JP5881280B2 - Manufacturing method of LED light emitting element holding substrate and manufacturing method of LED light emitting element - Google Patents

Manufacturing method of LED light emitting element holding substrate and manufacturing method of LED light emitting element Download PDF

Info

Publication number
JP5881280B2
JP5881280B2 JP2010184971A JP2010184971A JP5881280B2 JP 5881280 B2 JP5881280 B2 JP 5881280B2 JP 2010184971 A JP2010184971 A JP 2010184971A JP 2010184971 A JP2010184971 A JP 2010184971A JP 5881280 B2 JP5881280 B2 JP 5881280B2
Authority
JP
Japan
Prior art keywords
led light
substrate
emitting element
matrix composite
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010184971A
Other languages
Japanese (ja)
Other versions
JP2012044040A (en
Inventor
庸介 石原
庸介 石原
秀樹 広津留
秀樹 広津留
秀雄 塚本
秀雄 塚本
豪 岩元
豪 岩元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd, Denki Kagaku Kogyo KK filed Critical Denka Co Ltd
Priority to JP2010184971A priority Critical patent/JP5881280B2/en
Publication of JP2012044040A publication Critical patent/JP2012044040A/en
Application granted granted Critical
Publication of JP5881280B2 publication Critical patent/JP5881280B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Devices (AREA)

Description

本発明は、LED発光素子用保持基板の製造方法及びLED発光素子の製造方法に関する。
The present invention relates to a process for producing a preparation and LED devices of the holding substrate for LED devices.

LED(発光ダイオード)は、半導体のpn接合に順方向電流を流すと発光する素子であり、GaAs、GaN等のIII−V族半導体結晶を用いて製造される。たとえば、サファイア基板等の単結晶成長基板上に、GaN等のバッファー層を形成し、その上にGaNをエピタキシャル成長させる方法が提案されている(特許文献1)。しかし、この方法にあっては、サファイア基板とGaNとの線膨張係数差のために、エピタキシャル成長後のサファイア基板に反りが発生し、基板が割れることがあった。さらには、サファイア基板を構成する単結晶サファイアの熱伝導率が40W/mK程度であるので、GaN等のIII−V族半導体素子で発生する熱を十分に放熱することができなかった。このため、大電流を流す高出力LEDでは素子の温度が上昇して発光効率と素子寿命の低下を招いた。   An LED (light emitting diode) is an element that emits light when a forward current flows through a pn junction of a semiconductor, and is manufactured using a III-V group semiconductor crystal such as GaAs or GaN. For example, a method has been proposed in which a buffer layer such as GaN is formed on a single crystal growth substrate such as a sapphire substrate, and GaN is epitaxially grown thereon (Patent Document 1). However, in this method, due to the difference in coefficient of linear expansion between the sapphire substrate and GaN, the sapphire substrate after epitaxial growth may be warped and the substrate may be cracked. Furthermore, since the single crystal sapphire constituting the sapphire substrate has a thermal conductivity of about 40 W / mK, the heat generated in the III-V group semiconductor element such as GaN cannot be sufficiently dissipated. For this reason, in the high-power LED in which a large current flows, the temperature of the element rises, resulting in a decrease in luminous efficiency and element life.

放熱性を改善するため、単結晶成長基板上にIII−V族半導体結晶をエピタキシャル成長させた後に、金属層を介して高熱伝導性の基板を接合し、その後、単結晶成長基板を除去する方法が提案されているが(特許文献2)、III−V族半導体結晶との線膨張係数差が大きく、高出力LED用には十分満足できるものではなかった。   In order to improve heat dissipation, there is a method in which a III-V group semiconductor crystal is epitaxially grown on a single crystal growth substrate, then a high thermal conductivity substrate is joined through a metal layer, and then the single crystal growth substrate is removed. Although it has been proposed (Patent Document 2), the difference in linear expansion coefficient from the III-V group semiconductor crystal is large, which is not satisfactory for high-power LEDs.

特公平5−73252号公報Japanese Patent Publication No. 5-73252 特開2006−128710号公報JP 2006-128710 A

本発明の目的は、III−V族半導体結晶から構成されているLED(以下、単にLEDともいう。)との線膨張率差が小さくしかも熱伝導性に優れた、LED発光素子用保持基板及びLED発光素子を提供することである。   An object of the present invention is to provide an LED light-emitting element holding substrate having a small difference in linear expansion coefficient from an LED made of a III-V group semiconductor crystal (hereinafter also simply referred to as an LED) and excellent in thermal conductivity. An LED light emitting device is provided.

更に、本発明が解決しようとする課題は、LED発光素子製造時に使用される酸およびアルカリ溶液に対する、耐薬品性に優れた、高出力LED用として好適なLED発光素子用保持基板を提供することである。   Furthermore, the problem to be solved by the present invention is to provide a holding substrate for an LED light-emitting element that is excellent in chemical resistance against an acid and an alkali solution used at the time of manufacturing the LED light-emitting element and that is suitable for high-power LEDs. It is.

本発明は、炭化珪素多孔体にアルミニウム合金を含浸してなる板厚0.05〜1.0mmの金属基複合材料基板に、下記の工程を順次経て製造し、温度25℃の5規定のHCl溶液及び75℃の10規定のNaOH溶液にそれぞれ1分間浸漬したときの少なくとも一主面の重量減少量が0.2mg/cm以下のLED発光素子用保持基板の製造方法である。
(1)蒸着法又はスパッタリング法により、金属基複合材料基板表面に厚み0.05〜2μmのアルミニウム層を形成する工程。
(2)窒素、アルゴン、水素、ヘリウム又は、真空雰囲気中、温度460℃〜650℃で1分間以上加熱処理する工程。
(3)1)又は2)により、アルミニウム層の表面に金属層を形成する工程。
1)無電解めっき法又は電気めっき法により、アルミニウム層の表面に、厚み0.5〜5μmのNiめっき層と厚み0.05〜2μmの金めっき層を順次形成し、金属層を形成する工程。
2)蒸着法又はスパッタリング法により、アルミニウム層の表面に、厚み0.1〜2μmの金属層を形成する工程。
In the present invention, a metal matrix composite material substrate having a thickness of 0.05 to 1.0 mm, which is obtained by impregnating a silicon carbide porous body with an aluminum alloy, is manufactured through the following steps in sequence, and 5N HCl at a temperature of 25 ° C. This is a method for producing a holding substrate for an LED light emitting element, in which the weight loss amount of at least one main surface when immersed in a solution and a 10N NaOH solution at 75 ° C. for 1 minute is 0.2 mg / cm 2 or less.
(1) A step of forming an aluminum layer having a thickness of 0.05 to 2 μm on the surface of the metal matrix composite substrate by a vapor deposition method or a sputtering method.
(2) A step of heat treatment at a temperature of 460 ° C. to 650 ° C. for 1 minute or more in nitrogen, argon, hydrogen, helium or a vacuum atmosphere.
(3) A step of forming a metal layer on the surface of the aluminum layer according to 1) or 2).
1) A step of forming a metal layer by sequentially forming a Ni plating layer having a thickness of 0.5 to 5 μm and a gold plating layer having a thickness of 0.05 to 2 μm on the surface of the aluminum layer by an electroless plating method or an electroplating method. .
2) A step of forming a metal layer having a thickness of 0.1 to 2 μm on the surface of the aluminum layer by vapor deposition or sputtering.

更に、本発明の金属基複合材料基板は、気孔率が10〜50体積%、3点曲げ強度が50MPa以上である炭化珪素多孔体に、溶湯鍛造法にて含浸圧力30MPa以上でアルミニウム合金を含浸してなり、温度25℃の熱伝導率が150〜300W/mK、温度40℃〜150℃の線熱膨張係数が4×10-6〜8×10-6/K、3点曲げ強度が50MPa以上、体積固有抵抗が10-9〜10-5Ω・mである。更に、本発明の金属基複合材料基板は、板厚が0.05〜1.0mmで、表面粗さ(Ra)0.01〜0.5μmに、切断及び/又は研削加工してなる。 Furthermore, the metal matrix composite material substrate of the present invention is impregnated with a silicon carbide porous body having a porosity of 10 to 50% by volume and a three-point bending strength of 50 MPa or more with an aluminum alloy at an impregnation pressure of 30 MPa or more by a molten metal forging method. The thermal conductivity at a temperature of 25 ° C. is 150 to 300 W / mK, the linear thermal expansion coefficient at a temperature of 40 ° C. to 150 ° C. is 4 × 10 −6 to 8 × 10 −6 / K, and the three-point bending strength is 50 MPa. As described above, the volume resistivity is 10 −9 to 10 −5 Ω · m. Furthermore, the metal matrix composite material substrate of the present invention is formed by cutting and / or grinding to a plate thickness of 0.05 to 1.0 mm and a surface roughness (Ra) of 0.01 to 0.5 μm.

更に、本発明は、下記の工程を順次経ることによるLED発光素子の製造方法である
(1)円板状又は平板状の単結晶成長基板の一主面上に、III−V族半導体結晶をエピタキシャル成長させる工程。
(2)III−V族半導体結晶面に金属層を介して、上記のLED発光素子用保持基板を接合し、裏面をレーザー照射、エッチング、研削のいずれかの方法により、単結晶成長基板を除去する工程。
(3)III−V族半導体結晶面の表面加工、電極形成を行った後、切断加工する工程。
Furthermore, the present invention is a method for manufacturing an LED light emitting element in successively passed through Rukoto the following steps.
(1) A step of epitaxially growing a group III-V semiconductor crystal on one main surface of a disk-like or flat plate-like single crystal growth substrate.
(2) The above-mentioned LED light emitting element holding substrate is bonded to the III-V group semiconductor crystal surface through a metal layer, and the single crystal growth substrate is removed by laser irradiation, etching, or grinding on the back surface. Process.
(3) A step of cutting after performing surface processing of the III-V semiconductor crystal surface and electrode formation.

加えて、本発明は、単結晶成長基板が、単結晶サファイア、単結晶炭化珪素、単結晶GaAs、単結晶Siの群から選ばれることを特徴とする上記のLED発光素子、又は、単結晶成長基板が、AlN、SiC、GaN、GaAsの群から選ばれる材料で表面コーティングされたことを特徴とするLED発光素子の製造方法である。
In addition, the present invention provides the LED light emitting device or the single crystal growth, wherein the single crystal growth substrate is selected from the group of single crystal sapphire, single crystal silicon carbide, single crystal GaAs, and single crystal Si. An LED light emitting device manufacturing method , wherein a substrate is surface-coated with a material selected from the group consisting of AlN, SiC, GaN, and GaAs.

更に加えて、本発明は、III−V族半導体結晶が、GaN、GaAs、GaPのいずれかであることを特徴とするLED発光素子の製造方法である。 In addition, the present invention is a method for manufacturing an LED light-emitting element , wherein the group III-V semiconductor crystal is any one of GaN, GaAs, and GaP.

本発明により、LEDを構成するIII−V族半導体結晶と線熱膨張率の差の小さい、高熱伝導性のLED発光素子用保持基板が得られる。このLED発光素子用保持基板を用いることにより、放熱性、信頼性に優れた高出力のLED発光素子を提供することができる。更に、本発明のLED発光素子用保持基板は、LED発光素子製造時に使用される酸及びアルカリ溶液に対する耐薬品性に優れると共に、導電性であり、LEDを構成するIII−V族半導体結晶の両面に電極を形成することができる。そのため、LED発光素子の製造プロセスの低減、並びに単位面積当たりの発光量の増加を達成できる。   According to the present invention, there can be obtained a highly heat conductive holding substrate for an LED light-emitting element having a small difference in linear thermal expansion coefficient from the group III-V semiconductor crystal constituting the LED. By using this LED light-emitting element holding substrate, it is possible to provide a high-output LED light-emitting element having excellent heat dissipation and reliability. Furthermore, the LED light-emitting element holding substrate of the present invention is excellent in chemical resistance against acid and alkali solutions used in the manufacture of LED light-emitting elements, is conductive, and has both sides of the III-V group semiconductor crystal constituting the LED. An electrode can be formed on the substrate. Therefore, it is possible to reduce the manufacturing process of the LED light emitting element and increase the light emission amount per unit area.

本発明の一実施の形態を示す、LED発光素子の概略断面図The schematic sectional drawing of the LED light emitting element which shows one embodiment of this invention 本発明の一実施の形態を示す、LED発光素子の概略断面図The schematic sectional drawing of the LED light emitting element which shows one embodiment of this invention 本発明の一実施の形態を示す、LED発光素子の概略断面図The schematic sectional drawing of the LED light emitting element which shows one embodiment of this invention

本発明で用いる単結晶成長基板は、後の工程でエピタキシャル成長させるIII−V族半導体結晶との格子定数の差が小さく、かつ欠陥の少ない材料が必要である。結晶性と均一性の点から、単結晶材料を加工して用いるのが一般的である。これらの単結晶成長基板は、III−V族半導体結晶をエピタキシャル成長させる工程における温度、雰囲気に耐えることが必要である。このため、本発明で用いる単結晶成長基板用の材料は、単結晶サファイア、単結晶炭化珪素、単結晶GaAs、単結晶Siの群から選ばれることが好ましい。更に、本発明で用いる単結晶成長基板は、AlN、SiC、GaN、GaAsの群から選ばれる材料で表面コーティングされることが好ましい。   The single crystal growth substrate used in the present invention requires a material having a small difference in lattice constant from a group III-V semiconductor crystal to be epitaxially grown in a later step and having few defects. From the standpoints of crystallinity and uniformity, it is common to process and use a single crystal material. These single crystal growth substrates need to withstand the temperature and atmosphere in the process of epitaxially growing a III-V semiconductor crystal. Therefore, the material for the single crystal growth substrate used in the present invention is preferably selected from the group of single crystal sapphire, single crystal silicon carbide, single crystal GaAs, and single crystal Si. Furthermore, the single crystal growth substrate used in the present invention is preferably surface-coated with a material selected from the group consisting of AlN, SiC, GaN, and GaAs.

LEDを構成するIII−V族半導体結晶は、LED発光素子としての変換効率の点から、GaN、GaAs、GaPのいずれかであることが好ましい。これらのIII−V族半導体結晶は高い発光効率が得られ、用途に応じて使い分けられる。III−V族半導体結晶は、用途毎の最適発光波長に応じて選択される。   The group III-V semiconductor crystal constituting the LED is preferably GaN, GaAs, or GaP from the viewpoint of conversion efficiency as the LED light emitting element. These III-V semiconductor crystals have high luminous efficiency and can be used properly according to the application. The III-V semiconductor crystal is selected according to the optimum emission wavelength for each application.

本発明では、先ず、これらの単結晶成長基板の一主面上にエピタキシャル成長で、III−V族半導体結晶を成長させる。III−V族半導体結晶のエピタキシャル成長は、有機金属気相成長法(MOCVD法)又はハライド気相エピタキシャル法(HVPE法)により行うことが好ましい。MOCVD法は、結晶性の良いIII−V族半導体結晶を成長させるのに適しており、HVPE法は、結晶成長速度が速く、効率よくIII−V族半導体結晶を成長させることができる。これらの方法は公知であり、実施条件は適宜設定することができる。エピタキシャル成長の方法は、III−V族半導体結晶を成長させることのできる方法であれば、前記の方法に限定されるものではない。 In the present invention, first, a III-V semiconductor crystal is grown on one main surface of these single crystal growth substrates by epitaxial growth. The epitaxial growth of the group III-V semiconductor crystal is preferably performed by metal organic vapor phase epitaxy (MOCVD method) or halide vapor phase epitaxy (HVPE method). The MOCVD method is suitable for growing a group III-V semiconductor crystal with good crystallinity, and the HVPE method has a high crystal growth rate and can grow a group III-V semiconductor crystal efficiently. These methods are publicly known, and implementation conditions can be set as appropriate. The epitaxial growth method is not limited to the above method as long as it can grow a group III-V semiconductor crystal.

エピタキシャル成長させたIII−V族半導体結晶は、発光特性を更に向上させるため、表面処理を施すことも可能である。また、結晶表面の均一性等を向上させるため、表面をエッチング処理や研磨処理することもある。金属基複合材料基板と接合するため、III−V族半導体結晶の表面に蒸着法、スパッタ法等の手法により、金属層を形成する。金属層は、インジウム、アルミニウム、金、銀及びこれらの合金が好ましい。金属層の厚みは、金属の線熱膨張係数がIII−V族半導体結晶と異なる為、極端に厚いと密着性が低下して好ましくない。金属層の熱伝導率が低い場合は、放熱の面からも好ましくない。このため、金属層の厚みは、0.5〜10μmであることが好ましく、更に好ましくは、0.5〜2μmである。   The epitaxially grown III-V group semiconductor crystal can be subjected to a surface treatment in order to further improve the light emission characteristics. In addition, in order to improve the uniformity of the crystal surface and the like, the surface may be etched or polished. In order to bond to the metal matrix composite material substrate, a metal layer is formed on the surface of the group III-V semiconductor crystal by a technique such as vapor deposition or sputtering. The metal layer is preferably indium, aluminum, gold, silver and alloys thereof. The thickness of the metal layer is not preferable because the linear thermal expansion coefficient of the metal is different from that of the group III-V semiconductor crystal, and if it is extremely thick, the adhesiveness is lowered. When the thermal conductivity of the metal layer is low, it is not preferable from the viewpoint of heat dissipation. For this reason, it is preferable that the thickness of a metal layer is 0.5-10 micrometers, More preferably, it is 0.5-2 micrometers.

III−V族半導体結晶に接合するため、金属基複合材料基板にも、同様に表面に蒸着法、スパッタ法等により、金属層を形成する。金属層は、インジウム、アルミニウム、金、銀及びこれらの合金が好ましい。金属基複合材料基板に求められる特性は、(1)接合に耐え得る強度を有すること(2)接合面にボイドや異物等の介在物が無く、接合面が平坦であることである。(1)の条件を満たすには、金属基複合材料基板の3点曲げ強度が50MPa以上であり、好ましくは200MPa以上である。(2)の条件を満たすには、金属基複合材料基板の表面粗さ(Ra)が0.01〜0.5μmであり、好ましくは、0.01〜0.2μmである。   In order to bond to the group III-V semiconductor crystal, a metal layer is similarly formed on the surface of the metal matrix composite material substrate by vapor deposition or sputtering. The metal layer is preferably indium, aluminum, gold, silver and alloys thereof. The characteristics required of the metal matrix composite material substrate are (1) strength sufficient to withstand bonding, and (2) that there are no inclusions such as voids and foreign matters on the bonding surface and the bonding surface is flat. In order to satisfy the condition (1), the three-point bending strength of the metal matrix composite material substrate is 50 MPa or more, preferably 200 MPa or more. In order to satisfy the condition (2), the surface roughness (Ra) of the metal matrix composite material substrate is 0.01 to 0.5 μm, preferably 0.01 to 0.2 μm.

III−V族半導体結晶と金属基複合材料基板の接合は、必要に応じて加圧を行いながら、接合面を合わせた状態で加熱して行う。加熱温度は金属層の種類によって異なるが、一般に250℃〜550℃である。加圧の圧力は、2〜20MPaが一般的である。   The joining of the III-V semiconductor crystal and the metal matrix composite material substrate is performed by heating in a state where the joining surfaces are combined while applying pressure as necessary. Although heating temperature changes with kinds of metal layer, generally it is 250 to 550 degreeC. The pressure for pressurization is generally 2 to 20 MPa.

金属基複合材料基板は、III−V族半導体結晶と接合して用いる為、両材料の線熱膨張係数の差が小さいことが重要である。このため、金属基複合材料基板の温度40℃〜150℃の線熱膨張係数が4×10-6/K〜9×10-6/Kであることが好ましい。更に好ましくは、4×10-6/K〜7×10-6/Kである。金属基複合材料基板の温度40℃〜150℃での線熱膨張係数が4×10-6/K〜9×10-6/Kの範囲を外れた場合、接合するIII−V族半導体結晶又は成長基板との線熱膨張係数差により、接合後に反りが発生したり、LED発光素子として使用する際に接合層の剥離が発生したり、III−V族半導体結晶が割れてしまう場合があり好ましくない。 Since the metal matrix composite material substrate is used while being joined to a III-V group semiconductor crystal, it is important that the difference in linear thermal expansion coefficient between the two materials is small. Therefore, it is preferable linear thermal expansion coefficient of the temperature 40 ° C. to 150 DEG ° C. of metal matrix composite material substrate is 4 × 10 -6 / K~9 × 10 -6 / K. More preferably 4 × 10 -6 / K~7 × 10 -6 / K. If the linear thermal expansion coefficient at a temperature 40 ° C. to 150 DEG ° C. of metal matrix composite material substrate is out of the range of 4 × 10 -6 / K~9 × 10 -6 / K, III-V group bonded semiconductor crystal or Due to the difference in linear thermal expansion coefficient with the growth substrate, warpage may occur after bonding, peeling of the bonding layer may occur when used as an LED light emitting element, or the III-V group semiconductor crystal may be broken. Absent.

本発明の金属基複合材料基板は、LED発光素子の保持基板となる。当該基板を介して、III−V族半導体素子で発生する熱の大半を放熱することとなり、当該基板には高い放熱特性が要求される。このため、金属基複合材料基板の温度25℃での熱伝導率は、100〜300W/mKであることが好ましく、更に好ましくは、150〜300W/mKである。熱伝導率が100W/mK未満では、III−V族半導体素子で発生する熱を十分に放熱することができず、特に大電流を流す必要のある高出力LEDでは、素子の温度が上がり発光効率の低下、それに伴う素子寿命の低下が起こり好ましくない。一方、熱伝導率の上限値に関しては、特性面からの制約はないが、基板材料が極端に高価になってしまう。   The metal matrix composite material substrate of the present invention serves as a holding substrate for the LED light emitting element. Most of the heat generated in the III-V semiconductor device is radiated through the substrate, and the substrate is required to have high heat dissipation characteristics. For this reason, it is preferable that the heat conductivity in the temperature of 25 degreeC of a metal-matrix composite material board | substrate is 100-300 W / mK, More preferably, it is 150-300 W / mK. If the thermal conductivity is less than 100 W / mK, the heat generated in the III-V group semiconductor device cannot be sufficiently dissipated, and particularly in a high-power LED that needs to pass a large current, the temperature of the device increases and the luminous efficiency And the accompanying decrease in device life are undesirable. On the other hand, the upper limit value of the thermal conductivity is not limited in terms of characteristics, but the substrate material becomes extremely expensive.

放熱性の面から、金属基複合材料基板の板厚は薄い方が好ましい。一方で、III−V族半導体素子の保持及びLED発光素子作製時のハンドリング等に耐え得る強度が必要なため、一定の板厚が必要である。金属基複合材料基板の板厚は、0.05〜1.0mmが好ましく、0.05mm〜0.3mmがより好ましい。金属基複合材料基板の板厚が1mmを超えるとLED発光素子の放熱特性が低下して好ましくない。0.05mm未満であると、強度が弱く、ハンドリング性が得られず好ましくない。本発明の金属基複合材料基板は、III−V族半導体結晶と接合した後、必要に応じて研磨等により薄板化することもできる。 From the viewpoint of heat dissipation, it is preferable that the thickness of the metal matrix composite substrate is thin. On the other hand, a certain plate thickness is required because strength that can withstand the holding of the III-V group semiconductor element and the handling at the time of manufacturing the LED light emitting element is necessary. The plate thickness of the metal matrix composite material substrate is preferably 0.05 to 1.0 mm, more preferably 0.05 mm to 0.3 mm. If the thickness of the metal matrix composite substrate exceeds 1 mm, the heat dissipation characteristics of the LED light-emitting element deteriorate, which is not preferable. If it is less than 0.05 mm, the strength is weak and handling properties cannot be obtained, which is not preferable. The metal matrix composite material substrate of the present invention can be thinned by polishing or the like, if necessary, after bonding with a III-V semiconductor crystal.

本発明では、III−V族半導体結晶と金属基複合材料基板とを金属層を介して接合した後、単結晶成長基板を除去する。単結晶成長基板の除去は、基板側よりレーザー照射を行い除去する方法が一般的である。この他にも、研磨やエッチングにより単結晶成長基板を除去することもできる。単結晶成長基板を除去したIII−V族半導体結晶面は、必要に応じて表面の研磨、エッチングを行い所望する表面形状に仕上げた後、蒸着法、スパッタ法等の手法により、電極を形成する。更に、レーザーカット又はダイシングにて所定形状に切断して、LED発光素子を製造する。 In the present invention, the single crystal growth substrate is removed after the III-V group semiconductor crystal and the metal matrix composite substrate are bonded via the metal layer. In general, the single crystal growth substrate is removed by irradiating a laser from the substrate side. In addition, the single crystal growth substrate can be removed by polishing or etching. The III-V semiconductor crystal surface from which the single crystal growth substrate has been removed is subjected to surface polishing and etching as necessary to finish the surface shape as desired, and then electrodes are formed by a technique such as vapor deposition or sputtering. . Further, it is cut into a predetermined shape by laser cutting or dicing to manufacture an LED light emitting element.

本発明の金属基複合材料基板には、LED発光素子製造プロセスでの耐薬品特性が必要であり、具体的には、温度25℃の5規定のHCl溶液及び温度75℃の10規定のNaOH溶液にそれぞれ1分間浸漬したときの少なくとも一主面の単位面積当たりの重量減少量の合計が0.2mg/cm以下が好ましく、更に好ましくは、重量減少量が0.1mg/cm以下である。温度25℃の5規定のHCl溶液及び温度75℃の10規定のNaOH溶液にそれぞれ1分間浸漬したときの単位面積当たりの重量減少量が0.2mg/cmを超えると、金属基複合材料中の金属成分の溶出に伴う熱伝導率等の特性低下が発生すると共に、レーザーカット又はダイシングにて所定形状に切断する際にチッピングが発生し、LED発光素子の歩留まりが低下するために好ましくない。本発明の金属基複合材料基板の実使用においては、金属基複合材料基板の一主面は、III−V族半導体結晶と金属層を介して接合されるため、非接合面が、上述した耐薬品特性を満たすものであればよい。 The metal matrix composite material substrate of the present invention requires chemical resistance in the LED light emitting device manufacturing process. Specifically, a 5N HCl solution at a temperature of 25 ° C. and a 10N NaOH solution at a temperature of 75 ° C. The total weight reduction amount per unit area of at least one main surface when immersed in each of for 1 minute is preferably 0.2 mg / cm 2 or less, more preferably 0.1 mg / cm 2 or less. . If the weight loss per unit area when immersed in a 5N HCl solution at a temperature of 25 ° C and a 10N NaOH solution at a temperature of 75 ° C for 1 minute exceeds 0.2 mg / cm 2 , This is not preferable because a decrease in characteristics such as thermal conductivity due to elution of the metal component occurs, and chipping occurs when cutting into a predetermined shape by laser cutting or dicing, thereby reducing the yield of the LED light emitting elements. In actual use of the metal matrix composite material substrate of the present invention, one principal surface of the metal matrix composite material substrate is bonded to the III-V group semiconductor crystal via the metal layer, so that the non-bonded surface has the above-described resistance. Any material that satisfies the chemical characteristics may be used.

本発明の金属基複合材料は、基板自体が導電性を有している。このため、LEDを構成するIII−V族半導体結晶の両面に電極を形成することができる。サファイア基板等の絶縁材料を基板として用いる場合、上部のp型又はn型のIII−V族半導体結晶の一部をエッチング等で除去して、同一面側に電極を形成する必要がある。本発明では、LED発光素子の製造プロセスの低減が可能である。更に、p型又はn型の片方のIII−V族半導体結晶の一部をエッチング等で除去して電極形成する必要がないため、LED発光素子の単位面積当たりの発光量を増加させることができる。本発明の金属基複合材料の体積固有抵抗は、10-9〜10-5Ω・mが好ましい。体積固有抵抗が10-5Ω・mを超えると、発光効率の低下等が起こりこの好ましくない。体積固有抵抗の下限値は、特性面での制約はないが、材料組成から10-9Ω・m以上が一般的である。 In the metal matrix composite material of the present invention, the substrate itself has conductivity. For this reason, an electrode can be formed on both surfaces of the III-V semiconductor crystal which comprises LED. When an insulating material such as a sapphire substrate is used as the substrate, it is necessary to remove part of the upper p-type or n-type III-V group semiconductor crystal by etching or the like to form electrodes on the same surface side. In the present invention, the manufacturing process of the LED light emitting element can be reduced. Further, since it is not necessary to form an electrode by removing a part of the p-type or n-type III-V semiconductor crystal by etching or the like, the amount of light emission per unit area of the LED light-emitting element can be increased. . The volume resistivity of the metal matrix composite material of the present invention is preferably 10 −9 to 10 −5 Ω · m. When the volume resistivity exceeds 10 −5 Ω · m, the luminous efficiency is lowered, which is not preferable. The lower limit of the volume resistivity is not limited in terms of characteristics, but is generally 10 −9 Ω · m or more from the material composition.

金属基複合材料の製法は、含浸法と粉末冶金法の2種に大別される。このうち、熱伝導率等の特性面から実際に商品化されているのは、含浸法によるものである。含浸法にも種々の製法があり、常圧で行う方法と、高圧下で行う方法(高圧鍛造法)がある。高圧鍛造法には、溶湯鍛造法とダイキャスト法がある。本発明に好適な方法は、高圧下で含浸を行う高圧鍛造法であり、熱伝導率等の特性に優れた緻密な複合体を得るには溶湯鍛造法が好ましい。溶湯鍛造法は、高圧容器内に、セラミックス粉末又は成形体を装填し、これにアルミニウム合金等の溶湯を高温、高圧下で含浸させて複合材料を得る方法である。 The metal matrix composite manufacturing methods are roughly classified into two types: an impregnation method and a powder metallurgy method. Of these, what is actually commercialized in terms of characteristics such as thermal conductivity is the impregnation method. There are various impregnation methods, and there are a method performed at normal pressure and a method performed under high pressure (high pressure forging method). High pressure forging methods include a molten metal forging method and a die casting method. A method suitable for the present invention is a high-pressure forging method in which impregnation is performed under high pressure, and a molten forging method is preferable to obtain a dense composite having excellent characteristics such as thermal conductivity. The molten metal forging method is a method in which a ceramic material or a compact is loaded into a high-pressure vessel, and a molten material such as an aluminum alloy is impregnated at high temperature and high pressure to obtain a composite material.

以下、溶湯鍛造法による製法例を説明する。原料であるセラミックスは、熱伝導率が高く、線熱膨張係数の小さい材料を用いる必要がある。本発明では、炭化珪素を用いる。本発明の金属基複合材料は、炭化珪素とアルミニウム合金を複合化することにより、熱伝導率及び線熱膨張係数を調整することができる。本発明の金属基複合材料は、炭化珪素を50〜90体積%含有し、残部がアルミニウム合金からなる複合材料である。炭化珪素の含有量は、好ましくは70〜85体積%である。炭化珪素の含有量が50体積%未満では、得られる金属基複合材料の線熱膨張係数が大きくなり、LED発光素子用の基板材料として好ましくない。一方、炭化珪素の含有量が90体積%を超えると、複合化時にアルミニウム合金を十分に含浸させることができず、その結果、熱伝導率が低下してしまい好ましくない。 Hereafter, the example of a manufacturing method by the molten metal forging method is demonstrated. It is necessary to use a material having a high thermal conductivity and a low linear thermal expansion coefficient as the raw material ceramics. In the present invention, silicon carbide is used. The metal matrix composite material of the present invention can adjust the thermal conductivity and the linear thermal expansion coefficient by compounding silicon carbide and an aluminum alloy. The metal matrix composite material of the present invention is a composite material containing 50 to 90% by volume of silicon carbide and the balance being made of an aluminum alloy. The silicon carbide content is preferably 70 to 85% by volume. If the content of silicon carbide is less than 50% by volume, the linear thermal expansion coefficient of the obtained metal matrix composite material becomes large, which is not preferable as a substrate material for an LED light emitting element. On the other hand, if the silicon carbide content exceeds 90% by volume, the aluminum alloy cannot be sufficiently impregnated at the time of compounding, and as a result, the thermal conductivity is lowered, which is not preferable.

セラミックスは、粉末のまま複合化することもできるが、無機バインダーを用いて成形体を作製するか、焼結処理を行って10〜50体積%の気孔率を有する多孔体(以下プリフォームと云う)を作製して複合化することが好ましい。このプリフォームの気孔率の調整は、原料粉末の粒度調整、成形圧力、焼結条件等によって行う。プリフォームの成形方法は、プレス成形、鋳込み成形等の一般的なセラミックス粉末の成形方法で成形することができる。また、プリフォームは、必要に応じて平板状や円柱状に加工して用いる。更に、本発明では、板厚が0.05〜1.0mmの板状に加工するため、3点曲げ強度が50MPa以上のプリフォームを用いることが好ましい。プリフォームの強度が低いと、研削加工等で板厚を0.05〜1.0mmの板状に加工する際に、反りが発生することがある。 Ceramics can be compounded as a powder, but a porous body (hereinafter referred to as a preform) having a porosity of 10 to 50% by volume by forming a molded body using an inorganic binder or by performing a sintering process. ) Is preferably combined. The porosity of the preform is adjusted by adjusting the particle size of the raw material powder, molding pressure, sintering conditions, and the like. The preform can be molded by a general ceramic powder molding method such as press molding or cast molding. Further, the preform is processed into a flat plate shape or a cylindrical shape as needed. Furthermore, in the present invention, it is preferable to use a preform having a three-point bending strength of 50 MPa or more in order to process into a plate shape having a plate thickness of 0.05 to 1.0 mm. When the strength of the preform is low, warping may occur when the plate thickness is processed to a plate shape of 0.05 to 1.0 mm by grinding or the like.

プリフォームは、離型剤を塗布した治具等で固定し、複数個を積層してボルト−ナット等で連結して積層体とする。プリフォームを固定する治具は、鉄製や黒鉛製の治具を用いることができる。また、個々の治具は、離型剤を塗布した離型板を挟んで積層し、積層体とすることもできる。離型板としては、ステンレス板やセラミックス板を使用することがで、溶湯鍛造法にてアルミニウム合金が含浸されない緻密体であれば特に制限はない。また、治具や離型板に塗布する離型剤については、黒鉛、窒化ホウ素、アルミナ等の離型剤が使用できる。更に、好ましくは、治具や離型板表面をアルミナゾル等によりコーティングした後、離型剤を塗布することが好ましい。   The preform is fixed with a jig or the like coated with a release agent, and a plurality of layers are laminated and connected with bolts and nuts to form a laminated body. As a jig for fixing the preform, an iron or graphite jig can be used. Moreover, each jig | tool can also be laminated | stacked on both sides of the release plate which apply | coated the mold release agent, and it can also be set as a laminated body. As the release plate, a stainless plate or a ceramic plate can be used, and there is no particular limitation as long as it is a dense body that is not impregnated with an aluminum alloy by a molten metal forging method. Moreover, about the mold release agent apply | coated to a jig | tool or a mold release plate, mold release agents, such as graphite, boron nitride, an alumina, can be used. Furthermore, it is preferable to apply a release agent after coating the surface of a jig or a release plate with alumina sol or the like.

得られた積層体は、温度600〜800℃で加熱後、高圧容器内に1個または2個以上配置し、積層体の温度低下を防ぐために出来るだけ速やかに、融点以上に加熱したアルミニウム合金の溶湯を給湯して30MPa以上の圧力で加圧し、アルミニウム合金をプリフォームの空隙中に含浸させることで、金属基複合材料が得られる。なお、含浸時の歪み除去の目的で、含浸品のアニール処理を行うこともある。   The obtained laminate is heated at a temperature of 600 to 800 ° C., and one or two or more are placed in a high-pressure vessel, and the aluminum alloy is heated to the melting point or more as quickly as possible to prevent the temperature of the laminate from decreasing. A metal matrix composite material is obtained by supplying molten metal and pressurizing it with a pressure of 30 MPa or more, and impregnating the aluminum alloy in the voids of the preform. For the purpose of removing distortion during impregnation, the impregnated product may be annealed.

積層体の加熱温度は、温度600℃未満では、アルミニウム合金の複合化が不十分となり、得られる金属基複合材料の熱伝導率等の特性が低下してしまう。また、加熱温度が800℃を超えると、アルミニウム合金との複合化時に、セラミックス粉末の表面の酸化が起こり、得られる金属基複合材料の熱伝導率等の特性が低下してしまう。更に、含浸時の圧力に関しては、30MPa未満では、アルミニウム合金の複合化が不十分となり、得られる金属基複合材料の熱伝導率等の特性が低下してしまい好ましくない。好ましくは、含浸圧力は、50MPa以上である。   When the heating temperature of the laminated body is less than 600 ° C., the aluminum alloy is not sufficiently combined, and the properties such as the thermal conductivity of the obtained metal matrix composite material are deteriorated. On the other hand, when the heating temperature exceeds 800 ° C., the surface of the ceramic powder is oxidized at the time of compounding with the aluminum alloy, and the properties such as thermal conductivity of the obtained metal matrix composite material are deteriorated. Furthermore, regarding the pressure at the time of impregnation, if it is less than 30 MPa, the composite of the aluminum alloy becomes insufficient, and the properties such as the thermal conductivity of the resulting metal matrix composite material are undesirably lowered. Preferably, the impregnation pressure is 50 MPa or more.

本発明の金属基複合材料中のアルミニウム合金は、アルミニウムを70質量%以上含有するアルミニウム合金である。アルミニウムの含有量が70質量%未満では、アルミニウム合金の熱伝導率が低下し好ましくない。また、アルミニウム合金は、含浸時にプリフォームの空隙内に十分に浸透するために融点がなるべく低いことが好ましい。このようなアルミニウム合金として、例えばシリコンを5〜25質量%含有したアルミニウム合金が挙げられる。更にマグネシウムを含有させることは、セラミックス粒子と金属部分との結合がより強固になり好ましい。アルミニウム合金中のアルミニウム、シリコン、マグネシウム以外の金属成分に関しては、極端に特性が変化しない範囲であれば特に制限はなく、例えば銅等が含まれていても良い。 The aluminum alloy in the metal matrix composite of the present invention is an aluminum alloy containing 70% by mass or more of aluminum. If the aluminum content is less than 70% by mass, the thermal conductivity of the aluminum alloy is lowered, which is not preferable. The aluminum alloy preferably has a melting point as low as possible in order to sufficiently penetrate into the voids of the preform when impregnated. Examples of such an aluminum alloy include an aluminum alloy containing 5 to 25% by mass of silicon. Further, it is preferable to contain magnesium because the bond between the ceramic particles and the metal portion becomes stronger. The metal components other than aluminum, silicon, and magnesium in the aluminum alloy are not particularly limited as long as the characteristics do not change extremely. For example, copper or the like may be included.

次に、得られた金属基複合材料の加工方法の例を説明する。得られた金属基複合材料が円柱状の形状である場合、円筒研削盤等によりダイヤモンド砥石を用いて所定寸法に外形加工した後、マルチワイヤーソー、内周刃切断機等で最終形状より0.1〜0.5mm程度厚い板厚に切断加工する。切断方法については、特に限定はないが、切断代が少なく量産性に適したマルチワイヤーソーでの切断が好適である。マルチワイヤーソーでの切断は、遊離砥粒タイプ及びダイヤモンド等の研削材を付着したワイヤーを用いた加工が採用できる。切断加工後の板状の金属基複合材料は、両面研削盤、ロータリー研削盤、平面研削盤、ラップ盤等の加工機で、板厚が0.05〜1.0mm、且つ、表面粗さ(Ra)が0.01〜1μmになるように面加工を行う。面加工に際しては、表面粗さを、更に小さくするために、両面研削盤、ロータリー研削盤、平面研削盤等で面加工した後、ラップ盤で仕上げ加工を行うこともある。また、LED発光素子の製造工程で、本発明の金属基複合材料基板をIII−V族半導体結晶と接合後に研磨加工する場合は、片面(接合面)のみに、所定の表面粗さまで面加工を行うこともある。 Next, an example of a method for processing the obtained metal matrix composite material will be described. When the obtained metal matrix composite has a columnar shape, the outer shape is processed to a predetermined size using a diamond grindstone with a cylindrical grinder or the like, and then the final shape is reduced to 0. Cut to a thickness of about 1 to 0.5 mm. The cutting method is not particularly limited, but it is preferable to cut with a multi-wire saw having a small cutting margin and suitable for mass production. Cutting with a multi-wire saw can employ processing using a loose abrasive type and a wire to which an abrasive such as diamond is attached. The plate-like metal matrix composite after the cutting process is a processing machine such as a double-sided grinding machine, a rotary grinding machine, a surface grinding machine, a lapping machine, and has a plate thickness of 0.05 to 1.0 mm and a surface roughness ( Surface processing is performed so that Ra) becomes 0.01 to 1 μm. In the surface processing, in order to further reduce the surface roughness, the surface processing may be performed by a lapping machine after the surface processing is performed by a double-side grinding machine, a rotary grinding machine, a surface grinding machine, or the like. In addition, when the metal matrix composite material substrate of the present invention is polished after bonding to the III-V semiconductor crystal in the manufacturing process of the LED light emitting element, surface processing is performed only on one side (bonding surface) to a predetermined surface roughness. Sometimes.

得られた金属基複合材料が板状である場合、両面研削盤、ロータリー研削盤、平面研削盤、ラップ盤等の加工機で、板厚が0.05〜1.0mm、且つ、表面粗さ(Ra)が0.01〜1μmになるように面加工を行った後、ウォータージェット加工機、放電加工機、レーザー加工機、ダイシングマシン、円筒研削盤等で所定形状に外周加工を行う。得られた金属基複合材料が板状である場合、先にウォータージェット加工機、放電加工機、レーザー加工機、ダイシングマシン、円筒研削盤等で所定形状に外周加工を行い、その後両面研削盤、ロータリー研削盤、平面研削盤、ラップ盤等の加工機で、板厚が0.05〜1.0mm、且つ、表面粗さ(Ra)が0.01〜1μmになるように面加工を行うこともできる。 When the obtained metal matrix composite is plate-like, the thickness is 0.05 to 1.0 mm and the surface roughness is a processing machine such as a double-side grinding machine, a rotary grinding machine, a surface grinding machine, or a lapping machine. Surface processing is performed so that (Ra) becomes 0.01 to 1 μm, and then outer periphery processing is performed in a predetermined shape by a water jet processing machine, an electric discharge processing machine, a laser processing machine, a dicing machine, a cylindrical grinding machine, or the like. When the obtained metal matrix composite is plate-shaped, the outer periphery is processed into a predetermined shape with a water jet machine, electric discharge machine, laser machine, dicing machine, cylindrical grinder, etc., and then a double-side grinder, Surface processing is performed with a processing machine such as a rotary grinder, a surface grinder, or a lapping machine so that the plate thickness is 0.05 to 1.0 mm and the surface roughness (Ra) is 0.01 to 1 μm. You can also.

次に、板状の金属基複合材料は、表面を洗浄後、表面に厚みが0.05〜2.0μmのアルミニウム層を形成する。アルミニウム層厚みが0.05μm未満では、アルミニウム層未着部分が発生または、めっきの前処理等でアルミニウム層が反応し、ピンホールの発生により、未メッキ部分が生じ、耐薬品性が低下して好ましくない。一方、アルミニウム層厚みが2.0μmを超えると、アルミニウム層と金属基複合材料の線熱膨張係数が異なる為、両材料の熱膨張差による応力の発生、剥離の発生があり好ましくない。アルミニウム層厚みに関しては、より好ましくは0.3〜0.6μmである。 Next, after washing the surface of the plate-like metal matrix composite material, an aluminum layer having a thickness of 0.05 to 2.0 μm is formed on the surface. If the thickness of the aluminum layer is less than 0.05 μm, an unattached part of the aluminum layer is generated, or the aluminum layer reacts during plating pretreatment, etc., and an unplated part is generated due to the generation of pinholes, resulting in reduced chemical resistance. It is not preferable. On the other hand, if the aluminum layer thickness exceeds 2.0 μm, the linear thermal expansion coefficients of the aluminum layer and the metal matrix composite material are different, so that stress and peeling occur due to the difference in thermal expansion between the two materials. The aluminum layer thickness is more preferably 0.3 to 0.6 μm.

アルミニウム層の形成方法としては、蒸着法又は、スパッタリング法により厚み0.05〜2.0μmに形成する。 As a formation method of an aluminum layer, it forms in 0.05-2.0 micrometers in thickness by a vapor deposition method or sputtering method.

蒸着法では、外周部へのアルミニウム層形成がされにくく、予め外周部にめっき処理等を施すことで、より耐薬品性を向上させることが出来る。 In the vapor deposition method, it is difficult to form an aluminum layer on the outer peripheral portion, and chemical resistance can be further improved by performing a plating treatment or the like on the outer peripheral portion in advance.

アルミニウム層を構成するアルミニウム合金としては、純アルミニウムまたはアルミニウムを70質量%以上含有するアルミニウム合金である。アルミニウムの含有量が70質量%未満では、ジンケート処理による十分な密着のあるNiめっきが行えなくなるため好ましくない。アルミニウム合金中のアルミニウム、シリコン以外の金属成分に関しては、極端に特性が変化しない範囲であれば特に制限はなく、例えばマグネシウム、銅等が含まれていても良い。 The aluminum alloy constituting the aluminum layer is pure aluminum or an aluminum alloy containing 70% by mass or more of aluminum. If the aluminum content is less than 70% by mass, Ni plating with sufficient adhesion by the zincate treatment cannot be performed, which is not preferable. The metal components other than aluminum and silicon in the aluminum alloy are not particularly limited as long as the characteristics do not change extremely. For example, magnesium, copper, and the like may be included.

また、本発明では、金属基複合材料基板とアルミニウム層との密着性を向上させるため窒素、アルゴン、水素、ヘリウム又は真空雰囲気中で、温度460〜650℃で1分間以上加熱処理を行う。酸化性雰囲気下で処理を行うと、表面に酸化膜が形成され、その後のめっき不良が生じるため、好ましくない。温度は好ましくは、480〜570℃である。温度が460℃以下では、金属基複合材料基板とアルミニウム層の密着が悪くなってしまい、650℃以上では、アルミニウム層が溶解してしまい、表面粗さが悪化してしまい好ましくない。   Moreover, in this invention, in order to improve the adhesiveness of a metal matrix composite material substrate and an aluminum layer, heat processing are performed at a temperature of 460-650 degreeC for 1 minute or more in nitrogen, argon, hydrogen, helium, or a vacuum atmosphere. When the treatment is performed in an oxidizing atmosphere, an oxide film is formed on the surface and subsequent plating defects occur, which is not preferable. The temperature is preferably 480-570 ° C. When the temperature is 460 ° C. or lower, the adhesion between the metal matrix composite material substrate and the aluminum layer is deteriorated. When the temperature is 650 ° C. or higher, the aluminum layer is dissolved and the surface roughness is deteriorated.

次に、アルミニウム層を形成させた金属基複合材料基板は、表面に無電解めっき法又は電気めっき法により、厚み0.5〜5.0μmのNiめっき層、及び厚み0.05〜2.0μmの金めっき層を形成する。Niめっき層厚みが0.5μm以下では、ピンホールが発生し、耐薬品性が低下して好ましくない。一方、Niめっき層厚みが5.0μm以上では、熱伝導率特性の低下や、電気抵抗の増加等が生じ、好ましくない。金めっき層厚みが、0.05μm以下では、ピンホールが発生し耐薬品性が低下して好ましくない。一方金めっき層厚みが2.0μm以上では、コストが上がり好ましくない。   Next, the metal matrix composite material substrate on which the aluminum layer is formed has a Ni plating layer having a thickness of 0.5 to 5.0 μm and a thickness of 0.05 to 2.0 μm by electroless plating or electroplating on the surface. The gold plating layer is formed. When the Ni plating layer thickness is 0.5 μm or less, pinholes are generated and chemical resistance is lowered, which is not preferable. On the other hand, when the Ni plating layer thickness is 5.0 μm or more, the thermal conductivity characteristics are lowered and the electric resistance is increased. When the thickness of the gold plating layer is 0.05 μm or less, pinholes are generated and chemical resistance is lowered, which is not preferable. On the other hand, when the thickness of the gold plating layer is 2.0 μm or more, the cost increases, which is not preferable.

めっきの前処理としては、ジンケート処理、パラジウム処理等があるが、アルミニウムとの密着力のあるめっきが可能なジンケート処理がより好ましい。   Examples of the pretreatment for plating include zincate treatment, palladium treatment, and the like, but zincate treatment capable of plating with adhesion to aluminum is more preferable.

または、アルミニウム層を形成させ、加熱処理を施した金属基複合材料基板表面に、蒸着法又はスパッタリング法により0.1〜2.0μmの金等の金属層を形成させる。金属層は、工程内で使用される薬液に反応しないものであれば制限は無い。
Alternatively, an aluminum layer is formed, and a metal layer of 0.1 to 2.0 μm of gold or the like is formed on the surface of the metal matrix composite material substrate that has been subjected to heat treatment by a vapor deposition method or a sputtering method. If a metal layer does not react with the chemical | medical solution used in a process, there will be no restriction | limiting.

(実施例1)
〈LED発光素子用保持基板の作製〉
炭化珪素(以下、SiCという)粉末A(大平洋ランダム社製、NG−60、平均粒子径200μm)1800g、炭化珪素粉末B(大平洋ランダム社製、NG−600、平均粒子径20μm)900g、炭化珪素粉末C(大平洋ランダム社製、NC−6000、平均粒子径2μm)300g、及び成形バインダー(メチルセルロース、信越化学工業社製、「メトローズ」)150gを秤取し、攪拌混合機で30分間混合した後、Φ55mm×110mmの寸法の円柱状に面圧10MPaでプレス成形した後、成形圧力100MPaでCIP成形して成形体を作製した。
Example 1
<Preparation of LED light-emitting element holding substrate>
1800 g of silicon carbide (hereinafter referred to as SiC) powder A (manufactured by Taiyo Random Co., Ltd., NG-60, average particle diameter 200 μm), silicon carbide powder B (manufactured by Taiyo Random Co., Ltd., NG-600, average particle diameter 20 μm) 900 g, 300 g of silicon carbide powder C (manufactured by Taiyo Random Co., Ltd., NC-6000, average particle size 2 μm) and 150 g of a molded binder (methyl cellulose, manufactured by Shin-Etsu Chemical Co., Ltd., “Metroses”) are weighed and stirred for 30 minutes. After mixing, it was press-molded into a cylindrical shape with a size of Φ55 mm × 110 mm at a surface pressure of 10 MPa, and then CIP-molded at a molding pressure of 100 MPa to produce a compact.

得られた成形体を、大気雰囲気中、温度600℃で2時間脱脂処理後、アルゴン雰囲気下、温度2100℃で2時間焼成して、気孔率が20体積%のSiCプリフォームを作製した。得られたSiCプリフォームを、マシニングセンターでダイヤモンド製の砥石を用いて、外形寸法がΦ52mm×100mmの形状に加工した。さらに、研削加工により3点曲げ強度測定用試験体(3mm×4mm×40mm)を作製し、3点曲げ強度を測定した。3点曲げ強度は120MPaであった。   The obtained molded body was degreased in an air atmosphere at a temperature of 600 ° C. for 2 hours and then calcined in an argon atmosphere at a temperature of 2100 ° C. for 2 hours to produce a SiC preform having a porosity of 20% by volume. The obtained SiC preform was processed into a shape having an outer dimension of Φ52 mm × 100 mm using a diamond grindstone at a machining center. Further, a three-point bending strength measurement specimen (3 mm × 4 mm × 40 mm) was prepared by grinding, and the three-point bending strength was measured. The three-point bending strength was 120 MPa.

得られたSiCプリフォームに窒化硼素の離型剤を塗布し、外形寸法:70mm×70mm×100mm(内径寸法:Φ52.5mm×100mm)の筒状の黒鉛治具に挿入して構造体とした。次に、70mm×100mm×0.8mmtのステンレス板に黒鉛離型材を塗布して離型板を作製し、140.8mm×140.8mm×100mmの形状となる様に構造体4個を離型板を挟んで積層して、両側に12mm厚みの鉄板を配置して、M10のボルト8本で連結して一つの積層体とした。次に、積層体を電気炉で温度700℃に予備加熱した後、あらかじめ加熱しておいた内径Φ400mm×300mmHのプレス型内に収め、シリコンを12質量%及びマグネシウムを1質量%含有するアルミニウム合金の溶湯(温度:800℃)を注ぎ、100MPaの圧力で25分間加圧してSiCプリフォームにアルミニウム合金を含浸させた。室温まで冷却した後、湿式バンドソーにて離型板の形状に沿って切断し、離型板を剥がし、旋盤で黒鉛治具部分を除去してΦ52mm×100mm形状の金属基複合材料を得た。得られた金属基複合材料は、含浸時の歪み除去のために530℃の温度で3時間アニール処理を行った。 A boron nitride mold release agent was applied to the obtained SiC preform and inserted into a cylindrical graphite jig having an outer dimension of 70 mm × 70 mm × 100 mm (inner diameter: Φ52.5 mm × 100 mm) to obtain a structure. . Next, a release plate is prepared by applying a graphite release material to a 70 mm × 100 mm × 0.8 mmt stainless plate, and the four structures are released so as to have a shape of 140.8 mm × 140.8 mm × 100 mm. Laminated with the plates sandwiched, 12 mm thick iron plates were placed on both sides and connected with 8 M10 bolts to form one laminate. Next, the laminate is preheated to a temperature of 700 ° C. in an electric furnace and then placed in a pre-heated press mold having an inner diameter of Φ400 mm × 300 mmH, and contains 12% by mass of silicon and 1% by mass of magnesium. The molten metal (temperature: 800 ° C.) was poured and pressurized at 100 MPa for 25 minutes to impregnate the SiC preform with the aluminum alloy. After cooling to room temperature, it was cut along the shape of the release plate with a wet band saw, the release plate was peeled off, and the graphite jig part was removed with a lathe to obtain a metal matrix composite material having a shape of Φ52 mm × 100 mm. The obtained metal matrix composite material was annealed at a temperature of 530 ° C. for 3 hours in order to remove strain at the time of impregnation.

次に、得られた金属基複合材料から、研削加工により熱膨張係数測定用試験体(直径3mm長さ10mm)、熱伝導率測定用試験体(25mm×25mm×1mm)、3点曲げ強度測定用試験体(3mm×4mm×40mm)、体積固有抵抗測定用試験体(50mm×50mm×5mm)を作製した。それぞれの試験体を用いて、温度25℃〜150℃の熱膨張係数を熱膨張計(セイコー電子工業社製;TMA300)で、温度25℃での熱伝導率をレーザーフラッシュ法(アルバック社製;TC3000)で、3点曲げ強度を曲げ強度試験機で、体積固有抵抗を4端子法(JIS R1637に準拠)で測定した。その結果、温度40℃〜150℃の熱膨張係数は4.9×10−6/K、温度25℃での熱伝導率は250W/mK、3点曲げ強度は350MPa、体積固有抵抗は8×10−7Ω・mであった。 Next, from the obtained metal matrix composite material, a thermal expansion coefficient measurement specimen (diameter 3 mm length 10 mm), a thermal conductivity measurement specimen (25 mm × 25 mm × 1 mm), and three-point bending strength measurement by grinding. Test specimens (3 mm × 4 mm × 40 mm) and volume resistivity test specimens (50 mm × 50 mm × 5 mm) were produced. Using each test specimen, the thermal expansion coefficient at a temperature of 25 ° C. to 150 ° C. was measured with a thermal dilatometer (manufactured by Seiko Denshi Kogyo; TMA300), and the thermal conductivity at a temperature of 25 ° C. was measured with a laser flash method (manufactured by ULVAC; TC3000), a three-point bending strength was measured with a bending strength tester, and a volume resistivity was measured with a four-terminal method (based on JIS R1637). As a result, the thermal expansion coefficient at a temperature of 40 ° C. to 150 ° C. is 4.9 × 10 −6 / K, the thermal conductivity at a temperature of 25 ° C. is 250 W / mK, the three-point bending strength is 350 MPa, and the volume resistivity is 8 ×. 10 −7 Ω · m.

金属基複合材料を、円筒研削盤でダイヤモンドの砥石を用いて、Φ50.8mm×100mmの円柱形状に外周加工を行った。得られた円柱形状の金属基複合材料を、マルチワイヤーソーでダイヤモンド砥粒を用い、切断切り込み速度0.2mm/minで、板厚0.3mmの円板状に切断加工を行った。円板状の金属基複合材料を、両面研削盤で#600のダイヤモンド砥石を用いて板厚0.22mmに研削加工した後、ラップ盤でダイヤモンドの砥粒を用いて、板厚0.2mmでまで研磨加工を行った後、純水中、次にイソプロピルアルコール中で超音波洗浄を行い、乾燥して金属基複合材料基板を作製した。表面粗さ(Ra)を表面粗さ計で測定した結果、Ra0.05μmであった。   The outer circumference of the metal matrix composite material was processed into a cylindrical shape of Φ50.8 mm × 100 mm using a diamond grindstone with a cylindrical grinder. The obtained columnar metal matrix composite material was cut into a disk shape having a plate thickness of 0.3 mm at a cutting cutting speed of 0.2 mm / min using diamond abrasive grains with a multi-wire saw. The disk-shaped metal matrix composite material is ground to a plate thickness of 0.22 mm using a # 600 diamond grindstone with a double-side grinding machine, and then the diamond abrasive grains are used with a lapping machine to obtain a plate thickness of 0.2 mm. Then, ultrasonic cleaning was performed in pure water and then in isopropyl alcohol, followed by drying to produce a metal matrix composite substrate. As a result of measuring the surface roughness (Ra) with a surface roughness meter, it was Ra 0.05 μm.

次に、この金属基複合材料を、蒸着法により複合材料の表面に0.4μm厚のアルミニウム層を形成し、窒素雰囲気下で500℃で30分間加熱処理を行った。次にアルミニウム層を形成させた金属基複合材料基板に、無電解Ni−P及び電気金めっきを行い、表面に1.3μm(Ni-P:1μm+Au:0.3μm)のめっき層を形成した。得られた金属基複合材料基板の特性値はめっき層金属の物性値とめっき前の金属基複合材料基板の物性値の厚み比率から計算により算出した。その結果を表1に示す。また、めっき膜形成後の金属基複合材料を、温度25℃の5規定のHCl溶液及び温度75℃の10規定のNaOH溶液に1分間浸漬し、個々の処理による単位面積当たりの重量減少量を測定した。更に、めっき後の金属基複合材料基板の表面粗さ(Ra)を表面粗さ計で測定した。その結果を表2に示す。   Next, an aluminum layer having a thickness of 0.4 μm was formed on the surface of the metal matrix composite material by vapor deposition, and heat treatment was performed at 500 ° C. for 30 minutes in a nitrogen atmosphere. Next, electroless Ni—P and electrogold plating were performed on the metal matrix composite material substrate on which the aluminum layer was formed, to form a plating layer of 1.3 μm (Ni—P: 1 μm + Au: 0.3 μm) on the surface. The characteristic value of the obtained metal matrix composite material substrate was calculated from the thickness ratio of the physical property value of the plating layer metal and the physical property value of the metal matrix composite material substrate before plating. The results are shown in Table 1. Further, the metal matrix composite material after the plating film is formed is immersed in a 5N HCl solution at a temperature of 25 ° C. and a 10N NaOH solution at a temperature of 75 ° C. for 1 minute, and the amount of weight reduction per unit area by each treatment is determined. It was measured. Furthermore, the surface roughness (Ra) of the metal matrix composite material substrate after plating was measured with a surface roughness meter. The results are shown in Table 2.

Figure 0005881280
Figure 0005881280

Figure 0005881280
Figure 0005881280

〈LED発光素子の作製〉
板厚が0.5mmの単結晶サファイア基板上に、アンモニアガスとトリメチルガリウムを使用し、キャリアガスとして水素と窒素の混合ガスを用いて、温度1100℃でMOCVD法により、(1)〜(4)のGaN単結晶を4μmの厚さに成長させた。図1に構造を示す。
(1)n型GaNバッファー層 2
(2)n型GaN半導体層 3
(3)GaN活性層(発光層) 4
(4)p型GaN半導体層 5
<Production of LED light-emitting element>
On a single crystal sapphire substrate having a thickness of 0.5 mm, ammonia gas and trimethyl gallium are used, and a mixed gas of hydrogen and nitrogen is used as a carrier gas, and the temperature is 1100 ° C. by MOCVD (1) to (4 ) Single crystal GaN was grown to a thickness of 4 μm. FIG. 1 shows the structure.
(1) n-type GaN buffer layer 2
(2) n-type GaN semiconductor layer 3
(3) GaN active layer (light emitting layer) 4
(4) p-type GaN semiconductor layer 5

次に、p型GaN半導体層の表面に、真空蒸着法で、銀/錫合金を2μmの厚さに蒸着した。一方、LED発光素子用保持基板の片側の表面にも、同様の方法で銀/錫合金を2μmの厚さに蒸着した。両基板を銀/錫合金層が接する図1の様に積層し、温度400℃で、5MPaの加圧下で5分間保持し接合した。得られた接合体は、サファイア基板側より、出力40MW/cm2となるように、窒素ガスレーザーを照射し、サファイア基板を剥離した。レーザー照射により、n型GaNバッファー層がGaと窒素に分解されて、発生した窒素ガスによりサファイア基板を剥離することができた。 Next, a silver / tin alloy was deposited to a thickness of 2 μm on the surface of the p-type GaN semiconductor layer by vacuum deposition. On the other hand, a silver / tin alloy was deposited to a thickness of 2 μm on the surface of one side of the LED light emitting element holding substrate in the same manner. Both substrates were laminated as shown in FIG. 1 where the silver / tin alloy layer was in contact, and held at a temperature of 400 ° C. under a pressure of 5 MPa for 5 minutes for bonding. The obtained bonded body was irradiated with a nitrogen gas laser from the sapphire substrate side so that the output was 40 MW / cm 2, and the sapphire substrate was peeled off. The n-type GaN buffer layer was decomposed into Ga and nitrogen by laser irradiation, and the sapphire substrate could be peeled off by the generated nitrogen gas.

その後、表面に露出したn型GaNバッファー層をエッチングにより除去した後、酸化インジウム錫の透明導電体層を形成した。その後、n型電極としてAuを蒸着して、ダイシングにより、個々のLED発光素子とした。得られたLED発光素子は、保持基板からの放熱により素子温度の上昇による発光効率の低下がおさえられることを確認した。 Thereafter, the n-type GaN buffer layer exposed on the surface was removed by etching, and then a transparent conductor layer of indium tin oxide was formed. Then, Au was vapor-deposited as an n-type electrode, and it was set as each LED light emitting element by dicing. It was confirmed that the obtained LED light emitting element was able to suppress a decrease in luminous efficiency due to an increase in element temperature due to heat radiation from the holding substrate.

(実施例2〜8、比較例1〜3)
実施例1で作製したΦ50.8mm×0.2mmtの金属基複合材料に蒸着法又はスパッタリング法によりアルミニウム層を0.4μm形成し、窒素雰囲気下で500℃で30分間加熱処理をしたアルミニウム形成金属基複合材料の表面に表4に示すめっき膜を形成した。得られた金属基複合材料の特性値を表3に示す。また、めっき膜形成後の金属基複合材料を、温度25℃の5規定のHCl溶液及び温度75℃の10規定のNaOH溶液に1分間浸漬し、個々の処理による単位面積当たりの重量減少量を測定した。更に、めっき膜形成後の金属基複合材料の表面粗さ(Ra)を表面粗さ計で測定した。その結果を表4に示す。
(Examples 2-8, Comparative Examples 1-3)
An aluminum-forming metal obtained by forming 0.4 μm of an aluminum layer on the metal matrix composite material of Φ50.8 mm × 0.2 mmt produced in Example 1 by vapor deposition or sputtering, and performing heat treatment at 500 ° C. for 30 minutes in a nitrogen atmosphere. A plating film shown in Table 4 was formed on the surface of the base composite material. Table 3 shows the characteristic values of the obtained metal matrix composite material. Further, the metal matrix composite material after the plating film is formed is immersed in a 5N HCl solution at a temperature of 25 ° C. and a 10N NaOH solution at a temperature of 75 ° C. for 1 minute, and the amount of weight reduction per unit area by each treatment is determined. It was measured. Further, the surface roughness (Ra) of the metal matrix composite material after the plating film was formed was measured with a surface roughness meter. The results are shown in Table 4.

Figure 0005881280
Figure 0005881280

Figure 0005881280
Figure 0005881280

(実施例9〜12、比較例4)
実施例1で作製したΦ50.8mm×0.2mmtの金属基複合材料に蒸着法によりアルミニウム層を0.4μm形成し、窒素雰囲気下で500℃で30分間加熱処理をしたアルミニウム形成金属基複合材料の表面に表6に示す金属層を形成した。得られた金属基複合材料の特性値を表5に示す。また、めっき膜形成後の金属基複合材料を、温度25℃の5規定のHCl溶液及び温度75℃の10規定のNaOH溶液に1分間浸漬し、個々の処理による単位面積当たりの重量減少量を測定した。更に、めっき膜形成後の金属基複合材料の表面粗さ(Ra)を表面粗さ計で測定した。その結果を表6に示す。
(Examples 9 to 12, Comparative Example 4)
An aluminum-forming metal matrix composite material obtained by forming 0.4 μm of an aluminum layer on the metal matrix composite material of Φ50.8 mm × 0.2 mmt produced in Example 1 by vapor deposition and performing heat treatment at 500 ° C. for 30 minutes in a nitrogen atmosphere. The metal layer shown in Table 6 was formed on the surface. Table 5 shows the characteristic values of the obtained metal matrix composite. Further, the metal matrix composite material after the plating film is formed is immersed in a 5N HCl solution at a temperature of 25 ° C. and a 10N NaOH solution at a temperature of 75 ° C. for 1 minute, and the amount of weight reduction per unit area by each treatment is determined. It was measured. Further, the surface roughness (Ra) of the metal matrix composite material after the plating film was formed was measured with a surface roughness meter. The results are shown in Table 6.

Figure 0005881280
Figure 0005881280

Figure 0005881280
Figure 0005881280

(実施例13〜19、比較例5〜7)
〈LED発光素子用保持基板の作製〉
炭化珪素(以下、SiCという)粉末A(大平洋ランダム社製、NG−60、平均粒子径200μm)1800g、炭化珪素粉末B(大平洋ランダム社製、NG−600、平均粒子径20μm)900g、炭化珪素粉末C(大平洋ランダム社製、NC−6000、平均粒子径2μm)300g、及び成形バインダー(メチルセルロース、信越化学工業社製、「メトローズ」)150gを秤取し、攪拌混合機で30分間混合した後、Φ55mm×110mmの寸法の円柱状に面圧30MPaでプレス成形して成形体を作製した。
(Examples 13 to 19, Comparative Examples 5 to 7)
<Preparation of LED light-emitting element holding substrate>
1800 g of silicon carbide (hereinafter referred to as SiC) powder A (manufactured by Taiyo Random Co., Ltd., NG-60, average particle diameter 200 μm), silicon carbide powder B (manufactured by Taiyo Random Co., Ltd., NG-600, average particle diameter 20 μm) 900 g, 300 g of silicon carbide powder C (manufactured by Taiyo Random Co., Ltd., NC-6000, average particle size 2 μm) and 150 g of a molded binder (methyl cellulose, manufactured by Shin-Etsu Chemical Co., Ltd., “Metroses”) are weighed and stirred for 30 minutes. After mixing, it was press-molded at a surface pressure of 30 MPa into a cylindrical shape with a size of Φ55 mm × 110 mm to produce a molded body.

得られた成形体を、大気雰囲気中、温度600℃で2時間脱脂処理後、アルゴン雰囲気下、温度1950℃で2時間焼成して、気孔率が30体積%のSiCプリフォームを作製した。得られたSiCプリフォームを、マシニングセンターでダイヤモンド製の砥石を用いて、外形寸法がΦ52mm×100mmの形状に加工した。さらに、研削加工により3点曲げ強度測定用試験体(3mm×4mm×40mm)を作製し、3点曲げ強度を測定した。3点曲げ強度は80MPaであった。   The obtained molded body was degreased for 2 hours at a temperature of 600 ° C. in an air atmosphere, and then fired for 2 hours at a temperature of 1950 ° C. in an argon atmosphere to produce a SiC preform having a porosity of 30% by volume. The obtained SiC preform was processed into a shape having an outer dimension of Φ52 mm × 100 mm using a diamond grindstone at a machining center. Further, a three-point bending strength measurement specimen (3 mm × 4 mm × 40 mm) was prepared by grinding, and the three-point bending strength was measured. The three point bending strength was 80 MPa.

得られたSiCプリフォームに窒化硼素の離型剤を塗布し、外形寸法70mm×70mm×50mm(内径寸法:Φ52.5mm×50mm)の筒状の鉄製治具に挿入し構造体とした。次に、70mm×70mm×0.8mmtのステンレス板に黒鉛離型材を塗布して離型板を作製し、140.8mm×140.8mm×50mmの形状となる様に構造体4個を離型板を挟んで積層した。両側にセラミックス繊維含有量が10体積%、厚み10mmのセラミックスボードを挟んで、厚12mm厚みの鉄板を配置して、M10のボルト8本で連結して一つの積層体とした。次に、積層体を電気炉で温度700℃に予備加熱した後、あらかじめ加熱しておいた内径Φ400mm×300mmHのプレス型内に収め、シリコンを12質量%及びマグネシウムを1質量%含有するアルミニウム合金の溶湯(温度:800℃)を注ぎ、100MPaの圧力で25分間加圧してSiCプリフォームにアルミニウム合金を含浸させた。室温まで冷却した後、湿式バンドソーにて離型板の形状に沿って切断し、離型板を剥がし、旋盤で黒鉛治具部分を除去してΦ52mm×100mm形状の金属基複合材料を得た。得られた金属基複合材料は、含浸時の歪み除去のために530℃の温度で3時間アニール処理を行った。 A boron nitride mold release agent was applied to the obtained SiC preform and inserted into a cylindrical iron jig having an outer dimension of 70 mm × 70 mm × 50 mm (inner diameter: Φ52.5 mm × 50 mm) to obtain a structure. Next, a release plate is produced by applying a graphite release material to a 70 mm × 70 mm × 0.8 mmt stainless plate, and the four structures are released so as to have a shape of 140.8 mm × 140.8 mm × 50 mm. They were stacked with a plate in between. A ceramic board having a ceramic fiber content of 10% by volume and a thickness of 10 mm is sandwiched between both sides, an iron plate having a thickness of 12 mm is disposed, and connected with eight M10 bolts to form a single laminate. Next, the laminate is preheated to a temperature of 700 ° C. in an electric furnace and then placed in a pre-heated press mold having an inner diameter of Φ400 mm × 300 mmH, and contains 12% by mass of silicon and 1% by mass of magnesium. The molten metal (temperature: 800 ° C.) was poured and pressurized at 100 MPa for 25 minutes to impregnate the SiC preform with the aluminum alloy. After cooling to room temperature, it was cut along the shape of the release plate with a wet band saw, the release plate was peeled off, and the graphite jig part was removed with a lathe to obtain a metal matrix composite material having a shape of Φ52 mm × 100 mm. The obtained metal matrix composite material was annealed at a temperature of 530 ° C. for 3 hours in order to remove strain at the time of impregnation.

次に、得られた金属基複合材料より、研削加工により熱膨張係数測定用試験体(直径3mm長さ10mm)、熱伝導率測定用試験体(25mm×25mm×1mm)、3点曲げ強度測定用試験体(3mm×4mm×40mm)、体積固有抵抗測定用試験体(50mm×50mm×5mm)を作製した。それぞれの試験体を用いて、実施例1と同様の方法で測定した。その結果、温度40℃〜150℃の熱膨張係数は6.9×10−6/K、温度25℃での熱伝導率は220W/mK、3点曲げ強度は380MPa、体積固有抵抗は4×10−7Ω・mであった。 Next, from the obtained metal matrix composite material, a thermal expansion coefficient measurement specimen (diameter 3 mm length 10 mm), thermal conductivity measurement specimen (25 mm × 25 mm × 1 mm), and three-point bending strength measurement by grinding. Test specimens (3 mm × 4 mm × 40 mm) and volume resistivity test specimens (50 mm × 50 mm × 5 mm) were produced. Measurement was performed in the same manner as in Example 1 using each specimen. As a result, the thermal expansion coefficient at a temperature of 40 ° C. to 150 ° C. is 6.9 × 10 −6 / K, the thermal conductivity at a temperature of 25 ° C. is 220 W / mK, the three-point bending strength is 380 MPa, and the volume resistivity is 4 ×. 10 −7 Ω · m.

得られた金属基複合材料を、円筒研削盤でダイヤモンドの砥石を用いて、Φ50.8mm×50mmの円柱形状に外周加工を行った。次に、円柱形状の金属基複合材料を、内周刃切断機でダイヤモンド製の刃を用い、切断切り込み速度5mm/minで、板厚0.25mmの円板状に切断加工を行った。円板状の金属基複合材料を、両面研削盤で#800のダイヤモンド砥石を用いて、板厚0.2mmに研削加工を行い、金属基複合材料基板を作製した。   The obtained metal matrix composite material was peripherally processed into a cylindrical shape of Φ50.8 mm × 50 mm using a diamond grindstone with a cylindrical grinder. Next, the cylindrical metal matrix composite material was cut into a disk shape with a plate thickness of 0.25 mm at a cutting cutting speed of 5 mm / min using a diamond blade with an inner peripheral cutting machine. The disk-shaped metal matrix composite material was ground to a plate thickness of 0.2 mm using a # 800 diamond grindstone with a double-side grinding machine to prepare a metal matrix composite material substrate.

次に、この金属基複合材料の表面を洗浄後、蒸着法により表7に示す条件でアルミニウム層を形成した。次にアルミニウム層を形成させた金属基複合材料基板に、無電解Ni−P及び電気金めっきを行い、表面に1.3μm(Ni-P:1μm+Au:0.3μm)のめっき層を形成した。得られた金属基複合材料の特性値を表7に示す。また、めっき膜形成後の金属基複合材料を、温度25℃の5規定のHCl溶液及び温度75℃の10規定のNaOH溶液に1分間浸漬し、個々の処理による単位面積当たりの重量減少量を測定した。更に、めっき膜形成後の金属基複合材料の表面粗さ(Ra)を表面粗さ計で測定した。その結果を表8に示す。 Next, after cleaning the surface of this metal matrix composite material, an aluminum layer was formed by the vapor deposition method under the conditions shown in Table 7. Next, electroless Ni—P and electrogold plating were performed on the metal matrix composite material substrate on which the aluminum layer was formed, to form a plating layer of 1.3 μm (Ni—P: 1 μm + Au: 0.3 μm) on the surface. Table 7 shows the characteristic values of the obtained metal matrix composite. Further, the metal matrix composite material after the plating film is formed is immersed in a 5N HCl solution at a temperature of 25 ° C. and a 10N NaOH solution at a temperature of 75 ° C. for 1 minute, and the amount of weight reduction per unit area by each treatment is determined. It was measured. Further, the surface roughness (Ra) of the metal matrix composite material after the plating film was formed was measured with a surface roughness meter. The results are shown in Table 8.

Figure 0005881280
Figure 0005881280

Figure 0005881280
Figure 0005881280

〈LED発光素子の作製〉
次に、実施例13〜19のLED発光素子用保持基板を用いたLED発光素子の作製例を記載する。
板厚が0.5mmの単結晶Si基板上に、CVD法でSiC層を2μm形成して成長基板を作製した後、アンモニアガスと塩化ガリウムを使用し、キャリアガスとして水素ガスを用いて、温度1050℃でHVPE法により、(1)〜(3)のGaN単結晶を4μmの厚さに成長させた。図3に構造を示す。
(1)n型GaN半導体層 3
(2)GaN活性層(発光層) 4
(3)p型GaN半導体層 5
<Production of LED light-emitting element>
Next, preparation examples of LED light emitting devices using the LED light emitting device holding substrates of Examples 13 to 19 will be described.
After forming a growth substrate by forming a SiC layer with a thickness of 2 μm on a single crystal Si substrate having a thickness of 0.5 mm by a CVD method, ammonia gas and gallium chloride are used, hydrogen gas is used as a carrier gas, and temperature is increased. The GaN single crystals (1) to (3) were grown to a thickness of 4 μm by HVPE at 1050 ° C. FIG. 3 shows the structure.
(1) n-type GaN semiconductor layer 3
(2) GaN active layer (light emitting layer) 4
(3) p-type GaN semiconductor layer 5

次に、p型GaN半導体層の表面に、真空蒸着法で、銀を0.5μmの厚さに蒸着した後、Au/錫合金を1.5μmの厚さに蒸着した。一方、実施例13〜19のLED発光素子用保持基板の片側の表面にも、同様の方法でAu/錫合金を1.5μmの厚さに蒸着した。両基板をAu/錫合金層が接する図3の様に積層し、温度500℃で、5MPaの加圧下で5分間保持し接合した。得られた接合体は、酸処理により単結晶Si層をエッチング除去した後、研削加工によりSiC層を完全に除去した。   Next, silver was deposited to a thickness of 0.5 μm on the surface of the p-type GaN semiconductor layer by a vacuum deposition method, and then an Au / tin alloy was deposited to a thickness of 1.5 μm. On the other hand, Au / tin alloy was vapor-deposited to a thickness of 1.5 μm on the surface of one side of the LED light emitting element holding substrates of Examples 13 to 19 in the same manner. The two substrates were laminated as shown in FIG. 3 where the Au / tin alloy layer was in contact, and held at a temperature of 500 ° C. under a pressure of 5 MPa for 5 minutes for bonding. In the obtained bonded body, the single crystal Si layer was removed by etching by acid treatment, and then the SiC layer was completely removed by grinding.

その後、露出したn型GaN層表面をエッチングにより、表面粗化した後、酸化インジウム錫の透明導電体層を形成した。次に、n型電極としてAuを蒸着して、レーザー加工により、個々のLED発光素子とした。得られたLED発光素子は、保持基板からの放熱により素子温度の上昇による発光効率の低下がおさえられることを確認した。 Thereafter, the surface of the exposed n-type GaN layer was roughened by etching, and then a transparent conductor layer of indium tin oxide was formed. Next, Au was vapor-deposited as an n-type electrode, and individual LED light-emitting elements were formed by laser processing. It was confirmed that the obtained LED light emitting element was able to suppress a decrease in luminous efficiency due to an increase in element temperature due to heat radiation from the holding substrate.

(実施例20〜24、比較例8)
〈LED発光素子用保持基板の作製〉
炭化珪素粉末D(大平洋ランダム社製、NG−80、平均粒子径:150μm)1300g、炭化珪素粉末E(屋久島電工社製、GC−1000F、平均粒子径:10μm)700g、シリカゾル(日産化学社製:スノーテックス)300gを秤取し、攪拌混合機で30分間混合した後、Φ60mm×55mmの寸法の円柱状に面圧30MPaでプレス成形して成形体を作製した。得られた成形体を、温度120℃で1時間乾燥後、窒素雰囲気下、温度1400℃で2時間焼成して、気孔率が35体積%のSiCプリフォームを得た。得られたSiCプリフォームは、マシニングセンターでダイヤモンド砥石を用いて、外形寸法が、Φ52mm×50mmの形状に加工した。得られたSiCプリフォームより、研削加工により3点曲げ強度測定用試験体(3mm×4mm×40mm)を作製し、3点曲げ強度を測定した。その結果、3点曲げ強度が、50MPaであった。
(Examples 20 to 24, Comparative Example 8)
<Preparation of LED light-emitting element holding substrate>
1300 g of silicon carbide powder D (manufactured by Taiyo Random Co., Ltd., NG-80, average particle size: 150 μm), 700 g of silicon carbide powder E (manufactured by Yakushima Electric Works, GC-1000F, average particle size: 10 μm), silica sol (Nissan Chemical Co., Ltd.) (Product: Snowtex) 300 g was weighed and mixed with a stirrer / mixer for 30 minutes, and then pressed into a cylindrical shape with a size of Φ60 mm × 55 mm at a surface pressure of 30 MPa to prepare a molded body. The obtained molded body was dried at a temperature of 120 ° C. for 1 hour and then calcined at a temperature of 1400 ° C. for 2 hours in a nitrogen atmosphere to obtain a SiC preform having a porosity of 35% by volume. The obtained SiC preform was processed into a shape having an outer dimension of Φ52 mm × 50 mm using a diamond grindstone at a machining center. From the obtained SiC preform, a three-point bending strength measurement specimen (3 mm × 4 mm × 40 mm) was prepared by grinding, and the three-point bending strength was measured. As a result, the three-point bending strength was 50 MPa.

得られたSiCプリフォームに窒化硼素の離型剤を塗布し、外形寸法70mm×70mm×50mm(内径寸法:Φ52.5mm×50mm)の筒状の鉄製治具に挿入し構造体とした。次に、70mm×70mm×0.8mmtのステンレス板に黒鉛離型材を塗布して離型板を作製し、140.8mm×140.8mm×50mmの形状となる様に構造体4個を離型板を挟んで積層した。両側にセラミックス繊維含有量が10体積%、厚み10mmのセラミックスボードを挟んで、厚12mm厚みの鉄板を配置して、M10のボルト8本で連結して一つの積層体とした。次に、積層体を電気炉で温度700℃に予備加熱した後、あらかじめ加熱しておいた内径Φ400mm×300mmHのプレス型内に収め、シリコンを12質量%及びマグネシウムを1質量%含有するアルミニウム合金の溶湯(温度:800℃)を注ぎ、100MPaの圧力で25分間加圧してSiCプリフォームにアルミニウム合金を含浸させた。室温まで冷却した後、湿式バンドソーにて離型板の形状に沿って切断し、離型板を剥がし、旋盤で黒鉛治具部分を除去してΦ52mm×100mm形状の金属基複合材料を得た。得られた金属基複合材料は、含浸時の歪み除去のために530℃の温度で3時間アニール処理を行った。 A boron nitride mold release agent was applied to the obtained SiC preform and inserted into a cylindrical iron jig having an outer dimension of 70 mm × 70 mm × 50 mm (inner diameter: Φ52.5 mm × 50 mm) to obtain a structure. Next, a release plate is produced by applying a graphite release material to a 70 mm × 70 mm × 0.8 mmt stainless plate, and the four structures are released so as to have a shape of 140.8 mm × 140.8 mm × 50 mm. They were stacked with a plate in between. A ceramic board having a ceramic fiber content of 10% by volume and a thickness of 10 mm is sandwiched between both sides, an iron plate having a thickness of 12 mm is disposed, and connected with eight M10 bolts to form a single laminate. Next, the laminate is preheated to a temperature of 700 ° C. in an electric furnace and then placed in a pre-heated press mold having an inner diameter of Φ400 mm × 300 mmH, and contains 12% by mass of silicon and 1% by mass of magnesium. The molten metal (temperature: 800 ° C.) was poured and pressurized at 100 MPa for 25 minutes to impregnate the SiC preform with the aluminum alloy. After cooling to room temperature, it was cut along the shape of the release plate with a wet band saw, the release plate was peeled off, and the graphite jig part was removed with a lathe to obtain a metal matrix composite material having a shape of Φ52 mm × 100 mm. The obtained metal matrix composite material was annealed at a temperature of 530 ° C. for 3 hours in order to remove strain at the time of impregnation.

次に、得られた金属基複合材料より、研削加工により熱膨張係数測定用試験体(直径3mm長さ10mm)、熱伝導率測定用試験体(25mm×25mm×1mm)、3点曲げ強度測定用試験体(3mm×4mm×40mm)、体積固有抵抗測定用試験体(50mm×50mm×5mm)を作製した。それぞれの試験体を用いて、実施例1と同様の方法で測定した。その結果、温度40℃〜150℃の熱膨張係数は7.6×10−6/K、温度25℃での熱伝導率は200W/mK、3点曲げ強度は400MPa、体積固有抵抗は3×10−7Ω・mであった。 Next, from the obtained metal matrix composite material, a thermal expansion coefficient measurement specimen (diameter 3 mm length 10 mm), thermal conductivity measurement specimen (25 mm × 25 mm × 1 mm), and three-point bending strength measurement by grinding. Test specimens (3 mm × 4 mm × 40 mm) and volume resistivity test specimens (50 mm × 50 mm × 5 mm) were produced. Measurement was performed in the same manner as in Example 1 using each specimen. As a result, the thermal expansion coefficient at a temperature of 40 ° C. to 150 ° C. is 7.6 × 10 −6 / K, the thermal conductivity at a temperature of 25 ° C. is 200 W / mK, the three-point bending strength is 400 MPa, and the volume resistivity is 3 ×. 10 −7 Ω · m.

得られた金属基複合材料を、円筒研削盤でダイヤモンドの砥石を用いて、Φ50.8mm×50mmの円柱形状に外周加工を行った。次に、円柱形状の金属基複合材料を、内周刃切断機でダイヤモンド製の刃を用い、切断切り込み速度5mm/minで、板厚0.25mmの円板状に切断加工を行った。円板状の金属基複合材料を、両面研削盤で#800のダイヤモンド砥石を用いて、板厚0.2mmに研削加工を行い、金属基複合材料基板を作製した。   The obtained metal matrix composite material was peripherally processed into a cylindrical shape of Φ50.8 mm × 50 mm using a diamond grindstone with a cylindrical grinder. Next, the cylindrical metal matrix composite material was cut into a disk shape with a plate thickness of 0.25 mm at a cutting cutting speed of 5 mm / min using a diamond blade with an inner peripheral cutting machine. The disk-shaped metal matrix composite material was ground to a plate thickness of 0.2 mm using a # 800 diamond grindstone with a double-side grinding machine to prepare a metal matrix composite material substrate.

次に、この金属基複合材料の表面を洗浄後、蒸着法により表9に示す条件でアルミニウム層を形成した。次にアルミニウム層を形成させた金属基複合材料基板に、無電解Ni−P及び電気金めっきを行い、表面に1.3μm(Ni-P:1μm+Au:0.3μm)のめっき層を形成した。得られた金属基複合材料の特性値を表9に示す。また、めっき膜形成後の金属基複合材料を、温度25℃の5規定のHCl溶液及び温度75℃の10規定のNaOH溶液に1分間浸漬し、個々の処理による単位面積当たりの重量減少量を測定した。更に、めっき膜形成後の金属基複合材料の表面粗さ(Ra)を表面粗さ計で測定した。その結果を表10に示す。 Next, after cleaning the surface of this metal matrix composite material, an aluminum layer was formed by the vapor deposition method under the conditions shown in Table 9. Next, electroless Ni—P and electrogold plating were performed on the metal matrix composite material substrate on which the aluminum layer was formed, to form a plating layer of 1.3 μm (Ni—P: 1 μm + Au: 0.3 μm) on the surface. Table 9 shows the characteristic values of the obtained metal matrix composite. Further, the metal matrix composite material after the plating film is formed is immersed in a 5N HCl solution at a temperature of 25 ° C. and a 10N NaOH solution at a temperature of 75 ° C. for 1 minute, and the amount of weight reduction per unit area by each treatment is determined. It was measured. Further, the surface roughness (Ra) of the metal matrix composite material after the plating film was formed was measured with a surface roughness meter. The results are shown in Table 10.

Figure 0005881280
Figure 0005881280

Figure 0005881280
Figure 0005881280

実施例20〜24で得られたLED発光素子用保持基板を用いてLED発光素子を作製し、保持基板からの放熱により素子温度の上昇による発光効率の低下がおさえられることを確認した。比較例8を用いてLED発光素子の作製を行ったが、工程内で使用される酸およびアルカリ溶液に保持基板中のアルミニウム合金が反応し、めっき膜の剥がれおよび特性低下により、発光素子から発生した熱を十分に放熱することができず、発光効率の低下が生じた。   An LED light-emitting element was produced using the LED light-emitting element holding substrate obtained in Examples 20 to 24, and it was confirmed that a decrease in luminous efficiency due to an increase in element temperature was suppressed by heat dissipation from the holding substrate. An LED light emitting device was manufactured using Comparative Example 8, but the aluminum alloy in the holding substrate reacted to the acid and alkali solution used in the process, and the plating film was peeled off and the characteristics were deteriorated. The generated heat could not be sufficiently dissipated, resulting in a decrease in luminous efficiency.

本発明のLED発光素子用保持基板は、LEDを構成するIII−IV族半導体結晶と線熱膨張率の小さい、高熱伝導性の保持基板であり、放熱性、信頼性に優れた高出力のLED発光素子を提供することが出来る。更に、本発明のLED発光素子用保持基板は、LED発光素子製造時に使用される酸及びアルカリ溶液に対する耐薬品性に優れると共に、導電性であり、LEDを構成するIII-IV族半導体結晶の両面に電極を形成することができる。そのため、LED発光素子の製造プロセスの低減、並びに単位面積当たりの発光量の増加を達成でき、LED発光素子用の保持基板として有効である。 The LED light-emitting element holding substrate of the present invention is a high thermal conductivity holding substrate having a low coefficient of linear thermal expansion with a group III-IV semiconductor crystal constituting the LED, and a high-power LED excellent in heat dissipation and reliability. A light-emitting element can be provided. Furthermore, the LED light-emitting element holding substrate of the present invention is excellent in chemical resistance against acid and alkali solutions used in the manufacture of LED light-emitting elements, is conductive, and has both sides of the group III-IV semiconductor crystal constituting the LED. An electrode can be formed on the substrate. Therefore, it is possible to reduce the manufacturing process of the LED light emitting element and increase the light emission amount per unit area, which is effective as a holding substrate for the LED light emitting element.

1)成長基板
2)成長基板上に形成された窒化物のバッファー層
3)n型のIII−V族半導体層
4)発光層
5)p型のIII−V族半導体層
6)金属層(反射層)
7)金属層
8)金属基複合材料基板
9)透明導電層
10)表面コーティング層
11)基材
1) growth substrate 2) nitride buffer layer formed on the growth substrate 3) n-type III-V group semiconductor layer 4) light emitting layer 5) p-type group III-V semiconductor layer 6) metal layer (reflection) layer)
7) Metal layer 8) Metal matrix composite material 9) Transparent conductive layer 10) Surface coating layer 11) Base material

Claims (9)

炭化珪素多孔体にアルミニウム合金を含浸してなる板厚0.05〜1.0mmの金属基複合材料基板に、下記の工程を順次経て製造し、温度25℃の5規定のHCl溶液及び75℃の10規定のNaOH溶液にそれぞれ1分間浸漬したときの少なくとも一主面の重量減少量が0.2mg/cm以下のLED発光素子用保持基板の製造方法
(1)蒸着法又はスパッタリング法により、金属基複合材料基板表面に厚み0.05〜2μmのアルミニウム層を形成する工程。
(2)窒素、アルゴン、水素、ヘリウム又は、真空雰囲気中、温度460℃〜650℃で1分間以上加熱処理する工程。
(3)1)又は2)により、アルミニウム層の表面に金属層を形成する工程。
1)無電解めっき法又は電気めっき法により、アルミニウム層の表面に、厚み0.5〜5μmのNiめっき層と厚み0.05〜2μmの金めっき層を順次形成し、金属層を形成する工程。
2)蒸着法又はスパッタリング法により、アルミニウム層の表面に、厚み0.1〜2μmの金属層を形成する工程。
A metal matrix composite material substrate having a thickness of 0.05 to 1.0 mm obtained by impregnating a silicon carbide porous body with an aluminum alloy is manufactured through the following steps in sequence, and a 5N HCl solution at a temperature of 25 ° C. and 75 ° C. The manufacturing method of the holding | maintenance board | substrate for LED light emitting elements whose weight reduction amount of at least 1 main surface when each immersed in 10 normal NaOH solution of 1 each is 0.2 mg / cm < 2 > or less.
(1) A step of forming an aluminum layer having a thickness of 0.05 to 2 μm on the surface of the metal matrix composite substrate by a vapor deposition method or a sputtering method.
(2) A step of heat treatment at a temperature of 460 ° C. to 650 ° C. for 1 minute or more in nitrogen, argon, hydrogen, helium or a vacuum atmosphere.
(3) A step of forming a metal layer on the surface of the aluminum layer according to 1) or 2).
1) A step of forming a metal layer by sequentially forming a Ni plating layer having a thickness of 0.5 to 5 μm and a gold plating layer having a thickness of 0.05 to 2 μm on the surface of the aluminum layer by an electroless plating method or an electroplating method. .
2) A step of forming a metal layer having a thickness of 0.1 to 2 μm on the surface of the aluminum layer by vapor deposition or sputtering.
気孔率が10〜50体積%、3点曲げ強度が50MPa以上である炭化珪素多孔体を用いることを特徴とする請求項1記載のLED発光素子用保持基板の製造方法The method for producing a holding substrate for an LED light-emitting element according to claim 1, wherein a porous silicon carbide having a porosity of 10 to 50% by volume and a three-point bending strength of 50 MPa or more is used. 温度25℃の熱伝導率が150〜300W/mK、温度40℃〜150℃の線熱膨張係数が4×10−6〜8×10−6/K、3点曲げ強度が50MPa以上、体積固有抵抗が10−9〜10−5Ω・mであることを特徴とする請求項1又は請求項2記載のLED発光素子用保持基板の製造方法Thermal conductivity at a temperature of 25 ° C. is 150 to 300 W / mK, linear thermal expansion coefficient at a temperature of 40 ° C. to 150 ° C. is 4 × 10 −6 to 8 × 10 −6 / K, three-point bending strength is 50 MPa or more, volume specific 3. The method for producing a holding substrate for an LED light-emitting element according to claim 1, wherein the resistance is 10 −9 to 10 −5 Ω · m. 表面粗さ(Ra)が0.01〜0.5μmであることを特徴とする請求項1〜3のうちいずれか一項記載のLED発光素子用保持基板の製造方法4. The method for manufacturing a holding substrate for an LED light-emitting element according to claim 1, wherein the surface roughness (Ra) is 0.01 to 0.5 [mu] m. 炭化珪素多孔体に、溶湯鍛造法にて含浸圧力30MPa以上でアルミニウム合金を含浸した後、板厚0.05〜1.0mmで、表面粗さ(Ra)0.01〜0.5μmに、切断及び/又は研削加工してなることを特徴とする請求項1〜4のうちいずれか一項記載のLED発光素子用保持基板の製造方法A silicon carbide porous body is impregnated with an aluminum alloy at an impregnation pressure of 30 MPa or more by a molten metal forging method, and then cut into a plate thickness of 0.05 to 1.0 mm and a surface roughness (Ra) of 0.01 to 0.5 μm. The method for producing a holding substrate for an LED light-emitting element according to claim 1, wherein the method is performed by grinding. 下記の工程を順次経て製造される、LED発光素子の製造方法
(1)円板状又は平板状の単結晶成長基板の一主面上に、III−V族半導体結晶をエピタキシャル成長させる工程。
(2)III−V族半導体結晶面に金属層を介して、請求項1〜5のいずれか一項記載のLED発光素子用保持基板を接合し、裏面をレーザー照射、エッチング、研削のいずれかの方法により、単結晶成長基板を除去する工程。
(3)III−V族半導体結晶面の表面加工、電極形成を行った後、切断加工する工程。
The manufacturing method of the LED light emitting element manufactured through the following process one by one.
(1) A step of epitaxially growing a group III-V semiconductor crystal on one main surface of a disk-like or flat plate-like single crystal growth substrate.
(2) The holding substrate for an LED light-emitting device according to any one of claims 1 to 5 is bonded to the III-V group semiconductor crystal surface via a metal layer, and the back surface is any one of laser irradiation, etching, and grinding. The step of removing the single crystal growth substrate by the method.
(3) A step of cutting after performing surface processing of the III-V semiconductor crystal surface and electrode formation.
単結晶成長基板が、単結晶サファイア、単結晶炭化珪素、単結晶GaAs、単結晶Siの群から選ばれることを特徴とする請求項6記載のLED発光素子の製造方法The method for manufacturing an LED light-emitting element according to claim 6, wherein the single crystal growth substrate is selected from the group consisting of single crystal sapphire, single crystal silicon carbide, single crystal GaAs, and single crystal Si. 単結晶成長基板が、AlN、SiC、GaN、GaAsの群から選ばれる材料で表面コーティングされていることを特徴とする請求項6又は7記載のLED発光素子の製造方法8. The method for manufacturing an LED light emitting device according to claim 6, wherein the single crystal growth substrate is surface-coated with a material selected from the group consisting of AlN, SiC, GaN, and GaAs. III−V族半導体結晶が、GaN、GaAs、GaPのいずれかであることを特徴とする請求項6〜8のいずれか一項記載のLED発光素子の製造方法
The method for producing an LED light-emitting element according to any one of claims 6 to 8, wherein the III-V semiconductor crystal is any one of GaN, GaAs, and GaP.
JP2010184971A 2010-08-20 2010-08-20 Manufacturing method of LED light emitting element holding substrate and manufacturing method of LED light emitting element Active JP5881280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010184971A JP5881280B2 (en) 2010-08-20 2010-08-20 Manufacturing method of LED light emitting element holding substrate and manufacturing method of LED light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010184971A JP5881280B2 (en) 2010-08-20 2010-08-20 Manufacturing method of LED light emitting element holding substrate and manufacturing method of LED light emitting element

Publications (2)

Publication Number Publication Date
JP2012044040A JP2012044040A (en) 2012-03-01
JP5881280B2 true JP5881280B2 (en) 2016-03-09

Family

ID=45899995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010184971A Active JP5881280B2 (en) 2010-08-20 2010-08-20 Manufacturing method of LED light emitting element holding substrate and manufacturing method of LED light emitting element

Country Status (1)

Country Link
JP (1) JP5881280B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0567808A (en) * 1991-09-06 1993-03-19 Sanyo Electric Co Ltd Formation of electrode of sic light emitting diode
EP1973157B1 (en) * 2006-01-13 2017-06-21 Denka Company Limited Aluminum/silicon carbide composite and heat dissipation device employing the same
JP5078666B2 (en) * 2008-02-26 2012-11-21 京セラ株式会社 Method for bonding ceramic substrate and aluminum substrate, and light emitting element mounting body
JP2010109081A (en) * 2008-10-29 2010-05-13 Denki Kagaku Kogyo Kk Metal matrix composite substrate for led light emitting device, and led light emitting device using the same
KR20160129920A (en) * 2009-02-13 2016-11-09 덴카 주식회사 Composite substrate for led light emitting element, method of production of same, and led light emitting element

Also Published As

Publication number Publication date
JP2012044040A (en) 2012-03-01

Similar Documents

Publication Publication Date Title
JP5713684B2 (en) Composite material substrate for LED light emitting device, method for producing the same, and LED light emitting device
JP5789512B2 (en) LED mounting wafer, manufacturing method thereof, and LED mounting structure using the wafer
JP5988977B2 (en) Heat dissipation parts for semiconductor elements
JP2016119489A (en) Method for manufacturing composite substrate
JP2021059782A (en) Heat radiation component for semiconductor element
JPWO2013038964A1 (en) Clad material for LED light-emitting element holding substrate and manufacturing method thereof
JP6105262B2 (en) Aluminum-diamond composite heat dissipation parts
JP5296638B2 (en) LED mounting structure, manufacturing method thereof, and LED mounting substrate
JP2012038948A (en) Metal matrix composite substrate for led light emitting device, method for manufacturing the same, and led light emitting device
JP2010109081A (en) Metal matrix composite substrate for led light emitting device, and led light emitting device using the same
JP5881280B2 (en) Manufacturing method of LED light emitting element holding substrate and manufacturing method of LED light emitting element
JP5681035B2 (en) LED light source package
JP2013012623A (en) Led light-emitting element holding substrate and manufacturing method thereof and led light-emitting element
JP5759376B2 (en) Manufacturing method of LED chip assembly
JP2010267892A (en) Led mounting structure, method of manufacturing the same, and led mounting substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160202

R151 Written notification of patent or utility model registration

Ref document number: 5881280

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250