TW201115800A - Method for manufacturing a LED chip bonding body - Google Patents

Method for manufacturing a LED chip bonding body Download PDF

Info

Publication number
TW201115800A
TW201115800A TW99123601A TW99123601A TW201115800A TW 201115800 A TW201115800 A TW 201115800A TW 99123601 A TW99123601 A TW 99123601A TW 99123601 A TW99123601 A TW 99123601A TW 201115800 A TW201115800 A TW 201115800A
Authority
TW
Taiwan
Prior art keywords
metal
led wafer
led
manufacturing
separator
Prior art date
Application number
TW99123601A
Other languages
Chinese (zh)
Other versions
TWI491082B (en
Inventor
Hideki Hirotsuru
Satoshi Higuma
Shinya Narita
Original Assignee
Denki Kagaku Kogyo Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo Kk filed Critical Denki Kagaku Kogyo Kk
Publication of TW201115800A publication Critical patent/TW201115800A/en
Application granted granted Critical
Publication of TWI491082B publication Critical patent/TWI491082B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/641Heat extraction or cooling elements characterized by the materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Led Device Packages (AREA)

Abstract

A method for manufacturing a LED chip bonding body is provided to dramatically improve a heat dissipation by arranging a heat separator under the LED chip. The method for manufacturing a LED chip bonding body is characterized that one or two or more LED chip(s) is arranged on a metal-impregnating ceramic substrate or a metal substrate having a thickness of 0.1-2 mm and a surface roughness (Ra) of 0.5 μ m or less, and then the metal-impregnating ceramic substrate or the metal substrate is cut into a size of 2-100 times of base area of the LED chip where the LED chip is present.

Description

201115800 六、發明說明: 【發明所屬之技術領域】 本發明係有關於LED晶片接合體之製造方法。 【先前技術】 LED係將順向電流流入半導體的pn接合便會發光的元 件,使用GaAs、GaN等III-V族半導體結晶來製造。近年 來,藉由半導體磊晶成長技術及發光元件製程技術的進 步,開發轉換效率優良的LED元件,廣泛用於各式各樣的 領域。 LED晶片係由使ΙΠ-V族半導體結晶裔晶成長在成長 基板上的p型層和η型層、及被兩者包夾的光活性層所構 成。一般而言,使III-V族半導體結晶磊晶成長在例如單 結晶藍寶石等成長基板上後,形成電極等而形成LED發光 元件。 但是,成長基板,例如單結晶藍寶石的熱傳導率爲 40W/mK左右,所以在III-V族半導體元件發生的熱不能充 分地散熱。尤其是,流入大電流的高輸出LED,元件溫度 會上升’會引起發光效率降低或元件壽命降低。爲了解決 這個問題’已提出:使III-V族半導體結晶磊晶成長在成 長基板上後,透過金屬層接合封裝基板(支持基板),之 後’除去成長基板的方法(專利文獻1 ),但是尙不能充 分滿足。即,封裝基板(支持基板)亦爲導電性,所以當 安裝時便不得不作成非絕緣構造。例如,當在電路基板等 的安裝基板進行焊料接合時,必須在接合部正下方配置樹 脂等之熱傳導率低的絕緣層,妨礙此絕緣層充分地散熱。 201115800 另一方面,對於可至少使由led晶片散熱所產生的妨 礙減輕的高輸出LED發光裝置,已提出有透過散熱板,例 如銅(Cu )板,將LED晶片安裝在電路基板等方法(專利 文獻2 )。但是,Cu的線膨脹係數爲約17χ1(Γ6/Κ,與LED 晶片的約5 X 1 〇 ·6/Κ差異大,所以使用中會在接合部發生龜 裂(crack )等而散熱特性降低。 [專利文獻1 ]特開2 0 0 6 - 1 2 8 7 1 0號公報 [專利文獻2]特表2008-544488號手冊 【發明內容】 本發明的目的,係有鑑於上述問題,提供一種已顯著 改善散熱性的LED晶片接合體之製造方法。 本發明之LED晶片接合體之製造方法,其特徵爲將一 個或二個以上的LED晶片裝配在板厚爲0.1〜2 mm、表面粗 糙度(Ra )爲0.5 μ m以下的金屬含浸陶瓷基板或金屬基板 後,將上述金屬含浸陶瓷基板或金屬基板切斷爲包含led 晶片、LED晶片底面積(即LED晶片與金屬含浸陶瓷基 板或金屬基板的接著面積)的2倍以上的大小。 在本發明中,較佳爲,具有選自(1)〜(5)之至少1 個實施態樣:(1 )金屬含浸陶瓷基板,係以熔湯锻造法使 銘或錦合金,或是以溶融含浸法使砂或砂合金,含浸於由 選自碳化砂、氮化鋁、氮化矽、鑽石及石墨之至少1種所 構成、氣孔率爲10〜50體積%之多孔體或粉末成形體者; (2)金屬基板,係選自銅(Cu)、鎳(Ni)、鉬(Mo)、 -4 · 201115800 鎢(W)、鈷(Co)及鐵(Fe)的金屬板' 包含上述金屬 成分之至少1種的合金板、或以選自上述金屬板及上述合 金板之2種以上所構成的積層板;(3 )金屬含浸陶瓷基板 或金屬基板,係在表面具有0.5〜20/zm厚度之選自Co、Pd、 Cu、Ag、Au、Pt及Sn之至少1種的金屬層;(4 ) LED晶 片,係輸出0 · 5 W以上的非絕緣構造;(5 )切斷,係利用 選自切片(dicing)、雷射加工、噴水(water jet)加工、 及放電加工之至少1個方法來進行:(6 )具有LED晶片 之金屬含浸陶瓷基板面或金屬基板面的LED晶片裝配面的 面積’係與LED晶片的接著面積的2倍〜100倍。 根據本發明’ LED晶片正下方的金屬含浸陶瓷基板或 金屬基板(以下稱它們爲「熱分離器」(heat separator )) 係導電性且高熱傳導性,而且與LED晶片的線熱膨脹係數 差小,所以能製造飛躍式地改善散熱性的L E D晶片接合 體。其結果’能提供散熱性、可靠性優良,亦能期待更高 輝度化、高輸出的LED封裝。 【實施方式】 [用於實施發明的形態] 根據本發明所製造的LED接合體,係將LED晶片直接 裝配在板厚爲0.1〜2mm(較佳爲0,1~0.5腦)、表面粗糙度 (Ra)爲0.5/zm以下(較佳爲〇_〇1〜0.2//111),而且面積 爲LED晶片底面積的2倍以上(較佳爲2〜1 00倍,特佳爲 2〜25倍)的熱分離器的構造,所以能有效率地將在LED晶 201115800 片發生的熱擴散至面方向’即使透過絕緣層安裝 板,也能確保充分的散熱特性。其結果,能減低 的點亮溫度,能實現LED更高輝度化。 若熱分離器的面積低於led晶片底面積的2 分離器的板厚低於〇 . 1圆’則不能將來自L E D晶 分地擴散至熱分離器,LED晶片的點亮溫度變高 面,若超過底面積的100倍,則LED晶片接合體 身變大而不佳。又,若板厚超過2 mm,則熱分离隹 抗變大。若熱分離器的表面粗糙度(Ra)超過〇. 會有與LED晶片的接著率降低等不良狀況產生之 表面粗糙度越小越好,但是加工費增大所以下限 0.0 1 从 m。 本說明書中之「接著率」,係指接著層面積 片底面積之比。接著率最好爲1,從散熱特性方 〇 . 5以上’特佳爲〇 . 8以上。接著率低於0.5,不能 晶片發生的熱充分地傳達至熱分離器,LED晶片 度變高。 由金屬含浸陶瓷基板所構成之熱分離器,較 湯鍛造法使鋁或鋁合金,較佳爲含鋁率爲80〜97 鋁-矽合金,以例如日本專利3 4 6 8 3 5 8號的方法含 率爲1〇~50體積%之無機多孔體或無機粉末成 又’較佳地,金屬含浸陶瓷基板,係溫度2 51:的 爲100〜600W/mK,較佳爲100〜3 00W/mK,又溫度 至電路基 L E D晶片 倍,或熱 片的熱充 〇 另一方 的構造本 器的熱阻 5 // m,則 .虞。雖然 値較佳爲 對LED晶 面較佳爲 將在L E D 的點亮溫 佳爲以熔 質量%的 浸於氣孔 形體者。 熱傳導率 2 5。(:〜1 5 0 201115800 °C的線膨脹係數爲3~12χ1(Γ6/Κ,較佳爲4〜9 導率與線膨脹係數,能藉由含浸金屬種、含 孔體或無機粉末成形體的材質來使其增減。 又’能使用取代上述熔湯锻造法而藉由 來使矽或矽合金,利用例如日本專利特開平 報的方法含浸至氣孔率爲10〜50體積%的無 機粉末成形體所製造者。 無機多孔體或無機粉末成形體的材質較 矽、氮化鋁、氮化矽、鑽石及石墨之無機成分 無機多孔體或無機粉末成形體中之無機成分 50〜90體積%,特佳爲65~80體積%,空隙 率)較佳爲10〜50體積%,特佳爲2〇〜35體 成分的比例低於5 0體積%,則金屬含浸陶瓷 脹係數會變得過大。另一方面,若超過90體 使金屬充分地含浸,而有熱傳導率變得過小 的調整,能藉由無機成分的粒度調整、成形 件等來進行。 無機粉末成形體,亦能只成形無機成分 能與例如氧化矽溶膠、氧化鋁溶膠等之無機 用而製造。就成形而言,可採用壓製成形、 一般的陶瓷粉末的成形方法。又,無機多孔 由將上述無機粉末成形體燒結處理來。 體及無機粉末成形體的形狀並無限制,可使 柱狀等。 xl(T6/K。熱傳 浸率、無機多 熔融含浸法, 5-32458 號公 機多孔體或無 佳爲選自碳化 的至少1種。 的比例較佳爲 的比例(氣孔 積%。若無機 基板的線熱膨 積%,則不能 之虞。氣孔率 壓力、燒結條 的粉末,或亦 結合劑一起使 鑄入成形等之 體,例如能藉 對於無機多孔 用平板狀、圓 201115800 通常,對從已含浸金屬之無機多孔體或無機粉末成形 體作成金屬含浸陶瓷基板,施加切斷加工及面加工。在已 含浸金屬的無機多孔體或無機粉末成形體的形狀爲圓柱狀 的情況,較佳爲藉由圓筒硏削盤等使用鑽石砥石來外形加 工爲既定尺寸後,利用多線鋸(multi-wiresaw)、內周圓 切斷機等切斷加工爲比最終形狀厚上〇 . i〜〇. 5哪程度的板 厚。雖然不限定切斷方法,但是切斷費少、適合量產性的 多線鋸是合適的。在多線鋸切斷方面,可使用已附著游離 砥粒型及鑽石等硏削材的線(wire )。在面加工方面,使 用兩面硏削盤、旋轉硏削盤、平面硏削盤、硏磨盤(lap disk) 等之加工機,予以加工成板厚爲0.1〜2酬,表面粗糙度(Ra) 爲〇 . 5 /2 m以下。 已含浸金屬的無機多孔體或無機粉末成形體的形狀爲 板狀的情況,使用兩面硏削盤、旋轉硏削盤、平面硏削盤、 硏磨盤等之加工機,進行面加工而成爲板厚爲0.1〜2麵, 表面粗糙度(Ra )爲0.5 /z m以下,接著,利用噴水加工機、 放電加工機、雷射加工機、切片機(dicingmachine)、圓 筒硏削盤等來進行外周加工而成爲既定形狀。在此情況, 亦可先進行外周加工再進行面加工。 另一方面,由金屬基板所構成之熱分離器,較佳爲由 以下所構成:選自銅(Cu )、鎳(Ni )、鉬(Mo )、鎢(W )、 鈷(Co)及鐵(Fe)的金屬板、包含上述金屬成分之至少 1種的合金板、或以選自上述金屬板及上述合金板之至少2 種所構成的積層板。其形狀,可使用平板狀、圓柱狀等。 -8 - 201115800 在金屬含浸陶瓷基板或金屬基板之任一種熱分離器 中,較佳爲均在其表面,具有由選自Ni、Co、Pd、Cu、Ag、 Au、Pt及Sn之至少1種金屬所構成,特佳爲由Ni或Au 所構成之厚度爲0.5~20//m的金屬層。特佳爲金屬層的厚 度爲2〜10//Π1。藉此,LED晶片的接著率提高。若金屬層 的厚度低於0.5 // m,則接著率的提高效果小,若超過2 0 V m ’則有發生因金屬層與熱分離器的熱膨脹差所造成的剝 離之虞。金屬層,能在將熱分離器洗淨之後,藉由施加利 用上述金屬種的無電解電鍍或電解電鍍來使其形成。又, 亦能利用金屬蒸鍍法或金屬披覆法使來其形成。 在本說明書中「LED晶片」係指由LED元件(由ΙΠ-V 族半導體結晶所構成)及支持基板所構成之構造體。作爲 LED元件,係使用發出紫外~藍色波長區域的光之III-V族 半導體結晶’具體而言爲InGaN、AlGaAs、AlGalnP等。 支持基板係指(A )當磊晶成長ΙΙΙ-V族半導體結晶時所使 用的成長基板,或(B )在使111 - V族半導體結晶磊晶成長 在單結晶成長基板上後,透過金屬層而接合高熱傳導性基 板,之後’除去單結晶成長基板之高熱傳導性基板。例示 它們的話,則爲藍寶石、碳化矽、矽、Cu/W、Cu/Μο等。 它們之中,在要求0.5W以上的輸出的LED晶片方面,考 量熱傳導率,可使用屬於上述(B )的支持基板,使LED 晶片成爲非絕緣構造。非絕緣構造led晶片的優點爲可以 狹小的面積獲得高輝度。 201115800 LED晶片及熱分離器的裝配,可使用硬焊(brazing)、 軟焊(soldering)、或高熱傳導接著劑來進行。較佳爲軟 焊或硬焊。作爲焊料,可使用乳油焊料(cream solder )、 共晶焊料、無鉛焊料等。硬焊,較佳爲利用LED晶片背面 的共晶金屬層的硬焊法,藉此能將接合層的厚度減薄爲〗〜5 # m。又’ 「高熱傳導性接著劑」係指熱傳導率爲1 〇W/mK 以上的接著劑,能舉出例如Ag膏、高熱傳導矽酮接著劑、 Ag系導電性接著劑等。接著層(裝配層)的厚度較佳爲〇 . i 画以下,特佳爲0_05 mm以下。若接著層的厚度超過o.i mm, 則熱阻抗變大。又,在本說明書中,「裝配」係指將L E D 晶片與熱分離器接著的意思’在與接合等同等槪念下使用。 在本發明’裝配在熱分離器的LED晶片的個數,在熱 分離器的面積爲LED晶片底面積的2倍以上的範圍,只要 是不會對各個LED晶片的安裝、散熱造成妨礙的配置的 話,對於個數便無限制。因此,也能作成將二個以上LED 晶片裝配在1個熱分離器的L E D晶片接合體。搭載二個以 上LED晶片的優點爲能減少在安裝製程的工作量。 接下來’已裝配LED晶片的熱分離器,係將熱分離器 的面積切斷成L E D晶片底面積的2倍以上的範圍。以這樣 的面積比進行切斷的理由已上述。 如本發明般’將一個或二個以上L E D晶片裝配在熱分 離器再進行切斷的方法的優點,係當裝配LED晶片時之裝 配面的清淨度不會被氧化層等污染,因此不須酸處理等之 -10- 201115800 洗淨處理’又能夠位置精度良好地將L E D晶片配置 離器,所以能大量減少切斷及安裝時的不良情形等 一般而言’切斷或安裝係以自動機來進行,但若位 差’則難以自動機對應,而必須另外以手動進行對 過只要依照本發明便不須如此。但是,在本發明中 進一步提高位置精度,並不排除除了自動機以外, 治具來確保LED晶片的位置精度、將焊料阻劑塗布 離器基板等之處置。 熱分離器的切斷,能利用切片、雷射加工、噴 及放電加工來進行。從加工精度及加工速度來看, 雷射加工最適合。 [實施例] 以下,引用適宜圖式,藉由實施例詳細說明本 但本發明並不受它們限制。 實施例1 <使用無機多孔體的熱分離器A、B> 秤取1800g碳化矽粉末A (市售品:平均粒徑 m ) 、900g碳化矽粉末B (市售品:平均粒徑20/j 3 0 0 g碳化矽粉末C (市售品··平均粒徑2 μ m ) ' . 成形結合劑(甲基纖維素’信越化學工業社製 「Μ Ε Τ Ο L Ο S E」),以攪拌混合機混合3 0分鐘。以面壓 將它壓製成形,然後以壓力1 00MPa進行CIP成形 圓柱狀成形體(直徑5 5 mm X高度1 1 〇 mm )後’在大 在熱分 〇即, 置精度 位,不 ,爲了 還利用 至熱分 水加工 切片及 發明, 200 ^ ^ m )、 及 1 5 0 g 商品名 1 OMPa 而製造 氣環境 -11 - 201115800 中,以溫度6 0 進行2小時脫脂處理後,在氬氣環複 以溫度2 1 00 °C進行2小時燒成。利用加工中心(mach center )、使用鑽石製的砥石,來將所製得之燒結體加 外形尺寸爲直徑52 irnnx高度100 mm而製造無機多孔體 孔率20 % )。將氮化硼的脫模劑塗布至所製得之無機 體,再插入筒狀石墨治具(外尺寸:70mmx7〇mmxl〇〇 內尺寸··直徑52.5 mmx高度100 mm)而作成構造體。 包夾由已塗布石墨脫模材的不鏽鋼板所構成之脫 (7 0 mm X 1 0 0 mm X 0 · 8 mm )組裝 4 個上述構造體(14 0 ·! 1 4 0 · 8 mm X 1 0 0 mm ),將鐵板(厚度1 2 mm )配置在兩側 8根螺絲連結而作成一個積層體。在以電氣爐將此積 預備加熱至溫度700 °C後,收在已預先加熱的壓製模型 徑400 mm X高度300 mm)內,注入含有12質量%矽及 量%鎂的鋁合金熔湯(溫度8 0 0 °C ),以1 〇 0 Μ P a的壓 壓2 5分鐘而使鋁合金含浸。冷卻至室溫後,利用濕式 (band saw )沿著脫模板的形狀切斷而剝離脫模板, 盤除去石墨治具部分而製造4個金屬含浸陶瓷材料( 5 2 mm X高度1 0 0 _)。將它以5 3 0 °C的溫度進行3小時 處理而除去含浸時的應變。 利用硏削加工,從所製得的金屬含浸陶瓷材料切 膨脹係數測定用試驗體(直徑3 mm長度1 0 mm )及熱傳 測定用試驗體(2 5 nun X 2 5 mm X1 mm ),以熱膨脹計(: 電子工業社製;TM A 3 0 0 )測定溫度2 5 °C〜1 5 〇t之線 ξ下, i n i n g 工成 (氣 多孔 圓, 模板 ? mm X ,以 層體 ί (內 1質 力加 帶鋸 以轉 直徑 退火 出線 導率 seiko 膨脹 -12- 201115800 係數,以雷射閃光法(u 1 V a C社製;T C 3 0 0 0 )測定在溫度 25 °C之熱傳導率。其結果,線膨脹係數爲5.0x10 —6/Κ ’熱 傳導率爲250W/mK。 接下來,將金屬含浸陶瓷材料,以圓筒硏削盤、使用 鑽石砥石,進行外周加工而成爲直徑5 0.8 mm X高度1 〇〇 的圓柱形狀,再以多線鋸、使用鑽石砥粒,以切入速度〇 ·2 mm / m i η,切斷加工成圓板狀(板厚0 · 3 mm ),進一步以兩 面硏削盤、使用#600的鑽石砥石,硏削加工成板厚0.22 mm。之後,以硏磨盤、使用鑽石胝粒,硏磨加工至板厚〇. 2 麵爲止,再於純水中、接下來於異丙醇中進行超音波洗淨, 乾燥,製造由金屬含浸陶瓷基板所構成之熱分離器A。其 表面粗糙度(Ra)爲0.05 // m。 在熱分離器A,進行無電解鍍Ni-P及電鍍Au,形成 (Ni-P: 4"m+Au: 1/zm)的鍍覆層(5^111 厚)。其表 面粗糙度(Ra)爲O.lym。接下來’在已施加此鍍覆層之 熱分離器的單面,以網版印刷機塗布市售之紫外線硬化型 的防焊阻劑後,使其紫外線硬化而以4 mm間隔形成阻劑層 (15//m厚)作爲熱分離器B。 <使用無機粉末成形體之熱分離器a、b> 秤取3 52g碳化矽粉末A、1 76g碳化矽粉末B、59g碳 化矽粉末C,以攪拌混合機混合3 0分鐘。將它塡充至筒狀 石墨治具(外尺寸·· 7 0 mm X 7 Ο ππη X 1 1 〇 mm,內尺寸:直徑5 5 mm X高度1 1 0酬),以面壓1 〇 Μ P a進行壓製成形而製造無 -13- 201115800 機粉末成形體(直徑5 5咖x高度1〗〇画的圓柱體,氣孔率 30%)。接下來’除了取代在上述熱分離器Α之製造中組 裝4個構造體’而組裝4個在此所製造之連著筒狀石墨治 具的無機粉末成形體以外,同樣地進行而製造金屬含浸陶 瓷材料(溫度25°C〜1 50。(:的線膨脹係數:6.0x1 0·6/Κ,在 25°C的熱傳導率:220W/mK ),將其加工而製造熱分離器 a、及在熱分離器a施加鍍覆層及阻劑層而製造熱分離器b。 <利用熱分離器A、B、a或b的LED晶片接合體> 如第1圖所示,對各個上述所製造之4種(A、B、a、 b )熱分離器1,使用定位治具將1 2 0個輸出3 W的LED晶 片(Cree 社製:EZlOOO/lmmxlmmxO.lmm) 4 以 4.0mm 間隔 接著至熱分離器1上。接著,在A、a之熱分離器方面係使 用尚熱傳導接著劑(Kyocera Chemical社製:CT284R Ag 膏系)來進行,在B、b之熱分離器方面係在阻劑層3之間 利用乳油焊料的接著層5來進行(參照第1圖的製程2 )。 之後,利用切片裝置(Disco社製:DAD 3 3 5 0 ),利用刃寬 0.1 mm之樹脂結合型(resin bond type)的鑽石刀 (R07-SD400 ),以輸送速度8 mm/s,切斷加工成3·9πιπιχ 3.9 mm的形狀,在純水中進行超音波洗淨,乾燥而製造1 20 個LED晶片接合體6 (參照第1圖的製程3 )。製得之LED 晶片接合體的LED晶片的裝配面面積,皆爲LED晶片底面 積的1 5.2倍。 -14 - 201115800 <LED晶片接合體的散熱特性> 藉由利用乳油焊料及金線之打線(w i r e b ο n d i n g )來將 LED晶片接合體安裝至金屬鋁基底之電路基板(20 mm x20 mm x 1 . 5 mm ),將它夾著矽酮橡膠製兩面黏著的市售散熱片 (熱傳導率2 W/m K )而接著至鋁製的散熱扇(熱阻抗:5.2 °C/W,尺寸:50mmx50_xl7miii)。對LED晶片施加使輸 出成爲 3W的電壓,利用紅外線溫度記錄器(infrared thermograph)測定LED晶片的上面溫度。其結果’使用熱 分離器A、熱分離器B、熱分離器a、熱分離器b所製造之 LED晶片接合體之LED晶片的上面溫度,以5個平均値 計,分別爲 69°C、60X:、70°C、61°C。 比較例1 在使用熱分離器B的實施例〗的LED晶片接合體中’ 不製作LED晶片接合體而將LED晶片直接使用乳油焊料安 裝至電路基板,LED晶片的上面溫度爲105 °C ° 實施例2〜4比較例2、3 除了改變多線鋸加工時的切斷寬度’製造板厚不同的 熱分離器,及將乳油焊料的接著層5變更爲硬焊材(Au/Sn = 80/20(質量比))的接著層5以外,與貫施例1之熱分 離器B的情況同樣地進行而製造LED晶片接合體’測定 LED晶片的上面溫度。將它們的結果顯示於表1。 -15- 201115800 實施例S〜7比較例4 除了改變硏磨盤加工時之鑽石砥粒的粒度,製造表面 粗縫度不同的熱分離器,及將乳油焊料的接著層5變更爲 硬焊材(Au/Sn= 8 0/2 0 (質量比))的接著層5以外,與 實施例1之熱分離器B的情況同樣地進行而製造LED晶片 接合體’測定LED晶片的上面溫度。將它們的結果顯示於 表1。 實施例8〜1 〇比較例5 除了將乳油焊料的接著層5變更爲硬焊材(Au/S η = 8 0/2 0 (質量比))的接著層5,及如表1般改變利用切片 裝置之切斷加工時的間隔,製造熱分離器之面積對LED晶 片之底面積的比率不同的熱分離器以外,與實施例1之熱 分離器B的情況同樣地進行而製造LED晶片接合體,測定 LED晶片的上面溫度。將它們的結果顯示於表1。 -16- 201115800 【I嗽一 画 - 北^ g SI Ό 2 σ\ CN 00 in in 00 o s m Ι$Π2 <n Q 逝曰 p ^ W S 3.9x3.9 3.9x3.9 3.9x3.9 3.9x3.9 3.9x3.9 3.9x3.9 1 1·5χ1·5 5x5 10x10 3·9χ3·9 3·9χ3.9 3.9x3.9 r—^ X LED晶片的間隔 (mm) .. i On rn On (r{ 〇\ r〇 〇\ rn ON to ON 10.1 〇\ ON cn On rn Μ ^ Ϊ 起攀s — S5 Φ S [0 0 = g - 15 1 15.2 1 15.2 , Ί 15.2 | 1 15.2 15.2 15.2 2.25 in (N 〇 11 H 15.2 15.2 15.2 表面粗糙度 (Ra) (^m) 0.05 0.05 0.05 0.01 <N d IT) 〇 〇 r—^ o 0.05 0.05 iN 板厚 (mm) r-H CM CN 〇 (N d CM 〇 (N d (N d (N 〇 1 0.08 m CN <N 〇 CsJ d 實施例2 實施例3 實施例4 實施例5 實施例6 實施例7 實施例8 實施例9 實施例10 比較例2 比較例3 比較例4 比較例5 201115800 實施例1 1〜1 5 除了取代(Ni-P: 々ym+Au: l//m)之鍍覆層(5#m 厚)’而使表2所示之金屬種及金屬層厚度的鍍覆層形成 以外,與實施例1之熱分離器B的情況同樣地進行而製造 L E D晶片接合體,測定L E D晶片的上面溫度。將它們的結 果顯示於表2。 [表2] 金屬種 金屬層厚度 (β """---—__| LED晶片的 上面溫度 (t ) 實施例 11 C u 5 60 實施例 12 Pt 2 60 實施例 13 Co + Au 3+1 6 1 實施例 14 S η + Au 3+1 6 1 實施例 15 Ag + Au 3+1 63 實施例1 6〜2 2 比較例6〜8 <利用由金屬基板所構成之熱分離器C、D之LED晶片接合體> 準備各種由如下之金屬基板所構成的熱分離器c’該 金屬基板係形狀爲直徑50.8咖xlO細1 '温度25 °C〜150 °C之 線膨脹係數爲6.5χ10·6/Κ、在溫度25°C之熱傳導率爲 160W/mK之如表3般變更由銅-鎢(Cu/W)所構成之金屬 板之板厚及表面粗糙度。除了使用這些熱分離器c以外, 與實施例1之熱分離器B的情況同樣地進行而製造L E D晶 片接合體。將LED晶片的上面溫度的測定結果顯示在表3。 -18- 201115800 實施例23〜2 5 除了如表3般改變熱分離器 W爺c之LED晶片接合後之利 用切片裝置之切斷加工時的間隔,製造熱分離器之面積對 led晶片之底面積的比率不同的熱分離器以外’與實施例 1 6同樣地進行而製造led晶片接合體’測定LED晶片的 上面溫度。將它們的結果顯示於表3。201115800 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a method of manufacturing an LED wafer bonded body. [Prior Art] An LED is a device that emits light by flowing a forward current into a pn junction of a semiconductor, and is fabricated using a III-V semiconductor crystal such as GaAs or GaN. In recent years, LED chip elements with excellent conversion efficiency have been developed through the advancement of semiconductor epitaxial growth technology and light-emitting device process technology, and are widely used in various fields. The LED chip is composed of a p-type layer and an n-type layer which grow a bismuth-V semiconductor crystal crystal on a growth substrate, and a photoactive layer sandwiched by both. In general, after the III-V semiconductor crystal is epitaxially grown on a growth substrate such as monocrystalline sapphire, an electrode or the like is formed to form an LED light-emitting element. However, since the growth substrate, for example, single crystal sapphire has a thermal conductivity of about 40 W/mK, heat generated in the III-V semiconductor element cannot be sufficiently dissipated. In particular, a high-output LED that flows in a large current causes the component temperature to rise, which may cause a decrease in luminous efficiency or a decrease in device life. In order to solve this problem, a method has been proposed in which a crystal of a III-V semiconductor is epitaxially grown on a growth substrate, and then a package substrate (a support substrate) is bonded through a metal layer, and then a method of removing the growth substrate is obtained (Patent Document 1). Not fully satisfied. That is, since the package substrate (support substrate) is also electrically conductive, it is necessary to form a non-insulating structure when it is mounted. For example, when soldering is performed on a mounting substrate such as a circuit board, it is necessary to dispose an insulating layer having a low thermal conductivity such as a resin directly under the joint portion, thereby preventing the insulating layer from sufficiently dissipating heat. 201115800 On the other hand, a high-output LED light-emitting device capable of at least reducing the hindrance caused by heat dissipation of a led wafer has been proposed to mount a LED chip on a circuit board through a heat dissipation plate such as a copper (Cu) plate (patent Literature 2). However, Cu has a coefficient of linear expansion of about 17 χ 1 (Γ6/Κ, which is different from about 5 X 1 〇·6/Κ of the LED wafer. Therefore, cracks occur in the joint portion during use, and heat dissipation characteristics are lowered. [Patent Document 1] Japanese Laid-Open Patent Publication No. JP-A No. 2008-544488 [Patent Document 2] The present invention has an object of providing the above-mentioned problems in view of the above problems. A method of manufacturing an LED wafer bonded body in which heat dissipation is remarkably improved. A method of manufacturing an LED wafer bonded body according to the present invention is characterized in that one or two or more LED chips are mounted on a sheet thickness of 0.1 to 2 mm and surface roughness ( Ra) a metal substrate or a metal substrate impregnated with a metal of 0.5 μm or less, and then cutting the metal-impregnated ceramic substrate or the metal substrate into a semiconductor wafer or a metal wafer substrate (ie, an LED wafer and a metal-impregnated ceramic substrate or a metal substrate) In the present invention, it is preferable to have at least one embodiment selected from the group consisting of (1) to (5): (1) a metal impregnated ceramic substrate, which is forged by molten soup. Law or Ming alloy, or The melt or sand alloy is impregnated with a porous body or a powder molded body composed of at least one selected from the group consisting of carbonized sand, aluminum nitride, tantalum nitride, diamond, and graphite, and having a porosity of 10 to 50% by volume. (2) a metal substrate selected from the group consisting of copper (Cu), nickel (Ni), molybdenum (Mo), -4 · 201115800 tungsten (W), cobalt (Co), and iron (Fe) An alloy plate of at least one metal component or a laminated plate composed of two or more selected from the above metal plate and the alloy plate; (3) a metal impregnated ceramic substrate or a metal substrate having a surface of 0.5 to 20/ a metal layer selected from at least one of Co, Pd, Cu, Ag, Au, Pt, and Sn having a thickness of zm; (4) an LED wafer outputting a non-insulated structure of 0 · 5 W or more; (5) cutting, The method is carried out by at least one method selected from the group consisting of dicing, laser processing, water jet processing, and electric discharge machining: (6) LED wafer with metal wafer impregnated ceramic substrate surface or metal substrate surface of LED chip The area of the mounting surface is 2 to 100 times the area of the LED wafer. According to the present invention, the 'LED chip The underlying metal impregnated ceramic substrate or metal substrate (hereinafter referred to as "heat separator") is electrically conductive and highly thermally conductive, and has a small difference in thermal expansion coefficient from the LED wafer, so that it can be manufactured in a dramatic manner. The heat-dissipating LED wafer bonded body has the advantage of providing heat dissipation and reliability, and is also expected to have a higher brightness and high output LED package. [Embodiment] [A mode for carrying out the invention] According to the present invention The LED assembly is manufactured by directly mounting the LED wafer to a thickness of 0.1 to 2 mm (preferably 0, 1 to 0.5 brain) and a surface roughness (Ra) of 0.5 / zm or less (preferably 〇_〇1). ~0.2//111), and the area of the thermal separator of the LED wafer bottom area is more than twice (preferably 2 to 100 times, particularly preferably 2 to 25 times), so it can be efficiently The heat generated by the LED crystal 201115800 sheet spreads to the plane direction. Even if it is transmitted through the insulating layer mounting board, sufficient heat dissipation characteristics can be ensured. As a result, the LED can be further brightened by reducing the lighting temperature. If the area of the separator of the thermal separator is lower than the area of the bottom of the LED wafer, the thickness of the separator is lower than 〇. 1 circle', the crystal from the LED can not be diffused to the thermal separator, and the lighting temperature of the LED wafer becomes high. If it exceeds 100 times of the bottom area, the LED wafer bonded body body becomes large and poor. Further, if the sheet thickness exceeds 2 mm, the thermal separation 隹 becomes large. If the surface roughness (Ra) of the thermal separator exceeds 〇, the surface roughness due to the deterioration of the adhesion rate of the LED wafer may be as small as possible, but the processing cost is increased, so the lower limit is 0.0 1 from m. The "adhesion rate" in this specification refers to the ratio of the area of the back layer area to the bottom area. The rate is preferably 1 and the heat dissipation characteristic is . 5 or more. When the rate is lower than 0.5, the heat generated by the wafer cannot be sufficiently transmitted to the thermal separator, and the degree of the LED wafer becomes high. A hot separator composed of a metal impregnated ceramic substrate, which is made of aluminum or an aluminum alloy, preferably having an aluminum content of 80 to 97 aluminum-niobium alloy, for example, Japanese Patent No. 3 4 6 8 3 8 8 The method comprises the inorganic porous body or the inorganic powder having a content of from 1% to 50% by volume, and preferably, the metal-impregnated ceramic substrate is at a temperature of 2 to 51: 100 to 600 W/mK, preferably 100 to 30,000 W/ mK, the temperature is up to the circuit-based LED wafer times, or the heat of the hot sheet is charged to the other side of the structure of the thermal resistance of 5 / m, then. It is preferable that the iridium is preferably immersed in the pore shape of the LED crystal surface at a temperature of L E D which is preferably a melting mass %. Thermal conductivity 2 5 . (:~1 5 0 201115800 °C has a coefficient of linear expansion of 3~12χ1 (Γ6/Κ, preferably 4~9 conductivity and coefficient of linear expansion, which can be impregnated with metal species, pore-containing or inorganic powder shaped bodies) In order to increase or decrease the material, it is also possible to use an inorganic powder which is impregnated with a porosity of 10 to 50% by volume by a method such as Japanese Patent Laid-Open Publication No. The material of the inorganic porous body or the inorganic powder molded body is 50 to 90% by volume based on the inorganic component of the inorganic component inorganic porous body or the inorganic powder molded body of cerium, aluminum nitride, tantalum nitride, diamond, and graphite. Particularly, it is preferably 65 to 80% by volume, the void ratio is preferably 10 to 50% by volume, and particularly preferably the ratio of the body composition of 2 to 35 is less than 50% by volume, and the metal impregnated ceramic expansion coefficient becomes excessive. On the other hand, if more than 90% of the metal is sufficiently impregnated, the thermal conductivity is too small, and it can be adjusted by the particle size adjustment of the inorganic component, the molded article, etc. The inorganic powder molded body can also form only the inorganic component. Can be dissolved with, for example, cerium oxide It can be produced by inorganic use such as a gel or an alumina sol. In terms of molding, a press molding method or a general ceramic powder molding method can be employed. Further, the inorganic porous body is formed by sintering the inorganic powder molded body. The shape of the body is not limited, and it may be a columnar shape, etc. xl (T6/K. Heat transfer rate, inorganic multi-melt impregnation method, No. 5-32458 public machine porous body or none of them is at least one selected from carbonization. The ratio is preferably a ratio (% porosity). If the linear thermal expansion of the inorganic substrate is %, it cannot be used. The porosity of the porosity, the powder of the sintered strand, or the body together with the bonding agent, for example, is molded into a body, for example, In the case of the inorganic porous body or the inorganic powder molded body, a metal impregnated ceramic substrate is used as a metal-impregnated ceramic substrate, and a cutting process and a surface process are applied. In the case where the shape of the inorganic powder molded body is a columnar shape, it is preferable to use a multi-wire saw (multi-line saw) by using a diamond boring stone or the like to shape the outer shape into a predetermined size. -wiresaw), the inner circumference cutting machine, etc. are cut to a thickness greater than the final shape. i~〇. 5 to the extent of the thickness. Although the cutting method is not limited, the cutting cost is small and the mass production is suitable. A multi-wire saw is suitable. For the cutting of a multi-wire saw, a wire with a 砥 砥 及 及 及 及 及 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 Machines such as discs, flat boring discs, and lap disks are processed to a thickness of 0.1 to 2, and the surface roughness (Ra) is 〇. 5 /2 m or less. When the shape of the body or inorganic powder molded body is a plate shape, a processing machine such as a double-faced boring disk, a rotary boring disk, a flat boring disk, or a honing disk is used to perform surface processing to have a thickness of 0.1 to 2, The surface roughness (Ra) is 0.5 / zm or less, and then it is subjected to peripheral processing by a water jet machine, an electric discharge machine, a laser processing machine, a dicing machine, a cylindrical boring disk, or the like to have a predetermined shape. In this case, it is also possible to perform peripheral processing and then surface processing. On the other hand, a thermal separator composed of a metal substrate is preferably composed of copper (Cu), nickel (Ni), molybdenum (Mo), tungsten (W), cobalt (Co), and iron. A metal plate of (Fe), an alloy plate containing at least one of the above-described metal components, or a laminated plate comprising at least two selected from the above-mentioned metal plate and the above-mentioned alloy plate. The shape may be a flat shape, a cylindrical shape or the like. -8 - 201115800 In any one of a metal impregnated ceramic substrate or a metal substrate, preferably on the surface thereof, having at least 1 selected from the group consisting of Ni, Co, Pd, Cu, Ag, Au, Pt, and Sn It is preferably composed of a metal layer, and is preferably a metal layer made of Ni or Au and having a thickness of 0.5 to 20/m. Particularly preferred is a metal layer having a thickness of 2 to 10//Π1. Thereby, the adhesion rate of the LED wafer is improved. If the thickness of the metal layer is less than 0.5 // m, the effect of improving the adhesion rate is small, and if it exceeds 20 V m ', peeling due to the difference in thermal expansion between the metal layer and the thermal separator occurs. The metal layer can be formed by applying electroless plating or electrolytic plating using the above metal species after washing the hot separator. Further, it can also be formed by metal vapor deposition or metal coating. In the present specification, "LED wafer" means a structure composed of an LED element (consisting of a ΙΠ-V semiconductor crystal) and a support substrate. As the LED element, a group III-V semiconductor crystal which emits light in a wavelength range of ultraviolet to blue is used, specifically, InGaN, AlGaAs, AlGalnP or the like. The support substrate refers to (A) a growth substrate used when epitaxial growth of ΙΙΙ-V semiconductor crystals, or (B) transmission of a metal layer after epitaxial growth of a 111-V semiconductor crystal on a single crystal growth substrate The high thermal conductivity substrate is bonded, and then the high thermal conductivity substrate of the single crystal growth substrate is removed. If they are exemplified, they are sapphire, tantalum carbide, niobium, Cu/W, Cu/Μο, and the like. Among them, in the case of an LED chip requiring an output of 0.5 W or more, the thermal conductivity is considered, and the support substrate belonging to the above (B) can be used to make the LED wafer a non-insulated structure. The advantage of the non-insulated structured led wafer is that high luminance can be obtained in a small area. The assembly of the 201115800 LED wafer and thermal separator can be performed using brazing, soldering, or high thermal conductivity adhesives. Preferably, it is soldered or brazed. As the solder, cream solder, eutectic solder, lead-free solder, or the like can be used. The brazing is preferably a brazing method using a eutectic metal layer on the back surface of the LED wafer, whereby the thickness of the bonding layer can be reduced to 〜5 5 m. Further, the "high thermal conductivity adhesive" refers to an adhesive having a thermal conductivity of 1 〇W/mK or more, and examples thereof include an Ag paste, a high heat conductive fluorene ketone adhesive, and an Ag conductive adhesive. The thickness of the layer (assembly layer) is preferably 〇. i is drawn below, particularly preferably 0_05 mm or less. If the thickness of the adhesive layer exceeds o.i mm, the thermal resistance becomes large. In addition, in the present specification, "assembly" means that the meaning of the L E D wafer and the thermal separator is the same as that of the joint. In the present invention, the number of LED chips to be mounted in the thermal separator is such that the area of the thermal separator is twice or more the area of the bottom surface of the LED wafer, as long as it does not interfere with the mounting and heat dissipation of the respective LED chips. If there is no limit to the number. Therefore, it is also possible to form an L E D wafer bonded body in which two or more LED chips are mounted in one thermal separator. The advantage of carrying more than two LED chips is to reduce the amount of work required in the installation process. Next, the thermal separator in which the LED chip is mounted cuts the area of the thermal separator into a range of twice or more the area of the bottom surface of the L E D wafer. The reason for cutting at such an area ratio has been described above. The advantage of the method of assembling one or more LED chips in a thermal separator and then cutting as in the present invention is that the cleanness of the mounting surface when assembling the LED wafer is not contaminated by an oxide layer or the like, and therefore - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - To proceed, but if the difference is 'it' is difficult to automate the machine, but must be manually performed separately as long as it is not necessary in accordance with the present invention. However, in the present invention, the positional accuracy is further improved, and it is not excluded that the jig is used to ensure the positional accuracy of the LED wafer and the treatment of the solder resist coated substrate or the like in addition to the automaton. The cutting of the heat separator can be performed by slicing, laser processing, spraying, and electric discharge machining. From the perspective of machining accuracy and processing speed, laser processing is most suitable. [Examples] Hereinafter, the present invention will be described in detail by way of examples, with reference to the accompanying drawings. Example 1 <Heat separators A and B using inorganic porous bodies 1800 g of cerium carbide powder A (commercial product: average particle diameter m) and 900 g of cerium carbide powder B (commercial product: average particle diameter 20/) were weighed. j 3 0 0 g 碳 碳 powder C (commercial product · average particle size 2 μ m ) ' . Forming binder (methyl cellulose 'Shin-Etsu Chemical Co., Ltd. Μ Τ Ο Ο L Ο SE') The mixture was mixed for 30 minutes by agitating the mixer, and it was press-formed by the surface pressure, and then CIP-formed cylindrical shaped body (diameter 5 5 mm X height 1 1 〇mm) was pressed at a pressure of 100 MPa. Set the precision position, no, in order to use the hot water splitting slice and invention, 200 ^ ^ m ), and 1 50 0 g trade name 1 OMPa to produce the gas environment -11 - 201115800, for 2 hours at a temperature of 6 0 After the degreasing treatment, the mixture was fired at an argon gas ring at a temperature of 2 1 00 ° C for 2 hours. The sintered body obtained by using a mach center and a diamond made of a diamond has a diameter of 52 irnnx and a height of 100 mm to produce an inorganic porous body having a porosity of 20%. A release agent of boron nitride was applied to the obtained inorganic body, and a tubular graphite jig (outer size: 70 mm x 7 mmxl 〇〇 inner size · diameter 52.5 mm x height 100 mm) was inserted to prepare a structure. The above-mentioned structure (14 0 ·! 1 4 0 · 8 mm X 1) is assembled by a strip (70 mm X 1 0 0 mm X 0 · 8 mm) composed of a stainless steel plate coated with a graphite release material. 0 0 mm ), an iron plate (thickness 12 mm) is placed on the two sides of the eight screws to form a laminated body. After preheating this product to a temperature of 700 ° C in an electric furnace, it was placed in a preheated pressed mold diameter of 400 mm X and a height of 300 mm), and an aluminum alloy melt containing 12% by mass of niobium and a quantity of magnesium was injected. The temperature was 80 ° C), and the aluminum alloy was impregnated with a pressure of 1 〇0 Μ P a for 5 minutes. After cooling to room temperature, the strip template was cut along the shape of the stripper to peel off the template, and the graphite fixture was removed from the disk to produce four metal impregnated ceramic materials (5 2 mm X height 1 0 0 _ ). This was treated at a temperature of 530 ° C for 3 hours to remove the strain at the time of impregnation. The test body (diameter 3 mm length 10 mm) and the heat transfer measurement test body (2 5 nun X 2 5 mm X1 mm) for measuring the coefficient of expansion of the metal impregnated ceramic material obtained by boring processing were used. Thermal dilatometer (: Electronics Industry Co., Ltd.; TM A 3 0 0) Measure the temperature of 2 5 °C ~ 1 5 〇t line under the armpit, ining work (gas porous circle, template? mm X, with layer ί (inside 1Quality plus band saw is used to determine the heat conduction at a temperature of 25 °C by the diameter of the rotating wire, the seiko expansion -12-201115800 coefficient, and the laser flash method (manufactured by u 1 V a C; TC 3 0 0 0) As a result, the coefficient of linear expansion is 5.0x10 - 6 / Κ 'The thermal conductivity is 250 W / mK. Next, the metal is impregnated with a ceramic material, and the cylindrical boring disk is used, and the diamond is used for peripheral processing to become a diameter of 5 0.8 mm X height 1 圆柱 cylindrical shape, and then using a multi-wire saw, using diamond granules, cutting speed 〇 2 mm / mi η, cutting into a circular plate (plate thickness 0 · 3 mm), further The enamel is cut on both sides and the #600 diamond vermiculite is used for boring to a thickness of 0.22 mm. Dish, use diamond granules, honing and processing to thickness 〇. 2 surfaces, then in pure water, followed by ultrasonic cleaning in isopropanol, drying, to create heat composed of metal impregnated ceramic substrate Separator A. Its surface roughness (Ra) is 0.05 // m. In the hot separator A, electroless Ni-P plating and Au plating are performed to form (Ni-P: 4"m+Au: 1/zm) The plating layer (5^111 thick) has a surface roughness (Ra) of O.lym. Next 'on one side of the hot separator to which this plating layer has been applied, it is commercially available as a screen printing machine. After the ultraviolet curing type solder resist is cured, the ultraviolet ray is cured to form a resist layer (15//m thick) at a spacing of 4 mm as the thermal separator B. <The thermal separator a, b> using the inorganic powder molded body Weigh 3 52g of cerium carbide powder A, 1 76g of cerium carbide powder B, 59g of cerium carbide powder C, and mix it for 30 minutes with a stirring mixer. Fill it to the cylindrical graphite fixture (outer size · · 70 mm X 7 Ο ππη X 1 1 〇mm, inner dimension: diameter 5 5 mm X height 1 1 0 paid), press-formed at a surface pressure of 1 〇Μ P a to produce no-13-201115800 machine powder The final molded body (diameter with a diameter of 5 5 ca x height 1), a porosity of 30%. Next, 'in addition to assembling four structures in the manufacture of the above-mentioned hot separator, four are assembled here. A metal impregnated ceramic material was produced in the same manner as in the production of the inorganic powder molded body in which the tubular graphite jig was produced (temperature: 25 ° C to 150 °). (: linear expansion coefficient: 6.0x1 0·6/Κ, thermal conductivity at 25 ° C: 220 W/mK), which is processed to produce a hot separator a, and a plating layer and a resistor are applied to the hot separator a A heat separator b is produced by the agent layer. <LED wafer bonded body using the heat separators A, B, a or b> As shown in Fig. 1, the four kinds of (A, B, a, b) heat separators 1 manufactured as described above are used. The positioning jig was placed on the thermal separator 1 at a distance of 4.0 mm from 120 LED chips (3:3 EZlOOO/lmmxlmmxO.lmm). Next, in the case of the hot separators of A and a, a heat transfer adhesive (Kyocera Chemical Co., Ltd.: CT284R Ag paste system) was used, and in the thermal separators of B and b, the emulsion layer was used between the resist layers 3. The adhesion layer 5 of the solder is performed (refer to Process 2 of Fig. 1). Then, using a slicing device (DAD 3 3 5 0 by Disco Co., Ltd.), a resin-bonded diamond knife (R07-SD400) having a blade width of 0.1 mm was used, and the cutting speed was 8 mm/s. The film was processed into a shape of 3·9πιπι 3.9 mm, ultrasonically washed in pure water, and dried to produce 1, 20 LED wafer bonded bodies 6 (see Process 3 in Fig. 1). The mounting area of the LED wafer of the obtained LED wafer bonded body was 15.2 times that of the underlying surface of the LED wafer. -14 - 201115800 <Heat Dissipation Characteristics of LED Wafer Bonding Body> Mounting of LED Wafer Bonding Body to Metal Aluminum Substrate Circuit Board by Using Wire Solder and Gold Wire Wired (20 mm x 20 mm x 1 . 5 mm ), which is sandwiched between commercially available heat sinks (thermal conductivity 2 W/m K ) bonded to both sides of an anthrone rubber and then to a cooling fan made of aluminum (thermal impedance: 5.2 ° C/W, size: 50mmx50_xl7miii). A voltage of 3 W was applied to the LED wafer, and the temperature of the upper surface of the LED wafer was measured by an infrared thermograph. As a result, the upper temperature of the LED wafer of the LED wafer bonded body manufactured using the hot separator A, the hot separator B, the hot separator a, and the hot separator b was 69 ° C in five average enthalpies. 60X:, 70 ° C, 61 ° C. Comparative Example 1 In the LED wafer bonded body of the embodiment using the thermal separator B, 'the LED wafer was directly mounted on the circuit substrate using the cream solder without the LED wafer bonded body, and the upper surface temperature of the LED wafer was 105 ° C ° Examples 2 to 4 Comparative Examples 2 and 3 In addition to changing the cutting width at the time of multi-wire saw processing, a heat separator having different thicknesses was produced, and the adhesive layer 5 of the cream solder was changed to a hard solder material (Au/Sn = 80/ In the same manner as in the case of the thermal separator B of Example 1, except for the adhesion layer 5 of 20 (mass ratio), the LED wafer bonded body 'measures the upper surface temperature of the LED wafer. Their results are shown in Table 1. -15- 201115800 Examples S to 7 Comparative Example 4 In addition to changing the particle size of the diamond granules during the honing disc processing, a heat separator having a different rough surface degree was produced, and the adhesive layer 5 of the cream solder was changed to a hard solder material ( The LED wafer bonded body 'measurement of the upper surface temperature of the LED wafer was performed in the same manner as in the case of the thermal separator B of Example 1 except that the adhesion layer 5 of Au/Sn = 8 0/2 0 (mass ratio) was used. Their results are shown in Table 1. Example 8 to 1 〇Comparative Example 5 In addition to changing the adhesive layer 5 of the cream solder to the adhesive layer (Au/S η = 8 0/2 0 (mass ratio)), the adhesive layer 5 was changed as shown in Table 1. The LED wafer bonding was performed in the same manner as in the case of the thermal separator B of the first embodiment except that the interval between the cutting devices was cut and the ratio of the area of the thermal separator to the bottom area of the LED chips was different. Body, the upper temperature of the LED wafer was measured. Their results are shown in Table 1. -16- 201115800 [I嗽一画-北^ g SI Ό 2 σ\ CN 00 in in 00 osm Ι$Π2 <n Q 曰 曰 p ^ WS 3.9x3.9 3.9x3.9 3.9x3.9 3.9x3 .9 3.9x3.9 3.9x3.9 1 1·5χ1·5 5x5 10x10 3·9χ3·9 3·9χ3.9 3.9x3.9 r—^ X LED wafer spacing (mm) .. i On rn On ( r{ 〇\ r〇〇\ rn ON to ON 10.1 〇\ ON cn On rn Μ ^ Ϊ 起 起 s — S5 Φ S [0 0 = g - 15 1 15.2 1 15.2 , Ί 15.2 | 1 15.2 15.2 15.2 2.25 in (N 〇11 H 15.2 15.2 15.2 Surface roughness (Ra) (^m) 0.05 0.05 0.05 0.01 <N d IT) 〇〇r—^ o 0.05 0.05 iN plate thickness (mm) rH CM CN 〇(N d CM 〇Nd (N d (N 〇1 0.08 m CN < N 〇CsJ d Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Example 8 Example 9 Example 10 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 201115800 Example 1 1 to 1 5 In addition to the substitution of (Ni-P: 々ym+Au: l//m) plating layer (5#m thick), Table 2 In the same manner as in the case of the thermal separator B of the first embodiment, the LED wafer was bonded to the metal layer and the thickness of the metal layer. The temperature of the upper surface of the LED wafer was measured. The results of these were shown in Table 2. [Table 2] Metallic metal layer thickness (β """----__| The upper temperature (t) of the LED wafer was implemented Example 11 C u 5 60 Example 12 Pt 2 60 Example 13 Co + Au 3+1 6 1 Example 14 S η + Au 3+1 6 1 Example 15 Ag + Au 3+1 63 Example 1 6~ 2 2 Comparative Examples 6 to 8 <LED wafer bonded body using heat separators C and D made of a metal substrate> Various types of metal separators having the following metal substrates are prepared. The diameter of 50.8 coffee xlO fine 1 'temperature 25 ° C ~ 150 ° C linear expansion coefficient is 6.5 χ 10 · 6 / Κ, the thermal conductivity at a temperature of 25 ° C 160W / mK as shown in Table 3 changed from copper - tungsten ( Cu/W) The thickness and surface roughness of the metal plate. An L E D wafer bonded body was produced in the same manner as in the case of the hot separator B of Example 1, except that the heat separator c was used. The measurement results of the upper temperature of the LED wafer are shown in Table 3. -18- 201115800 Embodiments 23 to 2 5 In addition to changing the interval at the time of cutting processing by the slicing device after the bonding of the LED wafers of the thermal separator W, the same as in Table 3, the area of the thermal separator is made to the bottom of the led wafer. The upper surface temperature of the LED wafer was measured in the same manner as in the example of the first embodiment except that the temperature of the area was different. Their results are shown in Table 3.

-19- 201115800 U嗽】 LED晶片的上面 溫度(°C) 00 τ-^ VO 2 00 CN I 一 LED晶片接合體 的尺寸(皿1) 3.9χ3·9 3.9χ3.9 3·9χ3.9 I 3.9x3.9 ι 1 3.9χ3·9 1 3.9x3.9 3.9x3.9 1.5xl.5 5x5 10x10 10x10 3_9χ3·9 3.9x3.9 3.9x3.9 LED晶片的間隔 (mm) Os ΓΟ 〇\ 〇\ Γ〇 〇\ rn 〇\ rn C\ cn ON ^ο· r·^ ίΤ) ! 1 10.1 Ο 1 α\ ΓΟ ΓΟ 〇\ cn E ^ S S5 Φ S _ W /~s 胆 -15㈣ 15.2 I 15.2 15.2 1 1 15.2 15.2 15.2 「 | 15.2 2.25 ΙΛ CN ο ο 15.2 15.2 15.2 表面粗糙度 (Ra) (ym) 0.05 0.05 0.05 0.05 0.01 (N 〇 in 〇 Ο r-Η Ο ι—1 Ο 0.08 0.05 0.05 <N 板厚 (mm) <Ν Ο ο CN (N 〇 ra o (N 〇 CN Ο ίΝ Ο (Ν Ο m ο 0.08 (Τι CN ΓΜ Ο 金屬種 Cu/W Cu/W Cu/W Cu/W Cu/W Cu/W Cu/W Cu/W ι- Cu/W Cu/W Cu/Mo/Cu Cu/W Cu/W Cu/W 實施例16 實施例Π 實施例18 實施例19 實施例20 實施例21 實施例22 實施例23 實施例24 實施例25 實施例26 比較例ό 比較例7 比較例8 丨 OCVJ— 201115800 實施例2 6 除了取代由銅-鎢(Cu/W )所構成之金屬基板,而使用 直徑爲50.8咖、板厚爲〇.3mm、表面粗糙度(Ra)爲〇.〇8 # m、溫度25\:〜15(TC之線膨脹係數爲7.5xl〇-6/K、在温 度25°C之熱傳導率爲200W/mK、由銅-鉬-銅(Cu/Mo/Cu) 之3層積層板(各層厚度爲〇.lmm)所構成之金屬基板作 爲熱分離器D以外,與實施例1 6同樣地進行而製造LED 晶片接合體。此LED晶片的上面溫度爲64°C。 實施例2 7 <利用由金屬基板所構成之熱分離器c的LED晶片接合體> 在板厚爲0.2 mm、Ra爲之銅/鎢(Cu/W)合金 板,與熱分離器A同樣地進行,使用高熱傳導接著劑將LED 晶片進行接著,而製造LED晶片接合體。此LED晶片的上 面溫度爲71°C。 實施例2 8 <利用使用無機多孔體之熱分離器E、F之LED晶片接合體> 秤取1 3 0 0 g碳化矽粉末D (市售品:平均粒徑1 5 0 μ m)、700g碳化矽粉末Ε(市售品:平均粒徑10ym)'300g 氧化矽溶膠(日產化學社製:S n 0 w te x ) ’以攪拌混合機混 合30分鐘後,以面壓30MPa壓製成形爲160inmxl60nimx5 1M尺寸的板狀而製造成形體。所製得之成形體’以温度 °C乾燥1小時後,在氮氣環境下’以溫度1 4 0 0 進行燒成 2小時,製造氣孔率3 5 %的燒結體’利用加工中心、使用 -21 - 201115800 鑽石砥石’加工成外形尺寸爲1 5 5 mm χ 1 5 5麵X 3 mm的形狀而 製造無機多孔體。 將1〇片無機多孔體每一片地夾住塗布有石墨脫模劑 之脫模板(1 6 0 mm X 1 6 0 mm X 0.8 mm )而形成構造體(1 7 〇 _ χ 1 70 mm x40 mm ) ’在兩側配置鐵板(板厚12 mm )以8根螺 絲連結而作成一個積層體。以下,與實施例1的熱分離器 A同樣地進fj而製造金屬含浸陶瓷材料(1 5 5 mm X 1 5 5 nun X 3 im ),測定溫度25°C〜15〇t之線膨脹係數及在溫度25。(:之 熱傳導率,分別爲7·5χ10_6/Κ、200W/mK。 將此金屬含浸陶瓷材料,以平面硏削盤 '使用鑽石砥 石,進行面加工成爲板厚0 · 4 mm的板狀後,利用噴水加工 機(Sugino機械製硏磨料-噴射切割NC( abrasive-jet cut NC )),以壓力2 5 0ΜP a、加工速度1 〇〇 n皿/min的條件, 使用粒度l〇〇/zm的石樞石(garnet)作爲硏磨砥粒,切斷 加工成直徑50.8麵x0.4麵的形狀。之後,以兩面硏削盤、 使用# 8 0 0的鑽石砥石,硏削加工成板厚0 · 3 mm,於純水中、 接下來於異丙醇中進行超音波洗淨、乾燥,製造由金屬含 浸陶瓷基板所構成之熱分離器E。其表面粗糙度(Ra )爲 O.l^m。又,在熱分離器E’施加與上述熱分離器B同樣 的鍍覆層而作爲熱分離器F。 測定使用熱分離器E所製造之LED晶片接合體的LED 晶片的上面溫度、及使用熱分離器F所製造之LED晶片接 合體的LED晶片的上面溫度,分別爲°C、62 °C。 -22- 201115800 實施例2 9 <利用使用無機多孔體之熱分離器G、Η之LED晶片接合 除了使用等向性石墨成形體(東海Carbon社 G458,氣孔率:13 體積 %,尺寸:loo^xioommxiiH 作爲無機多孔體,又使用已塗布石墨脫模材之不鏽 (1 0 0 mm X 1 0 0 mm X 0.8 nun )作爲脫模板以外,依據熱分 A的製造來製造金屬含浸陶瓷材料。 將此金屬含浸陶瓷材料,以鑽石鋸進行切斷加工 以圓筒硏削盤、使用鑽石磁石,進行外周加工而成爲 5 0 · 8 mm X 1 0 0 mm的圓柱形狀,進一步以多線鋸、使用鑽 粒,以切入速度0.5 mm/min,切斷加工成板厚0.4 mm的屬 將所製得之圓板,以兩面硏削盤、使用#600的鑽石砥 硏削加工成板厚0.3 mm,於水中、接下來於異丙醇中 超音波洗淨、乾燥,製造由金屬含浸陶瓷基板所構成 分離器G。其表面粗糙度(Ra)爲〇.15#«1。又’在 離器G,施加與上述熱分離器B同樣的鍍覆層而作爲 離器Η。 以4画間隔、以乳油焊料來將輸出3 W的LED (Cree社製:EZ1000/1 _xl ramxO.l刪)接合至熱分離 後,利用放電加工機,以切斷速度mm /s切斷加工成 mm X 3.9 mm的形狀,在純水中進行超音波洗淨、乾燥而 LED晶片接合體,測定LED晶片的上面溫度爲66°C ° 體> 製: )mm ) 鋼板 離器 後, 直徑 石砥 3板。 石, 進行 之熱 熱分 熱分 晶片 器Η i 3.9 製造 -23- 201115800 實施例3 0 <利用使用無機多孔體之熱分離器I、J的LED晶片接合體> 以面壓l〇MPa將2880g氮化鋁(平均粒徑2/zm)、120g 氧化紀(平均粒徑1 # m )、1 5 0 g成形結合劑(甲基纖維素)、 及1 50g純水的混合粉末壓製成形後,進一步以成形壓力 lOOMPa進行CIP成形而製造圓柱體(直徑55 nun xl 1 0 min )。 將它,在大氣環境中,以溫度600°C進行2小時脫脂處理 後,在氮氣環境下,以溫度1 780°C進行4小時燒成而製造 燒結體後,利用加工中心、使用鑽石砥石’製造氣孔率爲 2 2 %的無機多孔體(直徑5 2 mm X 1 0 0 mm )。 除了使用此無機多孔體、及取代鋁合金而使用純鋁以 外,與實施例1之熱分離器A同樣地進行來製造熱分離器 1(直徑50.8 ππηχ0·2 _ )。其表面粗糖度(Ra)爲0.06# m。 又,在熱分離器I,施加與上述熱分離器B同樣的鍍覆層 而作爲熱分離器J。 如第2圖所示,對熱分離器j ’以2 IM間隔、以乳油焊 料的接著層5來將2個輸出1W的LED晶片(Cree社製: EZ700/0.7 mmxO.7 mmxO.l mm ) 4接合至熱分離器1上(參照 第2圖的製程2 )。之後,利用雷射加工機,以切斷速度8 mm / s切斷加工成3.9 mm X 3.9 mm的形狀,在純水中進行超音 波洗淨,乾燥而製造120個LED晶片接合體6 (參照第2 圖的製程3 )。 -24- 201115800 所製得之LED晶片接合體,係成爲在1個熱分離器上 面安裝4個LED晶片的構造,LED晶片接合體之led晶片 裝配面的面積皆是LE D晶片底面積的7.8倍。又’以使輸 出成爲4W的方式將電壓施加至LED晶片,測定LED晶片 的上面溫度,爲7〇°C。 實施例3 1 <利用使用無機多孔體之熱分離器K、L之LED晶片接合體> 除了使用2790g氮化矽粉末(平均粒徑l"m)、150g 氧化釔(平均粒徑〗β m )、及60g氧化鎂粉末(平均粒徑 1 // m )的混合物以外,與實施例3 0同樣地進行來製造圓柱 體(直徑55_xll0mm)。將它,在0.9MPa的氮氣加壓環 境下,以溫度1 8 8 0 °C進行4小時燒成而製造燒結體後,以 加工中心、使用鑽石砥石,製造氣孔率爲1 3 %的無機多孔 體(直徑5 2 mm X 1 0 0 mm )。以下,進行與熱分離器I同樣的 處理來製造熱分離器K:,又進行與熱分離器]同樣的處理 來製造熱分離器L。其結果,熱分離器K的表面粗糙度(Ra) 爲0.0 5 #m。又,使用熱分離器K所製造之LED晶片接合 體之LED晶片的上面溫度爲72 °C,而使用熱分離器L所製 造者則爲66°C。 實施例3 2 <利用使用無機粉末成形體之熱分離器c、d的LED晶片接合體> 以氧化鋁製的乳鉢將 7g鑽石粉末 A ( Diamond Innovations 社製,MBG-600,平均粒徑:120// m)、及 3g -25- 201115800 鑽石粉末 B( Diamond Innovations 社製,MBG-600,平均 粒徑.1 5 // m )混合]〇分鐘後’將外形尺寸爲直徑5 2.4咖 x9腦的石墨治具γ插入外形尺寸7〇刪χ7〇删χ2〇刪(內徑 尺寸:直徑52.5咖X20 mm )的筒狀石墨治具X後,塡充10g 鑽石的混合粉末’進一步將石墨治具γ插入鑽石的混合粉 末上面’製造氣孔率爲35%的無機粉末成形體。 依據熱分離器a的製造來將此無機粉末成形體作成爲 積層體’施加含浸處理而製造以筒狀石墨治具包圍金屬含 浸陶瓷材料的複合體。以平面硏削盤' 使用鑽石砥石,將 它從兩主面側(7 0 im X 7 0瞧)開始進行硏削加工直到金屬 含浸陶瓷材料露出爲止,加工成板狀體(7 0 mm X 7 0麵X 1 mm )。之後,以噴水加工機,進行外周加工而成圓板(直 徑5 0.8 mm X 1咖),製造熱分離器c。其表面粗糙度(Ra ) 爲0 ·4 // m。又,與熱分離器b同樣地進行而施加鍍覆層及 阻劑層來製造熱分離器d。 其結果,熱分離器c之溫度2 5 °C的熱傳導率爲 500W/mK。又,使用熱分離器c所製造之LED晶片接合體 的LED晶片的上面溫度爲66°C,使用熱分離器d所製造者 則爲5 8 °C。 <利用使矽含浸於無機多孔體之熱分離器Μ、N的LED晶片接合體> (實施例3 3 ) 以加工中心、使用鑽石砥石,將以實施例1之熱分離 器A的製造過程所製造之無機多孔體(外形尺寸:直徑5 2 -26- 52 201115800 的 保 硏 1 度 爲 器 〇 的 mm x高度1 〇 〇 mm,氣孔率2 0 % )加工成外形尺寸爲直徑 mm χ20麵的圓盤。將此圓盤及塊狀的矽’放入塗布ΒΝ粉 石墨坩鍋,放置在電氣爐內。將爐內抽真空,以〗65 0°C 持8小時而使砂含浸至圓盤。冷卻直到室溫後’以圓筒 削盤除去多餘的矽而製造金屬含浸陶瓷材料,與實施例 同樣地進行,測定溫度2 5 °C〜1 5 0 °C之線膨脹係數及在溫 25t之熱傳導率,線膨脹係數爲4.3χ10·6/Κ,熱傳導率 2 1 OW/mK。 以下,進行與熱分離器A同樣的處理而製造熱分離 Μ,又進行與熱分離器B同樣的處理而製造熱分離器N 其結果,熱分離器Μ的表面粗糙度(Ra)爲0.08 // m。又 使用熱分離器Μ所製造之LED晶片接合體的LED晶片 上面溫度爲69 °C ’使用熱分離器N所製造者則爲61°C ° 最後將實施例、比較例的條件要點整理 '顯示在表2 -27- 201115800 rnii <Νε 麗« I — οε i 6(N震fc-19- 201115800 U嗽] The upper temperature of the LED chip (°C) 00 τ-^ VO 2 00 CN I The size of an LED wafer bond body (dish 1) 3.9χ3·9 3.9χ3.9 3·9χ3.9 I 3.9x3.9 ι 1 3.9χ3·9 1 3.9x3.9 3.9x3.9 1.5xl.5 5x5 10x10 10x10 3_9χ3·9 3.9x3.9 3.9x3.9 LED chip spacing (mm) Os ΓΟ 〇\ 〇\ Γ〇〇\rn 〇\rn C\ cn ON ^ο· r·^ ίΤ) ! 1 10.1 Ο 1 α\ ΓΟ ΓΟ 〇\ cn E ^ S S5 Φ S _ W /~s biliary-15 (four) 15.2 I 15.2 15.2 1 1 15.2 15.2 15.2 ” 15.2 2.25 ΙΛ CN ο ο 15.2 15.2 15.2 Surface roughness (Ra) (ym) 0.05 0.05 0.05 0.05 0.01 (N 〇in 〇Ο r-Η Ο ι—1 Ο 0.08 0.05 0.05 <N Plate thickness (mm) <Ν Ο ο CN (N 〇ra o (N 〇CN Ο ίΝ Ο (Ν Ο m ο 0.08 (Τι CN ΓΜ Ο metal species Cu/W Cu/W Cu/W Cu/W Cu/ W Cu/W Cu/W Cu/W ι-Cu/W Cu/W Cu/Mo/Cu Cu/W Cu/W Cu/W Example 16 Example 实施 Example 18 Example 19 Example 20 Example 21 Example 22 Example 23 Example 24 Example 25 Example 26 Comparative Example ό Comparative Example 7 Comparative Example 8 丨OCVJ—201115800 Example 2 6 Substituting a metal substrate composed of copper-tungsten (Cu/W), using a diameter of 50.8 coffee, a plate thickness of 〇.3 mm, and a surface roughness (Ra) of 〇.〇8 # m, temperature 25\:15 (TC has a linear expansion coefficient of 7.5xl〇-6/K, a thermal conductivity of 200W/mK at a temperature of 25°C, and a three-layer laminate of copper-molybdenum-copper (Cu/Mo/Cu) (the thickness of each layer is The metal substrate formed of 〇.lmm) was produced in the same manner as in Example 16 except that the metal substrate was used as the thermal separator D. The upper surface temperature of the LED wafer was 64 ° C. Example 2 7 < LED wafer bonded body of the thermal separator c composed of a metal substrate> A copper/tungsten (Cu/W) alloy plate having a thickness of 0.2 mm and Ra is used in the same manner as the hot separator A, and high heat conduction is used. The LED wafer is then processed to produce an LED wafer bond. The upper surface temperature of this LED wafer was 71 °C. Example 2 8 <LED wafer bonded body using hot separators E and F using an inorganic porous body> 1 3 0 0 g of tantalum carbide powder D (commercial product: average particle diameter 150 μm) 700 g of niobium carbide powder (commercial product: average particle size: 10 μm) '300 g cerium oxide sol (manufactured by Nissan Chemical Co., Ltd.: S n 0 w te x ) 'mixed for 30 minutes in a stirring mixer, and then pressed at a surface pressure of 30 MPa A molded body was produced in the shape of a plate of 160 inmxl 60 nimx 5 1M. The obtained molded body 'was dried at a temperature of ° C for 1 hour, and then fired at a temperature of 14,000 in a nitrogen atmosphere for 2 hours to produce a sintered body having a porosity of 35 % 'utilizing a machining center, using -21 - 201115800 Diamond Vermiculite 'Processed into an inorganic porous body with a shape of 1 5 5 mm χ 1 5 5 X 3 mm. One piece of the inorganic porous body was sandwiched with a stripper coated with a graphite release agent (1 60 mm X 1 60 mm X 0.8 mm) to form a structure (1 7 〇 _ χ 1 70 mm x 40 mm ) 'The iron plates (12 mm thick) are placed on both sides to form a laminate with 8 screws. In the same manner as in the hot separator A of the first embodiment, a metal impregnated ceramic material (1 5 5 mm X 1 5 5 nun X 3 im ) was produced, and the linear expansion coefficient of the temperature of 25 ° C to 15 〇 t was measured. At temperature 25. (: The thermal conductivity is 7. 5 χ 10_6 / Κ, 200 W / mK. This metal is impregnated with ceramic material, using a diamond enamel in a flat boring plate, after surface processing into a plate with a thickness of 0 · 4 mm, Using a water jet processing machine (Sugino mechanical - abrasive-jet cut NC), with a pressure of 2 50 ΜP a, a processing speed of 1 〇〇n dish/min, using a particle size of l〇〇/zm As a honing granule, the garnet is cut into a shape with a diameter of 50.8 x 0.4. After that, the enamel is cut on both sides, and the diamond of #800 is used to boring into a plate thickness. 3 mm, ultrasonic cleaning and drying in pure water followed by isopropyl alcohol to produce a thermal separator E composed of a metal impregnated ceramic substrate, and having a surface roughness (Ra) of Ol^m. Further, a plating layer similar to that of the above-described thermal separator B was applied to the thermal separator E' as a thermal separator F. The upper surface temperature and heat of use of the LED wafer using the LED wafer bonded body produced by the thermal separator E were measured. The upper surface temperature of the LED wafer of the LED wafer bonded body manufactured by the separator F is °C 62 ° C. -22- 201115800 Example 2 9 <Use of the thermal separator G using an inorganic porous body, LED wafer bonding using an isotropic graphite molded body (Tokai Carbon G458, porosity: 13% by volume) , size: loo^xioommxiiH As the inorganic porous body, and using the coated graphite release material stainless (1 0 0 mm X 1 0 0 mm X 0.8 nun ) as the stripper, the metal is manufactured according to the manufacture of the hot fraction A. Impregnated ceramic material. The metal is impregnated with a ceramic material and cut with a diamond saw. The cylindrical boring disk is cut and the diamond magnet is used for peripheral processing to form a cylindrical shape of 5 0 · 8 mm X 1 0 0 mm. Multi-wire saw, using drill granules, cut at a cutting speed of 0.5 mm/min, cut into a circular plate made of a 0.4 mm thick plate, and cut into two sides with a boring plate and a #600 diamond boring. The plate has a thickness of 0.3 mm and is ultrasonically washed and dried in water and then in isopropanol to produce a separator G composed of a metal impregnated ceramic substrate. The surface roughness (Ra) is 〇.15#«1. In the separator G, the same as the above-described thermal separator B is applied. The coating was applied as a separator. The LEDs with an output of 3 W (made by Cree: EZ1000/1 _xl ramxO.l) were joined to the thermal separation by a solder paste at intervals of 4, and then cut by an electric discharge machine. The breaking speed mm / s was cut into a shape of mm X 3.9 mm, ultrasonically washed and dried in pure water, and the LED wafer bonded body was measured, and the upper surface temperature of the LED wafer was measured to be 66 ° C ° body > Mm) After the steel plate is removed, the diameter of the stone is 3 plates. Stone, heat-heating splitter Η i 3.9 Manufacturing -23- 201115800 Example 3 0 <LED wafer bonded body using thermal separators I and J using inorganic porous bodies> Pressing 2880g of aluminum nitride (average particle size 2/zm), 120g of oxidized (average particle size 1 # m), 150g of shaped binder (methylcellulose), and 150g of pure water Thereafter, CIP molding was further carried out at a molding pressure of 100 MPa to produce a cylinder (diameter 55 nun xl 10 min). This was degreased in an air atmosphere at a temperature of 600 ° C for 2 hours, and then fired at a temperature of 1,780 ° C for 4 hours in a nitrogen atmosphere to produce a sintered body, and then used a diamond ore using a machining center. An inorganic porous body (diameter 5 2 mm X 1 0 0 mm) having a porosity of 22% was produced. A hot separator 1 (diameter 50.8 ππηχ0·2 _ ) was produced in the same manner as in the hot separator A of Example 1, except that the inorganic porous body and the aluminum alloy were used instead of the aluminum alloy. The surface roughness (Ra) is 0.06 # m. Further, in the thermal separator 1, the same plating layer as that of the above-described thermal separator B is applied as the thermal separator J. As shown in Fig. 2, two 1W LED chips were output to the thermal separator j' at intervals of 2 IM and the emulsified solder layer 5 (made by Cree: EZ700/0.7 mmxO.7 mmxO.l mm) 4 is joined to the hot separator 1 (refer to the process 2 of Fig. 2). After that, it was cut into a shape of 3.9 mm X 3.9 mm at a cutting speed of 8 mm / s by a laser processing machine, ultrasonically washed in pure water, and dried to produce 120 LED wafer bonded bodies 6 (refer to Process 2 of Figure 2). -24- 201115800 The LED wafer bonded body is a structure in which four LED chips are mounted on one thermal separator. The area of the LED wafer mounting surface of the LED wafer bonded body is 7.8 of the LE D wafer bottom area. Times. Further, a voltage was applied to the LED wafer so that the output was 4 W, and the temperature of the upper surface of the LED wafer was measured and found to be 7 °C. Example 3 1 <LED wafer bonded body using hot separators K and L using an inorganic porous body> In addition to 2790 g of tantalum nitride powder (average particle diameter l" m), 150 g of cerium oxide (average particle diameter β) A cylinder (diameter 55_x10 mm) was produced in the same manner as in Example 30 except that a mixture of m) and 60 g of magnesium oxide powder (average particle diameter: 1 / m) was used. This was sintered in a nitrogen atmosphere of 0.9 MPa at a temperature of 1880 ° C for 4 hours to produce a sintered body, and then an inorganic porous having a porosity of 13% was produced by using a diamond ore in a machining center. Body (diameter 5 2 mm X 1 0 0 mm). Thereafter, the same process as in the hot separator 1 is carried out to produce the hot separator K: and the same treatment as in the hot separator is performed to produce the hot separator L. As a result, the surface roughness (Ra) of the hot separator K was 0.05 #m. Further, the temperature of the upper surface of the LED wafer of the LED wafer bonded body manufactured using the thermal separator K was 72 °C, and that of the manufacturer using the thermal separator L was 66 °C. Example 3 2 <LED wafer bonded body using the thermal separators c and d of the inorganic powder molded body> 7 g of diamond powder A (manufactured by Diamond Innovations, MBG-600, average particle diameter) :120// m), and 3g -25- 201115800 Diamond Powder B (made by Diamond Innovations, MBG-600, average particle size. 1 5 // m) mixed] After 〇 minutes, the external dimensions will be 52.4 X9 brain graphite fixture γ insert shape size 7〇 χ 7〇 χ 2〇 ( (inner diameter size: diameter 52.5 coffee X20 mm) cylindrical graphite fixture X, after mixing 10g diamond mixed powder 'further graphite On the top of the mixed powder of the jig-inserted diamond, an inorganic powder molded body having a porosity of 35% was produced. This inorganic powder molded body is made into a laminated body by the production of the hot separator a. The impregnation treatment is applied to produce a composite body in which a cylindrical graphite jig is surrounded by a metal impregnated ceramic material. Using a diamond boring disc, using a diamond vermiculite, boring it from the two main sides (7 0 im X 7 0瞧) until the metal impregnated ceramic material is exposed, and processing into a plate-like body (70 mm X 7) 0 face X 1 mm ). Thereafter, a circular plate (diameter: 5 0.8 mm X 1 coffee) was processed by a water jet machine to produce a heat separator c. Its surface roughness (Ra ) is 0 · 4 // m. Further, in the same manner as the heat separator b, a plating layer and a resist layer are applied to produce a heat separator d. As a result, the thermal conductivity of the hot separator c was 25 W/mK at a temperature of 25 °C. Further, the upper surface temperature of the LED wafer of the LED wafer bonded body produced by using the thermal separator c was 66 ° C, and the temperature of the LED chip fabricated using the thermal separator d was 58 ° C. <LED wafer bonded body using a thermal separator Μ, N which impregnates an inorganic porous body> (Example 3 3) Production of a hot separator A of Example 1 using a diamond ore in a machining center The inorganic porous body produced by the process (outer dimensions: diameter 5 2 -26- 52 201115800, 1 degree of protection, mm x height of the device 1mm, porosity of 20%) is processed into a dimension of diameter mm χ20 Faceted disc. The disk and the block 矽' were placed in a coated crucible graphite crucible and placed in an electric furnace. The furnace was evacuated and allowed to impregnate the disc at 650 ° C for 8 hours. After cooling to room temperature, the metal impregnated ceramic material was produced by removing the excess crucible by a cylindrical disk, and the linear expansion coefficient at a temperature of 25 ° C to 150 ° C was measured at a temperature of 25 t in the same manner as in the examples. Thermal conductivity, coefficient of linear expansion is 4.3χ10·6/Κ, thermal conductivity is 2 1 OW/mK. In the following, the same procedure as in the hot separator A was carried out to produce a thermal separation crucible, and the same treatment as in the thermal separator B was carried out to produce a hot separator N. As a result, the surface roughness (Ra) of the thermal separator crucible was 0.08 / / m. In addition, the temperature of the upper surface of the LED wafer of the LED wafer bonded body produced by using the thermal separator was 69 ° C. The temperature of the example of the example and the comparative example was adjusted to 61 ° C. In Table 2 -27- 201115800 rnii < Ν ε Li « I — οε i 6 (N shock fc

oofN匡習K 00〜9 ss L(N~9l mm slil 7(n i-u ol~(N 震« ul-u Ξ,ϊκ ys s. otNxCNseoofN匡K 00~9 ss L(N~9l mm slil 7(n i-u ol~(N 震« ul-u Ξ,ϊκ ys s. otNxCNse

ofNofN

FS s 80ΌFS s 80Ό

nv+d-JN ¾¾ BI 搬 i si g23m sl01 ys ys zxstNs sroNv+d-JN 3⁄43⁄4 BI move i si g23m sl01 ys ys zxstNs sro

Ms l_lv 0.1 05Ms l_lv 0.1 05

3V+J-M ¾¾ § _ i 蠢 oo-XKe Π3V+J-M 3⁄43⁄4 § _ i stupid oo-XKe Π

Ms HSZHV 2 soMs HSZHV 2 so

w+d_?N ¾¾ § _ i搬 蠢 蠢 00ΙΧΓΝΙ5Φ ιτw+d_?N 3⁄43⁄4 § _ i move stupid stupid 00ΙΧΓΝΙ5Φ ιτ

IV 2 90.0IV 2 90.0

3v+d,iN ¾¾3v+d, iN 3⁄43⁄4

Ir-fII 001X005 aIr-fII 001X005 a

gs 1—!SCSI 丨IV s sl.o 3v+d_iz ¾¾Gs 1—! SCSI 丨IV s sl.o 3v+d_iz 3⁄43⁄4

Hai P<SS5Hai P<SS5

Ms I-?s(Nl-lv #ε« s 0Γ0Ms I-?s(Nl-lv #ε« s 0Γ0

3v+d-!M3v+d-!M

3v+d-?N ¾¾ ¾¾3v+d-?N 3⁄43⁄4 3⁄43⁄4

HiHi

Bi -8CSI- ys ys ^燒成 Φ52χ100 1 1 t 燒成 Φ52x100 1 1 1 ss ris(NI-lv ss ryszl—lv ΟΟΙΧΙΓΝ^Φ 讀Bi -8CSI- ys ys ^ firing Φ52χ100 1 1 t firing Φ52x100 1 1 1 ss ris(NI-lv ss ryszl-lv ΟΟΙΧΙΓΝ^Φ Read

otN ouxsse 辁链伥fi οεotN ouxsse 辁chain伥fi οε

60S l—TSZHV ΓΟ sd <Nm ¾¾60S l-TSZHV ΓΟ sd <Nm 3⁄43⁄4

Bi 1« 3v+d-iz tel ¾¾Bi 1« 3v+d-iz tel 3⁄43⁄4

Hi ΓΟ s.oHi ΓΟ s.o

nv+d-JN ¾¾ 醒一鹕 【寸撇】 駿—— §#1f _Nv+d-JN 3⁄43⁄4 醒一鹕 [inch 撇] 骏—— §#1f _

麗 I i i :¾ IS 踮 f 襲 I S, 霞 S 姻-ffl §1. 鯽_^s離龌 Φ銳忉链*鉅^糊_領ffi ΐ)聽 雜鼯φ癒丽 I i i :3⁄4 IS 踮 f I I S, Xia S marriage-ffl §1. 鲫_^s 龌 龌 忉 sharp chain * giant ^ paste _ collar ffi ΐ) listen 鼯 鼯 φ

驟iBsMIIiBsMII

Ϊ- 2lm%PWJ 坩4ς<π谢 £北嚙 awhj 201115800 【圖式簡單說 第1圖係顯: 第2圖係顯: 【主要元件符 1 熱分離: 2 金屬層 3 阻劑層 4 LED 晶 5 接著層 6 LED 晶 明】 片本發明之製造方法之一例的說明圖。 舌本發明之製造方法之另一例的說明圖。 號說明】 接合體 -29-Ϊ - 2lm%PWJ 坩4ς<π谢£北爪阿whj 201115800 [Figure is simple to say that the first picture shows: Figure 2 shows: [Main components 1 thermal separation: 2 metal layer 3 resist layer 4 LED crystal 5 Next layer 6 LED crystal clear] An explanatory diagram of an example of a manufacturing method of the present invention. An explanatory view of another example of the manufacturing method of the tongue of the present invention. No. Description] Joint body -29-

Claims (1)

201115800 七、申請專利範圍: 1· 一種LED晶片接合體之製造方法,其特徵爲將一個或二 個以上的LED晶片裝配在板厚爲〇. 1 ~2麵 '表面粗糙度 (Ra )爲〇·5 # m以下的金屬含浸陶瓷基板或金屬基板 後’將上述金屬含浸陶瓷基板或金屬基板切斷爲包含LED 晶片、LED晶片底面積的2倍以上的大小。 2.如申請專利範圍第1項之LED晶片接合體之製造方法, 其中金屬含浸陶瓷基板,係以熔湯锻造法使鋁或鋁合 金’或是以熔融含浸法使矽或矽合金,含浸於由選自碳 化矽、氮化鋁、氮化矽、鑽石及石墨之至少1種所構成、 氣孔率爲10〜50體積%之多孔體或粉末成形體者。 3 ·如申請專利範圍第1項之LED晶片接合體之製造方法, 其中金屬基板,係選自銅(Cu)、鎳(Νι)、鉬(Mo)、 鎢(W )、鈷(Co )及鐵(Fe )的金屬板、包含上述金屬 成分之至少1種的合金板、或以選自上述金屬板及上述 合金板之2種以上所構成的積層板。 4.如申請專利範圍第1至3項中任一項之LED晶片接合體 之製造方法’其中金屬含浸陶瓷基板或金屬基板,係在 其表面具有0.5~20/zm厚度之選自c〇、Pd、Cu、Ag、Au、 Pt及Sn之至少1種的金屬層。 5 .如申請專利範圍第1至4項中任一項之L E D晶片接合體 之製造方法’其中L E D晶片,係輸出〇. 5 w以上的非絕緣 構造。 -30- 201115800 6_如申請專利範圍第1至5項中任一項之LED晶片接合體 之製造方法,其中切斷,係利用選自切片(dicing)、雷 射加工、噴水(w a t e r j e t )加工、及放電加工之至少1種 來進行。 7 ‘如申請專利範圍第丨至6項中任一項之LED晶片接合體 之製造方法,其中具有LED晶片之金屬含浸陶瓷基板面 或金屬基板面的LED晶片裝配面的面積,係與LED晶片 的接著面積的2倍〜100倍。 -31 -201115800 VII. Patent application scope: 1. A method for manufacturing an LED wafer bonded body, characterized in that one or two or more LED chips are assembled on a plate thickness of 〇. 1 ~ 2 faces 'surface roughness (Ra) is 〇 - After impregnating a ceramic substrate or a metal substrate with a metal of 5 Å or less, the metal impregnated ceramic substrate or the metal substrate is cut into a size including two or more times the area of the LED wafer and the bottom surface of the LED wafer. 2. The method for manufacturing an LED wafer bonded body according to the first aspect of the invention, wherein the metal impregnated ceramic substrate is melted by forging to make aluminum or an aluminum alloy or impregnated with a tantalum or niobium alloy by melt impregnation. A porous body or a powder molded body comprising at least one selected from the group consisting of niobium carbide, aluminum nitride, tantalum nitride, diamond, and graphite and having a porosity of 10 to 50% by volume. 3. The method of manufacturing an LED wafer bonded body according to claim 1, wherein the metal substrate is selected from the group consisting of copper (Cu), nickel (Νι), molybdenum (Mo), tungsten (W), cobalt (Co), and A metal plate of iron (Fe), an alloy plate containing at least one of the above-described metal components, or a laminated plate comprising two or more selected from the above-mentioned metal plate and the above-mentioned alloy plate. 4. The method of manufacturing an LED wafer bonded body according to any one of claims 1 to 3 wherein the metal impregnated ceramic substrate or metal substrate is selected from the group consisting of c〇, having a thickness of 0.5 to 20/zm on the surface thereof. A metal layer of at least one of Pd, Cu, Ag, Au, Pt, and Sn. 5. The method of manufacturing a L E D wafer bonded body according to any one of claims 1 to 4 wherein the L E D wafer is a non-insulated structure of 〇 5 w or more. The method for manufacturing an LED wafer bonded body according to any one of claims 1 to 5, wherein the cutting is performed by using dicing, laser processing, waterjet processing. And at least one of electrical discharge machining is performed. The method for manufacturing an LED wafer bonded body according to any one of claims 6 to 6, wherein the area of the LED wafer mounting surface of the metal-impregnated ceramic substrate surface or the metal substrate surface of the LED chip is associated with the LED chip. The area of the joint is 2 times to 100 times. -31 -
TW099123601A 2009-07-17 2010-07-16 Method for manufacturing a led chip bonding body TWI491082B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009168958 2009-07-17

Publications (2)

Publication Number Publication Date
TW201115800A true TW201115800A (en) 2011-05-01
TWI491082B TWI491082B (en) 2015-07-01

Family

ID=43449482

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099123601A TWI491082B (en) 2009-07-17 2010-07-16 Method for manufacturing a led chip bonding body

Country Status (3)

Country Link
JP (1) JP5759376B2 (en)
TW (1) TWI491082B (en)
WO (1) WO2011007872A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105679914B (en) * 2014-11-21 2018-02-23 环视先进数字显示无锡有限公司 A kind of manufacture method of LED compound glasses substrate

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3576541B2 (en) * 1994-12-06 2004-10-13 シャープ株式会社 Light emitting device and method of manufacturing light emitting device
JP2003101123A (en) * 2001-09-20 2003-04-04 Kyocera Corp Package for storage of optical semiconductor element
JP4001169B2 (en) * 2003-03-14 2007-10-31 住友電気工業株式会社 Semiconductor device
JP2007142479A (en) * 2003-03-14 2007-06-07 Sumitomo Electric Ind Ltd Semiconductor device
JP4360858B2 (en) * 2003-07-29 2009-11-11 シチズン電子株式会社 Surface mount type LED and light emitting device using the same
JP2007005709A (en) * 2005-06-27 2007-01-11 Asahi Glass Co Ltd Low-heat-resistance wiring board for led lighting device, and led lighting device
JP2007250979A (en) * 2006-03-17 2007-09-27 Zeniya Sangyo Kk Semiconductor package
JP2008091831A (en) * 2006-10-05 2008-04-17 Toshiba Corp Submount substrate for led, manufacturing method thereof, and light emitting device using the substrate

Also Published As

Publication number Publication date
JP5759376B2 (en) 2015-08-05
JPWO2011007872A1 (en) 2012-12-27
WO2011007872A1 (en) 2011-01-20
TWI491082B (en) 2015-07-01

Similar Documents

Publication Publication Date Title
TWI501432B (en) Led chip bonding body, led package and method for manufacturing a led package
TWI526261B (en) Composite material substrate for led luminescent element, method for manufacturing the same and led luminescent element
EP2397455B1 (en) Substrate comprising aluminum/graphite composite, heat dissipation part comprising same, and led luminescent member
JP5789512B2 (en) LED mounting wafer, manufacturing method thereof, and LED mounting structure using the wafer
WO2007119571A1 (en) Solder layer, substrate for device junction utilizing the same, and process for manufacturing the substrate
JP2011139000A (en) Power module structure and method of manufacturing the same
JP5526336B2 (en) Solder layer, device bonding substrate using the same, and manufacturing method thereof
JP2010278171A (en) Power semiconductor and manufacturing method of the same
TW201115800A (en) Method for manufacturing a LED chip bonding body
JP2014107468A (en) Aluminum-diamond-based complex heat dissipation component
JP2003197981A (en) Thermoelectric module
JP5296638B2 (en) LED mounting structure, manufacturing method thereof, and LED mounting substrate
JP5681035B2 (en) LED light source package
JP2010109081A (en) Metal matrix composite substrate for led light emitting device, and led light emitting device using the same
JP2008004760A (en) Wiring board and electronic device
JP5881280B2 (en) Manufacturing method of LED light emitting element holding substrate and manufacturing method of LED light emitting element
JP2005317603A (en) Thermoelectric module and manufacturing method therefor
JP2013012623A (en) Led light-emitting element holding substrate and manufacturing method thereof and led light-emitting element
JP2010192662A (en) Method of manufacturing heat radiation component