JP2003304027A - Package for housing optical semiconductor element - Google Patents

Package for housing optical semiconductor element

Info

Publication number
JP2003304027A
JP2003304027A JP2002110869A JP2002110869A JP2003304027A JP 2003304027 A JP2003304027 A JP 2003304027A JP 2002110869 A JP2002110869 A JP 2002110869A JP 2002110869 A JP2002110869 A JP 2002110869A JP 2003304027 A JP2003304027 A JP 2003304027A
Authority
JP
Japan
Prior art keywords
semiconductor element
optical semiconductor
base
package
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002110869A
Other languages
Japanese (ja)
Inventor
Masahiko Miyauchi
正彦 宮内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002110869A priority Critical patent/JP2003304027A/en
Publication of JP2003304027A publication Critical patent/JP2003304027A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that an optical semiconductor element is thermally broken when heat generated from the element at operating time is not dissipated efficiently to the outside. <P>SOLUTION: A package for housing the optical semiconductor element comprises: a base 1 having a placing part for placing the optical semiconductor element on an upper surface; a metal frame 2 mounted so as to surround an optical semiconductor element mounting part on the base; and a cover member 3 mounted on the frame to hermetically seal the inside of the frame. In this package, the base is formed by impregnating a base material obtained by knitting carbon fibers in a three-dimensional manner with a copper. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光半導体素子を収
納するための光半導体素子収納用パッケージに関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical semiconductor element housing package for housing an optical semiconductor element.

【0002】[0002]

【従来の技術】従来、光半導体素子を収納するための光
半導体素子収納用パッケージは、上面中央部に光半導体
素子が電子冷却素子を間に挟んで載置される載置部を有
する銅−タングステン合金等から成る基体と、前記光半
導体素子載置部を囲繞するようにして基体上に銀ロウ等
のロウ材を介して接合され、側部に貫通孔及び切欠部を
有する鉄−ニッケル−コバルト合金等の金属材料から成
る枠体と、前記枠体の貫通孔もしくは貫通孔周辺の枠体
に取着され、内部に光信号が伝達される空間を有する鉄
−ニッケル−コバルト合金等の金属材料から成る筒状の
固定部材と、前記筒状の固定部材に融点が200〜40
0℃の金−錫合金等の低融点ロウ材を介して取着された
固定部材の内部を塞ぐ非晶質ガラス等から成る透光性部
材と、前記枠体の切欠部に挿入され、酸化アルミニウム
質焼結体から成るセラミック絶縁体に光半導体素子の各
電極がボンディングワイヤを介して電気的に接続される
メタライズ配線層が形成されているセラミック端子体
と、前記枠体の上面に取着され、光半導体素子を気密に
封止する蓋部材とから構成されており、前記枠体の光半
導体素子載置部に光半導体素子を間にペルチェ素子等の
電子冷却素子を挟んで載置固定させるとともに該光半導
体素子の各電極をボンディングワイヤを介してセラミッ
ク端子体のメタライズ配線層に電気的に接続し、しかる
後、前記枠体の上面に蓋部材を接合させ、基体と枠体と
蓋部材とから成る容器内部に光半導体素子を気密に収容
するとともに筒状固定部材に光ファイバー部材を、例え
ば、YAGレーザー等のレーザー溶接により取着するこ
とによって製品としての光半導体装置となる。
2. Description of the Related Art Conventionally, an optical semiconductor element accommodating package for accommodating an optical semiconductor element is a copper-containing package having an optical semiconductor element on the center of an upper surface with an electronic cooling element interposed therebetween. A base made of a tungsten alloy or the like is bonded to the base so as to surround the optical semiconductor element mounting portion via a brazing material such as silver brazing, and iron-nickel-having a through hole and a notch on a side portion. A frame made of a metal material such as a cobalt alloy, and a metal such as an iron-nickel-cobalt alloy having a space attached to the through hole of the frame or a frame around the through hole and having an optical signal transmitted therein A tubular fixing member made of a material, and a melting point of 200 to 40 for the tubular fixing member.
A translucent member made of amorphous glass or the like for closing the inside of the fixing member attached through a low melting point brazing material such as a gold-tin alloy at 0 ° C., and inserted into the notch portion of the frame body to be oxidized. Attached to a ceramic terminal body in which each electrode of an optical semiconductor element is electrically connected to a ceramic insulator made of an aluminum sintered body through a bonding wire, and a ceramic terminal body, and to the upper surface of the frame body. And a lid member that hermetically seals the optical semiconductor element, and the optical semiconductor element is mounted and fixed on the optical semiconductor element mounting portion of the frame body with an electronic cooling element such as a Peltier element sandwiched therebetween. In addition, each electrode of the optical semiconductor element is electrically connected to the metallized wiring layer of the ceramic terminal body through a bonding wire, and then a lid member is joined to the upper surface of the frame body to form a base body, a frame body and a lid. The volume consisting of parts and An optical fiber member into the cylindrical fixing member accommodates the optical semiconductor element hermetically in the interior, for example, the optical semiconductor device as a product by attaching by laser welding such as YAG laser.

【0003】かかる光半導体装置は電子冷却素子により
光半導体素子を冷却しつつ光半導体素子に外部電気回路
から供給される駆動信号によって光励起を起こさせ、該
励起した光を透光性部材を介し光ファイバー部材に授受
させるとともに該光ファイバー部材の光ファイバー内を
伝達させることによって高速通信等に使用される。
In such an optical semiconductor device, optical excitation is caused by a drive signal supplied from an external electric circuit to the optical semiconductor element while cooling the optical semiconductor element by an electronic cooling element, and the excited light is transmitted through an optical fiber through an optical fiber. It is used for high-speed communication and the like by transmitting and receiving to and from the member and transmitting in the optical fiber of the optical fiber member.

【0004】なお上述の光半導体素子収納用パッケージ
においては、光半導体素子が載置される基体が銅−タン
グステン合金や銅−モリブデン合金等の金属材料で形成
されており、該銅−タングステン合金や銅−モリブデン
合金等は熱伝導率が約320W/m・Kと高く熱伝導性
に優れていることから基体は光半導体素子の作動時に発
する熱を良好に吸収するとともに大気中に良好に放散さ
せることができ、これによって光半導体素子を常に適温
とし光半導体素子に熱破壊が発生したり、特性に熱劣化
が発生したりするのを有効に防止している。
In the package for storing an optical semiconductor element described above, the base on which the optical semiconductor element is mounted is formed of a metal material such as a copper-tungsten alloy or a copper-molybdenum alloy. Since the copper-molybdenum alloy has a high thermal conductivity of about 320 W / m · K and is excellent in thermal conductivity, the base body absorbs heat generated during the operation of the optical semiconductor element well and dissipates it into the atmosphere. As a result, the optical semiconductor element is always kept at an appropriate temperature, and thermal destruction of the optical semiconductor element and thermal deterioration of the characteristics are effectively prevented.

【0005】また上述の光半導体素子収納用パッケージ
の基体として使用されている銅−タングステン合金や銅
−モリブデン合金はタングステン粉末やモリブデン粉末
を焼成して焼結多孔体を得、次に前記焼結多孔体の空孔
内に溶融させることによって製作されており、例えば、
タングステンから成る焼結多孔体に銅を含浸させる場合
は焼結多孔体が50質量%乃至60質量%、銅が40質
量%乃至50質量%の範囲に、モリブデンから成る焼結
多孔体に銅を含浸させる場合は焼結多孔体が55質量%
乃至60質量%、銅が40質量%乃至45質量%の範囲
となっている。
The copper-tungsten alloy or copper-molybdenum alloy used as the substrate of the package for storing the optical semiconductor element described above is fired from tungsten powder or molybdenum powder to obtain a sintered porous body, and then the above-mentioned sintering is performed. It is made by melting in the pores of the porous body, for example,
When impregnating the sintered porous body made of tungsten with copper, the sintered porous body is filled with copper in the range of 50% by mass to 60% by mass, the copper is in the range of 40% by mass to 50% by mass. 55% by mass of sintered porous material when impregnated
To 60% by mass and copper in the range of 40% to 45% by mass.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、この従
来の光半導体素子収納用パッケージにおいては、基体が
タングステン粉末やモリブデン粉末を焼成して焼結多孔
体を得るとともに該焼結多孔体の空孔内に溶融させた銅
を含浸させることによって形成されており、前記銅の量
を増加させればさせるほど前記基体の熱伝導率は高くな
るが、それにつれて基体の線熱膨張係数も大きくなる。
前記基体は上面に取着される鉄−ニッケル−コバルト合
金から成る金属枠体の線熱膨張係数(10ppm/℃:
室温乃至800℃)と大きく相違すると、両者の線熱膨
張係数の相違により発生する応力が両者の接合界面に働
き、該応力により金属枠体に歪みが発生し、その結果、
光半導体素子と光ファイバー部材との中心軸のズレが発
生して光信号の伝送効率が低下したり、更に該応力によ
り前記接合界面にクラックがはいったり、ひどい場合に
は両者の接合界面に剥離が発生したりして、光半導体素
子収納用パッケージの気密封止の信頼性が損なわれ、内
部に収容する光半導体素子を信頼性よく正常に作動させ
ることができなくなると言う問題が発生してしまうこと
から、前記基体の線熱膨張係数は前記金属枠体の線熱膨
張係数と近似させる必要があり、前記基体の銅の含有率
は40質量%乃至50質量%(基体が銅−タングステン
合金から成る場合は銅の含有率は40質量%乃至50質
量%、銅−モリブデン合金から成る場合は銅の含有率は
40質量%乃至45質量%)の範囲に限定されることと
なり、前記基体の熱伝導率は最大でも約320W/m・
K程度であった。
However, in this conventional package for accommodating an optical semiconductor element, the base body is fired of tungsten powder or molybdenum powder to obtain a sintered porous body, and the inside of the pores of the sintered porous body is obtained. It is formed by impregnating molten copper with copper, and as the amount of copper is increased, the thermal conductivity of the base increases, but the linear thermal expansion coefficient of the base also increases accordingly.
The substrate has a linear thermal expansion coefficient (10 ppm / ° C .: 10 ppm / ° C.) of a metal frame made of an iron-nickel-cobalt alloy attached to the upper surface.
(Room temperature to 800 ° C.), the stress generated due to the difference in linear thermal expansion coefficient between the two acts on the bonding interface between the two, and the stress causes strain in the metal frame body.
Misalignment of the central axis between the optical semiconductor element and the optical fiber member reduces the transmission efficiency of the optical signal, and further, the stress causes cracks in the joint interface, and in severe cases, peeling may occur at the joint interface between the two. If it occurs, the reliability of hermetic sealing of the package for storing optical semiconductor elements is impaired, and the problem that the optical semiconductor elements housed inside cannot be reliably and normally operated occurs. Therefore, the linear thermal expansion coefficient of the base body needs to be approximated to the linear thermal expansion coefficient of the metal frame body, and the copper content of the base body is 40 mass% to 50 mass% (the base body is made of a copper-tungsten alloy). When it is made of copper, the copper content is limited to 40 mass% to 50 mass%, and when it is made of a copper-molybdenum alloy, the content of copper is limited to 40 mass% to 45 mass%). Conductivity is about at most 320W / m ·
It was about K.

【0007】更に大きな熱伝導率を求められる場合には
前記基体として銅−タングステン合金に換えて一方向に
配列した炭素繊維を炭素で結合した炭素−炭素複合体が
提案されている。該炭素−炭素複合体は熱伝導率に方向
性があり炭素繊維方向の熱伝導率が約400W/m・K
と非常に大きく、光半導体素子の基体接着面に対して垂
直方向に炭素繊維の方向を揃えた基体を作製しておくと
光半導体素子が発生する熱を外部に効率よく放散するこ
とができることとなる。しかしながら前記炭素−炭素複
合体は熱伝導率が繊維方向にのみ高くなるという方向性
があるため、光半導体素子収納用パッケージ内に近時の
高密度化、高集積化が大きく進み、作動時に多量の熱を
発する半導体素子を収容した場合、半導体素子が作動時
に発する熱は半導体素子から基体へは効率的に伝達され
るが、基体から外部への熱の伝達が律則となり基体を介
して外部に完全に放散させることができなくなり、その
結果、光半導体素子が該素子自身の発する熱によって高
温となり、光半導体素子に熱破壊を招来させたり、特性
にばらつきを生じ安定に作動させることができないとい
う欠点を有していた。また、前記基体は上面に取着され
る鉄−ニッケル−コバルト合金から成る金属枠体の線熱
膨張係数(10ppm/℃:室温乃至800℃)と大き
く相違すると、両者の線熱膨張係数の相違により発生す
る応力が両者の接合界面に働き、該応力により金属枠体
に歪みが発生し、その結果、光半導体素子と光ファイバ
ー部材との中心軸のズレが発生して光信号の伝送効率が
低下したり、更に該応力により前記接合界面にクラック
がはいったり、ひどい場合には両者の接合界面に剥離が
発生したりして、光半導体素子収納用パッケージの気密
封止の信頼性が損なわれ、内部に収容する光半導体素子
を信頼性よく正常に作動させることができなくなると言
う欠点を有していた。
When a higher thermal conductivity is required, a carbon-carbon composite has been proposed in which the base is replaced by a copper-tungsten alloy and carbon fibers arranged in one direction are bonded by carbon. The carbon-carbon composite has a directional thermal conductivity, and the thermal conductivity in the carbon fiber direction is about 400 W / m · K.
It is very large and the heat generated by the optical semiconductor element can be efficiently dissipated to the outside by preparing a substrate in which the carbon fibers are aligned in the direction perpendicular to the substrate adhesion surface of the optical semiconductor element. Become. However, since the carbon-carbon composite has a direction in which the thermal conductivity increases only in the fiber direction, the recent high density and high integration in the package for housing an optical semiconductor device has greatly progressed, and a large amount has been generated during operation. When a semiconductor element that emits heat is stored, the heat generated when the semiconductor element operates is efficiently transferred from the semiconductor element to the base body, but the transfer of heat from the base body to the outside becomes a rule, and Cannot be completely dissipated, and as a result, the optical semiconductor element becomes high temperature due to the heat generated by the element itself, causing thermal damage to the optical semiconductor element or causing a variation in characteristics, which makes it impossible to operate stably. It had a drawback. Further, if the linear thermal expansion coefficient (10 ppm / ° C .: room temperature to 800 ° C.) of the metal frame made of an iron-nickel-cobalt alloy attached to the upper surface is significantly different, the linear thermal expansion coefficient of the two is different. The stress generated by the stress acts on the bonding interface between the two, and the stress causes strain in the metal frame body, resulting in a deviation of the central axis between the optical semiconductor element and the optical fiber member, which lowers the optical signal transmission efficiency. Or, further cracks at the bonding interface due to the stress, or in some cases peeling occurs at the bonding interface between the two, the reliability of the hermetic sealing of the package for optical semiconductor element storage is impaired, It has a drawback that the optical semiconductor element housed inside cannot be reliably and normally operated.

【0008】また前記炭素−炭素複合体から成る基体
は、炭素繊維を炭素で結合させた際基体内部に空隙が生
じてしまい該空隙の存在により基体自身の気密性が確実
に保たれず、該基体を用いて作製される光半導体素子収
納用パッケージの光半導体素子を収納する空所の気密封
止が不完全となり、光半導体素子を安定かつ正常に作動
させることが困難となると言う欠点も有していた。
In addition, in the substrate composed of the carbon-carbon composite, when carbon fibers are bonded with carbon, voids are formed inside the substrate, and the presence of the voids does not ensure the airtightness of the substrate itself. There is also a drawback that the space for storing the optical semiconductor element of the package for storing an optical semiconductor element manufactured using the base becomes incompletely hermetically sealed, and it becomes difficult to operate the optical semiconductor element stably and normally. Was.

【0009】本発明は上記欠点に鑑み案出されたもの
で、その目的は内部に高速駆動を行う光半導体素子を収
容することができ、かつ収容する光半導体素子を長期間
にわたり正常、かつ安定に作動させることができる光半
導体素子収納用パッケージを提供することにある。
The present invention has been devised in view of the above-mentioned drawbacks, and an object thereof is to accommodate an optical semiconductor element which can be driven at a high speed inside, and to store the optical semiconductor element in a normal and stable state for a long period of time. Another object of the present invention is to provide a package for accommodating an optical semiconductor device that can be operated at any time.

【0010】[0010]

【課題を解決するための手段】本発明の光半導体素子収
納用パッケージは、上面に光半導体素子が載置される載
置部を有する基体と、前記基体上に光半導体素子載置部
を囲繞するようにして取着される金属枠体と、前記金属
枠体上に取着され、金属枠体の内側を気密に封止する蓋
部材とから成る光半導体素子収納用パッケージであっ
て、前記基体は炭素繊維を三次元に編んだ母材に銅を含
浸させて形成したことを特徴とするものである。
SUMMARY OF THE INVENTION A package for storing an optical semiconductor element of the present invention surrounds a base having a mounting portion on which an optical semiconductor element is mounted, and an optical semiconductor element mounting portion on the base. A package for storing an optical semiconductor element, comprising a metal frame body attached in this manner, and a lid member attached on the metal frame body to hermetically seal the inside of the metal frame body, The base is characterized in that it is formed by impregnating copper into a three-dimensionally knitted base material of carbon fiber.

【0011】また本発明の光半導体素子収納用パッケー
ジは、前記基体と前記金属枠体の熱膨張係数差が2pp
m/℃以下であることを特徴とするものである。更に本
発明の光半導体素子収納用パッケージは、前記基体の炭
素繊維径は1μm乃至100μmであることを特徴とす
るものである。
Also, in the package for accommodating an optical semiconductor element of the present invention, the difference in thermal expansion coefficient between the base and the metal frame is 2 pp.
It is characterized by being m / ° C. or less. Further, the optical semiconductor element accommodating package of the present invention is characterized in that the carbon fiber diameter of the substrate is 1 μm to 100 μm.

【0012】また更に本発明の光半導体素子収納用パッ
ケージは、前期基体の銅にチタン、ジルコニウム、ハフ
ニウム、クロムの少なくとも1種を0.2質量乃至10
質量%含有させたことを特徴とするものである。
Furthermore, in the package for accommodating an optical semiconductor device of the present invention, at least one of titanium, zirconium, hafnium, and chromium is added to the base copper of 0.2 mass% to 10 mass.
It is characterized in that it is contained by mass%.

【0013】本発明の光半導体素子収納用パッケージに
よれば、基体を炭素繊維を三次元に編んだ母材で形成し
たことから、基体に載置される光半導体素子が多量の熱
を発したとしても、基体は約400W/m・K以上と熱
伝導率の高い炭素繊維が3次元的に配置されているた
め、前記熱を基体の光半導体素子搭載平面方向に素早く
広がらせるとともに基体を介して外部に効率よく確実に
放散させることが可能となる。
According to the package for accommodating an optical semiconductor element of the present invention, since the base body is formed of the base material in which the carbon fiber is three-dimensionally knitted, the optical semiconductor element mounted on the base body generates a large amount of heat. Also, since the carbon fiber having a high thermal conductivity of about 400 W / m · K or more is three-dimensionally arranged on the substrate, the heat is quickly spread in the optical semiconductor element mounting plane direction of the substrate and the heat is transmitted through the substrate. It is possible to efficiently and surely disperse it to the outside.

【0014】また本発明の光半導体素子収納用パッケー
ジによれば、基体を炭素繊維を三次元に編んだ母材に銅
を含浸させて形成したことから、炭素繊維を三次元に編
んだ母材に存在する空隙が銅により充填され、基体自身
の気密性が確実なものとなり、該基体を用いて作製され
る光半導体素子収納用パッケージの光半導体素子を収容
する空所の気密封止が常に完全となり、光半導体素子を
安定かつ正常に作動させることが可能となる。
Further, according to the package for accommodating an optical semiconductor element of the present invention, the base is formed by impregnating the base material in which the carbon fiber is three-dimensionally knitted with copper, so that the base material in which the carbon fiber is three-dimensionally knitted is used. Is filled with copper, the airtightness of the substrate itself is ensured, and the airtight sealing of the space for housing the optical semiconductor element of the package for storing optical semiconductor elements manufactured using the substrate is always performed. It becomes complete, and it becomes possible to operate the optical semiconductor element stably and normally.

【0015】更に本発明の光半導体素子収納用パッケー
ジによれば、前記基体と前記金属枠体の熱膨張係数差を
2ppm/℃以下としたことから、光半導体素子収納用
パッケージに収容した光半導体素子が熱を発し、該熱が
両者に作用したとしても、両者の間に熱膨張係数の差に
起因する大きな内在応力が発生することはないため、金
属枠体の歪みがほとんど生じることなく、その結果、光
半導体素子と光ファイバー部材との中心軸のズレが発生
せず光信号の伝送効率を維持し、光半導体素子収納用パ
ッケージの気密封止をより完全なものとなし、内部に収
容する光半導体素子を信頼性よく正常に作動させること
ができる。
Further, according to the package for storing an optical semiconductor element of the present invention, the difference in the coefficient of thermal expansion between the base body and the metal frame is 2 ppm / ° C. or less. Even if the element emits heat and the heat acts on both, since a large internal stress due to the difference in the coefficient of thermal expansion does not occur between the two, almost no distortion of the metal frame occurs, As a result, the center axis of the optical semiconductor element and the optical fiber member is not displaced, the optical signal transmission efficiency is maintained, and the optical semiconductor element housing package is hermetically sealed and housed inside. The optical semiconductor element can be operated normally with high reliability.

【0016】また更に本発明の光半導体素子収納用パッ
ケージによれば、前記基体の炭素繊維径を1μm乃至1
00μmとしたことから、炭素繊維を介しての熱の伝達
を確実なものとして光半導体素子の作動時に発する熱を
良好に吸収するとともに大気中に良好に放散させ、光半
導体素子を常に適温とし光半導体素子に熱破壊が発生し
たり、特性に熱劣化が発生したりするのを有効に防止す
ることができる。
Further, according to the optical semiconductor device accommodating package of the present invention, the carbon fiber diameter of the substrate is 1 μm to 1 μm.
Since it is set to 00 μm, the heat transmitted through the carbon fiber is ensured, and the heat generated during the operation of the optical semiconductor element is well absorbed and is well dissipated in the atmosphere, and the optical semiconductor element is always kept at an appropriate temperature. It is possible to effectively prevent the semiconductor element from being thermally destroyed or being thermally deteriorated.

【0017】更にまた本発明の光半導体素子収納用パッ
ケージによれば、前期基体の銅にチタン、ジルコニウ
ム、ハフニウム、クロムの少なくとも1種を0.2質量
%乃至10質量%含有させたことから、炭素繊維を三次
元に編んだ母材に銅を含浸させる際、母材の炭素繊維と
銅との濡れ性が向上し、炭素繊維を三次元に編んだ母材
への銅の充填がより強固で確実なものとなり、基体自身
の気密性をより確実なものとし、該基体を用いて作製さ
れる光半導体素子収納用パッケージの半導体素子を収納
する空所の気密封止が常に完全となり、光半導体素子を
安定かつ正常に作動させることができる。
Furthermore, according to the optical semiconductor device accommodating package of the present invention, since the copper of the previous base body contains at least one of titanium, zirconium, hafnium and chromium in an amount of 0.2% by mass to 10% by mass, When copper is impregnated into the base material in which the carbon fiber is three-dimensionally woven, the wettability between the base material carbon fiber and copper is improved, and the filling of the base material in which the carbon fiber is three-dimensionally woven is more robust. In addition, the airtightness of the base itself is made more reliable, and the airtight sealing of the cavity for housing the semiconductor element of the package for optical semiconductor element storage manufactured using the base is always perfect, and The semiconductor element can be operated stably and normally.

【0018】[0018]

【発明の実施の形態】次に、本発明を添付図面に示す実
施例に基づき詳細に説明する。図1乃至図2は本発明の
光半導体素子収納用パッケージの一実施例を示し、1は
基体、2は金属枠体、3は蓋部材である。この基体1と
金属枠体2と蓋部材3とで内部に光半導体素子4を収容
するための容器5が構成される。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will now be described in detail with reference to the embodiments shown in the accompanying drawings. 1 and 2 show an embodiment of a package for storing an optical semiconductor element of the present invention, in which 1 is a base, 2 is a metal frame, and 3 is a lid member. The base body 1, the metal frame body 2 and the lid member 3 constitute a container 5 for housing the optical semiconductor element 4 therein.

【0019】前記基体1はその上面に半導体素子4が載
置される載置部1aを有しており、該載置部1aには光
半導体素子4が取着されている。
The substrate 1 has a mounting portion 1a on which the semiconductor element 4 is mounted, and the optical semiconductor element 4 is attached to the mounting portion 1a.

【0020】前記基体1は光半導体素子4を支持する支
持部材として作用するとともに光半導体素子4が作動時
に発する熱を良好に吸収し、かつ大気中に効率よく放散
させて光半導体素子4を常に適温とする作用をなす。
The substrate 1 acts as a supporting member for supporting the optical semiconductor element 4, and at the same time, absorbs heat generated by the optical semiconductor element 4 during operation, and efficiently dissipates the heat into the atmosphere to keep the optical semiconductor element 4 at all times. It has the effect of keeping it at an appropriate temperature.

【0021】前記基体1は炭素繊維を3次元方向に織っ
た母材と銅から成り、例えば特開平5−106139に
示される方法を用いてピッチ系の炭素繊維を3次元に織
り込んだものを固体のピッチあるいはコークス等の粉末
を分散させたフェノール樹脂等の熱硬化性樹脂の溶液中
に含浸させた後、これを乾燥させ、所定の圧力を加える
とともに加熱し、これを不活性の雰囲気中、2000℃
乃至3000℃の高温で焼成することによって、炭素繊
維を三次元に編んだ母材を作製する。次に、前記炭素繊
維を三次元に編んだ母材に溶融した銅を、例えば100
0℃乃至1200℃、30MPa乃至200MPaの温
度・圧力下で含浸させることによって基体1を製作す
る。
The base 1 is made of a base material obtained by weaving carbon fibers in a three-dimensional direction and copper. For example, a method in which pitch-based carbon fibers are three-dimensionally woven using the method disclosed in Japanese Patent Laid-Open No. 5-106139 is a solid. After impregnating a solution of a thermosetting resin such as a phenolic resin in which a powder such as pitch or coke is dispersed, this is dried, and a predetermined pressure is applied and heated, in an inert atmosphere, 2000 ° C
By firing at a high temperature of up to 3000 ° C., a base material in which carbon fibers are three-dimensionally knitted is produced. Next, the copper melted in the base material obtained by three-dimensionally knitting the carbon fibers is mixed with, for example, 100
The substrate 1 is manufactured by impregnation at 0 ° C. to 1200 ° C. and a temperature / pressure of 30 MPa to 200 MPa.

【0022】なお、前記炭素繊維を三次元に編んだ母材
を製作する際、炭素繊維を三次元に織り込んだものを固
体のピッチやコークス等の粉末を分散させたフェノール
樹脂等の熱硬化性樹脂の溶液中に含浸させた後、焼成し
て母材を製作すると、炭素繊維を三次元に編んだものを
直接焼成して母材を製作する場合に比べ、前記固体のピ
ッチやコークス等の粉末が炭素繊維間に入り込み炭素繊
維間の結合をより確実とすることから、焼成後の母材内
の空隙を大きく低減することができ、母材の熱伝導率を
高いものと成すことができる。
When the base material in which the carbon fibers are three-dimensionally knitted is manufactured, a thermosetting material such as phenol resin in which powders such as solid pitch or coke are dispersed is obtained by weaving the carbon fibers in three dimensions. When the base material is manufactured by firing after impregnating it in a solution of resin, compared with the case where the base material is manufactured by directly firing a three-dimensionally knitted carbon fiber, the solid pitch, coke, etc. Since the powder enters between the carbon fibers to make the bond between the carbon fibers more reliable, the voids in the base material after firing can be greatly reduced, and the base material can have high thermal conductivity. .

【0023】また、前記固体のピッチやコークス等の粉
末はその径が1μm乃至200μmの範囲であることが
望ましい。前記固体のピッチやコークス等の粉末の径が
1μm未満の場合、粉末の凝集がおこり、炭素繊維間に
均一に入り込むことができなくなり炭素繊維間の結合を
確実にすることできず焼成後の母材の強度が低下する恐
れがあり、その径が200μmを超える場合は固体のピ
ッチやコークス等の粉末が炭素繊維間の空隙より大きく
なり、該空隙に確実に入り込むことができなくなり炭素
繊維間の結合を確実にすることできず焼成後の母材の強
度が低下する恐れがあることから、その径は1μm乃至
200μmの範囲が好適に使用される。
Further, it is desirable that the powder of the solid pitch or coke has a diameter in the range of 1 μm to 200 μm. When the diameter of the powder such as the solid pitch or coke is less than 1 μm, the powder agglomerates and cannot evenly enter between the carbon fibers, so that the bond between the carbon fibers cannot be ensured and the mother after firing is not formed. If the diameter exceeds 200 μm, the powder of solid pitch, coke, etc. becomes larger than the voids between the carbon fibers and cannot enter into the voids reliably, and the carbon fibers between Since the bond cannot be ensured and the strength of the base material after firing may decrease, the diameter thereof is preferably in the range of 1 μm to 200 μm.

【0024】更に、前記固体のピッチやコークス等の粉
末の添加量は焼成後の母材に対し15質量%乃至50質
量%の範囲であることが望ましい。前記固体のピッチや
コークス等の粉末の添加量が焼成後の母材に対し15質
量%未満の場合、粉末が少なく炭素繊維間の結合を確実
にすることができず、焼成後の母材内の空隙が多くな
り、母材の熱伝導率を高いものと成すことができない恐
れがあり、その添加量が焼成後の母材に対し50質量%
を超えると、熱伝導率の高い炭素繊維の量が少なくな
り、前記基体1に載置される光半導体素子4が多量の熱
を発した際に前記熱を前記基体1の光半導体素子4搭載
平面方向に素早く広がらせることができず、その結果、
前記基体1を介して外部に効率よく確実に放散させるこ
とが困難になる恐れがあることから、その添加量は焼成
後の母材に対し15質量%乃至50質量%の範囲が好適
に使用される。
Further, the addition amount of the powder such as solid pitch and coke is preferably in the range of 15% by mass to 50% by mass with respect to the calcined base material. When the addition amount of the powder such as solid pitch or coke is less than 15% by mass with respect to the base material after firing, the amount of the powder is too small to ensure the bonding between the carbon fibers, and the inside of the base material after firing There is a possibility that the heat conductivity of the base material cannot be made high and the amount of addition is 50% by mass relative to the base material after firing.
When it exceeds, the amount of carbon fibers having high thermal conductivity decreases, and when the optical semiconductor element 4 mounted on the base 1 emits a large amount of heat, the heat is mounted on the optical semiconductor element 4 of the base 1. It is not possible to spread it in the plane direction quickly, and as a result,
Since it may be difficult to efficiently and surely diffuse it to the outside through the substrate 1, the addition amount thereof is preferably in the range of 15% by mass to 50% by mass with respect to the base material after firing. It

【0025】また前記基体1は三次元に編んだ母材に銅
を含浸させて形成することが重要である。前記炭素繊維
を三次元に編んだ母材に銅を含浸させたことから、母材
に存在する空隙が銅によって充填され、基体1自身の気
密性が確実なものとなり、該基体1を用いて作製される
容器5の光半導体素子4を収納する空所の気密封止が常
に完全となり、光半導体素子4を安定かつ正常に作動さ
せることが可能となる。
It is important that the substrate 1 is formed by impregnating a three-dimensionally knitted base material with copper. Since the base material in which the carbon fiber is three-dimensionally knitted is impregnated with copper, the voids existing in the base material are filled with copper, and the airtightness of the base body 1 itself is ensured. The space in which the optical semiconductor element 4 of the container 5 to be manufactured is housed is completely sealed, and the optical semiconductor element 4 can be stably and normally operated.

【0026】なお、前記基体1の銅の含浸量は金属枠体
2の熱膨張係数との整合性をとるため、基体1と金属枠
体2の熱膨張係数差を2ppm/℃以下となるようにす
るとよく、基体1と金属枠体2の熱膨張係数差が2pp
m/℃を超えると容器5に収容した光半導体素子4が熱
を発し、該熱が両者に作用した場合、両者の間に両者の
熱膨張係数の差に起因して発生する内在応力が大きくな
り、該内在応力により金属枠体2が歪み、その結果、光
半導体素子4と光ファイバー部材8との中心軸のズレが
発生し光信号の伝送効率が低下し、更には該内在応力に
より両者の接合部にクラックや割れ等が発生し、容器5
の気密封止を不完全なものとなし、内部に収容する光半
導体素子4を信頼性よく正常に作動させることができな
くなる危険性があることから両者の熱膨張係数差は2p
pm/℃以下とするとよい。
Since the amount of copper impregnated in the base 1 is consistent with the coefficient of thermal expansion of the metal frame 2, the difference in coefficient of thermal expansion between the base 1 and the metal frame 2 should be 2 ppm / ° C. or less. The thermal expansion coefficient difference between the base 1 and the metal frame 2 is 2 pp.
When the temperature exceeds m / ° C., the optical semiconductor element 4 housed in the container 5 emits heat, and when the heat acts on both, the intrinsic stress generated between them due to the difference in thermal expansion coefficient between them is large. Then, the metal frame 2 is distorted by the intrinsic stress, and as a result, the center axis of the optical semiconductor element 4 and the optical fiber member 8 is deviated to reduce the transmission efficiency of the optical signal. Cracks or fractures occur at the joints, and the container 5
The thermal expansion coefficient of the two is 2 p because there is a risk that the optical semiconductor element 4 housed inside will not be operated properly and reliably due to incomplete hermetic sealing.
It is good to set it as pm / ° C. or less.

【0027】前記基体1と金属枠体2の熱膨張係数差を
2ppm/℃以下となすには、基体1の母材への銅の含
浸量を適宜調整することによって行われる。
The difference in the coefficient of thermal expansion between the substrate 1 and the metal frame 2 is set to 2 ppm / ° C. or less by appropriately adjusting the amount of copper impregnated into the base material of the substrate 1.

【0028】更に前記基体1の炭素繊維はその径を1μ
m乃至100μmとすると、炭素繊維を介しての熱の伝
達をより確実なものとして半導体素子の作動時に発する
熱を良好に吸収するとともに大気中に良好に放散させ、
光半導体素子4を常に適温とし光半導体素子4に熱破壊
が発生したり、特性に熱劣化が発生したりする危険性を
より効果的に防止することができる。
Further, the carbon fiber of the substrate 1 has a diameter of 1 μm.
If it is m to 100 μm, the heat transfer through the carbon fiber is more reliable, and the heat generated during the operation of the semiconductor element is well absorbed and is well dissipated in the atmosphere,
It is possible to more effectively prevent the risk of thermal destruction of the optical semiconductor element 4 and thermal deterioration of the characteristics by keeping the optical semiconductor element 4 at an appropriate temperature.

【0029】なお、前記基体1の炭素繊維の径は1μm
未満となると炭素繊維の強度が弱く三次元構造に織る
際、炭素繊維が断線をおこしやすく、その結果、炭素繊
維を良好に三次元構造に織ることができなくなる恐れが
あり、その径が100μm以上となると、炭素繊維を三
次元に編む際、炭素繊維がたわみにくくなり、その結
果、炭素繊維を三次元構造に織ることが困難となる恐れ
があることから、炭素繊維の径は1μm乃至100μm
の範囲が好適に使用される。
The diameter of the carbon fiber of the substrate 1 is 1 μm.
When it is less than 100%, the strength of the carbon fiber is weak and the carbon fiber is liable to be broken when woven into a three-dimensional structure, and as a result, the carbon fiber may not be woven into a good three-dimensional structure, and the diameter thereof is 100 μm or more. Therefore, when the carbon fiber is knitted in three dimensions, the carbon fiber is less likely to bend, and as a result, it may be difficult to weave the carbon fiber into a three-dimensional structure. Therefore, the diameter of the carbon fiber is 1 μm to 100 μm.
The range of is preferably used.

【0030】また更に、三次元に編んだ母材に銅を含浸
させて形成した前記基体1の銅に含有されるチタン、ジ
ルコニウム、ハフニウム、クロムの少なくとも1種を銅
量に対して0.2質量%乃至10質量%含有すると、炭
素繊維を三次元に編んだ母材に銅を含浸させて基体1を
製作する際、チタン、ジルコニウム、ハフニウム、クロ
ム等は銅の活性を向上させることから、炭素繊維と銅と
の濡れ性が向上し、炭素繊維を三次元に編んだ母材へ充
填された銅の炭素繊維への接着をより強固で確実なもの
となし、基体1自身の気密性がより確実なものとなるこ
とから、該基体1を用いて作製される容器5を収納する
空所の気密封止がより完全となり、光半導体素子4を安
定かつ正常に作動させることができる。
Furthermore, at least one of titanium, zirconium, hafnium, and chromium contained in the copper of the substrate 1 formed by impregnating a three-dimensionally knitted base material with copper is 0.2 with respect to the amount of copper. When contained in an amount of 10% by mass to 10% by mass, titanium, zirconium, hafnium, chromium, etc. improve the activity of copper when the base material produced by three-dimensionally knitting carbon fibers is impregnated with copper and the substrate 1 is manufactured. The wettability between the carbon fiber and the copper is improved, and the adhesion of the copper filled in the base material obtained by three-dimensionally knitting the carbon fiber to the carbon fiber is made firmer and more reliable, and the airtightness of the substrate 1 itself is improved. Since it becomes more reliable, the airtight sealing of the space for housing the container 5 manufactured by using the base 1 becomes more complete, and the optical semiconductor element 4 can be operated stably and normally.

【0031】なお、前記基体1の銅に含有されるチタ
ン、ジルコニウム、ハフニウム、クロムの少なくとも1
種はその量が銅に対し0.2質量%未満となると炭素繊
維を三次元に編んだ母材の炭素繊維と銅との濡れ性を充
分に活性させることができなくなり基体1自身の気密性
が低下する恐れがあり、その量が銅に対し10質量%を
超えると熱伝導率の低いチタン、ジルコニウム、ハフニ
ウム、クロム等が銅中に多く存在することとなり銅の熱
伝導率が低下し光半導体素子4から発生する熱を基体1
に効率良く伝達し難くなる恐れがあることから、前記基
体1の銅に含有されるチタン、ジルコニウム、ハフニウ
ム、クロムの少なくとも1種はその量が銅に対し0.2
質量%乃至10質量%の範囲がより好適に使用される。
At least one of titanium, zirconium, hafnium and chromium contained in the copper of the substrate 1 is used.
When the amount of the seeds is less than 0.2% by mass relative to copper, the wettability between the carbon fibers of the matrix, which is a three-dimensionally knitted carbon fiber, and the copper cannot be sufficiently activated, and the airtightness of the substrate 1 itself is lost. May decrease, and if the amount exceeds 10% by mass relative to copper, titanium, zirconium, hafnium, chromium, etc., which have low thermal conductivity, are present in the copper in large amounts, and the thermal conductivity of copper decreases, resulting in light Heat generated from the semiconductor element 4 is applied to the substrate 1
Therefore, the amount of at least one of titanium, zirconium, hafnium, and chromium contained in the copper of the substrate 1 is 0.2 to copper.
The range of 10% by mass to 10% by mass is more preferably used.

【0032】前記基体1の上面外周部には該基体1の上
面に設けた光半導体素子4が載置される載置部1aを囲
繞するようにして金属枠体2がロウ材やガラス、樹脂等
の接着剤を介して取着されており、基体1と金属枠体2
とで光半導体素子4を収容するための空所が内部に形成
される。
The metal frame 2 is provided on the outer peripheral portion of the upper surface of the base 1 so as to surround the mounting portion 1a on which the optical semiconductor element 4 provided on the upper surface of the base 1 is mounted. Attached via an adhesive such as
A space for accommodating the optical semiconductor element 4 is formed therein.

【0033】前記基体1に取着される金属枠体2は鉄−
ニッケル−コバルト合金、鉄−ニッケル合金等の金属材
料から成り、例えば、鉄−ニッケル−コバルト合金等の
インゴット(塊)をプレス加工により枠状とすることに
よって形成され、基体1への取着は基体1上面と金属枠
体2の下面とを銀ロウ材を介しロウ付けすることによっ
て行われている。
The metal frame 2 attached to the base 1 is made of iron-
It is made of a metal material such as a nickel-cobalt alloy or an iron-nickel alloy, and is formed, for example, by forming an ingot (lump) of an iron-nickel-cobalt alloy into a frame shape by pressing, and is attached to the base body 1. This is performed by brazing the upper surface of the base body 1 and the lower surface of the metal frame body 2 with a silver brazing material.

【0034】前記金属枠体2は、熱膨張係数が約10p
pm/℃(室温〜800℃)である鉄−ニッケル−コバ
ルト合金から成る場合、前記基体1への銅の含浸量を5
5質量%乃至90質量%の範囲とすると、鉄−ニッケル
−コバルト合金から成る金属枠体2と基体1との熱膨張
差を2ppm/℃とすることができる。
The metal frame 2 has a thermal expansion coefficient of about 10 p.
In the case of an iron-nickel-cobalt alloy having a pm / ° C. (room temperature to 800 ° C.), the amount of copper impregnated into the base 1 is 5
When the amount is in the range of 5% by mass to 90% by mass, the difference in thermal expansion between the metal frame 2 made of an iron-nickel-cobalt alloy and the substrate 1 can be 2 ppm / ° C.

【0035】前記金属枠体2が鉄−ニッケル−コバルト
合金から成る場合、基体1への銅の含浸量が55質量%
未満の場合は、基体1の熱膨張係数が8ppm/℃より
低くなり鉄−ニッケル−コバルト合金から成る金属枠体
2との熱膨張率差が2ppm/℃より大きくなることか
ら、またその含浸量が90質量%を超えた場合は、基体
1の熱膨張係数が12ppm/℃を超えて鉄−ニッケル
−コバルト合金から成る金属枠体2との熱膨張率差が2
ppm/℃より大きくなることから、金属枠体2が鉄−
ニッケル−コバルト合金から成る場合は前記基体1への
銅の含浸量は55質量%乃至90質量%の範囲が好適に
使用される。
When the metal frame 2 is made of an iron-nickel-cobalt alloy, the amount of copper impregnated in the base 1 is 55% by mass.
When it is less than 1, the coefficient of thermal expansion of the substrate 1 is lower than 8 ppm / ° C, and the difference in coefficient of thermal expansion from the metal frame body 2 made of an iron-nickel-cobalt alloy is larger than 2 ppm / ° C. Is more than 90% by mass, the coefficient of thermal expansion of the substrate 1 exceeds 12 ppm / ° C. and the difference in coefficient of thermal expansion from the metal frame body 2 made of an iron-nickel-cobalt alloy is 2
Since it is higher than ppm / ° C, the metal frame 2 is made of iron-
When the nickel-cobalt alloy is used, the amount of copper impregnated into the substrate 1 is preferably in the range of 55% by mass to 90% by mass.

【0036】また前記金属枠体2は、熱膨張係数が約1
2ppm/℃(室温〜800℃)である鉄−ニッケル合
金から成る場合、前記基体1への銅の含浸量を65質量
%乃至92質量%の範囲とすると、鉄−ニッケル合金か
らなる金属枠体2と基体1との熱膨張差を2ppm/℃
とすることができる。
The metal frame 2 has a coefficient of thermal expansion of about 1.
When it is composed of an iron-nickel alloy having a concentration of 2 ppm / ° C. (room temperature to 800 ° C.), if the amount of copper impregnated into the substrate 1 is in the range of 65% by mass to 92% by mass, a metal frame composed of the iron-nickel alloy. 2 and the base 1 have a thermal expansion difference of 2 ppm / ° C.
Can be

【0037】前記金属枠体2が鉄−ニッケル合金から成
る場合、基体1への銅の含浸量が65質量%未満の場合
は、基体1の熱膨張率が10ppm/℃以下となり、鉄
−ニッケル合金との熱膨張率差が2ppm/℃より大き
くなることから、またその含浸量が92質量%を超えた
場合は、基体1の熱膨張率が14ppm/℃以上とな
り、鉄−ニッケル合金との熱膨張率差が2ppm/℃よ
り大きくなることから、金属枠体2が鉄−ニッケル合金
からなる場合は前記基体1への銅の含浸量は65質量%
乃至92質量%の範囲が好適に使用される。
When the metal frame 2 is made of an iron-nickel alloy and the amount of copper impregnated in the substrate 1 is less than 65% by mass, the coefficient of thermal expansion of the substrate 1 is 10 ppm / ° C. or less, and the iron-nickel is Since the difference in the coefficient of thermal expansion from the alloy is greater than 2 ppm / ° C., and when the impregnated amount exceeds 92 mass%, the coefficient of thermal expansion of the substrate 1 becomes 14 ppm / ° C. or more, and the difference with the iron-nickel alloy. Since the difference in coefficient of thermal expansion is greater than 2 ppm / ° C., when the metal frame body 2 is made of an iron-nickel alloy, the impregnated amount of copper into the base body 1 is 65% by mass.
The range of from 92 to 92% by mass is preferably used.

【0038】前記金属枠体2の側部に形成されている貫
通孔2aは固定部材6を枠体2に取着するための取着孔
として作用し、金属枠体2の側部に従来周知のドリル孔
あけ加工を施すことによって所定形状に形成される。
The through hole 2a formed in the side portion of the metal frame body 2 acts as an attachment hole for attaching the fixing member 6 to the frame body 2, and the side portion of the metal frame body 2 is conventionally known. It is formed into a predetermined shape by performing a drilling process.

【0039】前記金属枠体2の貫通孔2aに取着されて
いる固定部材6は光ファイバー部材8を金属枠体2に固
定する際の下地固定部材として作用するとともに光半導
体素子4が励起した光を光ファイバー部材8に伝達させ
る作用をなし、その内側の一端には、例えば、透光性部
材7が取着され、また外側の一端には光ファイバー部材
8が取着される。
The fixing member 6 attached to the through hole 2a of the metal frame body 2 acts as a base fixing member when fixing the optical fiber member 8 to the metal frame body 2 and the light excited by the optical semiconductor element 4 is excited. Is transmitted to the optical fiber member 8. The transparent member 7 is attached to one end on the inner side of the optical fiber member 8 and the optical fiber member 8 is attached to one end on the outer side thereof.

【0040】前記筒状の固定部材6は鉄−ニッケル−コ
バルト合金や鉄−ニッケル合金等の金属材料から成り、
例えば、鉄−ニッケル−コバルト合金等のインゴット
(塊)をプレス加工により筒状とすることにより形成さ
れる。
The tubular fixing member 6 is made of a metal material such as iron-nickel-cobalt alloy or iron-nickel alloy,
For example, it is formed by pressing an ingot (lump) of iron-nickel-cobalt alloy or the like into a cylindrical shape by pressing.

【0041】また前記固定部材6はその内側の一端に、
例えば、透光性部材7が取着されており、該透光性部材
7は固定部材6の内部空間を塞ぎ、基体1と金属枠体2
と蓋部材3とから成る容器5の気密封止を保持させると
ともに固定部材6の内部空間を伝達する光半導体素子4
の励起した光をそのまま固定部材6に取着した光ファイ
バー部材8に伝達させる作用をなす。
Further, the fixing member 6 has one end on the inner side thereof,
For example, a translucent member 7 is attached, and the translucent member 7 closes the internal space of the fixing member 6, and the base 1 and the metal frame 2
An optical semiconductor element 4 which holds an airtight seal of a container 5 consisting of a cover member 3 and a lid member 3 and transmits the internal space of the fixing member 6.
The excited light is transmitted as it is to the optical fiber member 8 attached to the fixing member 6.

【0042】前記透光性部材7は例えば、酸化珪素、酸
化鉛を主成分とした鉛系及びホウ酸、ケイ砂を主成分と
したホウケイ酸系の非晶質ガラスで形成されており、該
非晶質ガラスは結晶軸が存在しないことから光半導体素
子4の励起する光を透光性部材7を通過させて光ファイ
バー部材8に授受させる場合、光半導体素子4の励起し
た光は透光性部材7で複屈折を起こすことはなくそのま
ま光ファイバー部材8に授受されることとなり、その結
果、光半導体素子4が励起した光の光ファイバー部材8
への授受が高効率となって光信号の伝送効率を高いもの
となすことができる。
The translucent member 7 is formed of, for example, a lead-based glass containing silicon oxide or lead oxide as a main component and a borosilicate-based amorphous glass containing boric acid or silica sand as a main component. Since crystalline glass does not have a crystal axis, when the light excited by the optical semiconductor element 4 is transmitted to and received from the optical fiber member 8 through the transparent member 7, the light excited by the optical semiconductor element 4 is transmitted by the transparent member. No birefringence occurs in 7 and the light is transmitted and received as it is to the optical fiber member 8. As a result, the optical fiber member 8 for the light excited by the optical semiconductor element 4 is transmitted.
The efficiency of transmission and reception to and from the device can be increased, and the transmission efficiency of optical signals can be increased.

【0043】なお、前記透光性部材7の固定部材6への
取着は、例えば、透光性部材7の外周部に予め金属層を
被着させておき、該金属層と固定部材6とを金−錫合金
等のロウ材を介しロウ付けすることによって行われる。
The translucent member 7 is attached to the fixing member 6 by, for example, depositing a metal layer on the outer peripheral portion of the translucent member 7 in advance, and attaching the metal layer and the fixing member 6 to each other. Is brazed through a brazing material such as a gold-tin alloy.

【0044】更に前記金属枠体2はその側部に切欠部2
bが形成されており、該切欠部2bにはセラミック端子
体9が挿着されている。
Further, the metal frame 2 has a notch 2 on its side.
b is formed, and the ceramic terminal body 9 is inserted into the cutout portion 2b.

【0045】前記セラミック端子体9は電気絶縁材料か
らなるセラミックス絶縁体10と複数個の配線層11か
らなり、配線層11を金属枠体2に対して電気的絶縁を
もって金属枠体2の内側から外側にかけて配設する作用
をなし、セラミックス絶縁体10の側面に予め金属層を
被着させておくとともに該金属層を金属枠体2の切欠部
2b内壁面に銀ロウ等のロウ材を介し取着することによ
って金属枠体2の切欠部2bに挿着される。
The ceramic terminal body 9 comprises a ceramic insulator 10 made of an electrically insulating material and a plurality of wiring layers 11. The wiring layer 11 is electrically insulated from the metal frame body 2 from the inside of the metal frame body 2. The metal layer is applied to the outside, and a metal layer is pre-deposited on the side surface of the ceramic insulator 10, and the metal layer is attached to the inner wall surface of the cutout portion 2b of the metal frame body 2 through a brazing material such as silver solder. By being attached, it is inserted into the cutout portion 2b of the metal frame body 2.

【0046】前記セラミック端子体9のセラミックス絶
縁体10は酸化アルミニウム質焼結体やガラスセラミク
焼結体等から成り、例えば、酸化アルミニウム質焼結体
から成る場合には酸化アルミニウム、酸化珪素、酸化マ
グネシウム、酸化カルシウム等の原料粉末に適当な有機
バインダー、可塑剤、溶剤を添加混合して泥漿状となす
とともに該泥漿物を従来周知のドクターブレード法やカ
レンダーロール法を採用することによってセラミックグ
リーンシート(セラミック生シート)を形成し、次に前
記セラミックグリーンシートに適当な打ち抜き加工を施
し、所定形状となすとともに必要に応じて複数枚を積層
して成形体となし、しかる後、これを1600℃の温度
で焼成することによって製作される。
The ceramic insulator 10 of the ceramic terminal body 9 is made of an aluminum oxide sintered body or a glass ceramic sintered body. For example, when it is made of an aluminum oxide sintered body, aluminum oxide, silicon oxide, magnesium oxide. , A suitable organic binder, a plasticizer, and a solvent are added to a raw material powder such as calcium oxide to form a slurry, and the slurry is made into a ceramic green sheet by employing a conventionally known doctor blade method or calender roll method ( Ceramic green sheet) is formed, and then the ceramic green sheet is appropriately punched to form a predetermined shape and, if necessary, a plurality of sheets are laminated to form a molded body. It is manufactured by firing at a temperature.

【0047】また前記セラミック端子体9には金属枠体
2の内側から外側にかけて導出する複数個の配線層11
が埋設されており、該配線層11の金属枠体2の内側に
位置する領域には光半導体素子4の各電極がボンディン
グワイヤ12を介して電気的に接続され、また金属枠体
2の外側に位置する領域には外部電気回路と接続される
外部リード端子13が銀ロウ等のロウ材を介してロウ付
け取着されている。
A plurality of wiring layers 11 extending from the inside to the outside of the metal frame body 2 are provided on the ceramic terminal body 9.
Are embedded in the wiring layer 11, and each electrode of the optical semiconductor element 4 is electrically connected to the region of the wiring layer 11 located inside the metal frame body 2 through the bonding wire 12. External lead terminals 13 connected to an external electric circuit are brazed and attached to a region located at the position of 1 through a brazing material such as silver brazing.

【0048】前記配線層11は光半導体素子4の各電極
を外部電気回路に接続する際の導電路として作用し、タ
ングステン、モリブデン、マンガン、銅、銀等の金属に
より形成されている。
The wiring layer 11 acts as a conductive path when connecting each electrode of the optical semiconductor element 4 to an external electric circuit, and is made of a metal such as tungsten, molybdenum, manganese, copper or silver.

【0049】前記配線層11はタングステン、モリブデ
ン、マンガン、銅、銀等の金属粉末に適当な有機バイン
ダー、溶剤等を添加混合して得られた金属ペーストをセ
ラミックス絶縁体10となるセラミックグリーンシート
に予め従来周知のスクリーン印刷法等の印刷法を用いる
ことにより所定パターンに印刷塗布しておくことによっ
てセラミックス絶縁体10に形成される。
For the wiring layer 11, a metal paste obtained by adding and mixing an appropriate organic binder, a solvent, etc. to a metal powder of tungsten, molybdenum, manganese, copper, silver or the like is used as a ceramic green sheet for the ceramic insulator 10. The ceramic insulator 10 is formed by printing and applying a predetermined pattern in advance by using a conventionally known printing method such as a screen printing method.

【0050】なお前記配線層11はその露出する表面に
ニッケル、金等の耐蝕性に優れ、かつロウ材との濡れ性
に優れる金属を1μm〜20μmの厚みにメッキ法によ
り被着させておくと、配線層11の酸化腐蝕を有効に防
止することができるとともに配線層11への外部リード
端子13のロウ付けを強固となすことができる。従っ
て、前記配線層11はその露出する表面にニッケル、金
等の耐蝕性に優れ、かつロウ材との濡れ性に優れる金属
を1μm〜20μmの厚みに被着させておくことが好ま
しい。
It is to be noted that the wiring layer 11 is formed by depositing a metal such as nickel or gold, which has excellent corrosion resistance and wettability with a brazing material, to a thickness of 1 to 20 μm by a plating method. The oxidative corrosion of the wiring layer 11 can be effectively prevented and the brazing of the external lead terminal 13 to the wiring layer 11 can be strengthened. Therefore, it is preferable that the exposed surface of the wiring layer 11 is coated with a metal such as nickel and gold having excellent corrosion resistance and wettability with the brazing material in a thickness of 1 μm to 20 μm.

【0051】また前記配線層11には外部リード端子1
3が銀ロウ等のロウ材を介してロウ付け取着されてお
り、該外部リード端子13は容器5内部に収容する光半
導体素子4の各電極を外部電気回路に電気的に接続する
作用をなし、外部リード端子13を外部電気回路に接続
することによって容器5内部に収容される光半導体素子
4は配線層11および外部リード端子13を介して外部
電気回路に電気的に接続されることとなる。
Also, the external lead terminal 1 is formed on the wiring layer 11.
3 is brazed and attached via a brazing material such as silver brazing, and the external lead terminals 13 serve to electrically connect the respective electrodes of the optical semiconductor element 4 housed inside the container 5 to an external electric circuit. None, the optical semiconductor element 4 housed inside the container 5 by connecting the external lead terminal 13 to the external electric circuit is electrically connected to the external electric circuit via the wiring layer 11 and the external lead terminal 13. Become.

【0052】前記外部リード端子13は鉄−ニッケル−
コバルト合金や鉄−ニッケル合金等の金属材料から成
り、例えば、鉄−ニッケル−コバルト合金等の金属から
成るインゴット(塊)に圧延加工法や打ち抜き加工法
等、従来周知の金属加工法を施すことによって所定形状
に形成される。
The external lead terminal 13 is made of iron-nickel-
Applying a well-known metal processing method such as a rolling method or a punching method to an ingot (lump) made of a metal material such as a cobalt alloy or an iron-nickel alloy, for example, a metal such as an iron-nickel-cobalt alloy. Is formed into a predetermined shape.

【0053】更に前記枠体2はその上面に、例えば、鉄
−ニッケル−コバルト合金や鉄−ニッケル合金等の金属
材料から成る蓋部材3が接合され、これによって基体1
と枠体2と蓋部材3とからなる容器5の内部に光半導体
素子4が気密に封止されることとなる。
Further, a lid member 3 made of a metal material such as an iron-nickel-cobalt alloy or an iron-nickel alloy is joined to the upper surface of the frame body 2, whereby the base body 1 is formed.
Thus, the optical semiconductor element 4 is hermetically sealed inside the container 5 including the frame body 2 and the lid member 3.

【0054】前記蓋部材3の枠体2上面への接合は、例
えば、シームウェルド法等の溶接によって行われる。
The lid member 3 is joined to the upper surface of the frame body 2 by welding such as the seam weld method.

【0055】なお、本発明は上述の実施例に限定される
ものではなく、本発明の要旨を逸脱しない範囲であれば
種々の変更は可能である。
The present invention is not limited to the above-mentioned embodiments, and various modifications can be made without departing from the gist of the present invention.

【0056】[0056]

【発明の効果】本発明の光半導体素子収納用パッケージ
によれば、基体を炭素繊維を三次元に編んだ母材で形成
したことから、基体に載置される光半導体素子が多量の
熱を発したとしても、基体は約400W/m・K以上と
熱伝導率の高い炭素繊維が3次元的に配置されているた
め、前記熱を基体の光半導体素子搭載平面方向に素早く
広がらせるとともに基体を介して外部に効率よく確実に
放散させることが可能となる。
According to the package for accommodating an optical semiconductor element of the present invention, since the base body is formed of the base material in which the carbon fiber is three-dimensionally knitted, the optical semiconductor element mounted on the base body generates a large amount of heat. Even if the heat is emitted, the base has three-dimensionally arranged carbon fibers having a high thermal conductivity of about 400 W / m · K or more, so that the heat can be quickly spread in the optical semiconductor element mounting plane direction of the base and the base It is possible to efficiently and surely disperse it to the outside via the.

【0057】また本発明の光半導体素子収納用パッケー
ジによれば、基体を炭素繊維を三次元に編んだ母材に銅
を含浸させて形成したことから、炭素繊維を三次元に編
んだ母材に存在する空隙が銅により充填され、基体自身
の気密性が確実なものとなり、該基体を用いて作製され
る光半導体素子収納用パッケージの光半導体素子を収容
する空所の気密封止が常に完全となり、光半導体素子を
安定かつ正常に作動させることが可能となる。
Further, according to the package for accommodating an optical semiconductor element of the present invention, since the base is formed by impregnating copper into a base material in which carbon fibers are three-dimensionally knitted, the base material in which carbon fibers are three-dimensionally knitted is used. Is filled with copper, the airtightness of the substrate itself is ensured, and the airtight sealing of the space for housing the optical semiconductor element of the package for storing optical semiconductor elements manufactured using the substrate is always performed. It becomes complete, and it becomes possible to operate the optical semiconductor element stably and normally.

【0058】更に本発明の光半導体素子収納用パッケー
ジによれば、前記基体と前記金属枠体の熱膨張係数差を
2ppm/℃以下としたことから、光半導体素子収納用
パッケージに収容した光半導体素子が熱を発し、該熱が
両者に作用したとしても、両者の間に熱膨張係数の差に
起因する大きな内在応力が発生することはないため、金
属枠体の歪みがほとんど生じることなく、その結果、光
半導体素子と光ファイバー部材との中心軸のズレが発生
せず光信号の伝送効率を維持し、光半導体素子収納用パ
ッケージの気密封止をより完全なものとなし、内部に収
容する光半導体素子を信頼性よく正常に作動させること
ができる。
Further, according to the package for storing an optical semiconductor element of the present invention, the difference in coefficient of thermal expansion between the base body and the metal frame is set to 2 ppm / ° C. or less. Even if the element emits heat and the heat acts on both, since a large internal stress due to the difference in the coefficient of thermal expansion does not occur between the two, almost no distortion of the metal frame occurs, As a result, the center axis of the optical semiconductor element and the optical fiber member is not displaced, the optical signal transmission efficiency is maintained, and the optical semiconductor element housing package is hermetically sealed and housed inside. The optical semiconductor element can be operated normally with high reliability.

【0059】また更に本発明の光半導体素子収納用パッ
ケージによれば、前記基体の炭素繊維径を1μm乃至1
00μmとしたことから、炭素繊維を介しての熱の伝達
を確実なものとして光半導体素子の作動時に発する熱を
良好に吸収するとともに大気中に良好に放散させ、光半
導体素子を常に適温とし光半導体素子に熱破壊が発生し
たり、特性に熱劣化が発生したりするのを有効に防止す
ることができる。
Further, according to the optical semiconductor element accommodating package of the present invention, the carbon fiber diameter of the substrate is 1 μm to 1 μm.
Since it is set to 00 μm, the heat transmitted through the carbon fiber is ensured, and the heat generated during the operation of the optical semiconductor element is well absorbed and is well dissipated in the atmosphere, and the optical semiconductor element is always kept at an appropriate temperature. It is possible to effectively prevent the semiconductor element from being thermally destroyed or being thermally deteriorated.

【0060】更にまた本発明の光半導体素子収納用パッ
ケージによれば、前期基体の銅にチタン、ジルコニウ
ム、ハフニウム、クロムの少なくとも1種を0.2質量
%乃至10質量%含有させたことから、炭素繊維を三次
元に編んだ母材に銅を含浸させる際、母材の炭素繊維と
銅との濡れ性が向上し、炭素繊維を三次元に編んだ母材
への銅の充填がより強固で確実なものとなり、基体自身
の気密性をより確実なものとし、該基体を用いて作製さ
れる光半導体素子収納用パッケージの半導体素子を収納
する空所の気密封止が常に完全となり、光半導体素子を
安定かつ正常に作動させることができる。
Furthermore, according to the optical semiconductor device accommodating package of the present invention, since the copper of the previous base body contains 0.2% by mass to 10% by mass of at least one of titanium, zirconium, hafnium, and chromium, When copper is impregnated into the base material in which the carbon fiber is three-dimensionally woven, the wettability between the base material carbon fiber and copper is improved, and the filling of the base material in which the carbon fiber is three-dimensionally woven is more robust. In addition, the airtightness of the base itself is made more reliable, and the airtight sealing of the cavity for housing the semiconductor element of the package for optical semiconductor element storage manufactured using the base is always perfect, and The semiconductor element can be operated stably and normally.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光半導体素子収納用パッケージの一実
施例を示す断面図である。
FIG. 1 is a cross-sectional view showing an embodiment of a package for storing an optical semiconductor element of the present invention.

【図2】本発明の光半導体素子収納用パッケージの一実
施例を示す平面図である。
FIG. 2 is a plan view showing an embodiment of an optical semiconductor element housing package of the present invention.

【符号の説明】[Explanation of symbols]

1・・・・・基体 1a・・・・載置部 2・・・・・金属枠体 2a・・・・貫通孔 2b・・・・切欠部 3・・・・・蓋部材 4・・・・・光半導体素子 5・・・・・容器 6・・・・・固定部材 7・・・・・透光性部材 8・・・・・光ファイバー部材 9・・・・・セラミック端子体 10・・・・セラミック絶縁体 11・・・・配線層 12・・・・ボンディングワイヤ 13・・・・外部リード端子 1 ... Base 1a ... ・ Mounting part 2 ... Metal frame 2a ... through-hole 2b ... ・ Notch 3 ... Lid member 4 ... Optical semiconductor device 5 ... Container 6 ... Fixing member 7: Translucent member 8: Optical fiber member 9: Ceramic terminal body 10 ... Ceramic insulator 11 ... Wiring layer 12 ... Bonding wire 13 ... External lead terminals

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】上面に光半導体素子が載置される載置部を
有する基体と、前記基体上に光半導体素子載置部を囲繞
するようにして取着される金属枠体と、前記金属枠体上
に取着され、金属枠体の内側を気密に封止する蓋部材と
から成る光半導体素子収納用パッケージであって、前記
基体は炭素繊維を三次元に編んだ母材に銅を含浸させて
形成したことを特徴とする光半導体素子収納用パッケー
ジ。
1. A base having a mounting portion on which an optical semiconductor element is mounted, a metal frame attached to the base so as to surround the optical semiconductor element mounting portion, and the metal. A package for storing an optical semiconductor element, which comprises a lid member that is attached on a frame body and hermetically seals the inside of a metal frame body, wherein the base body is a base material formed by three-dimensionally knitting carbon fibers and copper. A package for housing an optical semiconductor element, which is formed by impregnation.
【請求項2】前記基体と前記金属枠体の熱膨張係数差が
2ppm/℃以下であることを特徴とする請求項1記載
の光半導体素子収納用パッケージ。
2. A package for accommodating an optical semiconductor element according to claim 1, wherein a difference in thermal expansion coefficient between the base and the metal frame is 2 ppm / ° C. or less.
【請求項3】前記基体の炭素繊維径は1μm乃至100
μmであることを特徴とする請求項1に記載の光半導体
素子収納用パッケージ。
3. The carbon fiber diameter of the substrate is 1 μm to 100 μm.
The package for storing an optical semiconductor element according to claim 1, wherein the package is μm.
【請求項4】前記基体の銅にチタン、ジルコニウム、ハ
フニウム、クロムの少なくとも1種を0.2質量%乃至
10質量%含有させたことを特徴とする請求項1に記載
の光半導体素子収納用パッケージ。
4. The optical semiconductor device accommodating device according to claim 1, wherein the base copper contains 0.2% by mass to 10% by mass of at least one of titanium, zirconium, hafnium and chromium. package.
JP2002110869A 2002-04-12 2002-04-12 Package for housing optical semiconductor element Pending JP2003304027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002110869A JP2003304027A (en) 2002-04-12 2002-04-12 Package for housing optical semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002110869A JP2003304027A (en) 2002-04-12 2002-04-12 Package for housing optical semiconductor element

Publications (1)

Publication Number Publication Date
JP2003304027A true JP2003304027A (en) 2003-10-24

Family

ID=29393872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002110869A Pending JP2003304027A (en) 2002-04-12 2002-04-12 Package for housing optical semiconductor element

Country Status (1)

Country Link
JP (1) JP2003304027A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005212017A (en) * 2004-01-28 2005-08-11 Kyocera Corp Electronic component sealing substrate, multiple molding electronic component sealing substrate, and electronic device manufacturing method
JP2006086391A (en) * 2004-09-17 2006-03-30 Nec Schott Components Corp Led package
JP2006296865A (en) * 2005-04-22 2006-11-02 Hamamatsu Photonics Kk Photodetection unit, photodetector, and x-ray tomographic imaging apparatus
JP2007103685A (en) * 2005-10-05 2007-04-19 Nec Schott Components Corp Laser diode stem

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005212017A (en) * 2004-01-28 2005-08-11 Kyocera Corp Electronic component sealing substrate, multiple molding electronic component sealing substrate, and electronic device manufacturing method
JP2006086391A (en) * 2004-09-17 2006-03-30 Nec Schott Components Corp Led package
JP2006296865A (en) * 2005-04-22 2006-11-02 Hamamatsu Photonics Kk Photodetection unit, photodetector, and x-ray tomographic imaging apparatus
US8000437B2 (en) 2005-04-22 2011-08-16 Hamamatsu Photonics K.K. Photodetection unit, photodetector, and x-ray computed tomography apparatus
JP2007103685A (en) * 2005-10-05 2007-04-19 Nec Schott Components Corp Laser diode stem

Similar Documents

Publication Publication Date Title
US20040183172A1 (en) Package for housing semiconductor chip, and semiconductor device
JP2003304027A (en) Package for housing optical semiconductor element
JP2784131B2 (en) Package for storing optical semiconductor elements
JP3987649B2 (en) Package for storing semiconductor elements
JP2000183253A (en) Package for housing semiconductor element
JP3981256B2 (en) Optical semiconductor element storage package
JP2000277645A (en) Package for housing optical semiconductor element
JP2003037196A (en) Package for housing optical semiconductor element
JP3522132B2 (en) Optical semiconductor element storage package
JP2002190539A (en) Container for piezoelectric vibrator
JP2003101123A (en) Package for storage of optical semiconductor element
JP2003273266A (en) Package for housing semiconductor element
JP3457898B2 (en) Optical semiconductor element storage package
JP4360567B2 (en) Package for storing semiconductor elements
JPH07211822A (en) Package for accommodating semiconductor element
JP2003142762A (en) Package for housing optical semiconductor element
JP3659305B2 (en) Package for storing semiconductor elements
JP3709095B2 (en) Optical semiconductor element storage package
JP2003069132A (en) Package for accommodating optical semiconductor element
JP2003037321A (en) Package for accommodating optical semiconductor element
JP2003008130A (en) Package for housing optical semiconductor element
JP2001244358A (en) Package for storing electronic component
JP2000150746A (en) Package for housing optical semiconductor element
JP2003105476A (en) High-temperature heat conductive substrate
JP2000277644A (en) Manufacture of optical semiconductor element housing package

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071120