Cd and Se can easily produce a nanocrystal having a particle size that emits light in the visible light region (380 nm to 780 nm). Among them, it is particularly preferable to use InP or CdSe. The reason for this is that InP and CdSe are easy to manufacture because of the small amount of constituent materials, and also show high quantum yield, and show high luminous efficiency when irradiated with LED light. Here, the quantum yield is the ratio of the number of photons emitted as fluorescence to the number of absorbed photons. Furthermore, it is preferable to use InP which does not contain Cd which shows strong toxicity as the phosphor.
 蛍光体層62に用いられる樹脂としては、蛍光体が均一に分散される樹脂であって、透明であり、熱や光に強い樹脂であることが好ましい。また、蛍光体層62と、第1透明層61および第2透明層63との境界での屈折による光量の損失を防ぐために、蛍光体層62で用いられる樹脂と第1透明層61および第2透明層63で用いられる樹脂の屈折率の差はないかできるだけ小さいことが好ましい。たとえば、第1透明層61および第3透明層63がPMMA等のアクリルガラスから形成される場合、蛍光体層62においてもアクリル系樹脂を用いることにより、屈折率の差を小さくすることができる。アクリル系樹脂としては、具体的には、ポリメタクリル酸ラウリル(PLMA)、PMMA等を用いることができる。 The resin used for the phosphor layer 62 is preferably a resin in which the phosphor is uniformly dispersed, is transparent, and is resistant to heat and light. In addition, in order to prevent loss of light amount due to refraction at the boundary between the phosphor layer 62 and the first transparent layer 61 and the second transparent layer 63, the resin used in the phosphor layer 62 and the first transparent layer 61 and the second transparent layer 61 are used. It is preferable that there is no difference in the refractive index of the resin used in the transparent layer 63 or it is as small as possible. For example, when the first transparent layer 61 and the third transparent layer 63 are formed of acrylic glass such as PMMA, the phosphor layer 62 can also be made of a difference in refractive index by using an acrylic resin. Specifically, as the acrylic resin, polylauryl methacrylate (PLMA), PMMA or the like can be used.
 蛍光体層62中に含まれる蛍光体の割合は、特に限定されないが、たとえば、0.72%~36%(重量%)とすることができる。蛍光体層62の厚さは特に限定されないが、たとえば、10μm~500μmとすることができる。 The proportion of the phosphor contained in the phosphor layer 62 is not particularly limited, but can be, for example, 0.72% to 36% (weight%). The thickness of the phosphor layer 62 is not particularly limited, but can be, for example, 10 μm to 500 μm.
 光反射膜64は、高い反射率を持つ材料を用いることが好ましく、たとえば、銀やアルミニウムを用いることができる。銀は、450nm~700nmの波長域の光反射率が98%程度であり、アルミニウムは、280nm~1000nmの波長域の光反射率90%程度であり、いずれも高い反射率を持っており、一次光、及び二次光を無駄なく反射させることが出来る。光反射膜64の厚さは、特に限定されないが、蛍光体シート6の内側からの光が側面6cあるいは側面6c近傍で高い反射率で反射されるために十分な厚みを有することが好ましい。 The light reflecting film 64 is preferably made of a material having a high reflectivity, and for example, silver or aluminum can be used. Silver has a light reflectance of about 98% in the wavelength region of 450 nm to 700 nm, and aluminum has a light reflectance of about 90% in the wavelength region of 280 nm to 1000 nm. Light and secondary light can be reflected without waste. Although the thickness of the light reflection film 64 is not particularly limited, it is preferable that the light reflection film 64 has a sufficient thickness so that light from the inside of the phosphor sheet 6 is reflected with high reflectance in the side surface 6c or in the vicinity of the side surface 6c.
 光反射膜64は、側面6cの全体を覆うように構成されていることが好ましいが、側面6cの内、蛍光体65からの光が入射しやすい部分、たとえば、蛍光体層62と第2透明層63に対応する部分のみに設けられている構成であってもよい。 The light reflecting film 64 is preferably configured to cover the entire side surface 6c. However, the portion of the side surface 6c where light from the phosphor 65 is likely to enter, for example, the phosphor layer 62 and the second transparent layer. The structure provided only in the part corresponding to the layer 63 may be sufficient.
 (発光装置の製造方法)
 次に、発光装置10の製造方法の具体例を以下に説明する。図3は、発光装置10に用いられる蛍光体シート6の製造工程を説明する断面図である。まず、図3(a)に示されるように、第1透明層61に赤色発光するナノ結晶蛍光体と緑色発光するナノ結晶蛍光体を所定量含むシリコーン系樹脂を300μmの厚みで塗布し、蛍光体層62を形成する。本実施形態では、第1透明層61には1mmの厚さの石英ガラスを使用した。蛍光体層62を形成するシリコーン系樹脂には、信越化学工業株式会社製のシリコーン系樹脂(商品名:SCR1011)を使用した。
(Method for manufacturing light emitting device)
Next, a specific example of a method for manufacturing the light emitting device 10 will be described below. FIG. 3 is a cross-sectional view illustrating a manufacturing process of the phosphor sheet 6 used in the light emitting device 10. First, as shown in FIG. 3A, a silicone resin containing a predetermined amount of a nanocrystalline phosphor emitting red light and a nanocrystalline phosphor emitting green light is applied to the first transparent layer 61 to a thickness of 300 μm. The body layer 62 is formed. In the present embodiment, quartz glass having a thickness of 1 mm is used for the first transparent layer 61. A silicone resin (trade name: SCR1011) manufactured by Shin-Etsu Chemical Co., Ltd. was used as the silicone resin forming the phosphor layer 62.
 次に、図3(b)に示すように、蛍光体層62上に第2透明層63を被せ、室温で硬化させる。本実施形態であは、第2透明層63には、第1透明層61と同じ厚みの石英ガラスを使用する。このようにして、蛍光体シート6が形成される。 Next, as shown in FIG. 3B, the second transparent layer 63 is placed on the phosphor layer 62 and cured at room temperature. In the present embodiment, quartz glass having the same thickness as the first transparent layer 61 is used for the second transparent layer 63. In this way, the phosphor sheet 6 is formed.
 次に、図3(c)に示すように、蛍光体シート6の側面に、抵抗加熱型真空蒸着装置を使用して銀を成膜することで、光反射膜64を形成する。本実施形態において、光反射膜64の厚みは200nmとする。 Next, as shown in FIG. 3C, a light reflection film 64 is formed on the side surface of the phosphor sheet 6 by forming a silver film using a resistance heating vacuum deposition apparatus. In the present embodiment, the thickness of the light reflecting film 64 is 200 nm.
 次に、図1に示されるように電極1、基板2、パッケージ3、発光素子4、そしてワイヤ5が備わったLEDパッケージを用意し、LEDパッケージの上部に上記の方法で作成された蛍光体シート6を設置する。 Next, as shown in FIG. 1, an LED package including an electrode 1, a substrate 2, a package 3, a light emitting element 4, and a wire 5 is prepared, and the phosphor sheet prepared by the above method on the LED package. 6 is installed.
 図4は、蛍光体シート6をパッケージ3に設置した状態を示す。図4(a)は、パッケージ3の上面に接着剤31を塗布し、蛍光体シート6をその上に設置したものである。接着剤31は、蛍光体シート6とパッケージ3が確実に固定されるものであればどのようなものでも構わないが、シリコーン系の接着剤が好ましい。 FIG. 4 shows a state in which the phosphor sheet 6 is installed in the package 3. FIG. 4A shows an example in which an adhesive 31 is applied to the upper surface of the package 3 and the phosphor sheet 6 is placed thereon. The adhesive 31 may be any adhesive as long as the phosphor sheet 6 and the package 3 are securely fixed, but a silicone adhesive is preferable.
 あるいは、図4(b)に示すように、パッケージ3の上面に蛍光体シート6が収まる台32を設置し、台32に蛍光体シート6を嵌め込む方法でも構わない。または、台32において、蛍光体シート6の側面と接する面が、蛍光体シート6の側面を全て覆う形状とし、この面を銀などの光反射膜64で被覆してもよい。このような構成であっても、蛍光体シート6をパッケージ3に設置した状態において、蛍光体シート6の側面は、蛍光体シート6の内側からの光を反射する特性を有する。また、この構成によると、蛍光体シート6の製造工程において、光反射膜64を形成する工程を省略することができる。 Alternatively, as shown in FIG. 4B, a method may be used in which a base 32 on which the phosphor sheet 6 is placed is placed on the upper surface of the package 3 and the phosphor sheet 6 is fitted into the base 32. Alternatively, the surface in contact with the side surface of the phosphor sheet 6 in the base 32 may have a shape that covers all the side surfaces of the phosphor sheet 6, and this surface may be covered with a light reflecting film 64 such as silver. Even in such a configuration, the side surface of the phosphor sheet 6 has a characteristic of reflecting light from the inside of the phosphor sheet 6 in a state where the phosphor sheet 6 is installed in the package 3. Moreover, according to this structure, the process of forming the light reflection film 64 can be omitted in the manufacturing process of the phosphor sheet 6.
 さらに、図4(c)に示すようにパッケージ3の上面をあらかじめ蛍光体シート6が収まるような形状に加工しておいて、その部分に蛍光体シート6を嵌み込んでもよい。上記の手順にて、発光装置が作製される。 Furthermore, as shown in FIG. 4 (c), the upper surface of the package 3 may be processed in advance so that the phosphor sheet 6 can be accommodated, and the phosphor sheet 6 may be fitted into that portion. The light emitting device is manufactured by the above procedure.
 (光反射膜の作用)
 ここで、光反射膜64による作用について具体例を用いて詳細に説明する。図5は、発光素子4より発光された一次光を吸収した蛍光体65が二次光を発光したときの、二次光の動きを模式的に示したものである。なお、実際には、蛍光体層62と第1透明層61または第2透明層62との境界、蛍光体シートと外部の空気間で光の屈折が生じているが、本模式図では、この部分の光の屈折については省略している。
(Function of light reflecting film)
Here, the effect | action by the light reflection film | membrane 64 is demonstrated in detail using a specific example. FIG. 5 schematically shows the movement of the secondary light when the phosphor 65 that has absorbed the primary light emitted from the light emitting element 4 emits the secondary light. In practice, light is refracted at the boundary between the phosphor layer 62 and the first transparent layer 61 or the second transparent layer 62, between the phosphor sheet and the outside air. The refraction of the light of the part is omitted.
 図5(a)は、本実施形態に係る発光装置10に用いられる蛍光体シート6、図5(b)は比較例の蛍光体シート7である。蛍光体シート7は、蛍光体シート6とは、光反射層64を有さないという点のみ異なり、それ以外は同じ構成である。ここで、蛍光体シート6,7の第1透明層61および第2透明層63は石英からなり、蛍光体層62の樹脂はシリコーン系樹脂(信越化学工業株式会社製、商品名:SCR1011)である。石英の屈折率は1.54程度、SRC1011の屈折率は1.53程度である。このように、屈折率の差の小さい材料を用いることにより、光の屈折による光量の損失を防ぐことができる。 FIG. 5A shows a phosphor sheet 6 used in the light emitting device 10 according to this embodiment, and FIG. 5B shows a phosphor sheet 7 of a comparative example. The phosphor sheet 7 is different from the phosphor sheet 6 only in that it does not have the light reflection layer 64, and the other configuration is the same. Here, the first transparent layer 61 and the second transparent layer 63 of the phosphor sheets 6 and 7 are made of quartz, and the resin of the phosphor layer 62 is a silicone resin (trade name: SCR1011 manufactured by Shin-Etsu Chemical Co., Ltd.). is there. The refractive index of quartz is about 1.54, and the refractive index of SRC1011 is about 1.53. Thus, by using a material having a small difference in refractive index, loss of light amount due to light refraction can be prevented.
 図5(a)において、発光素子から発光された一次光L8は、光入射面6aから蛍光体シート6に入射し、蛍光体65に吸収され、蛍光体65は二次光L1~L5を発する。このうち、二次光L2~L4は、そのまま光出射面6bより出射する。二次光L1は、一例として図5(a)に示すように、蛍光体層62の内部を反射しながら進み、光反射膜64に反射されて光出射面6bより出射する。二次光L5は、一例として、図5(a)に示すように、第1透明層61および第2透明層63に挟まれた蛍光体層62の内部を反射しながら進み、光反射膜64に反射されて光出射面6bより出射する。 In FIG. 5A, the primary light L8 emitted from the light emitting element enters the phosphor sheet 6 from the light incident surface 6a, is absorbed by the phosphor 65, and the phosphor 65 emits secondary lights L1 to L5. . Among these, the secondary lights L2 to L4 are emitted from the light exit surface 6b as they are. As an example, as shown in FIG. 5A, the secondary light L1 travels while reflecting the inside of the phosphor layer 62, is reflected by the light reflecting film 64, and is emitted from the light emitting surface 6b. As an example, as illustrated in FIG. 5A, the secondary light L <b> 5 travels while reflecting inside the phosphor layer 62 sandwiched between the first transparent layer 61 and the second transparent layer 63, and the light reflecting film 64. And is emitted from the light exit surface 6b.
 ここで、比較例として図5(b)に示す蛍光体シート7について説明する。図5(b)において、発光素子から発光された一次光L8は、光入射面7aから蛍光体シート7に入射し、蛍光体65に吸収され、蛍光体65は二次光L1~L5を発する。このうち、二次光L2~L4は、そのまま光出射面7bより出射する。二次光L1は、一例として図5(b)に示すように、蛍光体層62の内部を反射しながら進み、蛍光体シート7の側面7cより出射する。二次光L5は、一例として、図5(b)に示すように、第1透明層61および第2透明層63に挟まれた蛍光体層62の内部を反射しながら進み、蛍光体シート7の側面7cより出射する。 Here, a phosphor sheet 7 shown in FIG. 5B will be described as a comparative example. In FIG. 5B, the primary light L8 emitted from the light emitting element enters the phosphor sheet 7 from the light incident surface 7a, is absorbed by the phosphor 65, and the phosphor 65 emits secondary lights L1 to L5. . Among these, the secondary lights L2 to L4 are emitted from the light exit surface 7b as they are. As an example, as shown in FIG. 5B, the secondary light L <b> 1 travels while reflecting the inside of the phosphor layer 62 and is emitted from the side surface 7 c of the phosphor sheet 7. As an example, as shown in FIG. 5B, the secondary light L <b> 5 travels while reflecting the inside of the phosphor layer 62 sandwiched between the first transparent layer 61 and the second transparent layer 63, and the phosphor sheet 7. The light is emitted from the side surface 7c.
 このように、図5(b)に示す蛍光体シート7によると、発光装置に対向して設けられた被照射物に対してこれらの二次光L1、L5は照射されず、被照射物に対する照射光量が減ってしまう。側面に光反射膜64を有する蛍光体シート6によると、被照射物に対する照射光量の減少を防ぐことが可能となる。 Thus, according to the phosphor sheet 7 shown in FIG. 5B, the secondary light L1 and L5 are not irradiated to the irradiated object provided facing the light emitting device, and the irradiated object is not irradiated. Irradiation light quantity will decrease. According to the phosphor sheet 6 having the light reflecting film 64 on the side surface, it is possible to prevent a decrease in the amount of light applied to the irradiated object.
 <実施形態2>
 (発光装置の構成)
 図6を参照して実施形態2を説明する。実施形態2の発光装置20においては、蛍光体シート8が用いられる。蛍光体シート8は、蛍光体シート8の側面8cが上方に向かって拡開するテーパー状である点で、側面が光入射面および光出射面に対して垂直である図1に示す実施形態1の発光装置で用いられる蛍光体シート6とは異なる。蛍光体シート8において、側面8cがテーパー状であることにより、光出射面8bが光入射面8aより大きい構成となっている。蛍光体シート8は、第1透明層81、蛍光体層82、第2透明層83が順に積層された構成を有し、テーパー状の側面8cに沿って、光反射膜84が設けられている。各構成要素の詳細は、実施形態1と同様であるので、説明を省略する。
<Embodiment 2>
(Configuration of light emitting device)
The second embodiment will be described with reference to FIG. In the light emitting device 20 of the second embodiment, the phosphor sheet 8 is used. The phosphor sheet 8 has a tapered shape in which the side surface 8c of the phosphor sheet 8 expands upward, and the side surface is perpendicular to the light incident surface and the light emitting surface, as shown in FIG. This is different from the phosphor sheet 6 used in the light emitting device. In the phosphor sheet 8, the side surface 8c is tapered so that the light exit surface 8b is larger than the light incident surface 8a. The phosphor sheet 8 has a configuration in which a first transparent layer 81, a phosphor layer 82, and a second transparent layer 83 are sequentially laminated, and a light reflection film 84 is provided along the tapered side surface 8c. . Details of each component are the same as those in the first embodiment, and thus description thereof is omitted.
 蛍光体シート8の側面8cには光反射膜84が設けられているので、蛍光体シート8の内側から側面8cに向かう光は、側面cあるいは側面6c近傍で高い反射率で反射される。さらに、側面cが上方に拡開するテーパー形状であることより、蛍光体シート8の内側から側面8cに入射する光の入射角度が大きくなり、光反射膜84によらなくても多くの光が側面8cで反射される。 Since the light reflecting film 84 is provided on the side surface 8c of the phosphor sheet 8, the light traveling from the inner side of the phosphor sheet 8 toward the side surface 8c is reflected with a high reflectance near the side surface c or the side surface 6c. Furthermore, since the side surface c has a tapered shape that expands upward, the incident angle of light incident on the side surface 8 c from the inside of the phosphor sheet 8 is increased, and a large amount of light is emitted without depending on the light reflecting film 84. Reflected by the side surface 8c.
 (発光装置の製造方法)
 次に、発光装置20の製造方法の具体例を以下に説明する。図7は、発光装置20に用いられる蛍光体シート8の製造工程を説明する図である。まず、図7(a)に示すように、金属製の金型800を用意する。金型800の断面の形状は、上部が広く下部が狭い台形状をしている。すなわち、金型の側面は、上方に向かって拡開するテーパー状である。テーパー状の側面の角度は、求められる発光シート8の形状により決定される。次に、図7(b)に示すように、第1透明層材料としてシリコーン系樹脂を金型87に流し込みまたは塗布し、硬化させて第1透明層81を形成する。硬化の程度は、次に形成される層と混じり合わない程度に硬化されていれば、完全に硬化されていなくてもよい。
(Method for manufacturing light emitting device)
Next, a specific example of a method for manufacturing the light emitting device 20 will be described below. FIG. 7 is a diagram illustrating a manufacturing process of the phosphor sheet 8 used in the light emitting device 20. First, as shown in FIG. 7A, a metal mold 800 is prepared. The cross section of the mold 800 has a trapezoidal shape with a wide upper portion and a narrow lower portion. That is, the side surface of the mold has a tapered shape that expands upward. The angle of the tapered side surface is determined by the required shape of the light emitting sheet 8. Next, as shown in FIG. 7B, a silicone resin as a first transparent layer material is poured or applied to a mold 87 and cured to form a first transparent layer 81. The degree of curing may not be completely cured as long as it is cured to the extent that it does not mix with the layer to be formed next.
 次に、図7(c)に示すように、蛍光体層材料としてナノ結晶蛍光体を含有した樹脂を第1透明層81上に流し込みまたは塗布し、硬化させて蛍光体層82を形成する。そして、蛍光体層82の上に図7(d)に示すように第2透明層材料としてシリコーン系樹脂を流し込みまたは塗布し、硬化させて第2透明層83を形成する。全ての層の樹脂が完全に硬化したら、図7(e)に示すように金型87をはずし、図7(f)に示すように、側面8cに光反射膜84として銀を蒸着する。銀の蒸着方法は実施形態1と同じである。なお、第1樹脂層81、蛍光体層82、第2樹脂層83に用いられる材料は、同じ材料であってもよいし、互いに、あるいは一部異なっていても構わない。また、第1透明層材料および第2透明樹脂材料としては、有機ガラスを用いてもよい。有機ガラスも樹脂と同様、金型に流し込んで硬化させることが出来る。 Next, as shown in FIG. 7C, a resin containing a nanocrystalline phosphor as a phosphor layer material is poured or applied onto the first transparent layer 81 and cured to form a phosphor layer 82. Then, as shown in FIG. 7 (d), a silicone resin is poured or applied as a second transparent layer material on the phosphor layer 82 and cured to form the second transparent layer 83. When all the layers of resin are completely cured, the mold 87 is removed as shown in FIG. 7E, and silver is deposited as a light reflecting film 84 on the side surface 8c as shown in FIG. 7F. The silver deposition method is the same as that of the first embodiment. The materials used for the first resin layer 81, the phosphor layer 82, and the second resin layer 83 may be the same material, or may be different from each other or partially. Organic glass may be used as the first transparent layer material and the second transparent resin material. Organic glass, like resin, can be poured into a mold and cured.
 なお、図8(f)に示す銀を蒸着する工程を行わず、図8(a)において金型800の側面に光反射膜84として銀などの材料をあらかじめ配置した状態で、蛍光体シート8を作製する方法であってもよい。光反射膜84は、蛍光体シート8の側面全体を覆うように形成されることが好ましく、蛍光体シート8の側面より大きく形成してもよい。このように形成することにより、二次光をより無駄なく目的の方向に照射させることができる。 In addition, the process of vapor-depositing silver shown in FIG.8 (f) is not performed, but in the state which arrange | positioned materials, such as silver, as the light reflection film 84 beforehand in the side surface of the metal mold | die 800 in FIG. It may be a method of manufacturing. The light reflecting film 84 is preferably formed so as to cover the entire side surface of the phosphor sheet 8, and may be formed larger than the side surface of the phosphor sheet 8. By forming in this way, it is possible to irradiate the secondary light in the target direction without waste.
 図8は、蛍光体シート8をパッケージ3に設置した状態を示す。図8(a)は、パッケージ3の上面に接着剤31を塗布し、蛍光体シート8をその上に設置したものである。接着剤31は、蛍光体シート8とパッケージが確実に固定されるものであればどのようなものでも構わないが、シリコーン系の接着剤が好ましい。 FIG. 8 shows a state in which the phosphor sheet 8 is installed in the package 3. FIG. 8A shows the case where the adhesive 31 is applied to the upper surface of the package 3 and the phosphor sheet 8 is placed thereon. The adhesive 31 may be any material as long as the phosphor sheet 8 and the package are securely fixed, but a silicone-based adhesive is preferable.
 あるいは、図8(b)に示すように、パッケージ3の上面に蛍光体シート8が収まる台33を設置し、台33に蛍光体シート8を嵌め込む方法でも構わない。または、台33において、蛍光体シート8の側面と接する面が、蛍光体シート8の側面を全て覆う形状とする。台33において、蛍光体シート8の側面と接する面を蛍光体シート8の側面よりも長くすることで、二次光をより無駄なく目的の方向に照射させることができる。また、台33における蛍光体シート8の側面と接する面を、銀などの光反射層84で被覆してもよい。このような構成であっても、蛍光体シート8をパッケージ3に設置した状態において、蛍光体シート8の側面は、蛍光体シート8の内側からの光を反射する特性を有する。また、この構成によると、蛍光体シート8の製造工程において、光反射膜84を形成する工程を省略することができる。 Alternatively, as shown in FIG. 8 (b), a method may be used in which a stand 33 on which the phosphor sheet 8 is accommodated is installed on the upper surface of the package 3 and the phosphor sheet 8 is fitted into the stand 33. Alternatively, in the table 33, the surface in contact with the side surface of the phosphor sheet 8 is configured to cover the entire side surface of the phosphor sheet 8. By making the surface in contact with the side surface of the phosphor sheet 8 longer than the side surface of the phosphor sheet 8 in the table 33, the secondary light can be irradiated in the target direction more efficiently. Further, the surface of the table 33 that contacts the side surface of the phosphor sheet 8 may be covered with a light reflecting layer 84 such as silver. Even in such a configuration, the side surface of the phosphor sheet 8 has a characteristic of reflecting light from the inside of the phosphor sheet 8 in a state where the phosphor sheet 8 is installed in the package 3. Moreover, according to this structure, the process of forming the light reflection film 84 can be omitted in the manufacturing process of the phosphor sheet 8.
 さらに、図8(c)に示すようにパッケージ3の上面をあらかじめ蛍光体シート6が収まるような形状に加工しておいて、その部分に蛍光体シート6を嵌め込んでもよい。上記の手順にて、発光装置20が作製される。 Furthermore, as shown in FIG. 8C, the upper surface of the package 3 may be processed in advance into a shape that can accommodate the phosphor sheet 6, and the phosphor sheet 6 may be fitted into that portion. The light emitting device 20 is manufactured by the above procedure.
 このような構成とすることで、蛍光体の二次光のうち不要な方向に照射される成分を側面または光反射膜84で反射し、二次光の光を無駄なく目的物の方向に照射させることができる。また、第2透明層83における光出射面8bの面積が、第1透明層81における一次光の光入射面8aの面積よりも大きい構成となっているため、蛍光体が波長変換した光のうち、下方向に進む光の一部も上方向に反射することができるため、実施形態1に比べて、より明るい発光装置を得ることができる。 By adopting such a configuration, the component irradiated in the unnecessary direction of the secondary light of the phosphor is reflected by the side surface or the light reflection film 84, and the light of the secondary light is irradiated in the direction of the target without waste. Can be made. Further, since the area of the light emitting surface 8b in the second transparent layer 83 is larger than the area of the light incident surface 8a of the primary light in the first transparent layer 81, the light out of the wavelength converted by the phosphor Since part of the light traveling downward can also be reflected upward, a brighter light emitting device can be obtained as compared with the first embodiment.
 <実施形態3>
 図9を参照して実施形態3を説明する。実施形態3の発光装置30においては、蛍光体シート80が用いられる。蛍光体シート80は、図6に示す実施形態2の発光装置で用いられる蛍光体シート8とは、光反射膜84を備えない点のみ異なる。各構成要素の詳細は、実施形態1,2と同様であるので、説明を省略する。
<Embodiment 3>
The third embodiment will be described with reference to FIG. In the light emitting device 30 of Embodiment 3, a phosphor sheet 80 is used. The phosphor sheet 80 is different from the phosphor sheet 8 used in the light emitting device of Embodiment 2 shown in FIG. 6 only in that the light reflecting film 84 is not provided. Details of each component are the same as those in the first and second embodiments, and thus the description thereof is omitted.
 図9は、本実施形態における発光装置30を示したものである。発光装置30に用いられている蛍光体シート80は、実施形態2の図7で示した製造方法により作製されたものであり、図7(e)に示す、光反射膜84を形成する前の状態のものである。なお、蛍光体シート80の側面が上方に拡開するテーパー状に形成され、光出射面が光入射面よりも大きくなるように構成されているものであれば、その製造方法は限定されない。 FIG. 9 shows the light emitting device 30 in the present embodiment. The phosphor sheet 80 used in the light emitting device 30 is manufactured by the manufacturing method shown in FIG. 7 of the second embodiment, and before forming the light reflecting film 84 shown in FIG. Is in state. In addition, the manufacturing method will not be limited if the side surface of the fluorescent substance sheet 80 is formed in the taper shape which expands upwards, and it is comprised so that a light-projection surface may become larger than a light-incidence surface.
 図9において、発光素子から発光された一次光L8は、蛍光体85に吸収され、蛍光体85は二次光L1~L7を発する。このうち、二次光L3~L5は、そのまま光出射面8bである発光装置30の上面より出射する。二次光L1、L2、L6、L7は、蛍光体層82の内部を進み、蛍光体シート80の側面8cで反射されて光出射面8bである発光装置30の上面より出射する。 In FIG. 9, the primary light L8 emitted from the light emitting element is absorbed by the phosphor 85, and the phosphor 85 emits secondary lights L1 to L7. Among these, the secondary lights L3 to L5 are emitted as they are from the upper surface of the light emitting device 30 which is the light emitting surface 8b. The secondary lights L1, L2, L6, and L7 travel through the phosphor layer 82, are reflected by the side surface 8c of the phosphor sheet 80, and are emitted from the upper surface of the light emitting device 30 that is the light emitting surface 8b.
 蛍光体シートの側面がテーパー状でなく、図5(b)に示すように光入射面および光出射面に対して垂直な側面である場合は、側面への二次光の入射角度が小さくなるため、図5(b)に示す二次光L1、二次光L5のように側面から光が出射しやすく、光出射面8bからの照射光量が減少する。 When the side surface of the phosphor sheet is not tapered and is a side surface perpendicular to the light incident surface and the light exit surface as shown in FIG. 5B, the incident angle of the secondary light to the side surface becomes small. Therefore, like the secondary light L1 and the secondary light L5 shown in FIG. 5B, light is easily emitted from the side surface, and the amount of light emitted from the light emitting surface 8b is reduced.
 本実施形態のように、蛍光体シートの側面をテーパー状に形成し、蛍光体シートの光出射面8bの面積が光入射面8aの面積よりも大きい構成とすることにより、照射光量の減少を防ぐことが可能となる。 As in this embodiment, the side surface of the phosphor sheet is formed in a tapered shape, and the area of the light emitting surface 8b of the phosphor sheet is larger than the area of the light incident surface 8a, thereby reducing the amount of irradiation light. It becomes possible to prevent.
 <実施形態4>
 図10を参照して実施形態4を説明する。実施形態4の発光装置40においては、蛍光体シート60が用いられる。蛍光体シート60は、図1に示す実施形態1の発光装置で用いられる蛍光体シート6とは、蛍光体層が二層積層されている点で異なる。蛍光体シート60は、光入射面6a側から順に第1透明層61、第1蛍光体層621、第2蛍光体層622、第2透明層63が積層されている。第1蛍光体層621および第2蛍光体層622は異なるナノ結晶蛍光体を含む。第2蛍光体層622に含まれる第2蛍光体は、第1蛍光体層621に含まれる第1蛍光体より短い波長の二次光を発光するものであることが好ましい。たとえば、第1蛍光体は赤色発光するナノ結晶蛍光体であり、第2蛍光体は緑色発光するナノ結晶蛍光体である。
<Embodiment 4>
A fourth embodiment will be described with reference to FIG. In the light emitting device 40 of the fourth embodiment, the phosphor sheet 60 is used. The phosphor sheet 60 is different from the phosphor sheet 6 used in the light emitting device of Embodiment 1 shown in FIG. 1 in that two phosphor layers are laminated. In the phosphor sheet 60, a first transparent layer 61, a first phosphor layer 621, a second phosphor layer 622, and a second transparent layer 63 are laminated in order from the light incident surface 6a side. The first phosphor layer 621 and the second phosphor layer 622 include different nanocrystalline phosphors. The second phosphor included in the second phosphor layer 622 preferably emits secondary light having a shorter wavelength than the first phosphor included in the first phosphor layer 621. For example, the first phosphor is a nanocrystalline phosphor that emits red light, and the second phosphor is a nanocrystalline phosphor that emits green light.
 第2蛍光体の方が第1蛍光体よりも短い波長の二次光を発光するものであることが好ましい理由は、蛍光体はそれぞれの励起エネルギーより大きいエネルギーを有した光を吸収し、蛍光として二次光を発色する。たとえば青色蛍光体のように励起エネルギーの大きい蛍光体で発光した二次光は、たとえば赤色蛍光体のように励起エネルギーの小さい蛍光体に吸収されやすい。したがって、一次光の光路順にピーク波長の長い蛍光体順に積層することで、各蛍光体から発光した二次光は、他色を発光する蛍光体に再度吸収されることがほとんど無く、所望の色バランスを容易に得ることができる。各構成要素の詳細は、実施形態1と同様であるので、説明を省略する。 The reason why the second phosphor preferably emits secondary light having a shorter wavelength than the first phosphor is that the phosphor absorbs light having energy larger than the respective excitation energy, and the fluorescence As a secondary color. For example, secondary light emitted from a phosphor having a large excitation energy such as a blue phosphor is easily absorbed by a phosphor having a small excitation energy such as a red phosphor. Therefore, by laminating in order of phosphors with long peak wavelengths in the order of the optical path of the primary light, the secondary light emitted from each phosphor is hardly absorbed again by the phosphors emitting other colors, and the desired color Balance can be easily obtained. Details of each component are the same as those in the first embodiment, and thus description thereof is omitted.
 <実施形態5>
 図11を参照して実施形態5を説明する。実施形態5の発光装置50においては、蛍光体シート86が用いられる。蛍光体シート86は、図6に示す実施形態2の発光装置で用いられる蛍光体シート8とは、蛍光体層が二層積層されている点で異なる。蛍光体シート80は、光入射面8a側から順に第1透明層81、第1蛍光体層821、第2蛍光体層822、第2透明層83が積層されている。第1蛍光体層821および第2蛍光体層822は異なるナノ結晶蛍光体を含む。第2蛍光体層822に含まれる第2蛍光体は、第1蛍光体層821に含まれる第1蛍光体より短い波長の二次光を発光するものであることが好ましい。たとえば、第1蛍光体は赤色発光するナノ結晶蛍光体であり、第2蛍光体は緑色発光するナノ結晶蛍光体である。第2蛍光体の方が第1蛍光体よりも短い波長の二次光を発光するものであることが好ましい理由は、実施形態4で述べた通りである。
<Embodiment 5>
Embodiment 5 will be described with reference to FIG. In the light emitting device 50 of the fifth embodiment, a phosphor sheet 86 is used. The phosphor sheet 86 is different from the phosphor sheet 8 used in the light emitting device of Embodiment 2 shown in FIG. 6 in that two phosphor layers are laminated. In the phosphor sheet 80, a first transparent layer 81, a first phosphor layer 821, a second phosphor layer 822, and a second transparent layer 83 are laminated in order from the light incident surface 8a side. The first phosphor layer 821 and the second phosphor layer 822 include different nanocrystalline phosphors. The second phosphor included in the second phosphor layer 822 preferably emits secondary light having a shorter wavelength than the first phosphor included in the first phosphor layer 821. For example, the first phosphor is a nanocrystalline phosphor that emits red light, and the second phosphor is a nanocrystalline phosphor that emits green light. The reason why it is preferable that the second phosphor emits secondary light having a shorter wavelength than that of the first phosphor is as described in the fourth embodiment.
 このような構成にすることで、実施形態4と同様、各蛍光体から発光した二次光は、他色を発光する蛍光体に再度吸収されることがほとんど無く、所望の色バランスを容易に得ることができる。さらに、実施形態2と同様、蛍光体の二次光のうちで下方向に進む光の一部も光反射膜84によって、上方向に反射することができるため、ロス無く明るい照明装置を得ることができる。各構成要素の詳細は、実施形態2と同様であるので、説明を省略する。 By adopting such a configuration, as in the fourth embodiment, secondary light emitted from each phosphor is hardly absorbed again by phosphors emitting other colors, and a desired color balance can be easily obtained. Obtainable. Further, as in the second embodiment, part of the light traveling downward in the secondary light of the phosphor can be reflected upward by the light reflecting film 84, so that a bright illumination device without loss is obtained. Can do. Details of each component are the same as those in the second embodiment, and thus description thereof is omitted.
 <実施形態6>
 図12を参照して実施形態6のサイドエッジ型バックライトシステムを説明する。本実施形態におけるサイドエッジ型バックライトシステムは、実施形態1の発光装置10と導光板91及び反射板92とから構成される。本実施形態では、発光装置10から出る一次光とニ次光が導光板91に入り、反射板92で反射されることで、反射板92と対向している面から一次光とニ次光を取り出す構造になっている。
<Embodiment 6>
A side edge type backlight system according to Embodiment 6 will be described with reference to FIG. The side edge type backlight system according to the present embodiment includes the light emitting device 10 according to the first embodiment, the light guide plate 91, and the reflection plate 92. In the present embodiment, the primary light and the secondary light emitted from the light emitting device 10 enter the light guide plate 91 and are reflected by the reflection plate 92, so that the primary light and the secondary light are transmitted from the surface facing the reflection plate 92. It has a structure to take out.
 蛍光体シート6の側面を光反射膜64で覆うことで、導光板7に入射されずに外部に放射される光の損失を減らすことができる。そのため、たとえば、本実施形態のバックライトシステムは、テレビ等の映像機器のバックライトシステムに用いることができる。本実施形態のバックライトシステムを用いると、映像機器において表示の明るさを向上させることができる。なお、本実施形態ではサイドエッジ型バックライトシステムに本発明の発光装置を用いた例を説明したが、これに限らず、例えば、直下型バックライトシステムにも用いることもできる。また、本実施形態では実施形態1の発光装置10を用いたが、上記したいずれの実施形態の発光装置を用いても構わない。 By covering the side surface of the phosphor sheet 6 with the light reflecting film 64, it is possible to reduce the loss of light emitted outside without being incident on the light guide plate 7. Therefore, for example, the backlight system of the present embodiment can be used for a backlight system of video equipment such as a television. When the backlight system of this embodiment is used, the brightness of display can be improved in video equipment. In the present embodiment, the example in which the light emitting device of the present invention is used in the side-edge type backlight system has been described. In the present embodiment, the light emitting device 10 of the first embodiment is used, but the light emitting device of any of the above embodiments may be used.
 以上のように、蛍光体シートを用いた発光装置において、蛍光体シートに光反射膜を用いたり、側面をテーパー状に形成することにより、光反射性を有する側面を形成することができ、蛍光体から発せられる光量の損失を減らし、明るく、理想的な演色性、色再現性に優れた発光装置を実現することができる。 As described above, in a light emitting device using a phosphor sheet, a side surface having light reflectivity can be formed by using a light reflecting film on the phosphor sheet or forming a side surface in a tapered shape. By reducing the loss of light emitted from the body, it is possible to realize a light emitting device that is bright and has excellent ideal color rendering and color reproducibility.
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 本発明に係る発光装置は、一次光を発する半導体発光素子と、その一次光を吸収して二次光を発する蛍光体を含む蛍光体シートとを備えた発光装置として好適である。 The light-emitting device according to the present invention is suitable as a light-emitting device including a semiconductor light-emitting element that emits primary light and a phosphor sheet that includes a phosphor that absorbs the primary light and emits secondary light.
 1 電極、2 基板、3 パッケージ、4 発光素子、5 ワイヤ、6,7,8,9,61,80,86 蛍光体シート、6a,7a,8a 光入射面、6b,7b,8b 光出射面、6c,7c,8c 側面、61,81 第1透明層、62,82 蛍光体層、621,821 第1蛍光体層、622,822 第2蛍光体層、63,83 第2透明層、64,84 光反射膜、87 金型、91 導光板、92 反射板。 1 electrode, 2 substrate, 3 package, 4 light emitting element, 5 wire, 6, 7, 8, 9, 61, 80, 86 phosphor sheet, 6a, 7a, 8a light incident surface, 6b, 7b, 8b light emitting surface 6c, 7c, 8c side, 61, 81 first transparent layer, 62, 82 phosphor layer, 621, 821 first phosphor layer, 622, 822 second phosphor layer, 63, 83 second transparent layer, 64 , 84 light reflection film, 87 mold, 91 light guide plate, 92 reflection plate.

Claims (14)

  1.  一次光を発光する発光素子と、
     前記一次光の一部を吸収して二次光を発光する蛍光体シートとを備えた発光装置であって、
     前記蛍光体シートは、互いに対向する光入射面および光出射面と、前記蛍光体シートの内側からの光を反射する光反射性を有する側面とを備える、発光装置。
    A light emitting element that emits primary light;
    A light emitting device comprising a phosphor sheet that absorbs a portion of the primary light and emits secondary light,
    The phosphor sheet includes a light incident surface and a light exit surface that face each other, and a side surface having light reflectivity that reflects light from the inside of the phosphor sheet.
  2.  前記蛍光体シートは、前記側面に設けられた光反射膜を備える、請求項1に記載の発光装置。 The light emitting device according to claim 1, wherein the phosphor sheet includes a light reflecting film provided on the side surface.
  3.  前記蛍光体シートの側面は、前記光入射面から前記光出射面に向かって拡開するテーパー状である、請求項1に記載の発光装置。 The light-emitting device according to claim 1, wherein a side surface of the phosphor sheet has a tapered shape that expands from the light incident surface toward the light emitting surface.
  4.  前記蛍光体シートは、蛍光体を含む蛍光体層と、前記蛍光体層を挟むように設けられた二つの透明層とを備える、請求項1に記載の発光装置。 The light-emitting device according to claim 1, wherein the phosphor sheet includes a phosphor layer containing a phosphor and two transparent layers provided so as to sandwich the phosphor layer.
  5.  前記蛍光体シートは、第1蛍光体を含む第1蛍光体層と、第1蛍光体より短い波長の二次光を発光する第2蛍光体を含む第2蛍光体層とを備え、
     前記蛍光体シートにおいて、前記光入射面から前記光出射面の方向に、第1蛍光体層と第2蛍光体層とがこの順で積層されている、請求項1に記載の発光装置。
    The phosphor sheet includes a first phosphor layer including a first phosphor and a second phosphor layer including a second phosphor that emits secondary light having a shorter wavelength than the first phosphor,
    2. The light emitting device according to claim 1, wherein in the phosphor sheet, a first phosphor layer and a second phosphor layer are laminated in this order from the light incident surface to the light emitting surface.
  6.  前記第1蛍光体と前記第2蛍光体の内の少なくとも一方は、ナノ結晶からなる蛍光体である、請求項5に記載の発光装置。 6. The light emitting device according to claim 5, wherein at least one of the first phosphor and the second phosphor is a phosphor made of nanocrystals.
  7.  一次光を発光する発光素子を備えた発光装置に用いられ、前記一次光の一部を吸収して二次光を発光する蛍光体シートであって、
     互いに対向する光入射面および光出射面と、前記蛍光体シートの内側からの光を反射する光反射性を有する側面とを備える、蛍光体シート。
    A phosphor sheet that is used in a light-emitting device including a light-emitting element that emits primary light and absorbs a part of the primary light to emit secondary light,
    A phosphor sheet comprising: a light incident surface and a light exit surface that face each other; and a light-reflecting side surface that reflects light from the inside of the phosphor sheet.
  8.  前記側面に設けられた光反射膜を備える、請求項7に記載の蛍光体シート。 The phosphor sheet according to claim 7, comprising a light reflecting film provided on the side surface.
  9.  前記側面は、前記光入射面から前記光出射面に向かって拡開するテーパー状である、請求項7に記載の蛍光体シート。 The phosphor sheet according to claim 7, wherein the side surface has a tapered shape that expands from the light incident surface toward the light emitting surface.
  10.  蛍光体を含む蛍光体層と、前記蛍光体層を挟むように設けられた二つの透明層とを備える、請求項7に記載の蛍光体シート。 The phosphor sheet according to claim 7, comprising a phosphor layer containing a phosphor and two transparent layers provided so as to sandwich the phosphor layer.
  11.  第1蛍光体を含む第1蛍光体層と、第1蛍光体より短い波長の二次光を発光する第2蛍光体を含む第2蛍光体層とを備え、
     前記光入射面から前記光出射面の方向に、第1蛍光体層と第2蛍光体層がこの順で積層されている、請求項7に記載の蛍光体シート。
    A first phosphor layer including a first phosphor and a second phosphor layer including a second phosphor that emits secondary light having a shorter wavelength than the first phosphor;
    The phosphor sheet according to claim 7, wherein a first phosphor layer and a second phosphor layer are laminated in this order from the light incident surface to the light emitting surface.
  12.  前記第1蛍光体と前記第2蛍光体の内の少なくとも一方は、ナノ結晶からなる蛍光体である、請求項11に記載の蛍光体シート。 The phosphor sheet according to claim 11, wherein at least one of the first phosphor and the second phosphor is a phosphor made of nanocrystals.
  13.  請求項1に記載の発光装置を備える、映像機器用のバックライトシステム。 A backlight system for video equipment, comprising the light emitting device according to claim 1.
  14.  第1透明層、蛍光体を含む蛍光体層、第2透明層がこの順で積層された、請求項9に記載の蛍光体シートを製造する方法であって、
     側面が上方に向かって拡開するテーパー状である金型内に第1透明層材料を流し込みまたは塗布して第1透明層を形成する工程と、
     前記第1透明層上に、前記蛍光体を含む蛍光体層材料を流し込みまたは塗布して蛍光体層を形成する工程と、
     前記蛍光体層上に、第2透明層材料を流し込みまたは塗布して第2透明層を形成する工程と、を含む、蛍光体シートの製造方法。
    The method for producing a phosphor sheet according to claim 9, wherein the first transparent layer, the phosphor layer containing the phosphor, and the second transparent layer are laminated in this order,
    A step of pouring or applying a first transparent layer material into a mold having a tapered shape whose side surfaces expand upward, and forming a first transparent layer;
    Pouring or applying a phosphor layer material containing the phosphor on the first transparent layer to form a phosphor layer;
    Forming a second transparent layer by pouring or applying a second transparent layer material onto the phosphor layer.
PCT/JP2012/069161 2011-08-12 2012-07-27 Light emitting device, phosphor sheet, backlight system, and method of producing phosphor sheet WO2013024684A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-176615 2011-08-12
JP2011176615A JP2014199831A (en) 2011-08-12 2011-08-12 Light-emitting device, phosphor sheet, backlight system, and process of manufacturing light-emitting device

Publications (1)

Publication Number Publication Date
WO2013024684A1 true WO2013024684A1 (en) 2013-02-21

Family

ID=47715007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069161 WO2013024684A1 (en) 2011-08-12 2012-07-27 Light emitting device, phosphor sheet, backlight system, and method of producing phosphor sheet

Country Status (2)

Country Link
JP (1) JP2014199831A (en)
WO (1) WO2013024684A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014203874A1 (en) * 2013-06-18 2014-12-24 デクセリアルズ株式会社 Phosphor sheet
JP2016539501A (en) * 2013-12-11 2016-12-15 深▲セン▼市華星光電技術有限公司 LED mounting component and manufacturing method thereof
JP2017049586A (en) * 2015-09-03 2017-03-09 迎輝科技股▲分▼有限公司 Optical film and light-emitting device having the same
CN110246951A (en) * 2018-03-09 2019-09-17 美蓓亚三美株式会社 The manufacturing method of phosphor plates
US10877346B2 (en) 2016-03-24 2020-12-29 Saturn Licensing Llc Light-emitting device, display apparatus, and illumination apparatus

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6562343B2 (en) * 2015-03-13 2019-08-21 パナソニックIpマネジメント株式会社 Wavelength control filter, light emitting device and lighting device using the same
JP6509091B2 (en) 2015-10-20 2019-05-08 富士フイルム株式会社 Wavelength conversion laminated film
JP6695067B2 (en) * 2015-12-18 2020-05-20 パナソニックIpマネジメント株式会社 Light emitting device
JP2018166197A (en) * 2017-03-28 2018-10-25 株式会社朝日ラバー Led device, fluorescent material-containing sheet for led emission color conversion, and manufacturing method of led device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269717A (en) * 2005-03-24 2006-10-05 Kyocera Corp Light emitting device and lighting apparatus
JP2009283441A (en) * 2008-04-25 2009-12-03 Sony Corp Light-emitting device, display device, and color-converting sheet
JP2010087324A (en) * 2008-10-01 2010-04-15 Minebea Co Ltd Light emitting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269717A (en) * 2005-03-24 2006-10-05 Kyocera Corp Light emitting device and lighting apparatus
JP2009283441A (en) * 2008-04-25 2009-12-03 Sony Corp Light-emitting device, display device, and color-converting sheet
JP2010087324A (en) * 2008-10-01 2010-04-15 Minebea Co Ltd Light emitting device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014203874A1 (en) * 2013-06-18 2014-12-24 デクセリアルズ株式会社 Phosphor sheet
JP2015000967A (en) * 2013-06-18 2015-01-05 デクセリアルズ株式会社 Phosphor sheet
US9873832B2 (en) 2013-06-18 2018-01-23 Dexerials Corporation Phosphor sheet
JP2016539501A (en) * 2013-12-11 2016-12-15 深▲セン▼市華星光電技術有限公司 LED mounting component and manufacturing method thereof
JP2017049586A (en) * 2015-09-03 2017-03-09 迎輝科技股▲分▼有限公司 Optical film and light-emitting device having the same
US10877346B2 (en) 2016-03-24 2020-12-29 Saturn Licensing Llc Light-emitting device, display apparatus, and illumination apparatus
US11294228B2 (en) 2016-03-24 2022-04-05 Saturn Licensing Llc Light-emitting device, display apparatus, and illumination apparatus
US11630344B2 (en) 2016-03-24 2023-04-18 Saturn Licensing Llc Light-emitting device, display apparatus, and illumination apparatus
CN110246951A (en) * 2018-03-09 2019-09-17 美蓓亚三美株式会社 The manufacturing method of phosphor plates
CN110246951B (en) * 2018-03-09 2024-05-03 美蓓亚三美株式会社 Method for producing phosphor sheet

Also Published As

Publication number Publication date
JP2014199831A (en) 2014-10-23

Similar Documents

Publication Publication Date Title
JP5889646B2 (en) Phosphor plate, light emitting device using phosphor plate, and method of manufacturing phosphor plate
WO2013024684A1 (en) Light emitting device, phosphor sheet, backlight system, and method of producing phosphor sheet
KR101785695B1 (en) Light emitting device package, light source module, backlight unit, display apparatus, television set and illumination apparatus
KR100982992B1 (en) Light emitting device comprising quantum dot wavelength conversion sheet, and quantum dot wavelength conversion sheet
KR101726807B1 (en) Light Emitting Device
US8513872B2 (en) Light emitting apparatus and method for manufacturing thereof
KR100982990B1 (en) wavelength conversion plate and light emitting device using the same
US20140158982A1 (en) Light-emitting device, backlight unit, display device, and manufacturing method thereof
KR20160024344A (en) Display Apparatus
US9447932B2 (en) Light-emitting diode package and method of manufacturing the same
JP2016046260A (en) Mold frame and optical sheets, and backlight unit and liquid crystal display including the same
CN102918667A (en) Light device, light emitting diode package using the same, and backlight device
US20130193837A1 (en) Phosphor plate, light emitting device and method for manufacturing phosphor plate
JP2014082416A (en) Light-emitting device
JP2013182975A (en) Light emitting device and back light system using the same
JP2013172041A (en) Light-emitting device
KR20190088925A (en) Led lighting device
JP5231609B2 (en) Light emitting device and manufacturing method thereof
TWI565107B (en) Optical sheet, method for manufacturing the same, light emitting diodes module and display using the same
JP2012036265A (en) Illuminating device
KR102461403B1 (en) Quantum Dot LED Lighting Improving Color Rendering and Light Efficiency
KR20120140053A (en) Light emitting device package
JP2012195552A (en) Light-emitting device and manufacturing method therefor
KR20220167748A (en) Light source and Lighting device
TW201639195A (en) An optical lens and a light module, a panel light and a display comprising thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12824103

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12824103

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP