JP2003101123A - Package for storage of optical semiconductor element - Google Patents

Package for storage of optical semiconductor element

Info

Publication number
JP2003101123A
JP2003101123A JP2001287700A JP2001287700A JP2003101123A JP 2003101123 A JP2003101123 A JP 2003101123A JP 2001287700 A JP2001287700 A JP 2001287700A JP 2001287700 A JP2001287700 A JP 2001287700A JP 2003101123 A JP2003101123 A JP 2003101123A
Authority
JP
Japan
Prior art keywords
semiconductor element
optical semiconductor
copper
base
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001287700A
Other languages
Japanese (ja)
Inventor
Yoshihiro Basho
義博 芭蕉
Masaaki Iguchi
公明 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001287700A priority Critical patent/JP2003101123A/en
Publication of JP2003101123A publication Critical patent/JP2003101123A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements

Abstract

PROBLEM TO BE SOLVED: To solve the problem of a conventional package such that it cannot efficiently radiate the heat generated during its working by an optical semiconductor element to the outside and thermal fracture occurs in the optical semiconductor element. SOLUTION: This package for storage of an optical semiconductor element comprises a substrate 1, a frame consisting of iron - nickel - covalt alloy or iron - nickel alloy having a through hole 2a or a cut 2b at its flank, a fixing member 6 where an optical fiber member 8 is joined, a ceramic terminal body 9 where a wiring layer is made in a ceramic insulator 10, and a cover member 3. The above substrate 1 consists of silicon carbide and copper, and has three- layer structure where upper and lower layers 1b and 1c consisting of 65-80 wt.% silicon carbide and 20-35 wt.% copper are arranged at both faces of top and bottom of a middle layer consisting of 25-55 wt.% silicon carbide and 45-75 wt.% copper.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は光半導体素子を収容
するための光半導体素子収納用パッケージに関するもの
である。 【0002】 【従来の技術】従来、光半導体素子を収容するための光
半導体素子収納用パッケージは、一般に鉄−ニッケル−
コバルト合金や鉄−ニッケル合金等の金属材料からな
り、上面中央に光半導体素子が載置される載置部を有す
る基体と、前記光半導体素子載置部を囲繞するようにし
て基体上に銀ロウ等のロウ材を介して接合され、側部に
貫通孔及び切欠部を有する鉄−ニッケル−コバルト合金
や鉄−ニッケル合金等の金属材料から成る枠体と、前記
枠体の貫通孔もしくは貫通孔周辺の枠体に取着され、内
部に光信号が伝達される空間を有する鉄−ニッケル−コ
バルト合金等の金属材料から成る筒状の固定部材と、前
記筒状の固定部材に融点が200〜400℃の金−錫合
金等の低融点ロウ材を介して取着された固定部材の内部
を塞ぐ非晶質ガラス等から成る透光性部材と、前記枠体
の切欠部に挿着され、酸化アルミニウム質焼結体等のセ
ラミックス絶縁体に光半導体素子の各電極がボンディン
グワイヤを介して電気的に接続される配線層を形成した
セラミック端子体と、前記枠体の上面に取着され、光半
導体素子を気密に封止する蓋部材とから構成されてお
り、基体の光半導体素子載置部に光半導体素子を載置固
定させるとともに該光半導体素子の各電極をボンディン
グワイヤを介してセラミック端子体の配線層に電気的に
接続し、しかる後、前記枠体の上面に蓋部材を接合さ
せ、基体と枠体と蓋部材とから成る容器内部に光半導体
素子を気密に収容するとともに筒状固定部材に光ファイ
バー部材を、例えば、YAG溶接等により取着すること
によって製品としての光半導体装置となる。 【0003】なお上述の光半導体素子収納用パッケージ
においては、内部に収容される光半導体素子が高周波領
域で駆動し、外部ノイズの影響を受け易いものであるた
め基体及び枠体を金属材料で形成し、容器内部をシール
ドしておくことによって光半導体素子に外部ノイズが影
響しないようにしている。また基体及び枠体はセラミッ
ク端子体や光半導体素子等の線熱膨張係数と合わすため
一般に鉄−ニッケル−コバルト合金や鉄−ニッケル合金
等が使用されている。 【0004】しかしながら、この従来の光半導体素子収
納用パッケージにおいては、光半導体素子が載置固定さ
れる基体の熱伝導率が20W/m・K程度であり、熱を
効率良く伝達することができないことから光半導体素子
が作動時に熱を発した際、その熱を基体を介して外部に
十分放散させることができず、その結果、光半導体素子
は該光半導体素子自身の発する熱で高温となり、熱破壊
を起こしたり、特性に熱劣化を招来し、誤動作したりす
るという欠点を有していた。 【0005】そこで上記欠点を解消するために基体を熱
伝導率が高く、かつ線熱膨張係数がセラミック端子体の
線熱膨張係数に近似する銅−タングステン合金や銅−モ
リブデン合金で形成しておくことが考えられる。 【0006】かかる銅−タングステン合金や銅−モリブ
デン合金は一般にタングステン粉末やモリブデン粉末を
焼成して焼結多孔体を得、次に前記焼結多孔体の空孔内
に溶融させた銅を含浸させることによって製造されてお
り、例えば、タングステンから成る焼結多孔体に銅を含
浸させる場合は焼結多孔体が75乃至90重量%、銅が
10乃至25重量%の範囲に、モリブデンから成る焼結
多孔体に銅を含浸させる場合は焼結多孔体が80乃至9
0重量%、銅が10乃至20重量%の範囲となってい
る。 【0007】 【発明が解決しようとする課題】しかしながら、この従
来の光半導体素子収納用パッケージにおいては、基体が
タングステン粉末やモリブデン粉末を焼成して焼結多孔
体を得るとともに該焼結多孔体の空孔内に溶融させた銅
を含浸させることによって形成されており熱伝導率が約
180W/m・K程度である。 【0008】そのためこの従来一般に製造されている銅
−タングステン合金等を基体として用いた光半導体素子
収納用パッケージは鉄−ニッケル−コバルト合金等を基
体として用いた光半導体素子収納用パッケージよりも熱
放散性に優れているものの近時の発光出力が高く作動時
に従来に比し多量の熱を発する光半導体素子を収容した
場合、光半導体素子が発する熱を基体を介して外部に完
全に放出させることができなくなり、その結果、光半導
体素子が該素子自身の発する熱によって高温となり、光
半導体素子に熱破壊を招来させたり、特性にばらつきを
生じ安定に作動させることができないという欠点を有し
ていた。 【0009】本発明は上記知見に基づき案出されたもの
で、その目的は発光出力が高く作動時に多量の熱を発す
る光半導体素子を常に適温に保持し、光半導体素子を長
期間にわたり安定に機能させることができる光半導体素
子収納用パッケージを提案することにある。 【0010】 【課題を解決するための手段】本発明は、上面に光半導
体素子が載置される載置部を有する基体と、前記基体上
に光半導体素子載置部を囲繞するようにして取着され、
側部に貫通孔および切欠部を有する鉄−ニッケル−コバ
ルト合金もしくは鉄−ニッケル合金から成る枠体と、前
記貫通孔もしくは貫通孔周辺の枠体に取着され、光ファ
イバー部材が接合される固定部材と、前記切欠部に挿着
され、セラミックス絶縁体に光半導体素子の各電極が接
続される配線層が形成されているセラミック端子体と、
前記枠体の上面に取着され、光半導体素子を気密に封止
する蓋部材とから成る光半導体素子収納用パッケージで
あって、前記基体は炭化珪素と銅とから成り、炭化珪素
が25乃至55重量%、銅が45乃至75重量%から成
る中間層の上下両面に炭化珪素が65乃至80重量%、
銅が20乃至35重量%から成る上下層を配した3層構
造を有していることを特徴とするものである。 【0011】本発明の光半導体素子収納用パッケージに
よれば、基体を炭化珪素が25乃至55重量%、銅が4
5乃至75重量%から成る中間層の上下両面に炭化珪素
が65乃至80重量%、銅が20乃至35重量%から成
る上下層を配した3層構造となしたことから基体の光半
導体素子が載置される中間層の熱伝導率を270W/m
・K以上の高いものとし、基体上に載置される光半導体
素子が作動時に多量の熱を発したとしてもその熱は基体
の上層を介して前記中間層に伝達されると同時に該中間
層平面方向に素早く広がらせるとともに該中間層、下層
を順次介して外部に効率よく確実に放散させることがで
き、これによって光半導体素子は常に適温となり、光半
導体素子を長期間にわたり安定かつ正常に作動させるこ
とが可能となる。 【0012】また本発明の光半導体素子収納用パッケー
ジによれば、基体を炭化珪素が25乃至55重量%、銅
が45乃至75重量%から成る中間層の上下両面に炭化
珪素が65乃至80重量%、銅が20乃至35重量%か
ら成る上下層を配した3層構造となし、線熱膨張係数が
大きい中間層を線熱膨張係数の小さい上下層で挟み込
み、基体全体の線熱膨張係数を鉄−ニッケル−コバルト
合金や鉄−ニッケル合金から成る枠体あるいは酸化アル
ミニウム質焼結体やガラスセラミック焼結体等のセラミ
ックス絶縁体から成るセラミック端子体の線熱膨張係数
に近似させたことから基体上に枠体やセラミック端子体
を取着させる際や光半導体素子が作動した際等において
基体と枠体やセラミック端子体に熱が作用したとしても
基体と枠体やセラミック端子体との間には両者の線熱膨
張係数の相違に起因する大きな熱応力が発生することは
なく、これによって光半導体素子を収容する空所の気密
封止が常に完全となり、光半導体素子を安定かつ正常に
作動させることが可能となる。 【0013】 【発明の実施の形態】次に、本発明を添付図面に示す実
施例に基づき詳細に説明する。図1及び図2は本発明の
光半導体素子収納用パッケージの一実施例を示し、図1
において、1は基体、2は枠体、3は蓋部材である。こ
の基体1と枠体2と蓋部材3とにより内部に光半導体素
子4を気密に収容する容器5が構成される。 【0014】前記基体1はその上面に光半導体素子4が
載置される載置部1aを有しており、該載置部1aには
光半導体素子4が取着されている。 【0015】前記基体1は光半導体素子4を支持する支
持部材として作用するとともに光半導体素子4が作動時
に発する熱を良好に吸収し、かつ大気中に効率よく放散
させて光半導体素子4を常に適温とする作用をなす。 【0016】なお前記基体1は炭化珪素と銅とから成
り、例えば、溶融させた銅に平均粒径5μm程度の炭化
珪素粉末を分散混入させることによって、或いは炭化珪
素粉末を焼成して多孔質の焼結体を得、しかる後、焼結
体の空孔内に溶融させた銅を充填させることによって製
作されている。 【0017】また前記基体1の上面外周部には該基体1
の上面に設けた光半導体素子4が載置される載置部1a
を囲繞するようにして枠体2がロウ材等の接着剤を介し
て取着されており、該枠体2の内側に光半導体素子4を
収容するための空所が形成されている。 【0018】前記枠体2は鉄−ニッケル−コバルト合金
や鉄−ニッケル合金で形成されており、例えば、鉄−ニ
ッケル−コバルト合金等のインゴット(塊)をプレス加
工により枠状とすることによって形成され、基体1への
取着は基体1上面と枠体2の下面とを銀ロウ材を介しロ
ウ付けすることによって行われている。 【0019】前記枠体2はその側部に貫通孔2aが設け
てあり、該貫通孔2aの内壁面には筒状の固定部材6が
取着され、更に筒状の固定部材6の内側の一端には、例
えば、透光性部材7が取着されている。 【0020】前記枠体2の側部に形成されている貫通孔
2aは固定部材6を枠体2に取着するための取着孔とし
て作用し、枠体2の側部に従来周知のドリル孔あけ加工
を施すことによって所定形状に形成される。 【0021】前記枠体2の貫通孔2aに取着されている
固定部材6は光ファイバー部材8を枠体2に固定する際
の下地固定部材として作用するとともに光半導体素子4
が励起した光を光ファイバー部材8に伝達させる作用を
なし、その内側の一端には、例えば、透光性部材7が取
着され、また外側の一端には光ファイバー部材8が取着
される。 【0022】前記筒状の固定部材6は鉄−ニッケル−コ
バルト合金や鉄−ニッケル合金等の金属材料からなり、
例えば、鉄−ニッケル−コバルト合金等のインゴット
(塊)をプレス加工により筒状とすることによって形成
されている。 【0023】更に前記固定部材6はその内側の一端に、
例えば、透光性部材7が取着されており、該透光性部材
7は固定部材6の内部空間を塞ぎ、基体1と枠体2と蓋
部材3とからなる容器5の気密封止を保持させるととも
に固定部材6の内部空間を伝達する光半導体素子4の励
起した光をそのまま固定部材6に取着した光ファイバー
部材8に伝達させる作用をなす。 【0024】前記透光性部材7は例えば、酸化珪素、酸
化鉛を主成分とした鉛系及びホウ酸、ケイ砂を主成分と
したホウケイ酸系の非晶質ガラスで形成されており、該
非晶質ガラスは結晶軸が存在しないことから光半導体素
子4の励起する光を透光性部材7を通過させて光ファイ
バー部材8に授受させる場合、光半導体素子4の励起し
た光は透光性部材7で複屈折を起こすことはなくそのま
ま光ファイバー部材8に授受されることとなり、その結
果、光半導体素子4が励起した光の光ファイバー部材8
への授受が高効率となって光信号の伝送効率を高いもの
となすことができる。 【0025】なお、前記透光性部材7の固定部材6への
取着は、例えば、透光性部材7の外周部に予め金属層を
被着させておき、該金属層と固定部材6とを金−錫合金
等のロウ材を介しロウ付けすることによって行われる。 【0026】更に前記枠体2はその側部に切欠部2bが
形成されており、該切欠部2bにはセラミック端子体9
が挿着されている。 【0027】前記セラミック端子体9はセラミックス絶
縁体10と複数個の配線層11とから成り、配線層11
を枠体2に対し電気的絶縁をもって枠体2の内側から外
側にかけて配設する作用をなし、セラミックス絶縁体1
0の側面に予め金属層を被着させておくとともに該金属
層を枠体2の切欠部2b内壁面に銀ロウ等のロウ材を介
し取着することによって枠体2の切欠部2bに挿着され
る。 【0028】前記セラミック端子体9のセラミックス絶
縁体10は酸化アルミニウム質焼結体やガラスセラミッ
ク焼結体等から成り、例えば、酸化アルミニウム質焼結
体から成る場合には酸化アルミニウム、酸化珪素、酸化
マグネシウム、酸化カルシウム等の原料粉末に適当な有
機バインダー、可塑剤、溶剤を添加混合して泥漿状とな
すとともに該泥漿物を従来周知のドクターブレード法や
カレンダーロール法を採用することによってセラミック
グリーンシート(セラミック生シート)を形成し、次に
前記セラミックグリーンシートに適当な打ち抜き加工を
施し、所定形状となすとともに必要に応じて複数枚を積
層して成形体となし、しかる後、これを1600℃の温
度で焼成することによって製作される。 【0029】また前記セラミック端子体9には枠体2の
内側から外側にかけて導出する複数個の配線層11が埋
設されており、該配線層11の枠体2の内側に位置する
領域には光半導体素子4の各電極がボンディングワイヤ
12を介して電気的に接続され、また枠体2の外側に位
置する領域には外部電気回路と接続される外部リード端
子13が銀ロウ等のロウ材を介してロウ付け取着されて
いる。 【0030】前記配線層11は光半導体素子4の各電極
を外部電気回路に接続する際の導電路として作用し、タ
ングステン、モリブデン、マンガン、銅、銀等の金属粉
末により形成されている。 【0031】前記配線層11はタングステン、モリブデ
ン、マンガン、銅、銀等の金属粉末に適当な有機バイン
ダー、溶剤等を添加混合して得られた金属ペーストをセ
ラミックス絶縁体10となるセラミックグリーンシート
に予め従来周知のスクリーン印刷法等の印刷法を用いる
ことにより所定パターンに印刷塗布しておくことによっ
てセラミックス絶縁体10に形成される。 【0032】なお前記配線層11はその露出する表面に
ニッケル、金等の耐蝕性に優れ、かつロウ材との濡れ性
に優れる金属を1μm〜20μmの厚みにメッキ法によ
り被着させておくと、配線層11の酸化腐蝕を有効に防
止することができるとともに配線層11への外部リード
端子13のロウ付けを強固となすことができる。従っ
て、前記配線層11はその露出する表面にニッケル、金
等の耐蝕性に優れ、かつロウ材との濡れ性に優れる金属
を1μm〜20μmの厚みに被着させておくことが好ま
しい。 【0033】また前記配線層11には外部リード端子1
3が銀ロウ等のロウ材を介してロウ付け取着されてお
り、該外部リード端子13は容器5内部に収容する光半
導体素子4の各電極を外部電気回路に電気的に接続する
作用をなし、外部リード端子13を外部電気回路に接続
することによって容器5内部に収容される光半導体素子
4は配線層11および外部リード端子13を介して外部
電気回路に電気的に接続されることとなる。 【0034】前記外部リード端子13は鉄−ニッケル−
コバルト合金や鉄−ニッケル合金等の金属材料から成
り、例えば、鉄−ニッケル−コバルト合金等の金属から
成るインゴット(塊)に圧延加工法や打ち抜き加工法
等、従来周知の金属加工法を施すことによって所定形状
に形成される。 【0035】更に前記枠体2はその上面に、例えば、鉄
−ニッケル−コバルト合金や鉄−ニッケル合金等の金属
材料から成る蓋部材3が接合され、これによって基体1
と枠体2と蓋部材3とからなる容器5の内部に光半導体
素子4が気密に封止されることとなる。 【0036】前記蓋部材3の枠体2上面への接合は、例
えば、シームウェルド法等の溶接によって行われる。 【0037】本発明の光半導体素子収納用パッケージに
おいては、前記基体1を炭化珪素が25乃至55重量
%、銅が45乃至75重量%から成る中間層の上下両面
に炭化珪素が65乃至80重量%、銅が20乃至35重
量%から成る上下層を配した3層構造としておくことが
重要である。 【0038】前記基体1を炭化珪素が25乃至55重量
%、銅が45乃至75重量%から成る中間層の上下両面
に炭化珪素が65乃至80重量%、銅が20乃至35重
量%から成る上下層を配した3層構造としたことから基
体1の中間層1cの熱伝導率を270W/m・K以上の
高いものとし、基体1上に載置される半導体素子4が作
動時に多量の熱を発したとしてもその熱は基体1の半導
体素子載置部1aである上層1bを介して前記中間層1
cに伝達されると同時に該中間層1c平面方向に素早く
広がらせるとともに該中間層1c、下層1dを順次介し
て外部に効率よく確実に放散させることができ、これに
よって光半導体素子4は常に適温となり、光半導体素子
4を長期間にわたり安定かつ正常に作動させることが可
能となる。 【0039】また本発明の光半導体素子収納用パッケー
ジによれば、基体1を炭化珪素が25乃至55重量%、
銅が45乃至75重量%から成る中間層の上下両面に炭
化珪素が65乃至80重量%、銅が20乃至35重量%
から成る上下層を配した3層構造となし、線熱膨張係数
が大きい中間層1cを線熱膨張係数の小さい上下層1
b、1dで挟み込み、基体1全体の線熱膨張係数を鉄−
ニッケル−コバルト合金や鉄−ニッケル合金から成る枠
体2あるいは酸化アルミニウム質焼結体やガラスセラミ
ック焼結体等のセラミックス絶縁体10から成るセラミ
ック端子体9の線熱膨張係数に近似させたことから基体
1上に枠体2やセラミック端子体9等を取着させる際や
光半導体素子4が作動した際等において基体1と枠体2
とセラミック端子体9に熱が作用したとしても基体1と
枠体2とセラミック端子体9との間には両者の線熱膨張
係数の差に起因する大きな熱応力が発生することはな
く、これによって光半導体素子4を収容する容器5の気
密封止が常に完全となり、光半導体素子4を安定かつ正
常に作動させることが可能となる。 【0040】なお前記基体1はその上下層1b、1dの
炭化珪素の量が65重量%未満の場合、或いは80重量
%を超えた場合、基体1の線熱膨張係数が枠体2の線熱
膨張係数に対して大きく相違することとなり、その結
果、基体1に枠体2を強固に取着させておくことができ
なくなってしまう。従って、前記基体1の上下層1b、
1dはそれを形成する炭化珪素の量は65乃至80重量
%の範囲に特定される。 【0041】また前記中間層1cの炭化珪素の量が25
重量%未満となると、言い換えれば銅が75重量%を超
えると、基体1の線熱膨張係数が枠体2やセラミック端
子体9の線熱膨張係数に対し大きく相違して基体1に枠
体2やセラミック端子体9を強固に取着させておくこと
ができなくなってしまい、また炭化珪素の量が55重量
%を超えると、言い換えれば銅が45重量%未満となる
と中間層1cの熱伝導率を270W/m・K以上の高い
ものと成すことができず光半導体素子4が作動時に多量
の熱を発した場合、その熱を基体1を介して外部に完全
に放散させることができなくなり、その結果、光半導体
素子4を高温として光半導体素子4に熱破壊を招来させ
たり、特性にばらつきが生じ安定に作動させることがで
きなくなってしまう。従って、前記基体1の中間層1c
は炭化珪素が25乃至55重量%、銅が45乃至75重
量%に特定される。 【0042】更に前記上下層1b、1dはその組成、厚
みを略同一に形成しておくと上層1bと中間層1cの間
に発生する応力と、下層1dと中間層1cの間に発生す
る応力が相殺されて基体1の平坦度が良好となり、その
結果、基体1に枠体2やセラミック端子体9を極めて強
固に接合させることができ、容器5の気密封止の信頼性
をより確実なものとして容器5内部に収納する光半導体
素子4の作動信頼性をより安定、確実なものと成すこと
ができる。 【0043】また更に前記上下層1b、1dと中間層1
cの厚みは前記上下層1b、1dの厚みをX、中間層1
cの厚みをYとした場合、0.25Y≦X≦0.5Yの
範囲としておくと基体1を介して半導体素子4の発する
熱をより良好に外部に放散することができる。前記上下
層1b、1dの厚みをX、中間層1cの厚みをYとした
場合、0.5Y<Xとなると270W/m・K以上の高
熱伝導率である中間層1cが薄くなり半導体素子4の発
する熱を外部に効率よく放散させることができなくなる
危険性があり、0.25Y>Xとなると線熱膨張係数の
大きな中間層1cの基体1全体に及ぼす影響が大きくな
り、基体1の線熱膨張係数を前記枠状絶縁体2の線熱膨
張係数と近似させることが困難となる危険性があること
から、前記上下層1b、1dと中間層1cの厚みは前記
上下層1b、1dの厚みをX、中間層1cの厚みをYと
した場合、0.25Y≦X≦0.5Yの範囲が望まし
い。 【0044】なお前記3層構造の基体1は、中間層1c
となる所定量の炭化珪素−銅の板体と、上下層1b、1
dとなる炭化珪素−銅の板体とを各々準備し、前記中間
層1cとなる板体の上下を上下層1b、1dとなる板体
で挟み込んだ後、銅の溶融温度(1083℃)より若干
高い温度で加熱しながら加圧することによって製作され
る。 【0045】かくして上述の光半導体素子収納用パッケ
ージによれば、基体1の光半導体素子載置部1a上に光
半導体素子4を固定するとともに該光半導体素子4の各
電極をボンディングワイヤ12を介して所定の配線層1
1に接続させ、次に枠体2の上面に蓋部材3を接合さ
せ、基体1と枠体2と蓋部材3とから成る容器5内部に
光半導体素子4を収容し、最後に枠体2に取着させた筒
状の固定部材6に光ファイバー部材8を取着させること
によって最終製品としての光半導体装置となる。 【0046】なお、本発明は上述の実施例に限定される
ものではなく、本発明の要旨を逸脱しない範囲であれば
種々の変更は可能である。 【0047】 【発明の効果】本発明の光半導体素子収納用パッケージ
によれば、基体を炭化珪素が25乃至55重量%、銅が
45乃至75重量%から成る中間層の上下両面に炭化珪
素が65乃至80重量%、銅が20乃至35重量%から
成る上下層を配した3層構造となしたことから基体の光
半導体素子が載置される上層の熱伝導率を270W/m
・K以上の高いものとし、基体上に載置される光半導体
素子が作動時に多量の熱を発したとしてもその熱は基体
の上層を介して前記中間層に伝達されると同時に該中間
層平面方向に素早く広がらせるとともに該中間層、下層
を順次介して外部に効率よく確実に放散させることがで
き、これによって光半導体素子は常に適温となり、光半
導体素子を長期間にわたり安定かつ正常に作動させるこ
とが可能となる。 【0048】また本発明の光半導体素子収納用パッケー
ジによれば、基体を炭化珪素が25乃至55重量%、銅
が45乃至75重量%から成る中間層の上下両面に炭化
珪素が65乃至80重量%、銅が20乃至35重量%か
ら成る上下層を配した3層構造となし、線熱膨張係数が
大きい中間層を線熱膨張係数の小さい上下層で挟み込
み、基体全体の線熱膨張係数を鉄−ニッケル−コバルト
合金や鉄−ニッケル合金から成る枠体あるいは酸化アル
ミニウム質焼結体やガラスセラミック焼結体等のセラミ
ックス絶縁体から成るセラミック端子体の線熱膨張係数
に近似させたことから基体上に枠体やセラミック端子体
を取着させる際や光半導体素子が作動した際等において
基体と枠体やセラミック端子体に熱が作用したとしても
基体と枠体やセラミック端子体との間には両者の線熱膨
張係数の相違に起因する大きな熱応力が発生することは
なく、これによって光半導体素子を収容する空所の気密
封止が常に完全となり、光半導体素子を安定かつ正常に
作動させることが可能となる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical semiconductor element housing package for housing an optical semiconductor element. 2. Description of the Related Art Conventionally, a package for housing an optical semiconductor device for housing an optical semiconductor device is generally made of iron-nickel.
A base made of a metal material such as a cobalt alloy or an iron-nickel alloy and having a mounting portion on which an optical semiconductor element is mounted at the center of the upper surface; and a silver base on the base so as to surround the optical semiconductor element mounting portion. A frame made of a metal material such as an iron-nickel-cobalt alloy or an iron-nickel alloy having a through hole and a cutout at a side portion, which is joined through a brazing material such as a brazing material; A cylindrical fixing member attached to a frame around the hole and having a space through which an optical signal is transmitted and made of a metal material such as an iron-nickel-cobalt alloy; A translucent member made of amorphous glass or the like that blocks the inside of the fixing member attached via a low-melting brazing material such as a gold-tin alloy at a temperature of up to 400 ° C .; For ceramic insulators such as aluminum oxide sintered bodies A ceramic terminal body having a wiring layer to which each electrode of the semiconductor element is electrically connected via a bonding wire, and a lid member attached to an upper surface of the frame body and hermetically sealing the optical semiconductor element. The optical semiconductor element is mounted and fixed on the optical semiconductor element mounting portion of the base, and each electrode of the optical semiconductor element is electrically connected to a wiring layer of the ceramic terminal body via a bonding wire. Thereafter, a lid member is joined to the upper surface of the frame body, and the optical semiconductor element is hermetically accommodated in a container including the base, the frame body, and the lid member, and the optical fiber member is mounted on the cylindrical fixing member, for example, by YAG welding or the like. An optical semiconductor device as a product can be obtained by attaching. In the above-mentioned package for housing an optical semiconductor element, the base and the frame are formed of a metal material because the optical semiconductor element accommodated therein is driven in a high frequency range and is easily affected by external noise. By shielding the inside of the container, external noise is prevented from affecting the optical semiconductor element. In addition, an iron-nickel-cobalt alloy, an iron-nickel alloy, or the like is generally used for the base and the frame in order to match the coefficient of linear thermal expansion of the ceramic terminal and the optical semiconductor element. However, in this conventional package for housing an optical semiconductor element, the thermal conductivity of the base on which the optical semiconductor element is mounted and fixed is about 20 W / m · K, and heat cannot be transmitted efficiently. Therefore, when the optical semiconductor element generates heat during operation, the heat cannot be sufficiently radiated to the outside through the base, and as a result, the optical semiconductor element becomes high in temperature due to the heat generated by the optical semiconductor element itself, There is a drawback that thermal destruction is caused or characteristics are degraded by heat, resulting in malfunction. [0005] In order to solve the above-mentioned drawbacks, the base is formed of a copper-tungsten alloy or a copper-molybdenum alloy having a high thermal conductivity and a linear thermal expansion coefficient close to that of the ceramic terminal body. It is possible. Such a copper-tungsten alloy or copper-molybdenum alloy is generally obtained by sintering tungsten powder or molybdenum powder to obtain a sintered porous body, and then impregnating the pores of the sintered porous body with molten copper. For example, when a sintered porous body made of tungsten is impregnated with copper, the sintered porous body is made of 75 to 90% by weight, copper is contained in a range of 10 to 25% by weight, and the sintered porous body is made of molybdenum. When the porous body is impregnated with copper, the sintered porous body should be 80 to 9
0% by weight and copper in the range of 10 to 20% by weight. However, in this conventional package for housing an optical semiconductor element, a sintered body is obtained by firing a tungsten powder or a molybdenum powder as a base material, It is formed by impregnating the holes with molten copper, and has a thermal conductivity of about 180 W / m · K. For this reason, the conventional package for optical semiconductor element storage using a copper-tungsten alloy or the like as a base is more heat-dissipating than the package for optical semiconductor element storage using an iron-nickel-cobalt alloy or the like as a base. When an optical semiconductor device that emits a large amount of heat during operation is high, but the heat generated by the optical semiconductor device is completely released to the outside through the base when the optical semiconductor device is high in operation, but has a high luminous output recently. As a result, the optical semiconductor element is heated to a high temperature due to the heat generated by the element itself, and has a drawback that the optical semiconductor element cannot be operated stably due to thermal destruction or variations in characteristics. Was. The present invention has been devised based on the above findings, and has as its object to always maintain an optical semiconductor element which emits a large amount of heat during operation at a suitable temperature and stably maintain the optical semiconductor element for a long period of time. An object of the present invention is to propose an optical semiconductor element housing package that can function. According to the present invention, there is provided a base having a mounting portion on which an optical semiconductor device is mounted on an upper surface, and surrounding the optical semiconductor device mounting portion on the base. Attached
A frame made of an iron-nickel-cobalt alloy or an iron-nickel alloy having a through-hole and a cutout in a side portion; and a fixing member attached to the through-hole or the frame around the through-hole and joined to the optical fiber member. And a ceramic terminal body, which is inserted into the cutout portion, and on which a wiring layer for connecting each electrode of the optical semiconductor element is formed on the ceramic insulator,
An optical semiconductor element housing package attached to an upper surface of the frame and comprising a lid member for hermetically sealing the optical semiconductor element, wherein the base is made of silicon carbide and copper, and silicon carbide is 25 to 55-80% by weight of silicon carbide on both upper and lower surfaces of an intermediate layer comprising 55% by weight and 45-75% by weight of copper;
It is characterized in that it has a three-layer structure in which upper and lower layers composed of 20 to 35% by weight of copper are arranged. According to the package for housing an optical semiconductor element of the present invention, the base is composed of 25 to 55% by weight of silicon carbide and 4% by weight of copper.
Since the intermediate semiconductor layer of 5 to 75% by weight has a three-layer structure in which upper and lower layers of 65 to 80% by weight of silicon carbide and 20 to 35% by weight of copper are arranged on both upper and lower surfaces, the optical semiconductor element of the base is formed. The thermal conductivity of the placed intermediate layer is 270 W / m
-Even if the optical semiconductor element mounted on the substrate generates a large amount of heat during operation, the heat is transmitted to the intermediate layer via the upper layer of the substrate and the intermediate layer It can be quickly spread in the plane direction and efficiently and reliably radiated to the outside through the intermediate layer and the lower layer in order, so that the optical semiconductor element always has an appropriate temperature, and the optical semiconductor element operates stably and normally for a long period of time. It is possible to do. Further, according to the package for housing an optical semiconductor element of the present invention, the base is made of silicon carbide of 25 to 55% by weight and copper of 45 to 75% by weight. %, And a three-layer structure in which upper and lower layers of 20 to 35% by weight of copper are arranged. An intermediate layer having a large linear thermal expansion coefficient is sandwiched between upper and lower layers having a small linear thermal expansion coefficient to reduce the linear thermal expansion coefficient of the entire substrate. Since the coefficient of linear expansion was approximated to that of a frame made of an iron-nickel-cobalt alloy or an iron-nickel alloy or a ceramic terminal made of a ceramic insulator such as an aluminum oxide sintered body or a glass ceramic sintered body. Even when heat is applied to the base and the frame or the ceramic terminal when the frame or the ceramic terminal is mounted thereon or when the optical semiconductor device is operated, the base and the frame or the ceramic are not affected. A large thermal stress due to the difference between the linear thermal expansion coefficients of the two does not occur between the semiconductor device and the terminal body, and the hermetic sealing of the cavity accommodating the optical semiconductor element is always perfect, and the optical semiconductor The element can be operated stably and normally. Next, the present invention will be described in detail based on an embodiment shown in the accompanying drawings. 1 and 2 show one embodiment of the package for housing an optical semiconductor element of the present invention.
In the figures, 1 is a base, 2 is a frame, and 3 is a lid member. The base 1, the frame 2, and the lid member 3 constitute a container 5 in which the optical semiconductor element 4 is hermetically accommodated. The substrate 1 has a mounting portion 1a on which an optical semiconductor element 4 is mounted, and the optical semiconductor element 4 is attached to the mounting portion 1a. The base 1 functions as a support member for supporting the optical semiconductor element 4 and absorbs heat generated when the optical semiconductor element 4 is operated well, and efficiently dissipates it into the atmosphere to keep the optical semiconductor element 4 constant. It works to make it the right temperature. The substrate 1 is made of silicon carbide and copper. For example, a porous material is obtained by dispersing and mixing silicon carbide powder having an average particle size of about 5 μm into molten copper, or by firing silicon carbide powder. It is manufactured by obtaining a sintered body, and then filling the pores of the sintered body with molten copper. Further, on the outer peripheral portion of the upper surface of the base 1, the base 1
Mounting section 1a on which the optical semiconductor element 4 provided on the upper surface is mounted
The frame 2 is attached via an adhesive such as a brazing filler metal so as to surround the optical semiconductor element 4. A space for accommodating the optical semiconductor element 4 is formed inside the frame 2. The frame 2 is formed of an iron-nickel-cobalt alloy or an iron-nickel alloy. For example, the frame 2 is formed by pressing an ingot (lumps) of an iron-nickel-cobalt alloy or the like into a frame shape by pressing. Attachment to the substrate 1 is performed by brazing the upper surface of the substrate 1 and the lower surface of the frame 2 via a silver brazing material. The frame 2 is provided with a through hole 2a on the side thereof, and a cylindrical fixing member 6 is attached to the inner wall surface of the through hole 2a. At one end, for example, a translucent member 7 is attached. A through hole 2a formed on the side of the frame 2 acts as a mounting hole for fixing the fixing member 6 to the frame 2, and a well-known drill is formed in the side of the frame 2. It is formed in a predetermined shape by performing drilling. The fixing member 6 attached to the through-hole 2a of the frame 2 functions as a base fixing member for fixing the optical fiber member 8 to the frame 2, and the optical semiconductor element 4
Has a function of transmitting the excited light to the optical fiber member 8. For example, a translucent member 7 is attached to one end on the inside, and the optical fiber member 8 is attached to one end on the outside. The cylindrical fixing member 6 is made of a metal material such as an iron-nickel-cobalt alloy or an iron-nickel alloy.
For example, it is formed by pressing an ingot (lump) such as an iron-nickel-cobalt alloy into a tubular shape. Further, the fixing member 6 is provided at one end on its inner side.
For example, a translucent member 7 is attached, the translucent member 7 closes the internal space of the fixing member 6, and hermetically seals the container 5 including the base 1, the frame 2, and the lid 3. It functions to transmit the excited light of the optical semiconductor element 4 that is held and transmitted through the internal space of the fixing member 6 to the optical fiber member 8 attached to the fixing member 6 as it is. The translucent member 7 is made of, for example, a lead-based amorphous glass mainly containing silicon oxide and lead oxide and a borosilicate amorphous glass mainly containing boric acid and silica sand. Since the crystalline glass does not have a crystal axis, when the light excited by the optical semiconductor element 4 is passed through the translucent member 7 and transmitted to and received from the optical fiber member 8, the light excited by the optical semiconductor element 4 is transmitted through the translucent member. 7 does not cause birefringence and is transmitted and received as it is to the optical fiber member 8. As a result, the optical fiber member 8 of the light excited by the optical semiconductor element 4 is obtained.
The transmission / reception of the optical signal becomes high, and the transmission efficiency of the optical signal can be made high. The attachment of the translucent member 7 to the fixing member 6 is performed, for example, by attaching a metal layer to the outer periphery of the translucent member 7 in advance. Through a brazing material such as a gold-tin alloy. The frame 2 has a notch 2b formed on the side thereof, and the notch 2b has a ceramic terminal 9
Is inserted. The ceramic terminal body 9 comprises a ceramic insulator 10 and a plurality of wiring layers 11.
Is disposed from the inside to the outside of the frame 2 with electrical insulation from the frame 2, and the ceramic insulator 1 is provided.
A metal layer is previously applied to the side surface of the frame 2 and the metal layer is attached to the inner wall surface of the notch 2b of the frame 2 through a brazing material such as silver brazing to insert the metal layer into the notch 2b of the frame 2. Be worn. The ceramic insulator 10 of the ceramic terminal body 9 is made of an aluminum oxide sintered body, a glass ceramic sintered body, or the like. An appropriate organic binder, a plasticizer, and a solvent are added to and mixed with raw material powders such as magnesium and calcium oxide to form a slurry, and the slurry is formed into a ceramic green sheet by employing a conventionally known doctor blade method or calendar roll method. (Ceramic green sheet) is formed, and then the ceramic green sheet is appropriately punched to form a predetermined shape and, if necessary, a plurality of sheets are laminated to form a molded body. It is manufactured by firing at a temperature of A plurality of wiring layers 11 extending from the inside to the outside of the frame body 2 are embedded in the ceramic terminal body 9, and a region of the wiring layer 11 located inside the frame body 2 has light. Each electrode of the semiconductor element 4 is electrically connected via a bonding wire 12, and an external lead terminal 13 connected to an external electric circuit is made of a brazing material such as silver brazing in a region located outside the frame 2. It is attached via brazing. The wiring layer 11 functions as a conductive path for connecting each electrode of the optical semiconductor element 4 to an external electric circuit, and is formed of a metal powder such as tungsten, molybdenum, manganese, copper, silver and the like. The wiring layer 11 is formed by adding a metal paste such as tungsten, molybdenum, manganese, copper, silver or the like to a ceramic green sheet to be a ceramic insulator 10 by adding and mixing an appropriate organic binder, a solvent, and the like. The ceramic insulator 10 is formed by printing and applying a predetermined pattern in advance by using a conventionally known printing method such as a screen printing method. The wiring layer 11 is preferably provided with a metal having excellent corrosion resistance such as nickel and gold and excellent wettability with a brazing material to a thickness of 1 μm to 20 μm by a plating method on the exposed surface. In addition, the oxidation corrosion of the wiring layer 11 can be effectively prevented, and the brazing of the external lead terminals 13 to the wiring layer 11 can be made firm. Therefore, it is preferable that a metal having excellent corrosion resistance, such as nickel and gold, and excellent in wettability with a brazing material be applied to the exposed surface of the wiring layer 11 to a thickness of 1 μm to 20 μm. The wiring layer 11 has an external lead terminal 1
The external lead terminal 13 has a function of electrically connecting each electrode of the optical semiconductor element 4 housed inside the container 5 to an external electric circuit. None, by connecting the external lead terminal 13 to an external electric circuit, the optical semiconductor element 4 housed in the container 5 is electrically connected to the external electric circuit via the wiring layer 11 and the external lead terminal 13. Become. The external lead terminal 13 is made of iron-nickel-
For example, an ingot made of a metal material such as a cobalt alloy or an iron-nickel alloy and made of a metal such as an iron-nickel-cobalt alloy is subjected to a conventionally known metal working method such as a rolling method or a punching method. Is formed into a predetermined shape. Further, a lid member 3 made of a metal material such as, for example, an iron-nickel-cobalt alloy or an iron-nickel alloy is joined to the upper surface of the frame 2 to thereby form the base 1.
The optical semiconductor element 4 is hermetically sealed inside the container 5 including the frame 2 and the lid member 3. The lid member 3 is joined to the upper surface of the frame 2 by, for example, welding such as a seam welding method. In the package for housing an optical semiconductor element according to the present invention, the base 1 is made of 65 to 80% by weight of silicon carbide on both upper and lower surfaces of an intermediate layer made of 25 to 55% by weight of silicon carbide and 45 to 75% by weight of copper. It is important to have a three-layer structure in which upper and lower layers of 20% to 35% by weight of copper are arranged. The base 1 is composed of an intermediate layer composed of 25 to 55% by weight of silicon carbide and 45 to 75% by weight of copper, and 65 to 80% by weight of silicon carbide and 20 to 35% by weight of copper on both upper and lower surfaces. Due to the three-layer structure in which the lower layer is disposed, the thermal conductivity of the intermediate layer 1c of the base 1 is set to a high value of 270 W / m · K or more, and a large amount of heat is generated when the semiconductor element 4 mounted on the base 1 is operated. Is generated, the heat is transferred to the intermediate layer 1 via the upper layer 1b, which is the semiconductor element mounting portion 1a of the base 1.
c, while being quickly spread in the plane direction of the intermediate layer 1c and efficiently and reliably radiated to the outside via the intermediate layer 1c and the lower layer 1d in sequence, whereby the optical semiconductor element 4 is always kept at an appropriate temperature. Thus, the optical semiconductor element 4 can be operated stably and normally for a long period of time. Further, according to the package for housing an optical semiconductor element of the present invention, the substrate 1 is made of silicon carbide of 25 to 55% by weight,
65-80% by weight of silicon carbide and 20-35% by weight of copper on both upper and lower surfaces of an intermediate layer made of 45-75% by weight of copper
And an upper and lower layer 1 having a small linear thermal expansion coefficient.
b, 1d, the linear thermal expansion coefficient of the entire
Because the linear thermal expansion coefficient of the frame 2 made of a nickel-cobalt alloy or an iron-nickel alloy or the ceramic terminal body 9 made of a ceramic insulator 10 such as an aluminum oxide sintered body or a glass ceramic sintered body was approximated. The base 1 and the frame 2 are attached when the frame 2, the ceramic terminal 9, or the like is attached to the base 1, or when the optical semiconductor element 4 is operated.
Even when heat acts on the ceramic terminal body 9 and the ceramic terminal body 9, no large thermal stress is generated between the base 1, the frame body 2, and the ceramic terminal body 9 due to a difference in linear thermal expansion coefficient between the two. Accordingly, the hermetic sealing of the container 5 accommodating the optical semiconductor element 4 is always completely completed, and the optical semiconductor element 4 can be operated stably and normally. When the amount of silicon carbide in the upper and lower layers 1b and 1d is less than 65% by weight or exceeds 80% by weight, the linear thermal expansion coefficient of the As a result, the expansion coefficient greatly differs from the expansion coefficient. As a result, the frame 2 cannot be firmly attached to the base 1. Therefore, the upper and lower layers 1b of the base 1,
1d specifies the amount of silicon carbide forming it in the range of 65 to 80% by weight. The amount of silicon carbide in the intermediate layer 1c is 25
When the amount of copper is less than 75% by weight, in other words, when the amount of copper exceeds 75% by weight, the coefficient of linear thermal expansion of the base 1 greatly differs from the coefficient of linear thermal expansion of the frame 2 and the ceramic terminal body 9 so that the frame 2 When the amount of silicon carbide exceeds 55% by weight, in other words, when the amount of copper is less than 45% by weight, the thermal conductivity of the intermediate layer 1c cannot be secured. Cannot be achieved as high as 270 W / m · K or more, and when the optical semiconductor element 4 generates a large amount of heat during operation, the heat cannot be completely radiated to the outside via the base 1, As a result, the optical semiconductor element 4 is heated to a high temperature to cause thermal destruction of the optical semiconductor element 4, or the characteristics are varied, so that the optical semiconductor element 4 cannot be operated stably. Therefore, the intermediate layer 1c of the substrate 1
Is specified as 25 to 55% by weight of silicon carbide and 45 to 75% by weight of copper. Furthermore, if the upper and lower layers 1b and 1d have substantially the same composition and thickness, the stress generated between the upper layer 1b and the intermediate layer 1c and the stress generated between the lower layer 1d and the intermediate layer 1c. Are canceled out, and the flatness of the base 1 is improved. As a result, the frame 2 and the ceramic terminal 9 can be bonded very firmly to the base 1, and the reliability of the hermetic sealing of the container 5 can be further ensured. As a result, the operation reliability of the optical semiconductor element 4 housed inside the container 5 can be made more stable and reliable. Further, the upper and lower layers 1b and 1d and the intermediate layer 1
As for the thickness of c, the thickness of the upper and lower layers 1b and 1d is X,
Assuming that the thickness of c is Y, setting the range of 0.25Y ≦ X ≦ 0.5Y allows the heat generated by the semiconductor element 4 to be better radiated to the outside through the base 1. When the thickness of the upper and lower layers 1b and 1d is X and the thickness of the intermediate layer 1c is Y, if 0.5Y <X, the intermediate layer 1c having a high thermal conductivity of 270 W / m · K or more becomes thinner and the semiconductor element 4 There is a risk that the heat generated by the intermediate layer 1c may not be efficiently dissipated to the outside. If 0.25Y> X, the effect of the intermediate layer 1c having a large linear thermal expansion coefficient on the entire substrate 1 increases, and the line of the substrate 1 Since there is a risk that it is difficult to approximate the thermal expansion coefficient to the linear thermal expansion coefficient of the frame-shaped insulator 2, the thicknesses of the upper and lower layers 1b and 1d and the intermediate layer 1c are equal to those of the upper and lower layers 1b and 1d. Assuming that the thickness is X and the thickness of the intermediate layer 1c is Y, the range of 0.25Y ≦ X ≦ 0.5Y is desirable. The substrate 1 having the three-layer structure is provided with an intermediate layer 1c.
A predetermined amount of a silicon carbide-copper plate and upper and lower layers 1b, 1b
A silicon carbide-copper plate serving as d is prepared, and the upper and lower layers of the plate serving as the intermediate layer 1c are sandwiched between the upper and lower layers 1b and 1d. It is manufactured by pressing while heating at a slightly higher temperature. Thus, according to the optical semiconductor element housing package described above, the optical semiconductor element 4 is fixed on the optical semiconductor element mounting portion 1 a of the base 1, and each electrode of the optical semiconductor element 4 is connected via the bonding wire 12. Predetermined wiring layer 1
1, the lid member 3 is joined to the upper surface of the frame 2, the optical semiconductor element 4 is accommodated in the container 5 including the base 1, the frame 2, and the lid member 3. By attaching the optical fiber member 8 to the cylindrical fixing member 6 attached to the optical semiconductor device, an optical semiconductor device as a final product is obtained. The present invention is not limited to the above-described embodiment, and various changes can be made without departing from the gist of the present invention. According to the package for housing an optical semiconductor element of the present invention, silicon carbide is formed on both upper and lower surfaces of an intermediate layer comprising silicon carbide of 25 to 55% by weight and copper of 45 to 75% by weight. Since it has a three-layer structure in which upper and lower layers of 65 to 80% by weight and 20 to 35% by weight of copper are arranged, the thermal conductivity of the upper layer on which the base optical semiconductor element is mounted is 270 W / m.
-Even if the optical semiconductor element mounted on the substrate generates a large amount of heat during operation, the heat is transmitted to the intermediate layer via the upper layer of the substrate and the intermediate layer It can be quickly spread in the plane direction and efficiently and reliably radiated to the outside through the intermediate layer and the lower layer in order, so that the optical semiconductor element always has an appropriate temperature, and the optical semiconductor element operates stably and normally for a long period of time. It is possible to do. Further, according to the package for housing an optical semiconductor element of the present invention, the base is made of 25 to 55% by weight of silicon carbide and 65 to 80% by weight of silicon carbide on both upper and lower surfaces of an intermediate layer made of 45 to 75% by weight of copper. % And copper in an amount of 20 to 35% by weight, and has a three-layer structure in which an intermediate layer having a large linear thermal expansion coefficient is sandwiched between upper and lower layers having a small linear thermal expansion coefficient to reduce the linear thermal expansion coefficient of the entire substrate. Since the coefficient of linear thermal expansion of a frame made of an iron-nickel-cobalt alloy or an iron-nickel alloy or a ceramic terminal made of a ceramic insulator such as an aluminum oxide sintered body or a glass ceramic sintered body was approximated, Even when heat is applied to the base and the frame or the ceramic terminal when the frame or the ceramic terminal is mounted thereon or when the optical semiconductor device is operated, the base and the frame or the ceramic are not affected. A large thermal stress due to the difference between the linear thermal expansion coefficients of the two does not occur between the semiconductor device and the terminal body, and the hermetic sealing of the cavity accommodating the optical semiconductor element is always perfect, and the optical semiconductor The element can be operated stably and normally.

【図面の簡単な説明】 【図1】本発明の光半導体素子収納用パッケージの一実
施例を示す断面図である。 【図2】図1に示す光半導体素子収納用パッケージの平
面図である。 【符号の説明】 1・・・・・基体 1a・・・・載置部 1b・・・・上層 1c・・・・中間層 1d・・・・下層 2・・・・・枠体 2a・・・・貫通孔 2b・・・・切欠部 3・・・・・蓋部材 4・・・・・光半導体素子 5・・・・・容器 6・・・・・固定部材 7・・・・・透光性部材 8・・・・・光ファイバー部材 9・・・・・セラミック端子体 10・・・・セラミックス絶縁体
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view showing one embodiment of an optical semiconductor element housing package of the present invention. FIG. 2 is a plan view of the package for housing an optical semiconductor element shown in FIG. 1; [Description of Signs] 1 ··· Base 1a ··· Placement portion 1b ···· Upper layer 1c ···· Intermediate layer 1d ····· Lower layer 2 ····· Frame 2a ··· ··· Through-hole 2b ··· Notch 3 ···· Cover member 4 ··· Optical semiconductor element 5 ··· Container 6 ····· Fixing member 7 ······ Optical member 8 Optical fiber member 9 Ceramic terminal body 10 Ceramic insulator

Claims (1)

【特許請求の範囲】 【請求項1】上面に光半導体素子が載置される載置部を
有する基体と、前記基体上に光半導体素子載置部を囲繞
するようにして取着され、側部に貫通孔および切欠部を
有する鉄−ニッケル−コバルト合金もしくは鉄−ニッケ
ル合金から成る枠体と、前記貫通孔もしくは貫通孔周辺
の枠体に取着され、光ファイバー部材が接合される固定
部材と、前記切欠部に挿着され、セラミックス絶縁体に
光半導体素子の各電極が接続される配線層が形成されて
いるセラミック端子体と、前記枠体の上面に取着され、
光半導体素子を気密に封止する蓋部材とから成る光半導
体素子収納用パッケージであって、前記基体は炭化珪素
と銅とから成り、炭化珪素が25乃至55重量%、銅が
45乃至75重量%から成る中間層の上下両面に炭化珪
素が65乃至80重量%、銅が20乃至35重量%から
成る上下層を配した3層構造を有していることを特徴と
する光半導体素子収納用パッケージ。
Claims: 1. A base having a mounting part on which an optical semiconductor element is mounted on an upper surface, and a base mounted on the base so as to surround the optical semiconductor element mounting part. A frame made of an iron-nickel-cobalt alloy or an iron-nickel alloy having a through-hole and a notch in the portion, and a fixing member attached to the through-hole or the frame around the through-hole and joined to the optical fiber member. A ceramic terminal body, which is inserted into the cutout portion, and on which a wiring layer for connecting each electrode of the optical semiconductor element is formed on a ceramic insulator, is attached to the upper surface of the frame body,
A package for housing an optical semiconductor element comprising a lid member for hermetically sealing the optical semiconductor element, wherein the base is made of silicon carbide and copper, and silicon carbide is 25 to 55% by weight and copper is 45 to 75% by weight. % Of an intermediate layer having 65% to 80% by weight of silicon carbide and 20% to 35% by weight of copper. package.
JP2001287700A 2001-09-20 2001-09-20 Package for storage of optical semiconductor element Pending JP2003101123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001287700A JP2003101123A (en) 2001-09-20 2001-09-20 Package for storage of optical semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001287700A JP2003101123A (en) 2001-09-20 2001-09-20 Package for storage of optical semiconductor element

Publications (1)

Publication Number Publication Date
JP2003101123A true JP2003101123A (en) 2003-04-04

Family

ID=19110467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001287700A Pending JP2003101123A (en) 2001-09-20 2001-09-20 Package for storage of optical semiconductor element

Country Status (1)

Country Link
JP (1) JP2003101123A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7570235B2 (en) 2005-01-06 2009-08-04 Infra-Com Ltd. Communication diode driver circuit
WO2011007872A1 (en) * 2009-07-17 2011-01-20 電気化学工業株式会社 Manufacturing method of led chip assembly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7570235B2 (en) 2005-01-06 2009-08-04 Infra-Com Ltd. Communication diode driver circuit
WO2011007872A1 (en) * 2009-07-17 2011-01-20 電気化学工業株式会社 Manufacturing method of led chip assembly

Similar Documents

Publication Publication Date Title
JP2003101123A (en) Package for storage of optical semiconductor element
JP3532114B2 (en) Optical semiconductor element storage package
JP2003069132A (en) Package for accommodating optical semiconductor element
JP2003304027A (en) Package for housing optical semiconductor element
JP2003142762A (en) Package for housing optical semiconductor element
JP2003037196A (en) Package for housing optical semiconductor element
JP3987649B2 (en) Package for storing semiconductor elements
JP2003124557A (en) Optical semiconductor element housing package
JP2003037204A (en) Package for accommodating semiconductor element
JPH11163184A (en) Optical semiconductor device housing package
JP2003008130A (en) Package for housing optical semiconductor element
JP3752447B2 (en) Package for storing semiconductor elements
JP2003105476A (en) High-temperature heat conductive substrate
JP2003037321A (en) Package for accommodating optical semiconductor element
JP2003008132A (en) Optical semiconductor element housing package
JP2003100931A (en) Package for accommodating semiconductor device
JP2000183215A (en) Package for housing semiconductor element
JP2003068911A (en) Package for semiconductor element storage
JP2003100933A (en) Package for accommodating semiconductor device
JP2001244358A (en) Package for storing electronic component
JP2003007932A (en) Package for housing semiconductor element
JP2003007886A (en) Package for storing semiconductor element
JP2003007885A (en) Package for storing semiconductor element
JP2003124405A (en) Package for accommodating semiconductor element
JP2001102636A (en) Package for housing optical semiconductor element