TW201130658A - Method for producing optical film, optical film, polarizer and image display device - Google Patents

Method for producing optical film, optical film, polarizer and image display device Download PDF

Info

Publication number
TW201130658A
TW201130658A TW099143668A TW99143668A TW201130658A TW 201130658 A TW201130658 A TW 201130658A TW 099143668 A TW099143668 A TW 099143668A TW 99143668 A TW99143668 A TW 99143668A TW 201130658 A TW201130658 A TW 201130658A
Authority
TW
Taiwan
Prior art keywords
refractive index
layer
optical film
hard coat
composition
Prior art date
Application number
TW099143668A
Other languages
Chinese (zh)
Other versions
TWI581974B (en
Inventor
Shin Miyanowaki
Seiji Shinohara
Koji Hashimoto
Yusuke Hayashi
Shigeki Murakami
Original Assignee
Dainippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Printing Co Ltd filed Critical Dainippon Printing Co Ltd
Publication of TW201130658A publication Critical patent/TW201130658A/en
Application granted granted Critical
Publication of TWI581974B publication Critical patent/TWI581974B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00634Production of filters
    • B29D11/00644Production of filters polarizing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/34Applying different liquids or other fluent materials simultaneously
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/10Esters of organic acids
    • C08J2301/12Cellulose acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0087Simple or compound lenses with index gradient
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/38Anti-reflection arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/50Protective arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/02Materials and properties organic material
    • G02F2202/022Materials and properties organic material polymeric
    • G02F2202/023Materials and properties organic material polymeric curable
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/40Materials having a particular birefringence, retardation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Nonlinear Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Polarising Elements (AREA)
  • Laminated Bodies (AREA)
  • Liquid Crystal (AREA)

Abstract

Disclosed is an optical film comprising a graded refractive index hard coat layer which is easy to produce and has high productivity. The method for producing the optical film of the present invention comprises the steps of: (i) preparing an optically-transparent substrate, (ii) preparing a first curable resin composition for a hard coat layer and a second curable resin composition for the same, the first curable resin composition comprising a first binder component and a first solvent, comprising no high refractive index fine particles and having a viscosity of 3 to 100 mPa*s, and the second curable resin composition comprising a second binder component, a second solvent and high refractive index fine particles which have an average particle diameter of 1 to 100 nm, and having a viscosity of 10 to 100 mPa*s, (iii) forming coating films by applying the first and second curable resin compositions simultaneously and adjacently to one side of the optically-transparent substrate in this order from the substrate, and (iv) forming a graded refractive index hard coat layer by curing the coating films obtained in the step (iii) by exposure to light.

Description

201130658 /、、發明說明: 【發明所屬之技術領域】 本發明係關於在液 (哪)、有機電致發光(有:示器(叫、陰極管顯示裝置 之顯示器(影像顯示㈣EL)或等離子體顯示器(PDP)等 該光學薄_偏域及裝=置的絲薄膜、具備 【先前技術】 。:述之顯巾’要求對顯示⑽影像顯示面賦予在 操乍時不A #傷般的耐擦傷性。對於此,—般經㈣用基材 ^膜上认置硬塗(以下,單稱為「沉」)層的光學薄膜和此 薄膜I、丨可對顯不||的影像_面賦予耐擦傷性(例如,專 利文獻1)。 又’於如上述之顯示器中,為提高其顯示面的辨視性,要 求來自螢紐等外部光騎照射的光線反射少。作為抑制外 部光反射的方法’一般已知將顯示面最表面設置折射率最低 的低折射率層’且,於低折射率層的顯示麵接設置折射率 高之高折射率層的防止反射薄祺,設置於顯示器前面的方 法。又,亦已知由顯示側設置折射率為中程度之層、折射率 咼之層以及折射率低之層的防止反射薄膜。 為形成此種折射率中程度至高之層,一般將含有高折射率 微粒子之折射率層鄰接設置至低折射率層,並且使鄰接至低 折射率之HC層和防靜電層等之機能層含有高折射率微粒 099143668 4 201130658 子(例如,專利文獻2)。 但疋,將中折射率層或局折射率層與Hc層等機能層,分 . W以-層層依序(逐次)形成時’具有步驟數增加且製造成本 上升的問題,及該高折射率層與HC層等之密合性低的問 題。 又,於專利文獻2之發明中’高折射率微粒子在硬塗層之 低折射率層側的界面附近偏在並且形成皮層,但硬塗層内的 皮層與其他以外部分的邊界明顯,故在此邊界中具有產生干 涉條紋的問題。 於專利文獻3之發明中,惠圖提供可低反射化,且可防止 干涉條紋發生的光學薄膜,係於基材上依序積層硬塗層、高 折射率傾斜硬塗層及低折射率層的光學薄膜,提案根據特定 之製法形成硬塗層與高折射率傾斜硬塗層呈一體的高折射 率傾斜硬塗層,並且防止干涉條紋的光學薄膜。 但是,於專利文獻3的發明中亦難以良好效率取得折射率 傾斜硬塗層,而要求更加容易、且以高生產性取得折射率傾 斜硬塗層的方法。 [先前技術文獻] φ [專利文獻] [專利文獻1]曰本專利特開2008-165040號公報 [專利文獻2]曰本專利特開2009-086360號公報 [專利文獻3]曰本專利特開2009-265658號公報 099143668 ^ 201130658 【發明内容】 (發明所欲解決之問題) 且 不 言 月為解决上述問題點而完成者以提供更加容易、 顯 裝置為其目的 门生產ί±τ具備折射率傾斜硬塗層的光學薄膜為其目的 又’本發明以提供具備此種光學薄膜的偏光板及影像 (解決問題之手段) =發月者冑人致力檢狀結果,發料備含冑純定 之冋折射率微粒子的組成物、和不含有具特定黏度之高折射 率微粒成物之2種組餘,並且由基材側之積層川員序 以该不含有高折射率微粒子的組成物及含有高折射率微粒 子的,成物觸序配置般同時塗佈,則可控制高折射率微粒子 的擴政’而可容易’且高生產性下取得具備折射率傾斜硬塗 層的光學_,並且達到完成本發明。 灿即,解決上述問題之本發明之光學薄膜的製造方法,其特 徵包含(轉備光穿透性基材的步驟、⑼準備含有第一黏合 劑成分及第—溶劑,不含有高折射率微粒子,且黏度為 _ OmPa s之第一硬塗層用硬化性樹脂組成物及含有平 句粒彳二1〜l〇0nm之高折射率微粒子、第二黏合劑成分及第 一冷J ,且黏度為1〇〜1〇〇mPa · s之第二硬塗層用硬化性樹 月曰組成物的步驟、㈣於該光穿透性基材的 一面側,由該光 穿透性基材側’將該第一硬塗層用硬化性樹脂組成物及該第 099143668 201130658 二硬塗層用硬化性樹驗成物予_接,並以該第—硬塗層 用硬化性樹脂組成物比該第二硬塗層用硬化性樹脂組成: • 更加位於該光穿透性基材側般進行同時塗佈,作成塗膜的步 :驟’(w)對上則ii)步驟所得<塗膜進行光照射使其硬化以 形成折射率傾斜硬塗層的步驟。 經由將不含有高折射率微粒子’黏度3〜1〇〇mPa· s之第 一硬塗層用硬化性樹脂組成物(以下,單稱為「第一組成 物」)、與含有平均粒徑卜刚職之高折射率微粒子,^度 為請mPa.s之第二硬塗層用硬化性樹脂組成物(以 下,單稱為「第二組成物」’以該第—組成物在光穿透性基 材側般鄰接且同時塗佈,並使其硬化,則可容易、且高生產 性下取得折射率傾斜硬塗層。 此處’折射率傾斜HC層的折射率,意指與折射率傾斜 HC層之光穿透性基材對面側界面的折射率。 又,所謂折射率的傾斜,係意指於折射率傾斜沉層内, 由光穿透性基材對面側的界面朝向光穿透性基材側界面,折 射率為連續性變化。 • 純射率傾斜HC層内折射率為傾斜,可根據下列方法加 ,以確認。將折射率傾斜HC層經由錢鍍予以㈣使折射率 傾斜HC層的肢深紅部分露出,並且射線光電子 分光裝置(XPS)敎此露出部分t的高折射率微粒子含量。 根據此方法,特定出折射率傾斜沉層之深度方向的高折射 099143668 7 201130658 率微粒子的存在量分佈。 折射率傾斜HC層之各深度地點中的折射率,與高折射率 微粒子的存在量相關,故經由確認折射率傾斜HC層之深度 方向的高折射率微粒子的存在量分佈為傾斜,則亦可確認折 射率為傾斜。 又使用熱硬化性樹脂將光學薄膜包埋,並使用LEICA 公司製超微切片機由此包埋的光學薄膜製作術爪厚度的超 /專刀片ϋ且以穿透型電子顯微鏡(tem)予以觀察亦可測 定 所謂高折射率微粒子’意指折射率為15〇〜2·微粒子。 於本發明之光學薄臈之製造方法中’上述第一硬塗層用硬 化性麻組成物及/或第二錢層料化㈣驗成物進一 於本發明之光學薄臈之製 化性樹脂組成物之黏度與上述方/中,上述第—硬塗層用硬 成物之黏度之差的絕龍為/二硬塗制硬錄樹脂組 斜硬塗層内之高折射率微:下’就易於控制折射率傾 於本發明之光學薄膜之製造==方面而言為佳。 三乙醢纖維素基材,上述第一、a ^ ’上述光穿透性基材為 具有浸透性,由抑制光學薄膜=對於該三乙醯纖維素基材 佳。 、之干涉條紋的觀點而言為 099143668 201130658201130658 /, the invention description: [Technical field of the invention] The present invention relates to liquid (which), organic electroluminescence (with: display (called, cathode tube display device display (image display (four) EL) or plasma The optical thin film such as a display (PDP) and the silk film disposed on the display have the [prior art]: the description of the display towel is required to give the display (10) image display surface a resistance that is not A# in the operation. For the purpose of this, the optical film of the hard coating (hereinafter, simply referred to as "sink") layer and the film I and 丨 can be used for the image of the substrate. In addition, in the display as described above, in order to improve the visibility of the display surface, it is required to reflect less light from the external light such as a fluorescent illuminator. The method is generally known to provide a low refractive index layer having the lowest refractive index on the outermost surface of the display surface, and an antireflection thin layer having a high refractive index layer having a high refractive index is disposed on the display surface of the low refractive index layer, and is disposed on the display. The previous method. Also known An antireflection film having a medium refractive index layer, a refractive index 咼 layer, and a low refractive index layer is provided on the display side. To form a layer of such a refractive index to a high degree, a refractive index layer containing high refractive index microparticles is generally used. Adjacent to the low refractive index layer, the functional layer such as the HC layer and the antistatic layer adjacent to the low refractive index contains high refractive index particles 099143668 4 201130658 (for example, Patent Document 2). When the layer or the local refractive index layer and the functional layer such as the Hc layer are formed in a sequential manner (sequentially), the number of steps increases and the manufacturing cost increases, and the high refractive index layer and the HC layer and the like Further, in the invention of Patent Document 2, the "high refractive index fine particles are biased in the vicinity of the interface on the low refractive index layer side of the hard coat layer and form a skin layer, but the skin layer and other portions in the hard coat layer are formed. The boundary is conspicuous, so there is a problem of generating interference fringes in this boundary. In the invention of Patent Document 3, the optical film which provides low reflection and prevents interference fringes is attached to the substrate. A thin film of a hard coat layer, a high refractive index oblique hard coat layer and a low refractive index layer are sequentially laminated, and a high refractive index oblique hard coat layer in which a hard coat layer and a high refractive index oblique hard coat layer are integrated according to a specific method is proposed. In addition, in the invention of Patent Document 3, it is also difficult to obtain a refractive index-slanted hard coat layer with good efficiency, and a method of obtaining a refractive index-slanted hard coat layer with higher productivity and high productivity is required. [Prior Art Document] φ [Patent Document] [Patent Document 1] Japanese Laid-Open Patent Publication No. 2008-165040 [Patent Document 2] Japanese Patent Laid-Open Publication No. 2009-086360 (Patent Document 3) JP-A-2009-265658 099143668 ^ 201130658 SUMMARY OF INVENTION [Problem to be solved by the invention] It is not necessary to solve the above problems in order to provide an easier and more obvious device for producing a gate. An optical film for tilting a hard coat layer for the purpose of the present invention provides a polarizing plate and an image having such an optical film (a means for solving the problem) If the hair is prepared, the composition containing the ruthenium refractive index microparticles of the ruthenium and the high refractive index microparticles having no specific viscosity are contained, and the laminate is not contained by the laminate side of the substrate side. When the composition of the high refractive index fine particles and the high refractive index fine particles are coated at the same time as the arrangement of the composition, the expansion of the high refractive index fine particles can be controlled, and the refractive index tilt can be obtained with high productivity. The optical properties of the hard coat layer and the completion of the present invention are achieved. The method for producing an optical film of the present invention which solves the above problems, comprising the steps of: transferring a light-transmitting substrate, (9) preparing a first binder component and a solvent, and not containing high refractive index particles And the viscosity is _ OmPa s the first hard coat layer for the hard coat composition and the high refractive index fine particles containing the flat granules 1-2 1 〇 0 nm, the second adhesive component and the first cold J, and the viscosity a step of using a curable tree sap composition for a second hard coat layer of 1 〇 1 〇〇 mPa · s, (4) a side of the light-transmitting substrate, and a side of the light-permeable substrate The curable resin composition for the first hard coat layer and the curable resin composition for the second hard coat layer of the 099143668 201130658 are attached, and the curable resin composition for the first hard coat layer is compared with the first The second hard coat layer is composed of a curable resin: • a step of simultaneously coating the film on the side of the light-transmissive substrate to form a coating film: a step of '(w) for the above step ii) and a coating film The step of hardening the light to form a refractive index oblique hard coat layer. The curable resin composition (hereinafter referred to simply as "first composition") of the first hard coat layer which does not contain the high refractive index fine particles having a viscosity of 3 to 1 〇〇 mPa·s, and the average particle diameter The high-refractive-index microparticles of the original job are the curable resin composition for the second hard coat layer of mPa.s (hereinafter, simply referred to as "second composition"", and the first composition is penetrated by light. When the substrate side is adjacent to the same and coated at the same time and hardened, the refractive index oblique hard coat layer can be obtained easily and with high productivity. Here, the refractive index of the refractive index tilting HC layer means the refractive index. The refractive index of the opposite side interface of the light-transmitting substrate of the HC layer is inclined. Further, the inclination of the refractive index means that the interface on the opposite side of the light-transmitting substrate faces the light in the inclined layer of the refractive index. The refractive index of the transparent substrate side interface changes continuously. • The pure refractive index is tilted in the HC layer. The refractive index is tilted and can be confirmed by the following method. The refractive index is tilted by the HC layer by carbon plating (4). The deep red part of the limb of the inclined HC layer is exposed, and the ray photoelectron spectroscopy The (XPS) 露出 exposes the high refractive index fine particle content of the portion t. According to this method, the high refractive index of the depth direction of the refractive index slanting layer is specified to be 099143668 7 201130658. The existence amount distribution of the fine particles. Since the refractive index in the depth point is related to the amount of the high refractive index fine particles, the presence of the high refractive index fine particles in the depth direction of the HC layer by the refractive index is inclined, and it is confirmed that the refractive index is inclined. The optical film was embedded in a thermosetting resin, and an ultra-micro-blade of the optical film produced by the LEICA micro-microtome was used to observe the thickness of the claw and was observed by a transmission electron microscope (TEM). The so-called high-refractive-index microparticles _ can be measured as a refractive index of 15 〇 〜 2 microparticles. In the method for producing an optical thin enamel of the present invention, the above-mentioned first hard-coating sclerosing hemp composition and/or second money The layered material (4) is a difference between the viscosity of the chemical resin composition of the optical thin film of the present invention and the viscosity of the above-mentioned hard coat of the first hard coat layer. The high refractive index in the oblique hard coating of the hard-disc/hard-coated resin group is as follows: it is preferable to control the refractive index in the manufacture of the optical film of the present invention == In the cellulose substrate, the above-mentioned first, a ^ 'the light-transmitting substrate is impregnated, and is 099143668 from the viewpoint of suppressing the optical film = the interference fringe of the triacetyl cellulose substrate. 201130658

後,亦可進—步包含(V)在上After that, you can also enter (step) including (V) on

層,則可更加提高光學薄_防止反射性。 k万法令,在上述(iv)步驟之 述折射率値塗層上,直接 3經由如此在折 設置低折射率 ’硬化形成上述低折射 一氧化石夕微粒子,因可 於本發明之光學薄膜之製造方法中, 率層的低折射率層用組成物含有中空二 對光學薄膜賦予優異的防止反射性,故為佳。 於本發明之光學薄膜之製造方法中,硬化形成上述低折射 率層的低折射率層肋成物,即使含有由金職化物及硬化 性氟樹脂所組成群中選出至少丨種之低折射率材料的情 况’亦可取得具有充分防止反射性的光學薄膜。 於本發明之光學薄膜之製造方法中,硬化形成上述低折射 率層的低折射率層用組成物,不含有中空二氧化矽微粒子, 含有由金屬氟化物及硬化性氟樹脂所組成群中選出至少丄 種的低折射率材料,就充分之防止反射性和耐鹼化性可兩相 成立的觀點為佳。 於本發明之光學薄膜之製造方法中,亦可在上述⑴步驟與 (iii)步驟之間,進一步包含(vi)在上述光穿透性基材之設置 折射率傾斜硬塗層面形成防靜電層的步驟。經由防靜電層可 提高光學薄膜的防靜電性。 本發明之光學薄膜係根據上述任一種製造方法而得的光 099143668 9 201130658 學薄膜。 本發明之光學薄膜,係於光穿透性基材的一面側至” ==率傾斜硬塗層的光學薄膜,其特徵為該折射率傾_ 主層3有平均粒徑!〜觸細的高折射率微粒子,且於 射率傾斜硬㈣中,在騎射率傾斜硬塗層㈣厚方向% 焉折射率錄子的存在量在愈接賴光穿透縣材側命少二 於本發明之光學薄膜中,於上述折射率傾斜硬塗層^由 上述光穿透性基材對面側界面直到該折射率 =之鳩為止的區射,亦可存在上述高折射率微粒子全量 90/。以上。如此’經由使高折射率微粒子分佈,則可有效 ==折射率傾斜HC層之光穿透性基材對面侧界面側的 折射率。 =本發明之光學薄射,亦可作成於上述折射率傾斜硬塗 層含有增黏劑的態樣。 二本發明之光學薄臈中’上述光穿透性基材為三乙醢纖維 、土材’構成上述折射率傾斜硬塗層的基質,亦存在於該三 =醯纖維素基材之折射率傾斜硬塗層側的界面,就抑制光學 相中之干涉條紋的觀點而言為佳。 於本發明之光學薄膜中,於上述折射率傾斜硬塗層之光穿 ^基材對_面,進—步由低折射率層或該折射率傾斜硬 二曰側°又置间折射率層及低折射率層,因可更加提高光學薄 膜的防止反射性,故為佳。 099143668 201130658 於本發明之光學_巾,上述低折料層含有中空二氧化 石夕微粒子,因可對光學薄賴予料的防止反射性,故為佳。 • 於本發明之光學薄膜中,上述低折射率層即使含有由金屬 : 氟化物錢樹賴組成群巾選ih至少丨種之低折射率成分 之情況,亦具有充分的防止反射性。 於本發明之光學薄膜中,上述低折射率層不含有中空二氧 化石夕微粒子,而含有由金屬氟化物及氟樹脂所組成群中選出 至少1種之低折料成分’即可使充分的防止反射性和财驗 化性兩相成立。 於本發明之光㈣財,在上述光穿透性基材與上述折射 率傾斜硬塗層之間,進-步設置防靜電層,因可更加提高光 學薄膜的防靜電性,故為佳。 於本發明之光學薄膜中,亦可將該光學薄膜,放入保持於 55°C的2當量濃度氫氧化鈉水溶液,浸漬2分鐘,其次,水 洗後’以7(TC乾燥5分鐘,其次,使醜_號的鋼絲域以 摩擦荷重0.98N將低折射率層表面來回摩擦1〇次時,對低 折射率層賦予不會損傷及剝離的性能。 - 本發明之偏光板,其特徵係在偏光元件的一面側,將上述 •光學賴,以該光學薄膜之光穿透性基材_㈣偏光元件 配置而成。 本發明之影像顯示裝置,其特徵為具備上述光學薄膜。 (發明效果) 099143668 11 201130658 於本發明之=學薄膜之製造方法中,經由將不含有高折射 率微粒子之特疋黏度的第一組成物與含有高折射率微粒子 之特定黏度的第二組成物之2種組成物鄰接且㈣第一组 成物為位於光穿透性基材側般同時塗佈形成折射率傾斜 層,則可輕易控制折射率傾斜HC層之膜厚方向中的高折射 率微粒子分佈。因此,若使用本發明之光學薄膜的製造方 法’則可輕易,且高生產性下取得具備折射率傾斜π層的 光學薄膜。 本發明之減板及f彡像顯轉置,因具備上述具有折射率 傾斜HC層的光學薄膜,故難使損傷。 【實施方式】 以下’首先說日謂於本發明之光學㈣的製造方法,其次 說明關於光學薄膜。 ' 於本發明中,(甲基)丙烯酸S旨表示丙婦酸酉旨及/或甲基丙稀 酸酯。 又’於本發明之光,不僅可見光及非可見光區域波長的電 磁波,包含電子束般之粒子線、及電錢餘子線總稱的放 射線或電離放射線。 於本發明中,所謂微粒子的平均粒徑,係意指硬化膜之剖 面以穿透型電子顯微鏡(TEM)照片所觀察之粒子2()個的平 均值,且可為一次粒徑及二次粒徑之任一者。即,其係包含 一次粒徑及二次粒徑之粒子群全體的平均分散粒徑。 099143668 12 201130658 於本發明中,所謂分子量,於具有分子量分佈之情況’意 指以THF作為溶劑之凝膠滲透層析(GPC)所測定之聚苯乙 烯換算值的重量平均分子量,於不具有分子量分佈之情況, • 思指化合物本身的分子量。 於本發明中,所謂「硬塗層」係意指以JISK5600-5-4(1999) 規定之鉛筆硬度試驗(4.9N荷重),顯示「Η」以上之硬度者。 另外,薄膜與薄片以JIS-K6900的定義中,所謂薄片係指 薄且一般其厚度於長度與寬度之比例上為小且平坦的製 品’所謂薄膜係指相比於長度及寬度,厚度極小,且最大厚 度為任意限定之薄且平坦的製品’通例,以輥型式供給者。 因此,即使於薄片中亦有厚度特薄者被稱為薄膜,薄片與薄 膜的界限並無確定,且難以明確區別,故本發明中,係包含 厚度厚者及薄者兩者之意義,並定義為「薄膜」。 折射率係使用分光光度計(島津製作所(股)製之 UV-3100PC),測定波長38〇〜78〇nm的平均反射率(R)。由所 得之平均反射率(R),使用下式,求出折射率⑻之值。 R(%)=(l-n )/(1+n2) - 乾燥膜厚的測定使用(Mitsut〇y〇(股)製之idf-130)進行。 (光學薄膜之製造方法) 本發明之光學薄膜之製造方法,其特徵為包含⑴準備光穿 透性基材的步驟、⑼準備含有第一黏合劑成分及第一溶 劑,不含有高折射率微粒子,且黏度為3〜1〇〇悉· s之第 099143668 201130658 -硬塗層用硬化性樹肋成物以及含有平擁徑丨〜削細 之向折射率微粒子、第二黏合劑成分及第二溶劑,且黏度為 mPa s之第—硬塗層用硬化性购旨組成物的步驟、 ㈣於該光穿透性基材的—面側,由該光穿透性基材侧,將 該第-硬塗層用硬化性樹脂組成物及該第二硬塗層用硬化 性樹脂組成好以鄰接,並以該第—硬塗相硬化性樹脂組 成物比該第二硬塗層用硬化性樹脂組成物更加位於該光穿 透性基材側般進行同時塗佈,作成塗臈的步驟、㈣對上述 ⑽步驟所得之塗膜進行光照射使其硬化以形成折射率傾 斜硬塗層的步驟。 將不含有高折射率微粒子、黏度為3〜1〇〇mPa.s之第一 組成物,與含有平均粒#丨〜刚nm之高折射率微粒子、黏 度為HMO〇mPa.s之第二組成物’以該第一組成物鄰接光 穿透性基材側般同時塗佈,並使其硬化,則可㈣、且以高 生產性取得折射率傾斜HC層。 另外’第-組成物及第二組成物的黏度,使用ΑηωηΜ 公司製之MCR3G卜測定王具為pp5(),測定溫度為饥、 剪切速度為麵咖]之條件將測定對象之組成物(墨水)適 量、滴至台上測定。 第-組成物與第二組成物的黏度未滿上述範圍之情況,於 折射率傾斜HC層内’難以控制高折射率微粒子於該折射率 傾斜HC層之膜厚方向的分佈,且高折射率微粒子於折射率 099143668 14 201130658 傾斜HC層内易於均勻分佈。 若高折射率微粒子於層内均勻分佈,則在與折射率傾斜 HC層鄰接之光穿透性基材和防靜電層的界面,折射率差變 大。其後,於該界面中產生干涉條紋並且發生光學薄膜的外 觀惡化的問題。又,高折射率微粒子的含量變多,製造成本 亦增加。 另外,第一組成物與第二組成物的黏度未滿上述範圍之情 況,於折射率傾斜HC層表面產生塗佈紋且亦有外觀惡化的 問題。 相對地,經由第一組成物與第二組成物的黏度為上述特定 之範圍,則即使將該等2種組成物同時塗佈,亦可適度控制 高折射率微粒子的擴散或沈降,且可輕易、且以高生產性取 得折射率傾斜HC層。 第一組成物及第二組成物的黏度分別為3〜lOOmPa · s及 10〜lOOmPa · s,第一組成物的黏度為3〜50mPa · s為佳,以 5〜30mPa · s為更佳。第二組成物的黏度為10〜50mPa · s為 佳,以15〜30mPa · s為更佳。第一組成物與第二組成物的 黏度分別調節至上述範圍,則可輕易控制高折射率微粒子的 擴散或沈降,易於形成折射率傾斜HC層。又,第一組成物 的黏度為5〜30mPa · s、且、第二組成物的黏度為 20〜30mPa · s,可更加容易控制高折射率微粒子的擴散或沈 降,且易於形成折射率傾斜HC層,故為佳。 099143668 15 201130658 第、、且成物與第二組成物的黏度若為上述範圍内,則根據 所欲之回折料微粒子的分佈適當調節即可但以硬化且成 為折射率傾斜沉層上層側之第二組成物的黏度,比第一組 成物的黏度更大,就生產性方面而言為佳。 又,第一組成物與第二組成物之黏度(mPa· s)之差的絕對 值為30以下’可更加輕易控制高折射率微粒子的擴散或沈 降,且易於形成折射率傾斜^^層,故為佳。 圖1示意性示出本發明之光學薄膜之製造方法的 一例圖。 如圖1(a)所示般,準備光穿透性基材1〇。其次,於光穿 透性基材1G上’將上述第—組成物與第4成物,以第一 、.且成物位於光穿透性基材1Q側般鄰接且同時塗佈,作成塗 膜’並進行光照射使其硬化,如圖1(b)所示般,於層内以愈 接近光穿透絲材偏折射率錄子%的存在量愈少,形 成折射率傾斜硬塗層20,取得光學薄膜j。 以下,說明本發明之光學薄膜之製造方法中所用的光穿透 性基材及第一組成物及第二組成物。 (光穿透性基材) 本發明之光穿透性基材,若可滿足使用作為光學薄膜之光 穿透性基材的物性者,則師龍定,可適當選擇使用先前 公知的硬塗薄膜和光學薄臈所用的三乙醯纖維素(tac)、聚 對苯二甲酸乙二醋(PET)、或環烯烴聚合物(COP)等。 可見光區域380〜78Gnm中之转透性基材的平均光穿透 099143668 201130658 率為50%以上為佳,更佳為观以上,特佳為85%以上。 另外’光穿透率的測定可使用紫外線可見光分光光度計(例 ·- 如,島津製作所(股)製UV-3100PC),使用於室藏、大氣中 . 測定的值。 又’亦可對光穿透性基材施以鹼化處理和設置塗底層等的 表面處理。又’於光穿透性基材中亦可含有防靜電劑等添加 劑。 光穿透性基材的厚度並無特別限定,通常為2〇〜3〇〇輝左 右’較佳為40〜2〇〇μιιι。 使用1種組成物以丨次形成如先前含有高折射率微粒子之 沉層的方法(以下,稱為「單層1次塗佈法」中,光穿透性 基材為TAC基材之情況,即使將組成物中所含之溶劑和黏 合劑成分浸透TAC基材,亦使高折射率微粒子於HC層内 均勻分佈’且在HC層之tac基材侧的界面和其附近亦易 於存在。其次,於該界面中,經由tac基材(折射率Μ州 與高折射率微粒子(折射率:15()~2的折射率差,發生干 涉條紋,且外觀惡化。 ' ㈣地’若根據本發明之光學薄膜之製造方法,於折射率 _ ^斜此層^,在折射率傾*HC層的膜厚方向,高折射率 2粒子的存在量(每單位體積的粒子密度)愈接近光穿透性 =侧愈少’且在折射物斜HC層與光穿透絲材的界面 、附攻不存在或少存在高折射率微粒子。因此,即使使用 099143668 17 201130658 TAC基材之情況,第一溶劑和第一黏合劑成分易浸透TAC 基材’且於折射率傾斜HC層與TAC基材的界面不會發生 干涉條紋’可取得良好外觀的光學薄膜。 (第一硬塗層用硬化性樹脂組成物) 於本發明之光學薄膜之製造方法中使用的第一組成物,含 有第一黏合劑成分及第一溶劑,且不含有高折射率微粒子, 黏度為3〜l〇〇mPa · s。第一組成物比後述第二組成物更加位 於光穿透性基材側般鄰接且同時塗佈。 將不έ有问折射率微粒子之第一組成物比含有高折射率 微粒子之第二組成物在光穿透性基材侧同時塗佈,於該等2 種、、且成物所形成之折射率傾斜HC層中,在該折射率傾斜 HC層的膜厚方向,高折射率微粒子愈接近光穿透性基材側 存在里愈)。又,將第—組成物與第二組成物同時塗佈之情 況比將該2種組成物分別塗佈、硬化之逐次塗佈的情況, 第組成物與第二組成物以一體型式形成膜,且第二組成物 所含之高折射率微粒子於該呈一體之膜中以愈接近光穿透 性基材側愈少般適度分佈。藉此,第-組成物在折射率傾斜 HC層的光穿透性基材側界面中,抑制經由高折射率微粒子 與光穿透性基材或防靜電層等下層之折射率差而發生干涉 條紋’具有防止光學薄膜外觀惡化的作用。 以下,說明關於第一組成物中所含之第一黏合劑成分及第 一溶劑以及視需要亦可含有之其他的光聚合起始劑、增黏 099143668 201130658 劑、微粒子、防靜電劑及勻塗劑。 (第一黏合劑成分) 第一黏合劑成分係硬化成為折射率傾斜HC層的基質成 分。 作為第一黏合劑成分,可列舉例如,⑴感應光而硬化的反 應性黏合劑成分(以下,單稱為「光硬化性黏合劑成分」)、 (11)感應熱而硬化的反應性黏合劑成分(以下,單稱為「熱硬 化性黏合劑成分」)及(iii)不會感應光及熱而經由乾燥或冷卻 而固化的非反應性黏合劑成分。 又’光硬化性黏合劑成分及熱硬化性黏合劑成分’亦可感 應光及熱而硬化的光及熱硬化性黏合劑成分。 光硬化性黏合劑成分中,亦特別以電離放射線所硬化的黏 合劑成分(以下’單稱為「電離放射線硬化性黏合劑成分」), 可調製塗佈適性優異的塗敷組成物,且易形成均勻的大面積 塗膜。又,塗膜中之經由電離放射線硬化的黏合劑成分,塗 佈後經由光聚合而硬化,可取得強度較高的硬化膜。 作為電離放射線硬化性黏合劑成分,可使用先前公知之經 由電離放射線引起聚合等反應之具有聚合性官能基的單 體、低聚物或聚合物。 聚合性官能基,例如,以丙烯醯基、乙烯基及烯丙基等之 乙稀性不飽和鍵為佳。聚合性官能基,此外,亦可為環氧基。 電離放射線硬化性黏合劑成分,由增加硬化時之黏合劑成 099143668 19 201130658 分彼此間的交聯方面而言,以1分子中具有2個以上聚合性 官能基的黏合劑成分為佳。 作為電離放射線硬化性黏合劑成分,可列舉例如,日本專 利特開2004-300210號公報中記載的單官能(曱基)丙烯酸 酯、二(曱基)丙烯酸酯、三(曱基)丙烯酸酯及多官能(曱基) 丙烯酸酯及該等之EO(環氧乙烷)改質品等衍生物、聚合該 等自由基聚合性單體的低聚物及具有乙烯性不飽和鍵的聚 合物等。又,亦可使用含有環氧基之化合物般之光陽離子聚 合性單體和低聚物。 作為熱硬化性黏合劑成分,可列舉例如,具有環氧基之化 合物及日本專利特開2006-106503號公報中記載的黏合劑 性環氧化合物等。 作為非反應性黏合劑成分,可列舉例如,曰本專利特開 2004-300210號公報中記載之聚丙烯酸、聚醯亞胺及聚乙烯 醇等。 上述(〇〜(iii)之黏合劑成分可使用單獨1種,且亦可組合 使用2種以上。 (第一溶劑) 第一溶劑具有調整第一組成物之黏度,並且對第一組成物 賦予塗佈性的作用。 第一溶劑並無特別限定’可根據使用之光穿透性基材適當 選擇使用。 099143668 201130658 作為第一溶劑,可列舉例如,曰本專利特開2005-316428 號公報記載之醇類、酮類、酯類、_化烴類、芳香族烴類、 醚類等。 作為第一溶劑,另外,可使用例如,四氫呋喃、1,4-二崎 烷、二哼茂烷及二異丙醚等之醚類等。 為防止干涉條紋發生,使用對於光穿透性基材具有浸透性 的溶劑(浸透性溶劑)為佳。浸透性溶劑亦可與非浸透性溶劑 併用。 另外,於本發明中所謂浸透性,除了對光穿透性基材浸透 的性質β卩,狹義的浸透性)以外,包含使光穿透性基材泡脹 或濕潤概念的意義。 作為浸透性溶劑的具體例,可列舉異丙醇、曱醇及乙醇等 之醇類、甲基乙基酮、曱基異丁基酮及環己酮等之酮類、醋 酸曱酯、醋酸乙酯及醋酸丁酯等之酯類、i化烴類、曱苯及 二曱苯等之芳香族烴類及苯酚類。 光穿透性基材為三乙醯纖維素(TAC)之情況所使用的溶 劑,以及光穿透性基材為聚對苯二甲酸乙二酯(PET)之情況 所使用的溶劑,可列舉日本專利特開2005-316428號公報記 載之溶劑。 特別,光穿透性基材為三乙醯纖維素(TAC)之情況所使用 的溶劑,以醋酸曱酯、醋酸乙酯、醋酸丁酯及曱基乙基酮為 佳。 099143668 21 201130658 光穿透性基材為聚對苯二曱酸乙二醋(PET)之情況所使用 的溶劑為祕、氣笨、縣苯、氣為及4異丙醇為佳。 又’上述麵之溶劑除了浸潰性以外,具有使第一組成物 可輕易且均勾塗佈光穿透性基材表面,且塗佈後溶劑的蒸發 速度適度而難引起乾燥不勻的效果。因此,可輕易取得岣句 厚度的大面積塗膜。 第-溶劑可❹單獨丨種上述溶劑,且亦可組合使用2 種以上。 組合使用浸潰性溶劑及非浸透性溶劑作為第一溶劑時,相 對於第-溶劑之全質量,浸透性溶劑之比例為%質量^ 上為佳’且以80質量%以上為更佳。 (第一組成物之其他成分) 於第-組成物中,在不超脫本發明主旨之範圍中,以促進 第-黏合賴分之硬化、難誠、硬度或軒防靜電性等 為目的,亦可含有光聚合起始劑、增黏劑、微粒子、防靜電 劑及勻塗劑等其他成分。 (光聚合起始劑) 作為光聚合起始劑,例如,可使用日本專利特開 2007-272132號公報記載之乙醯苯類及二苯嗣類等之光起二 劑。 其中,以1-經基-環乙基-苯基酮及Η基,_(甲硫基)笨 基]-2-咮啉基丙烷_丨_酮,即使少量亦可開始並促進光聚合反 099143668 22 201130658 應,故於本發明中較佳使用。 於使用光陽離子聚合性之黏合劑成分之情況中,視需要例 如可使用日本專利特開2010-107823號公報記載的陽離子 聚合起始劑。 上述光聚合起始劑可使用單獨1種,且亦可組合使用2 種以上。 上述光聚合起始劑亦可使用市售品,例如,1-羥基-環己 基-苯基嗣以1RGACURE 184的商品名由Ciba Specialty Chemicals(股)取得。 上述光聚合起始劑亦可使用單獨1種,且亦可組合使用2 種以上。 使用光聚合起始劑時,其含量相對於第一組成物之全固形 份使用0.1〜20質量%為佳。 (增黏劑) 於第一組成物中以調整黏度為目的,亦可含有有機化合物 及/或無機化合物之增黏劑。經由含有增黏劑,則可適度控 制第一組成物與第二組成物的混合,且易於控制第二組成物 所含之南折射率微粒子的分佈。 作為有機合物的增黏劑,可列舉例如,乙基纖維素、羥丙 基纖維素、丙烯酸樹脂、脂肪酸醯胺蠟、氧化聚乙烯、高分 子聚醋之胺鹽、直鏈聚胺基醯胺與高分子酸聚自旨之鹽、聚叛 酸之醯胺溶液、烷基磺酸鹽、烷基烯丙基磺酸鹽、膠體系酯、 099143668 23 201130658 聚酯樹脂、苯酚樹脂、三聚氰胺樹脂、環氧樹脂、胺基曱酸 酯樹脂及聚醯亞胺樹脂以及將該等粉碎者。 作為無機化合物之增黏劑,可列舉例如,硬脂酸鈣、硬脂 酸鋅、硬脂酸鋁、氧化鋁、氧化鋅、氧化鎂、破璃、矽藻土、 氧化鈦、氧化锆、二氧化矽、滑石、雲母、長石、高嶺石(高 嶺土黏土)、葉蝶石(蠟石黏土)、絹雲母、膨潤土膨潤石、 虫至石類(象脫石、貝仔石、囊脫石及皂石等)、有機膨潤土及 有機蒙脫石等。 增黏劑亦可使用市售品。作為有機化合物之增枯劑的市售 品’可列鉾例如,曰本曹達(股)製之SELNY-HPC-H、 HPC-M、HPC-L、HPC-SL 及 HPC-SSL、三菱麗昂(股)製之 DIYANAL BR系列、楠本化成(股)製之Dispal〇ne #6900-20X、Dispalone #4200、Dispalone KS-873N 及 Dispalone #1850、BYK Chem Japan 公司製之 BYK-405 及 BYK-410、Rhom & Haas 公司製之 Primal RW-12W、伊藤製 油(股)製之 A-S-AT-20S、A-S-AT-350F、A-S-AD-10A 及 A-S-AD-160 等。 作為無機化合物之增黏劑的市售品,可列舉例如,白石工 業(股)之 Crown Clay、Bages Clay #60、Bages Clay KF 及 Optiwhite、土屋 Kaolin 工業(股)製之 Kaolin JP-100、NN Kaolin Clay、ST Kaolin Clay 及 Hardsn、Enjel Hard(股)製之 ASP-072、Satenton Plus、TRANSLINK 37 及 Highdrasdelami 099143668 24 201130658 NCD、丸尾 Calicum(股)製之 SYKaolin、OS CLAY、HACLAY 及 MC HARD CLAY、Copchemical 公司製之 Rusentite _ SWN、Rusentite SAN、Rusentite STN、Rusentite SEN 及 Rusentite SPN、Cunimina 工業公司製之 Smecton、Hojun(股) 製之 Benge卜 Bengel FW、S Ben、S Ben 74、Oruganite 及 Omganite T、Wilba Elis 公司製之穗高印、01uben、25〇M、 Benton 34 及 Bent〇n38、日本 Silica 工業(股)製之 Laponite、 Laponite RD 及 Laponite RDS 等。 由透明性的觀點而言較佳的增黏劑為上述有機化合物系 的增黏劑,且其中亦以經丙基纖維素、丙晞酸樹脂為佳。 上述增黏劑可使用單獨1種,且亦可組合使用2種以上。 使用增黏劑時,其含量相對於第一組成物之全固形份使用 0.1〜10質量%為佳。 又,於後述之第二組成物中亦可含有增黏劑。此時,第一 組成物及第二組成物之增黏劑可為相同,且亦可為相異。 (微粒子) π 微粒子使用於提高折射率傾斜Hc層之硬度為其目的。 作為此種提高硬度的微粒子,可列舉例如,專利文獻丄 中記載之表面具有反應性官能基的二氧切微粒子等。 使用賦予硬度之微粒子時,其令晉相机i杜 _ 〃3里相對於第-組成物之第 一黏合劑成/刀質量使用5〜80質量%為佳。 (防靜電劑) 099143668 25 201130658 防靜電劑’係對折射率傾斜HC層賦予防靜電性的成分。 防靜電劑並無特別限定,可使用先前公知物質。 作為防靜電劑’可列舉例如,專利文獻3中記載.的陰離子 性防靜電劑、陽離子防靜電劑、兩性防靜電劑、非離子性防 靜電劑、電解質及離子性液體等。 防靜電劑之含量並無特別限定,若適當調節使用即可。例 如折射率傾斜HC層之表面電阻率為1〇χ1〇ΐ3β/□以下為 佳以1·〇χ1〇 Ω/□以下為更佳,且以! 〇χ1〇9β/□以下為 再佳,以l.GxlOh/□以下為特佳,故折射率傾斜Hc層的表 面電阻率若以此範圍般使用即可。 (勻塗劑) 勻塗劑’在形成折射率傾斜He層時對其表面,具有賦予 塗佈性及/或平滑性的作用。 /作為勻塗劑,可使用先前公知之防止反射薄膜所用的氟 系、聚矽氧系及丙烯酸系等之勻塗劑。例如,DIC(股)製 Megafac系列(MCF350·5)等之不具有電離放射線硬化性基 的勻塗劑、信越化學工業(股)製之Χ 22_ι63Α等之具有電離 放射線硬化性基的勻塗劑任一者岣可使用。 使用勻塗劑時,其含量相對於第一黏合劑成分之質量使用 5.0質量%以下為佳’且以使用Q〜3力質量%為更佳。 第-組成物’通常,於第—溶劑中將第一黏合劑成分及光 聚合起始解任意使用之成分,根據—般的調製法,混合並 099143668The layer can further improve the optical thinness _ anti-reflection. In the above-mentioned (iv) step, the refractive index 値 coating is directly formed by forming a low-refractive-on-oxidation-type fine particle by folding a low refractive index as described above, since it can be used in the optical film of the present invention. In the production method, it is preferred that the low-refractive-index layer composition of the rate layer contains a hollow two-pair optical film to provide excellent antireflection properties. In the method for producing an optical film of the present invention, the low refractive index layer rib formed by the low refractive index layer is hardened, and at least a low refractive index selected from the group consisting of a gold compound and a curable fluororesin is selected. In the case of a material, an optical film having sufficient antireflection properties can also be obtained. In the method for producing an optical film of the present invention, the composition for a low refractive index layer which forms the low refractive index layer is cured, and does not contain hollow ceria particles, and is selected from the group consisting of metal fluoride and curable fluororesin. At least a low-refractive-index material of a suitable type is preferable in that it is sufficient to prevent both reflectance and alkali resistance from being established. In the method for producing an optical film of the present invention, the step (1) and the step (iii) may further include (vi) forming an antistatic on the surface of the light penetrating substrate with a refractive index inclined hard coat layer. The steps of the layer. The antistatic property of the optical film can be improved via the antistatic layer. The optical film of the present invention is a film of light 099143668 9 201130658 obtained by any of the above production methods. The optical film of the present invention is an optical film which is inclined to a hard coat layer on one side of the light-transmitting substrate to a "== rate, which is characterized in that the refractive index is inclined to the average thickness of the main layer 3! High-refractive-index microparticles, and in the case of tilting hard (4), the ratio of the presence of the refractive index of the hard coating (4) in the thickness direction of the hard coating (4) is less than that of the present invention. In the optical film, the refractive index-inclination hard coat layer may be formed from the surface of the light-transmitting substrate opposite to the surface of the surface of the light-transmitting substrate until the refractive index = the total amount of the high refractive index fine particles of 90% or more. Thus, by distributing the high refractive index fine particles, the refractive index of the surface of the light-transmitting substrate opposite to the surface side of the HC layer can be effectively =0. The optical thin film of the present invention can also be formed into the above refractive index. The inclined hard coat layer contains a tackifier. In the optical thin raft of the present invention, the above-mentioned light-transmitting substrate is a matrix of triethylene fluorene fiber and soil material constituting the above-mentioned refractive index oblique hard coat layer, and also exists. The refractive index of the three = 醯 cellulose substrate is inclined on the side of the hard coat layer The interface is preferably from the viewpoint of suppressing interference fringes in the optical phase. In the optical film of the present invention, the light of the above-mentioned refractive index tilting hard coat layer penetrates the substrate to the _ plane, and the step is made by low refraction. The rate layer or the refractive index is inclined on the hard enthalpy side and the inter-refractive-index layer and the low-refractive-index layer are preferable because the antireflection property of the optical film can be further improved. 099143668 201130658 In the optical _ towel of the present invention, the above The low-fold layer contains hollow silica fine particles, which is preferable because it can prevent the reflection of the optical thinner. In the optical film of the present invention, the low refractive index layer contains the metal: fluoride. In the case of the optical film of the present invention, the low refractive index layer does not contain the hollow silica dioxide granules, and the composition of the group is low. In the case where at least one low-fat component is selected from the group consisting of a metal fluoride and a fluororesin, both of the antireflection property and the fiscal property are satisfied. In the light of the present invention, the light is wear The antistatic layer is further provided between the transparent substrate and the refractive index oblique hard coat layer, and the antistatic property of the optical film is further improved. Therefore, in the optical film of the present invention, the optical film may be used. The optical film was placed in a 2 N aqueous solution of sodium hydroxide maintained at 55 ° C for 2 minutes, and then, after washing with water, '7 (TC dry for 5 minutes, and secondly, the ugly wire field was rubbed with a load of 0.98 N). When the surface of the low refractive index layer is rubbed back and forth one turn, the low refractive index layer is imparted with no damage and peeling properties. - The polarizing plate of the present invention is characterized in that one side of the polarizing element is used for the above optical optical field. The optical display device of the present invention is characterized in that the optical display film of the present invention is provided with the optical film. (Effect of the invention) 099143668 11 201130658 The manufacture of the film of the present invention In the method, the first composition of the first composition containing no high refractive index fine particles and the second composition containing the specific viscosity of the high refractive index fine particles are adjacent to each other, and (4) the first composition is in position. A light transmissive substrate side is formed as a refractive index gradient layer simultaneous coating, can easily control the film thickness of the high-refractive index gradient refractive index of the HC layer direction in fine distribution. Therefore, when the method for producing an optical film of the present invention is used, an optical film having a gradient π layer with a refractive index can be easily obtained with high productivity. In the reduction plate and the image of the present invention, since the optical film having the refractive index inclined HC layer is provided, it is difficult to cause damage. [Embodiment] Hereinafter, the manufacturing method of the optical (four) of the present invention will be described first, and the optical film will be described next. In the present invention, (meth)acrylic acid S means glyceryl acetoate and/or methacrylic acid ester. Further, in the light of the present invention, not only electromagnetic waves of wavelengths in the visible light and non-visible light regions, but also electron beam-like particle lines and radioactive strands are collectively referred to as radiation or ionizing radiation. In the present invention, the average particle diameter of the microparticles means the average value of the particles (2) of the cross section of the cured film observed by a transmission electron microscope (TEM) photograph, and may be a primary particle diameter and a secondary particle size. Any of the particle sizes. That is, it is an average dispersed particle diameter of the entire particle group including the primary particle diameter and the secondary particle diameter. 099143668 12 201130658 In the present invention, the molecular weight, in the case of having a molecular weight distribution, means the weight average molecular weight of the polystyrene-converted value measured by gel permeation chromatography (GPC) using THF as a solvent, and has no molecular weight. In the case of distribution, • Think about the molecular weight of the compound itself. In the present invention, the term "hard coat layer" means a pencil hardness test (4.9 N load) prescribed in JIS K5600-5-4 (1999), and shows a hardness of "Η" or more. Further, in the definition of the film and the sheet in the definition of JIS-K6900, the sheet refers to a product which is thin and generally has a thickness which is small and flat in the ratio of length to width. The so-called film means that the thickness is extremely small compared to the length and the width. And the maximum thickness is an arbitrarily defined thin and flat product 'general example, in the form of a roll type. Therefore, even if the thickness of the sheet is extremely thin, it is called a film, and the boundary between the sheet and the film is not determined, and it is difficult to distinguish clearly. Therefore, in the present invention, the meaning of both the thick and the thin is included, and Defined as "film". The refractive index was measured by using a spectrophotometer (UV-3100PC manufactured by Shimadzu Corporation), and the average reflectance (R) at a wavelength of 38 〇 to 78 〇 nm was measured. From the obtained average reflectance (R), the value of the refractive index (8) was obtained using the following formula. R (%) = (l-n) / (1 + n2) - The measurement of the dry film thickness was carried out using (idf-130, manufactured by Mitsut® Co., Ltd.). (Method for Producing Optical Film) The method for producing an optical film of the present invention comprises (1) a step of preparing a light-transmitting substrate, (9) preparing a first binder component and a first solvent, and containing no high-refractive-index particles And the viscosity is 3~1 〇〇···························································· a solvent and a viscosity of mPa s - a step of curing the composition for the hard coat layer, and (4) a surface side of the light-transmitting substrate, from the side of the light-transmitting substrate, the first - the curable resin composition for a hard coat layer and the curable resin for the second hard coat layer are preferably adjacent to each other, and the first hard coat phase curable resin composition is more than the curable resin for the second hard coat layer The composition is coated on the side of the light-transmitting substrate at the same time to form a coating step, and (4) the step of curing the coating film obtained in the above step (10) to form a refractive index-slanted hard coat layer. The first composition which does not contain high refractive index fine particles, has a viscosity of 3 to 1 〇〇mPa.s, and the second composition which has a high refractive index fine particle containing an average particle #丨~刚nm, and a viscosity of HMO〇mPa.s When the first composition is applied simultaneously to the side of the light-transmitting substrate and hardened, the refractive index-inclined HC layer can be obtained with high productivity. In addition, the viscosity of the first composition and the second composition is determined by using the MCR3G measurement tool manufactured by ΑηωηΜ, pp5(), measuring the temperature as hunger, and cutting speed as the condition of the coffee maker. Ink) is measured in an appropriate amount and dripped onto the stage. When the viscosity of the first composition and the second composition is less than the above range, it is difficult to control the distribution of the high refractive index fine particles in the film thickness direction of the refractive index inclined HC layer in the gradient refractive index HC layer, and the high refractive index The microparticles are easily distributed evenly in the inclined HC layer at a refractive index of 099143668 14 201130658. When the high refractive index fine particles are uniformly distributed in the layer, the refractive index difference becomes large at the interface between the light-transmitting substrate adjacent to the refractive index-inclined HC layer and the antistatic layer. Thereafter, interference fringes are generated in the interface and the appearance of the optical film is deteriorated. Further, the content of the high refractive index fine particles increases, and the manufacturing cost also increases. Further, when the viscosity of the first composition and the second composition is less than the above range, the coating of the refractive index is inclined on the surface of the HC layer and the appearance is deteriorated. On the other hand, when the viscosity of the first composition and the second composition is within the above specific range, even if the two compositions are simultaneously coated, the diffusion or sedimentation of the high refractive index fine particles can be appropriately controlled, and the coating can be easily performed. The refractive index tilting HC layer is obtained with high productivity. The viscosity of the first composition and the second composition are 3 to 100 mPa · s and 10 to 100 mPa · s, respectively, and the viscosity of the first composition is preferably 3 to 50 mPa · s, more preferably 5 to 30 mPa · s. The viscosity of the second composition is preferably 10 to 50 mPa · s, more preferably 15 to 30 mPa · s. When the viscosity of the first composition and the second composition are adjusted to the above ranges, respectively, the diffusion or sedimentation of the high refractive index fine particles can be easily controlled, and the refractive index inclined HC layer can be easily formed. Further, the viscosity of the first composition is 5 to 30 mPa·s, and the viscosity of the second composition is 20 to 30 mPa·s, which makes it easier to control the diffusion or sedimentation of the high refractive index fine particles, and is easy to form the refractive index tilt HC. Layer, so it is better. 099143668 15 201130658 If the viscosity of the second and second compositions is within the above range, it may be appropriately adjusted according to the distribution of the desired re-folded fine particles, but hardened and becomes the upper side of the gradient refraction layer. The viscosity of the two compositions is greater than that of the first composition, and is preferable in terms of productivity. Further, the absolute value of the difference between the viscosity (mPa·s) of the first composition and the second composition is 30 or less', the diffusion or sedimentation of the high refractive index fine particles can be more easily controlled, and the gradient of the refractive index is easily formed. Therefore, it is better. Fig. 1 is a view schematically showing an example of a method for producing an optical film of the present invention. As shown in Fig. 1 (a), a light-transmitting substrate 1 准备 was prepared. Next, on the light-transmitting substrate 1G, the first composition and the fourth product are coated adjacent to each other on the light-transmitting substrate 1Q side, and coated at the same time to form a coating. The film is cured by light irradiation, as shown in Fig. 1(b), the less the amount of the partial refractive index recording in the layer is closer to the light-transmitting wire, and the refractive index oblique hard coat layer is formed. 20, obtaining an optical film j. Hereinafter, the light-transmitting substrate, the first composition and the second composition used in the method for producing an optical film of the present invention will be described. (Light-transmitting substrate) If the light-transmitting substrate of the present invention satisfies the physical properties of the light-transmitting substrate which is an optical film, Shilongding can appropriately select and use a previously known hard coating. Triacetyl cellulose (tac), polyethylene terephthalate (PET), or cyclic olefin polymer (COP) used for the film and optical enamel. The average light penetration of the translucent substrate in the visible light region of 380 to 78 Gnm is preferably 099143668, 201130658, preferably 50% or more, more preferably more than 85%. In addition, the measurement of the light transmittance can be carried out by using an ultraviolet-visible spectrophotometer (for example, UV-3100PC manufactured by Shimadzu Corporation), and used for measurement in a room or atmosphere. Further, the light-transmitting substrate may be subjected to an alkalizing treatment and a surface treatment such as providing a primer layer. Further, an additive such as an antistatic agent may be contained in the light-transmitting substrate. The thickness of the light-transmitting substrate is not particularly limited, and is usually 2 〇 to 3 〇〇 左 ’ 〜 〜 40 〇〇 较佳 ι ι ι In the case where the light-transmitting substrate is a TAC substrate, the method of forming a sink layer containing high-refractive-index fine particles in the first step is used in a single-layer method. Even if the solvent and the binder component contained in the composition are impregnated into the TAC substrate, the high-refractive-index fine particles are uniformly distributed in the HC layer', and the interface on the tac substrate side of the HC layer and its vicinity are also likely to exist. In this interface, the interference fringes occur and the appearance is deteriorated via the tac substrate (refractive index Μ州 and high refractive index fine particles (refractive index: 15 () ~ 2 refractive index difference. '(4) Earth' according to the present invention In the method for producing an optical film, the refractive index is inclined to the layer, and in the film thickness direction of the refractive index tilting *HC layer, the amount of the high refractive index 2 particles (particle density per unit volume) is closer to light penetration. Sexuality = less side 'and at the interface between the refracting oblique HC layer and the light penetrating wire, there is no or high refractive index microparticles in the attachment. Therefore, even if the 099143668 17 201130658 TAC substrate is used, the first solvent And the first binder component is easily saturated with the TAC substrate' An optical film which can obtain a good appearance without interfering with the stripe at the interface between the refractive index-inclined HC layer and the TAC substrate. (The curable resin composition for the first hard coat layer) is used in the method for producing an optical film of the present invention. The first composition contains the first binder component and the first solvent, and does not contain high refractive index microparticles, and has a viscosity of 3 to 1 〇〇 mPa · s. The first composition is more transparent than the second composition described later. The substrate is adjacent and coated at the same time. The first composition having the refractive index microparticles is coated at the same time as the second composition containing the high refractive index microparticles on the side of the light transmissive substrate. The refractive index of the two kinds of and the formed object is inclined in the HC layer, and the refractive index is inclined in the film thickness direction of the HC layer, and the higher the refractive index fine particles are closer to the light-transmitting substrate side, the more the When the first composition and the second composition are simultaneously coated, the first composition and the second composition are formed into a film in an integrated manner, and the second composition is applied to the second composition separately and hardened. High refractive index micro In the integrated film, the distribution is less moderately closer to the side of the light-transmitting substrate. Thereby, the first composition is inhibited via the light-transmitting substrate side interface of the refractive index-inclined HC layer. The difference in refractive index between the high refractive index fine particles and the lower layer such as the light-transmitting substrate or the antistatic layer causes interference fringes to prevent deterioration of the appearance of the optical film. Hereinafter, the first bonding included in the first composition will be described. The component and the first solvent and, if necessary, other photopolymerization initiators, viscosity-increasing 099143668 201130658 agent, microparticles, antistatic agent and leveling agent. (First binder component) First binder component The first binder component is, for example, a reactive adhesive component which is cured by induction light (hereinafter referred to simply as "photocurable binder component"), ( 11) Reactive adhesive components that are hardened by induction heat (hereinafter referred to as "thermosetting adhesive components") and (iii) non-reactive adhesives that are cured by drying or cooling without sensing light and heat. Mixture ingredients. Further, the 'photocurable adhesive component and the thermosetting adhesive component' may also be light and heat-curable adhesive components which are resistant to light and heat. In the photocurable adhesive component, a binder component which is cured by ionizing radiation (hereinafter referred to as "ionizing radiation curable adhesive component") can be prepared, and a coating composition excellent in coating suitability can be prepared. A uniform large-area coating film is formed. Further, the binder component which is cured by ionizing radiation in the coating film is cured by photopolymerization after coating, and a cured film having high strength can be obtained. As the ionizing radiation curable adhesive component, a monomer, oligomer or polymer having a polymerizable functional group which is previously known to cause polymerization or the like by ionizing radiation can be used. The polymerizable functional group is preferably, for example, an ethylenically unsaturated bond such as an acrylonitrile group, a vinyl group or an allyl group. The polymerizable functional group may further be an epoxy group. The component of the ionizing radiation-curable adhesive is preferably a binder component having two or more polymerizable functional groups in one molecule from the viewpoint of increasing the crosslinking of the binder at the time of curing to 099143668 19 201130658. Examples of the ionizing radiation-curable adhesive component include monofunctional (fluorenyl) acrylate, di(indenyl) acrylate, and tri(indenyl) acrylate described in JP-A-2004-300210. a derivative such as a polyfunctional (fluorenyl) acrylate and such an EO (ethylene oxide) modified product, an oligomer which polymerizes the radical polymerizable monomer, a polymer having an ethylenically unsaturated bond, or the like . Further, a photocationic polymerizable monomer and an oligomer such as a compound containing an epoxy group can also be used. The thermosetting adhesive component may, for example, be a compound having an epoxy group and a binder epoxy compound described in JP-A-2006-106503. Examples of the non-reactive adhesive component include polyacrylic acid, polyimine, and polyvinyl alcohol described in JP-A-2004-300210. The binder component of the above (〇~(iii) may be used alone or in combination of two or more. (First solvent) The first solvent has a viscosity for adjusting the first composition and imparts a first composition. The first solvent is not particularly limited, and it can be appropriately selected and used according to the light-transmitting substrate to be used. 099143668 201130658 The first solvent is exemplified by, for example, JP-A-2005-316428. Alcohols, ketones, esters, hydrocarbons, aromatic hydrocarbons, ethers, etc. As the first solvent, for example, tetrahydrofuran, 1,4-dioxane, dioxane and An ether or the like such as diisopropyl ether. In order to prevent the occurrence of interference fringes, it is preferred to use a solvent (permeability solvent) having a permeability to the light-transmitting substrate. The penetrating solvent may be used in combination with a non-permeating solvent. In the present invention, the so-called permeability, in addition to the property of impregnation of the light-transmitting substrate, β卩, narrowly defined permeability, includes the concept of swelling or wetting the light-transmitting substrate. Specific examples of the solvent for permeation include alcohols such as isopropyl alcohol, decyl alcohol and ethanol, ketones such as methyl ethyl ketone, decyl isobutyl ketone and cyclohexanone, decyl acetate and ethyl acetate. Esters such as esters and butyl acetate, aromatic hydrocarbons such as i-hydrocarbons, toluene and diphenylbenzene, and phenols. The solvent used for the case where the light-transmitting substrate is triacetyl cellulose (TAC) and the solvent used for the case where the light-transmitting substrate is polyethylene terephthalate (PET) can be enumerated. The solvent described in Japanese Laid-Open Patent Publication No. 2005-316428. Particularly, the light-transmitting substrate is a solvent used in the case of triethyl fluorene cellulose (TAC), and is preferably decyl acetate, ethyl acetate, butyl acetate or mercaptoethyl ketone. 099143668 21 201130658 The solvent used for the polyethylene pentaphthalic acid (PET) is a secret, gas, benzene, gas and 4 isopropyl alcohol. Further, in addition to the impregnation property, the solvent of the above surface has the effect that the first composition can be easily and uniformly coated on the surface of the light-transmitting substrate, and the evaporation rate of the solvent after coating is moderate, and it is difficult to cause unevenness in drying. . Therefore, a large-area coating film having a thickness of a haiku can be easily obtained. The first solvent may be used alone or in combination of two or more. When the impregnating solvent and the non-permeating solvent are used in combination as the first solvent, the ratio of the penetrating solvent is preferably % by mass to the total mass of the first solvent, and more preferably 80% by mass or more. (Other components of the first composition) In the first composition, in order to promote the hardening of the first-adhesion lyse, the hardness, the hardness, or the antistatic property, etc., in the range not exceeding the gist of the present invention, It may contain other components such as a photopolymerization initiator, a tackifier, fine particles, an antistatic agent, and a leveling agent. (Photopolymerization initiator) As the photopolymerization initiator, for example, a light-emitting agent such as an acetophenone or a diphenyl hydrazine described in JP-A-2007-272132 can be used. Among them, 1-trans-cyclo-cycloethyl-phenyl ketone and fluorenyl, _(methylthio) phenyl]-2-indolyl propane oxime ketone, even a small amount can start and promote photopolymerization 099143668 22 201130658 It is preferred to use it in the present invention. In the case of using a photo-cationic polymerizable binder component, a cationic polymerization initiator described in JP-A-2010-107823 can be used as needed. The photopolymerization initiator may be used alone or in combination of two or more. A commercially available product can also be used as the above photopolymerization initiator. For example, 1-hydroxy-cyclohexyl-phenylindole is commercially available from Ciba Specialty Chemicals under the trade name of 1RGACURE 184. The photopolymerization initiator may be used alone or in combination of two or more. When the photopolymerization initiator is used, the content thereof is preferably 0.1 to 20% by mass based on the total solid content of the first composition. (Tackifier) The first composition may contain a tackifier for an organic compound and/or an inorganic compound for the purpose of adjusting the viscosity. By containing the tackifier, the mixing of the first composition and the second composition can be appropriately controlled, and the distribution of the south refractive index fine particles contained in the second composition can be easily controlled. Examples of the tackifier of the organic compound include ethyl cellulose, hydroxypropyl cellulose, acrylic resin, fatty acid guanamine wax, oxidized polyethylene, high molecular weight amine salt, and linear polyamine hydrazine. Amine and macromolecular acid salt, polyglycolic acid decylamine solution, alkyl sulfonate, alkyl allylate sulfonate, gum system ester, 099143668 23 201130658 polyester resin, phenol resin, melamine resin , epoxy resin, amino phthalate resin and polyimide resin, and the pulverizer. Examples of the tackifier of the inorganic compound include calcium stearate, zinc stearate, aluminum stearate, aluminum oxide, zinc oxide, magnesium oxide, glass, diatomaceous earth, titanium oxide, zirconium oxide, and the like. Cerium oxide, talc, mica, feldspar, kaolinite (kaolin clay), phylloxite (waxite clay), sericite, bentonite bentonite, insect to stone (like stone, stone, stone, and soap) Stone, etc.), organic bentonite and organic montmorillonite. Commercially available products can also be used as the tackifier. A commercially available product as a bulking agent for organic compounds can be listed, for example, by SELNY-HPC-H, HPC-M, HPC-L, HPC-SL, and HPC-SSL, manufactured by Sakamoto Soda Co., Ltd., Mitsubishi Rayon. DIYANAL BR series (shared), Dispal〇ne #6900-20X, Dispalone #4200, Dispalone KS-873N and Dispalone #1850, BYK-405 and BYK-410 manufactured by BYK Chem Japan , Primal RW-12W manufactured by Rhom & Haas, AS-AT-20S, AS-AT-350F, AS-AD-10A and AS-AD-160 manufactured by Ito Oil Co., Ltd. As a commercial product of the tackifier of an inorganic compound, for example, Crown Clay, Bages Clay #60, Bages Clay KF, and Optiwhite of White Rock Industries Co., Ltd., Kaolin JP-100, NN by Kato Kaolin Industries Co., Ltd. Kaolin Clay, ST Kaolin Clay and Hardsn, Enjel Hard (ASP), Satenton Plus, TRANSLINK 37 and Highdrasdelami 099143668 24 201130658 NCD, SYKaolin, OS CLAY, HACLAY and MC HARD CLAY, Rusentite _ SWN, Rusentite SAN, Rusentite STN, Rusentite SEN and Rusentite SPN manufactured by Copchemical, Smecton manufactured by Cunimina Industries, Benge BW, S Ben, S Ben 74, Oruganite and Omganite T, manufactured by Hojun Co., Ltd. Sapphire, 01uben, 25〇M, Benton 34 and Bent〇n38 made by Wilba Elis, Laponite, Laponite RD and Laponite RDS made by Japan Silica Industries. A preferred tackifier from the viewpoint of transparency is a tackifier of the above organic compound, and propylcellulose or a propionate resin is also preferred. One type of the above-mentioned tackifier may be used alone or two or more types may be used in combination. When the tackifier is used, the content thereof is preferably 0.1 to 10% by mass based on the total solid content of the first composition. Further, a tackifier may be contained in the second composition described later. At this time, the tackifiers of the first composition and the second composition may be the same and may be different. (Microparticles) π Microparticles are used for the purpose of increasing the hardness of the refractive index tilting Hc layer. Examples of such fine particles for improving hardness include, for example, dioxo-particles having a reactive functional group on the surface described in Patent Document 丄. When the fine particles imparting hardness are used, it is preferable to use 5 to 80% by mass of the first adhesive agent/knife mass in the Jin camera i Du _ 〃3. (Antistatic agent) 099143668 25 201130658 Antistatic agent' is a component that imparts antistatic properties to a refractive index inclined HC layer. The antistatic agent is not particularly limited, and a conventionally known one can be used. Examples of the antistatic agent include an anionic antistatic agent, a cationic antistatic agent, an amphoteric antistatic agent, a nonionic antistatic agent, an electrolyte, and an ionic liquid described in Patent Document 3. The content of the antistatic agent is not particularly limited, and may be appropriately adjusted and used. For example, if the refractive index is inclined, the surface resistivity of the HC layer is 1〇χ1〇ΐ3β/□ or less, preferably 1·〇χ1〇 Ω/□ or less, and it is better! 〇χ1〇9β/□ is more preferable, and l.GxlOh/□ or less is particularly preferable, so that the surface resistivity of the gradient refractive index Hc layer can be used in this range. (Leveling Agent) The leveling agent' has an effect of imparting coatability and/or smoothness to the surface of the coating layer when the refractive index is inclined. / As the leveling agent, a leveling agent such as fluorine-based, polyfluorene-based or acrylic-based which is conventionally used for the antireflection film can be used. For example, a leveling agent which does not have an ionizing radiation curable group, such as a DIC (product) Megafac series (MCF350·5), and a leveling agent having an ionizing radiation curable group such as Χ22_ι63Α manufactured by Shin-Etsu Chemical Co., Ltd. Either can be used. When the leveling agent is used, the content thereof is preferably 5.0% by mass or less based on the mass of the first binder component, and more preferably 0 to 3% by mass. The first composition 'usually, the first binder component and the photopolymerization initiation solution are used in the first solvent, and the components are used arbitrarily, and mixed according to the general modulation method, and 099143668

S 26 201130658 可使用塗料分散器或珠 且分散處理則可調製。於混合分散, 粒磨等。 後述之第二組成物亦可同樣調製。 (第二硬塗層用硬化性樹脂組成物) 本發明之光學薄膜之製造 第二黏合劑成分及 平均粒徑则之高折射率之^組成物,含有 溶劑,且黏度為HM⑼mpa.s。其次,將上述第一植 側般鄰接且同時 成物比該帛二㈣物纽料穿it絲材 、 塗佈。 第二組成物,亦具有將折射率傾斜此層的光穿透性基材 對面側界面及其附近,有效率地高折射率化的作用。藉此, 如圖4所示般,在折射率傾斜HC層的光穿透性基材對面側 面(折射率傾斜HC層上)設置低折射率層之情況,和,如圖 5所示般’在折射率傾斜HC層上,由該折射率傾斜HC層 側開始設置高折射率層及低折射率層’則可更加提高光學薄 膜的防止反射性。 以下’說明關於第二組成物所含之高折射率微粒子、第二 黏合劑成分及第二溶劑以及視需要亦可含有之其他的光聚 合起始劑、增黏劑、微粒子、防靜電劑及勻塗劑。 (高折射率微粒子) 本發明之第二組成物所含的高折射率微粒子為平均粒徑 為 1〜l〇〇nm。 099143668 27 ZU11JUOD6 高折射率微粒子的平岣軚一 ]〇一下’由控制分散性的二:由透明性的觀點而言為 高折射率微粒子的平岣粒^點而言為以上。 以下為佳,以2加 4您,由透明性的觀點而言為 於本發明之#以下為更佳。 万之先學薄膜之製 _ 第二組成物細度作鱗〃、卜經由將第-組成物與 種組成物,亦可抑制第二組^園,則即使同時塗佈該等2 膜中均勻分散。 成物所含之高折射率微粒子於塗 高折射率微粒子的平均粒〆 (丽)照片觀察硬化膜(折射二:意=透型電子顯微鏡 的平均值,若A丨1ΛΛ 只斜HC層)剖面之粒子2 右馮1〜lOOnm,則為 者均可。 •人粒役及二級粒徑之任一 高折射率_子之軸 及針狀等物質。 無特別限疋’可使用球狀、鏈狀 作為高折射率微粒子, 定,可使用弁此八左 折射率為⑽〜2.80則無特別限 使用先别公知的高折射率微粒子。 作為上述间折射率微粒子,可列舉金 為金屬氧化物1減物❹子。作 mo、拍私玄 具體而吕,可列舉例如,氧化鈦 (Tl〇2、折射率·· 2 71) J氧化錯(Zr〇2、折射率:2.1〇)、氧化 鈽(Ce02、折射率·· 2 2〇)、 ;氧化錫(Sn〇2、折射率:2.00)、 録錫氧化物(ΑΤΟ、折射率.彳7 〇<、 射羊.】·75〜h95)、銦錫氧化物_、 、…1.95〜2.00)、磷錫化合物(ρτ〇、折射率m別)、 099143668S 26 201130658 A paint disperser or bead can be used and the dispersion treatment can be modulated. For mixing and dispersion, grain grinding, etc. The second composition described later can also be prepared in the same manner. (Curable resin composition for second hard coat layer) Production of optical film of the present invention A second binder component and a composition having a high refractive index of an average particle diameter contain a solvent and have a viscosity of HM (9) mpa.s. Next, the first plant side is adjacent to each other and the resultant material is coated with the wire material than the second (four) material. The second composition also has an effect of efficiently increasing the refractive index by obliquely tilting the refractive index of the layer to the surface of the light-transmitting substrate and the vicinity thereof. Thereby, as shown in FIG. 4, a low refractive index layer is provided on the opposite side surface (on the refractive index inclined HC layer) of the light-transmitting substrate of the refractive index-inclined HC layer, and, as shown in FIG. In the refractive index-inclined HC layer, the high refractive index layer and the low refractive index layer are provided from the side of the refractive index inclined HC layer, whereby the antireflection property of the optical film can be further improved. The following describes the high refractive index microparticles, the second binder component, and the second solvent contained in the second composition, and other photopolymerization initiators, tackifiers, microparticles, and antistatic agents which may be contained as needed. Leveling agent. (High refractive index fine particles) The high refractive index fine particles contained in the second composition of the present invention have an average particle diameter of 1 to 10 nm. 099143668 27 ZU11JUOD6 The flatness of the high-refractive-index fine particles is the same as that of the flat-grained particles of the high-refractive-index fine particles from the viewpoint of transparency. The following is preferable, and it is more preferable to use 2 plus 4, and it is the following # from the viewpoint of transparency. The first component of the film is made of _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ dispersion. The high-refractive-index microparticles contained in the product are observed on the average particle size of the high-refractive-index microparticles (refractive two: meaning = average value of the electron microscope, if A丨1ΛΛ is only inclined to the HC layer) The particle 2 is right von 1~lOOnm, and it can be used. • Any of the human granules and the secondary particle size. High refractive index _ sub-axis and needle-like substances. It is possible to use a spherical shape or a chain shape as a high refractive index fine particle, and it is possible to use a high refractive index fine particle which is not particularly limited as long as it has a refractive index of (10) to 2.80. As the above-mentioned inter-refractive-index fine particles, gold is a metal oxide 1 minus dice. For example, titanium oxide (Tl〇2, refractive index·· 2 71) J oxidation error (Zr〇2, refractive index: 2.1〇), cerium oxide (Ce02, refractive index) ·· 2 2〇), tin oxide (Sn〇2, refractive index: 2.00), tin oxide (ΑΤΟ, refractive index. 彳7 〇<, 羊羊.]·75~h95), indium tin oxidation _, , ... 1.95~2.00), phosphorus tin compound (ρτ〇, refractive index m), 099143668

S 28 201130658 氧化銻(Sb2〇5、折射率:2·04)、紹鋅氧化物(Az〇、折射率: 1.90〜2.00)、鎵鋅氧化物(〇2〇、折射率:1.90〜2.00)及銻氧 _ 化鋅(21^1?206、折射率:1.9〇〜2.〇〇)等。 : 上述金屬氧化物微粒子中亦以氧化錫(Sn〇2)、銻錫氧化物 (ΑΤΟ)、銦錫氧化物(IT〇)、磷錫化合物(ρτ〇)、氧化銻 (sb2〇5)、鋁鋅氧化物(ΑΖ0)、鎵鋅氧化物(GZ〇)及銻酸鋅 (ZnSb2〇6)為導電性金屬氧化物,具有控制粒子的擴散狀 •%,形成導電通道,並可賦予防靜電性的優點。 於本發明之光學薄膜之製造方法中,根據折射率傾HC層 之光穿透性基材對面側面所設置的低折射率層或高折射率 層’選擇或調整第二組成物所含之高折射率微粒子的種類及 含量,且若調整折射率傾斜HC層的折射率即可。 具體而言’例如於折射率傾斜Hc層的光穿透性基材對面 側面設置低折射率層時’折射率傾斜HC層的折射率為 1.50〜2.80為佳。 於折射率傾斜HC層之光穿透性基材對面側面,由折射率 傾斜HC層侧’設置高折射率層及低折射率層時,折射率傾 •斜^層的折射率比高折射率層更低,且比低折射率异更 高。此時’例如’折射率傾斜HC層的折射率可為15〇〜謂。 另外,折射率傾斜HC層的折射率,意指折射率_如 層之光穿透性基材對面侧界面的折射率。 第-組成物所含之高折射率微粒子,可使用單獨^種平均 099143668 29 201130658 粒徑、形狀、折射率及材料等不同者,且亦可組合使用2 種以上。 (第二黏合劑成分) 第二黏合劑成分,係硬化成為折射率傾斜Hc層之基質的 成分。 第二黏合劑成分可使用第一黏合劑成分所列舉者。 此外,亦可使用專利文獻3中記載之含有芳香環的樹脂、 含有氟以外之氯、溴及碘等鹵素元素的樹脂及含有硫原子、 氮原子及峨原子等原子之樹脂等的高折射率黏合劑成分。 第-黏合劑成分與第二黏合劑成分可為相同,且亦可為相 異。 ’’、、 第二黏合劑成分亦可使用單獨丨種,且亦可組合使用2 種以上。 (第二溶劑) 第二溶劑可使用第一溶劑所列舉者。 第-溶劑與第二溶劑可為相同,且亦可為相異。 第二溶劑亦可使用單獨1種,且亦可組合使用2種心 (第二組成物之其他成分) 上 於第二組成物中,在不超脫本發明主旨之範圍中 第二黏合劑成分之硬化、贼予硬度或防靜電:等為目:促$ 可含有光聚合絲劑、增_、微粒子、分侧雷;; 防污劑及均塗劑等其他成分。 町€劑 099143668 30 201130658 第一,.且成物中亦可含有的光聚合起始劑、增黏劑及防靜電 劑可使用上述第一組成物所列舉者。 ·- 第及第一組成物所含的光聚合起始劑、增黏劑及防靜電 劑可分別相同,或不同。 (微粒子) 以提高折射率傾斜Hc層硬度為目的,第二組成物所含有 的微粒子可使用二氧化石夕(Si〇2)、氧化銘(Al2〇3)等。 (分散劑) 為了控制南折射率微粒子的分散性,亦可使用分散劑。 作為分散劑,可列舉例如,專利文獻3中記載之Βγκ ChemS 28 201130658 yttrium oxide (Sb2〇5, refractive index: 2·04), zinc oxide (Az〇, refractive index: 1.90~2.00), gallium zinc oxide (〇2〇, refractive index: 1.90~2.00) And 锑 _ zinc (21 ^ 1? 206, refractive index: 1.9 〇 ~ 2. 〇〇) and so on. : the above metal oxide fine particles are also tin oxide (Sn〇2), antimony tin oxide (ΑΤΟ), indium tin oxide (IT〇), phosphorus tin compound (ρτ〇), yttrium oxide (sb2〇5), Aluminum zinc oxide (ΑΖ0), gallium zinc oxide (GZ〇) and zinc antimonate (ZnSb2〇6) are conductive metal oxides, which control the diffusion of particles to form conductive channels and provide antistatic The advantage of sex. In the method for producing an optical film of the present invention, the high refractive index layer or the high refractive index layer disposed on the opposite side surface of the light transmissive substrate of the refractive index tilting layer is selected or adjusted to be high in the second composition. The type and content of the refractive index fine particles may be adjusted by adjusting the refractive index of the HC layer. Specifically, for example, when the low refractive index layer is provided on the opposite side of the light-transmitting substrate of the refractive index-slanted Hc layer, the refractive index of the refractive index-inclination HC layer is preferably 1.50 to 2.80. When the refractive index is inclined on the opposite side of the light-transmitting substrate of the HC layer, when the high-refractive-index layer and the low-refractive-index layer are disposed from the side of the refractive index-inclined HC layer, the refractive index of the refractive index is higher than that of the high refractive index The layer is lower and higher than the low refractive index. At this time, for example, the refractive index of the refractive index tilting HC layer may be 15 Å. Further, the refractive index of the refractive index is inclined by the refractive index of the HC layer, which means the refractive index of the opposite side interface of the light-transmitting substrate of the layer. The high-refractive-index fine particles contained in the first composition may be used in a single particle size, shape, refractive index, or material, and may be used in combination of two or more kinds. (Second binder component) The second binder component is a component which hardens into a matrix of the refractive index tilting Hc layer. The second binder component can be listed using the first binder component. In addition, a high refractive index of a resin containing an aromatic ring described in Patent Document 3, a resin containing a halogen element such as chlorine, bromine or iodine other than fluorine, and a resin containing an atom such as a sulfur atom, a nitrogen atom or a ruthenium atom may be used. Adhesive ingredients. The first binder component and the second binder component may be the same and may be different. The second binder component may be used alone or in combination of two or more. (Second solvent) The second solvent can be used as described for the first solvent. The first solvent and the second solvent may be the same and may also be different. The second solvent may be used alone or in combination with two cores (other components of the second composition) in the second composition, and the second binder component may be out of the scope of the present invention without departing from the gist of the present invention. Hardening, thief hardness or anti-static: etc.: Promote $ can contain photopolymerizing silk agent, increase _, fine particles, side-by-side thunder;; antifouling agent and even coating agent and other ingredients. The agent of the above-mentioned first composition can be used as the photopolymerization initiator, the tackifier and the antistatic agent which may be contained in the first article. - The photopolymerization initiator, tackifier and antistatic agent contained in the first and first compositions may be the same or different. (Microparticles) For the purpose of increasing the hardness of the refractive index and tilting the Hc layer, the fine particles contained in the second composition may be silica oxide (Si〇2) or oxidized (Al2〇3). (Dispersant) A dispersant can also be used in order to control the dispersibility of the south refractive index fine particles. As the dispersing agent, for example, Βγκ Chem described in Patent Document 3 can be cited.

Japan(版)製之Disperbyk系列等之具有陰離子性極性基的分 散劑。 (防污劑) 防污劑為防止光學薄膜最表面污染,亦可進一步對折射率 傾斜HC層賦予耐擦傷性。 作為防污劑,亦可使用先前公知的氟系化合物或矽系化合 物等之防污劑(防污染劑)。 作為防污劑’可列舉例如’曰本專利特開2007-264279號 公報中記載的防污染劑。 使用市售品之防污劑亦佳。作為此種市售品的防污劑(非 反應性)為DIC(股)製之Megafac系列,可列舉例如,商品名 MCF350-5、F445、F455、F178、F470、F475、F479、F477、 099143668 31 201130658 TF1025、F478及F178K等東芝Silicon(股)製之TSF系列等、 信越化學工業(股)製之X-22系列及KF系列等以及Thiso(股) 製之Sailar Plane系列等。 作為市售品之防污劑(反應性),可列舉新中材化學工業(股) 製之商品名SUA 1900 L10及商品名SUA 1900L6、Diacel UCB(股)製之商品名Ebecryl 350、商品名Ebecryll360及商 品名KRM7039、曰本合成化學工業(股)製之UT3971、DIC(股) 製之商品名DifenserTF3001、商品名DifenserTF3000及商 品名DifenserTF3028、共榮社化學(股)製之商品名Light Procoat AFC3〇00、信越化學工業(股)製之商品名KNS53〇〇、 GE 東芝 Silicone(股)製之商品名 UVHC1105 及 UVHC8550 及曰本Paint(股)製之商品名ACS-in2等。 (勻塗劑) 作為第二組成物所用之勻塗劑,可使用上述第一組成物所 列舉者。 使用勻塗劑時,其含量相對於第二黏合劑成分之質量使用 5.〇質量%以下為佳,且以使用G]〜3.0質量%為更佳。 於本發明之光學薄膜之製造方法中,在上述(iv)步驟後, 亦可進-步包含有(v)在上述折射率傾斜硬塗層上,直接或 介隔著高折射率層形成低折射率層的步驟。 如此積層低折射率層’則可更加提高光學薄膜的防止反射 性0 099143668A dispersing agent having an anionic polar group such as the Disperbyk series manufactured by Japan. (Antifouling agent) The antifouling agent can further impart scratch resistance to the refractive index inclined HC layer in order to prevent contamination of the outermost surface of the optical film. As the antifouling agent, a conventionally known antifouling agent (antifouling agent) such as a fluorine compound or a lanthanide compound can also be used. The antifouling agent described in Japanese Laid-Open Patent Publication No. 2007-264279 is exemplified as the antifouling agent. It is also preferable to use an antifouling agent of a commercial product. The antifouling agent (non-reactive) of such a commercially available product is a Megafac series manufactured by DIC Co., Ltd., and, for example, trade names MCF350-5, F445, F455, F178, F470, F475, F479, F477, 099143668 31 201130658 TSF series made by Toshiba Silicon Co., Ltd., such as TF1025, F478 and F178K, X-22 series and KF series manufactured by Shin-Etsu Chemical Co., Ltd., and Sailar Plane series manufactured by Thiso Co., Ltd. As an antifouling agent (reactivity) of a commercial product, the brand name of the brand name SUA 1900 L10, the brand name SUA 1900L6, and the name of Eacryl 350 manufactured by Diacel UCB, which are manufactured by Shinkansen Chemical Industry Co., Ltd., and the trade name are listed. Ebecryll360 and trade name KRM7039, UT3971, manufactured by Sakamoto Synthetic Chemical Co., Ltd., trade name Difenser TF3001, trade name DifenserTF3000, and trade name Difenser TF3028, manufactured by Kyoritsu Chemical Co., Ltd., under the trade name Light Procoat AFC3 〇00, Shin-Etsu Chemical Co., Ltd. under the trade name KNS53〇〇, GE Toshiba Silicone Co., Ltd. under the trade names UVHC1105 and UVHC8550, and Pa本Paint (trademark) under the trade name ACS-in2. (Leveling Agent) As the leveling agent used for the second composition, those enumerated as the above first composition can be used. When the leveling agent is used, the content thereof is preferably 5% by mass or less based on the mass of the second binder component, and more preferably from G) to 3.0% by mass. In the method for producing an optical film of the present invention, after the step (iv), the step (v) may be further carried out on the refractive index oblique hard coat layer, or directly or via a high refractive index layer. The step of the refractive index layer. Such a laminated low refractive index layer can further improve the antireflection property of the optical film. 0 099143668

S 32 201130658 高折射率層係比折射率傾斜HC層更高折射率之層,被設 置於折射率傾斜HC層與低折射率層之間,具有更加提高光 學薄膜之防止反射性的作用。 高折射率層’可作成先前公知之防止反射薄膜中所用的高 折射率層。 例如’可使用含有上述折射率傾斜HC層所列舉的高折射 率微粒子、黏合劑成分及溶劑的組成物形成。 向折射率層之折射率,若比該高折射率層之光穿透性基材 側所設置之折射率傾斜Hc層更高即可。 又上述问折射率微粒子中,使用導電性金屬氧化物下, 可賦予防靜電性。 10〜300nm 同折射率層的膜厚 為佳。 若適當設定即可,例如 (低折射率層) 低折射率層,彳 ._ ^ 做°又置於折射率傾斜HC層或高折射率層之 光穿透性基材對 性的作用 、面側面’具有更加提高光學薄膜之防止反射 低折射率層的折 听射率’右比折射率傾斜HC層及高折射率 增更低印可,存丨 _ . ’ ° ’ i.49以下為佳,以1.47以下為更佳, 且以“2以下為特佳。 低折射率層之 ^ 騰7子右適當設定即可,例如,10〜300nm為 佳0 099143668 33 201130658 低折射率層可使用除了黏合劑成分、溶劑以外,含有低折 射率化之低折射率微粒子、低折射率樹脂等之低折射率材料 的組成物(以下,稱為「低折射率層用組成物」)形成。 此黏合劑成分及溶劑,可使用上述折射率傾斜^^層所列 舉之高折射率触子、高折射率黏合劑成分以外的黏合劑成 分及溶劑。 作為低折射率微粒子,使用專利文獻!中記載之具有空隙 之微粒子(中空微粒子)和金屬氟化物為佳。 具有空隙之微粒子的材料,為減低低折射率層之折射率, 使用一氧化石夕或氟樹脂為佳。 具有空隙之微粒子的平均粒彳^為5〜綱為佳,且以 10〜80nm為佳。 作為金屬敦化物,使用先前公知之低折射率材料所用者即 可,例如’可使用LiF(折射率i 4)、邮鎮化鎮、折射率 1.4)、歸,3(折射率M)、A1F3(折射率丨斗⑽叹冰 晶石、折射率^均及NaMgF3(折射率丨36)等。 作為低折射率樹脂,可列舉例如,硬化性氣樹脂。硬化性 氣樹脂可列舉具有光硬化性基及/或熱硬化性基的氟樹脂。 作為光硬化性基,可列舉例如,上述第一黏合劑成分所列 舉的丙稀ϋ基、乙烯基、_基等之乙雜不姊鍵及 基等之聚合性官能基。 羥基、羧基、胺基、環氧 作為熱硬化性基,可列舉例如, 099143668 34 201130658 基、環氧丙基、異氰酸醋基及院氧基等。 作為具有光硬化性基之硬化性氟樹脂,可列舉例如,氟乙 烯、偏氟乙烯、四氟乙烯、六氟乙烯、全氟丁二烯、全氟-2,2_ 二甲基-1,3-二噚唑等之氟烯烴類。 另外,作為具有光硬化性基之硬化性氟樹脂,可列舉(曱 基)丙烯酸2,2,2-三氟乙酯、(甲基)丙烯酸2,2,3,3,3_五氟丙 6旨、(曱基)丙烯酸2-(全氣丁基(乙酿、(曱基)丙稀酸2_(全氣 己基)乙醋、(曱基)丙烯酸2-(全氟辛基)乙酯、(甲基)丙婦酸 2-(全氟癸基)乙酯、α·三氟曱基丙烯酸曱酯、〜三氟曱基丙 烯酸乙酯等之(曱基)丙烯酸酯化合物、丨分子中具有至少3 個I原子之碳數1〜14的氟絲、氣魏基魏伸烧基、與 具有至少2個(甲基)丙稀醯氧基的含氟多官能(曱基)丙烯酸 酯化合物等。 作為具有熱硬化基之硬化性氟樹脂,可使用例如,4_氟乙 烯-全氟烷基乙烯醚共聚合體、氟乙烯_烴系乙烯醚共聚合體 及%氧樹脂、聚胺基曱酸酯樹脂、纖維素樹脂、苯酚樹脂及 聚酿亞胺樹脂等之氟改質品等。 . 此外,亦可使用日本專利特開2010-122603號公報中記載 ' 之含有氣原子的聚合性化合物的聚合體、共聚合體及含有聚 矽氧之偏氟乙埽共聚合體。 上述低折射率材料亦可使用單獨1種,且亦可組合使用2 種以上。 099143668 35 201130658 低折射率微粒子之含量若適當調節使,可,相對於低折 射率層用組成物之黏合劑成分與低折射率微粒子的合計質 量以50〜90質量%為佳,且更佳為55〜70質量%。 使用硬化性氟樹脂時,其含量若適當調節使用即可,相對 於低折射率層用組成物之全固形份以5〜95質量%為佳,且 更佳為25〜60質量%。 於本發明之光學薄膜之製造方法的較佳實施態樣中 ,硬化 形成上述低折射率層的低折射率層用組成物,含有中空二氧 化矽微粒子。藉此具有可取得具更優異之防止反射性的光學 薄膜的優點。 根據本發明之光學薄膜之製造方法所得的光學薄膜中,如 後述,於折射率傾斜HC層中,在折射率傾斜Hc層的膜厚 方向中,高折射率微粒子之存在量愈接近光穿透性基材側愈 少。即’於折射率傾斜HC層中,在折射率傾斜此層的膜 厚方向中,愈接近低折射率層側界面,高折射率微粒子的存 在量愈多,故折射率傾斜HC層之低折射率層側的界面及其 附近的折射率,相比於以相同膜叙含有相同含量之高折射 率微粒子的HC層逐次塗佈形成之情況、和以單層!次塗佈 法形成之情況,更可有效率提高。因此,將含有中空二氧化 石夕微粒子的低折射率層用組成物硬化而形成的低折射率 層’在該折射率傾斜HC層上形成’則可增大折射率傾斜 HC層之低折射率層側的界面部分與低折射率層的折射率 099143668 36 201130658 差,且取得具有優異之防止反射性的光學薄膜。 於本發明之光學薄膜之製造方法的其他較佳實施態樣 中’硬化形成上述低折射率層的低折射率層用組成物,含有 由金屬氟化物及硬化性氟樹脂所組成群中選出至少丨種之 低折射率材料。如此即使低折射率層用組成物含有氟系低折 射率材料作為低折射率材料之情況,亦具有可取得具充分防 止反射性之光學薄膜的優點。 金屬 氣化物和硬化性之氟樹脂等的氟系低折射率材料,因 折射率不士中工一氧化石夕微粒子低,故降低低折射率層之折 射率的效果比中空二氧切微粒子小。 根據先前之逐次塗佈和單層i次塗佈所形成之低折射率 層/高折射率層(高折射率hc層)/基材之層構成的光學薄 膜如述因為無去有效率提高高折射率層(高折射率HC 層)之低折射率層側界面及其附近的折射率,故若於形成低 折射率層之組成獅制上述㈣低折射率材 取 ==射^ 二::"層)之低折射率層側界*及其附近 層之基Γ層之料生料面,―付^ —相=’,Γ如據本發明之光學_之製造方法的上述較佳 υ述’可有效率提高折射率傾斜❹之低 折射率面及其附近的折射率’並且亦可抑制干涉條纹 099143668 37 201130658 的發生故即使在低折射率層用組成物尹使用氣系低折射率 材料亦可取得具有充分防止反射性的光學薄膜。 於本發明之光學薄膜之製造方法的其他較佳實施態樣 中,硬化形成上述低折射率層的低折射率層用組成物 ,不含 有中空二氧化石夕微粒子,而含有由金屬氣化物及硬化性氣樹 脂所組成群中勒至少1種的低折射特料。如此,低折射 率層用組成物不3有中空二氧切微粒子,而含有氟系低折 射率材料作為低折射率材料時,具有可使充分的防止反射性 和耐驗化性兩相成立的優點。 於偏光元件的一側貼合光學薄膜製作偏光板時,將 2予缚膜浸潰於驗溶液中,並且進行將該光學薄膜的基材側 表面親水化之處理(以下,稱為「驗化處 學薄膜的最表面層含有二氧 )一疋在先 論發❹子氧化石夕微粒 矣I該中工一氧化石夕微粒子經由驗化處理而由該最 面層脫洛’並且具有易流出或溶解於驗溶液中的性質。 =面具有含中空二氧化额粒子之低折射 子=予以驗化處理之情況’若Μ二氧化賴 化處理而脫落,則中空二氧化石夕微粒子的含量減少^驗 折射率層的折射率提高, 低 者„ 有無法取付所需之防止反射性夕 右中工-氧化矽微粒子於驗溶液 有污漂驗溶液之虞。 mu解’則 099143668 以往,將财驗化性低的光學薄膜予以驗化處理之情況,在 ►143668 38 201130658 含有二氧化石夕微粒子(中空二氧 夕试拉子)之最表面層(低 折射率層__賴,將最表面層 '理繼液仏繼。但是,在貼咖⑽ == :理後除去保護薄臈的方法中, 、、处 ^鄉數和保護薄膜的成本 加,且光學薄臈的製造成本增大。 寻膜的成本增 相對地’若根據本發明之光學 實祐離n L 專膜之製造方法的上述較佳 =!如上述,因可有效率提高折射率傾斜Η。層之 !==面及其附近的折射率,故經由低折射率層用 二氧切微粒子,而含有氟系低折射率材 薄臈。# 之防止反射性和耐驗化性兩個成立的光學 ^此不使述較佳實施態樣之光學薄膜進行鹼化處理之 清況,不品要保§蒦薄膜,日Iy 且了減低步驟數和製造成本。 於低折射率層中,亦可含右μ、+、+ 衣以風不 的光聚合起始劑和防污劑。4折射率傾斜此層所列舉 低折射率層和高折㈣層如上述,若 溶劑的組成物同硬塗層塗 H矛 率層和高折射率層亦可經由真更=即可。… rvn 由真i蒸鍍、濺鍍、等離子體 叙氣相法(或乾式塗敷法)形成。 於本發明之光學薄臈之製 步驟之間,亦可進-步包含二法;’在上述(1)步驟與㈣ 3 (V1)在上述光穿透性基材之設置 折射率傾斜硬塗層面形成防靜電層的步驟。 099143668 39 201130658 設置防靜電層,可更加提 / 枚间先學薄膜的防靜電性。 防靜電層可使用含有防靜 物形成 • f冑、黏合劑成分及溶劑的組成 防靜電劑可使訂述折射率傾斜HC層所列舉者。 __之含量,相對於形成防靜電層之組成物的黏合劑 成分質:£使用50〜400質量%為佳。 形成防靜電層之組成物所含的黏合劑成分及溶劑 上述折射率傾斜HC層所列舉的黏合劑成分及溶劑。 於本發明之光學薄膜之製造方法中,在不損害光學薄膜之 防止反射㈣範财’亦可包含在光學薄膜之具有折射率傾 斜HC層面側的最表面(光學薄膜之光穿透性基材對面侧 面),進一步設置防污層的步驟。 在最表面設置防污層,則可對光學薄膜賦予防污性 傷性等。 、不 防>5層可使用含有防污劑、黏合劑成分及溶劑之說成物形 成。 防污劑可使用上述折射率傾斜HC層所列舉的勻塗劑和 防污劑。 防污劑之含量’若根據要求性能適當調節即可。 形成防污層之組成物所含的黏合劑成分及溶劑,可使用上 述折射率傾斜HC層所列舉的高折射率黏合劑成分以外的 黏合劑成分及溶劑。 099143668 201130658 防污層的膜厚若適當設定即可,例如,10〜300nm為佳。 於本發明之光學薄膜之製造方法的(iii)步驟中,將第一組 成物與第二組成物同時塗佈的方法並無特別限定,可使用先 前公知的同時塗佈方法。 作為同時塗佈方法,可列舉例如,具有2個以上狹縫(吐 出口)之字模塗敷及滑動塗敷等。 圖2係示出使用擠出型字模塗敷器之同時塗佈方法之一 例的示意圖。 在光穿透性基材10上由字模塗敷器頭部40之狹缝51及 52,分別將第一硬塗層用硬化性樹脂組成物60及第二硬塗 層用硬化性樹脂組成物70,在光穿透性基材側以位於第一 硬塗層用硬化性樹脂組成物60般鄰接並同時塗佈,作成第 一硬塗層用硬化性樹脂組成物的塗膜61及第二硬塗層用硬 化性樹脂組成物的塗膜71。另外,於圖2中,第一硬塗層 用硬化性樹脂組成物與第二硬塗層用硬化性樹脂組成物本 來呈一體形成1個硬塗層,但為了便利說明將該二種組成物 和其塗膜分開顏色記載。 又,同時塗佈時之第一組成物與第二組成物的濕膜厚,根 據所要求性能適當調節即可。 將第一組成物之濕膜厚定為T1、第二組成物之塗膜的濕 膜厚定為T2時,T2/T1(即,T2+T1)為0.01〜1,於折射率傾 斜HC層之膜厚方向中,由光穿透性基材對面側界面直到折 099143668 41 201130658 =率傾斜Hc層之麵臈厚卿。為止的區域 折射率微粒子全量的 易刀佈存在南 微粒子分佈方面而^ 由有效率控制高折射率 另外’濕膜厚可由被塗佈體 的吐出量求出。 搬送速度及面積以及組成物 於本發明之光學薄臈之製造方法之(iv)步驟中,光照射主 要使料、外線、可見光、電子束或電離放射線等。於紫外線 硬化之情况,可❹由超高壓水紐、高壓水銀燈氏 銀燈、碳弧燈、b燈或金屬岐科光_發生的紫外線 等。光照射量以紫外線波長365nm之積分曝光量計 50〜300mJ/cm2 即可。 又’於㈣步驟中,在光照射前視需要亦可進㈣當乾燥。 作為乾燥方法,可列舉例如,減壓乾燥或加熱乾燥、以及粗 合該等乾燥的方法等。又,以常麗乾燥之情況’於3〇〜u〇0c 乾燥為佳。例如,使用甲基異丁基蜗作為第一或第二溶劑 時’通常以室溫〜8Gt、較佳為耽臂c範圍H, 以=0秒鐘〜3分鐘、較佳為3〇秒鐘〜i分鐘左右之時=行 乾燥。 (W)步驟中所形成的折射率傾斜HC層之骐厚,根據所要 求之硬度及防止反射性等適當調節即可。折射率傾斜沉層 的膜厚例如可為1〜20μιη。 (光學薄膜) 099143668 42 201130658 本發明之笛_. 造方法所得者 薄膜’其特徵為根據上述光學薄膜之製 少:薄膜’係在光穿透性基材的-面側,至 斜硬塗層的光學該,其特徵為騎射率傾 該折射率^硬丨〜1GGnm的高折射率微粒子,且於 向,該高折崎射率料㈣層的膜厚方 少。 "彳子的存在量愈接近該光穿透性基材側愈 τ力学薄膜!在光穿透性基材1〇上設置折射库 =,石塗層20 〇其次,於折射率傾斜硬塗層2〇中,在折射 =二塗層的膜厚方向,高折射率微粒子的存在量愈接近 光穿透性基材側愈少。 圖4係示意性示出本發明之光學薄膜之層構成之另一例 的面圖。另外’為了簡化說明,於圖4〜6巾,省略折射率 傾斜HC層内的高折射率微粒子。 在光穿透性基材1G上,由該光穿透性基材側依序設置折 射率傾斜硬塗層2G及低折射率層8〇。 於上述光學薄膜之製造方法中,在(iv)步驟後’進-步設 置(v)在上料射㈣斜硬㈣上,直接形成崎射率層之 099143668 43 201130658 步驟’則可取得此種層構成的光學薄膜。 圖5係示意性示出本發明之光學薄膜之層構成之另一例 的剖面圖。 在光穿透性基材10上’由該光穿透性基材側依序設置折 射率傾斜硬塗層20、高折射率層9〇及低折射率層8〇。 於上述光學溥膜之製造方法中,在(iv)步驟後,進一步設 置(v)在上述折射率傾斜硬塗層上,介隔著高折射率層形成 低折射率層之步驟,則可取得此種層構成的光學薄膜。 圖6係示意性示出本發明之光學薄膜之層構成之另一例 的剖面圖。 在光穿透性基材10上,由該光穿透性基材侧依序設置防 靜電層100、折射率傾斜硬塗層20、高折射率層9〇及低折 射率層80。 於上述光學薄膜之製造方法中,在⑴步驟與㈣步驟之 間進步a又置(v0在上述光穿透性基材之設置折射率傾斜 硬塗層面形成防靜電層之步驟,則可取得此種層構成的光學 薄膜。經由設置_電層,财對絲_賦切靜電性。 本發明之第—光學薄膜’如上述,經由使用不含有特定點 度之高折射率微粒子的第—組成物和含有特絲 射率微粒子料^祕,料有將们mi 塗佈形成⑽輪斜_,料辑料H層 099143668 201130658 ==折射率傾斜Hc層的膜厚方向’高折射率微粒子俞 近光?祕基材爾在量愈少。因此,於_率傾斜HC 層之光穿透性基_界財,可抑湘高折料微粒子盘光 • ?雜基材或防靜電料T層之折料差所發生的干涉條 紋,並且光學薄膜的外觀優異。 又’面折射率微粒子於折射率傾斜Hc層内未均句分佈, 且多分佈於上層側’故可將折射率傾斜此層之光穿透性某 材對面側面有效率地高折射率化。因此,在該折射率傾^ HC層之光穿透性基材_側面側,如圖4及圖5所示般設 置低折射率層,則可提高光學薄膜的防止反射性。 於本發明之光學薄膜之較佳實施態樣中,上述低折射率層 3有中〜氧切錄子。藉此,係有光學薄膜具有優異之 防止反射性的優點。 本發明之光學薄膜中,如圖3所示般,於折射率傾斜此 層中,在折射率傾斜HC層的膜厚方向,愈接近低折射率層 側界面的部分’高折射率微粒子的存在量愈多,故折射率傾 斜HC層之低折射率層側界面及其附近的折射率高 。於該折 射率傾斜HC層上之低折射率層中含有中空二氧化石夕微粒 子之if況#射率傾斜HC層之低折射率層側之界面部分與 低折射率層之折⑽差大,且光學薄❹有優㈣防止反射 性。 於本毛月之光學薄膜之其他的較佳實施態樣中,即使上述 099143668 45 201130658 低折射率層含有由金屬氟化物及㈣賴組成群中選出 少1種之低折射率成分L亦可取得具有D防止至 性的光學薄膜。 反射 於本發明之光學薄膜之其他的較佳實施態樣中,上述七 射率層不含有中空二氧化石夕微粒子,且含有由金屬氣化物^ 氟樹脂所組成群中選出至少丨種的低折射率成分就充分 防止反射性和耐驗化性可兩相成立的觀點而言為佳。又= 使用此較佳貫施態樣的光學薄膜,則在鹼化處理中不需要= 濩薄膜,可以低成本製作偏光板。 本發明之光學薄膜所適宜設置的低折射率層、高折射、 層、防靜電層及防污層,於光學薄膜之製造方法中已說明率 故此處省略說明。 ’ 本發明之光學薄叙較佳實施態樣巾,在上述折射率傾斜 硬塗層中,由上述衫透性基材對面側界面直到該折射率傾 斜硬塗層膜厚之7〇%為止之區域中,存在上述高折射率微粒 子全量的90%以上。 如圖3所示般,於折射率傾斜Hc層中,由光穿透性基材 對面側界面直到光穿透性基材侧為止之折射率傾斜Hc層 膜厚的70%為止的區域中,存在高折射率微粒子的9〇%以 上,且折射率傾斜HC層之光穿透性基材側界面存在的高折 射率微粒子變少,更可抑制折射率傾斜HC層與光穿透性基 材和防靜電層間的干涉條紋發生。 099143668 46 201130658 另外’雖以圖3為例說明,但此折射率傾斜HC層内之高 折射率微板子的分佈’亦可如圖4〜6般,設置其他層形成。 ·- 於本發明之光學薄膜中,於上述折射率傾斜硬塗層中,亦 : 可作成在上述光穿透性基材側之界面附近區域含有增黏劑 的態樣’以及折射率傾斜硬塗層全體中含有增黏劑的態樣。 如上述’在形成折射率傾斜HC層之第一組成物中含有用 以調整黏度之増黏劑時’折射率傾斜HC層之光穿透性基材 側之界面附近區域,因為主要由第一組成物所形成,故於此 區域中變成含有此增黏劑。 又’於第一組成物及第二組成物兩者含有增黏劑之情況, 變成在折射率傾斜HC層全體含有增黏劑。 [實施例] 以下’列舉實施例,更加具體說明本發明。本發明不被此 記載所限制。 作為高折射率微粒子溶膠(1),使用曰產化學工業(股)製之S 32 201130658 A layer having a higher refractive index than a gradient refractive index HC layer of a high refractive index layer is disposed between the gradient refractive index HC layer and the low refractive index layer, and has an effect of further improving the antireflection property of the optical film. The high refractive index layer ' can be made into a high refractive index layer used in the previously known antireflection film. For example, a composition containing a high refractive index fine particle, a binder component, and a solvent exemplified by the above-described refractive index inclined HC layer can be used. The refractive index of the refractive index layer may be higher than the refractive index inclined Hc layer provided on the light transmissive substrate side of the high refractive index layer. Further, in the above-mentioned refractive index fine particles, antistatic properties can be imparted by using a conductive metal oxide. The film thickness of the same refractive index layer of 10 to 300 nm is preferably. If properly set, for example, (low-refractive-index layer) low-refractive-index layer, 彳._^°°, the effect of the light-transmitting substrate on the refractive index-inclined HC layer or the high-refractive-index layer, The side 'has improved the optical film's anti-reflection low-refractive-index layer's irradiance rate'. The right-ratio refractive index is inclined to the HC layer and the high refractive index is increased. 丨 _ . ' ° ' i.49 or less is preferable. It is more preferably 1.47 or less, and is preferably "2 or less. The low refractive index layer can be appropriately set to the right, for example, 10 to 300 nm is preferably 0 099143668 33 201130658 The low refractive index layer can be used except for bonding. In addition to the solvent component and the solvent, a composition of a low refractive index material such as a low refractive index fine particle or a low refractive index resin (hereinafter referred to as a "component for a low refractive index layer") is formed. As the binder component and the solvent, a binder component other than the high-refractive-index tentacles and high-refractive-index binders listed in the above-mentioned refractive index gradient layer and a solvent can be used. As a low refractive index microparticle, use the patent literature! The fine particles (hollow fine particles) having a void and the metal fluoride described above are preferred. The material having the voided fine particles is preferably a nitric oxide or a fluororesin for reducing the refractive index of the low refractive index layer. The average particle size of the fine particles having a void is preferably 5 to 80, and preferably 10 to 80 nm. As the metal hydride, a conventionally known low refractive index material can be used, for example, 'LiF (refractive index i 4), postal town, refractive index 1.4), return, 3 (refractive index M), A1F3 can be used. (Refractive index bucket (10) slaked cryolite, refractive index, and NaMgF3 (refractive index 丨 36). Examples of the low refractive index resin include a curable gas resin. Examples of the curable gas resin include photocurable groups. And the fluororesin of the thermosetting group. Examples of the photocurable group include, for example, an isopropyl group, a vinyl group, a benzyl group, and the like, and a base such as the above-mentioned first binder component. The polymerizable functional group. The hydroxyl group, the carboxyl group, the amine group, and the epoxy group are thermosetting groups, and examples thereof include, for example, 099143668 34 201130658, a glycidyl group, an isocyanate group, and an anthracene group. Examples of the curable fluororesin of the base include vinyl fluoride, vinylidene fluoride, tetrafluoroethylene, hexafluoroethylene, perfluorobutadiene, and perfluoro-2,2-dimethyl-1,3-dicarbazole. A fluoroolefin which can be used as a photocurable group, and a fluoroolefin. 2,2,2-trifluoroethyl acrylate, 2,2,3,3,3-pentafluoropropionyl (meth)acrylate, 2-(peryl butyl) (Ethylene, (mercapto) acrylic acid 2_(all gas hexyl) ethyl vinegar, (mercapto)acrylic acid 2-(perfluorooctyl)ethyl ester, (methyl) propyl benzoic acid 2-(perfluorodecyl) a (fluorenyl) acrylate compound such as ethyl ester, α-trifluorodecyl decyl acrylate, or trifluorodecyl acrylate, or a fluorowire having at least 3 I atoms having a carbon number of 1 to 14 in a fluorene molecule. a gas-based Wei-wei-extension base, a fluorine-containing polyfunctional (fluorenyl) acrylate compound having at least two (meth) acryloxy groups, etc. As a hardenable fluororesin having a thermosetting group, it can be used. For example, 4-fluorovinyl-perfluoroalkyl vinyl ether copolymer, fluoroethylene-hydrocarbon-based vinyl ether copolymer and % oxygen resin, polyamine phthalate resin, cellulose resin, phenol resin, and polyaniline resin In addition, a polymer or a copolymer of a polymerizable compound containing a gas atom described in JP-A-2010-122603 may be used. And the above-mentioned low refractive index material may be used alone or in combination of two or more. 099143668 35 201130658 If the content of the low refractive index fine particles is appropriately adjusted, The total mass of the binder component and the low refractive index fine particles of the composition for the low refractive index layer is preferably from 50 to 90% by mass, and more preferably from 55 to 70% by mass. When the curable fluororesin is used, the content thereof is The total solid content of the composition for the low refractive index layer is preferably from 5 to 95% by mass, and more preferably from 25 to 60% by mass, based on the total adjustment of the optical film of the present invention. In the embodiment, the composition for the low refractive index layer of the low refractive index layer is hardened to form hollow hollow cerium oxide fine particles. Thereby, there is an advantage that an optical film having more excellent antireflection properties can be obtained. In the optical film obtained by the method for producing an optical film of the present invention, as will be described later, in the gradient-inclined HC layer, in the film thickness direction of the refractive index tilt Hc layer, the presence of the high refractive index fine particles is closer to the light penetration. The less the side of the substrate. That is, in the gradient refractive index HC layer, in the film thickness direction in which the refractive index is inclined, the closer to the low refractive index layer side interface, the more the high refractive index microparticles are present, so the refractive index is inclined to the low refractive index of the HC layer. The refractive index at the interface on the side of the rate layer and the vicinity thereof are formed by successively coating the HC layer containing the same content of high refractive index fine particles in the same film, and in a single layer! In the case where the secondary coating method is formed, it is more efficient. Therefore, the low refractive index layer formed by hardening the low refractive index layer containing the hollow silica fine particles is formed on the refractive index inclined HC layer, thereby increasing the low refractive index of the gradient inclined HC layer. The interface portion on the layer side is inferior to the refractive index of the low refractive index layer of 099143668 36 201130658, and an optical film having excellent antireflection properties is obtained. In another preferred embodiment of the method for producing an optical film of the present invention, the composition for forming the low refractive index layer of the low refractive index layer is selected to contain at least a group consisting of a metal fluoride and a curable fluororesin. A low refractive index material. In the case where the composition for a low refractive index layer contains a fluorine-based low refractive index material as a low refractive index material, there is an advantage that an optical film having sufficient antireflection properties can be obtained. A fluorine-based low refractive index material such as a metal vapor and a curable fluororesin has a lower refractive index than a hollow dioxoparticle because the refractive index is low. . The optical film composed of the layer of the low refractive index layer/high refractive index layer (high refractive index hc layer)/substrate formed by the previous sequential coating and the single layer i coating is as high as the non-efficiency The refractive index layer (high refractive index HC layer) has a low refractive index layer side interface and a refractive index in the vicinity thereof, so if the composition of the low refractive index layer is formed, the above (4) low refractive index material is taken as == shot ^ 2:: "layer" of the low refractive index layer side boundary* and the material layer of the base layer of the layer in the vicinity thereof, "pay-phase=', such as the above-described preferred method of manufacturing the optical method according to the present invention The description can be made to increase the refractive index of the low refractive index surface of the refractive index tilt 及其 and its vicinity, and can also suppress the occurrence of interference fringes 099143668 37 201130658, even if the low refractive index layer composition uses gas system low refraction The rate material can also obtain an optical film having sufficient antireflection properties. In another preferred embodiment of the method for producing an optical film of the present invention, the composition for forming a low refractive index layer of the low refractive index layer is cured, does not contain hollow silica fine particles, and contains a metal vapor and At least one type of low refractive specific material in the group consisting of hardenable gas resins. When the composition for a low refractive index layer has no hollow dioxygen fine particles and contains a fluorine-based low refractive index material as a low refractive index material, it is possible to establish sufficient phase between the antireflection property and the test resistance. advantage. When a polarizing plate is bonded to the optical film on one side of the polarizing element, the second pre-bonding film is immersed in the test solution, and the substrate side surface of the optical film is hydrophilized (hereinafter, referred to as "inspection" The outermost layer of the film is filled with dioxins. The first layer of the cerium oxide is oxidized by the cerium. The cerium is oxidized by the outermost layer and has an easy flow or The nature of the solution dissolved in the test solution. = The surface has a low refractor containing hollow dioxide particles = the case of the test treatment. If the ruthenium dioxide is oxidized and detached, the content of the hollow SiO2 particles is reduced. The refractive index of the refractive index layer is increased, and the lower one is incapable of taking the anti-reflective property required for the eclipse--the cerium oxide microparticles in the test solution. Mu solution' then 099143668 In the past, the inspection of the optical film with low chemical purity was carried out at ►143668 38 201130658 containing the outermost layer of the dioxide fine particles (hollow dioxins) The rate layer __ 赖, will be the most surface layer '理继液仏. However, in the method of removing the protective thin 臈 after the affixing (10) == :, the cost of the township and the protective film plus, and The manufacturing cost of the optical thin film is increased. The cost of film-forming is increased relatively. 'If the above-mentioned preferred method of manufacturing the optical solid-free n L film according to the present invention is as described above, the refractive index tilt can be improved efficiently. Η. The layer === the refractive index of the surface and its vicinity, so the oxidized low refractive index material is thinned by the low refractive index layer and the fluorine-based low refractive index material is thin. #Antireflection and testability The established optical does not cause the optical film of the preferred embodiment to be alkalized, and it is not necessary to protect the film, and the number of steps and the manufacturing cost are reduced. In the low refractive index layer, It can also contain photopolymerization initiators and anti-slips on the right μ, +, + 4. The refractive index is inclined. The low refractive index layer and the high refractive layer (four) layer listed in the layer are as described above. If the composition of the solvent is the same as that of the hard coat layer, the H layer and the high refractive index layer may be replaced by true. ... rvn is formed by true i vapor deposition, sputtering, plasma vapor phase method (or dry coating method). Between the steps of the optical thin film of the present invention, it is also possible to further include two methods; (1) Step and (4) 3 (V1) A step of forming an antistatic layer on the surface of the above-mentioned light-transmitting substrate by setting the refractive index to the hard coat layer. 099143668 39 201130658 Setting an antistatic layer can be further improved The antistatic property of the film. The antistatic layer can be prepared by using an antistatic agent containing anti-survival formation, f胄, binder component and solvent, and the refractive index can be slanted to the HC layer. __ content, relative to formation The binder component of the composition of the antistatic layer is preferably used in an amount of 50 to 400% by mass. The binder component and the solvent contained in the composition forming the antistatic layer are the binder components exemplified by the gradient refractive index HC layer and Solvent. The manufacturer of the optical film of the present invention In the case of preventing the reflection of the optical film from damaging the optical film, it may be included in the outermost surface of the optical film having the gradient of the refractive index of the HC layer (the opposite side of the light-transmissive substrate of the optical film), and further providing an antifouling layer. When an antifouling layer is provided on the outermost surface, it is possible to impart antifouling properties to the optical film, etc. It is possible to prevent the formation of 5 layers by using an antifouling agent, a binder component, and a solvent. As the stain, the leveling agent and the antifouling agent exemplified by the above-mentioned refractive index inclined HC layer can be used. The content of the antifouling agent can be appropriately adjusted according to the required properties. The binder component contained in the composition forming the antifouling layer and As the solvent, a binder component and a solvent other than the high refractive index binders exemplified above for the gradient refractive index HC layer can be used. 099143668 201130658 The film thickness of the antifouling layer may be appropriately set, for example, 10 to 300 nm is preferable. In the step (iii) of the method for producing an optical film of the present invention, the method of simultaneously coating the first composition and the second composition is not particularly limited, and a previously known simultaneous coating method can be used. The simultaneous coating method may, for example, be a die coating or a sliding coating having two or more slits (discharge ports). Fig. 2 is a schematic view showing an example of a simultaneous coating method using an extrusion type die coater. The curable resin composition 60 for the first hard coat layer and the curable resin composition for the second hard coat layer are respectively formed on the light-transmitting substrate 10 by the slits 51 and 52 of the die coater head portion 40. In the case of the light-permeable substrate, the coating film 61 and the second coating of the curable resin composition for the first hard coat layer are formed adjacent to each other and applied at the same time as the curable resin composition 60 for the first hard coat layer. A coating film 71 of a curable resin composition for a hard coat layer. In addition, in FIG. 2, the first hard coat layer curable resin composition and the second hard coat layer curable resin composition are integrally formed into one hard coat layer, but the two compositions are conveniently described. It is separated from the color of the coating film. Further, the wet film thickness of the first composition and the second composition at the time of coating may be appropriately adjusted according to the required properties. When the wet film thickness of the first composition is set to T1 and the wet film thickness of the coating film of the second composition is T2, T2/T1 (ie, T2+T1) is 0.01 to 1, and the refractive index is inclined to the HC layer. In the film thickness direction, the surface of the light-transmitting substrate is opposite to the surface of the substrate until the fold is 099143668 41 201130658 = the rate is inclined to the surface of the Hc layer. In the area, the total amount of the refractive index fine particles is distributed in the south microparticles, and the high refractive index is controlled by the efficiency. The wet film thickness can be determined from the discharge amount of the object to be coated. Transfer speed, area, and composition In the step (iv) of the method for producing an optical web of the present invention, light is irradiated with a main material, an external line, a visible light, an electron beam, or an ionizing radiation. In the case of ultraviolet hardening, it can be caused by ultra-high pressure water, high-pressure mercury lamp, carbon arc lamp, b lamp or metal 岐 light. The amount of light irradiation may be 50 to 300 mJ/cm 2 in terms of an integrated exposure amount of an ultraviolet wavelength of 365 nm. In the step (4), it is also possible to enter (4) when drying before the light irradiation. Examples of the drying method include a method of drying under reduced pressure or heating, and a method of roughening the drying. Further, it is preferable to dry at 3 〇 to u 〇 0c in the case of drying. For example, when a methyl isobutyl snail is used as the first or second solvent, 'usually at room temperature to 8 Gt, preferably 耽 arm c range H, =0 seconds to 3 minutes, preferably 3 seconds. ~i minutes or so = dry. The refractive index formed in the step (W) may be inclined to the thickness of the HC layer, and may be appropriately adjusted depending on the desired hardness, antireflection property, and the like. The film thickness of the gradient slanting layer may be, for example, 1 to 20 μm. (Optical film) 099143668 42 201130658 The flute of the present invention. The film obtained by the method is characterized in that it is less produced according to the above optical film: the film is attached to the surface side of the light-transmitting substrate to the oblique hard coat layer. The optical property is characterized in that the riding rate is such that the refractive index of the high refractive index fine particles of the hard refractive index is less than 1 GGnm, and the film thickness of the high refractive index material (four) layer is small. "The amount of scorpion is closer to the light-transparent substrate side τ mechanical film! The refractive index is set on the light-transmissive substrate 1 ,, the stone coating is 20 〇, and the refractive index is inclined in the hard coating 2 ,, in the direction of the film thickness of the refractive = two coating, the presence of the high refractive index microparticles The closer the amount is to the light-permeable substrate side, the less. Fig. 4 is a plan view schematically showing another example of the layer constitution of the optical film of the present invention. Further, in order to simplify the description, the high refractive index fine particles in the HC layer are inclined in the refractive index in Figs. 4 to 6 . On the light-transmitting substrate 1G, a refractive index-inclined hard coat layer 2G and a low-refractive-index layer 8A are sequentially provided from the side of the light-transmitting substrate. In the above method for producing an optical film, after the step (iv), the step of setting (v) on the upper shot (four) obliquely hard (four) directly forms the roughness layer of 099143668 43 201130658. An optical film composed of layers. Fig. 5 is a cross-sectional view schematically showing another example of the layer constitution of the optical film of the present invention. On the light-transmissive substrate 10, a refractive index oblique hard coat layer 20, a high refractive index layer 9A, and a low refractive index layer 8A are sequentially provided from the side of the light-transmitting substrate. In the method for producing an optical ruthenium film, after the step (iv), the step of forming a low refractive index layer on the refractive index slanted hard coat layer and the high refractive index layer is further provided. An optical film composed of such a layer. Fig. 6 is a cross-sectional view schematically showing another example of the layer constitution of the optical film of the present invention. On the light-transmitting substrate 10, an antistatic layer 100, a refractive index oblique hard coat layer 20, a high refractive index layer 9A, and a low refractive index layer 80 are sequentially provided from the side of the light transmissive substrate. In the above method for producing an optical film, the step of (1) and (4) is further improved (the step of forming an antistatic layer on the surface of the light-transmitting substrate by tilting the hard coat layer to form an antistatic layer) is obtained. An optical film composed of such a layer is provided with an electrostatic property by providing an electric layer. The first optical film of the present invention has the first composition by using a high refractive index fine particle not containing a specific degree as described above. The material and the micro-particles containing the specific rate of radiation, the material is coated with mi (10) wheel _, material material H layer 099143668 201130658 = = refractive index tilt Hc layer film thickness direction 'high refractive index particles Yu near light? The amount of the secret substrate is less. Therefore, the light penetrating base of the HC layer at the _ rate can be used to suppress the high-definition micro-disc disk light. • The miscellaneous substrate or the anti-static material T layer The interference fringes generated by the difference are excellent, and the appearance of the optical film is excellent. Further, the 'surface refractive index fine particles are not uniformly distributed in the Hc layer of the refractive index, and are distributed on the upper layer side, so that the refractive index can be inclined by the light of the layer. Efficiently high refraction of the opposite side of a material Therefore, when the low refractive index layer is provided as shown in Figs. 4 and 5 on the light-transmitting substrate side surface side of the refractive index tilting layer, the antireflection property of the optical film can be improved. In a preferred embodiment of the optical film of the invention, the low refractive index layer 3 has a medium to oxygen cut. Thus, the optical film has an excellent antireflection property. In the optical film of the present invention, As shown in Fig. 3, in the layer in which the refractive index is inclined, in the film thickness direction of the gradient refractive index HC layer, the portion of the higher refractive index microparticles which is closer to the interface of the lower refractive index layer side is present, so the refractive index is inclined. The refractive index of the low-refractive-index layer side interface of the HC layer and its vicinity is high. The low-refractive-index layer on the gradient-inclined HC layer contains the hollow steel dioxide and the low-refraction of the irradiance HC layer. The difference between the interface portion of the rate layer side and the low refractive index layer is large, and the optical thinness has excellent (4) anti-reflectivity. In other preferred embodiments of the optical film of the present month, even if the above-mentioned 099143668 45 201130658 Low refractive index layer containing fluorinated by metal And (4) selecting one of the low refractive index components L of the lysing group to obtain an optical film having D preventing properties. In another preferred embodiment of the optical film of the present invention, the above-described seven-dimensional layer It is a viewpoint that the low-refractive-index component which is selected from the group consisting of a metal gasification and a fluororesin, and which is sufficient to prevent the reflectance and the testability from being able to form two phases, is not included. Further, when the optical film of the preferred embodiment is used, the polarizing plate can be produced at a low cost without using a ruthenium film in the alkalization treatment. The low refractive index layer of the optical film of the present invention is suitably disposed. The refractive layer, the layer, the antistatic layer and the antifouling layer have been described in the method for producing an optical film, and the description thereof is omitted here. The optical thin film of the present invention is preferably in the above-mentioned refractive index oblique hard coat layer. The region of the surface of the permeable substrate opposite to the surface of the hard coat layer is 7% by weight or less, and 90% or more of the total amount of the high refractive index fine particles is present. As shown in FIG. 3, in the region of the refractive index gradient Hc layer, the refractive index of the light-transmitting substrate from the surface side interface to the light-transmitting substrate side is inclined to 70% of the film thickness of the Hc layer. 9% or more of the high refractive index fine particles are present, and the high refractive index fine particles existing at the light transmissive substrate side interface of the refractive index inclined HC layer are less, and the refractive index inclined HC layer and the light transmissive substrate can be suppressed more. Interference fringes between the antistatic layer and the antistatic layer occur. 099143668 46 201130658 In addition, although FIG. 3 is taken as an example, the distribution of the high refractive index microplates in the refractive index inclined HC layer may be formed by providing other layers as shown in FIGS. 4 to 6. In the optical film of the present invention, in the above-mentioned refractive index oblique hard coat layer, it is also possible to form a state in which a tackifier is contained in the vicinity of the interface on the side of the light-transmitting substrate, and the refractive index is tilted hard. The coating contains a tackifier in its entirety. As described above, when the first composition constituting the refractive index-inclined HC layer contains a viscous agent for adjusting the viscosity, the refractive index is inclined to the vicinity of the interface of the light-transmitting substrate side of the HC layer because it is mainly composed of Since the composition is formed, it becomes contained in this region. Further, in the case where both the first composition and the second composition contain a tackifier, the viscosity-increasing HC layer contains a tackifier. [Examples] Hereinafter, the present invention will be described more specifically by way of examples. The invention is not limited by this description. As a high-refractive-index microparticle sol (1), it is made by the 曰Chemical Industry Co., Ltd.

ZnSb2〇6的異丙醇分散液、商品名CX-Z210IP-F2(平均粒徑 15nm、固形份2〇〇/0分散液)。 - 作為咼折射率微粒子溶膠(2),使用曰產化學工業(股)製之 - PT〇 :麟酸摻混氧化錫的異丙醇分散液、商品名 CX-S303IP(平均粒徑15nm、固形份3〇%分散液)。 作為高折射率微粒子溶膠(3),使用曰產化學工業(股)製之 Zr〇2的MEK分散液、商品名OZ-S30K(平均粒徑l〇nm、固 099143668 47 201130658 形份30%分散液)。 作為低折射率微粒子,使用中空二氣化石夕微粒子(平均一 次粒徑50nm、固形份20%、空隙率4〇。/^。 作為金屬氟化物,使用CI化成(股)製之、士曰 〈冰晶石(Na3AlF6)、 固形份15% MIBK溶液。 作為黏合劑成分(1),使用新中村化學工業(股)製之多官能Isopropanol dispersion of ZnSb2〇6, trade name CX-Z210IP-F2 (average particle size 15 nm, solid content 2〇〇/0 dispersion). - As a yttrium-indexed fine particle sol (2), it is made from 曰 化学 化学 - - - - 〇 〇 〇 麟 麟 麟 麟 麟 麟 麟 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 3% by weight of the dispersion). As the high refractive index microparticle sol (3), a MEK dispersion of Zr〇2 manufactured by Seiko Chemical Industry Co., Ltd., trade name OZ-S30K (average particle diameter l〇nm, solid 099143668 47 201130658, 30% dispersion) was used. liquid). As the low-refractive-index fine particles, hollow two-gas fossil granules (average primary particle diameter: 50 nm, solid content: 20%, and void ratio: 4 Å) are used as the metal fluoride, and the product is made of CI chemical compound. Cryolite (Na3AlF6), a solid 15% MIBK solution. As a binder component (1), a multi-functional system made by Shin-Nakamura Chemical Industry Co., Ltd.

Jfec基甲酸酉旨丙稀酸@旨、商品名U-4HA(公旦βΛΓν 、刀卞里600、官能基 數4)。 作為黏合劑成分(2),使用日本化藥(股)製之商品名 KAYARAD-DPHA(DPPA(二季戊四醇五丙烯酸酯:5官能) 與DPHA(二季戊四醇六丙烯酸酯:6官能)的混合物)。 作為黏合劑成分(3),使用日本化藥(股)製之季戊四醇三丙 烯酸酯。 作為黏合劑成分(4),使用共榮社化學工業(股)製之商品名 LINC-3A(氟單體) 作為溶劑(1),使用對TAC基材具有浸透性的甲基乙基酮。 作為溶劑(2),使用對於TAC基材不具有浸透性的異丙醇。 作為溶劑(3) ’使用曱基異丁基酮。 作為增黏劑,使用曰本曹達(股)製之商品名Selney HPC-M(經丙基纖維素)。 作為光聚合起始劑⑴,使用Ciba Specialty Chemicals(股) 製之商品名IRGACURE 184。 099143668 48Jfec-based carboxylic acid is an acrylic acid, and the trade name is U-4HA (duandan βΛΓν, Knife 600, and functional group 4). As the binder component (2), a product name KAYARAD-DPHA (a mixture of DPPA (dipentaerythritol pentaacrylate: 5-functional) and DPHA (dipentaerythritol hexaacrylate: 6-functional)) manufactured by Nippon Kayaku Co., Ltd. was used. As the binder component (3), pentaerythritol triacrylate produced by Nippon Kayaku Co., Ltd. was used. As the binder component (4), a trade name LINC-3A (fluoromonomer) manufactured by Kyoeisha Chemical Industry Co., Ltd. was used as the solvent (1), and methyl ethyl ketone having permeability to the TAC substrate was used. As the solvent (2), isopropyl alcohol which does not have permeability to the TAC substrate is used. As the solvent (3) ', decyl isobutyl ketone was used. As a tackifier, the trade name Selney HPC-M (propylcellulose) manufactured by Sakamoto Soda Co., Ltd. was used. As the photopolymerization initiator (1), trade name IRGACURE 184 manufactured by Ciba Specialty Chemicals Co., Ltd. was used. 099143668 48

S 201130658 作為光聚合起始劑(2) ’使用Ciba Specialty Chemicals(股) 製之商品名IRGACLRE 127。 , 作為防污劑,使用信越化學工業(股)製之X-22-164E(反應 性聚矽氧系防污劑)。 作為光穿透性基材,使用高士軟片(股)製之TAC基材、 商品名TF 80UL(厚度80/xm、折射率1 47)。 各化合物的簡稱分別如下。 IPA :異丙醇 MEK :曱基乙基酮 MIBK :曱基異丁基酮 PETA:季戊四醇三丙烯酸酯 TAC :三乙醯纖維素 (組成物之調製) 分別,配合下述所示組成之成分調製組成物。 (第一硬塗層用硬化性樹脂組成物1、黏度5.3mPa · s) 黏合劑成分⑴U-4HA : 20質量份 黏合劑成分(2)KAYARAD_DPHA : 30質量份 . 溶劑(l)MEK : 37.5質量份 溶劑(2)IPA : 12.5質量份 光聚合起始劑(l)IRGACURE 184 : 2質量份 (第二硬塗層用硬化性樹脂組成物1、黏度25.7mPa · s) 高折射率微粒子溶膠(1)CX-Z210IP-F2 : 83.3質量份 099143668 49 201130658 黏合劑成分⑴U-4HA : 8.3質量份 溶劑(l)MEK : 8.4質量份 光聚合起始劑(l)IRGACURE 184 : 0.3質量份 (第二硬塗層用硬化性樹脂組成物2、黏度15.ImPa· s) 高折射率微粒子溶膠(2) CX-S303IP : 66.6質量份 黏合劑成分(1)U-4HA: 20.0質量份 溶劑(l)MEK : 13.4質量份 光聚合起始劑(l)IRGACURE 184 : 0.8質量份 (第二硬塗層用硬化性樹脂組成物3、黏度28.5mPa · s) 高折射率微粒子溶膠(2) CX-S303IP : 87.5質量份 黏合劑成分(1)U-4HA : 8.7質量份 溶劑(l)MEK : 3.8質量份 光聚合起始劑(l)IRGACURE 184 : 0.4質量份 增黏劑經丙基纖維素:0.2質量份 (第二硬塗層用硬化性樹脂組成物4、黏度24.2mPa · s) 高折射率微粒子溶膠(3) OZ-S30K : 87.5質量份 黏合劑成分(1)U-4HA : 8.7質量份 溶劑(l)MEK ·· 3.8質量份 光聚合起始劑(l)IRGACURE 184 : 0.4質量份 增黏劑經丙基纖維素:0.3質量份 (高折射率層用組成物) 高折射率微粒子溶膠(1)CX-Z210IP-F2 : 28.6質量份 099143668 50 201130658 黏合劑成分(3)ΡΕΤΑ : 2.3質量份 溶劑(3)ΜΙΒΚ : 69.1質量份 光聚合起始劑(2) IRGACURE 127 : 0.1質量份 (低折射率層用組成物1) 中空二氧化矽微粒子:15.0質量份 黏合劑成分(3)ΡΕΤΑ : 1.0質量份 黏合劑成分(4)LINC-3A : 1.0質量份 溶劑(3)MIBK : 83.0質量份 光聚合起始劑(2) IRGACURE 127 : 0.1質量份 (低折射率層用組成物2) 黏合劑成分(4)LINC-3A : 3.0質量份 光聚合起始劑(2)IRGACURE 127 : 0.15質量份 防污劑X-22-164E : 0.06質量份 溶劑(3)MIBK : 96.91質量份 (低折射率層用組成物3) 金屬氟化物(冰晶石):10質量份 黏合劑成分(3)PETA : 0.5質量份 黏合劑成分(4)LINC-3A : 0.5質量份 光聚合起始劑(2)IRGACURE 127 : 0.05質量份 防污劑X-22-164E : 0.05質量份 溶劑(3)MIBK : 88.9質量份 (實施例1) 099143668 51 201130658 於TAC基材上’使用2溝槽型板塗敷器,以上述第一組 成物1比上述第一組成物1更位於基材(下層)侧般,將該第 一組成物1及第一組成物1,以塗佈速度2〇m/min鄰接進行 同時塗佈,形成塗膜。將此塗膜乾燥3〇秒鐘,除去溶劑。 其次對此塗膜使用紫外線照射裝置,以照射量8〇mJ/cm2進 行紫外線照射,將塗膜硬化形成乾燥膜厚12μιη的折射率傾 斜HC層。 其次,於此折射率傾斜HC層上’將上述低折射率層用組 成物1使用溝槽型板塗佈,形成塗膜。對此塗膜同折射率傾 斜HC層進行乾燥、紫外線照射,形成乾燥膜厚職^的 低折射率層’製作於TAC基材上具有折射率傾斜此層及 低折射率層的光學薄膜。 (實施例2) 於實施例1中,除了使用第二組成物2代替第二組成物i 以外,同實施例丨處理製作於TAC基材上具有折射率傾斜 HC層及低折射率層的光學薄膜。 (實施例3) 於實施例2中’除了於第一組成物!中加入〇5質量份增 黏劑(Selney HPC_M)將黏度調整至148mpa· s以外,同實 施例2處理製作於TAC基材上具有折射率傾斜HC歧低 折射率層的光學薄膜。 (實施例4) 099143668 52 201130658 於實施例1中,除了於第一組成物1中加入1·〇質量份增 黏劑(Selney HPC-M)將黏度調整至20.4mPa · s,並且使用第 二組成物3代替第二組成物1以外,同實施例1處理製作於 TAC基材上具有折射率傾斜HC層及低折射率層的光學薄 膜。 (實施例5) 於實施例1中,除了使用第二組成物4代替第二組成物1 以外,同實施例1處理製作於TAC基材上具有折射率傾斜 HC層及低折射率層的光學薄膜。 (實施例6) 於實施例5中,除了於第一組成物丨中加入1〇質量份增 黏劑(Selney HPC-M)將黏度調整至20 4mPa · s以外,同實 施例5處理製作於TAC基材上具有折射率傾斜Hc層及低 折射率層的光學薄膜。 (實施例7) 直到形成折射率傾斜HC層為止,同實施例丨進行。 其次,於此折射率傾斜HC層上,將上述高折射率層用扭 成物使用溝槽型板塗佈,形成塗膜。對此塗膜同折射率傾斜 HC層進行乾燥、紫外線縣,形成乾燥轉i6Qnm的高折 射率層。S 201130658 As a photopolymerization initiator (2) ', trade name IRGACLRE 127 manufactured by Ciba Specialty Chemicals Co., Ltd. was used. As an antifouling agent, X-22-164E (Reactive Polyoxo Antifouling Agent) manufactured by Shin-Etsu Chemical Co., Ltd. was used. As the light-transmitting substrate, a TAC substrate made of a Coats wafer (trade name), trade name TF 80UL (thickness 80/xm, refractive index 1 47) was used. The abbreviations of the respective compounds are as follows. IPA : isopropanol MEK : mercapto ethyl ketone MIBK : mercapto isobutyl ketone PETA: pentaerythritol triacrylate TAC : triethyl hydrazine cellulose (modulation of composition), respectively, with the components of the composition shown below Composition. (The first hard coat layer curable resin composition 1, viscosity 5.3 mPa · s) Adhesive component (1) U-4HA: 20 parts by mass of binder component (2) KAYARAD_DPHA: 30 parts by mass. Solvent (l) MEK : 37.5 mass Part of solvent (2) IPA: 12.5 parts by mass of photopolymerization initiator (1) IRGACURE 184 : 2 parts by mass (curable resin composition for second hard coat layer 1, viscosity 25.7 mPa · s) high refractive index microparticle sol ( 1) CX-Z210IP-F2 : 83.3 parts by mass 099143668 49 201130658 Adhesive component (1) U-4HA : 8.3 parts by mass of solvent (1) MEK : 8.4 parts by mass of photopolymerization initiator (1) IRGACURE 184 : 0.3 parts by mass (second Hardenable resin composition for hard coat layer 2. Viscosity 15.ImPa·s) High refractive index fine particle sol (2) CX-S303IP : 66.6 parts by mass of binder component (1) U-4HA: 20.0 parts by mass of solvent (l) MEK: 13.4 parts by mass of photopolymerization initiator (1) IRGACURE 184 : 0.8 parts by mass (curable resin composition for second hard coat layer 3, viscosity: 28.5 mPa · s) High refractive index sol (2) CX-S303IP : 87.5 parts by mass of binder component (1) U-4HA: 8.7 parts by mass of solvent (1) MEK: 3.8 parts by mass of photopolymerization initiator (1) IRGAC URE 184 : 0.4 parts by mass of tackifier by propyl cellulose: 0.2 parts by mass (curable resin composition for second hard coat layer 4, viscosity: 24.2 mPa · s) High refractive index sol (3) OZ-S30K : 87.5 parts by mass of binder component (1) U-4HA: 8.7 parts by mass of solvent (1) MEK ··3.8 parts by mass of photopolymerization initiator (1) IRGACURE 184 : 0.4 parts by mass of tackifier by propylcellulose: 0.3 Parts by mass (composition of high refractive index layer) High refractive index microparticle sol (1) CX-Z210IP-F2 : 28.6 parts by mass 099143668 50 201130658 Adhesive component (3) ΡΕΤΑ : 2.3 parts by mass of solvent (3) ΜΙΒΚ : 69.1 by mass Photopolymerization initiator (2) IRGACURE 127 : 0.1 parts by mass (composition for low refractive index layer 1) Hollow ceria particles: 15.0 parts by mass of binder component (3) ΡΕΤΑ : 1.0 part by mass of binder component (4 ) LINC-3A : 1.0 part by mass of solvent (3) MIBK : 83.0 parts by mass of photopolymerization initiator (2) IRGACURE 127 : 0.1 part by mass (composition 2 for low refractive index layer) Adhesive component (4) LINC-3A : 3.0 parts by mass of photopolymerization initiator (2) IRGACURE 127 : 0.15 parts by mass of antifouling agent X-22-164E : 0.06 parts by mass Agent (3) MIBK: 96.91 parts by mass (composition material 3 for low refractive index layer) Metal fluoride (cryolite): 10 parts by mass of binder component (3) PETA: 0.5 part by mass of binder component (4) LINC-3A : 0.5 parts by mass of photopolymerization initiator (2) IRGACURE 127 : 0.05 parts by mass of antifouling agent X-22-164E : 0.05 parts by mass of solvent (3) MIBK : 88.9 parts by mass (Example 1) 099143668 51 201130658 at TAC base In the material, the first composition 1 and the first composition 1 are used in which the first composition 1 is located on the substrate (lower layer) side than the first composition 1 described above. The coating was carried out by applying a coating at a coating speed of 2 〇 m/min to form a coating film. The coating film was dried for 3 seconds to remove the solvent. Then, the coating film was irradiated with ultraviolet rays at an irradiation amount of 8 〇 mJ/cm 2 using an ultraviolet irradiation device, and the coating film was cured to form a refractive index inclined HC layer having a dry film thickness of 12 μm. Next, the refractive index is inclined on the HC layer. The composition 1 for the low refractive index layer is coated with a grooved plate to form a coating film. The coating film was dried with the refractive index tilting HC layer and irradiated with ultraviolet rays to form a low refractive index layer having a dry film thickness. The optical film having the refractive index of the layer and the low refractive index layer was formed on the TAC substrate. (Example 2) In Example 1, except that the second composition 2 was used instead of the second composition i, the same procedure as in Example 丨 was performed to fabricate an optical fiber having a refractive index gradient HC layer and a low refractive index layer on a TAC substrate. film. (Example 3) In Example 2, except for the first composition! An optical film having a refractive index-inclined HC-deficient low refractive index layer on a TAC substrate was prepared in the same manner as in Example 2 except that 5 parts by mass of a tackifier (Selney HPC_M) was added and the viscosity was adjusted to 148 mPa·s. (Example 4) 099143668 52 201130658 In Example 1, except that 1% by mass of a tackifier (Selney HPC-M) was added to the first composition 1 to adjust the viscosity to 20.4 mPa · s, and the second was used. An optical film having a refractive index-increasing HC layer and a low refractive index layer on a TAC substrate was prepared in the same manner as in Example 1 except that the composition 3 was used instead of the second composition 1. (Example 5) In Example 1, except that the second composition 4 was used instead of the second composition 1, the optical having the refractive index inclined HC layer and the low refractive index layer formed on the TAC substrate was treated in the same manner as in Example 1. film. (Example 6) In Example 5, except that the viscosity was adjusted to 20 4 mPa · s by adding 1 part by mass of a tackifier (Selney HPC-M) to the first composition, the same procedure as in Example 5 was carried out. An optical film having a refractive index tilted Hc layer and a low refractive index layer on the TAC substrate. (Example 7) The same procedure as in Example 直到 was carried out until the formation of the refractive index-slanted HC layer. Next, the above-mentioned high refractive index layer twisted material was coated on the HC layer with a grooved plate to form a coating film. The coating film was dried at the same refractive index as the HC layer, and the ultraviolet ray layer was formed to form a high refractive index layer which was dried to i6 Qnm.

其次,於此高折射率層上,將上述低折射率層用組成物i 使用溝槽型板塗佈’形成塗膜。對此塗膜同折射率傾斜HC 099143668 53 201130658 層進行乾燥、紫外線照射,形成乾燥膜厚1 OOnm的低折射 率層,製作於TAC基材上具有折射率傾斜hc層、高折射 率層及低折射率層的光學薄膜。 (實施例8) 直到形成折射率傾斜HC層為止,同實施例5進行。 其次,於此折射率傾斜HC層上,將上述低折射率層用組 成物2使用溝槽型板塗佈,形成塗膜。對此塗膜同折射率傾 斜HC層進行乾燥、紫外線照射,形成乾燥膜厚1〇〇nm的 低折射率層,製作於TAC基材上具有折射率傾斜HC層及 低折射率層的光學薄膜。 (實施例9) 於實施例8中’除了使用低折射率層用組成物3代替低折 射率層用組成物2以外,同實施例8處理製作於TAC基材 上具有折射率傾斜HC層及低折射率層的光學薄膜。 (比較例1) 於實施例5中,除了使用未改變MEK與IPA之比並將此 2種混合溶劑加至第一組成物!將第一組成物i的黏度調整 至1.2mPa · s,將MEK加至第二組成物4並將第二組成物 4的黏度5周整至2.5mPa · s以外’同實施例5處理,製作於 TAC基材上具有折射率傾斜hc層及低折射率層的光學薄 膜。 (比較例2) 099143668Next, on the high refractive index layer, the low refractive index layer composition i is coated with a grooved pattern to form a coating film. The coating film was dried and irradiated with ultraviolet light to form a low-refractive-index layer having a dry film thickness of 100 nm, and was formed on a TAC substrate having a refractive index tilt hc layer, a high refractive index layer, and a low refractive index gradient of HC 099143668 53 201130658. An optical film of a refractive index layer. (Example 8) The same procedure as in Example 5 was carried out until the formation of the refractive index inclined HC layer. Next, the composition for low refractive index layer 2 was coated on the HC layer with a refractive index, and the coating film was formed by using a grooved plate. The coating film was dried with the refractive index-slanted HC layer and irradiated with ultraviolet rays to form a low refractive index layer having a dry film thickness of 1 〇〇 nm, and an optical film having a gradient refractive index HC layer and a low refractive index layer on a TAC substrate. . (Example 9) In Example 8, except that the composition 3 for the low refractive index layer was used instead of the composition 2 for the low refractive index layer, the same manner as in Example 8 was carried out to produce a gradient refractive index HC layer on a TAC substrate. An optical film of a low refractive index layer. (Comparative Example 1) In Example 5, except that the ratio of the unmodified MEK to the IPA was used and the two kinds of mixed solvents were added to the first composition! The viscosity of the first composition i was adjusted to 1.2 mPa·s, and the MEK was added to the second composition 4, and the viscosity of the second composition 4 was adjusted to 5 mPa·s for 5 weeks. An optical film having a gradient refractive index hc layer and a low refractive index layer on a TAC substrate. (Comparative Example 2) 099143668

S 54 201130658 於實施例1中,除了使用於第一組成物1中加入10,0質 量份增黏劑(Selney HPC-M),且,未改變第一組成物1之 MEK與IPA之比並將此2種混合溶劑的份量減少,將第一 组成物1的黏度調整至109.5mPa · s者,以及於第二組成物 1中加入5.0質量份增黏劑(Selney HPC-M),且,未改變第 二組成物1之溶劑且份量減少將第二組成物2的黏度調整至 110.3mPa · s者以外,同實施例1處理製作於TAC基材上具 有折射率傾斜HC層及低折射率層的光學薄膜。 (比較例3) 於實施例1中,除了使用未改變MEK與IPA之比並將此 2種混合溶劑加至第一組成物1,將第一組成物1的黏度調 整至1.2mPa · s以外,同實施例1處理,製作於TAC基材 上具有折射率傾斜HC層及低折射率層的光學薄膜。 (比較例4) 於實施例1中,除了使用於第一組成物1中加入10.0質 量份增黏劑(Selney HPC-M),.且,未改變第一組成物1之 MEK與IPA之比並且將此2種混合溶劑的份量減少,將第 一組成物1的黏度調整至109.5mPa · s以外,同實施例1處 理製作於TAC基材上具有折射率傾斜HC層及低折射率層 的光學薄膜。 (比較例5) 於實施例5中,除了使用於第二組成物4中未使用增黏 099143668 55 201130658 劑’且黏度調整至2_5mPa · s以外,同實施例5處理,製作 於TAC基材上具有折射率傾斜pjc層及低折射率層的光學 薄膜》 (比較例6) 於實施例1中,除了使用於第二組成物丨中加入5 〇質量 份增黏劑(SelneyHPC-M),且,第二組成物1之溶劑份量減 少並將黏度調整至ll〇.3mpa · s以外,同實施例i處理製作 於TAC基材上具有折射率傾斜HC層及低折射率層的光學 薄膜。 (比較例7) 於TAC基材上,將上述第-組成物1使用溝槽型板塗佈, 形成塗膜。將此塗膜乾燥3〇秒鐘,除去溶劑。其次對此塗 膜使用备、外線照射裝置,以照射量8〇mj/cm2進行紫外線照 射,將塗膜硬化形成乾燥膜厚12μπι的HC層。 其次,於此HC層上,將上述低折射率層用組成物1使用 溝槽型板塗佈,形成塗臈。對此塗膜同HC層進行乾燥、紫 外線照射’形成乾燥膜厚1〇〇nm的低折射率層,製作於tac 基材上具有不含高折射率微粒子之HC層及低折射率層的 光學薄膜。 (比較例8) 於比較例7中,除了使用低折射率層用組成物3代替低折 射率層用組成物1以外,同比較例7處理,製作於tac基 099143668 56 201130658 層及低折射率層的光 材上具有不含高折射率微粒子之Η。 學薄膜。 (比較例9) 於TAC基材上,使用溝槽型板塗敷器,塗佈第—組成物 1,並將此塗膜於溫度7G叙鱗射關3〇秒鐘,除去 溶劑。其次對此塗膜使用紫外線照射裝置,以昭射旦 般照射硬化,形_厚 > 之不含高折射率微二 子的HCf其次,於此Hc層上,將第二組成^使用溝 槽型板塗敷器塗佈,並將此塗獏於溫度7〇度之熱烤爐中乾 燥30秒鐘,除去溶劑。其次對此塗膜使用紫外線照射裝置, 以照射量lGGm】W般照射,形成含有高折射率微粒子的 HC層,並且形成上下2層合計膜厚為U/xn^Hc層。 其次,於此HC層上,使用上述低折射率層用組成物】同 實施例1形成乾燥膜厚100nm的低折射率層,製作於tac 基材上,由TAC基材側開始,具有不含高折射率微粒子之 HC層、含有高折射率微粒子之HC層及低折射率層的光學 薄膜。 (比較例10) 於比較例9中,除了使用低折射率層用組成物2代替低折 射率層用組成物1以外’同比較例9處理,製作於tac其 材上,由TAC基材側開始,具有不含高折射率微粒子2HC 層、含有南折射率微粒子之HC層及低折射率層的光學、薄 099143668 57 201130658 膜。 關於上述實施例及比較例之第一組成物及第二組成物的 種類、黏度、塗佈方式及濕膜厚及所用之其他組成物整理示 於表1。 099143668 58 201130658 [表i] 表1 第一組成物(下層側) 第二組成物(上層側) 塗佈方式 濕膜厚比 (T1/T2) 其他組成物 種類 (編號) 黏度 (mPa · s) 種類 (編號) 黏度 (mPa · s) 實施例1 1 5.3 1 25.7 同時 5//πι/25μπι 低折射率層用 組成物1 實施例2 1 5.3 2 15.1 同時 5#m/25"m 低折射率層用 組成物1 實施例3 1 (有增黏劑) 14.8 2 15.1 同時 5μιη/25μπι 低折射率層用 組成物1 實施例4 1 (有增黏劑) 20.4 3 28.5 同時 5/zm/25/zm 低折射率層用 組成物1 實施例5 1 5.3 4 24.2 同時 5#ιη/25μπι 低折射率層用 組成物1 實施例6 1 (有增黏劑) 20.4 4 24.2 同時 5^m/25/zm 低折射率層用 組成物1 實施例7 1 5.3 1 25.7 同時 5//m/25^m 高折射率層用 組成物+ 低折射率層用 組成物1 實施例8 1 5.3 4 24.2 同時 5^m/25//m 低折射率層用 組成物2 實施例9 1 5.3 4 24.2 同時 5^m/25/zm 低折射率層用 組成物3 比車交例1 1 1.2 4 2.5 同時 5^m/25^m 低折射率層用 組成物1 比較例2 1 (有增黏劑) 109.5 1 (有增黏劑) 110.3 同時 5/zm/25/zm 低折射率層用 組成物1 比較例3 1 1.2 1 25.7 同時 5/zm/25^m 低折射率層用 組成物1 比較例4 1 (有增黏劑) 109.5 1 25.7 同時 5^m/25^m 低折射率層用 組成物1 比較例5 1 5.3 4 (無增黏劑) 2.5 同時 5/zm/25^m 低折射率層用 組成物1 比較例6 1 5.3 1 (有增黏劑) 110.3 同時 5//m/25^m 低折射率層用 組成物1 比較例7 1 5.3 無 無 單層1次 無 低折射率層用 組成物1 比較例8 1 5.3 無 無 單層1次 無 低折射率層用 組成物3 比較例9 1 5.3 1 25.7 逐次 無 低折射率層用 組成物1 比較例10 1 5.3 1 25.7 逐次 無 低折射率層用 組成物2 099143668 59 201130658 (光學薄膜之評估) 關於上述實施例及比較例之光學薄祺,分別進行如下所示 之反射率測定。對於上述實施例及比較例之光學薄膜,分別 進行如下所示之干涉條紋、密合性、面狀(有無塗佈紋)、高 折射率微粒子的分佈及生產性(適塗佈性和簡便性)的評 估。又,關於實施例8與9、比較例7〜10,進行耐驗性的評 估。其結果示於表2。 (反射率之測定) 反射率之測定係使用日本分光(股)製之商品名v7100型 紫外線可見光分光光度計及日本分光(股)製之商品名 徽-7_絕對反射率測定裝置,以入射角5、偏光片為N 偏光、測定波長範圍為380〜780mn,並於光學薄膜的TAC 基材側貼合黑膠帶,並將並設置於裝置進行夠定。另外,將 測定波長範圍所求出之測定結果的平均值定為反射率。 (干涉條紋的評估) 使用Naftec(股)製之干涉條紋檢查燈(Na燈),以目視檢 查,並以下述基準評估。 〇:幾乎完全未觀察到干涉條紋的發生者 X ·’清楚觀察到干涉條紋者 (密合性之評估) 關於上述實施例及比較例之光學薄膜’分別進行如下所示 之橫盤格密合性試驗之密合率測定。 099143668 60 201130658 (棋盤格密合性試驗) 在光學薄膜的低折射率層側表面之lmm正方中加入人> _格的基盤格,使用Nichiban(股)製 〇入合计 ^ /η 24mmS 54 201130658 In Example 1, except that 10,0 parts by mass of a tackifier (Selney HPC-M) was added to the first composition 1, and the ratio of MEK to IPA of the first composition 1 was not changed and The amount of the two mixed solvents is reduced, the viscosity of the first composition 1 is adjusted to 109.5 mPa·s, and 5.0 parts by mass of the tackifier (Selney HPC-M) is added to the second composition 1, and The solvent of the second composition 1 was not changed and the amount of reduction was adjusted. The viscosity of the second composition 2 was adjusted to 110.3 mPa·s, and the composition of Example 1 was prepared on a TAC substrate having a refractive index tilted HC layer and a low refractive index. An optical film of the layer. (Comparative Example 3) In Example 1, except that the ratio of the unmodified MEK to the IPA was used and the two kinds of mixed solvents were added to the first composition 1, the viscosity of the first composition 1 was adjusted to 1.2 mPa·s. In the same manner as in Example 1, an optical film having a refractive index inclined HC layer and a low refractive index layer on a TAC substrate was prepared. (Comparative Example 4) In Example 1, except that 10.0 parts by mass of a tackifier (Selney HPC-M) was added to the first composition 1, and the ratio of MEK to IPA of the first composition 1 was not changed. Further, the amount of the two kinds of the mixed solvent was reduced, and the viscosity of the first composition 1 was adjusted to 109.5 mPa·s, and the same manner as in Example 1 was carried out to produce a gradient refractive index HC layer and a low refractive index layer on the TAC substrate. Optical film. (Comparative Example 5) In Example 5, except that the viscosity-adjusted 099143668 55 201130658 agent was used in the second composition 4 and the viscosity was adjusted to 2_5 mPa·s, it was processed in the same manner as in Example 5, and was fabricated on a TAC substrate. Optical film having a refractive index tilted pjc layer and a low refractive index layer (Comparative Example 6) In Example 1, except that 5 Å by mass of a tackifier (SelneyHPC-M) was added to the second composition ,, and The amount of the solvent component of the second composition 1 was decreased, and the viscosity was adjusted to ll 〇3 mPa·s. The optical film having the refractive index inclined HC layer and the low refractive index layer on the TAC substrate was treated in the same manner as in Example i. (Comparative Example 7) The above-described first composition 1 was coated on a TAC substrate using a grooved plate to form a coating film. The coating film was dried for 3 seconds to remove the solvent. Next, a coating and an external beam irradiation apparatus were used for the coating film, and ultraviolet irradiation was performed at an irradiation amount of 8 〇mj/cm2 to cure the coating film to form a HC layer having a dry film thickness of 12 μm. Next, on the HC layer, the composition 1 for the low refractive index layer was coated with a grooved plate to form a coating. The coating film was dried with the HC layer and irradiated with ultraviolet rays to form a low refractive index layer having a dry film thickness of 1 〇〇 nm, and an optical layer having a HC layer and a low refractive index layer containing no high refractive index fine particles on a tac substrate. film. (Comparative Example 8) In Comparative Example 7, except that the composition 3 for the low refractive index layer was used instead of the composition 1 for the low refractive index layer, the same procedure as in Comparative Example 7 was carried out, and a layer of tac based on 099143668 56 201130658 and a low refractive index were produced. The layer of light material has a ruthenium containing no high refractive index particles. Learn film. (Comparative Example 9) On the TAC substrate, the first composition 1 was applied using a grooved plate coater, and the coating film was subjected to a temperature of 7 G for 3 seconds to remove the solvent. Next, the coating film is irradiated with an ultraviolet ray irradiation device, and the HCf is not irradiated with a high-refractive-index micro-second, and the second component is a groove type. The plate applicator was coated and dried in a hot oven at 7 degrees Celsius for 30 seconds to remove the solvent. Then, the coating film was irradiated with an ultraviolet irradiation device at an irradiation amount of 1 GGm] to form a HC layer containing high refractive index fine particles, and a total of two layers of the upper and lower layers were formed to have a U/xn^Hc layer. Next, a low refractive index layer having a dry film thickness of 100 nm was formed on the HC layer using the composition for the low refractive index layer described above, and was formed on a tac substrate, and was formed from the TAC substrate side. An optical film of an HC layer of high refractive index microparticles, an HC layer containing high refractive index microparticles, and a low refractive index layer. (Comparative Example 10) In Comparative Example 9, except that the composition 2 for the low refractive index layer was used instead of the composition 1 for the low refractive index layer, it was processed in the same manner as in Comparative Example 9, and was produced on the material of tac, and the side of the TAC substrate was used. Initially, an optical, thin 099143668 57 201130658 film having no high refractive index microparticle 2HC layer, an HC layer containing south refractive index microparticles, and a low refractive index layer. The types, viscosity, coating method, wet film thickness and other composition used in the first and second compositions of the above examples and comparative examples are shown in Table 1. 099143668 58 201130658 [Table i] Table 1 First composition (lower side) Second composition (upper side) Coating method Wet film thickness ratio (T1/T2) Other composition type (number) Viscosity (mPa · s) Type (number) Viscosity (mPa · s) Example 1 1 5.3 1 25.7 Simultaneous 5//πι/25μπι Composition for low refractive index layer 1 Example 2 1 5.3 2 15.1 Simultaneous 5#m/25"m Low refractive index Composition for layer 1 Example 3 1 (with tackifier) 14.8 2 15.1 Simultaneous 5 μιη / 25 μπι Composition for low refractive index layer 1 Example 4 1 (with tackifier) 20.4 3 28.5 Simultaneous 5/zm/25/ Zm composition for low refractive index layer 1 Example 5 1 5.3 4 24.2 Simultaneous 5#ιη/25μπι Composition for low refractive index layer 1 Example 6 1 (with tackifier) 20.4 4 24.2 Simultaneous 5^m/25/ Zm composition for low refractive index layer 1 Example 7 1 5.3 1 25.7 Simultaneous 5//m/25^m Composition for high refractive index layer + composition for low refractive index layer Example 8 1 5.3 4 24.2 Simultaneous 5 ^m/25//m Composition for low refractive index layer 2 Example 9 1 5.3 4 24.2 Simultaneous 5^m/25/zm Composition for low refractive index layer 3 Example of vehicle exchange 1 1 1.2 4 2. 5 Simultaneous 5^m/25^m Composition for low refractive index layer 1 Comparative Example 2 1 (with tackifier) 109.5 1 (with tackifier) 110.3 Composition of low refractive index layer at the same time 5/zm/25/zm Comparative Example 3 1 1.2 1 25.7 Simultaneous 5/zm/25^m Composition for Low Refractive Index Layer 1 Comparative Example 4 1 (with tackifier) 109.5 1 25.7 Simultaneous 5^m/25^m Low refractive index layer Composition 1 Comparative Example 5 1 5.3 4 (no tackifier) 2.5 Simultaneous 5/zm/25^m Composition for low refractive index layer 1 Comparative Example 6 1 5.3 1 (with tackifier) 110.3 At the same time 5// m/25^m Composition for low refractive index layer 1 Comparative Example 7 1 5.3 Composition without single layer 1 time without low refractive index layer Comparative Example 8 1 5.3 No single layer 1 time without low refractive index layer Composition 3 Comparative Example 9 1 5.3 1 25.7 Composition without a low refractive index layer 1 Comparative Example 10 1 5.3 1 25.7 Composition without a low refractive index layer 2 099143668 59 201130658 (Evaluation of optical film) Regarding the above embodiment The optical thinness of the comparative example and the reflectance measurement shown below were respectively performed. The optical films of the above-described examples and comparative examples were subjected to interference fringes, adhesion, planarity (with or without coating), distribution of high refractive index fine particles, and productivity (suitability and simplicity). )evaluation of. Further, with respect to Examples 8 and 9, and Comparative Examples 7 to 10, the evaluation of the testability was performed. The results are shown in Table 2. (Measurement of reflectance) The reflectance was measured by using the product name v7100 ultraviolet visible light spectrophotometer manufactured by JASCO Corporation and the product name emblem -7_absolute reflectance measuring device manufactured by JASCO Corporation. The angle 5 and the polarizer are N-polarized, and the measurement wavelength range is 380 to 780 nm, and the black tape is attached to the TAC substrate side of the optical film, and is set in the apparatus. Further, the average value of the measurement results obtained by measuring the wavelength range was defined as the reflectance. (Evaluation of interference fringes) An interference fringe inspection lamp (Na lamp) manufactured by Naftec Co., Ltd. was used for visual inspection and evaluated on the basis of the following criteria. 〇: The occurrence of interference fringes was almost completely observed. X · 'Evaluation of interference fringes clearly (evaluation of adhesion) The optical films of the above-described examples and comparative examples were respectively subjected to a horizontal disk close-up as shown below. Determination of the adhesion rate of the sex test. 099143668 60 201130658 (Checkerboard adhesion test) The base of the human>_ grid is added to the 1 mm square of the low refractive index layer side surface of the optical film, and the total density is made using Nichiban (股) ^ /η 24mm

Cello-Tape(註冊商標)進行5次連續_試驗 述基準算出未_殘留之分量格的比例。'且根據下 密合率(%H未剝離之分量格數/合 100 Λ 里格數100)χ (面狀之評估) 以目视進行評 關於光學薄膜之外觀面狀(有無塗佈紋) 估。 ◦.未觀察到塗佈紋者 △:模糊觀察到塗佈紋者 清楚觀察到塗佈紋者 (折射率傾斜HC層+之高折射率微粒子的分佈) 以ΤΕΜ照片觀察光學薄膜的剖面,求出折射率傾斜π 層或HC射高折射率微粒子全量9〇%所佔 < 由低折射率層 侧界面開始的膜厚比例。 (生產性(適塗佈性)) 於上述各實施例及比較例中’以下述基準評估僅改變塗佈 速度時之第一組成物及第二組成物對於TAC基材的適塗佈 性。 〇:即使塗佈速度l〇m/min以上亦可不產生塗佈紋地塗 099143668 61 201130658 佈者 △.可不產生塗佈紋地塗佈的塗佈速度為1 m/min以下者 X:任意速度均產生塗佈紋者 (耐驗化性) 將光學薄膜,放保持於55。〇的2當量濃度氫氧化鈉水溶 液中,浸潰2分鐘《其次,充分水洗後,以7(rc乾燥5分 鐘。其次,使用#〇0〇〇號的鋼絲絨,以摩擦荷重 0.98N(100gf)’來回摩擦1〇 :欠,目視其後有無低折射率層損 傷、剝落,並以下述基準評估。 〇.於低折射率層無損傷及剝落 X.於低折射率層有損傷或剝落 又由所得之反射率結果、和對於實施例1〜9及比較例 1〜6之光學薄膜的折射率傾斜HC層,以XPS測定膜厚方向 之间折射率微粒子存在量變化的結果,可確認任何折射率傾 斜HC層均由低折射率層側的界面朝向TAC基材側的界 面’折射率連續降低。 關於上述實施例及比較例,同時進行塗佈的實施例i〜9 及比較例1〜6中’步驟數少,且可簡便進行光學薄膜的製作。 仁疋,進行逐次塗佈的比較例9及10中,組成物的塗佈 和光照射之硬化步驟為多次使簡便性方面差。 099143668Cello-Tape (registered trademark) performs five consecutive _tests. The reference calculates the ratio of the _ residual component. 'And according to the lower adhesion ratio (%H undivided component number / 100 Λ ridge number 100) χ (evaluation of the surface) Visually evaluate the appearance of the optical film (with or without coating) estimate. ◦. No coating pattern was observed Δ: Obscuring the coating pattern clearly observed the coating pattern (refractive index tilting HC layer + high refractive index microparticle distribution) ΤΕΜ photo observation of the optical film profile, seeking The refractive index is inclined by π layer or the total amount of HC-emitting high-refractive-index particles is 9〇%. < The film thickness ratio from the side of the low refractive index layer side. (Productivity (Applicability)) In each of the above Examples and Comparative Examples, the applicability of the first composition and the second composition to the TAC substrate when only the coating speed was changed was evaluated by the following criteria. 〇: Even if the coating speed is l〇m/min or more, it can be applied without coating. 099143668 61 201130658 △. The coating speed of coating without coating is 1 m/min or less X: Any speed All of them produced a coating pattern (testability). The optical film was placed at 55. In a 2 equivalent aqueous sodium hydroxide solution of hydrazine, it was immersed for 2 minutes. Secondly, after washing with sufficient water, it was dried at 7 (rc for 5 minutes. Secondly, using steel wool of #〇0〇〇, with a friction load of 0.98 N (100 gf) ) 'Flip back and forth 1 〇: Under, visually observe whether there is damage or peeling of the low refractive index layer, and evaluate it according to the following criteria. 无. No damage and peeling on the low refractive index layer X. Damage or flaking in the low refractive index layer From the results of the reflectance obtained and the refractive index of the optical films of Examples 1 to 9 and Comparative Examples 1 to 6, the HC layer was measured, and the amount of refractive index microparticles present in the film thickness direction was measured by XPS. The refractive index-inclination HC layer continuously decreased from the interface on the side of the low refractive index layer toward the interface on the side of the TAC substrate. The examples i to 9 and the comparative examples 1 which were simultaneously coated in the above examples and comparative examples. In the case of "6", the number of steps is small, and the production of the optical film can be easily performed. In Comparative Examples 9 and 10 in which the coating was applied successively, the application of the composition and the hardening step of the light irradiation were inferior in convenience. 099143668

62 201130658 CN 而做化性 1 1 1 1 1 1 1 〇 〇 1 1 1 1 1 1 X 〇 X 〇 卜側開始設置折射率傾斜HC層、低折射率層, 匕指含有高折射率微粒子的HC層。 生產性 |簡便性I 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 X X 適塗佈性 〇 〇 〇 〇 〇 〇 〇 〇 〇 0 0 < X X X 〇 〇 〇 〇 高折射率微粒子之 90%#在之膜厚比例 〇 S S 家 高折HC層之膜厚90% 高折HC層之膜厚90% 面狀 (塗佈紋) 〇 〇 〇 〇 〇 〇 〇 〇 〇 <] X <1 X 0 X 〇 〇 〇 〇 密合14 (%) 〇 〇 8 1-Η 〇 8 8 8 〇 〇 r—Η 〇 〇 8 〇 〇 |干涉條紋 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 X X 反射率 0.51 0.60 0.54 0.42 | 0.40 0.35 0.28 1—Η »-Η 0.75 1 0.65 °·42 1 0.61 0.45 0.66 0.54 〇〇 〇 !·82 1 0.50 1.25 為U Η砸 *ffi - m ^ S ΐ Η 4 却Ϊ 长s: 漆右 U f g ^ ffi、艮 層構成* 働頁斜HC7TAC 餅頁斜HC7TAC 彻頃斜HCYTAC 餅頁斜HC7TAC 健頁斜HC7TAC 餅貝斜HCYTAC 低/高/傾斜HCYTAC 餅頁斜HCAAC 讎斜HC/TAC 似傾斜HC/TAC 働頁斜HC7TAC 似傾斜HC7TAC 餅頁斜HC7TAC 餅頁斜HC7TAC 議斜HC7TAC 娜 C7TAC 娜 CYTAC 似高折HC/HCYrAC W 高折 HC/HCTTAC 塗佈方式 ca 1: 同時 n? ΪΕ |單層1回] 單層1回 逐次| 逐次| I實施例1| |實施例2, |實施例3I |實施例4 1 實施例5 |實施例6 I |實施例f] |實施例 實施例9 |比車交例1 | 丨比較例2 | 丨比較例3 | |比車交例4 | 丨比較例5 | 丨比較例6 | 丨比較例7 I |比較例8 | 丨比較例9 I |比較例ίο | S°°99ε-660 s 201130658 (結果之總結) 由表2,實施例卜7、比較例丨〜6及9之光學薄膜取得良 好的反射率。特別,折射率傾斜HC層、高折射率層及低折 射率層之層構成的實施例7取得低反射率。 於低折射率層用組成物使用氟系低折射率材料的實施例 8及9的光學薄膜,反射率分別為丨別和Q 75,取得充分的 防止反射性。特別,實施例9的光學薄膜中不含有中空二氧 化石夕微粒子,即使使用㈣低折料材料,反料亦比使用 中空二氧化石夕微粒子之比較例7的光學薄膜更低。若將實施 例9之光學薄膜與比較例1G之光學薄膜相對比,則均具有 同的低折射率層,並於鄰接低折射率層的層中含有言 粒子,但以實施例9之光學薄膜的反射率較低二 /玄因實施例9的光學薄膜於折射率傾斜HC層内,有效 轉率層側的界面附近高折射率化,故比上層職 ,中向折射率微粒子均勻分佈之比較例1Q的光學薄膜, ―加增大低折射㈣與折射率傾斜HC層的折射率差。 為ΙΓ1〜9纽較例1〜8之_膜於干涉條紋的評估 =學二逐形成上下HC —及 〜寄膜產生層界面,並且發生干涉條紋。 =例1〜9之光學薄膜於密合性和面狀的評估為良好。 匕較例1〜6之光學薄膜比實施例的密*性更低,於 099143668 201130658 面狀亦產生塗佈紋。特別,比較例2、4及6之光學薄膜的 情況’第-組餘與第二組成物的至少—輕度過高,於塗 佈速度20m/min易產生塗佈矣文,且面狀的評估為χ。因產生 塗佈紋使塗佈面的狀態差,故推測比較例2、4及6的光學 薄膜為密合性的評估結果亦差。 比較例7及8的光學薄膜為密合性和面狀的評估良好。推 測其係因僅使用第-組成物i且以i次形成H c層。 比較例9及10的光學薄獏於面狀的評估為良好,但密合 性不夠充分。推測係因個別形成上下層,故層界面的密合性 不夠充分。 實施例之光學薄膜的折射率傾斜HC層中,根據剖面觀 察,高折射率微粒子之9 0 %在折射率傾斜H◦層之低折射率 層側界面直到70%為止的膜厚中存在。 仁疋’比較例2以外之比較例1及3〜6的光學薄膜中,高 折射率被粒子在接近TAC基材侧界面直到90%和95%的膜 尽為止分佈。 進行逐次塗佈之比較例9及1〇的光學薄膜中,在上層側 含有高折射率微粒子之HC層的膜厚方向全體均勻分佈高 折射率微粒子。 貫%例之第一組成物及第二組成物的黏度於生產性(適塗 佈性)良好。 但是,比較例1〜6中,不會產生塗佈紋且可生產的塗佈速 〇"143668 65 201130658 度低,或者即使減慢塗佈速度亦產生塗佈紋的結果。比較例 7〜10之光學薄膜未進行同時塗佈,因塗佈i種組成物、或 者將組成物以各1種塗佈,故適塗佈性良好。 於低折射率層含有中空二氧化矽微粒子之比較例7及9 的光學薄膜,耐鹼化性不夠充分。相對地,於低折射率層不 含有中空二氧化矽微粒子之實施例8及9的光學薄膜,充分 的防止反射性和耐驗化性可兩相成立。 【圖式簡單說明】 圖1係示意性示出本發明之光學薄膜之製造方法之一例 圖。 圖2係示出使用擠出型之型板塗敷器之同時塗佈方法之 一例的示意圖。 圖3係示意性示出本發明之光學薄膜之層構成及折射率 傾斜HC層内之膜厚方向中之高折射率微粒子之分佈一例 的剖面圖。 圖4係示意性示出本發明之光學薄膜之層構成的另一例 的剖面圖。但,省略粒子的存在。 圖5係示意性示出本發明之光學薄膜之層構成的另一例 的剖面圖。但,省略粒子的存在。 圖6係示意性示出本發明之光學薄膜之層構成的另一例 的剖面圖。但,省略粒子的存在。 【主要元件符號說明】 099143668 66 201130658 1 光學薄膜 10 光穿透性基材 20 折射率傾斜硬塗層 30 高折射率微粒子 40 型板塗敷器頭部 51 ' 52 狹縫 60 第一硬塗層用硬化性樹脂組成物 70 第二硬塗層用硬化性樹脂組成物 80 低折射率層 90 高折射率微粒子 100 防靜電層 099143668 6762 201130658 CN The composition is 1 1 1 1 1 1 1 〇〇1 1 1 1 1 1 1 X 〇X The side of the 开始X side is set to the gradient of the HC layer, the low refractive index layer, and the 匕 refers to the HC containing the high refractive index particles. Floor. Productivity | Simplicity I 〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇 XX Applicability 〇〇〇〇〇〇〇〇〇0 0 < XXX 〇〇〇〇 High refractive index microparticles 90%# in the film thickness ratio 〇SS home high folding HC layer film thickness 90% high folding HC layer film thickness 90% surface (coated grain) 〇〇〇〇〇〇〇〇〇<] X <1 X 0 X 〇〇〇〇 close 14 (%) 〇〇8 1-Η 〇8 8 8 〇〇r—Η 〇〇8 〇〇|Interference fringe〇〇〇〇〇〇〇〇〇〇〇 〇〇〇〇〇〇XX Reflectance 0.51 0.60 0.54 0.42 | 0.40 0.35 0.28 1—Η »-Η 0.75 1 0.65 °·42 1 0.61 0.45 0.66 0.54 〇〇〇!·82 1 0.50 1.25 is U Η砸*ffi - m ^ S ΐ Η 4 Ϊ Ϊ long s: paint right U fg ^ ffi, 艮 layer composition * 斜 page oblique HC7TAC cake page oblique HC7TAC 斜 oblique HCYTAC cake page oblique HC7TAC health page oblique HC7TAC cake shell oblique HCYTAC low / high / Tilt HCYTAC Pie Page Oblique HCAAC Skew HC/TAC Like Tilt HC/TAC Page Oblique HC7TAC Like Tilt HC7TAC Pie Page Oblique HC7TAC Pie Page Oblique HC7TAC HC7TAC Na C7TAC NaCYTAC Like High Fold HC/HCYrAC W High Fold HC/HCTTAC Coating Method ca 1: Simultaneous n? ΪΕ | Single Layer 1 Back] Single Layer 1 Time Successive | Successive | I Example 1| | , Example 3I | Example 4 1 Example 5 | Example 6 I | Example f] | Example Example 9 | Example 1 | 丨 Comparative Example 2 | 丨 Comparative Example 3 | Example 4 | 丨 Comparative Example 5 | 丨 Comparative Example 6 | 丨 Comparative Example 7 I | Comparative Example 8 | 丨 Comparative Example 9 I | Comparative Example ίο | S°°99ε-660 s 201130658 (Summary of Results) From Table 2, Example 7 The optical films of Comparative Examples 66 and 9 achieved good reflectance. In particular, Example 7 in which the layers of the refractive index-inclined HC layer, the high-refractive-index layer, and the low-refractive-index layer were formed had a low reflectance. In the optical films of Examples 8 and 9 which used a fluorine-based low refractive index material for the composition for a low refractive index layer, the reflectances were respectively the discrimination and Q 75, and sufficient antireflection properties were obtained. In particular, the optical film of Example 9 did not contain hollow silica fine particles, and even if the (iv) low-fold material was used, the negative film was lower than the optical film of Comparative Example 7 using hollow silica fine particles. When the optical film of Example 9 was compared with the optical film of Comparative Example 1G, both had the same low refractive index layer and contained particles in the layer adjacent to the low refractive index layer, but the optical film of Example 9 was used. The reflectance of the second embodiment is lower than that of the upper layer and the medium refractive index microparticles are evenly distributed in the vicinity of the interface on the effective conversion layer side. The optical film of Example 1Q, "increasing the refractive index difference between the low refractive index (four) and the refractive index tilting HC layer. For the evaluation of interference fringes of ΙΓ1 to 9 纽 例1~8 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The optical films of Examples 1 to 9 were evaluated for good adhesion and surface properties. The optical films of Comparative Examples 1 to 6 were less dense than the examples, and coated on the surface of 099143668 201130658. In particular, in the case of the optical films of Comparative Examples 2, 4 and 6, the at least one of the first group and the second composition was slightly too high, and the coating speed was 20 m/min, which was easy to produce a coating, and was planar. The assessment is χ. Since the state of the coated surface was poor due to the occurrence of the coating pattern, it was estimated that the optical films of Comparative Examples 2, 4 and 6 were inferior in the evaluation results of the adhesion. The optical films of Comparative Examples 7 and 8 were evaluated for good adhesion and surface. It was inferred that only the first component i was used and the H c layer was formed i times. The optical thinness of Comparative Examples 9 and 10 was evaluated as good in the planar shape, but the adhesion was insufficient. It is presumed that the upper and lower layers are formed separately, so the adhesion of the layer interface is insufficient. The refractive index of the optical film of the example is inclined in the HC layer, and according to the cross-sectional observation, 90% of the high refractive index fine particles are present in the film thickness of the low refractive index layer side interface of the refractive index inclined H◦ layer up to 70%. In the optical films of Comparative Examples 1 and 3 to 6 other than Comparative Example 2, the high refractive index was distributed by the particles up to the end of the TAC substrate side interface until 90% and 95% of the film was completed. In the optical films of Comparative Examples 9 and 1 which were successively applied, the high-refractive-index fine particles were uniformly distributed in the entire film thickness direction of the HC layer containing the high refractive index fine particles on the upper layer side. The viscosity of the first composition and the second composition of the % example is good in productivity (suitable coating property). However, in Comparative Examples 1 to 6, the coating speed was not produced and the coating speed 可 143 668 65 201130658 was low, or the coating pattern was produced even if the coating speed was slowed down. The optical films of Comparative Examples 7 to 10 were not coated at the same time, and the coating properties were good because the compositions of the first type were coated or the composition was applied in one form. In the optical films of Comparative Examples 7 and 9 in which the hollow cerium oxide fine particles were contained in the low refractive index layer, the alkali resistance was insufficient. On the other hand, in the optical films of Examples 8 and 9 which do not contain hollow ceria particles in the low refractive index layer, it is possible to sufficiently prevent the reflectance and the testability from being two phases. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view schematically showing an example of a method for producing an optical film of the present invention. Fig. 2 is a schematic view showing an example of a simultaneous coating method using an extrusion type plate applicator. Fig. 3 is a cross-sectional view schematically showing an example of a layer configuration of an optical film of the present invention and a distribution of high refractive index fine particles in a film thickness direction in a refractive index inclined HC layer. Fig. 4 is a cross-sectional view schematically showing another example of the layer constitution of the optical film of the present invention. However, the existence of particles is omitted. Fig. 5 is a cross-sectional view schematically showing another example of the layer constitution of the optical film of the present invention. However, the existence of particles is omitted. Fig. 6 is a cross-sectional view schematically showing another example of the layer constitution of the optical film of the present invention. However, the existence of particles is omitted. [Main component symbol description] 099143668 66 201130658 1 Optical film 10 Light-transmissive substrate 20 Refractive index oblique hard coat 30 High-refractive-index micro-particle 40-plate applicator head 51 ' 52 Slit 60 First hard coat Curing resin composition 70 Curable resin composition for second hard coat layer 80 Low refractive index layer 90 High refractive index fine particles 100 Antistatic layer 099143668 67

Claims (1)

201130658 七、申請專利範圍: 1. -種光學薄膜之製造方法,其特徵為包含: ⑴準備光穿透性基材的步驟; (ii)準備含有第一黏合劑成分及第一溶劑,不含有高折射 率微粒子’且黏度為3〜100mPa. s之第一硬塗層用:化性 樹脂組成物,以及含有平均粒徑1〜腦nm之高折射率微粒 子、第二黏合劑成分及第二溶劑,且黏度為1〇〜刚恤· s 之第二硬塗層用硬化性樹脂組成物的步驟; (in)於該光穿透性基材的一面侧,由該光穿透性基材側, 將該第一硬塗層用硬化性樹脂組成物及該第二硬塗層用硬 化性樹脂組成物予以鄰接,以該第一硬塗層用硬化性樹脂組 成物比該第二硬塗層用硬化性樹脂組成物更加位於該光穿 透性基材側般進行同時塗佈,作成塗膜的步驟;以及 (IV)對上述(出)步驟所得之塗膜進行光照射使其硬化,以 形成折射率傾斜硬塗層的步驟。 2. 如申請專利範圍第1項之光學薄膜之製造方法,其中, 上述第一硬塗層用硬化性樹脂組成物及/或第二硬塗層用硬 化性樹脂組成物,係進一步含有增黏劑。 3·如申請專利範圍第1項之光學薄膜之製造方法,其中, 上述第一硬塗層用硬化性樹脂組成物的黏度與上述第二硬 塗層用硬化性樹脂組成物之黏度(mPa· s)差的絕對值為30 以下。 099143668 68 201130658 4. 如申請專利範圍第1項之光學薄膜之製造方法,其中, 上述光穿透性基材為三乙醯纖維素基材,上述第一溶劑具有 對該三乙醯纖維素基材之浸透性。 5. 如申請專利範圍第1項之光學薄膜之製造方法,其中, 於上述(iv)步驟後,進一步包含(v)在上述折射率傾斜硬塗層 上,直接或介隔著高折射率層形成低折射率層的步驟。 6. 如申請專利範圍第5項之光學薄膜之製造方法,其中, 硬化形成上述低折射率層的低折射率層用組成物,係含有中 空二氧化矽微粒子。 7. 如申請專利範圍第5項之光學薄膜之製造方法,其中, 硬化形成上述低折射率層的低折射率層用組成物,係含有由 金屬氟化物及硬化性氟樹脂所組成群中選出之至少1種的 低折射率材料。 8. 如申請專利範圍第7項之光學薄膜之製造方法,其中, 硬化形成上述低折射率層的低折射率層用組成物,係不含中 空二氧化矽微粒子,而含有由金屬氟化物及硬化性氟樹脂所 組成群中選出之至少1種的低折射率材料。 9. 如申請專利範圍第1項之光學薄膜之製造方法,其中, 在上述⑴步驟與(iii)步驟之間,進一步包含(vi)在上述光穿 透性基材之設置折射率傾斜硬塗層的面形成防靜電層的步 驟。 10. —種光學薄膜,其特徵為根據申請專利範圍第1至9 099143668 69 201130658 項中任一項之方法而得。 U. 一種光學薄膜’係於光穿透性基材的一面側至少設置 折射率傾斜硬塗層者,其特徵為, 該折射率傾斜硬塗層係含有平均粒徑1〜100nm的高折射 率微粒子, 於該折射率傾斜硬塗層中,在該折射率傾斜硬塗層的膜厚 方向該向折射率微粒子的存在量係愈接近該光穿透性義 側則愈少。 土 12. 如申請專利範圍第u項之光學薄膜,其中,於上述折 射率傾斜硬塗層中,由上述光穿透性基材對面側之界面至= 折射率傾斜硬塗層膜厚之7〇%為止的區域中, 射率料私人曰 在上返局折 射丰微板子全量的90%以上。 13. 如申請專利範圍第u項之光學薄膜,其中,上述折 率傾斜硬塗層中含有增黏劑。 ,、 14. 如申請專利範圍第11項之光學薄膜,其中,上述光穿 透性基材為三乙醯纖維素基材,構成上述折射率傾斜硬塗層 的基質’於該三乙醯纖維素基材之折射率傾斜硬塗層侧=二 面亦存在。 1 15.如申請專利範圍第11項之光學薄膜,其中,於上述折 射率傾斜硬塗層之光穿透性基材對面侧之面,進—步由低折 射率層或該折射率傾斜硬塗層側設置高折射率層及低折射 率層。 099143668 70 201130658 a如申請專利範_15項之絲薄膜,其中,上述低折 射率層含有中空二氧化石夕微粒子。 :17.如中請專利範圍第15項之鮮薄膜,其中,上述低折 ,射率層含有由金屬氟化物及I樹脂所組成群中選出之至少 1種的低折射率成分。 18. 如申請專利_第17項之絲_,其中,上述低折 射率層不3巾。—氧切微粒子,*含有由金職化物及敗 樹脂所組成群中選出之至少1種的低折射率成分。 19. 如申請專利範圍第u項之光學薄膜,其中,在上述光 穿透性基材與上述折射率傾斜硬塗層之間,進—步設置防靜 電層。 m如申請專利範圍第1δ項之光學薄膜,其中,將上述光 學薄膜放入保持於55°c的2當量濃度氫氧化鈉水溶液中, 汉潰2分雀里’其次,水洗後,以70°c乾燥5分鐘,其次, 使用#〇_號之鋼絲絨以摩擦荷重Q 98N將上述低折射率層 表面來回摩擦10次時,不會使該低折射率層損傷及剝落。 21. 種偏光板’其特徵為在偏光元件的一面側,將 •巾請專利範㈣WUG項中任—項之光學薄膜,以該二 、/祕的光穿透性基材側朝向該偏光元件配置而成。 22. -種影像顯錢置,其特徵為具射請專利範 至20項中任一項之光學薄膜。 099143668 71201130658 VII. Patent Application Range: 1. A method for producing an optical film, comprising: (1) a step of preparing a light-transmitting substrate; (ii) preparing a first binder component and a first solvent, and not containing The high refractive index microparticles' and the viscosity of the first hard coat layer of 3 to 100 mPa.s are: a chemical resin composition, and a high refractive index fine particle having an average particle diameter of 1 to brain nm, a second binder component, and a second a solvent and a step of a curable resin composition for a second hard coat layer having a viscosity of 1 〇 to a rigid sheet; (in) one side of the light-transmitting substrate, the light-transmitting substrate On the side, the curable resin composition for the first hard coat layer and the curable resin composition for the second hard coat layer are adjacent to each other, and the curable resin composition for the first hard coat layer is more than the second hard coat layer. a step of coating the layer with a curable resin composition on the side of the light-transmitting substrate to form a coating film; and (IV) subjecting the coating film obtained in the above (out) step to light irradiation to be hardened, The step of forming a refractive index oblique hard coat layer. 2. The method for producing an optical film according to the first aspect of the invention, wherein the curable resin composition for the first hard coat layer and/or the curable resin composition for the second hard coat layer further contains a tackifier. Agent. 3. The method for producing an optical film according to the first aspect of the invention, wherein the viscosity of the curable resin composition for the first hard coat layer and the viscosity of the curable resin composition for the second hard coat layer (mPa· s) The absolute value of the difference is 30 or less. 4. The method for producing an optical film according to claim 1, wherein the light-transmitting substrate is a triacetyl cellulose substrate, and the first solvent has a triacetyl cellulose substrate. The permeability of the material. 5. The method for producing an optical film according to claim 1, wherein after the step (iv), further comprising (v) directly or interposing a high refractive index layer on the refractive index inclined hard coat layer. A step of forming a low refractive index layer. 6. The method for producing an optical film according to claim 5, wherein the composition for the low refractive index layer which forms the low refractive index layer is cured, and the hollow cerium oxide fine particles are contained. 7. The method for producing an optical film according to the fifth aspect of the invention, wherein the low refractive index layer composition for curing the low refractive index layer is selected from the group consisting of metal fluoride and curable fluororesin. At least one of low refractive index materials. 8. The method for producing an optical film according to claim 7, wherein the low refractive index layer composition for curing the low refractive index layer is free of hollow cerium oxide microparticles and contains metal fluoride and At least one low refractive index material selected from the group consisting of curable fluororesins. 9. The method for producing an optical film according to claim 1, wherein, between the steps (1) and (iii), further comprising (vi) setting a refractive index oblique hard coating on the light-transmitting substrate; The surface of the layer forms the step of forming an antistatic layer. An optical film, which is characterized by the method of any one of claims 1 to 9 099143668, and the method of 2011, 2011, 658. U. An optical film is characterized in that at least one of the refractive index oblique hard coat layers is provided on one side of the light-transmitting substrate, and the refractive index oblique hard coat layer has a high refractive index of an average particle diameter of 1 to 100 nm. In the refractive index oblique hard coat layer, the microparticles are less in the film thickness direction of the refractive index oblique hard coat layer as the amount of the refractive index microparticles is closer to the light penetrating side. The optical film according to claim 5, wherein in the above-mentioned refractive index oblique hard coat layer, the interface from the opposite side of the light-transmitting substrate to the refractive index of the refractive index is 7 In the area up to 〇%, the radio rate is more than 90% of the total amount of the full board. 13. The optical film of claim U, wherein the above-described refractive gradient hard coat layer contains a tackifier. 14. The optical film of claim 11, wherein the light penetrating substrate is a triacetyl cellulose substrate, and the matrix constituting the refractive index oblique hard coat layer is applied to the triethylene fiber. The refractive index of the plain substrate is inclined on the side of the hard coat layer = the two sides are also present. [1] The optical film of claim 11, wherein the surface of the light-transmissive substrate opposite to the refractive index-inclined hard coat layer is further inclined by the low refractive index layer or the refractive index A high refractive index layer and a low refractive index layer are provided on the coated side. 099143668 70 201130658 a A film according to the patent specification -15, wherein the low refractive index layer contains hollow silica dioxide particles. The fresh film of the fifteenth aspect of the invention, wherein the low refractive index layer contains at least one low refractive index component selected from the group consisting of metal fluorides and I resins. 18. For the patent _ Item 17 of the silk _, wherein the above low refractive index layer is not 3 towels. The oxygen-cut microparticles* contain at least one low refractive index component selected from the group consisting of a gold compound and a resin. 19. The optical film of claim 5, wherein an antistatic layer is further disposed between the light transmissive substrate and the refractive index oblique hard coat layer. m as in the optical film of claim 1 δ, wherein the optical film is placed in a 2 equivalent sodium hydroxide aqueous solution maintained at 55 ° C, followed by a 2 minute drop, followed by a 70 ° wash. c was dried for 5 minutes. Next, when the surface of the low refractive index layer was rubbed back and forth 10 times with a friction load Q 98N using a steel wool of #〇_号, the low refractive index layer was not damaged or peeled off. 21. The polarizing plate is characterized in that, on one side of the polarizing element, the optical film of any of the WOG items of the patent application (4), the light-transmitting substrate side of the second/secret direction faces the polarizing element. Configured. 22. An image-forming display, characterized by an optical film having any of the patents to 20. 099143668 71
TW099143668A 2009-12-18 2010-12-14 Method for producing optical film, optical film, polarizer and image display device TWI581974B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009288095 2009-12-18
JP2010227431A JP5764903B2 (en) 2009-12-18 2010-10-07 Manufacturing method of optical film

Publications (2)

Publication Number Publication Date
TW201130658A true TW201130658A (en) 2011-09-16
TWI581974B TWI581974B (en) 2017-05-11

Family

ID=44167161

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099143668A TWI581974B (en) 2009-12-18 2010-12-14 Method for producing optical film, optical film, polarizer and image display device

Country Status (5)

Country Link
JP (1) JP5764903B2 (en)
KR (1) KR101404253B1 (en)
CN (1) CN102667534B (en)
TW (1) TWI581974B (en)
WO (1) WO2011074402A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI688884B (en) * 2014-11-27 2020-03-21 日商日東電工股份有限公司 Surface protective film, method for manufacturing surface protective film, and optical component
US10656308B2 (en) 2015-09-30 2020-05-19 Zeon Corporation Antistatic hard coat film, polarizing plate, touch panel, liquid crystal display device, and manufacturing method

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103135148B (en) * 2011-08-03 2016-01-13 富士胶片株式会社 The manufacture method of the film of band coating
KR101226228B1 (en) 2011-08-26 2013-01-28 주식회사 엘지화학 Anti-reflective coating film
JP2013097362A (en) * 2011-11-07 2013-05-20 Nof Corp Composition for formation of high refractive index layer for antireflection film and antireflection film comprising high refractive index layer composed of the composition
US9103970B2 (en) * 2012-01-11 2015-08-11 Dai Nippon Printing Co., Ltd. Optical layered body, method for producing optical layered body, polarizer, and image display device
JP6235288B2 (en) * 2013-09-30 2017-11-22 日東電工株式会社 Optical laminate
TWI600742B (en) * 2014-01-17 2017-10-01 Nitto Denko Corp Adhesive sheet with transparent adhesive layer
JP6275072B2 (en) * 2014-08-28 2018-02-07 富士フイルム株式会社 Antireflection laminate, polarizing plate, cover glass, image display device, and production method of antireflection laminate
CN107430228B (en) * 2015-03-20 2020-03-03 柯尼卡美能达株式会社 Optical film and method for producing optical film
JP6060223B1 (en) 2015-07-22 2017-01-11 日東電工株式会社 Cover member having a transparent adhesive layer
WO2017030391A1 (en) * 2015-08-18 2017-02-23 주식회사 엘지화학 Low refractive layer and anti-reflection film comprising same
KR101956830B1 (en) * 2015-08-18 2019-03-12 주식회사 엘지화학 Low refractive layer and anti-reflective film comprising the same
EP3376293A1 (en) * 2017-03-13 2018-09-19 TIGER Coatings GmbH & Co. KG Curable coating material for non-impact printing
CN107791632A (en) * 2017-11-24 2018-03-13 惠州市摩码菱丽光电材料有限公司 A kind of antiradar reflectivity of TAC base materials is without rainbow line hardening diaphragm and preparation method thereof
JP7455777B2 (en) * 2021-03-31 2024-03-26 日東電工株式会社 Optical laminates and image display devices

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002350640A (en) * 2001-05-28 2002-12-04 Nitto Denko Corp Method for manufacturing protective film for polarizing plate, polarizing plate, optical film and liquid crystal display device using polarizing plate
JP4395349B2 (en) * 2003-09-29 2010-01-06 大日本印刷株式会社 Optical film and optical display device comprising this optical film
JP4900890B2 (en) * 2005-02-24 2012-03-21 富士フイルム株式会社 Optical film, method for producing optical film, polarizing plate, and image display device using the same
US20080266661A1 (en) * 2005-03-30 2008-10-30 Dai Nippon Printing Co., Ltd Polarizing Plate
JP2006337663A (en) * 2005-06-01 2006-12-14 Fujifilm Holdings Corp Antireflection film, polarizing plate and image display apparatus using the same
JP5244302B2 (en) * 2005-08-25 2013-07-24 富士フイルム株式会社 Method for producing antireflection film
JP2007164166A (en) 2005-11-21 2007-06-28 Fujifilm Corp Optical film and antireflection film, polarizing plate and liquid crystal display device using the same
JP2008287072A (en) * 2007-05-18 2008-11-27 Fujifilm Corp Anti-glare film and anti-reflection film using the same
JP2009036817A (en) * 2007-07-31 2009-02-19 Konica Minolta Opto Inc Antireflective coating, and polarizing plate and image display device using the same
JP2009075192A (en) * 2007-09-19 2009-04-09 Jsr Corp Method for manufacturing polarizing plate
JP2009086360A (en) * 2007-09-28 2009-04-23 Dainippon Printing Co Ltd Antireflection film
JP2009244382A (en) * 2008-03-28 2009-10-22 Sharp Corp Functional film and display apparatus
JP5659460B2 (en) * 2008-04-03 2015-01-28 大日本印刷株式会社 Optical film and method for producing the same
JP2009258400A (en) * 2008-04-17 2009-11-05 Jgc Catalysts & Chemicals Ltd Method of manufacturing optical substrate with light color mirror coat layer and optical substrate obtained from the same method
JPWO2010035764A1 (en) * 2008-09-26 2012-02-23 株式会社巴川製紙所 Optical laminate and hard coat film
JP2011039332A (en) * 2009-08-12 2011-02-24 Fujifilm Corp Optical film, method for manufacturing the same, polarizing plate and image display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI688884B (en) * 2014-11-27 2020-03-21 日商日東電工股份有限公司 Surface protective film, method for manufacturing surface protective film, and optical component
US10656308B2 (en) 2015-09-30 2020-05-19 Zeon Corporation Antistatic hard coat film, polarizing plate, touch panel, liquid crystal display device, and manufacturing method
TWI703343B (en) * 2015-09-30 2020-09-01 日商日本瑞翁股份有限公司 Antistatic hard coating film, polarizing plate, touch panel, liquid crystal display device and manufacturing method

Also Published As

Publication number Publication date
JP2011145649A (en) 2011-07-28
TWI581974B (en) 2017-05-11
CN102667534A (en) 2012-09-12
JP5764903B2 (en) 2015-08-19
WO2011074402A1 (en) 2011-06-23
KR20120102054A (en) 2012-09-17
CN102667534B (en) 2014-11-05
KR101404253B1 (en) 2014-06-05

Similar Documents

Publication Publication Date Title
TW201130658A (en) Method for producing optical film, optical film, polarizer and image display device
JP5842320B2 (en) Manufacturing method of optical film, optical film, polarizing plate, and image display device
TWI259909B (en) Process for the production of antiglare antireflective film
TWI468478B (en) Method for manufacturing anti-reflective coating film
TWI448718B (en) An optical laminate, a polarizing plate, and an image display device
TWI443365B (en) Method for producing optical film, optical film, polarizer and display
TWI498212B (en) Optical laminate and hardcoat film
TWI728150B (en) Optical laminate
TWI756760B (en) Anti-reflection film
WO2012157682A1 (en) Method for producing antireflection film, antireflection film, polarizing plate, and image display device
TW201229154A (en) Anti-reflective film, manufacturing method of anti-reflective film, polarization plate and image display device
WO2008020613A1 (en) Optical laminate, polarizing plate, and image display apparatus
TW201102416A (en) Highly adhesive polyester film for optical use
TW201211173A (en) Curable resin composition for hard coat layer, method for producing hard coat film, hard coat film, polarizer and display panel
TW201024813A (en) Optical sheet
JP2013141771A (en) Optical laminate and method for producing the same
JP2016075869A (en) Flexible display device
JP2008241882A (en) Coating agent and anti-reflection film
JP2014130298A (en) Transfer medium, polarizing plate, and image display device
JP2010195901A (en) Resin composition for hard coat, process of producing resin composition for hard coat, and substrate for anti-reflection coating
TWI375623B (en) Optical laminate and optical element
JP2012150226A (en) Antireflection film, method for manufacturing antireflection film and image display device
JPWO2015190536A1 (en) Optical reflective film and optical reflector
JP2019031255A (en) Protective film for front glass
JP2006096967A (en) Method for producing laminate film