JP2007103513A - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP2007103513A
JP2007103513A JP2005289134A JP2005289134A JP2007103513A JP 2007103513 A JP2007103513 A JP 2007103513A JP 2005289134 A JP2005289134 A JP 2005289134A JP 2005289134 A JP2005289134 A JP 2005289134A JP 2007103513 A JP2007103513 A JP 2007103513A
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting device
ultrafine particles
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005289134A
Other languages
Japanese (ja)
Inventor
Masato Fukutome
正人 福留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2005289134A priority Critical patent/JP2007103513A/en
Publication of JP2007103513A publication Critical patent/JP2007103513A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting device comprising a light emitting element, and a wavelength conversion layer having a phosphor and capable of emitting light with high efficiency. <P>SOLUTION: The light emitting device comprises a light emitting element 3 formed on a substrate 2 and emitting excitation light having a peak wavelength in a range exceeding 450 nm, and a wavelength conversion layer 4 formed to cover the light emitting element and converting the excitation light into visible light, and outputs a part of the excitation light together with the visible light wherein the wavelength conversion layer 4 contains semiconductor ultrafine particles 5 having mean particle size of 10 nm or less. On the surface of semiconductor ultrafine particle 5, a compound consisting of a repetition structure of silicon-oxygen having the number of bonding units of 5-500 is preferably coordinated. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、LED(Light Emitting Diode:発光ダイオード)などの発光素子から発せられる光を波長変換して外部に取り出す発光装置、特に、電子ディスプレイ用のバックライト電源、蛍光ランプ等に好適に用いられる発光装置に関する。   INDUSTRIAL APPLICABILITY The present invention is suitably used for a light-emitting device that converts the wavelength of light emitted from a light-emitting element such as an LED (Light Emitting Diode) and extracts it to the outside, in particular, a backlight power source for an electronic display, a fluorescent lamp, and the like. The present invention relates to a light emitting device.

半導体材料からなる発光素子(以下「LEDチップ」と言うことがある)は、小型で電力効率が良く鮮やかに発色する。LEDチップは、製品寿命が長い、オン・オフ点灯の繰り返しに強い、消費電力が低い、という優れた特徴を有するため、液晶等のバックライト光源や蛍光ランプ等の照明用光源への応用が期待されている。   A light emitting element made of a semiconductor material (hereinafter sometimes referred to as “LED chip”) is small in size, has high power efficiency, and vividly develops color. LED chips have excellent characteristics such as long product life, strong on / off lighting repeatability, and low power consumption, so they are expected to be applied to backlight sources such as liquid crystals and lighting sources such as fluorescent lamps. Has been.

LEDチップの発光装置への応用は、LEDチップの光の一部を蛍光体で波長変換し、当該波長変換された光と波長変換されないLEDの光とを混合して放出することにより、LEDの光とは異なる色を発光する発光装置として既に製造されている。   The application of the LED chip to the light emitting device is that the wavelength of part of the light of the LED chip is converted with a phosphor, and the wavelength-converted light and the light of the LED that is not wavelength-converted are mixed and emitted, thereby It has already been manufactured as a light emitting device that emits a color different from that of light.

具体的には、白色光を発するために、LEDチップ表面に蛍光体を含む波長変換層を設けた発光装置が提案されている。例えば、nGaN系材料を使った青色LEDチップ上に(Y,Gd)3(Al,Ga)512の組成式で表されるYAG系蛍光体を含む波長変換層を形成した発光装置では、LEDチップから青色光が放出され、波長変換層で青色光の一部が黄色光に変化するため、青色と黄色の光が混色して白色を呈する発光装置が提案されている(特許文献1参照)。 Specifically, in order to emit white light, a light emitting device in which a wavelength conversion layer containing a phosphor is provided on the surface of an LED chip has been proposed. For example, in a light emitting device in which a wavelength conversion layer containing a YAG phosphor expressed by a composition formula of (Y, Gd) 3 (Al, Ga) 5 O 12 is formed on a blue LED chip using an nGaN-based material, Since blue light is emitted from the LED chip and a part of the blue light is changed to yellow light in the wavelength conversion layer, a light emitting device in which blue and yellow light are mixed and white is proposed (see Patent Document 1). ).

このような構成の発光装置の一例を図4に示す。図4によれば、発光装置は、電極101が形成された基板102と、基板102上に中心波長が470nmの光を発する半導体材料を具備する発光素子103と、基板102上に発光素子103を覆うように設けられた、波長変換層104とを具備し、波長変換層104が蛍光体105を含有してなるものである。   An example of such a light emitting device is shown in FIG. 4, the light-emitting device includes a substrate 102 on which an electrode 101 is formed, a light-emitting element 103 including a semiconductor material that emits light having a central wavelength of 470 nm on the substrate 102, and a light-emitting element 103 on the substrate 102. The wavelength conversion layer 104 is provided so as to cover it, and the wavelength conversion layer 104 contains the phosphor 105.

この発光装置では、発光素子103から発する光が蛍光体105に照射されると、蛍光体105は励起されて可視光を発し、この可視光が出力として利用される。しかしながら、上記構成を有する発光装置には、波長変換層104内のマトリクス中に含まれる蛍光体105の粒子の形状と分散状態との影響を受けるため、以下に示す問題点がある。   In this light emitting device, when the phosphor 105 is irradiated with light emitted from the light emitting element 103, the phosphor 105 is excited to emit visible light, and this visible light is used as an output. However, the light emitting device having the above configuration has the following problems because it is affected by the shape and dispersion state of the phosphor 105 particles contained in the matrix in the wavelength conversion layer 104.

従来の蛍光体105の粒子における平均粒子径は数μm以上あるため、励起光と、蛍光体により変換された可視光とが、蛍光体105の粒子によって吸収および散乱を受ける。このような吸収および散乱を受けた場合、蛍光体105の粒子全体に励起光が照射されない状態となるため、励起光の利用効率が低減し、発光効率が低下するという問題がある。   Since the average particle diameter of conventional phosphor 105 particles is several μm or more, excitation light and visible light converted by the phosphor are absorbed and scattered by the phosphor 105 particles. When such absorption and scattering are received, the entire phosphor 105 particles are not irradiated with the excitation light, so that there is a problem that the use efficiency of the excitation light is reduced and the light emission efficiency is lowered.

このように、従来の発光装置では、高効率な発光を行う発光装置が得られないという問題があった。
特開平11−261114号公報
Thus, the conventional light emitting device has a problem that a light emitting device that emits light with high efficiency cannot be obtained.
JP 11-261114 A

本発明の課題は、発光素子と、蛍光体を有する波長変換層とを備えており、高効率な発光が可能な発光装置を提供することにある。   An object of the present invention is to provide a light-emitting device that includes a light-emitting element and a wavelength conversion layer having a phosphor and can emit light with high efficiency.

本発明者は、特定の粒子径を有する半導体超微粒子を用いれば、蛍光体粒子の沈降による蛍光体の不均一な分散を抑制して、高効率な発光を行うことができることを見出して、本発明を完成させるに至った。   The present inventor has found that if semiconductor ultrafine particles having a specific particle diameter are used, non-uniform dispersion of the phosphor due to the precipitation of the phosphor particles can be suppressed and highly efficient light emission can be performed. The invention has been completed.

すなわち、本発明の発光装置は以下の構成を有する。
(1) 基板上に、450nmを超える範囲にピーク波長を有する励起光を発する発光素子、およびこの発光素子を覆うように形成されており、前記励起光を可視光に変換する波長変換層を備え、前記励起光のうちの一部と前記可視光とを共に出力する発光装置であって、前記波長変換層は平均粒子径10nm以下の半導体超微粒子を含んでいることを特徴とする発光装置。
(2) 前記半導体超微粒子の表面には、結合ユニット数が5〜500で珪素−酸素の繰り返し構造からなる化合物が配位していることを特徴とする(1)に記載の発光装置。
(3) 前記半導体超微粒子は、前記励起光を吸収し、520nm〜700nmの可視光を発することを特徴とする(1)または(2)に記載の発光装置。
(4) 前記半導体超微粒子が、周期律表第I−b族、第II族、第III族、第IV族、第V族、第VI族に属する少なくとも2種類以上の元素からなる半導体組成物であることを特徴とする(1)〜(3)のいずれかに記載の発光装置。
(5) 前記半導体超微粒子として、平均粒子径の異なる2種類以上の粒子を波長変換層に含んでいることを特徴とする(1)〜(4)のいずれかに記載の発光装置。
(6) 前記波長変換層が、半導体超微粒子を含む複数の層からなることを特徴とする(1)〜(5)のいずれかに記載の発光装置。
(7) 前記発光素子の周囲に、発光素子から発する光を前方に出射する反射部材が設けられていることを特徴とする(1)〜(6)のいずれかに記載の発光装置。
That is, the light emitting device of the present invention has the following configuration.
(1) A light emitting element that emits excitation light having a peak wavelength in a range exceeding 450 nm and a wavelength conversion layer that is formed so as to cover the light emitting element and converts the excitation light into visible light are provided on a substrate. A light-emitting device that outputs both of the excitation light and the visible light, wherein the wavelength conversion layer includes semiconductor ultrafine particles having an average particle diameter of 10 nm or less.
(2) The light-emitting device according to (1), wherein the surface of the semiconductor ultrafine particles is coordinated with a compound having a repeating unit structure of silicon-oxygen having 5 to 500 bonding units.
(3) The light-emitting device according to (1) or (2), wherein the semiconductor ultrafine particles absorb the excitation light and emit visible light having a wavelength of 520 nm to 700 nm.
(4) A semiconductor composition in which the semiconductor ultrafine particles are composed of at least two kinds of elements belonging to Group Ib, Group II, Group III, Group IV, Group V, and Group VI of the Periodic Table The light-emitting device according to any one of (1) to (3), wherein
(5) The light emitting device according to any one of (1) to (4), wherein the semiconductor ultrafine particles include two or more kinds of particles having different average particle diameters in a wavelength conversion layer.
(6) The light emitting device according to any one of (1) to (5), wherein the wavelength conversion layer includes a plurality of layers including semiconductor ultrafine particles.
(7) The light emitting device according to any one of (1) to (6), wherein a reflection member that emits light emitted from the light emitting element forward is provided around the light emitting element.

上記(1)によれば、波長変換層内に平均粒子径10nm以下の半導体超微粒子を含有させることにより、蛍光体粒子の沈降によって発生する不均一な分散を抑制して、高効率な発光を得ることができる。   According to (1) above, by containing semiconductor ultrafine particles having an average particle diameter of 10 nm or less in the wavelength conversion layer, non-uniform dispersion caused by sedimentation of the phosphor particles is suppressed, and highly efficient light emission is achieved. Obtainable.

上記(2)によれば、高分子樹脂、特にシリコーン系の高分子樹脂に対する半導体超微粒子の分散性が向上するため、高効率な発光装置を容易に得ることができるとともに、耐光性、耐熱性、透明性に優れた発光装置を得ることができる。   According to the above (2), the dispersibility of the semiconductor ultrafine particles with respect to the polymer resin, in particular, the silicone-based polymer resin is improved, so that a highly efficient light-emitting device can be easily obtained, and the light resistance and heat resistance. A light emitting device having excellent transparency can be obtained.

上記(3)によれば、励起光の一部と、半導体超微粒子で変換された520nm〜700nmの可視光との合成により、幅広いスペクトルを発現し、演色性に優れた発光(白色光)が得られる。   According to the above (3), emission of light (white light) that expresses a broad spectrum and has excellent color rendering properties by synthesizing a part of excitation light and visible light of 520 nm to 700 nm converted by semiconductor ultrafine particles. can get.

上記(4)によれば、上記半導体組成からなる粒子の平均粒子径を10nm以下にすれば、量子閉じ込め効果により、蛍光量子効率を飛躍的に向上することが出来る。   According to (4) above, if the average particle diameter of the particles composed of the semiconductor composition is 10 nm or less, the fluorescence quantum efficiency can be drastically improved due to the quantum confinement effect.

上記(5)によれば、平均粒子径の異なる2種類以上の粒子の混合物を用いることによって、黄色から赤色領域の波長をカバーすることができ、優れた演色性を実現することができる。
上記(6)によれば、平均粒子径の異なる半導体超微粒子間の自己吸収を抑制して、発光効率が優れた発光装置を得ることができる。
上記(7)によれば、横方向や基板側に出射していた発光素子からの光を、前面に出射することにより、発光効率を向上することができる。
According to the above (5), by using a mixture of two or more kinds of particles having different average particle diameters, the wavelength from yellow to red can be covered, and excellent color rendering can be realized.
According to the above (6), a self-absorption between semiconductor ultrafine particles having different average particle diameters can be suppressed, and a light emitting device with excellent luminous efficiency can be obtained.
According to the above (7), the light emission efficiency can be improved by emitting the light from the light emitting element that has been emitted in the lateral direction or the substrate side to the front surface.

本発明の発光装置を、図面を用いて説明する。図1は、本発明の発光装置の一実施形態を示す概略断面図である。図1によれば、本発明の発光装置は、電極1が形成された基板2と、基板2上に設けられている発光素子3と、基板2上に発光素子3を覆うように形成されており、励起光を可視光に変換する波長変換層4と、光を反射する反射部材6とを備えており、前記励起光のうちの一部と可視光とを共に出力することによって、白色光を出力する。   The light emitting device of the present invention will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing an embodiment of a light emitting device of the present invention. According to FIG. 1, the light emitting device of the present invention is formed so as to cover the light emitting element 3 on the substrate 2, the light emitting element 3 provided on the substrate 2, the substrate 2 on which the electrode 1 is formed. And includes a wavelength conversion layer 4 that converts excitation light into visible light and a reflecting member 6 that reflects light, and outputs a part of the excitation light and visible light together to produce white light. Is output.

電極1は、発光素子3を電気的に接続するための導電路としての機能を有し、導電性接合材で発光素子3と接続されている。電極1としては、例えば、金属粉末を含むメタライズ層などを用いることができる。この電気接続用パターンは、例えば、W,Mo,Cu,Ag等の金属粉末のメタライズ層を基板2の表面や内部に形成することによって、Fe−Ni−Co合金等のリード端子を基板2に埋設することによって、または、配線導体が形成された絶縁体から成る入出力端子を基板2に設けた貫通孔に嵌着接合させることによって設けられる。なお、電気接続用パターンの露出する表面には、Niや金(Au)等の耐食性に優れる金属を1〜20μm程度の厚さで被着させておくのが良く、電気接続用パターンの酸化腐食を有効に防止し得るともに、発光素子5と電気接続用パターンとの接続を強固にし得る。したがって、電気接続用パターンの露出表面には、例えば、厚さ1〜10μm程度のNiメッキ層と厚さ0.1〜3μm程度のAuメッキ層とが電解メッキ法や無電解メッキ法により順次被着されているのがより好ましい。   The electrode 1 has a function as a conductive path for electrically connecting the light emitting element 3 and is connected to the light emitting element 3 with a conductive bonding material. As the electrode 1, for example, a metallized layer containing a metal powder can be used. This electrical connection pattern is formed by forming a lead terminal such as an Fe-Ni-Co alloy on the substrate 2 by forming a metallized layer of metal powder such as W, Mo, Cu, or Ag on the surface or inside of the substrate 2, for example. It is provided by burying or by fitting an input / output terminal made of an insulator on which a wiring conductor is formed into a through hole provided in the substrate 2. It should be noted that a metal having excellent corrosion resistance such as Ni or gold (Au) is preferably deposited on the exposed surface of the pattern for electrical connection in a thickness of about 1 to 20 μm. Can be effectively prevented, and the connection between the light emitting element 5 and the electrical connection pattern can be strengthened. Therefore, for example, an Ni plating layer having a thickness of about 1 to 10 μm and an Au plating layer having a thickness of about 0.1 to 3 μm are sequentially coated on the exposed surface of the electrical connection pattern by an electrolytic plating method or an electroless plating method. More preferably it is worn.

基板2は、熱伝導性に優れ、かつ全反射率の大きな基板が用いられる。基板2としては、例えばアルミナ、窒素アルミニウム等のセラミック材料の他に、金属酸化物微粒子を分散させた高分子樹脂が好適に用いられる。   As the substrate 2, a substrate having excellent thermal conductivity and a large total reflectance is used. As the substrate 2, for example, a polymer resin in which metal oxide fine particles are dispersed in addition to a ceramic material such as alumina and aluminum nitride is preferably used.

発光素子3としては、ピーク波長が450nmを超える範囲、好ましくは450nm〜470nmの波長範囲の励起光を発する素子を用いることができる。発光素子3の構造には、特に限定はなく、公知のどのようなGaN系発光素子を用いてもよいが、同じ電流でより高い出力が得られるものが好ましい。なお、本発明で好適な発光素子3の構造については後述する。半導体材料として、ZnSeや窒化物半導体(GaN等)等種々の半導体を挙げることができるが、発光波長が上記波長範囲であれば、特に半導体材料の種類は限定されない。これらの半導体材料を有機金属気相成長法(MOCVD法)や分子線エピタシャル成長法等の結晶成長法により、発光素子基板7上に半導体材料からなる発光層を有する積層構造を形成すれば良い。   As the light-emitting element 3, an element that emits excitation light having a peak wavelength exceeding 450 nm, preferably in a wavelength range of 450 nm to 470 nm can be used. The structure of the light-emitting element 3 is not particularly limited, and any known GaN-based light-emitting element may be used, but one that can obtain a higher output with the same current is preferable. Note that the structure of the light-emitting element 3 suitable for the present invention will be described later. Examples of the semiconductor material include various semiconductors such as ZnSe and nitride semiconductor (GaN, etc.), but the type of the semiconductor material is not particularly limited as long as the emission wavelength is in the above wavelength range. A stacked structure having a light emitting layer made of a semiconductor material may be formed on the light emitting element substrate 7 by crystal growth methods such as metal organic chemical vapor deposition (MOCVD) or molecular beam epitaxy using these semiconductor materials.

発光素子基板7は、発光層との組み合わせを考慮して材料選定ができ、例えば窒化物半導体からなる発光層を表面に形成する場合、サファイア、スピネル、炭化ケイ素(SiC)、ケイ素(Si)、酸化亜鉛(ZnO)、二ホウ化ジルコニウム(ZrB2)、窒化ガリウム(GaN)、石英、セラミック材料および高分子樹脂等で構成することができる。本発明では、発光素子3の発光層との組み合わせを考慮して発光素子基板7の材料を選定することが好ましく、例えば窒化物半導体からなる発光層を表面に形成する場合、アルミナ、スピネル、SiC、Si、ZnO、ZrB2、GaNおよび石英等の材料が好適に用いられる。結晶性の良い窒化物半導体を量産性よく形成させるためには、発光素子基板7として、サファイアを用いることが好ましい。 The light emitting element substrate 7 can be selected in consideration of the combination with the light emitting layer. For example, when a light emitting layer made of a nitride semiconductor is formed on the surface, sapphire, spinel, silicon carbide (SiC), silicon (Si), It can be composed of zinc oxide (ZnO), zirconium diboride (ZrB 2 ), gallium nitride (GaN), quartz, ceramic material, polymer resin, and the like. In the present invention, it is preferable to select the material of the light emitting element substrate 7 in consideration of the combination with the light emitting layer of the light emitting element 3. For example, when forming a light emitting layer made of a nitride semiconductor on the surface, alumina, spinel, SiC Materials such as Si, ZnO, ZrB 2 , GaN, and quartz are preferably used. In order to form a nitride semiconductor with good crystallinity with high productivity, it is preferable to use sapphire as the light emitting element substrate 7.

波長変換層4は、平均粒子径が10nm以下、好ましくは2nm〜5nmの半導体超微粒子5を含有している。このような半導体超微粒子5(蛍光体粒子)を用いれば、波長変換層4中の光散乱が減少するため、半導体超微粒子5全体に励起光が照射されやすくなり、励起光の利用効率が向上して、発光効率が向上する。さらに、波長変換層4中において半導体超微粒子5を均一に分散させることができるため、半導体超微粒子5による光散乱の発生を抑制し、発光のばらつきの発生を抑えて、均一な発光が得られる。   The wavelength conversion layer 4 contains semiconductor ultrafine particles 5 having an average particle diameter of 10 nm or less, preferably 2 nm to 5 nm. If such semiconductor ultrafine particles 5 (phosphor particles) are used, light scattering in the wavelength conversion layer 4 is reduced, so that the entire semiconductor ultrafine particles 5 are easily irradiated with excitation light, and the use efficiency of excitation light is improved. Thus, the luminous efficiency is improved. Furthermore, since the semiconductor ultrafine particles 5 can be uniformly dispersed in the wavelength conversion layer 4, the occurrence of light scattering by the semiconductor ultrafine particles 5 can be suppressed, and the occurrence of light emission variation can be suppressed, so that uniform light emission can be obtained. .

波長変換層4の厚みは、0.1〜5mm、特に0.5〜1mmであることが好ましい。この範囲であれば、発光素子3から発せられる励起光を高効率で出力光に変換することができ、さらに変換された出力光を高効率で外部に透過させることができる。   The thickness of the wavelength conversion layer 4 is preferably 0.1 to 5 mm, particularly preferably 0.5 to 1 mm. Within this range, the excitation light emitted from the light emitting element 3 can be converted into output light with high efficiency, and the converted output light can be transmitted to the outside with high efficiency.

本発明では、ピーク波長が450nmを超える範囲の励起光を吸収し520nm〜700nmの可視光を発する微粒子を、半導体超微粒子5として用いることが好ましい。このような半導体超微粒子5を用いれば、励起光の一部と、半導体超微粒子で変換された520nm〜700nmの可視光とを合成することにより、幅広いスペクトルを発現し、優れた演色性を有する発光装置を得ることができる。図1に示す発光装置では、半導体超微粒子5として、430〜500nmの励起光を吸収して540nm〜600nmの蛍光を発する黄色蛍光体5aと、430〜500nmの励起光を吸収して590nm〜700nmの蛍光を発する赤色蛍光体5bとを用いている。   In the present invention, it is preferable to use, as the semiconductor ultrafine particles 5, fine particles that absorb excitation light having a peak wavelength exceeding 450 nm and emit visible light of 520 nm to 700 nm. If such semiconductor ultrafine particles 5 are used, by synthesizing a part of excitation light and visible light of 520 nm to 700 nm converted by the semiconductor ultrafine particles, a wide spectrum is expressed and an excellent color rendering property is obtained. A light emitting device can be obtained. In the light emitting device shown in FIG. 1, as the semiconductor ultrafine particles 5, the yellow phosphor 5a that absorbs excitation light of 430 to 500 nm and emits fluorescence of 540 nm to 600 nm and the excitation light of 430 to 500 nm are absorbed and 590 nm to 700 nm. And a red phosphor 5b that emits the above fluorescence.

半導体超微粒子5としては、平均粒子径の異なる2種類以上の粒子を用いることが好ましい。同一粒子径の半導体超微粒子だけを用いた場合と比べて、平均粒子径の異なる2種類以上の半導体超微粒子の混合物を用いれば、例えば黄色から赤色領域の波長をカバーするなどによって、長波長側のスペクトルを十分に網羅することができるため、優れた演色性を実現できる。例えば、図1に示す発光装置では、黄色蛍光体5aおよび赤色蛍光体5bの2種類を含有している。   As the semiconductor ultrafine particles 5, it is preferable to use two or more kinds of particles having different average particle diameters. Compared to the case where only semiconductor ultrafine particles having the same particle diameter are used, if a mixture of two or more types of semiconductor ultrafine particles having different average particle diameters is used, for example, by covering the wavelength from yellow to red region, the longer wavelength side Therefore, excellent color rendering properties can be realized. For example, the light emitting device shown in FIG. 1 contains two types of yellow phosphor 5a and red phosphor 5b.

波長変換層4に含まれる半導体超微粒子5は、平均粒子径が10nm以下、好ましくは2nm〜5nmの半導体超微粒子であれば特に限定されないが、例えば、周期律表第I−b族、第II族、第III族、第IV族、第V族、第VI族に属する少なくとも2種類以上の元素からなる半導体超微粒子であることが好ましい。例えば、BN、BP、BAs、AlN、AlP、AlSb、GaN、GaP、GaSb、InN、InP、InSb等のIII−V族化合物半導体、CdSe、ZnO、ZnS等のII−VI族化合物半導体、CuInS2、CuGaS2、CuAlS2、Cu(In1-xAlx)S2(0≦x≦1)、CuInS2、CuInxGa1-x2(0≦x≦1)、AgInS2、AgGaS2、AgAlS2、Ag(In1-xAlx)S2、AgInS2、Ag(In1-xGax)S2、ZnAgInS2(0≦x≦1)、ZnCuInS2などが好適に用いられる。 The semiconductor ultrafine particles 5 contained in the wavelength conversion layer 4 are not particularly limited as long as the average particle diameter is 10 nm or less, preferably 2 nm to 5 nm, but for example, the periodic table Tables Ib and II It is preferably a semiconductor ultrafine particle composed of at least two kinds of elements belonging to Group III, Group III, Group IV, Group V, and Group VI. For example, III-V group compound semiconductors such as BN, BP, BAs, AlN, AlP, AlSb, GaN, GaP, GaSb, InN, InP, and InSb, II-VI group compound semiconductors such as CdSe, ZnO, and ZnS, CuInS 2 CuGaS 2 , CuAlS 2 , Cu (In 1-x Al x ) S 2 (0 ≦ x ≦ 1), CuInS 2 , CuIn x Ga 1-x S 2 (0 ≦ x ≦ 1), AgInS 2 , AgGaS 2 AgAlS 2 , Ag (In 1-x Al x ) S 2 , AgInS 2 , Ag (In 1-x Ga x ) S 2 , ZnAgInS 2 (0 ≦ x ≦ 1), ZnCuInS 2 and the like are preferably used.

なお、上記半導体のうち、黄色蛍光体5aとしては、CdSe(平均粒子径2.0〜3.5nm、好ましくは3.0nm)、CuInS2(平均粒子径2.0〜5.0nm、好ましくは4.0nm)、ZnCuInS2(平均粒子径2.0〜5.0nm、好ましくは3.5nm)、ZnAgInS2(平均粒子径2.0〜4.0nm、好ましくは3.0nm)を用いるのがよい。そのうち、ZnCuInS2が最も好ましい。 Of the above semiconductors, the yellow phosphor 5a includes CdSe (average particle diameter of 2.0 to 3.5 nm, preferably 3.0 nm), CuInS 2 (average particle diameter of 2.0 to 5.0 nm, preferably 4.0 nm), ZnCuInS 2 (average particle size of 2.0 to 5.0 nm, preferably 3.5 nm), and ZnAgInS 2 (average particle size of 2.0 to 4.0 nm, preferably 3.0 nm) are used. Good. Of these, ZnCuInS 2 is most preferred.

また、上記半導体のうち、赤色蛍光体5bとしては、CdSe(平均粒子径3.0〜5.0nm、好ましくは4.0nm)、CuInS2(平均粒子径3.0〜6.0nm、好ましくは5.0nm)、ZnCuInS2(平均粒子径3.0〜6.0nm、好ましくは4.5nm)、ZnAgInS2(平均粒子径3.0〜5.0nm、好ましくは4.0nm)を用いるのがよい。そのうち、ZnCuInS2が最も好ましい。
平均粒子径の測定は、後述の実施例において半導体超微粒子(黄色蛍光体5a、赤色蛍光体5b)の平均粒子径を測定した方法を用いて測定することができる。
Among the above semiconductors, as the red phosphor 5b, CdSe (average particle size 3.0 to 5.0 nm, preferably 4.0 nm), CuInS 2 (average particle size 3.0 to 6.0 nm, preferably 5.0 nm), ZnCuInS 2 (average particle size 3.0 to 6.0 nm, preferably 4.5 nm), and ZnAgInS 2 (average particle size 3.0 to 5.0 nm, preferably 4.0 nm) are used. Good. Of these, ZnCuInS 2 is most preferred.
The average particle diameter can be measured using a method in which the average particle diameter of the semiconductor ultrafine particles (yellow phosphor 5a, red phosphor 5b) is measured in Examples described later.

本発明の発光装置においては、半導体超微粒子5として、その表面に、結合ユニット数が5〜500で珪素−酸素の繰り返し構造からなる化合物が配位している微粒子を用いることが好ましい。例えば、トリフェニルホスフィンオキサイドや長鎖炭化水素系アミン、長鎖炭化水素系カルボン酸が表面に配位している半導体超微粒子では、高分子樹脂への分散が不十分となる場合がある。それに対して、結合ユニット数が5〜500で珪素−酸素の繰り返し構造からなる化合物が表面に配位している半導体超微粒子は、高分子樹脂、特に耐光性および耐熱性に優れたシリコーン系の高分子樹脂への分散性が大きい。このような分散性の高い半導体超微粒子を用いれば、波長変換層4内における半導体超微粒子5の高分子樹脂(例えばシリコーン系高分子樹脂などの耐光性および耐熱性に優れた樹脂)への分散性を向上させることができる。また、このような耐光性および耐熱性に優れた樹脂と、上記分散性の高い半導体超微粒子とを用いれば、波長変換層4の耐光性、耐熱性および透明性を向上させることができる。その結果、耐光性、耐熱性および透明性に優れた発光装置を得ることができる。   In the light emitting device of the present invention, it is preferable to use, as the semiconductor ultrafine particles 5, fine particles in which a compound having a repeating unit structure of silicon-oxygen having 5 to 500 bond units is coordinated on the surface. For example, in the case of semiconductor ultrafine particles in which triphenylphosphine oxide, a long-chain hydrocarbon-based amine, or a long-chain hydrocarbon-based carboxylic acid is coordinated on the surface, dispersion into the polymer resin may be insufficient. On the other hand, the semiconductor ultrafine particles in which the compound having a number of bond units of 5 to 500 and having a repeating structure of silicon-oxygen is coordinated on the surface is a polymer resin, particularly a silicone-based resin having excellent light resistance and heat resistance. High dispersibility in polymer resin. By using such highly dispersible semiconductor ultrafine particles, dispersion of the ultrafine semiconductor particles 5 in the wavelength conversion layer 4 into a polymer resin (for example, a resin excellent in light resistance and heat resistance such as a silicone-based polymer resin). Can be improved. Moreover, the light resistance, heat resistance, and transparency of the wavelength conversion layer 4 can be improved by using such a resin excellent in light resistance and heat resistance and the above-described highly dispersible semiconductor ultrafine particles. As a result, a light emitting device having excellent light resistance, heat resistance, and transparency can be obtained.

結合ユニット数が5〜500で珪素−酸素の繰り返し構造からなる化合物が、表面に配位している半導体超微粒子5を作製するには、例えば、半導体超微粒子と配位結合が可能な珪素−酸素の結合を2つ以上繰り返し構造からなる化合物とを混合し、加熱しながら攪拌する、といった処理をすることが挙げられる。   In order to fabricate the semiconductor ultrafine particles 5 in which a compound having a bond unit number of 5 to 500 and a silicon-oxygen repeating structure is coordinated on the surface, for example, silicon that can be coordinated to the semiconductor ultrafine particles A process of mixing a compound having a repeating structure of two or more oxygen bonds and stirring while heating may be mentioned.

上記半導体超微粒子5は、これを構成する半導体組成物のバルク状態での化合物半導体のバンドギャップエネルギーが、温度300Kで1.5から2.5eVの範囲であることが好ましい。   The semiconductor ultrafine particles 5 preferably have a band gap energy of a compound semiconductor in a bulk state of a semiconductor composition constituting the semiconductor fine particles 5 in a range of 1.5 to 2.5 eV at a temperature of 300K.

また、本発明における半導体超微粒子5は、内核(コア)と外殻(シェル)からなるいわゆるコアシェル構造であってもよい。コアシェル型半導体ナノ粒子では、エキシトン吸発光帯を利用する用途に好適な場合がある。この場合、シェルの半導体粒子の組成として、禁制帯幅(バンドギャップ)がコアよりも大きなものを起用することによりエネルギー的な障壁を形成せしめることが一般に有効である。これは、外界の影響や結晶表面での結晶格子欠陥等の理由による望ましくない表面準位等の影響を抑制する機構によるものと推測される。   The semiconductor ultrafine particles 5 in the present invention may have a so-called core-shell structure composed of an inner core (core) and an outer shell (shell). The core-shell type semiconductor nanoparticles may be suitable for applications using an exciton absorption / emission band. In this case, it is generally effective to form an energy barrier by using a shell semiconductor particle having a forbidden band width (band gap) larger than that of the core. This is presumed to be due to a mechanism that suppresses the influence of an undesirable surface level or the like due to the influence of the outside world or crystal lattice defects on the crystal surface.

シェルに好適に用いられる半導体材料の組成としては、コア半導体結晶のバンドギャップにもよるが、バルク状態のバンドギャップが温度300Kにおいて2.5eV以上であるもの、例えばBN、BAs、GaNやGaP等のIII−V族化合物半導体、ZnO、ZnS等のII−VI族化合物半導体、MgSやMgSe等の周期表第2族元素と周期表第16族元素との化合物等が好適に用いられる。   The composition of the semiconductor material suitably used for the shell depends on the band gap of the core semiconductor crystal, but the band gap in the bulk state is 2.5 eV or more at a temperature of 300 K, such as BN, BAs, GaN, GaP, etc. III-V group compound semiconductors, II-VI group compound semiconductors such as ZnO and ZnS, and compounds of Group 2 elements of the periodic table and Group 16 elements of the periodic table such as MgS and MgSe are preferably used.

また、本発明における半導体超微粒子5は、有機配位子からなる表面修飾分子で覆われていても良い。表面分修飾分子覆うことにより、半導体超微粒子の凝集を抑制し、半導体超微粒子の機能を最大限に発現することができる。表面修飾分子は、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、n−ペンチル基、シクロペンチル基、n−ヘキシル基、シクロヘキシル基、オクチル基、デシル基、ドデシル基、ヘキサデシル基、オクタデシル基等の炭素数3〜20程度のアルキル基、フェニル基、ベンジル基、ナフチル基、ナフチルメチル基等の芳香族炭化水素基を含有する炭化水素基等を有する分子が例示され、中でもn−ヘキシル基、オクチル基、デシル基、ドデシル基、ヘキサデシル基等の炭素数6〜16程度の直鎖状アルキル基を有する分子が更に好ましい。また、メルカプト基、ジスルフィド基、チオフェン環等の硫黄原子含有官能基、アミノ基、ピリジン環、アミド結合、ニトリル基等の窒素原子含有官能基、カルボキシル基、スルホン酸基、ホスホン酸基、ホスフィン酸基等の酸性官能基、ホスフィン基やホスフィンオキシド基等のリン原子含有官能基、あるいは水酸基、カルボニル基、エステル結合、エーテル結合、ポリエチレングリコール鎖等の酸素原子含有官能基等を有する分子を用いてもよい。   Moreover, the semiconductor ultrafine particles 5 in the present invention may be covered with surface modifying molecules made of organic ligands. By covering the surface modification molecules, aggregation of the semiconductor ultrafine particles can be suppressed, and the function of the semiconductor ultrafine particles can be expressed to the maximum. Surface modifying molecules are n-propyl, isopropyl, n-butyl, isobutyl, n-pentyl, cyclopentyl, n-hexyl, cyclohexyl, octyl, decyl, dodecyl, hexadecyl, octadecyl Examples thereof include molecules having a hydrocarbon group containing an aromatic hydrocarbon group such as an alkyl group having about 3 to 20 carbon atoms such as a group, a phenyl group, a benzyl group, a naphthyl group, and a naphthylmethyl group, among which n-hexyl A molecule having a linear alkyl group having about 6 to 16 carbon atoms, such as a group, an octyl group, a decyl group, a dodecyl group, a hexadecyl group, is more preferable. Also, sulfur atom-containing functional groups such as mercapto group, disulfide group, thiophene ring, nitrogen atom-containing functional groups such as amino group, pyridine ring, amide bond, nitrile group, carboxyl group, sulfonic acid group, phosphonic acid group, phosphinic acid Using molecules having acidic functional groups such as groups, phosphorus atom-containing functional groups such as phosphine groups and phosphine oxide groups, or oxygen atom-containing functional groups such as hydroxyl groups, carbonyl groups, ester bonds, ether bonds, polyethylene glycol chains, etc. Also good.

本発明における半導体超微粒子5は、一般的な製造方法によって製造させる。火炎プロセス・プラズマプロセス・電気加熱プロセス・レーザープロセス等の気相化学反応法、物理冷却法、ゾルゲル法・アルコキシド法・共沈法・ホットソープ法・水熱合成法・噴霧熱分解法等の液相法、さらにメカノケミカルボンディング法、マイクロリアクター法、マイクロ波加熱法等が用いられる。   The semiconductor ultrafine particles 5 in the present invention are manufactured by a general manufacturing method. Gas phase chemical reaction methods such as flame process, plasma process, electric heating process, laser process, physical cooling method, sol-gel method, alkoxide method, coprecipitation method, hot soap method, hydrothermal synthesis method, spray pyrolysis method, etc. A phase method, a mechanochemical bonding method, a microreactor method, a microwave heating method, and the like are used.

上記波長変換層4を作製するには、まず、黄色蛍光体5aおよび赤色蛍光体5bをマトリックス樹脂の未硬化物に混合する。マトリックス樹脂としては、例えばエポキシ樹脂、ポリカーボネート樹脂やアクリル樹脂、珪素−酸素結合を主体とする高分子樹脂(シリコーン樹脂など)が透過率の点で好適である。   In order to produce the wavelength conversion layer 4, first, the yellow phosphor 5a and the red phosphor 5b are mixed with an uncured matrix resin. As the matrix resin, for example, an epoxy resin, a polycarbonate resin, an acrylic resin, or a polymer resin (silicone resin or the like) mainly composed of a silicon-oxygen bond is preferable in terms of transmittance.

特に、珪素−酸素結合を主体とする高分子樹脂は、珪素−酸素の結合エネルギーが非常に大きいため、400nm前後の光を吸収して劣化することがなく、すぐれた耐熱性、耐光性を有する。その結果、珪素−酸素結合を主体とする高分子樹脂中に蛍光体を分散混合することで、波長変換層の耐光性、耐熱性、透明性を高めることができ、発光装置の長寿命を確保することができる。よって、透過率と耐熱性を兼ね備える点でシリコーン樹脂が最も好ましい。また、分散剤として、マトリックス樹脂と化学的にカップリングするものを用いることが、硬化後の安定性の点で望ましい。   In particular, a polymer resin mainly composed of a silicon-oxygen bond has an excellent heat resistance and light resistance because it has a very large silicon-oxygen bond energy and does not deteriorate by absorbing light at around 400 nm. . As a result, by dispersing and mixing phosphors in a polymer resin mainly composed of silicon-oxygen bonds, the light conversion, heat resistance and transparency of the wavelength conversion layer can be improved, and the long life of the light emitting device is ensured. can do. Therefore, a silicone resin is most preferable because it has both transmittance and heat resistance. In addition, it is desirable to use a dispersant that is chemically coupled to the matrix resin in terms of stability after curing.

次に、黄色蛍光体5a、赤色蛍光体5bおよびマトリックス樹脂の未硬化物の混合物を、シート状に成形する。成形方法としては、例えば、ドクターブレード法やダイコーター法、押し出し法、スピンコート法、ディップ法などのシート成形ができる成形法が挙げられ、特にドクターブレード法やダイコーター法を用いれば、生産性を向上することができる。なお、黄色蛍光体5aおよび赤色蛍光体5bをシート中で均一に分散させるには、製造条件を最適化することが好ましく、例えば、マトリクス樹脂としてジメチルシリコーン樹脂を用い、黄色蛍光体5a、赤色蛍光体5bを樹脂中に混合させ、マトリクス樹脂の粘度を1〜5Pa・s、マトリクス樹脂の硬化温度を130〜170℃に設定し、1〜5時間放置することが好ましい。   Next, a mixture of the yellow phosphor 5a, the red phosphor 5b and the uncured matrix resin is formed into a sheet shape. Examples of the molding method include a molding method capable of forming a sheet such as a doctor blade method, a die coater method, an extrusion method, a spin coating method, a dip method, and in particular, if a doctor blade method or a die coater method is used, productivity Can be improved. In order to uniformly disperse the yellow phosphor 5a and the red phosphor 5b in the sheet, it is preferable to optimize the manufacturing conditions. For example, a dimethyl silicone resin is used as the matrix resin, and the yellow phosphor 5a and the red phosphor It is preferable to mix the body 5b in the resin, set the viscosity of the matrix resin to 1 to 5 Pa · s, set the curing temperature of the matrix resin to 130 to 170 ° C., and leave it for 1 to 5 hours.

黄色蛍光体5aおよび赤色蛍光体5bを上記樹脂中に添加する場合の添加量は、発光素子の発光強度、発光素子の大きさ、波長変換層4の膜厚を考慮して決定すればよいが、波長変換層4の総量に対して、黄色蛍光体5aを1〜10重量%、赤色蛍光体5bを1〜10重量%添加することが好ましい。   The addition amount when the yellow phosphor 5a and the red phosphor 5b are added to the resin may be determined in consideration of the light emission intensity of the light emitting element, the size of the light emitting element, and the film thickness of the wavelength conversion layer 4. It is preferable to add 1 to 10% by weight of the yellow phosphor 5a and 1 to 10% by weight of the red phosphor 5b with respect to the total amount of the wavelength conversion layer 4.

反射部材6は、発光素子の周り、具体的には発光素子3および波長変換層4の周囲に設けられており、側面および基板2側に逃げる光を前方に反射して、出力光の強度を高めることができる。反射部材6の材料としては、例えばアルミニウム(Al)、ニッケル(Ni)、銀(Ag)、クロム(Cr)、チタン(Ti)、銅(Cu)、金(Au)、鉄(Fe)およびこれらの積層構造物や合金、さらにアルミナセラミックス等のセラミックス、またはエポキシ樹脂等の樹脂を用いることができる。   The reflecting member 6 is provided around the light emitting element, specifically around the light emitting element 3 and the wavelength conversion layer 4, and reflects light escaping to the side surface and the substrate 2 side to the front to increase the intensity of the output light. Can be increased. Examples of the material of the reflecting member 6 include aluminum (Al), nickel (Ni), silver (Ag), chromium (Cr), titanium (Ti), copper (Cu), gold (Au), iron (Fe), and these. These laminated structures and alloys, ceramics such as alumina ceramics, or resins such as epoxy resins can be used.

図2は、本発明における発光装置の他の実施形態を示す図であって、2層構造の波長変換層40を有する発光装置の概略断面図である。なお、図2中、図1に示す発光装置と同一の部材については、図1と同じ符号を付して説明を省略する。   FIG. 2 is a diagram showing another embodiment of the light emitting device according to the present invention, and is a schematic cross-sectional view of a light emitting device having a wavelength conversion layer 40 having a two-layer structure. In FIG. 2, the same members as those of the light emitting device shown in FIG. 1 are denoted by the same reference numerals as those in FIG.

図2に示す発光装置では、波長変換層40は第一の変換層41と第二の変換層42との複数の層(シート構造)を有しており、変換層42は発光素子3の表面に、変換層41は変換層42の表面に積層されている。   In the light emitting device shown in FIG. 2, the wavelength conversion layer 40 has a plurality of layers (sheet structure) of a first conversion layer 41 and a second conversion layer 42, and the conversion layer 42 is a surface of the light emitting element 3. In addition, the conversion layer 41 is laminated on the surface of the conversion layer 42.

平均粒子径の異なる半導体超微粒子5を同一層内に分散混合させると、半導体超微粒子5間の吸収が起き、変換効率(量子収率)が低下する場合がある。それに対して、図2に示すように、波長変換層40を2層構造などの複数の変換層からなる構造、例えばシート形状でかつ複数層の構造とし、その層ごとに種類の異なる半導体超微粒子5を含有させた構造とすれば、半導体超微粒子5間の自己吸収を抑制することができるため、発光効率の優れた発光装置を得ることができる。図2に示す発光装置では、変換層41は黄色蛍光体5aを、変換層42は赤色蛍光体5bを含有している。   When semiconductor ultrafine particles 5 having different average particle diameters are dispersed and mixed in the same layer, absorption between the semiconductor ultrafine particles 5 may occur, and conversion efficiency (quantum yield) may be reduced. On the other hand, as shown in FIG. 2, the wavelength conversion layer 40 has a structure composed of a plurality of conversion layers such as a two-layer structure, for example, a sheet shape and a structure of a plurality of layers, and different types of semiconductor ultrafine particles for each layer. If the structure containing 5 is used, self-absorption between the semiconductor ultrafine particles 5 can be suppressed, so that a light-emitting device with excellent light emission efficiency can be obtained. In the light emitting device shown in FIG. 2, the conversion layer 41 contains a yellow phosphor 5a, and the conversion layer 42 contains a red phosphor 5b.

波長変換層40の厚みは0.1〜5mm、変換層41の厚みは0.05〜3mm、変換層42の厚みは0.05〜3mmが好ましい。この範囲であれば、発光素子3から発せられる励起光を、高効率で出力光に変換することができ、さらに変換された出力光を外部に高効率で透過させることができる。   The wavelength conversion layer 40 preferably has a thickness of 0.1 to 5 mm, the conversion layer 41 has a thickness of 0.05 to 3 mm, and the conversion layer 42 has a thickness of 0.05 to 3 mm. Within this range, the excitation light emitted from the light emitting element 3 can be converted into output light with high efficiency, and the converted output light can be transmitted to the outside with high efficiency.

図3は、本発明で用いることが好ましい発光素子3の一例であって、GaN系LEDの素子構造を示している。サファイア基板などの結晶基板である発光素子基板7上に、GaN系低温成長バッファ層30を介して、順に、n型コンタクト層31と、発光部35(n型クラッド層32/MQW発光層(詳細な積層構造は図示せず)33/p型クラッド層34)と、p型コンタクト層(複数層の構造とされる場合があるが詳細には図示せず)36とが、気相成長によって積層され、各コンタクト層にはn電極およびp電極(図示せず)が設けられている。   FIG. 3 is an example of a light-emitting element 3 that is preferably used in the present invention, and shows an element structure of a GaN-based LED. On the light emitting element substrate 7 which is a crystal substrate such as a sapphire substrate, an n-type contact layer 31 and a light emitting part 35 (n-type clad layer 32 / MQW light emitting layer (details) are arranged in order via a GaN-based low temperature growth buffer layer 30. 33 / p-type cladding layer 34) and p-type contact layer (which may be a multi-layer structure, but not shown in detail) 36 are stacked by vapor phase growth. Each contact layer is provided with an n electrode and a p electrode (not shown).

なお、図3では説明のために発光素子基板7を下側として描いているが、p電極を実装用基板側に向けて回路に直接接続して発光素子基板7を上にする実装(いわゆるフリップチップ実装)を行って、基板裏面から光を取り出して、その光を蛍光体へ照射する構成であってもよい。   In FIG. 3, the light emitting element substrate 7 is drawn on the lower side for the sake of explanation. However, the mounting (so-called flip) is performed with the p electrode facing the mounting substrate side and directly connected to the circuit so that the light emitting element substrate 7 faces upward. It may be configured to perform chip mounting, extract light from the back surface of the substrate, and irradiate the phosphor with the light.

図3の例では、発光素子基板7の上面(GaN系結晶層が成長する面)には、好ましい態様として凹凸37が加工されている。この凹凸37によってGaN系結晶層の転位密度が低減され、発光部35における発光効率がより高められる(内部量子効率の向上)。また、この凹凸37は、素子内で発生した光を閉じ込めたままにせず、より多く外界に出す作用を示す(外部量子効率の向上)。これらの作用があいまって、高出力のGaN系LEDが得られる。このような素子構造とする場合、凹凸37の面を通してより多くの光を外界に取り出す点からは、前記のフリップチップ実装用の素子とするのが好ましい態様である。   In the example of FIG. 3, irregularities 37 are processed on the upper surface (surface on which the GaN-based crystal layer grows) of the light emitting element substrate 7 as a preferred embodiment. The unevenness 37 reduces the dislocation density of the GaN-based crystal layer and further increases the light emission efficiency in the light emitting portion 35 (improves internal quantum efficiency). Further, the irregularities 37 do not keep the light generated in the element confined but show more action to the outside (improvement of external quantum efficiency). Combined with these actions, a high-power GaN-based LED can be obtained. In the case of such an element structure, from the viewpoint of extracting more light to the outside through the surface of the irregularities 37, the above-described element for flip chip mounting is a preferable aspect.

GaN系発光素子を構成するための発光素子基板7、バッファ層30、発光素子基板7上への結晶成長技術、発光素子3の構造、実装技術などについては、従来公知の技術を参照すればよい。   For the light-emitting element substrate 7, the buffer layer 30, the crystal growth technique on the light-emitting element substrate 7, the structure of the light-emitting element 3, and the mounting technique for constituting the GaN-based light-emitting element, a conventionally known technique may be referred to. .

[実施例1〜4]
図1の発光装置を作製した。まず、サファイアからなる発光素子基板上に、窒化物半導体からなる発光素子3を有機金属気相成長法にて形成した。発光素子3の構造としては、発光素子基板上に、アンドープの窒化物半導体であるn型GaN層、Siドープのn型電極が形成されn型コンタクト層となるGaN層、アンドープの窒化物半導体であるn型GaN層、次に発光層を構成するバリア層となるGaN層、井戸層を構成するInGaN層、バリア層となるGaN層を1セットとしGaN層に挟まれたInGaN層を5層積層させた多重量子井戸構造とした。
[Examples 1 to 4]
The light emitting device of FIG. 1 was produced. First, a light emitting element 3 made of a nitride semiconductor was formed on a light emitting element substrate made of sapphire by a metal organic vapor phase epitaxy method. The structure of the light-emitting element 3 includes an n-type GaN layer that is an undoped nitride semiconductor on a light-emitting element substrate, a GaN layer that is formed with an Si-doped n-type electrode and serves as an n-type contact layer, and an undoped nitride semiconductor. A n-type GaN layer, a GaN layer that forms the next light emitting layer, an InGaN layer that forms the well layer, and a GaN layer that forms the barrier layer as a set of five InGaN layers sandwiched between the GaN layers A multi-quantum well structure was obtained.

この発光素子3を、近紫外LEDを配置するための配線パターンが形成された絶縁性基体と近紫外LEDを取り囲む枠状の反射部材とを形成するパッケージ内に、フリップチップ実装法にて実装した。該パッケージ内の配線パターンに、Agペーストを介して、発光素子3を実装した。   The light-emitting element 3 is mounted by a flip-chip mounting method in a package that forms an insulating substrate on which a wiring pattern for arranging near-ultraviolet LEDs is formed and a frame-shaped reflecting member surrounding the near-ultraviolet LEDs. . The light emitting element 3 was mounted on the wiring pattern in the package via an Ag paste.

続いて、パッケージ内にシリコーン樹脂を充填して、発光素子3を被覆し、さらに加熱することによって該樹脂を硬化させ、内部層を形成した。シリコーン樹脂の充填は、ディスペンサーを用いて塗布法にて形成した。
半導体超微粒子(黄色蛍光体5a、赤色蛍光体5b)は、ホットソープ法により、合成した。なお、発光波長の異なる半導体超微粒子は、反応時間、反応温度、後処理方法を変えることにより合成した。
上記方法で得られた半導体超微粒子(黄色蛍光体5a、赤色蛍光体5b)の平均粒子径は透過型電子顕微鏡(TEM)を使用して測定した。使用した透過型電子顕微鏡はJEOL製JEM2010Fであり、以下の手順で加速電圧200kVの観察を行った。上記で得た半導体超微粒子をサンプル瓶にとり、粒子濃度が0.002〜0.02モル/リットルの範囲となる量のIPAやトルエンを加えて分散させた。これをTEM観察用マイクログリッドですくい取り、乾燥後、透過型電子顕微鏡にセットした。平均粒子径の測定は格子像より粒子を確認して行った。まず、粒子がメッシュに付着している部分を低倍率で探した。この時、半導体超微粒子が多く付着している部分は粒子が電子線の方向に重なっているため平均粒子径の測定には適さない。また、マイクログリッドのCuメッシュの部分に付着している半導体超微粒子も格子像が観察できないため平均粒子径の観察には適さない。従って、平均粒子径を測定する半導体超微粒子はマイクログリッドの樹脂の部分にある極力重なりの少ない部分を選んで行なった。次に、この部分を1,000,000倍程度に拡大して格子像の確認を行なう。
このとき、半導体超微粒子の周囲に合成時に使用した有機成分が多く残っている場合には格子像がぼやけてしまうため、平均粒子径を正しく測定することができない。このような場合には場所を変えて観察を行なうか、場合によっては合成時の有機成分の除去を繰り返し行なったサンプルを準備しなおして観察を行なった。
合成時の有機成分の除去は、沈殿させた半導体超微粒子にクロロホルム、トルエンもしくはヘキサンを加えて超音波で分散させた後、ここにアルコール(例えばエタノール)を加えて、遠心分離機にかけることで行なうことができる。合成時の有機成分は上澄みのエタノールに溶解し、半導体超微粒子は沈殿する。必要に応じてこの操作を繰り返した。このようにして合成時に使用した有機成分の付着の少ない半導体超微粒子を探し出した後、この部分を倍率4,000,000倍として格子像の写真撮影を行なった。このとき電子線を長く当て続けると半導体超微粒子は移動してしまうため、速やかに撮影を行なった。
半導体超微粒子の平均粒子径は、撮影した格子像200個の直径を元に以下の方法で処理することにより求めた。
測定した格子像の直径を、ヒストグラムを作成し統計的に処理することで、長さ平均直径を算出した。長さ平均直径の算出方法は、直径区に属する個数をカウントし、直径区の中心値と個数のそれぞれの積の和を、測定した格子像の個数の総数で割るという方法を用いた(平均粒子径の形状とその計算式、「セラミックの製造プロセス」p.11〜12、窯業協会編集委員会講座小委員会編)。このようにして計算した長さ平均直径を半導体超微粒子の平均粒子径とみなした。
Subsequently, the package was filled with a silicone resin to cover the light emitting element 3, and the resin was further cured by heating to form an inner layer. The silicone resin was filled by a coating method using a dispenser.
Semiconductor ultrafine particles (yellow phosphor 5a, red phosphor 5b) were synthesized by a hot soap method. The semiconductor ultrafine particles having different emission wavelengths were synthesized by changing the reaction time, reaction temperature, and post-treatment method.
The average particle diameter of the semiconductor ultrafine particles (yellow phosphor 5a, red phosphor 5b) obtained by the above method was measured using a transmission electron microscope (TEM). The transmission electron microscope used was JEOL JEM2010F, and an acceleration voltage of 200 kV was observed according to the following procedure. The semiconductor ultrafine particles obtained above were placed in a sample bottle, and IPA or toluene in an amount such that the particle concentration was in the range of 0.002 to 0.02 mol / liter was added and dispersed. This was scooped with a TEM observation microgrid, dried, and then set on a transmission electron microscope. The average particle diameter was measured by confirming the particles from the lattice image. First, the part where the particles adhered to the mesh was searched at a low magnification. At this time, the portion where a lot of ultrafine semiconductor particles are attached is not suitable for measuring the average particle diameter because the particles overlap in the direction of the electron beam. Also, the semiconductor ultrafine particles adhering to the Cu mesh part of the microgrid are not suitable for observation of the average particle diameter because the lattice image cannot be observed. Therefore, the semiconductor ultrafine particles for measuring the average particle diameter were selected by selecting a portion having as little overlap as possible in the resin portion of the microgrid. Next, this portion is enlarged to about 1,000,000 times to confirm the lattice image.
At this time, if a large amount of organic components used in the synthesis remain around the semiconductor ultrafine particles, the lattice image is blurred, so that the average particle diameter cannot be measured correctly. In such a case, observation was performed by changing the location, or in some cases, a sample was prepared by repeatedly removing organic components during synthesis, and observation was performed.
Removal of organic components during synthesis is achieved by adding chloroform, toluene, or hexane to the precipitated semiconductor ultrafine particles and dispersing with ultrasound, then adding alcohol (for example, ethanol) to this and centrifuging it. Can be done. Organic components at the time of synthesis are dissolved in the supernatant ethanol, and the semiconductor ultrafine particles are precipitated. This operation was repeated as necessary. Thus, after searching for semiconductor ultrafine particles with less organic component adhesion used during synthesis, a lattice image was photographed at a magnification of 4,000,000. At this time, if the electron beam was kept on for a long time, the semiconductor ultrafine particles moved, and thus the image was taken promptly.
The average particle diameter of the semiconductor ultrafine particles was determined by processing according to the following method based on the diameter of 200 photographed lattice images.
A length average diameter was calculated by creating a histogram and statistically processing the diameter of the measured lattice image. The length average diameter was calculated by counting the number belonging to the diameter section and dividing the sum of the product of the center value and the number of the diameter section by the total number of measured grid images (average Particle shape and calculation formula, “Ceramic manufacturing process” p.11-12, edited by ceramic industry association editorial committee lecture subcommittee). The length average diameter thus calculated was regarded as the average particle diameter of the semiconductor ultrafine particles.

次に、ジメチルシリコーン骨格からなるシリコーン樹脂に、上記方法で合成した半導体超微粒子(黄色蛍光体5aおよび赤色蛍光体5b)を、それぞれ表1の条件で分散混合し、蛍光体含有樹脂ペーストを作製した。なお、蛍光体含有樹脂ペーストは、シリコーン樹脂100重量部に対して、黄色蛍光体5aを5重量部、赤色蛍光体5bを5重量部添加して作製した。   Next, the semiconductor ultrafine particles (yellow phosphor 5a and red phosphor 5b) synthesized by the above method are dispersed and mixed with the silicone resin having a dimethyl silicone skeleton under the conditions shown in Table 1 to produce a phosphor-containing resin paste. did. The phosphor-containing resin paste was prepared by adding 5 parts by weight of yellow phosphor 5a and 5 parts by weight of red phosphor 5b to 100 parts by weight of silicone resin.

得られた蛍光体含有樹脂ペーストを平滑な基板2上にディスペンサーにて塗布形成し、これをホットプレート上で150℃5分間加熱して、仮硬化膜を作製した。続いて、これを150℃の乾燥機内に5時間入れ、表1に示す4種類の蛍光体含有フィルム(波長変換層4)を作製した(実施例1〜4)。このフィルムを前記内部層の上面に取り付け、4種類の発光装置を得た。   The obtained phosphor-containing resin paste was applied and formed on a smooth substrate 2 with a dispenser, and this was heated on a hot plate at 150 ° C. for 5 minutes to prepare a temporarily cured film. Then, this was put into a 150 degreeC dryer for 5 hours, and the 4 types of fluorescent substance containing films (wavelength conversion layer 4) shown in Table 1 were produced (Examples 1-4). This film was attached to the upper surface of the inner layer to obtain four types of light emitting devices.

それぞれの蛍光体含有フィルムを備えた発光装置(実施例1〜4)の発光効率は、大塚電子社製の発光特性評価装置を使用して測定した。
蛍光体含有フィルム内部の蛍光体の分散状態および平均粒子径は、走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)により確認した。まず、分散状態は蛍光体含有フィルムを割り、その破断面をSEMにより500〜100,000倍で観察した。このとき、半導体超微粒子が均一に分散している場合は倍率が低いため樹脂中に粒子を見つけることがができないため、この蛍光体含有フィルムをミクロトームで厚み30〜200nmを目安として薄切片加工した。切片の厚みは半導体超微粒子の平均粒子径により使い分けることが望ましく、平均粒子径の5〜10倍を目安とすると半導体超微粒子をきれいに観察することができた。この時、蛍光体含有フィルムがやわらかい場合には、薄い切片を得ることができず、液体窒素で冷却して厚み50nmを狙って切片加工を行なった。この切片の半導体超微粒子の部分を透過型電子顕微鏡で観察し、格子像を倍率4,000,000倍で写真撮影した。透過型電子顕微鏡はJEOL製JEM2010Fを使用し、加速電圧200kVの条件で観察を行った。半導体超微粒子の凝集の有無を再度500,000倍で確認した後、倍率を4,000,000倍として半導体超微粒子の格子像の観察を行なった。このとき半導体超微粒子は樹脂で完全に固定化されているためか、合成後の半導体超微粒子を観察した時に比べて電子線を長く当て続けても粒子が移動するようなことはなかった。
また、格子像の確認できた半導体超微粒子200個を選び、各々の半導体超微粒子の格子像の直径を測長した。測定した格子像の直径を、前記と同様にしてヒストグラムを作成し統計的に処理することで、長さ平均直径を算出し、これを半導体超微粒子の平均粒子径とみなした。
このとき、格子像の直径は、径の長い部分または短い部分に偏って測長することがないように、全ての格子像を写真紙に対して同一の方向に測長した。このようにして求めた蛍光体含有フィルムの半導体超微粒子の平均粒子径は、合成時の半導体超微粒子の平均粒子径と変わることはなかった。
The luminous efficiency of the light emitting devices (Examples 1 to 4) provided with the respective phosphor-containing films was measured using a light emitting characteristic evaluation device manufactured by Otsuka Electronics Co., Ltd.
The dispersion state and average particle diameter of the phosphor inside the phosphor-containing film were confirmed by a scanning electron microscope (SEM) and a transmission electron microscope (TEM). First, the dispersed state was determined by dividing the phosphor-containing film, and the fracture surface was observed by SEM at 500 to 100,000 times. At this time, when the semiconductor ultrafine particles are uniformly dispersed, the particles cannot be found in the resin because the magnification is low. Therefore, the phosphor-containing film was processed into a thin slice with a microtome with a thickness of 30 to 200 nm as a guide. . It is desirable that the thickness of the slice is properly used depending on the average particle diameter of the semiconductor ultrafine particles. When the average particle diameter is 5 to 10 times as a guide, the semiconductor ultrafine particles can be clearly observed. At this time, when the phosphor-containing film was soft, a thin slice could not be obtained, and the slice processing was performed with a target of 50 nm in thickness by cooling with liquid nitrogen. The section of the semiconductor ultrafine particles in this section was observed with a transmission electron microscope, and the lattice image was photographed at a magnification of 4,000,000. As the transmission electron microscope, JEOL JEM2010F was used, and observation was performed under the condition of an acceleration voltage of 200 kV. After confirming the presence or absence of aggregation of the semiconductor ultrafine particles again at 500,000 times, the lattice image of the semiconductor ultrafine particles was observed at a magnification of 4,000,000 times. At this time, because the semiconductor ultrafine particles are completely fixed by the resin, the particles did not move even when the electron beam was applied for a longer time than when the synthesized semiconductor ultrafine particles were observed.
Further, 200 semiconductor ultrafine particles having a confirmed lattice image were selected, and the diameter of the lattice image of each semiconductor ultrafine particle was measured. A histogram was created and statistically processed for the diameter of the measured lattice image in the same manner as described above to calculate the average length diameter, and this was regarded as the average particle diameter of the semiconductor ultrafine particles.
At this time, all the lattice images were measured in the same direction with respect to the photographic paper so that the length of the lattice image was not measured with a bias toward a long portion or a short portion. The average particle size of the ultrafine semiconductor particles of the phosphor-containing film thus obtained did not change from the average particle size of the ultrafine semiconductor particles at the time of synthesis.

[比較例1]
比較例として、上記半導体微粒子に代えて、平均粒子径1μm以上の蛍光体(La22S:Eu、Y2SuO5:Ce,Te)を用い、実施例1〜4と同様の方法で波長変換層を作製した。なお、シリコーン樹脂100重量部に対して、La22S:Euを20重量部、Y2SuO5:Ce,Teを20重量部混合した樹脂を150℃で5時間加熱することにより、シート状態の波長変換層を作製した。得られた波長変換層を、実施例1〜4と同様の発光素子上に実装し、発光効率を評価した。結果を表1に示す。
[Comparative Example 1]
As a comparative example, a phosphor (La 2 O 2 S: Eu, Y 2 SuO 5 : Ce, Te) having an average particle diameter of 1 μm or more is used in the same manner as in Examples 1 to 4 instead of the semiconductor fine particles. A wavelength conversion layer was produced. By heating a resin in which 20 parts by weight of La 2 O 2 S: Eu and 20 parts by weight of Y 2 SuO 5 : Ce, Te are mixed with 100 parts by weight of a silicone resin at 150 ° C. for 5 hours, a sheet is obtained. A wavelength conversion layer in a state was prepared. The obtained wavelength conversion layer was mounted on the light emitting element similar to Examples 1-4, and luminous efficiency was evaluated. The results are shown in Table 1.

Figure 2007103513
Figure 2007103513

表1によれば、実施例1〜4では、いずれも50lm/W以上という高い発光効率を示した。一方、比較例1では、20lm/Wと非常に低い値となった。   According to Table 1, in Examples 1-4, all showed high luminous efficiency of 50 lm / W or more. On the other hand, in Comparative Example 1, a very low value of 20 lm / W was obtained.

本発明の発光装置の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the light-emitting device of this invention. 本発明における2層構造の波長変換層を有する発光装置の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the light-emitting device which has a wavelength conversion layer of the 2 layer structure in this invention. 本発明の発光装置に好適な発光素子の一例を示す模式図である。It is a schematic diagram which shows an example of the light emitting element suitable for the light-emitting device of this invention. 従来の発光装置の構造を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the conventional light-emitting device.

符号の説明Explanation of symbols

2・・・基板
3・・・発光素子
4・・・波長変換層
5・・・半導体超微粒子
6・・・反射部材
7・・・発光素子基板
40・・・波長変換層
DESCRIPTION OF SYMBOLS 2 ... Substrate 3 ... Light emitting element 4 ... Wavelength conversion layer 5 ... Semiconductor ultrafine particle 6 ... Reflective member 7 ... Light emitting element substrate 40 ... Wavelength conversion layer

Claims (7)

基板上に、450nmを超える範囲にピーク波長を有する励起光を発する発光素子、およびこの発光素子を覆うように形成されており、前記励起光を可視光に変換する波長変換層を備え、前記励起光のうちの一部と前記可視光とを共に出力する発光装置であって、
前記波長変換層は平均粒子径10nm以下の半導体超微粒子を含んでいることを特徴とする発光装置。
A light emitting element that emits excitation light having a peak wavelength in a range exceeding 450 nm and a wavelength conversion layer that converts the excitation light into visible light are formed on the substrate so as to cover the light emitting element. A light-emitting device that outputs both a part of light and the visible light,
The wavelength conversion layer contains semiconductor ultrafine particles having an average particle diameter of 10 nm or less.
前記半導体超微粒子の表面には、結合ユニット数が5〜500で珪素−酸素の繰り返し構造からなる化合物が配位していることを特徴とする請求項1に記載の発光装置。   2. The light emitting device according to claim 1, wherein a compound of a silicon-oxygen repeating structure having 5 to 500 bond units is coordinated on the surface of the semiconductor ultrafine particles. 前記半導体超微粒子は、前記励起光を吸収し、520nm〜700nmの可視光を発することを特徴とする請求項1または2に記載の発光装置。   The light emitting device according to claim 1, wherein the semiconductor ultrafine particles absorb the excitation light and emit visible light having a wavelength of 520 nm to 700 nm. 前記半導体超微粒子が、周期律表第I−b族、第II族、第III族、第IV族、第V族、第VI族に属する少なくとも2種類以上の元素からなる半導体組成物であることを特徴とする請求項1〜3のいずれかに記載の発光装置。   The semiconductor ultrafine particle is a semiconductor composition comprising at least two kinds of elements belonging to Group Ib, Group II, Group III, Group IV, Group V, and Group VI of the periodic table. The light-emitting device according to claim 1. 前記半導体超微粒子として、平均粒子径の異なる2種類以上の粒子を波長変換層に含んでいることを特徴とする請求項1〜4のいずれかに記載の発光装置。   The light emitting device according to any one of claims 1 to 4, wherein the semiconductor ultrafine particles include two or more kinds of particles having different average particle diameters in a wavelength conversion layer. 前記波長変換層が、半導体超微粒子を含む複数の層からなることを特徴とする請求項1〜5のいずれかに記載の発光装置。   The light emitting device according to claim 1, wherein the wavelength conversion layer includes a plurality of layers containing semiconductor ultrafine particles. 前記発光素子の周囲に、発光素子から発する光を前方に出射する反射部材が設けられていることを特徴とする請求項1〜6のいずれかに記載の発光装置。
The light emitting device according to claim 1, wherein a reflection member that emits light emitted from the light emitting element forward is provided around the light emitting element.
JP2005289134A 2005-09-30 2005-09-30 Light emitting device Pending JP2007103513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005289134A JP2007103513A (en) 2005-09-30 2005-09-30 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005289134A JP2007103513A (en) 2005-09-30 2005-09-30 Light emitting device

Publications (1)

Publication Number Publication Date
JP2007103513A true JP2007103513A (en) 2007-04-19

Family

ID=38030186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005289134A Pending JP2007103513A (en) 2005-09-30 2005-09-30 Light emitting device

Country Status (1)

Country Link
JP (1) JP2007103513A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009043903A (en) * 2007-08-08 2009-02-26 Stanley Electric Co Ltd Led light source
JP2010532910A (en) * 2007-06-25 2010-10-14 キユーデイー・ビジヨン・インコーポレーテツド Compositions, optical components, systems, devices and other products containing optical components
JP2012009443A (en) * 2010-03-03 2012-01-12 Sharp Corp Wavelength conversion member, light emitting device, image display device and method of manufacturing wavelength conversion member
JP2012525717A (en) * 2009-04-28 2012-10-22 キユーデイー・ビジヨン・インコーポレーテツド Optical material, optical component and method
US8718437B2 (en) 2006-03-07 2014-05-06 Qd Vision, Inc. Compositions, optical component, system including an optical component, devices, and other products
US8836212B2 (en) 2007-01-11 2014-09-16 Qd Vision, Inc. Light emissive printed article printed with quantum dot ink
US8849087B2 (en) 2006-03-07 2014-09-30 Qd Vision, Inc. Compositions, optical component, system including an optical component, devices, and other products
US8876272B2 (en) 2007-06-25 2014-11-04 Qd Vision, Inc. Compositions and methods including depositing nanomaterial
US8882299B2 (en) 2010-03-03 2014-11-11 Sharp Kabushiki Kaisha Wavelength conversion member, light emitting device and image display device, and method for manufacturing wavelength conversion member
US8981339B2 (en) 2009-08-14 2015-03-17 Qd Vision, Inc. Lighting devices, an optical component for a lighting device, and methods
US9140844B2 (en) 2008-05-06 2015-09-22 Qd Vision, Inc. Optical components, systems including an optical component, and devices
US9167659B2 (en) 2008-05-06 2015-10-20 Qd Vision, Inc. Solid state lighting devices including quantum confined semiconductor nanoparticles, an optical component for a solid state lighting device, and methods
US9207385B2 (en) 2008-05-06 2015-12-08 Qd Vision, Inc. Lighting systems and devices including same
US9297092B2 (en) 2005-06-05 2016-03-29 Qd Vision, Inc. Compositions, optical component, system including an optical component, devices, and other products
JP2016534393A (en) * 2013-08-05 2016-11-04 コーニング インコーポレイテッド Luminescent coatings and devices
US9701899B2 (en) 2006-03-07 2017-07-11 Samsung Electronics Co., Ltd. Compositions, optical component, system including an optical component, devices, and other products
US9874674B2 (en) 2006-03-07 2018-01-23 Samsung Electronics Co., Ltd. Compositions, optical component, system including an optical component, devices, and other products
US9929325B2 (en) 2012-06-05 2018-03-27 Samsung Electronics Co., Ltd. Lighting device including quantum dots
US9951438B2 (en) 2006-03-07 2018-04-24 Samsung Electronics Co., Ltd. Compositions, optical component, system including an optical component, devices, and other products
US10197227B2 (en) 2010-12-23 2019-02-05 Samsung Electronics Co., Ltd. Quantum dot containing optical element
CN111883635A (en) * 2015-12-30 2020-11-03 晶元光电股份有限公司 Light emitting device and method for manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071908A (en) * 2002-08-07 2004-03-04 Matsushita Electric Works Ltd Light emitting device
WO2005071039A1 (en) * 2004-01-26 2005-08-04 Kyocera Corporation Wavelength converter, light-emitting device, wavelength converter manufacturing method, and light-emitting device manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071908A (en) * 2002-08-07 2004-03-04 Matsushita Electric Works Ltd Light emitting device
WO2005071039A1 (en) * 2004-01-26 2005-08-04 Kyocera Corporation Wavelength converter, light-emitting device, wavelength converter manufacturing method, and light-emitting device manufacturing method

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9297092B2 (en) 2005-06-05 2016-03-29 Qd Vision, Inc. Compositions, optical component, system including an optical component, devices, and other products
US9874674B2 (en) 2006-03-07 2018-01-23 Samsung Electronics Co., Ltd. Compositions, optical component, system including an optical component, devices, and other products
US10393940B2 (en) 2006-03-07 2019-08-27 Samsung Electronics Co., Ltd. Compositions, optical component, system including an optical component, devices, and other products
US9951438B2 (en) 2006-03-07 2018-04-24 Samsung Electronics Co., Ltd. Compositions, optical component, system including an optical component, devices, and other products
US8718437B2 (en) 2006-03-07 2014-05-06 Qd Vision, Inc. Compositions, optical component, system including an optical component, devices, and other products
US9701899B2 (en) 2006-03-07 2017-07-11 Samsung Electronics Co., Ltd. Compositions, optical component, system including an optical component, devices, and other products
US8849087B2 (en) 2006-03-07 2014-09-30 Qd Vision, Inc. Compositions, optical component, system including an optical component, devices, and other products
US10633582B2 (en) 2006-03-07 2020-04-28 Samsung Electronics Co., Ltd. Compositions, optical component, system including an optical component, and other products
US8836212B2 (en) 2007-01-11 2014-09-16 Qd Vision, Inc. Light emissive printed article printed with quantum dot ink
JP2016167451A (en) * 2007-06-25 2016-09-15 キユーデイー・ビジヨン・インコーポレーテツド Compositions, optical component, system including optical component, devices, and other products
US11866598B2 (en) 2007-06-25 2024-01-09 Samsung Electronics Co., Ltd. Compositions and methods including depositing nanomaterial
US11472979B2 (en) 2007-06-25 2022-10-18 Samsung Electronics Co., Ltd. Compositions and methods including depositing nanomaterial
JP2010532910A (en) * 2007-06-25 2010-10-14 キユーデイー・ビジヨン・インコーポレーテツド Compositions, optical components, systems, devices and other products containing optical components
US11214701B2 (en) 2007-06-25 2022-01-04 Samsung Electronics Co., Ltd. Compositions and methods including depositing nanomaterial
US8876272B2 (en) 2007-06-25 2014-11-04 Qd Vision, Inc. Compositions and methods including depositing nanomaterial
US9815996B2 (en) 2007-06-25 2017-11-14 Samsung Electronics Co., Ltd. Compositions and methods including depositing nanomaterial
JP2014089966A (en) * 2007-06-25 2014-05-15 Qd Vision Inc Compositions, optical component, system including optical component, devices, and other products
JP2009043903A (en) * 2007-08-08 2009-02-26 Stanley Electric Co Ltd Led light source
US9167659B2 (en) 2008-05-06 2015-10-20 Qd Vision, Inc. Solid state lighting devices including quantum confined semiconductor nanoparticles, an optical component for a solid state lighting device, and methods
US9946004B2 (en) 2008-05-06 2018-04-17 Samsung Electronics Co., Ltd. Lighting systems and devices including same
US10145539B2 (en) 2008-05-06 2018-12-04 Samsung Electronics Co., Ltd. Solid state lighting devices including quantum confined semiconductor nanoparticles, an optical component for a solid state lighting device, and methods
US9207385B2 (en) 2008-05-06 2015-12-08 Qd Vision, Inc. Lighting systems and devices including same
US10359555B2 (en) 2008-05-06 2019-07-23 Samsung Electronics Co., Ltd. Lighting systems and devices including same
US9140844B2 (en) 2008-05-06 2015-09-22 Qd Vision, Inc. Optical components, systems including an optical component, and devices
JP2012525717A (en) * 2009-04-28 2012-10-22 キユーデイー・ビジヨン・インコーポレーテツド Optical material, optical component and method
US9905724B2 (en) 2009-04-28 2018-02-27 Samsung Electronics Co., Ltd. Optical materials, optical components, and methods
US9133388B2 (en) 2009-04-28 2015-09-15 Qd Vision, Inc. Optical materials, optical components, and methods
US8981339B2 (en) 2009-08-14 2015-03-17 Qd Vision, Inc. Lighting devices, an optical component for a lighting device, and methods
US9391244B2 (en) 2009-08-14 2016-07-12 Qd Vision, Inc. Lighting devices, an optical component for a lighting device, and methods
JP2012009443A (en) * 2010-03-03 2012-01-12 Sharp Corp Wavelength conversion member, light emitting device, image display device and method of manufacturing wavelength conversion member
US8882299B2 (en) 2010-03-03 2014-11-11 Sharp Kabushiki Kaisha Wavelength conversion member, light emitting device and image display device, and method for manufacturing wavelength conversion member
US10197227B2 (en) 2010-12-23 2019-02-05 Samsung Electronics Co., Ltd. Quantum dot containing optical element
US9929325B2 (en) 2012-06-05 2018-03-27 Samsung Electronics Co., Ltd. Lighting device including quantum dots
JP2016534393A (en) * 2013-08-05 2016-11-04 コーニング インコーポレイテッド Luminescent coatings and devices
CN111883635A (en) * 2015-12-30 2020-11-03 晶元光电股份有限公司 Light emitting device and method for manufacturing the same
CN111883635B (en) * 2015-12-30 2023-06-30 晶元光电股份有限公司 Light emitting device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP2007103513A (en) Light emitting device
JP4838005B2 (en) Light emitting device
JP2007103512A (en) Light emitting device
US11031530B2 (en) Light emitting device with nanostructured phosphor
US7518160B2 (en) Wavelength converter, lighting system, and lighting system assembly
JP2007146154A (en) Wavelength converter, lighting system, and lighting system assembly
Lafont et al. Increasing the reliability of solid state lighting systems via self-healing approaches: A review
JP4653662B2 (en) Wavelength converter, light emitting device, method for manufacturing wavelength converter, and method for manufacturing light emitting device
JP2007157798A (en) Light emitting device
JP3617587B2 (en) Light emitting diode and method for forming the same
US20070159067A1 (en) Light-emitting diode device generating light of multi-wavelengths
JP4960645B2 (en) Wavelength converter and light emitting device
EP2952553B1 (en) Light emitting device
JP3925137B2 (en) Method for manufacturing light emitting device
JP2011071404A (en) Light-emitting device and illumination apparatus
JP5123475B2 (en) Fluorescent structure, composite, light emitting device, and light emitting device assembly
JP2005285800A (en) Light-emitting device
JP2006303001A (en) Light emitting diode and its manufacturing method
JP2010225960A (en) Light emitting device and illumination apparatus
JP2007073733A (en) Light emitting diode (led) and its manufacturing method
JP2010087453A (en) Light-emitting device and method of manufacturing the same
JP2010199273A (en) Light-emitting device and lighting device
Han et al. Reduced junction temperature and enhanced performance of high power light-emitting diodes using reduced graphene oxide pattern
JP6068473B2 (en) Wavelength converting particle, wavelength converting member, and light emitting device
JP2006332501A (en) Light-emitting diode (led) and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101130