JP2013012623A - Led light-emitting element holding substrate and manufacturing method thereof and led light-emitting element - Google Patents

Led light-emitting element holding substrate and manufacturing method thereof and led light-emitting element Download PDF

Info

Publication number
JP2013012623A
JP2013012623A JP2011145150A JP2011145150A JP2013012623A JP 2013012623 A JP2013012623 A JP 2013012623A JP 2011145150 A JP2011145150 A JP 2011145150A JP 2011145150 A JP2011145150 A JP 2011145150A JP 2013012623 A JP2013012623 A JP 2013012623A
Authority
JP
Japan
Prior art keywords
led light
metal
aluminum
substrate
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011145150A
Other languages
Japanese (ja)
Inventor
Yosuke Ishihara
庸介 石原
Hideki Hirotsuru
秀樹 広津留
Hideo Tsukamoto
秀雄 塚本
Go Iwamoto
豪 岩元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2011145150A priority Critical patent/JP2013012623A/en
Publication of JP2013012623A publication Critical patent/JP2013012623A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an LED light-emitting element holding substrate whose difference in linear thermal expansion coefficient with group III-V semiconductor crystal constituting an LED is small and which excels in thermal conductivity and further excels in chemical resistance against acid and alkali solutions used in manufacturing, making it suitable for a high output LED.SOLUTION: The LED light-emitting element holding substrate is covered with aluminum or aluminum alloy in thickness of 0.1 to 2.0 mm on the outer periphery thereof, and has aluminum or aluminum alloy formed in thickness of 0.05 to 2 μm on both sides of the substrate having a metal impregnated ceramic composite body exposed to both principal planes thereof. After being heated at 460 to 650°C for one minute or more in a nitrogen, argon, hydrogen, helium or vacuum atmosphere, the substrate has a Ni plated layer in thickness of 0.5 to 5 μm and a gold plated layer in thickness of 0.05 to 2 μm formed in order over the whole surface thereof.

Description

本発明は、LED発光素子用保持基板、その製造方法及びLED発光素子に関する。   The present invention relates to an LED light-emitting element holding substrate, a manufacturing method thereof, and an LED light-emitting element.

LED(発光ダイオード)は、半導体のpn接合に順方向電流を流すと発光する素子であり、GaAs、GaN等のIII−V族半導体結晶を用いて製造される。たとえば、サファイア基板等の単結晶成長基板上に、GaN等のバッファー層を形成し、その上にGaNをエピタキシャル成長させる方法が提案されている(特許文献1)。しかし、この方法にあっては、サファイア基板とGaNとの線膨張係数差のために、エピタキシャル成長後のサファイア基板に反りが発生し、基板が割れることがあった。さらには、サファイア基板を構成する単結晶サファイアの熱伝導率が40W/mK程度であるので、GaN等のIII−V族半導体素子で発生する熱を十分に放熱することができなかった。このため、大電流を流す高出力LEDでは素子の温度が上昇して発光効率と素子寿命の低下を招いた。   An LED (light emitting diode) is an element that emits light when a forward current flows through a pn junction of a semiconductor, and is manufactured using a III-V group semiconductor crystal such as GaAs or GaN. For example, a method has been proposed in which a buffer layer such as GaN is formed on a single crystal growth substrate such as a sapphire substrate, and GaN is epitaxially grown thereon (Patent Document 1). However, in this method, due to the difference in coefficient of linear expansion between the sapphire substrate and GaN, the sapphire substrate after epitaxial growth may be warped and the substrate may be cracked. Furthermore, since the single crystal sapphire constituting the sapphire substrate has a thermal conductivity of about 40 W / mK, the heat generated in the III-V group semiconductor element such as GaN cannot be sufficiently dissipated. For this reason, in the high-power LED in which a large current flows, the temperature of the element rises, resulting in a decrease in luminous efficiency and element life.

放熱性を改善するため、単結晶成長基板上にIII−V族半導体結晶をエピタキシャル成長させた後に、金属層を介して高熱伝導性の基板を接合し、その後、単結晶成長基板を除去する方法が提案されているが(特許文献2)、III−V族半導体結晶との線膨張係数差が大きく、高出力LED用には十分満足できるものではなかった。   In order to improve heat dissipation, there is a method in which a III-V group semiconductor crystal is epitaxially grown on a single crystal growth substrate, then a high thermal conductivity substrate is joined through a metal layer, and then the single crystal growth substrate is removed. Although it has been proposed (Patent Document 2), the difference in linear expansion coefficient from the III-V group semiconductor crystal is large, which is not satisfactory for high-power LEDs.

特公平5−73252号公報Japanese Patent Publication No. 5-73252 特開2006−128710号公報JP 2006-128710 A

本発明の目的は、III−V族半導体結晶から構成されているLED(以下、単にLEDともいう。)との線膨張率差が小さく、しかも熱伝導性に優れた、LED発光素子用保持基板及びLED発光素子を提供することである。   An object of the present invention is to provide an LED light-emitting element holding substrate that has a small difference in linear expansion coefficient from an LED (hereinafter also simply referred to as an LED) composed of a group III-V semiconductor crystal and excellent thermal conductivity. And providing an LED light emitting device.

更に、本発明が解決しようとする課題は、LED発光素子製造時に使用される酸およびアルカリ溶液に対する、耐薬品性に優れた、高出力LED用として好適なLED発光素子用保持基板を提供することである。   Furthermore, the problem to be solved by the present invention is to provide a holding substrate for an LED light-emitting element that is excellent in chemical resistance against an acid and an alkali solution used at the time of manufacturing the LED light-emitting element and that is suitable for a high-power LED. It is.

外周部が厚み0.1〜2.0mmのアルミニウムまたはアルミニウム合金で覆われており、両主面に金属含浸セラミックス複合体が露出した基板の両主面に、アルミニウムまたはアルミニウム合金層が厚み0.05〜2μmで形成され、窒素、アルゴン、水素、ヘリウム又は真空雰囲気中で460〜650℃で1分間以上加熱処理した後、全面に厚み0.5〜5μmのNiめっき層および厚み0.05〜2μmの金めっき層が順次形成されたLED発光素子用保持基板である。 The outer peripheral portion is covered with aluminum or aluminum alloy having a thickness of 0.1 to 2.0 mm, and the aluminum or aluminum alloy layer has a thickness of 0.0 on both main surfaces of the substrate where the metal-impregnated ceramic composite is exposed on both main surfaces. After being heat-treated at 460-650 ° C. for 1 minute or more in nitrogen, argon, hydrogen, helium or a vacuum atmosphere, a Ni plating layer having a thickness of 0.5-5 μm and a thickness of 0.05- This is a holding substrate for an LED light emitting element in which a 2 μm gold plating layer is sequentially formed.

更に、本発明の金属含浸セラミックス複合体は、気孔率が10〜50体積%の炭化珪素からなる多孔体に、金属が含浸されてなるものであり、金属含浸セラミックス複合体の3点曲げ強度が50MPa以上、温度25℃の熱伝導率が150〜300W/mK、温度25℃〜150℃の線熱膨張係数が4×10-6〜9×10-6/K、体積固有抵抗が10-9〜10-5Ω・mであり、板厚が0.05〜1.0mmで、表面粗さ(Ra)0.01〜0.5μmに、研削加工してなる。 Furthermore, the metal-impregnated ceramic composite of the present invention is obtained by impregnating a porous body made of silicon carbide having a porosity of 10 to 50% by volume with metal, and the metal-impregnated ceramic composite has a three-point bending strength. 50 MPa or more, thermal conductivity at a temperature of 25 ° C. is 150 to 300 W / mK, linear thermal expansion coefficient at a temperature of 25 ° C. to 150 ° C. is 4 × 10 −6 to 9 × 10 −6 / K, and volume resistivity is 10 −9. 10 -5 Ω · m, a plate thickness of 0.05 to 1.0 mm, and a surface roughness (Ra) of 0.01 to 0.5 μm.

更に、本発明は、下記の工程を順次経て製造される、LED発光素子。
(1)円板状又は平板状の単結晶成長基板の一主面上に、III−V族半導体結晶をエピタキシャル成長させる工程。
(2)III−V族半導体結晶面に金属層を介して、請求項1、2または3記載のLED発光素子用保持基板を接合し、レーザー照射、エッチング、研削のいずれかの方法により、単結晶成長基板を除去する工程。
(3)III−V族半導体結晶面の表面加工、電極形成を行った後、切断加工する工程。
Furthermore, this invention is an LED light emitting element manufactured through the following processes in order.
(1) A step of epitaxially growing a group III-V semiconductor crystal on one main surface of a disk-like or flat plate-like single crystal growth substrate.
(2) The LED light-emitting element holding substrate according to claim 1, 2 or 3 is bonded to the III-V group semiconductor crystal surface via a metal layer, and is simply applied by any one of laser irradiation, etching, and grinding. Removing the crystal growth substrate;
(3) A step of cutting after performing surface processing of the III-V semiconductor crystal surface and electrode formation.

加えて、本発明は、単結晶成長基板が、単結晶サファイア、単結晶炭化珪素、単結晶GaAs、単結晶Siの群から選ばれることを特徴とするLED発光素子、又は、単結晶成長基板が、AlN、SiC、GaN、GaAsの群から選ばれる材料で表面コーティングされたことを特徴とするLED発光素子である。 In addition, according to the present invention, an LED light emitting device or a single crystal growth substrate, wherein the single crystal growth substrate is selected from the group of single crystal sapphire, single crystal silicon carbide, single crystal GaAs, and single crystal Si. The LED light-emitting device is surface-coated with a material selected from the group consisting of AlN, SiC, GaN, and GaAs.

更に加えて、本発明は、III−V族半導体結晶が、GaN、GaAs、GaPのいずれかであることを特徴とするLED発光素子である。 In addition, the present invention is an LED light emitting element characterized in that the group III-V semiconductor crystal is any one of GaN, GaAs, and GaP.

LEDを構成するIII−V族半導体結晶と線熱膨張率の差の小さい、高熱伝導性のLED発光素子用保持基板が得られる。このLED発光素子用保持基板を用いることにより、放熱性、信頼性に優れた高出力のLED発光素子を提供することができる。更に、本発明のLED発光素子用保持基板は、LED発光素子製造時に使用される酸及びアルカリ溶液に対する耐薬品性に優れると共に、導電性であり、LEDを構成するIII−V族半導体結晶の両面に電極を形成することができる。そのため、LED発光素子の製造プロセスの低減、並びに単位面積当たりの発光量の増加を達成できる。   A holding substrate for an LED light-emitting element having a small difference in linear thermal expansion coefficient from the group III-V semiconductor crystal constituting the LED is obtained. By using this LED light-emitting element holding substrate, it is possible to provide a high-output LED light-emitting element having excellent heat dissipation and reliability. Furthermore, the LED light-emitting element holding substrate of the present invention is excellent in chemical resistance against acid and alkali solutions used in the manufacture of LED light-emitting elements, is conductive, and has both sides of the III-V group semiconductor crystal constituting the LED. An electrode can be formed on the substrate. Therefore, it is possible to reduce the manufacturing process of the LED light emitting element and increase the light emission amount per unit area.

請求項1の金属含浸セラミックス複合体の説明図Explanatory drawing of the metal-impregnated ceramic composite of claim 1 LED発光素子用保持基板の説明図Illustration of LED light-emitting element holding substrate 本発明の一実施の形態を示す、LED発光素子の概略断面図The schematic sectional drawing of the LED light emitting element which shows one embodiment of this invention 本発明の一実施の形態を示す、LED発光素子の概略断面図The schematic sectional drawing of the LED light emitting element which shows one embodiment of this invention 本発明の一実施の形態を示す、LED発光素子の概略断面図The schematic sectional drawing of the LED light emitting element which shows one embodiment of this invention

本発明で用いる単結晶成長基板は、後の工程でエピタキシャル成長させるIII−V族半導体結晶との格子定数の差が小さく、かつ欠陥の少ない材料が必要である。結晶性と均一性の点から、単結晶材料を加工して用いるのが一般的である。これらの単結晶成長基板は、III−V族半導体結晶をエピタキシャル成長させる工程における温度、雰囲気に耐えることが必要である。このため、本発明で用いる単結晶成長基板用の材料は、単結晶サファイア、単結晶炭化珪素、単結晶GaAs、単結晶Siの群から選ばれることが好ましい。更に、本発明で用いる単結晶成長基板は、AlN、SiC、GaN、GaAsの群から選ばれる材料で表面コーティングされることが好ましい。   The single crystal growth substrate used in the present invention requires a material having a small difference in lattice constant from a group III-V semiconductor crystal to be epitaxially grown in a later step and having few defects. From the standpoints of crystallinity and uniformity, it is common to process and use a single crystal material. These single crystal growth substrates need to withstand the temperature and atmosphere in the process of epitaxially growing a III-V semiconductor crystal. Therefore, the material for the single crystal growth substrate used in the present invention is preferably selected from the group of single crystal sapphire, single crystal silicon carbide, single crystal GaAs, and single crystal Si. Furthermore, the single crystal growth substrate used in the present invention is preferably surface-coated with a material selected from the group consisting of AlN, SiC, GaN, and GaAs.

LEDを構成するIII−V族半導体結晶は、LED発光素子としての変換効率の点から、GaN、GaAs、GaPのいずれかであることが好ましい。これらのIII−V族半導体結晶は高い発光効率が得られ、用途に応じて使い分けられる。III−V族半導体結晶は、用途毎の最適発光波長に応じて選択される。   The group III-V semiconductor crystal constituting the LED is preferably GaN, GaAs, or GaP from the viewpoint of conversion efficiency as the LED light emitting element. These III-V semiconductor crystals have high luminous efficiency and can be used properly according to the application. The III-V semiconductor crystal is selected according to the optimum emission wavelength for each application.

本発明では、先ず、これらの単結晶成長基板の一主面上にエピタキシャル成長で、III−V族半導体結晶を成長させる。III−V族半導体結晶のエピタキシャル成長は、有機金属気相成長法(MOCVD法)又はハライド気相エピタキシャル法(HVPE法)により行うことが好ましい。MOCVD法は、結晶性の良いIII−V族半導体結晶を成長させるのに適しており、HVPE法は、結晶成長速度が速く、効率よくIII−V族半導体結晶を成長させることができる。これらの方法は公知であり、実施条件は適宜設定することができる。エピタキシャル成長の方法は、III−V族半導体結晶を成長させることのできる方法であれば、前記の方法に限定されるものではない。 In the present invention, first, a III-V semiconductor crystal is grown on one main surface of these single crystal growth substrates by epitaxial growth. The epitaxial growth of the group III-V semiconductor crystal is preferably performed by metal organic vapor phase epitaxy (MOCVD method) or halide vapor phase epitaxy (HVPE method). The MOCVD method is suitable for growing a group III-V semiconductor crystal with good crystallinity, and the HVPE method has a high crystal growth rate and can grow a group III-V semiconductor crystal efficiently. These methods are publicly known, and implementation conditions can be set as appropriate. The epitaxial growth method is not limited to the above method as long as it can grow a group III-V semiconductor crystal.

エピタキシャル成長させたIII−V族半導体結晶は、発光特性を更に向上させるため、表面処理を施すことも可能である。また、結晶表面の均一性等を向上させるため、表面をエッチング処理や研磨処理することもある。保持基板と接合するため、III−V族半導体結晶の表面に蒸着法、スパッタ法等の手法により、金属層を形成する。金属層は、インジウム、アルミニウム、金、銀及びこれらの合金が好ましい。金属層の厚みは、金属の線熱膨張係数がIII−V族半導体結晶と異なる為、極端に厚いと密着性が低下して好ましくない。金属層の熱伝導率が低い場合は、放熱の面からも好ましくない。このため、金属層の厚みは、0.5〜10μmであることが好ましく、更に好ましくは、0.5〜2μmである。   The epitaxially grown III-V group semiconductor crystal can be subjected to a surface treatment in order to further improve the light emission characteristics. In addition, in order to improve the uniformity of the crystal surface and the like, the surface may be etched or polished. In order to join the holding substrate, a metal layer is formed on the surface of the III-V group semiconductor crystal by a technique such as vapor deposition or sputtering. The metal layer is preferably indium, aluminum, gold, silver and alloys thereof. The thickness of the metal layer is not preferable because the linear thermal expansion coefficient of the metal is different from that of the group III-V semiconductor crystal, and if it is extremely thick, the adhesion is lowered. When the thermal conductivity of the metal layer is low, it is not preferable from the viewpoint of heat dissipation. For this reason, it is preferable that the thickness of a metal layer is 0.5-10 micrometers, More preferably, it is 0.5-2 micrometers.

III−V族半導体結晶に接合するため、保持基板にも、同様に表面に蒸着法、スパッタ法等により、金属層を形成する。金属層は、インジウム、アルミニウム、金、銀及びこれらの合金が好ましい。保持基板に求められる特性は、(1)接合に耐え得る強度を有すること(2)接合面にボイドや異物等の介在物が無く、接合面が平坦であることである。(1)の条件を満たすには、保持基板の3点曲げ強度が50MPa以上であり、好ましくは200MPa以上である。(2)の条件を満たすには、保持基板の表面粗さ(Ra)が0.01〜0.5μmであり、好ましくは、0.01〜0.2μmである。   In order to bond to the III-V group semiconductor crystal, a metal layer is similarly formed on the surface of the holding substrate by vapor deposition or sputtering. The metal layer is preferably indium, aluminum, gold, silver and alloys thereof. The characteristics required for the holding substrate are (1) having a strength that can withstand bonding, and (2) that there are no inclusions such as voids and foreign substances on the bonding surface, and that the bonding surface is flat. In order to satisfy the condition (1), the three-point bending strength of the holding substrate is 50 MPa or more, preferably 200 MPa or more. In order to satisfy the condition (2), the surface roughness (Ra) of the holding substrate is 0.01 to 0.5 μm, preferably 0.01 to 0.2 μm.

III−V族半導体結晶と保持基板の接合は、必要に応じて加圧を行いながら、接合面を合わせた状態で加熱して行う。加熱温度は金属層の種類によって異なるが、一般に250℃〜550℃である。加圧の圧力は、2〜20MPaが一般的である。   The joining of the III-V semiconductor crystal and the holding substrate is performed by heating in a state where the joining surfaces are combined while applying pressure as necessary. Although heating temperature changes with kinds of metal layer, generally it is 250 to 550 degreeC. The pressure for pressurization is generally 2 to 20 MPa.

保持基板は、III−V族半導体結晶と接合して用いる為、両材料の線熱膨張係数の差が小さいことが重要である。このため、保持基板に用いる金属含浸セラミックス複合体の温度40℃〜150℃の線熱膨張係数が4×10-6〜9×10-6/Kであることが好ましい。更に好ましくは、4×10-6〜7×10-6/Kである。金属含浸セラミックス複合体の温度40℃〜150℃での線熱膨張係数が4×10-6〜9×10-6/Kの範囲を外れた場合、接合するIII−V族半導体結晶又は成長基板との線熱膨張係数差により、接合後に反りが発生したり、LED発光素子として使用する際に接合層の剥離が発生したり、III−V族半導体結晶が割れてしまう場合があり好ましくない。 Since the holding substrate is used while being bonded to a group III-V semiconductor crystal, it is important that the difference in linear thermal expansion coefficient between the two materials is small. For this reason, it is preferable that the linear thermal expansion coefficient at a temperature of 40 ° C. to 150 ° C. of the metal-impregnated ceramic composite used for the holding substrate is 4 × 10 −6 to 9 × 10 −6 / K. More preferably 4 × 10 -6 ~7 × 10 -6 / K. Group III-V semiconductor crystal or growth substrate to be bonded when the linear thermal expansion coefficient at a temperature of 40 ° C. to 150 ° C. of the metal-impregnated ceramic composite is out of the range of 4 × 10 −6 to 9 × 10 −6 / K The linear thermal expansion coefficient difference between the first and second layers is not preferable because warping may occur after bonding, peeling of the bonding layer may occur when used as an LED light-emitting element, or the III-V group semiconductor crystal may be broken.

本発明の保持基板は、LED発光素子のベース基板となる。当該基板を介して、III−V族半導体素子で発生する熱の大半を放熱することとなり、当該基板には高い放熱特性が要求される。このため、保持基板に用いる金属含浸セラミックス複合体の温度25℃での熱伝導率は、100〜300W/mKであることが好ましく、更に好ましくは、150〜300W/mKである。熱伝導率が100W/mK未満では、III−V族半導体素子で発生する熱を十分に放熱することができず、特に大電流を流す必要のある高出力LEDでは、素子の温度が上がり発光効率の低下、それに伴う素子寿命の低下が起こり好ましくない。一方、熱伝導率の上限値に関しては、特性面からの制約はないが、基板材料が極端に高価になってしまう。   The holding substrate of the present invention serves as a base substrate of the LED light emitting element. Most of the heat generated in the III-V semiconductor device is radiated through the substrate, and the substrate is required to have high heat dissipation characteristics. For this reason, the thermal conductivity at a temperature of 25 ° C. of the metal-impregnated ceramic composite used for the holding substrate is preferably 100 to 300 W / mK, and more preferably 150 to 300 W / mK. If the thermal conductivity is less than 100 W / mK, the heat generated in the III-V group semiconductor device cannot be sufficiently dissipated, and particularly in a high-power LED that needs to pass a large current, the temperature of the device increases and the luminous efficiency And the accompanying decrease in device life are undesirable. On the other hand, the upper limit value of the thermal conductivity is not limited in terms of characteristics, but the substrate material becomes extremely expensive.

放熱性の面から、保持基板の板厚は薄い方が好ましい。一方で、III−V族半導体素子の保持及びLED発光素子作製時のハンドリング等に耐え得る強度が必要なため、一定の板厚が必要である。保持基板の板厚は、0.05mm〜1mmが好ましく、0.05mm〜0.3mmがより好ましい。保持基板の板厚が1mmを超えるとLED発光素子の放熱特性が低下して好ましくない。本発明の保持基板は、III−V族半導体結晶と接合した後、必要に応じて研磨等により薄板化することもできる。 From the viewpoint of heat dissipation, it is preferable that the holding substrate is thin. On the other hand, a certain plate thickness is required because strength that can withstand the holding of the III-V group semiconductor element and the handling at the time of manufacturing the LED light emitting element is necessary. The thickness of the holding substrate is preferably 0.05 mm to 1 mm, more preferably 0.05 mm to 0.3 mm. If the thickness of the holding substrate exceeds 1 mm, the heat dissipation characteristics of the LED light-emitting element deteriorate, which is not preferable. The holding substrate of the present invention can be thinned by polishing or the like, if necessary, after joining with the III-V group semiconductor crystal.

本発明では、III−V族半導体結晶と保持基板とを金属層を介して接合した後、単結晶成長基板を除去する。単結晶成長基板の除去は、基板側よりレーザー照射を行い除去する方法が一般的である。この他にも、研磨やエッチングにより単結晶成長基板を除去することもできる。単結晶成長基板を除去したIII−V族半導体結晶面は、必要に応じて表面の研磨、エッチングを行い所望する表面形状に仕上げた後、蒸着法、スパッタ法等の手法により、電極を形成する。更に、レーザーカット又はダイシングにて所定形状に切断して、LED発光素子を製造する。 In the present invention, the single crystal growth substrate is removed after the III-V semiconductor crystal and the holding substrate are bonded via the metal layer. In general, the single crystal growth substrate is removed by irradiating a laser from the substrate side. In addition, the single crystal growth substrate can be removed by polishing or etching. The III-V semiconductor crystal surface from which the single crystal growth substrate has been removed is subjected to surface polishing and etching as necessary to finish the surface shape as desired, and then electrodes are formed by a technique such as vapor deposition or sputtering. . Further, it is cut into a predetermined shape by laser cutting or dicing to manufacture an LED light emitting element.

本発明の保持基板には、LED発光素子製造プロセスでの耐薬品特性が必要であり、具体的には、温度25℃の5規定のHCl溶液及び温度75℃の10規定のNaOH溶液にそれぞれ1分間浸漬したときの少なくとも一主面の単位面積当たりの重量減少量が0. 2mg/cm以下が好ましく、更に好ましくは、重量減少量が0.1mg/cm以下である。温度25℃の5規定のHCl溶液及び温度75℃の10規定のNaOH溶液にそれぞれ1分間浸漬したときの単位面積当たりの重量減少量が0.2mg/cmを超えると、金属含浸セラミックス複合体中の金属成分の溶出に伴う熱伝導率等の特性低下が発生すると共に、レーザーカット又はダイシングにて所定形状に切断する際にチッピングが発生し、LED発光素子の歩留まりが低下するために好ましくない。本発明の保持基板の実使用においては、保持基板の一主面は、III−V族半導体結晶と金属層を介して接合されるため、非接合面が、上述した耐薬品特性を満たすものであればよい。 The holding substrate of the present invention needs to have chemical resistance characteristics in the LED light emitting device manufacturing process. Specifically, it is 1 in each of a 5N HCl solution at a temperature of 25 ° C. and a 10N NaOH solution at a temperature of 75 ° C. The weight loss per unit area of at least one principal surface when immersed for 0 minutes is 0. 2 mg / cm 2 or less is preferable, and more preferably, the weight loss is 0.1 mg / cm 2 or less. When the weight loss per unit area when immersed in a 5N HCl solution at a temperature of 25 ° C. and a 10N NaOH solution at a temperature of 75 ° C. for 1 minute exceeds 0.2 mg / cm 2 , a metal-impregnated ceramic composite It is not preferable because characteristics such as thermal conductivity are reduced due to elution of metal components in the inside, and chipping occurs when cutting into a predetermined shape by laser cutting or dicing, and the yield of LED light emitting elements is reduced. . In the actual use of the holding substrate of the present invention, one main surface of the holding substrate is bonded to the III-V group semiconductor crystal through the metal layer, so that the non-bonded surface satisfies the above-mentioned chemical resistance characteristics. I just need it.

本発明の保持基板は、基板自体が導電性を有している。このため、LEDを構成するIII−V族半導体結晶の両面に電極を形成することができる。サファイア基板等の絶縁材料を基板として用いる場合、上部のp型又はn型のIII−V族半導体結晶の一部をエッチング等で除去して、同一面側に電極を形成する必要がある。本発明では、LED発光素子の製造プロセスの低減が可能である。更に、p型又はn型の片方のIII−V族半導体結晶の一部をエッチング等で除去して電極形成する必要がないため、LED発光素子の単位面積当たりの発光量を増加させることができる。本発明の保持基板に用いる金属含浸セラミックス複合体の体積固有抵抗は、10-9〜10-5Ω・mが好ましい。体積固有抵抗が10-5Ω・mを超えると、発光効率の低下等が起こり好ましくない。体積固有抵抗の下限値は、特性面での制約はないが、材料組成から10-9Ω・m以上が一般的である。 In the holding substrate of the present invention, the substrate itself has conductivity. For this reason, an electrode can be formed on both surfaces of the III-V semiconductor crystal which comprises LED. When an insulating material such as a sapphire substrate is used as the substrate, it is necessary to remove part of the upper p-type or n-type III-V group semiconductor crystal by etching or the like to form electrodes on the same surface side. In the present invention, the manufacturing process of the LED light emitting element can be reduced. Further, since it is not necessary to form an electrode by removing a part of the p-type or n-type III-V semiconductor crystal by etching or the like, the amount of light emission per unit area of the LED light-emitting element can be increased. . The volume resistivity of the metal-impregnated ceramic composite used for the holding substrate of the present invention is preferably 10 −9 to 10 −5 Ω · m. When the volume resistivity exceeds 10 −5 Ω · m, the luminous efficiency is lowered, which is not preferable. The lower limit of the volume resistivity is not limited in terms of characteristics, but is generally 10 −9 Ω · m or more from the material composition.

金属含浸セラミックス複合体の製法は、含浸法と粉末冶金法の2種に大別される。このうち、熱伝導率等の特性面から実際に商品化されているのは、含浸法によるものである。含浸法にも種々の製法があり、常圧で行う方法と、高圧下で行う方法(高圧鍛造法)がある。高圧鍛造法には、溶湯鍛造法とダイキャスト法がある。本発明に好適な方法は、高圧下で含浸を行う高圧鍛造法であり、熱伝導率等の特性に優れた緻密な複合体を得るには溶湯鍛造法が好ましい。溶湯鍛造法は、高圧容器内に、セラミックス粉末又は成形体を装填し、これにアルミニウム合金等の溶湯を高温、高圧下で含浸させて複合材料を得る方法である。 Methods for producing metal-impregnated ceramic composites are roughly classified into two types: impregnation methods and powder metallurgy methods. Of these, what is actually commercialized in terms of characteristics such as thermal conductivity is the impregnation method. There are various impregnation methods, and there are a method performed at normal pressure and a method performed under high pressure (high pressure forging method). High pressure forging methods include a molten metal forging method and a die casting method. A method suitable for the present invention is a high-pressure forging method in which impregnation is performed under high pressure, and a molten forging method is preferable to obtain a dense composite having excellent characteristics such as thermal conductivity. The molten metal forging method is a method in which a ceramic material or a compact is loaded into a high-pressure vessel, and a molten material such as an aluminum alloy is impregnated at high temperature and high pressure to obtain a composite material.

以下、溶湯鍛造法による製法例を説明する。原料であるセラミックスは、熱伝導率が高く、線熱膨張係数の小さい材料を用いる必要がある。本発明では、炭化珪素を用いる。本発明の金属含浸セラミックス複合体は、炭化珪素とアルミニウム合金を複合化することにより、熱伝導率及び線熱膨張係数を調整することができる。本発明の金属含浸セラミックス複合体は、炭化珪素を50〜90体積%含有し、残部がアルミニウム合金からなる複合材料である。炭化珪素の含有量は、好ましくは70〜85体積%である。炭化珪素の含有量が50体積%未満では、得られる金属含浸セラミックス複合体の線熱膨張係数が大きくなり、LED発光素子用の基板材料として好ましくない。一方、炭化珪素の含有量が90体積%を超えると、複合化時にアルミニウム合金を十分に含浸させることができず、その結果、熱伝導率が低下してしまい好ましくない。 Hereafter, the example of a manufacturing method by the molten metal forging method is demonstrated. It is necessary to use a material having a high thermal conductivity and a low linear thermal expansion coefficient as the raw material ceramics. In the present invention, silicon carbide is used. The metal-impregnated ceramic composite of the present invention can adjust the thermal conductivity and the linear thermal expansion coefficient by compounding silicon carbide and an aluminum alloy. The metal-impregnated ceramic composite of the present invention is a composite material containing 50 to 90% by volume of silicon carbide and the balance being made of an aluminum alloy. The silicon carbide content is preferably 70 to 85% by volume. When the content of silicon carbide is less than 50% by volume, the coefficient of linear thermal expansion of the resulting metal-impregnated ceramic composite increases, which is not preferable as a substrate material for an LED light-emitting element. On the other hand, if the silicon carbide content exceeds 90% by volume, the aluminum alloy cannot be sufficiently impregnated at the time of compounding, and as a result, the thermal conductivity is lowered, which is not preferable.

セラミックスは、粉末のまま複合化することもできるが、無機バインダーを用いて成形体を作製するか、焼結処理を行って10〜50体積%の気孔率を有する多孔体(以下プリフォームと云う)を作製して複合化することが好ましい。このプリフォームの気孔率の調整は、原料粉末の粒度調整、成形圧力、焼結条件等によって行う。プリフォームの成形方法は、プレス成形、鋳込み成形等の一般的なセラミックス粉末の成形方法で成形することができる。プリフォームの外形は最終形状よりも0.3〜4.5mm小さい外形であることが好ましく、0.4〜4.0mm小さい外形であることがより好ましい。これにより得られる金属含浸セラミックス複合体の外周部に形成されるアルミニウムまたはアルミニウム合金の厚みは0.1〜2.0μmとなる。プリフォームの外形が4.5mm以下では、外周部に形成されるアルミニウムまたはアルミニウム合金の厚みが2.0μmよりも厚くなり発光素子を搭載させた最終製品の歩留りが低下し好ましくなく、0.3mm以上では外周部に形成されるアルミニウムを主成分とする金属層が0.1μm以下に薄くなりすぎて好ましくない。 プリフォームは厚み0.6〜5.0mmの平板状、または円柱状に成形した後、厚み0.6〜5.0mmに切断加工して用いる。更に、本発明では、最終形状として板厚が0.05mm〜1mmの板状に加工するため、3点曲げ強度が50MPa以上のプリフォームを用いることが好ましい。プリフォームの強度が低いと、研削加工等で板厚を0.05mm〜1mmの板状に加工する際に、反りが発生することがある。 Ceramics can be compounded as a powder, but a porous body (hereinafter referred to as a preform) having a porosity of 10 to 50% by volume by forming a molded body using an inorganic binder or by performing a sintering process. ) Is preferably combined. The porosity of the preform is adjusted by adjusting the particle size of the raw material powder, molding pressure, sintering conditions, and the like. The preform can be molded by a general ceramic powder molding method such as press molding or cast molding. The outer shape of the preform is preferably 0.3 to 4.5 mm smaller than the final shape, and more preferably 0.4 to 4.0 mm smaller. The thickness of the aluminum or aluminum alloy formed on the outer periphery of the metal-impregnated ceramic composite thus obtained is 0.1 to 2.0 μm. When the outer shape of the preform is 4.5 mm or less, the thickness of the aluminum or aluminum alloy formed on the outer peripheral portion becomes thicker than 2.0 μm, and the yield of the final product on which the light emitting element is mounted is lowered, which is not preferable. In the above, the metal layer which has aluminum as a main component formed in an outer peripheral part becomes too thin to 0.1 micrometer or less, and is not preferable. The preform is formed into a flat plate shape or a cylindrical shape having a thickness of 0.6 to 5.0 mm, and then cut into a thickness of 0.6 to 5.0 mm. Furthermore, in the present invention, it is preferable to use a preform having a three-point bending strength of 50 MPa or more in order to process the final shape into a plate shape having a plate thickness of 0.05 mm to 1 mm. If the strength of the preform is low, warping may occur when processing the plate thickness into a plate shape of 0.05 mm to 1 mm by grinding or the like.

ついで、最終外形よりも小さく穴を開け、離型剤を塗布した厚みがプリフォームより0.1〜1.0mm薄い金属またはセラミックス枠にプリフォームを挿入し、個々の冶具は、離型剤を塗布した離型板を挟んで複数個を積層してボルト−ナット等で連結して積層体とする。プリフォームを挿入する枠は、ステンレス製、鉄製や黒鉛製の治具を用いることができ、より好ましくはプリフォームより0.2〜0.5mm薄い枠を用いるのが良い。厚みが0.1mmより小さい場合は、アルミニウム合金が供給されず、含浸不良となり、1.0mm以上では、含浸後の離型性が悪く好ましくない。離型板としては、ステンレス板やセラミックス板を使用することがで、溶湯鍛造法にてアルミニウム合金が含浸されない緻密体であれば特に制限はない。また、治具や離型板に塗布する離型剤については、黒鉛、窒化ホウ素、アルミナ等の離型剤が使用できる。更に、好ましくは、治具や離型板表面をアルミナゾル等によりコーティングした後、離型剤を塗布することが好ましい。   Next, a hole is made smaller than the final outer shape, and the preform is inserted into a metal or ceramic frame whose thickness is 0.1 to 1.0 mm thinner than the preform, and each jig has a release agent. A plurality of layers are stacked on both sides of the applied release plate, and connected with bolts and nuts to form a stacked body. As the frame into which the preform is inserted, a jig made of stainless steel, iron or graphite can be used. More preferably, a frame 0.2 to 0.5 mm thinner than the preform is used. If the thickness is less than 0.1 mm, the aluminum alloy is not supplied and impregnation is poor. As the release plate, a stainless plate or a ceramic plate can be used, and there is no particular limitation as long as it is a dense body that is not impregnated with an aluminum alloy by a molten metal forging method. Moreover, about the mold release agent apply | coated to a jig | tool or a mold release plate, mold release agents, such as graphite, boron nitride, an alumina, can be used. Furthermore, it is preferable to apply a release agent after coating the surface of a jig or a release plate with alumina sol or the like.

得られた積層体は、温度600〜800℃程度で加熱後、高圧容器内に1個または2個以上配置し、積層体の温度低下を防ぐために出来るだけ速やかに、融点以上に加熱したアルミニウム合金の溶湯を給湯して30MPa以上の圧力で加圧し、アルミニウム合金をプリフォームの空隙中に含浸させることで、金属含浸セラミックス複合体が得られる。なお、含浸時の歪み除去の目的で、含浸品のアニール処理を行うこともある。   The obtained laminated body is heated at a temperature of about 600 to 800 ° C., and then one or two or more pieces are placed in a high-pressure vessel, and the aluminum alloy is heated to the melting point or more as quickly as possible to prevent the temperature of the laminated body from decreasing. A metal-impregnated ceramic composite is obtained by supplying a molten metal and pressurizing with a pressure of 30 MPa or more and impregnating the aluminum alloy into the voids of the preform. For the purpose of removing distortion during impregnation, the impregnated product may be annealed.

積層体の加熱温度は、温度600℃未満では、アルミニウム合金の複合化が不十分となり、得られる金属含浸セラミックス複合体の熱伝導率等の特性が低下してしまう。また、加熱温度が800℃を超えると、アルミニウム合金との複合化時に、セラミックス粉末の表面の酸化が起こり、得られる金属含浸セラミックス複合体の熱伝導率等の特性が低下してしまう。更に、含浸時の圧力に関しては、30MPa未満では、アルミニウム合金の複合化が不十分となり、得られる金属含浸セラミックス複合体の熱伝導率等の特性が低下してしまい好ましくない。好ましくは、含浸圧力は、50MPa以上である。   When the heating temperature of the laminated body is less than 600 ° C., the aluminum alloy is not sufficiently combined, and the properties such as the thermal conductivity of the resulting metal-impregnated ceramic composite deteriorate. On the other hand, when the heating temperature exceeds 800 ° C., the surface of the ceramic powder is oxidized at the time of compounding with the aluminum alloy, and the characteristics such as thermal conductivity of the resulting metal-impregnated ceramic composite are deteriorated. Furthermore, regarding the pressure at the time of impregnation, if it is less than 30 MPa, the composite of the aluminum alloy becomes insufficient, and the properties such as the thermal conductivity of the resulting metal-impregnated ceramic composite deteriorate, which is not preferable. Preferably, the impregnation pressure is 50 MPa or more.

本発明の金属含浸セラミックス複合体中のアルミニウム合金は、アルミニウムを70質量%以上含有するアルミニウム合金である。アルミニウムの含有量が70質量%未満では、アルミニウム合金の熱伝導率が低下し好ましくない。また、アルミニウム合金は、含浸時にプリフォームの空隙内に十分に浸透するために融点がなるべく低いことが好ましい。このようなアルミニウム合金として、例えばシリコンを5〜25質量%含有したアルミニウム合金が挙げられる。更にマグネシウムを含有させることは、セラミックス粒子と金属部分との結合がより強固になり好ましい。アルミニウム合金中のアルミニウム、シリコン、マグネシウム以外の金属成分に関しては、極端に特性が変化しない範囲であれば特に制限はなく、例えば銅等が含まれていても良い。 The aluminum alloy in the metal-impregnated ceramic composite of the present invention is an aluminum alloy containing 70% by mass or more of aluminum. If the aluminum content is less than 70% by mass, the thermal conductivity of the aluminum alloy is lowered, which is not preferable. The aluminum alloy preferably has a melting point as low as possible in order to sufficiently penetrate into the voids of the preform when impregnated. Examples of such an aluminum alloy include an aluminum alloy containing 5 to 25% by mass of silicon. Further, it is preferable to contain magnesium because the bond between the ceramic particles and the metal portion becomes stronger. The metal components other than aluminum, silicon, and magnesium in the aluminum alloy are not particularly limited as long as the characteristics do not change extremely. For example, copper or the like may be included.

次に、得られた板状の外周部がアルミニウムまたはアルミニウム合金で覆われた金属含浸セラミックス複合体を、両面研削盤、ロータリー研削盤、平面研削盤、ラップ盤等の加工機で、板厚が0.05〜1mm、且つ、表面粗さ(Ra)が0.01〜1μmになるように面加工を行った後、両面研削盤、ロータリー研削盤、平面研削盤、ラップ盤等の加工機で、板厚が0.1〜1mm、且つ、表面粗さ(Ra)が0.01〜1μmになるように面加工を行う。 Next, the obtained plate-shaped outer peripheral part is covered with aluminum or an aluminum alloy, and the thickness of the metal-impregnated ceramics composite is reduced with a processing machine such as a double-side grinding machine, a rotary grinding machine, a surface grinding machine, or a lapping machine. After performing surface processing so that the surface roughness (Ra) is 0.01 to 1 μm and 0.05 to 1 mm, using a processing machine such as a double-sided grinder, rotary grinder, surface grinder, or lapping machine Surface treatment is performed so that the plate thickness is 0.1 to 1 mm and the surface roughness (Ra) is 0.01 to 1 μm.

次に、外周部がアルミニウムまたはアルミニウム合金で覆われた板状の金属含浸セラミックス複合体は、表面を洗浄後、表面に厚みが0.05〜2.0μmのアルミニウム層を形成する。アルミニウム層厚みが0.05μm以下では、アルミニウム層未着部分が発生または、めっきの前処理等でアルミニウム層が反応し、ピンホールの発生により、未メッキ部分が生じ、耐薬品性が低下して好ましくない。一方、アルミニウム層厚みが2.0μmを超えると、アルミニウム層と金属含浸セラミックス複合体の線熱膨張係数が異なる為、両材料の熱膨張差による応力の発生、剥離の発生があり好ましくない。アルミニウム層厚みに関しては、より好ましくは0.3〜0.6μmである。 Next, the plate-like metal-impregnated ceramic composite whose outer peripheral portion is covered with aluminum or an aluminum alloy is formed by forming an aluminum layer having a thickness of 0.05 to 2.0 μm on the surface after washing the surface. When the aluminum layer thickness is 0.05 μm or less, an aluminum layer non-deposited part occurs or the aluminum layer reacts during plating pretreatment, etc., and pin holes are generated, resulting in an unplated part, resulting in reduced chemical resistance. It is not preferable. On the other hand, if the thickness of the aluminum layer exceeds 2.0 μm, the linear thermal expansion coefficient of the aluminum layer and the metal-impregnated ceramic composite are different. The aluminum layer thickness is more preferably 0.3 to 0.6 μm.

アルミニウム層の形成方法としては、蒸着法又は、スパッタリング法により厚み0.05〜1.0μmに形成する。 As a method for forming the aluminum layer, the aluminum layer is formed to have a thickness of 0.05 to 1.0 μm by vapor deposition or sputtering.

蒸着法では、外周部へのアルミニウム層形成がされにくく、その後のめっき処理にてめっき未着となる可能性がある。上記方法にて製造した金属含浸セラミックス複合体は、外周部がアルミニウムまたはアルミニウム合金で覆われているため、全面がアルミニウムまたはアルミニウム合金で覆われた金属含浸セラミックス複合体となる。 In the vapor deposition method, it is difficult to form an aluminum layer on the outer peripheral portion, and there is a possibility that plating is not deposited in the subsequent plating process. The metal-impregnated ceramic composite produced by the above method has a metal-impregnated ceramic composite whose entire surface is covered with aluminum or an aluminum alloy because the outer peripheral portion is covered with aluminum or an aluminum alloy.

アルミニウム層を構成するアルミニウム合金としては、アルミニウムを70質量%以上含有するアルミニウム合金である。アルミニウムの含有量が70質量%未満では、ジンケート処理による十分な密着のあるNiめっきが行えなくなるため好ましくない。アルミニウム合金中のアルミニウム、シリコン以外の金属成分に関しては、極端に特性が変化しない範囲であれば特に制限はなく、例えばマグネシウム、銅等が含まれていても良い。 As an aluminum alloy which comprises an aluminum layer, it is an aluminum alloy containing 70 mass% or more of aluminum. If the aluminum content is less than 70% by mass, Ni plating with sufficient adhesion by the zincate treatment cannot be performed, which is not preferable. The metal components other than aluminum and silicon in the aluminum alloy are not particularly limited as long as the characteristics do not change extremely. For example, magnesium, copper, and the like may be included.

また、本発明では、金属含浸セラミックス複合体とアルミニウム層との密着性を向上させるため窒素、アルゴン、水素、ヘリウム又は真空雰囲気中で、温度460〜650℃で1分間以上加熱処理を行う。酸化性雰囲気下で処理を行うと、表面に酸化膜が形成され、その後のめっき不良が生じるため、好ましくない。温度は好ましくは、480〜570℃である。温度が460℃以下では、金属含浸セラミックス複合体とアルミニウム層の密着が悪くなってしまい、650℃以上では、アルミニウム層が溶解してしまい、表面粗さが悪化してしまい好ましくない。   In the present invention, in order to improve the adhesion between the metal-impregnated ceramic composite and the aluminum layer, heat treatment is performed at a temperature of 460 to 650 ° C. for 1 minute or more in nitrogen, argon, hydrogen, helium or a vacuum atmosphere. When the treatment is performed in an oxidizing atmosphere, an oxide film is formed on the surface and subsequent plating defects occur, which is not preferable. The temperature is preferably 480-570 ° C. If the temperature is 460 ° C. or lower, the adhesion between the metal-impregnated ceramic composite and the aluminum layer is deteriorated, and if it is 650 ° C. or higher, the aluminum layer is dissolved and the surface roughness is deteriorated.

次に、アルミニウム層を形成させた金属含浸セラミックス複合体は、表面に無電解めっき法又は電気めっき法により、厚み0.5〜5.0μmのNiめっき層、及び厚み0.05〜2.0μmの金めっき層を形成する。Niめっき層厚みが0.5μm以下では、ピンホールが発生し、耐薬品性が低下して好ましくない。一方、Niめっき層厚みが5.0μm以上では、熱伝導率特性の低下や、電気抵抗の増加等が生じ、好ましくない。金めっき層厚みが、0.05μm以下では、ピンホールが発生し耐薬品性が低下して好ましくない。一方金めっき層厚みが2.0μm以上では、コストが上がり好ましくない。   Next, the metal-impregnated ceramic composite with the aluminum layer formed thereon is formed with an Ni plating layer having a thickness of 0.5 to 5.0 μm and a thickness of 0.05 to 2.0 μm by electroless plating or electroplating. The gold plating layer is formed. When the Ni plating layer thickness is 0.5 μm or less, pinholes are generated and chemical resistance is lowered, which is not preferable. On the other hand, when the Ni plating layer thickness is 5.0 μm or more, the thermal conductivity characteristics are lowered and the electric resistance is increased. When the thickness of the gold plating layer is 0.05 μm or less, pinholes are generated and chemical resistance is lowered, which is not preferable. On the other hand, when the thickness of the gold plating layer is 2.0 μm or more, the cost increases, which is not preferable.

めっきの前処理としては、ジンケート処理、パラジウム処理等があるが、アルミニウムとの密着力のあるめっきが可能なジンケート処理がより好ましい。   Examples of the pretreatment for plating include zincate treatment, palladium treatment, and the like, but zincate treatment capable of plating with adhesion to aluminum is more preferable.

(実施例1)
〈LED発光素子用保持基板の作製〉
炭化珪素(以下、SiCという)粉末A(大平洋ランダム社製、NG−60、平均粒子径200μm)1800g、炭化珪素粉末B(大平洋ランダム社製、NG−600、平均粒子径20μm)900g、炭化珪素粉末C(大平洋ランダム社製、NC−6000、平均粒子径2μm)300g、及び成形バインダー(メチルセルロース、信越化学工業社製、「メトローズ」)150gを秤取し、攪拌混合機で30分間混合した後、Φ55mm×110mmの寸法の円柱状に面圧10MPaでプレス成形した後、成形圧力100MPaでCIP成形して成形体を作製した。
Example 1
<Preparation of LED light-emitting element holding substrate>
1800 g of silicon carbide (hereinafter referred to as SiC) powder A (manufactured by Taiyo Random Co., Ltd., NG-60, average particle diameter 200 μm), silicon carbide powder B (manufactured by Taiyo Random Co., Ltd., NG-600, average particle diameter 20 μm) 900 g, 300 g of silicon carbide powder C (manufactured by Taiyo Random Co., Ltd., NC-6000, average particle size 2 μm) and 150 g of a molded binder (methyl cellulose, manufactured by Shin-Etsu Chemical Co., Ltd., “Metroses”) are weighed and stirred for 30 minutes. After mixing, it was press-molded into a cylindrical shape with a size of Φ55 mm × 110 mm at a surface pressure of 10 MPa, and then CIP-molded at a molding pressure of 100 MPa to produce a compact.

得られた成形体を、大気雰囲気中、温度600℃で2時間脱脂処理後、アルゴン雰囲気下、温度2100℃で2時間焼成して、気孔率が20体積%のSiCプリフォームを作製した。得られたSiCプリフォームを、マシニングセンターでダイヤモンド製の砥石を用いて、外形寸法がΦ49.2mm×100mmの形状に加工した。さらに、研削加工により3点曲げ強度測定用試験体(3mm×4mm×40mm)を作製し、3点曲げ強度を測定した。3点曲げ強度は120MPaであった。   The obtained molded body was degreased in an air atmosphere at a temperature of 600 ° C. for 2 hours and then calcined in an argon atmosphere at a temperature of 2100 ° C. for 2 hours to produce a SiC preform having a porosity of 20% by volume. The obtained SiC preform was processed into a shape having an outer dimension of 49.2 mm × 100 mm using a diamond grindstone at a machining center. Further, a three-point bending strength measurement specimen (3 mm × 4 mm × 40 mm) was prepared by grinding, and the three-point bending strength was measured. The three-point bending strength was 120 MPa.

得られたSiCプリフォームをマルチワイヤ―ソ-にて厚み1.4mmにスライス加工した後、窒化硼素の離型剤を塗布したΦ50.3mmの穴の開いた厚み1.2mm、外形寸法:70mm×70mm×100mmのステンレス板に挿入し、次に、70mm×100mm×0.8mmtのステンレス板に黒鉛離型材を塗布して離型板を作製し、140.8mm×140.8mm×100mmの形状となる様に離型板を挟んで積層して、両側に12mm厚みの鉄板を配置して、M10のボルト8本で連結して一つの積層体とした。次に、積層体を電気炉で温度700℃に予備加熱した後、あらかじめ加熱しておいた内径Φ400mm×300mmHのプレス型内に収め、シリコンを12質量%及びマグネシウムを1質量%含有するアルミニウム合金の溶湯(温度:800℃)を注ぎ、100MPaの圧力で25分間加圧してSiCプリフォームにアルミニウム合金を含浸させた。室温まで冷却した後、湿式バンドソーにて離型板の形状に沿って切断し、離型板を剥がし、ステンレス板から金属含浸セラミックス複合体を抜き出した。得られた金属含浸セラミックス複合体は、含浸時の歪み除去のために530℃の温度で3時間アニール処理を行った。 After slicing the obtained SiC preform to a thickness of 1.4 mm with a multi-wire source, a thickness of 1.2 mm with a hole of Φ50.3 mm coated with a boron nitride release agent was applied, and external dimensions: 70 mm Insert into a 70 mm x 100 mm stainless steel plate, and then apply a graphite release material to a 70 mm x 100 mm x 0.8 mmt stainless steel plate to produce a release plate, shape of 140.8 mm x 140.8 mm x 100 mm Then, a 12 mm-thick iron plate was placed on both sides, and connected with eight M10 bolts to form one laminate. Next, the laminate is preheated to a temperature of 700 ° C. in an electric furnace and then placed in a pre-heated press mold having an inner diameter of Φ400 mm × 300 mmH, and contains 12% by mass of silicon and 1% by mass of magnesium. The molten metal (temperature: 800 ° C.) was poured and pressurized at 100 MPa for 25 minutes to impregnate the SiC preform with the aluminum alloy. After cooling to room temperature, it was cut along the shape of the release plate with a wet band saw, the release plate was peeled off, and the metal-impregnated ceramic composite was extracted from the stainless steel plate. The obtained metal-impregnated ceramic composite was annealed at a temperature of 530 ° C. for 3 hours in order to remove strain during impregnation.

次に、得られた金属含浸セラミックス複合体から、研削加工により熱膨張係数測定用試験体(直径3mm長さ10mm)、熱伝導率測定用試験体(25mm×25mm×1mm)、3点曲げ強度測定用試験体(3mm×4mm×40mm)、体積固有抵抗測定用試験体(50mm×50mm×5mm)を作製した。それぞれの試験体を用いて、温度25℃〜150℃の熱膨張係数を熱膨張計(セイコー電子工業社製;TMA300)で、温度25℃での熱伝導率をレーザーフラッシュ法(アルバック社製;TC3000)で、3点曲げ強度を曲げ強度試験機で、体積固有抵抗を4端子法(JIS R1637に準拠)で測定した。その結果、温度40℃〜150℃の熱膨張係数は4.9×10−6/K、温度25℃での熱伝導率は250W/mK、3点曲げ強度は350MPa、体積固有抵抗は8×10−7Ω・mであった。 Next, from the obtained metal-impregnated ceramic composite, a thermal expansion coefficient measurement specimen (diameter 3 mm, length 10 mm), thermal conductivity measurement specimen (25 mm × 25 mm × 1 mm), three-point bending strength by grinding. A test specimen for measurement (3 mm × 4 mm × 40 mm) and a test specimen for measuring volume resistivity (50 mm × 50 mm × 5 mm) were prepared. Using each test specimen, the thermal expansion coefficient at a temperature of 25 ° C. to 150 ° C. was measured with a thermal dilatometer (manufactured by Seiko Denshi Kogyo; TMA300), and the thermal conductivity at a temperature of 25 ° C. was measured with a laser flash method (manufactured by ULVAC; TC3000), a three-point bending strength was measured with a bending strength tester, and a volume resistivity was measured with a four-terminal method (based on JIS R1637). As a result, the thermal expansion coefficient at a temperature of 40 ° C. to 150 ° C. is 4.9 × 10 −6 / K, the thermal conductivity at a temperature of 25 ° C. is 250 W / mK, the three-point bending strength is 350 MPa, and the volume resistivity is 8 ×. 10 −7 Ω · m.

上記で得られた、外周に0.7mmのアルミニウム合金層が形成された円板状の金属含浸セラミックス複合体を、両面研削盤で#600のダイヤモンド砥石を用いて板厚0.22mmに研削加工した後、ラップ盤でダイヤモンドの砥粒を用いて、板厚0.2mmでまで研磨加工を行った後、純水中、次にイソプロピルアルコール中で超音波洗浄を行い、乾燥して金属含浸セラミックス複合材料基板を作製した。表面粗さ(Ra)を表面粗さ計で測定した結果、Ra0.05μmであった。   Grinding the disk-shaped metal-impregnated ceramics composite with 0.7 mm aluminum alloy layer formed on the outer periphery to a plate thickness of 0.22 mm with a double-side grinding machine using a # 600 diamond grindstone After polishing to a thickness of 0.2 mm using diamond abrasive grains on a lapping machine, ultrasonic cleaning is performed in pure water and then in isopropyl alcohol, followed by drying and metal-impregnated ceramics. A composite material substrate was produced. As a result of measuring the surface roughness (Ra) with a surface roughness meter, it was Ra 0.05 μm.

次に、この金属基複合材料を、蒸着法により複合材料の表面に0.5μm厚のアルミニウム層を形成し、窒素雰囲気下で530℃で30分間加熱処理を行った。次にアルミニウム層を形成させた金属含浸セラミックス複合材料基板に、無電解Ni−P及び電気金めっきを行い、表面に1.3μm(Ni-P:1μm+Au:0.3μm)のめっき層を形成した。得られた金属含浸セラミックス複合材料基板の特性値はめっき層金属の物性値とめっき前の金属含浸セラミックス複合材料基板の物性値の厚み比率から計算により算出した。その結果を表1に示す。また、めっき膜形成後の金属基複合材料を、温度25℃の5規定のHCl溶液及び温度75℃の10規定のNaOH溶液に1分間浸漬し、個々の処理による単位面積当たりの重量減少量を測定した。更に、めっき後の金属含浸セラミックス複合材料基板の表面粗さ(Ra)を表面粗さ計で測定した。その結果を表2に示す。   Next, an aluminum layer having a thickness of 0.5 μm was formed on the surface of the metal matrix composite material by vapor deposition, and heat treatment was performed at 530 ° C. for 30 minutes in a nitrogen atmosphere. Next, electroless Ni-P and electrogold plating were performed on the metal-impregnated ceramic composite material substrate on which the aluminum layer was formed, and a plating layer of 1.3 μm (Ni-P: 1 μm + Au: 0.3 μm) was formed on the surface. . The characteristic value of the obtained metal-impregnated ceramic composite material substrate was calculated from the thickness ratio of the physical property value of the plating layer metal and the physical property value of the metal-impregnated ceramic composite material substrate before plating. The results are shown in Table 1. Further, the metal matrix composite material after the plating film is formed is immersed in a 5N HCl solution at a temperature of 25 ° C. and a 10N NaOH solution at a temperature of 75 ° C. for 1 minute, and the amount of weight reduction per unit area by each treatment is determined. It was measured. Furthermore, the surface roughness (Ra) of the metal-impregnated ceramic composite material substrate after plating was measured with a surface roughness meter. The results are shown in Table 2.



〈LED発光素子の作製〉
板厚が0.5mmの単結晶サファイア基板上に、アンモニアガスとトリメチルガリウムを使用し、キャリアガスとして水素と窒素の混合ガスを用いて、温度1100℃でMOCVD法により、(1)〜(4)のGaN単結晶を4μmの厚さに成長させた。図1に構造を示す。
(1)n型GaNバッファー層 2
(2)n型GaN半導体層 3
(3)GaN活性層(発光層) 4
(4)p型GaN半導体層 5
<Production of LED light-emitting element>
On a single crystal sapphire substrate having a thickness of 0.5 mm, ammonia gas and trimethyl gallium are used, and a mixed gas of hydrogen and nitrogen is used as a carrier gas, and the temperature is 1100 ° C. by MOCVD (1) to (4 ) Single crystal GaN was grown to a thickness of 4 μm. FIG. 1 shows the structure.
(1) n-type GaN buffer layer 2
(2) n-type GaN semiconductor layer 3
(3) GaN active layer (light emitting layer) 4
(4) p-type GaN semiconductor layer 5

次に、p型GaN半導体層の表面に、真空蒸着法で、銀/錫合金を2μmの厚さに蒸着した。一方、LED発光素子用保持基板の片側の表面にも、同様の方法で銀/錫合金を2μmの厚さに蒸着した。両基板を銀/錫合金層が接する図1の様に積層し、温度400℃で、5MPaの加圧下で5分間保持し接合した。得られた接合体は、サファイア基板側より、出力40MW/cm2となるように、窒素ガスレーザーを照射し、サファイア基板を剥離した。レーザー照射により、n型GaNバッファー層がGaと窒素に分解されて、発生した窒素ガスによりサファイア基板を剥離することができた。 Next, a silver / tin alloy was deposited to a thickness of 2 μm on the surface of the p-type GaN semiconductor layer by vacuum deposition. On the other hand, a silver / tin alloy was deposited to a thickness of 2 μm on the surface of one side of the LED light emitting element holding substrate in the same manner. Both substrates were laminated as shown in FIG. 1 where the silver / tin alloy layer was in contact, and held at a temperature of 400 ° C. under a pressure of 5 MPa for 5 minutes for bonding. The obtained bonded body was irradiated with a nitrogen gas laser from the sapphire substrate side so that the output was 40 MW / cm 2, and the sapphire substrate was peeled off. The n-type GaN buffer layer was decomposed into Ga and nitrogen by laser irradiation, and the sapphire substrate could be peeled off by the generated nitrogen gas.

その後、表面に露出したn型GaNバッファー層をエッチングにより除去した後、酸化インジウム錫の透明導電体層を形成した。その後、n型電極としてAuを蒸着して、ダイシングにより、個々のLED発光素子とした。得られたLED発光素子は、保持基板からの放熱により素子温度の上昇による発光効率の低下がおさえられることを確認した。
Thereafter, the n-type GaN buffer layer exposed on the surface was removed by etching, and then a transparent conductor layer of indium tin oxide was formed. Then, Au was vapor-deposited as an n-type electrode, and it was set as each LED light emitting element by dicing. It was confirmed that the obtained LED light emitting element was able to suppress a decrease in luminous efficiency due to an increase in element temperature due to heat radiation from the holding substrate.

(実施例2〜8、比較例1〜3)
実施例1で作製した金属含浸セラミックス複合材料基板に蒸着法によりアルミニウム層を0.5μmまたは0.6μm形成し、窒素雰囲気下で530℃で30分間加熱処理をしたアルミニウム形成金属含浸セラミックス複合材料基板の表面に表4に示すめっき膜を形成した。得られた金属含浸セラミックス複合材料基板の特性値を表3に示す。また、めっき膜形成後の金属基複合材料を、温度25℃の5規定のHCl溶液及び温度75℃の10規定のNaOH溶液に1分間浸漬し、個々の処理による単位面積当たりの重量減少量を測定した。更に、めっき膜形成後の金属含浸セラミックス複合材料基板の表面粗さ(Ra)を表面粗さ計で測定した。その結果を表4に示す。
(Examples 2-8, Comparative Examples 1-3)
An aluminum-formed metal-impregnated ceramic composite substrate obtained by forming an aluminum layer of 0.5 μm or 0.6 μm by vapor deposition on the metal-impregnated ceramic composite substrate prepared in Example 1 and performing heat treatment at 530 ° C. for 30 minutes in a nitrogen atmosphere. The plating film shown in Table 4 was formed on the surface. Table 3 shows the characteristic values of the obtained metal-impregnated ceramic composite material substrate. Further, the metal matrix composite material after the plating film is formed is immersed in a 5N HCl solution at a temperature of 25 ° C. and a 10N NaOH solution at a temperature of 75 ° C. for 1 minute, and the amount of weight reduction per unit area by each treatment is determined. It was measured. Furthermore, the surface roughness (Ra) of the metal-impregnated ceramic composite material substrate after the plating film was formed was measured with a surface roughness meter. The results are shown in Table 4.



(実施例9〜12、比較例4)
実施例1で作製した金属含浸セラミックス複合材料基板に蒸着法により表5に示す厚みのアルミニウム層を形成し、窒素雰囲気下で530℃で30分間加熱処理をしたアルミニウム形成金属含浸セラミックス複合材料基板の表面に厚み1.2μmのNiめっきおよび0.3μmのめっき膜形成した。得られた金属基複合材料の特性値を表5に示す。また、めっき膜形成後の金属含浸セラミックス複合材料基板を、温度25℃の5規定のHCl溶液及び温度75℃の10規定のNaOH溶液に1分間浸漬し、個々の処理による単位面積当たりの重量減少量を測定した。更に、めっき膜形成後の金属含浸セラミックス複合材料基板の表面粗さ(Ra)を表面粗さ計で測定した。その結果を表6に示す。
また、比較例4では、めっき未着がみられた。
(Examples 9 to 12, Comparative Example 4)
An aluminum-formed metal-impregnated ceramic composite material substrate obtained by forming an aluminum layer having the thickness shown in Table 5 on the metal-impregnated ceramic composite material substrate prepared in Example 1 by a vapor deposition method and performing heat treatment at 530 ° C. for 30 minutes in a nitrogen atmosphere. A 1.2 μm thick Ni plating and a 0.3 μm plating film were formed on the surface. Table 5 shows the characteristic values of the obtained metal matrix composite. Further, the metal-impregnated ceramic composite substrate after the plating film is formed is immersed in a 5N HCl solution at a temperature of 25 ° C. and a 10N NaOH solution at a temperature of 75 ° C. for 1 minute, and the weight per unit area is reduced by each treatment. The amount was measured. Furthermore, the surface roughness (Ra) of the metal-impregnated ceramic composite material substrate after the plating film was formed was measured with a surface roughness meter. The results are shown in Table 6.
Moreover, in Comparative Example 4, no plating was observed.



(実施例13〜19)
〈LED発光素子用保持基板の作製〉
炭化珪素(以下、SiCという)粉末A(大平洋ランダム社製、NG−60、平均粒子径200μm)1800g、炭化珪素粉末B(大平洋ランダム社製、NG−600、平均粒子径20μm)900g、炭化珪素粉末C(大平洋ランダム社製、NC−6000、平均粒子径2μm)300g、及び成形バインダー(メチルセルロース、信越化学工業社製、「メトローズ」)150gを秤取し、攪拌混合機で30分間混合した後、Φ55mm×1.5mmの寸法の円柱状に面圧30MPaでプレス成形して成形体を作製した。
(Examples 13 to 19)
<Preparation of LED light-emitting element holding substrate>
1800 g of silicon carbide (hereinafter referred to as SiC) powder A (manufactured by Taiyo Random Co., Ltd., NG-60, average particle diameter 200 μm), silicon carbide powder B (manufactured by Taiyo Random Co., Ltd., NG-600, average particle diameter 20 μm) 900 g, 300 g of silicon carbide powder C (manufactured by Taiyo Random Co., Ltd., NC-6000, average particle size 2 μm) and 150 g of a molded binder (methyl cellulose, manufactured by Shin-Etsu Chemical Co., Ltd., “Metroses”) are weighed and stirred for 30 minutes. After mixing, it was press-molded into a cylindrical shape with a size of Φ55 mm × 1.5 mm at a surface pressure of 30 MPa to produce a molded body.

上記で得られた成形体を、大気雰囲気中、温度600℃で2時間脱脂処理後、アルゴン雰囲気下、温度1950℃で2時間焼成して、気孔率が30体積%のSiCプリフォームを作製した。得られたSiCプリフォームを、マシニングセンターでダイヤモンド製の砥石を用いて、外形寸法がΦ50.0mm×1.0mmの形状に加工した。さらに、同様の方法で作製した気孔率30%のφ50mm×10mmの寸法のSiCプリフォームを研削加工により3点曲げ強度測定用試験体(3mm×4mm×40mm)を作製し、3点曲げ強度を測定した。3点曲げ強度は80MPaであった。   The molded body obtained above was degreased at a temperature of 600 ° C. for 2 hours in an air atmosphere and then fired for 2 hours at a temperature of 1950 ° C. in an argon atmosphere to produce a SiC preform having a porosity of 30% by volume. . The obtained SiC preform was processed into a shape having an outer dimension of Φ50.0 mm × 1.0 mm using a diamond grindstone at a machining center. Further, a three-point bending strength test specimen (3 mm × 4 mm × 40 mm) was prepared by grinding a SiC preform having a porosity of 30% and a diameter of 50 mm × 10 mm produced by the same method to obtain a three-point bending strength. It was measured. The three point bending strength was 80 MPa.

該SiCプリフォームに窒化硼素の離型剤を塗布したΦ50.3mmの穴の開いた厚み0.8mm、外形寸法:70mm×70mm×100mmのステンレス板に挿入し、次に、70mm×100mm×0.8mmtのステンレス板に黒鉛離型材を塗布して離型板を作製し、140.8mm×140.8mm×100mmの形状となる様に離型板を挟んで積層して、両側に12mm厚みの鉄板を配置して、M10のボルト8本で連結して一つの積層体とした。次に、積層体を電気炉で温度700℃に予備加熱した後、あらかじめ加熱しておいた内径Φ400mm×300mmHのプレス型内に収め、シリコンを12質量%及びマグネシウムを1質量%含有するアルミニウム合金の溶湯(温度:800℃)を注ぎ、100MPaの圧力で25分間加圧してSiCプリフォームにアルミニウム合金を含浸させた。室温まで冷却した後、湿式バンドソーにて離型板の形状に沿って切断し、離型板を剥がし、ステンレス板から金属含浸セラミックス複合体を抜き出した。得られた金属含浸セラミックス複合体は、含浸時の歪み除去のために530℃の温度で3時間アニール処理を行った。 The SiC preform was coated with a boron nitride mold release agent and inserted into a stainless steel plate having a diameter of 0.8 mm and an outer dimension of 70 mm × 70 mm × 100 mm, and then 70 mm × 100 mm × 0 A graphite release material is applied to an 8 mmt stainless steel plate to produce a release plate, which is laminated with a release plate sandwiched so as to have a shape of 140.8 mm × 140.8 mm × 100 mm. An iron plate was arranged and connected with eight M10 bolts to form one laminate. Next, the laminate is preheated to a temperature of 700 ° C. in an electric furnace and then placed in a pre-heated press mold having an inner diameter of Φ400 mm × 300 mmH, and contains 12% by mass of silicon and 1% by mass of magnesium. The molten metal (temperature: 800 ° C.) was poured and pressurized at 100 MPa for 25 minutes to impregnate the SiC preform with the aluminum alloy. After cooling to room temperature, it was cut along the shape of the release plate with a wet band saw, the release plate was peeled off, and the metal-impregnated ceramic composite was extracted from the stainless steel plate. The obtained metal-impregnated ceramic composite was annealed at a temperature of 530 ° C. for 3 hours in order to remove strain during impregnation.

次に、得られた金属含浸セラミックス複合体より、研削加工により熱膨張係数測定用試験体(直径3mm長さ10mm)、熱伝導率測定用試験体(25mm×25mm×1mm)、3点曲げ強度測定用試験体(3mm×4mm×40mm)、体積固有抵抗測定用試験体(50mm×50mm×5mm)を作製した。それぞれの試験体を用いて、実施例1と同様の方法で測定した。その結果、温度40℃〜150℃の熱膨張係数は6.9×10−6/K、温度25℃での熱伝導率は220W/mK、3点曲げ強度は380MPa、体積固有抵抗は4×10−7Ω・mであった。 Next, from the obtained metal-impregnated ceramic composite, a thermal expansion coefficient measurement specimen (diameter 3 mm, length 10 mm), thermal conductivity measurement specimen (25 mm × 25 mm × 1 mm), three-point bending strength by grinding. A test specimen for measurement (3 mm × 4 mm × 40 mm) and a test specimen for measuring volume resistivity (50 mm × 50 mm × 5 mm) were prepared. Measurement was performed in the same manner as in Example 1 using each specimen. As a result, the thermal expansion coefficient at a temperature of 40 ° C. to 150 ° C. is 6.9 × 10 −6 / K, the thermal conductivity at a temperature of 25 ° C. is 220 W / mK, the three-point bending strength is 380 MPa, and the volume resistivity is 4 ×. 10 −7 Ω · m.

上記で得られた、外周に0.4mmのアルミニウム合金層が形成された円板状の金属含浸セラミックス複合体を、両面研削盤で#800のダイヤモンド砥石を用いて、板厚0.2mmに研削加工を行い、金属含浸セラミックス複合材料基板を作製した。   Grind the disc-shaped metal-impregnated ceramics composite with the 0.4 mm aluminum alloy layer formed on the outer periphery to a thickness of 0.2 mm with a double-side grinding machine using a # 800 diamond grindstone. Processing was performed to produce a metal-impregnated ceramic composite material substrate.

次に、この金属含浸セラミックス複合材料基板の表面を洗浄後、蒸着法により厚み1.0μmまたは0.6μmのアルミニウム層を形成した。次にアルミニウム層を形成させた金属含浸セラミックス複合材料基板を表7に示す条件にて加熱処理を行った後、無電解Ni−P及び電気金めっきを行い、表面に1.3μm(Ni-P:1μm+Au:0.3μm)のめっき層を形成した。得られた金属含浸セラミックス複合材料基板の特性値を表7に示す。また、めっき膜形成後の金属含浸セラミックス複合材料基板を、温度25℃の5規定のHCl溶液及び温度75℃の10規定のNaOH溶液に1分間浸漬し、個々の処理による単位面積当たりの重量減少量を測定した。更に、めっき膜形成後の金属含浸セラミックス複合材料基板の表面粗さ(Ra)を表面粗さ計で測定した。その結果を表8に示す。 Next, after cleaning the surface of the metal-impregnated ceramic composite material substrate, an aluminum layer having a thickness of 1.0 μm or 0.6 μm was formed by vapor deposition. Next, after heat-treating the metal-impregnated ceramic composite material substrate on which the aluminum layer was formed under the conditions shown in Table 7, electroless Ni-P and electrogold plating were performed, and 1.3 μm (Ni-P) was formed on the surface. : 1 μm + Au: 0.3 μm) was formed. Table 7 shows the characteristic values of the obtained metal-impregnated ceramic composite material substrate. Further, the metal-impregnated ceramic composite substrate after the plating film is formed is immersed in a 5N HCl solution at a temperature of 25 ° C. and a 10N NaOH solution at a temperature of 75 ° C. for 1 minute, and the weight per unit area is reduced by each treatment. The amount was measured. Furthermore, the surface roughness (Ra) of the metal-impregnated ceramic composite material substrate after the plating film was formed was measured with a surface roughness meter. The results are shown in Table 8.



〈LED発光素子の作製〉
次に、実施例13〜19のLED発光素子用保持基板を用いたLED発光素子の作製例を記載する。
板厚が0.5mmの単結晶Si基板上に、CVD法でSiC層を2μm形成して成長基板を作製した後、アンモニアガスと塩化ガリウムを使用し、キャリアガスとして水素ガスを用いて、温度1050℃でHVPE法により、(1)〜(3)のGaN単結晶を4μmの厚さに成長させた。図3に構造を示す。
(1)n型GaN半導体層 3
(2)GaN活性層(発光層) 4
(3)p型GaN半導体層 5
<Production of LED light-emitting element>
Next, preparation examples of LED light emitting devices using the LED light emitting device holding substrates of Examples 13 to 19 will be described.
After forming a growth substrate by forming a SiC layer with a thickness of 2 μm on a single crystal Si substrate having a thickness of 0.5 mm by a CVD method, ammonia gas and gallium chloride are used, hydrogen gas is used as a carrier gas, and temperature is increased. The GaN single crystals (1) to (3) were grown to a thickness of 4 μm by HVPE at 1050 ° C. FIG. 3 shows the structure.
(1) n-type GaN semiconductor layer 3
(2) GaN active layer (light emitting layer) 4
(3) p-type GaN semiconductor layer 5

次に、p型GaN半導体層の表面に、真空蒸着法で、銀を0.5μmの厚さに蒸着した後、Au/錫合金を1.5μmの厚さに蒸着した。一方、実施例13〜19のLED発光素子用保持基板の片側の表面にも、同様の方法でAu/錫合金を1.5μmの厚さに蒸着した。両基板をAu/錫合金層が接する図3の様に積層し、温度500℃で、5MPaの加圧下で5分間保持し接合した。得られた接合体は、酸処理により単結晶Si層をエッチング除去した後、研削加工によりSiC層を完全に除去した。   Next, silver was deposited to a thickness of 0.5 μm on the surface of the p-type GaN semiconductor layer by a vacuum deposition method, and then an Au / tin alloy was deposited to a thickness of 1.5 μm. On the other hand, Au / tin alloy was vapor-deposited to a thickness of 1.5 μm on the surface of one side of the LED light emitting element holding substrates of Examples 13 to 19 in the same manner. The two substrates were laminated as shown in FIG. 3 where the Au / tin alloy layer was in contact, and held at a temperature of 500 ° C. under a pressure of 5 MPa for 5 minutes for bonding. In the obtained bonded body, the single crystal Si layer was removed by etching by acid treatment, and then the SiC layer was completely removed by grinding.

その後、露出したn型GaN層表面をエッチングにより、表面粗化した後、酸化インジウム錫の透明導電体層を形成した。次に、n型電極としてAuを蒸着して、レーザー加工により、個々のLED発光素子とした。得られたLED発光素子は、保持基板からの放熱により素子温度の上昇による発光効率の低下がおさえられることを確認した。 Thereafter, the surface of the exposed n-type GaN layer was roughened by etching, and then a transparent conductor layer of indium tin oxide was formed. Next, Au was vapor-deposited as an n-type electrode, and individual LED light-emitting elements were formed by laser processing. It was confirmed that the obtained LED light emitting element was able to suppress a decrease in luminous efficiency due to an increase in element temperature due to heat radiation from the holding substrate.

(実施例20〜25、比較例5)
〈LED発光素子用保持基板の作製〉
炭化珪素粉末D(大平洋ランダム社製、NG−80、平均粒子径:150μm)1300g、炭化珪素粉末E(屋久島電工社製、GC−1000F、平均粒子径:10μm)700g、シリカゾル(日産化学社製:スノーテックス)300gを秤取し、攪拌混合機で30分間混合した後、Φ110mm×100mmの寸法の円柱状に面圧30MPaでプレス成形して成形体を作製した。得られた成形体を、温度120℃で1時間乾燥後、窒素雰囲気下、温度1400℃で2時間焼成して、気孔率が35体積%のSiCプリフォームを得た。得られたSiCプリフォームは、マシニングセンターでダイヤモンド砥石を用いて、外形寸法が、表9に示す外形に加工した。得られたSiCプリフォームより、研削加工により3点曲げ強度測定用試験体(3mm×4mm×40mm)を作製し、3点曲げ強度を測定した。その結果、3点曲げ強度が、50MPaであった。
(Examples 20 to 25, Comparative Example 5)
<Preparation of LED light-emitting element holding substrate>
1300 g of silicon carbide powder D (manufactured by Taiyo Random Co., Ltd., NG-80, average particle size: 150 μm), 700 g of silicon carbide powder E (manufactured by Yakushima Electric Works, GC-1000F, average particle size: 10 μm), silica sol (Nissan Chemical Co., Ltd.) (Product: Snowtex) 300 g was weighed and mixed with a stirrer / mixer for 30 minutes, and then pressed into a cylindrical shape having a size of Φ110 mm × 100 mm at a surface pressure of 30 MPa to prepare a molded body. The obtained molded body was dried at a temperature of 120 ° C. for 1 hour and then calcined at a temperature of 1400 ° C. for 2 hours in a nitrogen atmosphere to obtain a SiC preform having a porosity of 35% by volume. The obtained SiC preform was processed into the outer shape shown in Table 9 using a diamond grindstone at a machining center. From the obtained SiC preform, a three-point bending strength measurement specimen (3 mm × 4 mm × 40 mm) was prepared by grinding, and the three-point bending strength was measured. As a result, the three-point bending strength was 50 MPa.

得られたSiCプリフォームをマルチワイヤ―ソ-にて厚み1.2mmにスライス加工した後、窒化硼素の離型剤を塗布した表9に示す径の穴の開いた厚み1.0mm、外形寸法:70mm×70mm×100mmのステンレス板に挿入し、次に、70mm×100mm×0.8mmtのステンレス板に黒鉛離型材を塗布して離型板を作製し、140.8mm×140.8mm×100mmの形状となる様に離型板を挟んで積層して、両側に12mm厚みの鉄板を配置して、M10のボルト8本で連結して一つの積層体とした。次に、積層体を電気炉で温度700℃に予備加熱した後、あらかじめ加熱しておいた内径Φ400mm×300mmHのプレス型内に収め、シリコンを12質量%及びマグネシウムを1質量%含有するアルミニウム合金の溶湯(温度:800℃)を注ぎ、100MPaの圧力で25分間加圧してSiCプリフォームにアルミニウム合金を含浸させた。室温まで冷却した後、湿式バンドソーにて離型板の形状に沿って切断し、離型板を剥がし、旋盤で黒鉛治具部分を除去してΦ52mm×100mm形状の金属含浸セラミックス複合体を得た。得られた金属含浸セラミックス複合体は、含浸時の歪み除去のために530℃の温度で3時間アニール処理を行った。 The obtained SiC preform was sliced with a multi-wire source to a thickness of 1.2 mm, and then a boron nitride release agent was applied to a hole having a diameter of 1.0 mm and outer dimensions shown in Table 9 : Insert into a 70 mm × 70 mm × 100 mm stainless steel plate, and then apply a graphite release material to a 70 mm × 100 mm × 0.8 mmt stainless steel plate to produce a release plate, 140.8 mm × 140.8 mm × 100 mm A 12 mm-thick iron plate is arranged on both sides and connected with eight M10 bolts to form one laminate. Next, the laminate is preheated to a temperature of 700 ° C. in an electric furnace and then placed in a pre-heated press mold having an inner diameter of Φ400 mm × 300 mmH, and contains 12% by mass of silicon and 1% by mass of magnesium. The molten metal (temperature: 800 ° C.) was poured and pressurized at 100 MPa for 25 minutes to impregnate the SiC preform with the aluminum alloy. After cooling to room temperature, it was cut along the shape of the release plate with a wet band saw, the release plate was peeled off, and the graphite jig part was removed with a lathe to obtain a metal-impregnated ceramic composite having a shape of Φ52 mm × 100 mm . The obtained metal-impregnated ceramic composite was annealed at a temperature of 530 ° C. for 3 hours in order to remove strain during impregnation.

次に、得られた金属含浸セラミックス複合体より、研削加工により熱膨張係数測定用試験体(直径3mm長さ10mm)、熱伝導率測定用試験体(25mm×25mm×1mm)、3点曲げ強度測定用試験体(3mm×4mm×40mm)、体積固有抵抗測定用試験体(50mm×50mm×5mm)を作製した。それぞれの試験体を用いて、実施例1と同様の方法で測定した。その結果、温度40℃〜150℃の熱膨張係数は7.6×10−6/K、温度25℃での熱伝導率は200W/mK、3点曲げ強度は400MPa、体積固有抵抗は3×10−7Ω・mであった。 Next, from the obtained metal-impregnated ceramic composite, a thermal expansion coefficient measurement specimen (diameter 3 mm, length 10 mm), thermal conductivity measurement specimen (25 mm × 25 mm × 1 mm), three-point bending strength by grinding. A test specimen for measurement (3 mm × 4 mm × 40 mm) and a test specimen for measuring volume resistivity (50 mm × 50 mm × 5 mm) were prepared. Measurement was performed in the same manner as in Example 1 using each specimen. As a result, the thermal expansion coefficient at a temperature of 40 ° C. to 150 ° C. is 7.6 × 10 −6 / K, the thermal conductivity at a temperature of 25 ° C. is 200 W / mK, the three-point bending strength is 400 MPa, and the volume resistivity is 3 ×. 10 −7 Ω · m.

上記で得られた、表9に示す厚みのアルミニウム合金層が外周に形成された円板状の金属含浸セラミックス複合体を、両面研削盤で#800のダイヤモンド砥石を用いて、板厚0.2mmに研削加工を行い、金属含浸セラミックス複合材料基板を作製した。   The plate-like metal-impregnated ceramic composite obtained as described above and having an aluminum alloy layer with the thickness shown in Table 9 formed on the outer periphery was obtained by using a # 800 diamond grindstone with a double-side grinding machine and a thickness of 0.2 mm. The metal-impregnated ceramic composite material substrate was fabricated by grinding.

次に、この金属含浸セラミックス複合材料基板の表面を洗浄後、蒸着法により0.6μmのアルミニウム層を形成し、窒素雰囲気下で540℃で30分間加熱処理を行った。次にアルミニウム層を形成させた金属含浸セラミックス複合材料基板に、無電解Ni−P及び電気金めっきを行い、表面に1.3μm(Ni-P:1μm+Au:0.3μm)のめっき層を形成した。得られた金属含浸セラミックス複合材料基板の熱伝導率は200W/mK、線熱膨張係数は7.6ppm/K、体積固有抵抗は3×10−7Ω・mであった。また、めっき膜形成後の金属含浸セラミックス複合材料基板を、温度25℃の5規定のHCl溶液及び温度75℃の10規定のNaOH溶液に1分間浸漬し、個々の処理による単位面積当たりの重量減少量を測定した。更に、めっき膜形成後の金属含浸セラミックス複合材料基板の表面粗さ(Ra)を表面粗さ計で測定した。その結果を表10に示す。 Next, after cleaning the surface of the metal-impregnated ceramic composite material substrate, a 0.6 μm aluminum layer was formed by vapor deposition, and heat treatment was performed at 540 ° C. for 30 minutes in a nitrogen atmosphere. Next, electroless Ni-P and electrogold plating were performed on the metal-impregnated ceramic composite material substrate on which the aluminum layer was formed, and a plating layer of 1.3 μm (Ni-P: 1 μm + Au: 0.3 μm) was formed on the surface. . The obtained metal-impregnated ceramic composite substrate had a thermal conductivity of 200 W / mK, a linear thermal expansion coefficient of 7.6 ppm / K, and a volume resistivity of 3 × 10 −7 Ω · m. Further, the metal-impregnated ceramic composite substrate after the plating film is formed is immersed in a 5N HCl solution at a temperature of 25 ° C. and a 10N NaOH solution at a temperature of 75 ° C. for 1 minute, and the weight per unit area is reduced by each treatment. The amount was measured. Furthermore, the surface roughness (Ra) of the metal-impregnated ceramic composite material substrate after the plating film was formed was measured with a surface roughness meter. The results are shown in Table 10.


実施例20〜25で得られたLED発光素子用保持基板を用いてLED発光素子を作製し、保持基板からの放熱により素子温度の上昇による発光効率の低下がおさえられることを確認した。比較例5を用いてLED発光素子の作製を行ったが、外周部のアルミニウム合金層の厚みが厚いため、外周1.0mmの範囲のLED発光素子が使用できず、収率が低下してしまった。
An LED light-emitting element was produced using the LED light-emitting element holding substrate obtained in Examples 20 to 25, and it was confirmed that a decrease in luminous efficiency due to an increase in element temperature was suppressed by heat dissipation from the holding substrate. Although the LED light emitting element was produced using the comparative example 5, since the aluminum alloy layer of the outer peripheral part was thick, the LED light emitting element in the range of the outer periphery of 1.0 mm could not be used, and the yield was lowered. It was.

本発明のLED発光素子用保持基板は、LEDを構成するIII−IV族半導体結晶と線熱膨張率の小さい、高熱伝導性の保持基板であり、放熱性、信頼性に優れた高出力のLED発光素子を提供することが出来る。更に、本発明のLED発光素子用保持基板は、LED発光素子製造時に使用される酸及びアルカリ溶液に対する耐薬品性に優れると共に、導電性であり、LEDを構成するIII-IV族半導体結晶の両面に電極を形成することができる。そのため、LED発光素子の製造プロセスの低減、並びに単位面積当たりの発光量の増加を達成でき、LED発光素子用の保持基板として有効である。 The LED light-emitting element holding substrate of the present invention is a high thermal conductivity holding substrate having a low coefficient of linear thermal expansion with a group III-IV semiconductor crystal constituting the LED, and a high-power LED excellent in heat dissipation and reliability. A light-emitting element can be provided. Furthermore, the LED light-emitting element holding substrate of the present invention is excellent in chemical resistance against acid and alkali solutions used in the manufacture of LED light-emitting elements, is conductive, and has both sides of the group III-IV semiconductor crystal constituting the LED. An electrode can be formed on the substrate. Therefore, it is possible to reduce the manufacturing process of the LED light emitting element and increase the light emission amount per unit area, which is effective as a holding substrate for the LED light emitting element.

1)成長基板
2)成長基板上に形成された窒化物のバッファー層
3)n型のIII−V族半導体層
4)発光層
5)p型のIII−V族半導体層
6)金属層(反射層)
7)金属層
8)LED発光素子用保持基板
81)金属含浸セラミックス複合体
82)アルミニウムまたはアルミニウム合金
83)アルミニウムまたはアルミニウム合金層
84)めっき層
9)透明導電層
10)表面コーティング層
11)基材

1) growth substrate 2) nitride buffer layer formed on the growth substrate 3) n-type III-V group semiconductor layer 4) light emitting layer 5) p-type group III-V semiconductor layer 6) metal layer (reflection) layer)
7) Metal layer 8) LED light-emitting element holding substrate 81) Metal-impregnated ceramic composite 82) Aluminum or aluminum alloy 83) Aluminum or aluminum alloy layer 84) Plating layer 9) Transparent conductive layer 10) Surface coating layer 11) Base material

Claims (7)

外周部が厚み0.1〜2.0mmのアルミニウムまたはアルミニウム合金(82)で覆われており、両主面に金属含浸セラミックス複合体(81)が露出した基板の両主面に、アルミニウムまたはアルミニウム合金層(83)を厚み0.05〜2μm形成し、全面に厚み0.5〜5μmのNiめっき層および厚み0.05〜2μmの金めっき層(84)を順次形成されたLED発光素子用保持基板(8)。 The outer peripheral portion is covered with aluminum or aluminum alloy (82) having a thickness of 0.1 to 2.0 mm, and aluminum or aluminum is formed on both main surfaces of the substrate where the metal-impregnated ceramic composite (81) is exposed on both main surfaces. For LED light-emitting devices in which an alloy layer (83) is formed to a thickness of 0.05 to 2 μm, and a Ni plating layer having a thickness of 0.5 to 5 μm and a gold plating layer (84) having a thickness of 0.05 to 2 μm are sequentially formed on the entire surface. Holding substrate (8). 金属含浸セラミックス複合体のセラミックスが、炭化珪素からなり、金属含浸セラミックス複合体の3点曲げ強度が50MPa以上、温度25℃の熱伝導率が150〜300W/mK、温度25℃〜150℃の線熱膨張係数が4×10-6〜9×10-6/K、体積固有抵抗が10-9〜10-5Ω・mであることを特徴とする請求項1記載のLED発光素子用保持基板。 The ceramic of the metal-impregnated ceramic composite is made of silicon carbide, and the three-point bending strength of the metal-impregnated ceramic composite is 50 MPa or more, the thermal conductivity at a temperature of 25 ° C. is 150 to 300 W / mK, and the temperature is 25 ° C. to 150 ° C. 2. The LED light-emitting element holding substrate according to claim 1, wherein the coefficient of thermal expansion is 4 × 10 −6 to 9 × 10 −6 / K, and the volume resistivity is 10 −9 to 10 −5 Ω · m. . 最終製品の外形よりも小さい内径の穴を開けた金属又はセラミックスからなる枠に、炭化珪素からなる多孔体を挿入し、溶湯鍛造法にて含浸圧力30MPa以上でアルミニウムまたはアルミニウム合金を含浸させて金属含浸セラミックス複合体を作製する。該金属含浸セラミックス複合体を板厚が0.05〜0.5mm、表面粗さ(Ra)0.01〜0.5μmに加工した後、アルミニウムまたはアルミニウム合金層を、蒸着法又はスパッタリング法により、外周部がアルミニウムまたはアルミニウム合金で覆われた該金属含浸セラミックス複合体の両主面に形成し、窒素、アルゴン、水素、ヘリウム又は、真空雰囲気中、温度460〜650℃で1分間以上加熱処理する。その後、無電解めっき法又は電気めっき法により、両主面に形成されたアルミニウムまたはアルミニウム合金層の表面に、Niめっき層と金めっき層を順次形成する工程によりめっき層を形成させることを特徴とする請求項1または2記載のLED発光素子用保持基板の製造方法。 A porous body made of silicon carbide is inserted into a frame made of metal or ceramic having a hole with an inner diameter smaller than the outer shape of the final product, and impregnated with aluminum or an aluminum alloy at an impregnation pressure of 30 MPa or more by a molten metal forging method. An impregnated ceramic composite is prepared. After processing the metal-impregnated ceramic composite to a plate thickness of 0.05 to 0.5 mm and a surface roughness (Ra) of 0.01 to 0.5 μm, an aluminum or aluminum alloy layer is formed by vapor deposition or sputtering. Formed on both main surfaces of the metal-impregnated ceramic composite whose outer peripheral portions are covered with aluminum or an aluminum alloy, and heat-treated at a temperature of 460 to 650 ° C. for 1 minute or longer in a nitrogen, argon, hydrogen, helium or vacuum atmosphere. . Then, a plating layer is formed by a step of sequentially forming a Ni plating layer and a gold plating layer on the surface of the aluminum or aluminum alloy layer formed on both main surfaces by an electroless plating method or an electroplating method. The manufacturing method of the holding substrate for LED light emitting elements of Claim 1 or 2 to do. 下記の工程を順次経て製造される、LED発光素子。
(1)円板状又は平板状の単結晶成長基板の一主面上に、III−V族半導体結晶をエピタキシャル成長させる工程。
(2)III−V族半導体結晶面に金属層を介して、請求項1〜3のいずれか一項記載のLED発光素子用保持基板を接合し、レーザー照射、エッチング、研削のいずれかの方法により、単結晶成長基板を除去する工程。
(3)III−V族半導体結晶面の表面加工、電極形成を行った後、切断加工する工程。
The LED light emitting element manufactured through the following steps in sequence.
(1) A step of epitaxially growing a group III-V semiconductor crystal on one main surface of a disk-like or flat plate-like single crystal growth substrate.
(2) The method of laser irradiation, etching, or grinding is performed by joining the holding substrate for an LED light emitting device according to any one of claims 1 to 3 through a metal layer to a group III-V semiconductor crystal surface. A step of removing the single crystal growth substrate.
(3) A step of cutting after performing surface processing of the III-V semiconductor crystal surface and electrode formation.
単結晶成長基板が、単結晶サファイア、単結晶炭化珪素、単結晶GaAs、単結晶Siの群から選ばれることを特徴とする請求項4記載のLED発光素子。 5. The LED light emitting device according to claim 4, wherein the single crystal growth substrate is selected from the group consisting of single crystal sapphire, single crystal silicon carbide, single crystal GaAs, and single crystal Si. 単結晶成長基板が表面に、n型III−V族半導体のバッファー層またはAlN、SiC、GaN、GaAsの群から選ばれる材料で表面コーティングされていることを特徴とする請求項4又は5記載のLED発光素子。 6. The surface of the single crystal growth substrate is coated with a buffer layer of an n-type III-V semiconductor or a material selected from the group consisting of AlN, SiC, GaN, and GaAs. LED light emitting element. III−V族半導体結晶が、GaN、GaAs、GaPのいずれかであることを特徴とする請求項4〜6のいずれか一項記載のLED発光素子。

The LED light emitting device according to any one of claims 4 to 6, wherein the III-V group semiconductor crystal is any one of GaN, GaAs, and GaP.

JP2011145150A 2011-06-30 2011-06-30 Led light-emitting element holding substrate and manufacturing method thereof and led light-emitting element Pending JP2013012623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011145150A JP2013012623A (en) 2011-06-30 2011-06-30 Led light-emitting element holding substrate and manufacturing method thereof and led light-emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011145150A JP2013012623A (en) 2011-06-30 2011-06-30 Led light-emitting element holding substrate and manufacturing method thereof and led light-emitting element

Publications (1)

Publication Number Publication Date
JP2013012623A true JP2013012623A (en) 2013-01-17

Family

ID=47686257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011145150A Pending JP2013012623A (en) 2011-06-30 2011-06-30 Led light-emitting element holding substrate and manufacturing method thereof and led light-emitting element

Country Status (1)

Country Link
JP (1) JP2013012623A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01313949A (en) * 1988-06-14 1989-12-19 Ricoh Co Ltd Improvement of bondability of aluminum thin film electrode
WO2007125878A1 (en) * 2006-04-26 2007-11-08 Denki Kagaku Kogyo Kabushiki Kaisha Aluminum/silicon carbide composite and radiating part comprising the same
JP2008227412A (en) * 2007-03-15 2008-09-25 Sharp Corp Light-emitting device and method of manufacturing the same
WO2010092972A1 (en) * 2009-02-13 2010-08-19 電気化学工業株式会社 Composite substrate for led light emitting element, method of production of same, and led light emitting element
WO2011013754A1 (en) * 2009-07-31 2011-02-03 電気化学工業株式会社 Led equipment purpose wafer, method for manufacturing same, and led-equipped structure using led equipment purpose wafer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01313949A (en) * 1988-06-14 1989-12-19 Ricoh Co Ltd Improvement of bondability of aluminum thin film electrode
WO2007125878A1 (en) * 2006-04-26 2007-11-08 Denki Kagaku Kogyo Kabushiki Kaisha Aluminum/silicon carbide composite and radiating part comprising the same
JP2008227412A (en) * 2007-03-15 2008-09-25 Sharp Corp Light-emitting device and method of manufacturing the same
WO2010092972A1 (en) * 2009-02-13 2010-08-19 電気化学工業株式会社 Composite substrate for led light emitting element, method of production of same, and led light emitting element
WO2011013754A1 (en) * 2009-07-31 2011-02-03 電気化学工業株式会社 Led equipment purpose wafer, method for manufacturing same, and led-equipped structure using led equipment purpose wafer

Similar Documents

Publication Publication Date Title
JP5713684B2 (en) Composite material substrate for LED light emitting device, method for producing the same, and LED light emitting device
JP5789512B2 (en) LED mounting wafer, manufacturing method thereof, and LED mounting structure using the wafer
KR101986860B1 (en) Heat dissipating component for semiconductor element
JP2021059782A (en) Heat radiation component for semiconductor element
EP2757604B1 (en) Method of manufacturing a clad material for led light-emitting element holding substrate
JP6105262B2 (en) Aluminum-diamond composite heat dissipation parts
JP5296638B2 (en) LED mounting structure, manufacturing method thereof, and LED mounting substrate
JP2012038948A (en) Metal matrix composite substrate for led light emitting device, method for manufacturing the same, and led light emitting device
JP2010109081A (en) Metal matrix composite substrate for led light emitting device, and led light emitting device using the same
JP5881280B2 (en) Manufacturing method of LED light emitting element holding substrate and manufacturing method of LED light emitting element
JP2013012623A (en) Led light-emitting element holding substrate and manufacturing method thereof and led light-emitting element
JP5681035B2 (en) LED light source package
TWI491082B (en) Method for manufacturing a led chip bonding body
JP2010267892A (en) Led mounting structure, method of manufacturing the same, and led mounting substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150721

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151208