TW201137134A - High-strength copper titanium plate and production method therefor - Google Patents

High-strength copper titanium plate and production method therefor Download PDF

Info

Publication number
TW201137134A
TW201137134A TW100109292A TW100109292A TW201137134A TW 201137134 A TW201137134 A TW 201137134A TW 100109292 A TW100109292 A TW 100109292A TW 100109292 A TW100109292 A TW 100109292A TW 201137134 A TW201137134 A TW 201137134A
Authority
TW
Taiwan
Prior art keywords
copper plate
strength
mbr
tensile strength
strength titanium
Prior art date
Application number
TW100109292A
Other languages
Chinese (zh)
Other versions
TWI421354B (en
Inventor
Takaaki Hatano
Masayuki Nagano
Original Assignee
Jx Nippon Mining & Amp Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx Nippon Mining & Amp Metals filed Critical Jx Nippon Mining & Amp Metals
Publication of TW201137134A publication Critical patent/TW201137134A/en
Application granted granted Critical
Publication of TWI421354B publication Critical patent/TWI421354B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Abstract

Disclosed are a copper titanium plate with excellent strength, conductivity, and bendability, and a production method therefor. The high-strength copper titanium plate includes 2.5 to 4.0 mass% Ti, with the remainder comprising Cu and unavoidable impurities, wherein the tensile strength is at least 950 MPa, the 0.2% proof stress is 0.9 times the tensile strength, and the ratio (MBR/t) between the plate thickness (t) and the minimum bending radius (MBR) at which breaking does not occur is no more than 1.0 when a W bending test is performed in a manner such that the bending axis becomes parallel with the rolling direction.

Description

201137134 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種鈦銅板及其製造方法,且關於一種 適用於連接器、端子、繼電器、開關等之導電性彈簧材料 的鈦銅板及其製造方法。 【先前技術】 電子設備之各種端子、連接器、繼電器、開關等之需 要導電性及彈性之材料,於重視製造成本之情形時使用低 廉之黃銅,於重視彈性之情形時使用磷青鋼,於重視彈性 及耐敍性之情形時使用白銅。然而,近年來,隨著電子設 備類及其零件之輕量化、薄壁化及小型化,該些材料中難 以充分提高強度,因此鈦銅等所謂高級彈簧之需要增大。 JIS合金編號C1990所規定之鈦銅係藉由在固溶處理之 後進行冷軋’繼而進行時效處理而製造。固溶處理中,使 鑄造或熱軋時所生成之粗大之Cu_Ti化合物固溶於Cu母體 中’同時使Cu母體再結晶,調整再結晶粒之結晶粒徑。於 時效處理中使ChTi或者CwTi之微細粒子析出,該些微細 粒子有助於提高拉伸強度、安全限應力、彈性極限值等強 度特性。 而且,進一步推進電子設備類及其零件之輕量化等, 材料之高強度化之要求變得更嚴格,因此持續進行鈦銅之 製造製程之改良。例如報告有下述技術:藉由在鈦銅之固 溶處理、冷軋、時效處理後進一步進行冷軋,而使其具有 高拉伸強度及高安全限應力,並且提高彎曲加工性(專利 201137134 文獻1 )。 專利文獻1 :日本特開2004·9ΐ87ι號公報 【發明内容】 然而,本發明人人進行研究之結果判明:於專利文獻^ 所記載之鈦銅之情形時,強度雖高,但彎曲性之改善不足。 如上所述,尚未開發出使強度及彎曲加工性均改善而 適合於小型連接器之鈦銅。 即,本發明係為了解決上述問題而成,目的在於提供 一種強度及f曲加工性優異之高強度鈦銅板及其製造方 法。 '#凹》谷慼理傻 依序進行日专效、冷耗,而提高強度,並且減少粗大之第二 相粒子,藉此可獲得優異之強度及彎曲加工性。 即,本發明之高強度鈦銅板含有2 5〜4 〇質量%之丁卜 其餘部分* Cu以可避免之㈣所構成,拉伸強 龍Pa以上,〇.2%安全限應力為拉伸強度之〇9倍以:: 並且當以彎曲軸與壓延方向平行之 ^ , χ ^ ^ 式進订W f曲試驗 時不產生斷裂之最小弯曲半徑(職)肖板厚⑴之比 (MBR/t)為1.0以下β V』之比 較佳為,當觀察與壓延方向及厚度方向平行 金屬組織時,平均結晶粒徑為3〜 ° 1.1〜2.0,且當觀家藤证;夕么既Um,晶粒之縱橫比為 且田覜察壓延面之金屬組織 之第二相粒子之面積率為〇〜〇2%。 仏過1 # m 較佳為,當觀察(MBR/t)為〇 5 以下且與壓延方向及 4 201137134 厚度方向平行之剖面之金屬組織時,晶粒之縱橫比為1 ·2〜 1.6’且當觀察壓延面之金屬組織時,直徑超過之第 二相粒子之面積率為0〜0· 1 6%。 較佳為含有合計為〇〜〇_5質量%之選自由Ag、B、Co、 Cr、Fe、Mg、Μη、Mo、Nb、Ni、P、Si、V 及 Zr 所組成之 群中之1種或2種以上。 板厚較佳為0.1 5 mm以下。 本發明之高強度鈦銅板之製造方法係上述高強度鈦銅 板之製造方法’其將含有2.5〜4.0質量%之Ti且其餘部分 由Cu及不可避免之雜質所構成之鑄塊依序進行熱軋、冷 軋、固溶處理、時效處理、加工度為8〜25%之時效後冷軋。 較佳為於92〇〜l〇5〇°C下進行5〜50秒之上述固溶處 理,立於380〜48(TC下進行3〜20小時之上述時效處理。 較佳為於上述時效後冷軋之後,於2〇〇〜700°C下進行 〇·5〜15小時之去應變退火’或者於3〇〇〜6〇〇°c下進行1〇 〜1000秒之去應變退火。 依據本發明,可獲得強度及彎曲加工性優異之高強户 在太銅板。 【實施方式】 以下,對本發明之實施形態之高強度鈦銅板及其製造 方法進行說明。再者,本發明中所謂%,只要無特別說明, 則表示質量%。 ’ 連接器等電子零件中,藉'由對銅合金條賦予 j y. 性變形而獲得電接點之接觸壓力。若藉由彎曲而於鋼合金 201137134 内部產生之應力超過銅合金之安全限應力,則於鋼合金上 會產生塑性變形(弛垂),接觸壓力下降,因此,材料之安 全限應力越高,則會獲得更高之接觸壓力,即彈性。另一 方面,材料之拉伸強度變得越高,則彎曲加工性越會下降。 因此,必需以相同之拉伸強度來達成更高之安全限應力(拉 伸強度之0.9倍以上)。㈣,連接器所要求之材料之彈菁 強度係較拉伸強度而言,藉由安全限應力之高度而提高: 根據如上所述,本發明人等對鈦銅板之晶粒之大小、 形態 '及第二相粒子(Cu_Ti系化合物)之狀態與強度及脊 曲加工性之關係進行潛心調查。其結果發現,在固溶處理 後依序進行時效、冷軋,而提高強度,並且使粗大之第二 相粒子減少,藉此獲得較高之強度及彎曲加工性。 具體而言,根據以下之組成及其他規定,本發明.之高 強度鈦銅板具有以下特性:拉伸強度為95〇MPa以上,〇 2% 安全限應力為拉伸強度之〇9倍以上,並且當以彎曲軸與壓 延方向平行之方式進行w彎曲試驗時,不產生斷裂之最小 奇曲半徑(MBR)與板厚(t)之比(MBR/t)為1·0以下。 藉此’可提南例如小型電子零件所要求之彈性及彎曲加工 性。 較佳為拉伸強度為l〇〇〇MPa以上,且(MBR/t)為0.5 以下,進而較佳為(MBR/t)為〇.2以下。 ’繼而’對本發明之高強度鈦銅板之組成及其他規定進 行說明。 201137134 將T!濃度設$ 2 5〜4 〇質量%。鈦銅係藉由固溶處理 而使h固溶於Cu基質中,且藉由時效處理而使微細之析 出物分散於合金中,藉此提高強度及導電率。 右Τι濃度成為未達2.5質量%’則析出物之析出變得不 足’無法獲得95OMPa以上之拉伸強度。另一方面,若Ti 濃度超過4·0質量% ’則f曲加工性劣化,(MBR/〇超過 1_0 〇 若將Τι濃度设為2·9〜3.4質量% ,則可穩定地獲得拉 伸強度為950MPa以上且(MBR/t)為} 〇以下之特性故 較佳。 進而,藉由含有合計為〇〜0.5質量%之選自由Ag、B、 C〇、Cr、Fe、Mg、Μη、Mo、Nb、Ni、P、Si、v 及 Zr 所 、成之群中之1種或2種以上,可進一步提高拉伸強度。 該些元素之合計含量可為〇,即可不包含該些元素。另一方 面,若該些元素之合計含量超過0.5質量%,則存在彎曲加 工性劣化’(MBR/t)超過1 .〇之情況。 更佳為含有合計為0.05〜0.4質量%之上述元素之1種 或2種以上。 (2 )板厚 本發明之高強度鈦銅板之板厚較佳為〇丨5mm以下。其 原因在於’本發明之高強度鈦銅板存在厚度變得越薄,則 彎曲性越提高,(MBR/t)之值變得越小之傾向,若厚度成 為0.15mm以下,則變得容易使(MBR/t)達到i 〇以下。 更佳之板厚為0.05.〜0.12mm。 201137134 (3 )晶粒及組織 為了達成上述特性,較佳為,當觀察與壓延方向及厚 度方向平行之剖面之金屬組織時.,平均結晶粒徑為3〜^ 晶粒之縱橫比為U〜2.Q,且當觀察壓延面之金屬組 織時’直徑超過i…第二相粒子之面積率為〇〜〇篇。 此處’如圖1所示,與壓延方向R及厚度方向T平行 之剖:係以…表示。另外,平均結晶粒徑係以下述方 式決定。首先,剖® S之組織照片中’於厚度方向T任音 拉3條直線,求出由直線切斷之晶粒之個數,將直線之^ 度除以晶粒之個數而得之值設為a。同樣,於壓延方向[任 意拉3條直線,求出由直線切斷之晶粒之個數,將直線之 長度除以晶粒之個數而得之值設為b。而且,將(& + & ) ο ,值作為平均結晶粒另外,將b/a之值作為晶粒之縱橫2 P(L 0 第二相粒子係指當觀察將壓延面進行電解研磨 ::金屬組織之二次電子像時,與基質不同之色調(即, 、土質不同之組成)之部分。該部分係電解研磨時未 而殘存之部分,表示ChTi或WTi等Cu 抑 Λτζ χ ^ 系弟一相粒子’ 〜。卩为為直徑1以m以上者使彎曲加工性劣化。 直經為—以上之第二相粒子之面積率係將上 :子像進行圖綱,對與基質不同之色調區域分別求出 =含該區域之最小圓之直徑,將其作為 搜。而且,將直徑ίμιη以上之第二相粒子之 觀察視野之總面積而得之值作為面積率。 *以 201137134 圖2係對本發明例2之高強度鈦銅板之壓延面進行電 解研磨後之金屬組織之實際之二次電子像之例。 平均結晶粒徑未達3 # m者由於固溶處理不足,故而局 部殘存未再結晶粒’或者殘存粗大之第二相粒子,因此存 在彎曲加工性劣化且(MBR/t)超過1 〇之情況。若平均結 晶粒徑超過1 5 // m ’則存在有助於強度之晶界減少,拉伸強 度成為未達950MPa之情況。為了穩定地獲得950MPa以上 之拉伸強度、及(MBR/t) $ 0.5 ’更佳為將結晶粒徑設為3 〜12 // m。 另外’晶粒之縱橫比表示材料之加工度,縱橫比越高, 加工.度亦越高。因此,若晶粒之縱橫比未達1 .丨.,則存在拉 伸強度成為未達950MPa之情況。另一方面,若晶粒之縱橫 ώ超過2.0,則存在加工變得過度而使彎曲加工性劣化, (MBR/t)超過1.0之情況。為了可穩定地獲得95〇Mpa以 上之拉伸強度、及(MBR/t) $ 1 .〇,更佳為將晶粒之縱橫 比設為1.2〜1.6。 另外,若直徑超過l"m之第二相粒子之面積率超過 0.2% ’則粗大之第二相粒子存在於組織中,因此存在彎曲 加工性劣化,(MBR/t )超過1 .〇之情況。 為了穩定地獲得(MBR/t) $1.〇,更佳為直徑超過i 之第二相粒子之面積率為〇·ι 6〇/0以下。 繼而’對本發明之高強度鈦銅板之製造方法進行說明。 本發明之高強度鈦銅板之製造方法係將含有2 5〜4· 〇 質量°/。之Ti且其餘部分由Cu及不可避免之雜質所構成之缚 201137134 塊,依序進行熱軋、冷軋、m& ^ 固洛處理、時效處理、加工度 為8〜25%之時效後冷軋。 再者’本發明中,a '固〉谷處理與時效處理之間並不進 行冷軋。其原因在於,若孢> #人Α 右進仃該冷軋,則雖然拉伸強度稍 有增加’但彎曲加工性劣化。 鎮塊可將上述組成之紝# Λ ^ 取 < 材枓 >谷解及鑄造,製造成例如厚 度為1〇0〜3〇〇匪之•錠。為了防止鈦之氧化損耗,較佳為 於真空中或者惰性氣體環境中進行溶解及鑄造。繼而,可 將鑄塊例如於8 5 0〜1 〇 〇 〇。广τ λ丸, WUUC下加熱3〜24小時左右,進行熱 軋直至3〜30mm之厚度。 固吟處理較佳為使用連續退火爐進行。若於〜 :進行5 5G秒之固溶處理,則可將上述平均結晶粒徑 調1為3〜15 "m。此處,即便在固溶處理後進行時效後冷 車平句、。SB粒徑亦幾乎無變化,因此只要以m ίϋ ,,平均結晶粒徑成為3〜15 " m之方式調整固溶處理條件 即可。再者,若進行時效後冷軋,則與剛固溶處理後相比, 晶粒之縱橫比改變。 於固/合處理溫度未達920°C或者固溶處理時間未達5秒 之It形時’固溶處理不&,部分殘存未再結晶粒,因此存 在以下傾向:變得難以將平均結晶粒徑調整為以上, 並且變得難以將直徑超過1 # m之第二相粒子之面積率調整 為2 以下。其結果為,存在所得之高強度鈦銅板之彎曲 =工性劣化,.(_")超過!.〇之情況。另-方面,於固 '分處理溫度超過1 〇5〇°C,或者固溶處理時間超過50秒之情 201137134 形時,存在固溶處理變得過度而使結晶過 以將平均結晶粒徑調整為15…下之傾向。件難 亦可”溶處理之前,進行複數次預備之固溶處理。 預之:冷處理之條件並無特別限定。於進行複數次 之固溶處理之情料’可於各固溶處理之間進行冷乾。 時效處理較佳為使用批次退火爐進行。.較佳為於38〇 〜480 C下進行3〜2G小時之時效處理。於時效處理溫度未 達38〇t或者時效處理未達3小時之情形時,存在由於時效 不足而未生成充分之析出物(有助於強度提高之CUB或者 CwTi之微細粒子)’而有變得難以達成95〇Μρ&以上之拉伸 強度之傾向。另一方面,於時效處理溫度超過48〇。〇,或者 時效處理超過2G小時之情形時,存在由於過時效而使析出 物粗大化,拉伸強度成為未達95〇MPa,並且(MBR/t)超 過1.0之情況。 日τ效後冷軋之加工度係設為8〜2 5 %。若力σ.工度未達 8% ’則拉伸強度成為未達950MPa,並且〇.2%安全限應力 未達到拉伸強度之0.9倍以上。另一方面,若加工度超過 25% ’則彎曲加工性差,(MBR/t)超過1 .〇。 為了可穩定地獲得95OMPa以上之拉伸強度、及 (MBR/t ) $ 1.0 ’且0.2%安全限應力穩定地達到拉伸強度 之0.9倍以上,更佳為將加工度設為1 〇〜2 〇 〇/。。 為了實現彈性極限值之改善,可於時效後冷軋之後進 行去應變退火》去應變退火可使用批次退火爐或者連續退 火爐而進行。於批次退火爐中,將材料於200〜700。(:之加 π 201137134 熱爐中保持〇·5〜Η小時。於批次退火爐之溫度未達20(rc 或者保持時間未達小時之情形時,難以充分改善彈性極 限值。於批次退火爐之溫度超過·。c,或者保持時間超過 1 5 j時之情形時,拉伸強度會下降。 另一方面,於連續退火爐中,將材料於3〇〇〜600。〇之 加熱爐t保持.秒、。於連續退火爐之溫度未達· c或者保持時間未達1〇秒之情形時,難以充分改善彈性極 限值。於連續㉟火爐之溫度超㊣_°c,或者保#時間超過 1000移之情形時,拉伸強度下降。 再者,亦可於上述各步驟之間適宜進行用以去除表面 之氧化皮膜之研削、研磨、珠粒喷擊酸洗等步驟。 實施例 以下將本發明之實施例與比較例一起列出,但該些實 施例係為了更充分地理解本發明及其優點而提供者,並非 用於限定發明。 於真空溶解爐中溶解電解銅,以表1、表2所示之比例 添加Tl及其他元素(表1、表2之副成分)。將該炫融金屬 進行鑄造,獲得厚度為15〇mm、寬度為6〇〇mm、長度為 6000mm之長方體之鑄錠。將該鑄錠於95(Γ(:下加熱3小時, 藉由熱軋而製成厚度為10mmi熱軋板。藉由平面切削而去 除皮膜後,以中間冷軋、固溶處理、時效及時效後冷札之 順序進行加工,獲得表1、表2所示之厚度之板試料。 —一部分之試料,於時效後冷軋之後,於批次退火爐中 貫施300C、3小時之去應變退火,或者於連續退火爐中進 12 201137134 行500°C、1 〇秒之去應變退火。 對時效後冷軋之後(若為經去應變退火者,則為去應 隻退火後)之试料進行以下之特性評價。 _ ^ (拉伸強度、0·2%安全限應力) 以拉伸方向與壓延方向平行之方式Μ吏用壓製機製 作JIS13B號試驗片。依據JIS_Z2241進行該試驗片之拉伸 試驗,測定壓延平行方向之拉伸強度以及〇2%安全限應力。 (彎曲加工性) 依據JIS-H3130,進行Badway (彎曲軸與壓延方向為 同一方向)之W彎曲試驗’測定不產生斷裂之最小半徑 (MBR)與板厚⑴之比(MBR/t)值。試料之寬度係設 為 10mm 〇 (彈性極限值) 藉由JIS-H3 130所規疋之力矩式試驗,測定與壓延方向 平行之方向之彈性極限值。 (平均結晶粒徑及縱橫比) 藉由機械研磨將試料之與壓延方向平行之剖面(圖i 之S)精加工成鏡面後,藉由使用水(1〇〇mL) ( 5g) -HC1 (l〇mL)水溶液之蝕刻,使晶界出現,使用光 鏡拍攝組織照片。於組織照片上,於厚度方向T任意拉3 條直線,求出由直線切斷之晶粒之個數,將直線之長度除 以晶粒之個數而得之值設為a。同樣,於壓延方向L任意拉 3條直線’求出由直線切斷之晶粒之個數度 以晶粒之個數而得之值設為卜而且,將(…)/2=; 13 201137134 為平均結晶粒徑。另外’將b/a之值作為晶粒之縱橫比。 (第二相粒子) 將試料之壓延面進行電解研磨(電解液:水(25〇mL ) +磷酸(125mL) +尿素(2.5g) +乙醇(125mL) +丙醇 (25mL ) ’ 12A,1分鐘)後,使用場發射型掃描電子顯微 鏡(FE-SEM,曰本FEI公司製造之型號XL3〇SFEG ),以 75.0倍之倍率,改變G.G17mm22視野之二次電子像視野而 觀察12個位置。其後,使用圖像分析裝置,將觀察視野之 濃淡之明度以臨限值60進行二值仆铋,蚪咖坡餅全 # π —值化後,對與基質色調不同 之區域分別求出包含m 山c a „哀£域之最小圓之直徑,將其作為 二相粒子之直徑。而且骆古 叨且將直從Um以上之第二相粒子 合計面積除以觀察視野之缺而接& 见野之總面積而得之值作為面積 將所得之結果示於表丨〜表4。 14 201137134 【1<〕 α ΐ 4 < ί< η i 300°C><3h 500°C><10s 魂 m 時效後冷軋 加工度(%) ^T) «ο «ο in (Ν ^Τί (Ν <Ν ι〇 <Ν <Ν οο Ο »n <N v〇 i〇 ^T) r-< yrt «ο <Ν <Ν (Ν o o in i〇 時效處理 時間(h) to <η 00 οο 00 00 00 m f-H m »-Η ΓΛ m »·"< *n Wi «Ο Ό yn o o ΓΟ r-H cn m 溫度(°C ) Ο CO 寸 寸 ο 寸 沄 ο $ ο ο »Τϊ 寸 Ο Ο 9 O 宕 O 寸 寸 寸 ο 00 ΓΠ ο o o 〇 寸 O 時效前冷軋 加工度(%) 难 墉 #- #. 难 #. 墉 #. 碟 m 瑞 碟 难 4ί 瑞 固溶處理 時間(s) (N (S <Ν <s 00 <Ν r〇 ν〇 as (Ν m v〇 m o Ο co T—^ r"H 卜 卜 卜 1··^ v〇 v〇 r"i CO m 溫度(°c) o o ο ο Ο ο ο ο ο ο ο ο Ο ο ο ο ο ο Ο νη Ον ο in 〇\ O »r> 〇\ o Os ο tN Os o s ο ο ο ο Ο ο Ο 〇\ 〇 On ο to ON o o o o o 〇 o o o O o 時$ o o ο ο ο 1—^ ο ο ο S ο g ο ο ο <Ν Ο Ο Ο ir> T-H 〇 w-> o w-> r*M o o o o o ο ο ο ο ο ο g ο g Ο g o <N o (N o o d o o 0.3Cr 0.10 成分(mass%) 副成分 1 I 1 1 1 J I I I 1 1 1 1 1 1 I I 1 1 1 1 1 0.2Fe 0.3C〇 卜 (N »-Η CO CN ΓΟ 00 ΓΟ (Ν cn ο ΓΟ ο Γ〇 cn σ\ CN rn ΓΟ ΓΟ ΓΟ o rn o rn <Ν ΓΟ σ\ CN Ο ΓΟ <Ν CO (Ν ΓΛ 〇 CO 00 CN 00 (N <N ro cn CO r-^ fN m 寸 ι〇 ν〇 卜 00 Os Ο t-H <N r-H ΓΟ 2 t^j 00 as 宕 (N <N CO (N ir> (N Ό (N / 僉S军 - 201137134 【3<】 i <: % 碟 磯 m 磯 時效後冷軋 加工度(%) r-H r-H Ο CN r-H r—^ <n ο 時效處理 時間(h) m T—^ ΓΛ 00 ο Ο ro ΓΟ VO CO m |溫度(°c) | ο 寸 寸 ο Ο Ο ο ο 寸 〇 yn m Ο 時效前冷軋 1加工度(%) I #. #. 难 #- 碟 #. (Ν »-Η 固溶處理 時間(S) m ro ο νο (Ν 00 ro ο 〇 卜 卜 \〇 ro I溫度(°c) | Ο ο Ο Ο ο Ο Ο «Ο α\ Ο yn σ\ ο Ον ο 〇 <7\ 〇 〇 1—Η 〇 〇 ο ο Ο »η Ον 板厚(mm) ο Ο ο ο 00 ο »~Η Ο ο Ο Ο un Ο 〇 m 〇 CN <ό CN d ο ο Ο 成分(mass%) 副成分 I 1 I 1 1 1 I 1 I 1 1 1 CO CN <Ν ΓΛ 〇\ (Ν α\ CN rn Ο ΓΟ (N rn Ο ΓΟ C\ CN ro 1-Η ΓΟ 〇 f-H CN cn 寸 ν〇 卜 00 〇 1-Η (Ν / 91 201137134BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a titanium copper plate and a method of manufacturing the same, and to a titanium copper plate suitable for a conductive spring material of a connector, a terminal, a relay, a switch, etc., and a manufacturing thereof method. [Prior Art] Materials that require electrical conductivity and elasticity of various terminals, connectors, relays, switches, etc. of electronic equipment, use low-cost brass when the manufacturing cost is important, and use phosphor bronze steel when emphasizing elasticity. Use white copper when emphasizing flexibility and resistance. However, in recent years, with the weight reduction, thinning, and miniaturization of electronic equipment and parts thereof, it is difficult to sufficiently increase the strength of these materials, and thus the demand for so-called high-grade springs such as titanium copper has increased. The titanium copper specified in JIS Alloy No. C1990 is produced by subjecting the solution to cold rolling after the solution treatment, followed by aging treatment. In the solution treatment, the coarse Cu_Ti compound formed during casting or hot rolling is dissolved in the Cu matrix, and the Cu precursor is recrystallized to adjust the crystal grain size of the recrystallized grains. The fine particles of ChTi or CwTi are precipitated during the aging treatment, and the fine particles contribute to the improvement of the tensile strength, the safety limit stress, and the elastic limit value. In addition, the demand for higher strength of materials and the like has been further tightened, and the manufacturing process of titanium and copper has been continuously improved. For example, there is reported a technique of further performing cold rolling by solution treatment, cold rolling, and aging treatment of titanium copper to have high tensile strength and high safety limit stress, and to improve bending workability (Patent 201137134) Literature 1). [Patent Document 1] Japanese Patent Laid-Open Publication No. 2004-95-87. SUMMARY OF THE INVENTION However, as a result of research conducted by the present inventors, it has been found that in the case of titanium copper described in Patent Document ^, the strength is high, but the bending property is improved. insufficient. As described above, titanium copper which is suitable for a small connector has been developed which is improved in strength and bending workability. That is, the present invention has been made to solve the above problems, and an object of the invention is to provide a high-strength titanium copper plate excellent in strength and f-workability and a method for producing the same. '#凹》谷戚理傻 In order to achieve daily special effects and cold consumption, the strength is increased, and the coarse second phase particles are reduced, thereby obtaining excellent strength and bending workability. That is, the high-strength titanium copper plate of the present invention contains 2 5 to 4 % by mass of the remainder of the butt * Cu to be avoided (4), and the tensile strength of the strong Pa is above 〇. 2% safety limit stress is tensile strength After 9 times:: and when the bending axis is parallel to the rolling direction, the ratio of the minimum bending radius (1) of the bending thickness (1) is not generated when the W f curve test is performed (MBR/t ) is preferably 1.0 or less β V 』, when observing the metal structure parallel to the rolling direction and the thickness direction, the average crystal grain size is 3 to ° 1.1 to 2.0, and when the Guan Fujii; Xihua both Um, crystal The aspect ratio of the particles is the area ratio of the second phase particles of the metal structure of the field surface of the field and the 压~〇2%. Preferably, when the (MBR/t) is a metal structure of a profile of 〇5 or less and parallel to the rolling direction and the thickness direction of the 201137134, the aspect ratio of the crystal grains is 1 · 2 to 1.6 ′. When the metal structure of the calendering surface is observed, the area ratio of the second phase particles exceeding the diameter is 0 to 0.16%. Preferably, it is one selected from the group consisting of Ag, B, Co, Cr, Fe, Mg, Mn, Mo, Nb, Ni, P, Si, V, and Zr in a total amount of 〇~〇_5 mass%. Kind or more than two. The plate thickness is preferably 0.15 mm or less. The method for producing a high-strength titanium-copper plate of the present invention is a method for producing the high-strength titanium-copper plate described above, which comprises hot-rolling an ingot containing 2.5 to 4.0% by mass of Ti and the remainder consisting of Cu and unavoidable impurities. , cold rolling, solution treatment, aging treatment, processing degree of 8~25% after aging and cold rolling. Preferably, the solution treatment is carried out at 92 〇 to 10 ° C for 5 to 50 seconds, and the aging treatment is carried out at 380 to 48 (TC for 3 to 20 hours). Preferably, after the above aging. After cold rolling, the strain relief annealing is carried out at 2 to 700 ° C for 5 to 15 hours or at 1 to 1000 seconds for 3 to 1000 seconds. In the present invention, a high-strength titanium copper plate according to an embodiment of the present invention and a method for producing the same are described below. Unless otherwise specified, it means % by mass. 'In electronic parts such as connectors, the contact pressure of the electrical contact is obtained by imparting j y. deformation to the copper alloy strip. If it is bent, it is generated inside the steel alloy 201137134. If the stress exceeds the safety limit stress of the copper alloy, plastic deformation (sag) will occur on the steel alloy, and the contact pressure will decrease. Therefore, the higher the safety limit stress of the material, the higher the contact pressure, that is, the elasticity. On the other hand, the material The higher the tensile strength, the lower the bending workability. Therefore, it is necessary to achieve a higher safety limit stress (0.9 times or more of the tensile strength) with the same tensile strength. (4) Required for the connector The elastic strength of the material is increased by the height of the safety limit stress in terms of tensile strength: According to the above, the size, morphology of the titanium-copper plate and the second phase particles (Cu_Ti) The relationship between the state of the compound and the strength and the curvature of the spine was investigated. As a result, it was found that aging and cold rolling were sequentially performed after the solution treatment, and the strength was increased, and the coarse second phase particles were reduced. This results in higher strength and bending workability. Specifically, according to the following composition and other regulations, the high-strength titanium copper plate of the present invention has the following characteristics: tensile strength of 95 〇 MPa or more, 〇 2% safety limit stress It is 9 times or more of the tensile strength, and when the w bending test is performed in such a manner that the bending axis is parallel to the rolling direction, the ratio of the minimum odd radius (MBR) to the thickness (t) which does not cause the fracture (MBR/t) ) is 1 0 or less. This can be used to determine the elasticity and bending workability required for small electronic parts, for example, preferably having a tensile strength of 10 MPa or more and (MBR/t) of 0.5 or less, and more preferably (MBR/t) is 〇.2 or less. 'Continues' to explain the composition and other regulations of the high-strength titanium-copper plate of the present invention. 201137134 The T! concentration is set to $2 5 to 4 〇 mass%. Titanium-copper is fixed by solid The solution is dissolved to dissolve the solid solution in the Cu matrix, and the fine precipitates are dispersed in the alloy by aging treatment, thereby improving the strength and the electrical conductivity. The concentration of the right Τ1 is less than 2.5% by mass. The precipitation is insufficient. 'The tensile strength of 95 OMPa or more cannot be obtained. On the other hand, if the Ti concentration exceeds 4.0% by mass', the f-workability is deteriorated. (MBR/〇 exceeds 1_0 〇 If the concentration is set to 2· From 9 to 3.4% by mass, it is preferable to stably obtain a tensile strength of 950 MPa or more and (MBR/t) of 〇 or less. Further, it is selected from the group consisting of Ag, B, C〇, Cr, Fe, Mg, Μη, Mo, Nb, Ni, P, Si, v, and Zr in a total amount of 〇 0.5% by mass. One type or two or more types can further increase the tensile strength. The total content of the elements may be 〇, that is, the elements are not included. On the other hand, when the total content of these elements exceeds 0.5% by mass, the bending workability deterioration (MBR/t) exceeds 1. More preferably, one type or two or more types of the above elements are contained in an amount of 0.05 to 0.4% by mass in total. (2) Thickness of the plate The thickness of the high-strength titanium copper plate of the present invention is preferably 〇丨5 mm or less. The reason for this is that the thinner the thickness of the high-strength titanium-copper plate of the present invention is, the more the bendability is improved, and the value of (MBR/t) tends to be smaller. When the thickness is 0.15 mm or less, the thickness is easily made. (MBR/t) is below i 〇. A better plate thickness is 0.05. to 0.12 mm. 201137134 (3) Grain and structure In order to achieve the above characteristics, it is preferable to observe the metal structure of the cross section parallel to the rolling direction and the thickness direction. The average crystal grain size is 3 to ^ The aspect ratio of the crystal grains is U~ 2.Q, and when observing the metal structure of the calendering surface, the diameter exceeds i... the area ratio of the second phase particles is 〇~〇. Here, as shown in Fig. 1, a cross section parallel to the rolling direction R and the thickness direction T is denoted by . Further, the average crystal grain size is determined in the following manner. First, in the photo of the section of the section S, the three lines in the thickness direction T are pulled, and the number of the crystal grains cut by the straight line is obtained, and the value of the straight line is divided by the number of the crystal grains. Set to a. Similarly, in the rolling direction [any three straight lines are drawn, the number of crystal grains cut by a straight line is determined, and the value obtained by dividing the length of the straight line by the number of crystal grains is b. Further, (& + & ) ο , the value is used as the average crystal grain. In addition, the value of b/a is taken as the aspect ratio 2 P of the crystal grain (L 0 second phase particle means that the calendering surface is subjected to electrolytic polishing when observed: : a part of a metal image of a secondary electron image that differs from the matrix (that is, a composition that differs in soil quality). This portion is a portion that is not left in the electrolytic polishing, and indicates that Cu, such as ChTi or WTi, is suppressed. The one-phase particle ' 〜 卩 is a diameter of 1 or more, and the bending workability is deteriorated. The area ratio of the second phase particle of the above is the top: the sub-image is plotted, and the matrix is different from the matrix. The area of the hue is determined as the diameter of the smallest circle containing the area, and this is used as the search. Moreover, the value obtained by the total area of the observation field of the second phase particle of the diameter ίμιη or more is taken as the area ratio. *201137134 Fig. 2 An example of an actual secondary electron image of a metal structure obtained by electrolytically grinding a rolled surface of a high-strength titanium-copper plate of Example 2 of the present invention. If the average crystal grain size is less than 3 #m, the solid solution treatment is insufficient, and thus the local residual remains. Recrystallized grain' or residual In the case of the coarse second phase particles, the bending workability is deteriorated and (MBR/t) exceeds 1 〇. If the average crystal grain size exceeds 15 // m ', there is a decrease in grain boundary which contributes to strength, and stretching The strength is less than 950 MPa. In order to stably obtain a tensile strength of 950 MPa or more, and (MBR/t) $0.5', the crystal grain size is preferably set to 3 to 12 // m. The ratio indicates the degree of processing of the material, and the higher the aspect ratio, the higher the processing degree. Therefore, if the aspect ratio of the crystal grains is less than 1. 丨., the tensile strength becomes less than 950 MPa. When the aspect ratio of the crystal grains exceeds 2.0, the processing becomes excessive and the bending workability is deteriorated, and (MBR/t) exceeds 1.0. In order to stably obtain a tensile strength of 95 〇Mpa or more, and (MBR/ t) $1.〇, more preferably, the aspect ratio of the crystal grains is set to 1.2 to 1.6. In addition, if the area ratio of the second phase particles having a diameter exceeding l"m exceeds 0.2%', the coarse second phase particles are present. In the case of the structure, the bending workability is deteriorated, and (MBR/t) exceeds 1. It is preferable to obtain (MBR/t) $1.〇, more preferably, the area ratio of the second phase particles having a diameter exceeding i is 〇·ι 6〇/0 or less. Then, the method for producing the high-strength titanium copper plate of the present invention will be described. The method for manufacturing the high-strength titanium copper plate of the present invention is to heat-roll and cool the block of 201137134 which is composed of Cu and the unavoidable impurities, and contains the Ti and the remaining part of the Ti. Rolling, m& ^ Guluo treatment, aging treatment, processing degree is 8~25% after aging and cold rolling. Further, in the present invention, cold rolling is not performed between the a 'solid> grain treatment and the aging treatment. The reason for this is that if the spores are left cold, the tensile strength is slightly increased, but the bending workability is deteriorated. The town block can be made into an ingot of, for example, a thickness of 1〇0 to 3〇〇匪 by taking the above composition Λ# Λ ^ and < material 枓 > In order to prevent oxidation loss of titanium, it is preferred to carry out dissolution and casting in a vacuum or in an inert gas atmosphere. Then, the ingot can be, for example, 8 5 0 1 1 〇 〇 〇. The wide τ λ pill, heated under WUUC for about 3 to 24 hours, is hot rolled to a thickness of 3 to 30 mm. The solidification treatment is preferably carried out using a continuous annealing furnace. If the solution treatment is carried out at ~5 for 5 5 Gsec, the average crystal grain size can be adjusted to 3 to 15 " m. Here, even after the solution treatment, the aging is performed after the aging. The SB particle size is also almost unchanged, so that the solution treatment conditions can be adjusted so that the average crystal grain size is 3 to 15 " m by m ϋ . Further, if the cold rolling is performed after aging, the aspect ratio of the crystal grains is changed as compared with the case after the solution treatment. When the solid/combination treatment temperature is less than 920 ° C or the solution treatment time is less than 5 seconds in the It shape, the solution treatment does not occur, and some of the remaining crystals are not recrystallized. Therefore, there is a tendency that it becomes difficult to average crystallize. The particle diameter is adjusted to be equal to or higher, and it becomes difficult to adjust the area ratio of the second phase particles having a diameter exceeding 1 #m to 2 or less. As a result, there is a bending of the obtained high-strength titanium copper plate = deterioration of workability, and (_") exceeds! The situation of 〇. On the other hand, when the solid solution temperature exceeds 1 〇 5 ° ° C, or the solution treatment time exceeds 50 seconds, the solution treatment becomes excessive and the crystallization proceeds to adjust the average crystal grain size. The tendency to be 15... It is difficult to "solve" a plurality of preparative solution treatments before the dissolution treatment. Predetermination: The conditions of the cold treatment are not particularly limited. In the case of performing multiple solution treatments, it can be carried out between each solution treatment. The aging treatment is preferably carried out using a batch annealing furnace. Preferably, the aging treatment is carried out at 38 〇 to 480 C for 3 to 2 G hours. The aging treatment temperature is less than 38 〇t or the aging treatment is less than 3 In the case of an hour, there is a tendency that a sufficient precipitate (a fine particle of CUB or CwTi which contributes to an increase in strength) is not formed due to insufficient aging, and it tends to be difficult to achieve a tensile strength of 95 〇Μ ρ or more. On the one hand, when the aging treatment temperature exceeds 48 〇, or when the aging treatment exceeds 2 G hours, the precipitates are coarsened due to overaging, and the tensile strength is less than 95 MPa, and (MBR/t) When the ratio exceeds 1.0. The processing degree of cold rolling after day-effect is set to 8~2 5 %. If the force σ. working degree is less than 8% ', the tensile strength becomes less than 950 MPa, and 〇.2% safety limit The stress does not reach 0.9 times the tensile strength On the other hand, if the degree of work exceeds 25% ', the bending workability is poor, and (MBR/t) exceeds 1. 〇. In order to stably obtain a tensile strength of 95 OMPa or more, and (MBR/t) $ 1.0 ' and 0.2 The % safety limit stress stably reaches 0.9 times of the tensile strength, and more preferably the workability is set to 1 〇~2 〇〇/. In order to achieve the improvement of the elastic limit value, the strain can be performed after the aging after cold rolling. Annealing: Strain annealing can be carried out using a batch annealing furnace or a continuous annealing furnace. In a batch annealing furnace, the material is placed at 200 to 700. (: Add π 201137134 heat furnace to keep 〇·5~Η hours. When the temperature of the batch annealing furnace is less than 20 (rc or the holding time is less than the hour, it is difficult to sufficiently improve the elastic limit value. When the temperature of the batch annealing furnace exceeds ··c, or the holding time exceeds 1 5 j On the other hand, in the continuous annealing furnace, the material is kept at 3〇〇~600. The heating furnace t is kept for .second. The temperature in the continuous annealing furnace is not up to c or the holding time. When it is less than 1 second, it is difficult to fully improve The limit value of the tensile strength decreases when the temperature of the continuous 35 furnace exceeds _°c, or when the time exceeds 1000. Further, it is also suitable to remove the surface between the above steps. Steps of grinding, grinding, bead blasting, etc. of the oxide film. EXAMPLES Hereinafter, the examples of the present invention are listed together with the comparative examples, but the examples are provided to more fully understand the present invention and its advantages. It is not intended to limit the invention. The electrolytic copper is dissolved in a vacuum melting furnace, and Tl and other elements (the subcomponents of Tables 1 and 2) are added in the ratios shown in Table 1 and Table 2. The molten metal is cast. An ingot of a rectangular parallelepiped having a thickness of 15 mm, a width of 6 mm, and a length of 6000 mm was obtained. The ingot was heated at 95 (3 hours, and hot rolled to a hot rolled sheet of 10 mmi. After removing the film by plane cutting, the intermediate cold rolling, solution treatment, aging and timeliness The order of the post-cold processing was performed to obtain the plate samples of the thicknesses shown in Tables 1 and 2. - A part of the samples were subjected to 300 C for 3 hours of strain-annealing in a batch annealing furnace after cold rolling after aging. Or in a continuous annealing furnace, enter 12 201137134 rows of 500 ° C, 1 〇 second strain relief annealing. After aging, after cold rolling (if the strain relief annealing, then only after annealing) samples Evaluation of characteristics _ ^ (tensile strength, 0. 2% safety limit stress) JIS 13B test piece was produced by a press machine in a direction parallel to the rolling direction. The tensile test of the test piece was carried out in accordance with JIS_Z2241. The tensile strength in the parallel direction of rolling and the 安全2% safety limit stress were measured. (Bending workability) According to JIS-H3130, the W bending test of Badway (the bending axis and the rolling direction are the same direction) was carried out to determine the minimum of no fracture. Radius (MBR) and Plate thickness (1) ratio (MBR/t). The width of the sample is set to 10 mm 弹性 (elastic limit value). The elastic limit value in the direction parallel to the rolling direction is measured by the torque test according to JIS-H3 130. (Average crystal grain size and aspect ratio) The surface of the sample parallel to the rolling direction (S in Fig. i) is finished into a mirror surface by mechanical polishing, and then water (1 〇〇 mL) (5 g) - HC1 is used. (l〇mL) etching of the aqueous solution to cause the grain boundary to appear, and photographing the tissue using a light microscope. On the tissue photograph, three straight lines are drawn in the thickness direction T, and the number of crystal grains cut by the straight line is obtained. The value obtained by dividing the length of the straight line by the number of crystal grains is set to a. Similarly, three straight lines are drawn in the rolling direction L, and the number of crystal grains cut by the straight line is determined by the number of crystal grains. The value obtained is set to be, and (...)/2=; 13 201137134 is the average crystal grain size. In addition, the value of b/a is taken as the aspect ratio of the crystal grains. (Second phase particles) The calendering surface of the sample Electrolytic grinding (electrolyte: water (25 〇mL) + phosphoric acid (125mL) + urea (2.5g) + ethanol (125mL) + propanol (25mL After '12A, 1 minute, a field emission type scanning electron microscope (FE-SEM, model XL3 〇SFEG manufactured by Sakamoto FEI Co., Ltd.) was used to change the secondary electron image field of view of G.G17mm22 field of view at a magnification of 75.0 times. Then, 12 positions were observed. Thereafter, using the image analysis device, the brightness of the observed field of view was double-valued with a threshold value of 60, and the value of the 蚪咖坡饼# π-valued was different from the matrix color. The diameter of the smallest circle containing the m-mountain area is determined as the diameter of the two-phase particle. Moreover, Luo Guyu will divide the total area of the second phase particles above Um by the number of observation fields and the value obtained by seeing the total area of the field as the area. The results obtained are shown in Tables to Table 4. 14 201137134 [1<] α ΐ 4 <ί< η i 300 °C><3h 500 °C><10s soul m after cold rolling processing (%) ^T) «ο «ο in (Ν ^Τί (Ν <Ν ι〇<Ν <Ν οο Ο »n <N v〇i〇^T) r-< yrt «ο <Ν <Ν (Ν oo in i〇 aging Time (h) to <η 00 οο 00 00 00 m fH m »-Η ΓΛ m »·"< *n Wi «Ο yn yn oo ΓΟ rH cn m Temperature (°C) Ο CO 寸 inch ο inch 沄ο $ ο ο »Τϊ Ο Ο O 9 O 宕O inch inch ο 00 ΓΠ ο oo 〇 inch O aging before cold rolling processing (%) difficult #- #. 难#. 墉#. 碟 m 瑞碟难4ί固Solution treatment time (s) (N (S < Ν <s 00 <Ν r〇ν〇as (Ν mv〇mo Ο co T-^ r"H 卜卜卜1··^ v〇v 〇r"i CO m temperature (°c) oo ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο Ο O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O ο Ο ο Ο 〇\ 〇On ο to ON ooooo 〇ooo O o when $ oo ο ο ο 1— ^ ο ο ο S ο g ο ο ο <Ν Ο Ο Ο ir> TH 〇w-> o w-> r*M ooooo ο ο ο ο ο ο g ο g Ο go <N o (N Odoo 0.3Cr 0.10 component (mass%) Subcomponent 1 I 1 1 1 JIII 1 1 1 1 1 1 II 1 1 1 1 1 0.2Fe 0.3C〇 (N »-Η CO CN ΓΟ 00 ΓΟ (Ν cn ο ΓΟ ο cn σ\ CN rn ΓΟ ΓΟ ΓΟ o rn o rn <Ν ΓΟ σ\ CN Ο ΓΟ <Ν CO (Ν ΓΛ 〇CO 00 CN 00 (N <N ro cn CO r-^ fN m inch Ι〇ν〇卜00 Os Ο tH <N rH ΓΟ 2 t^j 00 as 宕(N <N CO (N ir> (N Ό (N / 佥S Jun - 201137134 [3<] i <: % 碟 m 时 时 冷 ( r r r r r r r r r r r r r r r r r r r r r r 00 00 00 00 00 ΓΟ 00 00 00 ο ΓΟ ΓΟ VO VO CO m | ) ο 寸 inch ο Ο Ο ο ο 〇 〇 yn m Ο Cold rolling 1 degree before processing (%) I #. #. 难#- 碟#. (Ν »-Η Solution treatment time (S) m ro ο Νο (Ν 00 ro ο 〇卜卜\〇ro I temperature (°c) | Ο ο Ο Ο ο Ο Ο «Ο α\ Ο yn σ\ ο ν ο 〇<7\ 〇〇1—Η ο ο Ο »η Ον plate thickness (mm) ο Ο ο ο 00 ο »~Η Ο ο Ο Ο un Ο 〇m 〇CN <ό CN d ο ο 成分 component (mass%) subcomponent I 1 I 1 1 1 I 1 I 1 1 1 CO CN <Ν ΓΛ 〇\ (Ν α\ CN rn Ο ΓΟ (N rn Ο ΓΟ C\ CN ro 1-Η ΓΟ 〇fH CN cn 寸ν〇卜00 〇1-Η (Ν / 91 201137134

特性 彈性極限值(MPa) 00 (N r—H CN ο Ον m 00 JO f-H in Ον ΓΛ CN <Ν 卜 u-> ΟΟ (Ν fN <N oo o oo 寸 <N Ό s Ό <N <N v〇 CN OO v〇 <N MBR/t <0.1 <0.1 <0.1 CS ο <0.1 <0.1 •ο Ο 00 ο ο 1—^ 1 <°·11 ο Ο Ο <0.1 ο <0.1 <0.1 <0.1 <0.1 〇 <0.1 <0.1 <0.1 <0.1 <0.1 0.2%安全限應力/拉伸強 度 0.93 0.93 0.93 0.93 0.96 0.96 , 0.96 0.96 0.96 0.90 0.90 0.95 0.96 0.95 0.95 1 0.95 0.94 '0.95 0.98 0.97 0.96 0.90 0.90 0.93 0.93 0.92 0.2%安全限應力(MPa) S Os 944 958 982 1008 _1〇〇8_ 1005 1005 998 ΟΝ 00 955 990 1007 905 1017 927 907 ! 968 1030 925 <N v〇 00 CS 983 979 On Os Λ cu 4 972 1013 1032 1051 1050 1049 1045 i 1044 1040 ΓΟ Ον 967 1010 1035 1065 956 1075 CO 00 Os Os 990 1058 965 958 964 1058 1055 1085 金屬組織 /·—-N V0 屮 CT Μ ο 0.04 0.06 0.17 1 0.08 0.10 0.12 0.06 0.06 0.02 0.10 0.08 0.08 0.16 ο 0.18 0.08 o 0.04 0.12 0.18 0.10 0.04 0.06 0.10 0.10 縱橫比 1.41 00 ro 1.39 1.45 1.79 1.82 1.82 1 1-77 1.85 1 ί·20 1 1 !·23 1 1 1.56 1 00 1-^ 1.36 1.41 1.35 1.46 1.44 1.82 1.79 1.86 1.23 1.28 1.38 1.38 1.43 結晶粒徑(;am) ΓΛ (Ν 00 <Ν 〇\ 00 ν〇 00 00 οό <Ν 〇\ 〇\ σ\ 10.6 11.4 11.3 10.9 ΓΟ 14.3 CO ΓΟ 00 〇\ ro m 11.3 11.3 00 m oo 00 Ζ 1-^ (Ν m 寸 *η ν〇 00 Os ο t—^ «Ν 2 ν〇 卜 00 σ\ <N <N ίΐ 201137134 $ 彈性極限值 (MPa) in 卜 <N CN 00 <N (N (N 00 m 00 卜 v〇 VO CN CO <N m 〇\ CS CN 00 (N (N CN 寸 CN MBR/t <0.1 in r—H in L—0·—1 o ro o CN 〇 (N 0.2%安全限應力/拉伸強度 m On Ο ΓΛ Os o On 〇 ss d ON 〇 ON 〇 d ON o m OS o m ON 〇 cn as o 〇 0.2%安全限應力 (MPa) VO 00 o 1—H Os C\ 00 00 ON VO s 卜 00 00 a\ a\ s 00 V〇 00 § a\ 00 拉伸強度 (MPa) V) ΓΟ 〇\ <N 00 o r-H 〇 s 家 们 s 寸 ro 〇\ ΓΛ s v〇 00 00 CO s 00 ON 金屬組織 第二相粒子之面積率 (%) g o o VO o CN d CN d (N d o CN CN 〇 o CN (N 〇 〇 00 ro 〇 縱橫比 00 CO r-H m CO CN VD r—H CN o t-H o CN CN vq CN 結晶粒徑 (ym) 〇\ o oo 00 ro \T) ro cs oo oo v〇 in oq r-H (N 00 CO r—H r—H 6 CN m 寸 u-> VO 卜 00 OS o (N / 201137134 如表1〜表4所明示,於發明例1〜26之情形時,拉伸 強度為950MPa以上,0.2%安全限應力為拉伸強度之〇 9 p 以上’(MBR/t )成為1 .〇以下,強度與彎曲加工性均優異。 尤其發明例2〜7、1 2、14、2 0、2 4〜2 6之拉伸強度為 lOOOMPa以上’ 0.2%安全限應力為拉伸強度之0.9倍以上, (MBR/t)成為0.5以下,強度與彎曲加工性均優異。 於Ti濃度未達2.5%之比較例1之情形時,拉伸強度成 為未達950MPa。另一方面,於Ti濃度超過4.0%之比較例 2之情形時,彎曲加工性下降,(MBR/t)超過1 .〇。 於板厚超過0.15 mm之比較例3之情形時,彎曲加工性 下降,(MBR/t)超過1.〇。 於時效後冷軋之加工度未達8%之比較例4之情形時, 晶粒之縱橫比成為未達丨·卜拉伸強度下降至未達95〇MPa, 0.2%安全限應力成為未達拉伸強度之ο”倍。另一方面,於 時效後冷軋之加工度超過2 5 %之比較例5之情形時,縱橫 比超過2.0,彎曲加工性下降,(MBR/t)超過i 〇。 於固溶處理溫度未達為920°C之比較例ό之情形時,結 曰曰粒彳二未達3 y m,直徑超過1 ν m之第二相粒子之面積率 超過0.2%,彎曲加工性下降,(MBR/t)超過ι 〇。另一方 面,於固溶處理時間超過5〇秒之比較例7之情形時,結晶 粒徑超過15 // m ’拉伸強度下降至未達95〇Mpa。 於板厚超過〇·15_,並且固溶處理溫度未達920°C, 時效後冷軋之加工度超㉟25%之比較例8之情形時,直徑 超過1/zm之第一相粒子之面積率超過〇篇,縱橫比超過 19 201137134 2_〇。因此彎曲加工性下降,(MBR/t)超過i.o。 於時效處理溫度未達3 80。(:之比較例9之情形時,拉伸 強度下降至未達950MPa ^另一方面,於時效處理溫度超過 480 °C之比較例10之情形時,拉伸強度下降至未達 950MPa,並且彎曲加工性下降,(MBR/t)超過1_0。 於除時效後冷軋以外,在固溶處理與時效處理之間進 行加工度為20%之時效前冷軋之比較例11之情形時,彎曲 加工性下降’(MBR/t)超過1 .〇。再者已知,比較例11係 除了進行時效前冷軋以外,以與發明例2相同之條件製造 者’拉伸強度稍有(20MPa )增加,但導致彎曲加工性之下 降。 於除時效後冷軋以外’在固溶處理與時效處理之間進 订加工度為11 ·2〇/〇之時效前冷軋之比較例12之情形時,亦 务夢rl4i J. <曲加工性下降,(MBR/t )超過1 〇。再者已知,比較例 1 2係除了進行時效前冷軋以外,以與發明例11相同之條件 製造者’拉伸強度稍有(UMPa)增加,但導致彎曲加工性 之下降。 另外可知,比較例1 2之總加工度({(固溶處理時之板 厚)—(最終板厚)} / (固溶處理時之板厚xl〇〇))為2〇%, 即便與總加工度相同之發明例12相比較,彎曲加工性亦劣 化。 再者認為’比較例11及12為了進行時效前冷軋而於時 政處理時促進析出物之粗大化,直徑超過1 "m之第二相粒 子之面積率超過0.2%,彎曲加工性劣化。 201137134 【圖式簡單說明】 圖1係表示與壓延方向及厚度方向平行之剖面的示意 圖。 圖2係表示將本發明之高強度鈦銅板之壓延面進行電 解研磨後之金屬組織之二次電子像的圖。 【主要元件符號說明】 R 壓延方向 S 剖面 T 厚度方向 21Characteristic elastic limit value (MPa) 00 (N r-H CN ο Ον m 00 JO fH in Ον ΓΛ CN <Ν 卜 u-> ΟΟ (Ν fN <N oo o oo inch <N Ό s Ό &lt ;N <N v〇CN OO v〇<N MBR/t <0.1 <0.1 <0.1 CS ο <0.1 <0.1 •ο Ο 00 ο ο 1—^ 1 <°·11 ο Ο Ο <0.1 ο <0.1 <0.1 <0.1 <0.1 〇<0.1 <0.1 <0.1 <0.1 <0.1 0.2% safety limit stress/tensile strength 0.93 0.93 0.93 0.93 0.96 0.96 , 0.96 0.96 0.96 0.90 0.90 0.95 0.96 0.95 0.95 1 0.95 0.94 '0.95 0.98 0.97 0.96 0.90 0.90 0.93 0.93 0.92 0.2% safety limit stress (MPa) S Os 944 958 982 1008 _1〇〇8_ 1005 1005 998 ΟΝ 00 955 990 1007 905 1017 927 907 ! 968 1030 925 <N v〇00 CS 983 979 On Os Λ cu 4 972 1013 1032 1051 1050 1049 1045 i 1044 1040 ΓΟ 967 1010 1035 1065 956 1075 CO 00 Os Os 990 1058 965 958 964 1058 1055 1085 Metal structure /·--N V0 屮CT Μ ο 0.04 0.06 0.17 1 0.08 0.10 0.12 0.06 0.06 0.02 0.10 0.08 0.08 0.16 ο 0.18 0.08 o 0.04 0.12 0.18 0.10 0.04 0.06 0.10 0.10 Aspect ratio 1.41 00 ro 1.39 1.45 1.79 1.82 1.82 1 1-77 1.85 1 ί·20 1 1 !·23 1 1 1.56 1 00 1-^ 1.36 1.41 1.35 1.46 1.44 1.82 1.79 1.86 1.23 1.28 1.38 1.38 1.43 Crystal grain size (; Am) ΓΛ (Ν 00 <Ν 〇\ 00 ν〇00 00 οό <Ν 〇\ 〇\ σ\ 10.6 11.4 11.3 10.9 ΓΟ 14.3 CO ΓΟ 00 〇\ ro m 11.3 11.3 00 m oo 00 Ζ 1-^ ( Ν m inch*η ν〇00 Os ο t—^ «Ν 2 ν〇卜 00 σ\ <N <N ΐΐ 201137134 $ Elastic limit value (MPa) in 卜<N CN 00 <N (N ( N 00 m 00 卜v〇VO CN CO <N m 〇\ CS CN 00 (N (N CN inch CN MBR/t <0.1 in r—H in L—0·—1 o ro o CN 〇(N 0.2% safety limit stress/tensile strength m On Ο ΓΛ Os o On 〇ss d ON 〇ON 〇d ON om OS om ON 〇cn as o 〇0.2% safety limit stress (MPa) VO 00 o 1—H Os C \ 00 00 ON VO s 00 00 a\ a\ s 00 V〇00 § a\ 00 Tensile strength (MPa) V) ΓΟ 〇\ <N 00 o rH 〇s Home s inch ro 〇\ ΓΛ sv 〇00 00 CO s 00 ON Area ratio of metal phase second phase particles (%) goo VO o CN d CN d (N do CN CN 〇o CN (N 〇〇00 ro 〇 aspect ratio 00 CO rH m CO CN VD r-H CN o tH o CN CN vq CN Crystal size (ym) 〇\ o oo 00 ro \T) ro cs oo oo V〇in oq rH (N 00 CO r-H r-H 6 CN m inch u-> VO 00 OS o (N / 201137134 as shown in Table 1 to Table 4, in the case of Invention Examples 1 to 26 The tensile strength is 950 MPa or more, and the 0.2% safety limit stress is 〇9 p or more of tensile strength '(MBR/t) is 1. 〇 or less, and both strength and bending workability are excellent. In particular, the tensile strength of the invention examples 2 to 7, 1 2, 14, 2, 2, 4 to 2 6 is 100 MPa or more '0.2%. The safety limit stress is 0.9 times or more of the tensile strength, and (MBR/t) is 0.5 or less. Both strength and bending workability are excellent. In the case of Comparative Example 1 in which the Ti concentration was less than 2.5%, the tensile strength was less than 950 MPa. On the other hand, in the case of Comparative Example 2 in which the Ti concentration exceeded 4.0%, the bending workability was lowered, and (MBR/t) exceeded 1. In the case of Comparative Example 3 having a sheet thickness of more than 0.15 mm, the bending workability was lowered, and (MBR/t) exceeded 1. In the case of Comparative Example 4 in which the degree of cold rolling after aging is less than 8%, the aspect ratio of the crystal grains becomes less than 丨·· The tensile strength drops to less than 95 MPa, and the 0.2% safety limit stress becomes unreachable. On the other hand, in the case of Comparative Example 5 in which the degree of cold rolling after aging is more than 25%, the aspect ratio exceeds 2.0, the bending workability is lowered, and (MBR/t) exceeds i 〇. When the solution treatment temperature is less than 920 ° C, the area ratio of the second phase particles exceeding 2 μm in diameter is more than 0.2%, and the bending process is performed. (MBR/t) is more than ι 〇. On the other hand, in the case of Comparative Example 7 in which the solution treatment time exceeds 5 〇 seconds, the crystal grain size exceeds 15 // m 'the tensile strength drops to less than 95 〇Mpa. When the thickness of the sheet exceeds 〇·15_, and the solution treatment temperature is less than 920 ° C, and the processing degree of cold rolling after aging is over 3525%, the first phase particles having a diameter exceeding 1/zm The area ratio is more than 〇, and the aspect ratio exceeds 19 201137134 2_〇. Therefore, the bending workability is lowered, and (MBR/t) exceeds io. The treatment temperature did not reach 380. (In the case of Comparative Example 9, the tensile strength decreased to less than 950 MPa. On the other hand, in the case of Comparative Example 10 in which the aging treatment temperature exceeded 480 °C, the tensile strength decreased. It is less than 950 MPa, and the bending workability is lowered, and (MBR/t) is more than 1_0. In addition to the cold rolling after aging, a comparative example of cold rolling before aging is performed between the solution treatment and the aging treatment at 20%. In the case of 11, the bending workability decreased by '(MBR/t) exceeded 1. 再. Further, in Comparative Example 11, except that the pre-aging cold rolling was performed, the manufacturer was stretched under the same conditions as in the inventive example 2 The strength is slightly increased (20 MPa), but the bending workability is reduced. In addition to cold rolling after aging, 'the cold working between the solution treatment and the aging treatment is 11 · 2 〇 / 〇 before the aging In the case of Comparative Example 12, the dream rl4i J. <the workability of the curve was decreased, and (MBR/t) was more than 1 〇. It is also known that the comparative example 1 2 is in addition to the pre-aging cold rolling, and the invention In the same condition as in Example 11, the manufacturer's tensile strength increased slightly (UMPa), but resulted in It is also known that the total workability of Comparative Example 12 ({(sheet thickness at the time of solution treatment) - (final sheet thickness)} / (thickness at the time of solution treatment xl 〇〇)) is 2%%, the bending workability is deteriorated even in comparison with the invention example 12 of the same total workability. Further, it is considered that the comparative examples 11 and 12 promote the coarsening of the precipitate during the time treatment in order to perform the pre-aging cold rolling. The area ratio of the second phase particles having a diameter exceeding 1 " m exceeds 0.2%, and the bending workability is deteriorated. 201137134 [Simplified description of the drawings] Fig. 1 is a schematic view showing a cross section parallel to the rolling direction and the thickness direction. Fig. 2 is a view showing a secondary electron image of a metal structure obtained by electrolytically grinding a rolled surface of a high-strength titanium copper plate of the present invention. [Description of main component symbols] R Calendering direction S Section T Thickness direction 21

Claims (1)

201137134 七、申請專利範圍: 1. 一種高強度鈦銅板,其含有2.5〜4.0質量%之了1,其 餘部分係由Cu及不可避免之雜質所構成,拉伸強度為 950MPa以上,0.2%安全限應力為拉伸強度之〇 9倍以上, 並且當以彎曲軸與壓延方向平行之方式進行·w彎曲試驗 時,不產生斷裂之最小彎曲半徑(MBR )與板厚(t)之比 (MBR/t )為 1 ·〇 以下。 2. 如申請專利範圍第1項之高強度鈦銅板,其中,當觀 察與壓延方向及厚度方向平行之剖面之金屬組織時,平均 結晶粒徑為3〜15/z m,晶粒之縱橫比為hl〜2〇 ,並且 當觀察壓延面之金屬組織時,直徑超過.丨以爪之第二相 粒子之面積率為〇〜〇 2 %。 3. 如申請專利範圍第丨項之高強度鈦銅板,其中, (MBR/t)為 〇.5 以下, 曰觀察與>1延方向及厚度方向平行之剖面之金屬組織 時,晶粒之縱橫比為1 2〜丨.6,並且 田觀察壓延面之金屬組織時,直徑超過的第二相 粒子之面積率為0〜0,16%。 4.如申請專利範圍第i i 3項中任—項之高強度鈦銅 板,其中’含有合計為〇〜〇 5質量%的選自纟“、B、c〇、 Μ§ Mn、M〇、Nb、Ni、P、Si、V 及 Zr 所組成之 群中之1種或者2種以上。 5 _如申請專利簕園筮,s 乾圍弟1至4項中任一項之高強度鈦銅 板’其中,板厚為〇.l5mm以下。 22 201137134 6. —種高強度鈦銅板之製造方法,其係申請專利範圍第 1至5項中任一項之高強度鈦銅板之製造方法, 該製造方法將含有2.5〜4.0質量%之Ti且其餘部分由 Cu及不可避免之雜質所構成之鑄塊,依序進行熱軋、冷軋、 固溶處理、時效處理、加工度為8〜2 5 %之時效後冷軋。 7. 如申明專利範圍第6項所述之高強度欽銅板之製造 方法,其中,於920〜l〇5〇°C下進行5〜50秒之該固溶處理, 且於380〜480°C下進行3〜20小時之該時效處理。 8·如申請專利範圍第6或7項之高強度鈦銅板之製造方 法,其中’於該時效後冷軋之後,於2〇〇〜700。(:下進行〇 5 〜15小時之去應變退火,或者於300〜60(TC下進行1〇〜 1000秒之去應變退火。 23201137134 VII. Patent application scope: 1. A high-strength titanium copper plate containing 2.5~4.0% by mass, and the rest is composed of Cu and unavoidable impurities. The tensile strength is above 950MPa, and the safety limit is 0.2%. The stress is more than 9 times the tensile strength, and when the bending axis is parallel to the rolling direction, the ratio of the minimum bending radius (MBR) to the thickness (t) of the fracture is not generated (MBR/ t) is 1 · 〇 or less. 2. For the high-strength titanium-copper plate according to item 1 of the patent application, wherein when the metal structure of the cross-section parallel to the rolling direction and the thickness direction is observed, the average crystal grain size is 3 to 15/zm, and the aspect ratio of the crystal grains is When hl~2〇, and when the metal structure of the calendering surface is observed, the area ratio of the second phase particles exceeding the diameter of the claw is 〇~〇2%. 3. For the high-strength titanium-copper plate of the scope of the patent application, in which (MBR/t) is 〇.5 or less, 曰 observe the metal structure of the section parallel to the direction and thickness direction, and the grain When the aspect ratio is 1 2 to 丨.6, and the metal structure of the rolling surface is observed, the area ratio of the second phase particles exceeding the diameter is 0 to 0, 16%. 4. The high-strength titanium copper plate according to any one of the claims ii 3, wherein 'the total amount of 〇~〇5 mass% is selected from 纟", B, c〇, Μ§ Mn, M〇, Nb One or more of the group consisting of Ni, P, Si, V, and Zr. 5 _If you apply for a patent, you can use the high-strength titanium-copper plate of any one of the 1st to 4th. The method of manufacturing a high-strength titanium-copper plate according to any one of claims 1 to 5, which is a method for producing a high-strength titanium-copper plate, which is a method for producing a high-strength titanium-copper plate. The ingot containing 2.5 to 4.0% by mass of Ti and the remainder consisting of Cu and unavoidable impurities is sequentially subjected to hot rolling, cold rolling, solution treatment, aging treatment, and the degree of processing is 8 to 25%. 7. The method of manufacturing a high-strength copper plate according to claim 6, wherein the solution treatment is performed at 920 to 1 〇 5 ° C for 5 to 50 seconds, and The aging treatment is carried out at 380 to 480 ° C for 3 to 20 hours. 8. The system of high-strength titanium copper plate as claimed in claim 6 or 7 The method, wherein 'after the aging, after cold rolling, at 2 〇〇 to 700. (: 〇 5 to 15 hours of strain relief annealing, or 300 to 60 (TC under 1 〇 ~ 1000 seconds to strain) Annealing. 23
TW100109292A 2010-03-25 2011-03-18 High strength titanium copper plate and its manufacturing method TWI421354B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010069470A JP4761586B1 (en) 2010-03-25 2010-03-25 High-strength titanium copper plate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW201137134A true TW201137134A (en) 2011-11-01
TWI421354B TWI421354B (en) 2014-01-01

Family

ID=44597204

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100109292A TWI421354B (en) 2010-03-25 2011-03-18 High strength titanium copper plate and its manufacturing method

Country Status (5)

Country Link
JP (1) JP4761586B1 (en)
KR (1) KR101415438B1 (en)
CN (1) CN102822362A (en)
TW (1) TWI421354B (en)
WO (1) WO2011118400A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI479037B (en) * 2012-07-19 2015-04-01 Jx Nippon Mining & Metals Corp High strength titanium foil and its manufacturing method
TWI480618B (en) * 2012-10-24 2015-04-11 Jx Nippon Mining & Metals Corp Camera module and titanium copper foil

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6192916B2 (en) * 2012-10-25 2017-09-06 Jx金属株式会社 High strength titanium copper
JP5885642B2 (en) * 2012-11-15 2016-03-15 Jx金属株式会社 Camera module and titanium copper foil
US20150115442A1 (en) * 2013-10-31 2015-04-30 Infineon Technologies Ag Redistribution layer and method of forming a redistribution layer
JP5718443B1 (en) 2013-12-27 2015-05-13 Jx日鉱日石金属株式会社 Titanium copper for electronic parts
CN104372234B (en) * 2014-10-29 2017-01-11 嵊州市博纳五金机械厂 High-wear-resistance titanium-copper nickel-silicon alloy composite material and preparation method thereof
CN105149570A (en) * 2015-08-31 2015-12-16 苏州莱特复合材料有限公司 Ferronickel base antifriction powder metallurgy composite material and preparation method thereof
CN107267799B (en) * 2017-06-22 2019-03-08 安徽晋源铜业有限公司 A kind of chrome zirconium copper alloy material and preparation method thereof
CN108559859B (en) * 2018-05-15 2020-06-26 西安理工大学 High-strength conductive Cu-Ti-Ni-Si alloy and preparation method thereof
CN108642318B (en) * 2018-05-15 2020-09-25 西安理工大学 Conductive elastic Cu-Ti-Ni-Ag alloy and preparation method thereof
CN108588477B (en) * 2018-05-15 2020-06-26 西安理工大学 High-strength conductive elastic Cu-Ti-Ni-Y alloy and preparation method thereof
CN108950292B (en) * 2018-07-24 2020-07-24 西安理工大学 Conductive elastic Cu-Ti-Ni-Al alloy and preparation method thereof
CN111101016B (en) * 2020-02-26 2021-01-19 宁波博威合金材料股份有限公司 Aging-strengthened titanium-copper alloy and preparation method thereof
CN111534714B (en) * 2020-06-24 2021-08-31 宁波博威合金板带有限公司 Nb and Al-containing titanium bronze alloy strip and preparation method thereof
CN113278844B (en) * 2021-05-18 2022-05-27 国工恒昌新材料沧州有限公司 High-strength high-elasticity copper-titanium alloy and manufacturing method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60114558A (en) * 1983-11-22 1985-06-21 Ngk Insulators Ltd Production of elongated material consisting of age hardenable titanium-copper alloy
JPS60114542A (en) * 1983-11-22 1985-06-21 Ngk Insulators Ltd Age hardenable titanium-copper alloy material
JPS63143230A (en) * 1986-12-08 1988-06-15 Nippon Mining Co Ltd Precipitation strengthening high tensile copper alloy having high electrical conductivity
JPH04136142A (en) * 1990-09-25 1992-05-11 Ngk Insulators Ltd Manufacture of age hardening copper alloy
JP4001491B2 (en) * 2001-02-20 2007-10-31 日鉱金属株式会社 High-strength titanium-copper alloy, manufacturing method thereof, and terminal / connector using the same
JP2004143469A (en) * 2002-08-30 2004-05-20 Nikko Metal Manufacturing Co Ltd High strength copper alloy excellent in bendability
JP4259828B2 (en) * 2002-08-30 2009-04-30 Dowaメタニクス株式会社 Manufacturing method of high strength copper alloy
CN1930314A (en) * 2004-03-12 2007-03-14 住友金属工业株式会社 Copper alloy and process for producing the same
JP2006283142A (en) * 2005-03-31 2006-10-19 Nikko Kinzoku Kk High-strength copper alloy superior in bending workability
JP2008081767A (en) * 2006-09-26 2008-04-10 Nikko Kinzoku Kk Titanium-copper for electronic part

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI479037B (en) * 2012-07-19 2015-04-01 Jx Nippon Mining & Metals Corp High strength titanium foil and its manufacturing method
TWI480618B (en) * 2012-10-24 2015-04-11 Jx Nippon Mining & Metals Corp Camera module and titanium copper foil

Also Published As

Publication number Publication date
KR101415438B1 (en) 2014-07-04
TWI421354B (en) 2014-01-01
JP4761586B1 (en) 2011-08-31
CN102822362A (en) 2012-12-12
WO2011118400A1 (en) 2011-09-29
KR20120121408A (en) 2012-11-05
JP2011202218A (en) 2011-10-13

Similar Documents

Publication Publication Date Title
TW201137134A (en) High-strength copper titanium plate and production method therefor
TWI571519B (en) Cu-ni-co-si based copper alloy sheet material and manufacturing method thereof
CN101693960B (en) Copper alloy, copper alloy plate, and process for producing the same
JP5028657B2 (en) High-strength copper alloy sheet with little anisotropy and method for producing the same
CN100577833C (en) Copper alloy, copper alloy plate, and process for producing the same
JP4143662B2 (en) Cu-Ni-Si alloy
JP5426936B2 (en) Copper alloy manufacturing method and copper alloy
JP5214701B2 (en) Titanium copper excellent in strength, electrical conductivity and bending workability and its manufacturing method
JP4171735B2 (en) Chromium-containing copper alloy manufacturing method, chromium-containing copper alloy and copper products
TW201000650A (en) High strength and high electrical conductivity copper rod and wire
JP6317967B2 (en) Cu-Ni-Co-Si-based copper alloy sheet, method for producing the same, and current-carrying component
JPWO2010016428A1 (en) Copper alloy material for electrical and electronic parts
TW201035336A (en) Ni-si-co base copper alloy, and method for producing the same
JP5297855B2 (en) Copper alloy sheet and manufacturing method thereof
JP6696770B2 (en) Copper alloy plate and connector
TW201217550A (en) containing 2.0-4.0 mass% of Ti, 0.01-0.15 wt% of one or more of Fe, Co, Ni, Cr, V, Nb, Mo, Mn, Zr, Si, Mg, B and P in total and the remainder containing Cu and unavoidable impurities, and having excellent strength and bendability
JP6927844B2 (en) Copper alloy plate material and its manufacturing method
JP5002766B2 (en) High strength copper alloy sheet with excellent bending workability and manufacturing method
JP4060493B2 (en) Method for producing aluminum alloy foil for electrolytic capacitor cathode
JP4779100B2 (en) Manufacturing method of copper alloy material
JP4683669B1 (en) Titanium copper excellent in strength, electrical conductivity and bending workability and its manufacturing method
JP4550148B1 (en) Copper alloy and manufacturing method thereof
JP7038879B1 (en) Cu-Ti copper alloy plate material, its manufacturing method, and current-carrying parts