JP3522132B2 - Optical semiconductor element storage package - Google Patents
Optical semiconductor element storage packageInfo
- Publication number
- JP3522132B2 JP3522132B2 JP33465198A JP33465198A JP3522132B2 JP 3522132 B2 JP3522132 B2 JP 3522132B2 JP 33465198 A JP33465198 A JP 33465198A JP 33465198 A JP33465198 A JP 33465198A JP 3522132 B2 JP3522132 B2 JP 3522132B2
- Authority
- JP
- Japan
- Prior art keywords
- optical semiconductor
- semiconductor element
- mounting area
- layer
- driving
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/161—Cap
- H01L2924/1615—Shape
- H01L2924/16195—Flat cap [not enclosing an internal cavity]
Landscapes
- Optical Couplings Of Light Guides (AREA)
- Light Receiving Elements (AREA)
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は光半導体素子及び該
光半導体素子を駆動させる駆動素子を収容するための光
半導体素子収納用パッケージに関するものである。
【0002】
【従来の技術】従来、光半導体素子を収容するための光
半導体素子収納用パッケージは、一般に酸化アルミニウ
ム質焼結体から成り、上面中央部に光半導体素子及び該
光半導体素子を駆動させる駆動素子が載置される光半導
体素子載置領域及び駆動素子載置領域を有する基体と、
前記光半導体素子載置領域及び駆動素子載置領域を囲繞
するようにして基体上に取着され、側部に貫通孔を有す
る酸化アルミニウム質焼結体から成る枠体と、前記枠体
の貰通孔もしくは貫通孔周辺の枠体に取着され、内部に
光信号が伝達される空間を有する鉄ーニッケルーコバル
ト合金等の金属材料から成る筒状の固定部材と、前記筒
状の固定部材に融点が200〜400℃の金ー錫合金等
の低融点ロウ材を介して取着された固定部材の内部を塞
ぐ非晶質ガラス等から成る透光性部材と、前記基体の枠
体内側から外側にかけて被着導出されているタングステ
ンやモリブデン、マンガン等から成り、光半導体素子の
電極及び駆動素子の電極がボンディングワイヤ等の電気
的接続手段を介して接続される複数個の配線導体層と、
前記枠体の上面に取着され、光半導体素子及び駆動素子
を気密に封止する蓋部材とから構成されており、前記基
体の光半導体素子載置領域に光半導体素子を、また駆動
素子載置領域に駆動素子を各々、載置固定させるととも
に該光半導体素子及び駆動素子の各電極をボンデイング
ワイヤ等の電気的接続手段を介して所定の配線導体層に
電気的に接続し、しかる後、前記枠体の上面に蓋部材を
接合させ、基体と枠体と蓋部材とから成る容器内部に光
半導体素子及び駆動素子を気密に収容するとともに筒状
固定部材に光ファイバー部材を取着接続させることによ
って製品としての光半導体装置となる。
【0003】かかる光半導体装置は外部電気回路から供
給される駆動信号に基づいて駆動素子に所定の駆動を行
わせるとともに該駆動素子の駆動に伴って光半導体素子
に所定の光励起を起こさせ、該励起した光を透光性部材
を介し光ファイバー部材に授受させるとともに該光ファ
イバー部材の光ファイバー内を伝達させることによって
高速通信等に使用される。
【0004】
【発明が解決しようとする課題】しかしながら、この従
来の光半導体素子収納用パッケージにおいては、基体が
酸化アルミニウム質焼結体により形成されており、該酸
化アルミニウム質焼結体は熱伝導率が約15W/m・K
であることから、駆動素子に外部電気回路から駆動信号
を供給して所定の駆動を起こさせるとともに該駆動素子
の駆動に伴って光半導体素子に所定の光励起を起こさせ
た場合、駆動素子が作動時に多量の熱を発するとともに
その熱の一部が基体を介して光半導体素子に作用し、光
半導体素子を高温として光半導体素子に誤動作を起こさ
せるという欠点を有していた。
【0005】本発明は上記欠点に鑑み案出されたもの
で、その目的は駆動素子の作動時に発する熱が光半導体
素子に作用するのを有効に防止し、光半導体素子を常に
適温として光半導体素子を長期間にわたり正常、かつ安
定に作動させることができる光半導体素子収納用パッケ
ージを提供することにある。
【0006】
【課題を解決するための手段】本発明は、上面に光半導
体素子及び該光半導体素子を駆動する駆動素子が載置さ
れる光半導体素子載置領域及び駆動素子載置領域を有す
る基体と、前記基体上に光半導体素子載置領域及び駆動
素子載置領域を囲繞するようにして取着され、側部に貫
通孔を有する枠体と、前記貫通孔もしくは貫通孔周辺の
枠体に取着され、光ファイバー部材が接合される筒状の
固定部材と、前記枠体の上面に取着され、光半導体素子
及び駆動素子を気密に封止する蓋部材とから成る光半導
体素子収納用パッケージであって、前記基体に切欠孔を
形成し、光半導体素子載置領域と駆動素子載置領域とを
区分するとともに該切欠孔内に厚み方向に配列した炭素
繊維を炭素で結合した一方向性複合材料から成り、かつ
露出する外表面が被覆層で被覆されている熱遮断部材を
配設したことを特徴とするものである。
【0007】本発明の光半導体素子収納用パッケージに
よれば、光半導体素子及び該光半導体素子を駆動する駆
動素子が載置される基体に、光半導体素子載置領域と駆
動素子載置領域とを区分するように切欠孔を設けるとと
もに、該切欠孔内に厚み方向に配列した炭素繊維を炭素
で結合した一方向性複合材料から成り、かつ露出する外
表面が被覆層で被覆されている熱遮断部材を配設したこ
とから、駆動素子に外部電気回路から駆動信号を供給し
て所定の駆動を起こさせるとともに該駆動素子の駆動に
伴って光半導体素子に所定の光励起を起こさせた際、駆
動素子が作動時に多量の熱を発し、その熱の一部が基体
を介し光半導体素子に作用しようとしても熱の伝達が前
記熱遮断部材で遮断されて光半導体素子に作用すること
はなく、その結果、光半導体素子は常に適温となり、光
半導体素子を長期間にわたり正常、かつ安定に作動させ
ることが可能となる。
【0008】
【発明の実施の形態】次に、本発明を添付図面に基づき
詳細に説明する。図1及び図2は本発明の光半導体素子
収納用パッケージの一実施例を示し、1は基体、2は枠
体、3は蓋部材である。この基体1と枠体2と蓋部材3
とで内部に光半導体素子4と該光半導体素子4を駆動さ
せる駆動素子5とを収容するための容器が構成される。
【0009】前記基体1は光半導体素子4及び駆動素子
5を支持するための支持部材として作用し、その上面に
光半導体素子4が載置される光半導体素子載置領域1a
と駆動素子5が載置される駆動素子載置領域1bを有
し、光半導体素子載置領域1aには光半導体素子4が、
例えば、間にシリコン基板を挟んで金ーゲルマニウム等
から成るロウ材を介して接着固定され、また駆動素子載
置領域1bには駆動素子5が載置固定される。
【0010】前記基体1は、例えば、酸化アルミニウム
質焼結体等の電気絶縁材料から成り、酸化アルミニウ
ム、酸化珪素、酸化マグネシウム、酸化カルシウム等の
原料粉末に適当な有機溶剤、溶媒を添加混合して泥漿状
となすとともに該泥漿物を従来周知のドクターブレード
法やカレンダーロール法等を採用することによってセラ
ミックグリーンシート(セラミック生シート)を得、し
かる後、前記セラミックグリーンシートに適当な打ち抜
き加工法等を施すとともに複数枚を上下に積層し、しか
る後、これを高温(約1600℃)で焼成することによ
って製作される。
【0011】また前記基体1は光半導体素子載置領域1
aと駆動素子載置領域1bとの間に切欠孔1cが形成さ
れており、該切欠孔1cによって光半導体素子載置領域
1aと駆動素子載置領域1bとが区分されているととも
に切欠孔1c内に厚み方向に配列した炭素繊維を炭素で
結合した一方向性複合材料から成り、かつ露出する外表
面が被覆層で被覆されている熱遮断部材6が配設されて
いる。
【0012】前記切欠孔1cは熱遮断部材6を配設する
ための配設孔として作用し、複数枚のセラミックグリー
ンシートを積層し焼成して基体1を得る際、基体1とな
るセラミックグリーンシートの所定位置に予め打ち抜き
加工法により孔を開けておくことによって形成される。
【0013】また前記切欠孔1cに配設されている熱遮
断部材6は、駆動素子5が作動時に発した熱が基体1を
介して光半導体素子4に作用するのを有効に防止する作
用をなし、駆動素子5に外部電気回路から駆動信号を供
給して所定の駆動を起こさせるとともに該駆動素子5の
駆動に伴って光半導体素子4に所定の光励起を起こさせ
た際、駆動素子5が作動時に多量の熱を発し、その熱の
一部が基体1を介し光半導体素子4に作用しようとして
も熱の伝達が前記熱遮断部材6で遮断されて光半導体素
子4に作用することはなく、その結果、光半導体素子4
は常に適温となり、光半導体素子4を長期間にわたり正
常、かつ安定に作動させることが可能となる。
【0014】前記熱遮断部材6は、厚み方向に配列した
炭素繊維を炭素で結合した一方向性複合材料から成り、
かつ露出する外表面が被覆層6aで被覆されて形成され
ている。
【0015】前記熱遮断部材6を形成する一方向性複合
材料は炭素繊維脳方向、即ち、熱遮断部材6の上面から
下面にかけての方向の熱伝導率が300W/m・K以
上、炭素繊維に対し直交する方向の熱伝導率が30W/
m・K以下であり、基体1の上面側から下面側に向けて
熱が一方向に選択的に効率良く伝達するようになってい
る。そのためこの一方向性複合材料から成る熱遮断部材
6を基体1に設けた切欠孔1c内に配設した場合、駆動
素子5が作動時に発した熱は基体1を広がって光半導体
素子4が載置されている光半導体素子載置領域1aに伝
達しようとしても前記熱遮断部材6で熱の伝達が基体1
の下面側に向けられて光半導体素子載置領域1aにはほ
とんど伝達されず、その結果、光半導体素子4が駆動素
子5の発した熱によって高温となることはなく、光半導
体素子4を常に適温として、光半導体素子4を長期間に
わたり正常、かつ安定に作動させることが可能となる。
【0016】なお、前記一方向性複合材料から成る熱遮
断部材6は、例えば、一方向に配列した炭素繊維の束
を、固体のピッチあるいはコークスなどの微粉末を分散
させたフェノール樹脂などの熱硬化性樹脂の溶液中に含
浸させ、次にこれを乾燥させて一方向に炭素繊維が配列
している複数枚のシートを形成するとともに各々のシー
トを炭素繊維の方向が同一となるようにして複数枚積層
し、次に前記積層された複数枚のシートに所定の圧力を
加えるとともに加熱して熱硬化性樹脂部分を硬化させ、
最後にこれを不活性雰囲気中、高温で焼成し、フェノー
ル樹脂とピッチあるいはコークスの微粉末を炭化させる
(炭素を形成する)とともに該炭素で各々の炭素繊維を
結合させることによって製作される。
【0017】また前記一方向性複合材料から成る熱遮断
部材6はその露出する外表面に被覆層6aが被着されて
おり、該被覆層6aによって熱遮断部材6を構成する一
方向性複合材料が内部及び表面に多数の気孔を有し、多
孔質であるとしてもその気孔が前記被覆層6aで完全に
塞がれ、容器の気密封止の信頼性が極めて高いものとな
る。また同時に前記被覆層6aによって熱遮断部材6の
気孔が完全に塞がれることから容器内部に光半導体素子
4及び駆動素子5を収容し、光半導体装置となした後、
ヘリウムを使用して光半導体装置の気密封止の検査をす
る場合、ヘリウムの一部が熱遮断部材6の気孔内にトラ
ップされることはなく、光半導体装置の気密封止の検査
を極めて正確に行うことができる。
【0018】前記被覆層6aは金属や鉛ホウ酸系やホウ
ケイ酸系のガラス、エポキシ樹脂やシリコーン樹脂、ウ
レタン樹脂等の樹脂により形成されている。
【0019】前記被覆層6aを金属で形成する場合、熱
遮断部材6の下面に鉄やニッケル、クロム、チタン、モ
リブデン、タンタル、タングステン等の厚さ50μm以
下の薄板状金属部材を配置させ、次にこれを真空ホット
プレスで5MPaの圧力をかけつつ1200℃の温度を
1時間印加し、薄板状金属部材の一部を熱遮断部材6に
拡散させ、拡散接合することによって行われる。
【0020】なお、前記一方向性複合材料から成る熱遮
断部材6はその弾性率が30GPa以下であり、軟質で
あることから熱遮断部材6と該熱遮断部材6が配設され
る基体1との間に両者の熱膨張係数の相違に起因する熱
応力が多少発生したとしてもその熱応力は熱遮断部材6
を適度に変形させることによって吸収され、その結果、
熱遮断部材6と基体1とは極めて強固に接合し、容器の
気密封止の信頼性を高いものとして内部に収容する光半
導体素子4及び駆動素子5を長期間にわたり正常、かつ
安定に作動させることが可能となる。
【0021】更に前記熱遮断部材6が配設された基体1
はその上面に、前記光半導体素子載置領域1a及び駆動
素子載置領域1bを囲繞するようにして枠体2が取着さ
れており、枠体2の内側には光半導体素子4及び駆動素
子5を収容するための空所が形成される。
【0022】前記枠体2は酸化アルミニウム質焼結体や
ムライト質焼結体、窒化アルミニウム質焼結体、窒化珪
素質焼結体、炭化珪素質焼結体、ガラスセラミックス焼
結体等の電気絶縁材料から成り、例えば、酸化アルミニ
ウム質焼結体から成る場合には、酸化アルミニウム、酸
化珪素、酸化マグネシウム、酸化カルシウム等の原料粉
末に適当な有機バインダー、溶剤等を添加混合して泥漿
物を作るとともに、該泥漿物をドクターブレード法やカ
レンダーロール法を採用することによってセラミックグ
リーンシート(セラミック生シート)となし、しかる
後、前記セラミックグリーンシートに適当な打ち抜き加
工を施すとともにこれを複数枚積層し、約1600℃の
温度で焼成することによって製作される。
【0023】また前記枠体2の内側に位置する基体1の
表面から基体1の下面にかけて複数個のメタライズ配線
層7が被着形成されており、枠体2の内側に位置する基
体1表面に形成されているメタライズ配線層7には光半
導体素子4や駆動素子5の各電極がボンディングワイヤ
等の電気的接続手段を介して電気的に接続され、また基
体1の下面に導出する部位には外部電気回路基板の配線
導体が半田等を介して接続される。
【0024】前記メタライズ配線層7は光半導体素子4
や駆動素子5の各電極を外部電気回路に接続する、ある
いは光半導体素子4と駆動素子5とを電気的に接続する
際の導電路として作用し、タングステン、モリブデン、
マンガン等の高融点金属粉末により形成されている。
【0025】前記メタライズ配線層7はタングステン、
モリブデン、マンガン等の高融点金属粉末に適当な有機
バインダー、溶剤等を添加混合して得た金属ペーストを
基体1となるセラミックグリーンシートに予め従来周知
のスクリーン印刷法により所定パターンに印刷塗布して
おくことによって枠状2の内側に位置する基体1の表面
から基体1の下面にかけて被着形成される。
【0026】また前記メタライズ配線層7はその露出す
る表面にニッケル、金等の耐蝕性に優れ、かつロウ材と
の濡れ性に優れる金属を1μm〜20μmの厚みにメッ
キ法により被着させておくとメタライズ配線層7の酸化
腐蝕を有効に防止することができるとともにメタライズ
配線層7と光半導体素子4や駆動素子5及び外部電気回
路基板の配線導体との接続を強固となすことができる。
従って、前記メタライズ配線層7は、その露出する表面
にニッケル、金等の耐蝕性に優れ、かつロウ材との濡れ
性に優れる金属を1μm〜20μmの厚みに被着させて
おくことが好ましい。
【0027】更に前記枠体2はその側部に貫通孔2aが
設けてあり、該貫通孔2aの内壁面には筒状の固定部材
8が取着され、更に筒状の固定部材8の内側の一端には
透光性部材9が取着されている。
【0028】前記枠体2の側部に形成されている貫通孔
2aは固定部材8を枠体2に取着するための取着孔とし
て作用し、例えば、枠体2の側部に従来周知のドリル孔
あけ加工を施すことによって所定形状に形成される。
【0029】前記枠体2の貫通孔2aに取着されている
固定部材8は光ファイバー部材10を枠体2に固定する
際の下地固定部材として作用するとともに光半導体素子
4が励起した光を光ファイバー部材10に伝達させる作
用をなし、その内側の一端には、例えば、透光性部材9
が取着され、また外側の一端には光ファイバー部材10
が取着接続される。
【0030】前記筒状の固定部材8は、例えば、鉄ーニ
ッケルーコバルト合金や鉄ーニッケル合金等の金属材料
から成り、鉄ーニッケル合金のインゴット(塊)をプレ
ス加工により筒状とすることによって形成される。
【0031】また前記固定部材8はその内側の一端に、
例えば、透光性部材9が取着されており、該透光性部材
9は固定部材8の内部空間を塞ぎ、基体1と枠体2と蓋
部材3とから成る容器の気密封止を保持させるとともに
固定部材8の内部空間を伝達する光半導体素子4の励起
した光をそのまま固定部材8に取着接続される光ファイ
バー部材10に伝達させる作用をなす。
【0032】前記透光性部材9は例えは、酸化珪素、酸
化鉛を主成分とした鉛系及びホウ酸、ケイ砂を主成分と
したホウケイ酸系の非晶質ガラスで形成されており、該
非晶質ガラスは結晶軸が存在しないことから光半導体素
子4の励起する光を透光性部材9を通過させて光ファイ
バー部材10に授受させる場合、光半導体素子4の励起
した光は透光性部材9で複屈折を起こすことはなくその
まま光ファイバー部材10に授受されることとなり、そ
の結果、光半導体素子4が励起した光の光ファイバー部
材10への授受が高効率となって光信号の伝送効率を高
いものとなすことができる。
【0033】前記透光性部材9の固定部材8への取着
は、例えば、図2に示すように、透光性部材7の外周部
に予めメタライズ層11を被着させておき、該メタライ
ズ層11と固定部材8とを金ー錫合金等のロウ材を介し
ロウ付けすることによって行われる。この場合、透光性
部材9の固定部材8への取着が金ー錫合金等によるロウ
付けにより行われることから取着の信頼性が高いものと
なり、これによって固定部材8と透光性部材9との取着
部における光半導体素子4や駆動素子5を収容する容器
の気密封止が完全となり、容器内部に収容する光半導体
素子4や駆動素子5を長期間にわたり正常、かつ安定に
作動させることができる。
【0034】なお、前記透光性部材9の外周部に予め被
着されているメタライズ層11は透光性部材9を構成す
る非晶質ガラスの融点が約700℃と低く、従来周知の
Mo−Mn法を採用することによって形成することかで
きないことから図2に示すように、非晶質ガラスに対し
て活性があり、強固に接合するチタン、チタンータング
ステン、窒化タンタルの少なくとも1種から成る第1層
11aと、この第1層11aが透光性部材9を固定部材
8にロウ付けする際の熱によって後述する第3層11c
に拡散し、メタライズ層11の透光性部材9に対する接
合強度が低下するのを有効に防止する白金、ニッケル、
ニッケルークロムの少なくとも1種から成る第2層11
bと、メタライズ層11に対するロウ材の濡れ性を改善
し、メタライズ層11にロウ材を強固に接合させて透光
性部材9を固定部材8に強固に取着させる金、白金、銅
の少なくとも1種から成る第3層11cとを順次、積層
させることによって形成されており、特にチタンー白金
ー金を順次積層させて形成したメタライズ層11は透光
性部材9との接合強度が強く、かつロウ材との濡れ性が
良好で透光性部材9を固定部材8にロウ付けすることが
可能なことからメタライズ層11として極めて好適であ
る。
【0035】更に前記チタン、チタンータングステン、
窒化タンタルの少なくとも1種から成る第1層11a
と、白金、ニッケル、ニッケルークロムの少なくとも1
種から成る第2層11bと、金、白金、銅の少なくとも
1種から成る第3層11cとの3層構造を有するメタラ
イズ層11はその各々の金属材料、窒化物を透光性部材
9の外周部にスパッタリング法や蒸着法、イオンプレー
ティング法、メッキ法等により順次、所定厚みに被着さ
せることによって形成される。
【0036】また更に前記メタライズ層11をチタン、
チタンータングステン、窒化タンタルの少なくとも1種
から成る第1層11aと、白金、ニッケル、ニッケルー
クロムの少なくとも1種から成る第2層11bと、金、
白金、銅の少なくとも1種から成る第3層11cとで形
成する場合、第1層11aの層厚は500オングストロ
ーム未満となるとメタライズ層11の透光性部材9に対
する接合強度が弱くなる傾向にあり、また2000オン
グストロームを超えると透光性部材9に第1層11aを
被着させる際に第1層11a中に大きな応力が発生内在
し、該内在応力によって第1層11aが透光性部材9よ
り剥離し易くなる傾向にあることから第1層11aの厚
みは500オングストローム乃至2000オングストロ
ームの範囲としておくことが好ましく、第2層11bの
層厚は500オングストローム未満となると透光性部材
9を固定部材8にロウ付けする際の熱によって第1層1
1aが第3層11cに拡散するのを有効に防止すること
ができず、メタライズ層11の透光性部材9に対する接
合強度が低下してしまう危険性かあり、また10000
オングストロームを超えると第1層11a上に第2層1
1bを被着させる際に第2層11b中に大きな応力が発
生内在し、該内在応力によって第2層11bが第1層1
1aより剥離し易くなる傾向にあることから第2層11
bの厚みは500オングストローム乃至10000オン
グストロームの範囲としておくことが好ましく、第3層
11cの層厚は0.5μm未満であるとメタライズ層1
1に対するロウ材の濡れ性が大きく改善されず、透光性
部材9を固定部材8に強固にロウ付け取着するのが困難
となる傾向にあり、また5μmを超えると第2層11b
上に第3層11cを被着させる際に第3層11c中に大
きな応力が発生内在し、該内在応力によって第3層11
cが第2層11bより剥離し易くなる傾向にあることか
ら第3層11cの厚みは0.5μm乃至5μmの範囲と
しておくことが好ましい。
【0037】更に前記枠体2はその上面に、例えば、鉄
ーニッケルーコバルト合金や鉄ーニッケル合金等の金属
材料から成る蓋部材3が接合され、これによって基体1
と枠体2と蓋部材3とからなる容器の内部に光半導体素
子4及び駆動素子5が気密に封止されることとなる。
【0038】前記蓋部材3の枠体2上面への接合は、例
えは、シームウェルド法等の溶接によって行われる。
【0039】かくして本発明の光半導体素子収納用パッ
ケージによれば、基体1の光半導体素子載置領域1aに
光半導体素子4を、駆動素子載置領域1bに駆動素子5
を載置固定するとともに光半導体素子4及び駆動素子5
の各電極をボンデイングワイヤ等の電気的接続手段を介
してメタライズ配線層7に電気的に接続し、次に枠体2
の上面に蓋部材3を接合させ、基体1と枠体2と蓋部材
3とから成る容器内部に光半導体素子4及び駆動素子5
を収容し、最後に枠体2に取着させた筒状の固定部材8
に光ファイバー部材10を取着接続させることによって
最終製品としての光半導体装置となる。
【0040】かかる光半導体装置は外部電気回路から供
給される駆動信号に基づいて駆動素子5に所定の駆動を
行わせるとともに該駆動素子5の駆動に伴って光半導体
素子4に所定の光励起を起こさせ、該励起した光を透光
性部材9を介し光ファイバー部材10に授受させるとと
もに該光ファイバー部材10の光ファイバー内を伝達さ
せることによって高速通信等に使用される。
【0041】なお、本発明は上述の実施例に限定される
ものではなく、本発明の要旨を逸脱しない範囲であれば
種々の変更は可能であり、例えば、上述の実施例では、
駆動素子5の駆動によって光半導体素子4が光を励起す
る場合について説明したが、これが光ファイバー部材1
0を介して伝達された光を光半導体素子4が電気信号に
変換し、該変換された電気信号を駆動素子5が増幅する
ようになした場合にも適用可能である。
【0042】
【発明の効果】本発明の光半導体素子収納用パッケージ
によれば、光半導体素子及び該光半導体素子を駆動する
駆動素子が載置される基体に、光半導体素子載置領域と
駆動素子載置領域とを区分するように切欠孔を設けると
ともに、該切欠孔内に厚み方向に配列した炭素繊維を炭
素で結合した一方向性複合材料から成り、かつ露出する
外表面が被覆層で被覆されている熱遮断部材を配設した
ことから、駆動素子に外部電気回路から駆動信号を供給
して所定の駆動を起こさせるとともに該駆動素子の駆動
に伴って光半導体素子に所定の光励起を起こさせた際、
駆動素子が作動時に多量の熱を発し、その熱の一部が基
体を介し光半導体素子に作用しようとしても熱の伝達が
前記熱遮断部材で遮断されて光半導体素子に作用するこ
とはなく、その結果、光半導体素子は常に適温となり、
光半導体素子を長期間にわたり正常、かつ安定に作動さ
せることが可能となる。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical semiconductor device and an optical semiconductor device housing package for housing a driving device for driving the optical semiconductor device. 2. Description of the Related Art Conventionally, an optical semiconductor device housing package for housing an optical semiconductor device is generally made of an aluminum oxide sintered body, and the optical semiconductor device and the optical semiconductor device are driven at the center of the upper surface. A base having an optical semiconductor element mounting area and a driving element mounting area on which a driving element to be mounted is mounted,
A frame made of an aluminum oxide sintered body having a through-hole on a side and attached to a base so as to surround the optical semiconductor element mounting area and the driving element mounting area; A cylindrical fixing member attached to a frame around the through hole or the through hole and having a space through which an optical signal is transmitted, made of a metal material such as an iron-nickel-cobalt alloy; and the cylindrical fixing member. A light-transmissive member made of amorphous glass or the like that seals the inside of the fixed member attached via a low-melting brazing material such as a gold-tin alloy having a melting point of 200 to 400 ° C., and a frame inside the base body And a plurality of wiring conductor layers made of tungsten, molybdenum, manganese, etc., which are attached and derived from the outside to the outside, and the electrodes of the optical semiconductor element and the electrodes of the drive element are connected via electrical connection means such as bonding wires. ,
A lid member attached to the upper surface of the frame body to hermetically seal the optical semiconductor element and the driving element, and the optical semiconductor element is mounted on the optical semiconductor element mounting area of the base; Each drive element is placed and fixed in the mounting area, and each electrode of the optical semiconductor element and the drive element is electrically connected to a predetermined wiring conductor layer via an electrical connection means such as a bonding wire, and then, A lid member is joined to the upper surface of the frame body, the optical semiconductor element and the driving element are hermetically accommodated inside a container including the base, the frame body, and the lid member, and the optical fiber member is attached and connected to the cylindrical fixing member. Thus, an optical semiconductor device as a product is obtained. Such an optical semiconductor device causes a drive element to perform a predetermined drive based on a drive signal supplied from an external electric circuit, and causes the optical semiconductor element to cause a predetermined optical excitation in accordance with the drive of the drive element. The excited light is transmitted to and received from an optical fiber member via a light-transmitting member, and is transmitted through the optical fiber of the optical fiber member, thereby being used for high-speed communication and the like. [0004] However, in this conventional package for housing an optical semiconductor element, the base is formed of an aluminum oxide sintered body, and the aluminum oxide sintered body is made of a heat conductive material. Rate is about 15W / m · K
Therefore, when a drive signal is supplied to the drive element from an external electric circuit to cause a predetermined drive, and a predetermined light excitation is caused to the optical semiconductor element in accordance with the drive of the drive element, the drive element operates. Sometimes, a large amount of heat is generated, and a part of the heat acts on the optical semiconductor element via the base, causing a high temperature of the optical semiconductor element to cause the optical semiconductor element to malfunction. SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned drawbacks, and has as its object to effectively prevent heat generated during operation of a driving element from acting on an optical semiconductor element, and to keep an optical semiconductor element always at an appropriate temperature. An object of the present invention is to provide an optical semiconductor device housing package that can operate a device normally and stably for a long period of time. SUMMARY OF THE INVENTION The present invention has an optical semiconductor element mounting area on which an optical semiconductor element, a driving element for driving the optical semiconductor element, and a driving element mounting area are mounted. A base, a frame mounted on the base so as to surround the optical semiconductor element mounting area and the driving element mounting area, and having a through hole on a side portion; and a frame around the through hole or the through hole. For mounting an optical semiconductor element, comprising: a cylindrical fixing member attached to the optical fiber member; and a lid member attached to the upper surface of the frame body to hermetically seal the optical semiconductor element and the driving element. A package in which a notch is formed in the base to separate an optical semiconductor element mounting area and a driving element mounting area, and carbon fibers arranged in the thickness direction in the notch are bonded by carbon. Made of conductive composite material and exposed A heat shielding member whose outer surface is covered with a coating layer. According to the package for housing an optical semiconductor element of the present invention, an optical semiconductor element mounting area, a driving element mounting area, and a substrate on which an optical semiconductor element and a driving element for driving the optical semiconductor element are mounted. A notch is provided so as to divide the heat treatment, and the heat treatment is made of a unidirectional composite material in which carbon fibers arranged in the thickness direction in the notch are bonded with carbon, and the exposed outer surface is covered with a coating layer. Since the blocking member is provided, when a predetermined drive is caused by supplying a drive signal from an external electric circuit to the drive element and a predetermined light excitation is caused in the optical semiconductor element with the drive of the drive element, When the drive element emits a large amount of heat during operation, even if a part of the heat tries to act on the optical semiconductor element via the base, the transfer of heat is cut off by the heat shutoff member and does not act on the optical semiconductor element, as a result The optical semiconductor element is always suitable temperature, normally an optical semiconductor device for a long period, and it is possible to stably operate. Next, the present invention will be described in detail with reference to the accompanying drawings. 1 and 2 show an embodiment of the package for housing an optical semiconductor element according to the present invention, wherein 1 is a base, 2 is a frame, and 3 is a lid member. The base 1, frame 2, and cover 3
A container for accommodating the optical semiconductor element 4 and the driving element 5 for driving the optical semiconductor element 4 is formed therein. The base 1 functions as a support member for supporting the optical semiconductor element 4 and the driving element 5, and has an optical semiconductor element mounting area 1a on which the optical semiconductor element 4 is mounted.
And a driving element mounting area 1b on which the driving element 5 is mounted. The optical semiconductor element 4 is provided in the optical semiconductor element mounting area 1a.
For example, the silicon substrate is interposed therebetween, and is bonded and fixed via a brazing material made of gold-germanium, and the driving element 5 is mounted and fixed in the driving element mounting area 1b. The base 1 is made of, for example, an electrically insulating material such as an aluminum oxide sintered body, and is mixed with a raw material powder such as aluminum oxide, silicon oxide, magnesium oxide, and calcium oxide by adding an appropriate organic solvent and a solvent. A ceramic green sheet (ceramic green sheet) is obtained by employing a conventionally known doctor blade method, calender roll method, or the like, and then the ceramic green sheet is appropriately punched. And the like, and a plurality of sheets are stacked one above the other, and then fired at a high temperature (about 1600 ° C.). The base 1 is provided with an optical semiconductor element mounting area 1.
a and a driving element mounting area 1b, a notch hole 1c is formed, the optical semiconductor element mounting area 1a and the driving element mounting area 1b are divided by the notch hole 1c, and the notch hole 1c is formed. A heat blocking member 6 made of a unidirectional composite material in which carbon fibers arranged in the thickness direction are bonded by carbon and having an exposed outer surface covered with a coating layer is provided. The notch hole 1c functions as an arrangement hole for disposing the heat insulating member 6, and when a plurality of ceramic green sheets are stacked and fired to obtain the base 1, the ceramic green sheet serving as the base 1 is obtained. Is formed by punching a hole at a predetermined position in advance by a punching method. The heat blocking member 6 provided in the cutout hole 1c has a function of effectively preventing the heat generated when the driving element 5 operates from acting on the optical semiconductor element 4 via the base 1. None, when a drive signal is supplied from an external electric circuit to the drive element 5 to cause a predetermined drive, and when the drive of the drive element 5 causes the optical semiconductor element 4 to perform a predetermined optical excitation, the drive element 5 During operation, a large amount of heat is generated, and even if a part of the heat tries to act on the optical semiconductor element 4 via the base 1, the transfer of heat is interrupted by the heat shutoff member 6 and does not act on the optical semiconductor element 4. As a result, the optical semiconductor element 4
Is always at an appropriate temperature, and the optical semiconductor element 4 can be operated normally and stably for a long period of time. The heat blocking member 6 is made of a unidirectional composite material in which carbon fibers arranged in the thickness direction are bonded with carbon.
The exposed outer surface is covered with a coating layer 6a. The one-way composite material forming the heat insulating member 6 has a heat conductivity of 300 W / m · K or more in the carbon fiber brain direction, that is, the direction from the upper surface to the lower surface of the heat insulating member 6. On the other hand, the thermal conductivity in the direction orthogonal to 30 W /
m · K or less, and heat is selectively and efficiently transmitted in one direction from the upper surface side to the lower surface side of the base 1. Therefore, when the heat blocking member 6 made of the one-way composite material is disposed in the cutout hole 1c provided in the base 1, the heat generated when the driving element 5 operates spreads the base 1 and the optical semiconductor element 4 is mounted. Even if an attempt is made to transmit the optical semiconductor element to the optical semiconductor element mounting area 1a, heat is
Is hardly transmitted to the optical semiconductor element mounting area 1a, and as a result, the optical semiconductor element 4 does not become hot due to the heat generated by the driving element 5, and the optical semiconductor element 4 is always At an appropriate temperature, the optical semiconductor element 4 can operate normally and stably for a long period of time. The heat blocking member 6 made of the one-way composite material is formed by, for example, forming a bundle of carbon fibers arranged in one direction into a solid pitch or a phenol resin or the like in which fine powder such as coke is dispersed. Impregnated in a solution of a curable resin, and then dried to form a plurality of sheets in which carbon fibers are arranged in one direction and to make each sheet have the same direction of carbon fibers. A plurality of sheets are laminated, and then a predetermined pressure is applied to the plurality of laminated sheets and heated to cure the thermosetting resin portion,
Finally, this is fired at a high temperature in an inert atmosphere to carbonize the phenolic resin and the fine powder of pitch or coke (form carbon) and bond each carbon fiber with the carbon. The heat blocking member 6 made of the one-way composite material has a coating layer 6a applied to the exposed outer surface, and the one-way composite material forming the heat blocking member 6 by the coating layer 6a. Has a large number of pores inside and on the surface, and even if porous, the pores are completely closed by the coating layer 6a, and the reliability of hermetic sealing of the container is extremely high. At the same time, since the pores of the heat blocking member 6 are completely closed by the coating layer 6a, the optical semiconductor element 4 and the driving element 5 are accommodated in the container, and the optical semiconductor device is formed.
In the case of inspecting the hermetic sealing of the optical semiconductor device using helium, a part of helium is not trapped in the pores of the heat insulating member 6, and the inspection of hermetic sealing of the optical semiconductor device is extremely accurate. Can be done. The coating layer 6a is made of metal, lead boric acid or borosilicate glass, epoxy resin, silicone resin, urethane resin or the like. When the coating layer 6a is formed of a metal, a thin metal member having a thickness of 50 μm or less, such as iron, nickel, chromium, titanium, molybdenum, tantalum, or tungsten, is disposed on the lower surface of the heat insulating member 6. This is performed by applying a temperature of 1200 ° C. for 1 hour while applying a pressure of 5 MPa by a vacuum hot press, diffusing a part of the sheet metal member into the heat insulating member 6 and performing diffusion bonding. The heat insulating member 6 made of the one-way composite material has an elastic modulus of 30 GPa or less and is soft, so that the heat insulating member 6 and the base 1 on which the heat insulating member 6 is disposed are formed. Even if some thermal stress occurs due to the difference in the coefficient of thermal expansion between them, the thermal stress will
Is absorbed by deforming it moderately,
The heat blocking member 6 and the base 1 are bonded very firmly, and the optical semiconductor element 4 and the driving element 5 housed therein are operated normally and stably for a long period of time with high reliability of hermetic sealing of the container. It becomes possible. Further, the base 1 on which the heat blocking member 6 is provided.
A frame 2 is mounted on the upper surface so as to surround the optical semiconductor element mounting area 1a and the driving element mounting area 1b, and the optical semiconductor element 4 and the driving element are mounted inside the frame 2. A space for accommodating 5 is formed. The frame 2 is made of an electrical material such as an aluminum oxide sintered body, a mullite sintered body, an aluminum nitride sintered body, a silicon nitride sintered body, a silicon carbide sintered body, or a glass ceramic sintered body. When made of an insulating material, for example, when it is made of an aluminum oxide sintered body, an appropriate organic binder, a solvent, etc. are added to and mixed with raw material powders of aluminum oxide, silicon oxide, magnesium oxide, calcium oxide, etc. At the same time, the slurry is formed into a ceramic green sheet (ceramic green sheet) by employing a doctor blade method or a calender roll method. Thereafter, the ceramic green sheet is appropriately punched, and a plurality of the green sheets are laminated. It is manufactured by firing at a temperature of about 1600 ° C. A plurality of metallized wiring layers 7 are formed on the surface of the substrate 1 located inside the frame 2 from the surface of the substrate 1 located inside the frame 2 to the lower surface of the substrate 1. The electrodes of the optical semiconductor element 4 and the driving element 5 are electrically connected to the formed metallized wiring layer 7 via electrical connection means such as bonding wires. The wiring conductor of the external electric circuit board is connected via solder or the like. The metallized wiring layer 7 comprises an optical semiconductor element 4
And the electrodes of the driving element 5 are connected to an external electric circuit, or act as conductive paths when the optical semiconductor element 4 and the driving element 5 are electrically connected, and tungsten, molybdenum,
It is formed of a high melting point metal powder such as manganese. The metallized wiring layer 7 is made of tungsten,
A metal paste obtained by adding and mixing an appropriate organic binder, a solvent, and the like to a high melting point metal powder such as molybdenum, manganese, or the like is applied to a ceramic green sheet serving as the base 1 in a predetermined pattern by a known screen printing method in advance. As a result, the substrate 1 is adhered and formed from the surface of the substrate 1 located inside the frame 2 to the lower surface of the substrate 1. On the exposed surface of the metallized wiring layer 7, a metal such as nickel and gold having excellent corrosion resistance and excellent wettability with a brazing material is applied to a thickness of 1 to 20 μm by plating. In addition, oxidation corrosion of the metallized wiring layer 7 can be effectively prevented, and the connection between the metallized wiring layer 7 and the wiring conductors of the optical semiconductor element 4, the driving element 5, and the external electric circuit board can be made strong.
Therefore, it is preferable that the metallized wiring layer 7 has a metal having excellent corrosion resistance such as nickel and gold and excellent wettability with a brazing material having a thickness of 1 μm to 20 μm on the exposed surface. Further, the frame 2 is provided with a through hole 2a on a side portion thereof, and a cylindrical fixing member 8 is attached to the inner wall surface of the through hole 2a. A light transmitting member 9 is attached to one end of the light emitting element. The through hole 2a formed on the side of the frame 2 acts as a mounting hole for mounting the fixing member 8 to the frame 2, and for example, the through hole 2a is conventionally known in the side of the frame 2. Is formed into a predetermined shape by performing a drilling process. The fixing member 8 attached to the through hole 2a of the frame 2 functions as a base fixing member for fixing the optical fiber member 10 to the frame 2, and also transmits the light excited by the optical semiconductor element 4 to the optical fiber. A function of transmitting the light to the member 10 is provided.
And an optical fiber member 10 at the outer end.
Are attached and connected. The cylindrical fixing member 8 is made of, for example, a metal material such as an iron-nickel-cobalt alloy or an iron-nickel alloy, and is formed by pressing an iron-nickel alloy ingot into a cylindrical shape. Is done. The fixing member 8 has one end on its inner side.
For example, a light-transmitting member 9 is attached, the light-transmitting member 9 closes the internal space of the fixing member 8, and maintains the hermetic sealing of the container including the base 1, the frame 2, and the lid 3. At the same time, the light excited by the optical semiconductor element 4 that transmits the internal space of the fixing member 8 is transmitted as it is to the optical fiber member 10 attached to and connected to the fixing member 8. The translucent member 9 is made of, for example, a lead-based amorphous glass mainly containing silicon oxide and lead oxide and a borosilicate-based amorphous glass mainly containing boric acid and silica sand. Since the amorphous glass does not have a crystal axis, the light excited by the optical semiconductor element 4 is transmitted and received by the optical fiber member 10 through the light transmitting member 9. The birefringence does not occur in the member 9 and is transmitted and received to the optical fiber member 10 as it is. As a result, the transmission and reception of the light excited by the optical semiconductor element 4 to the optical fiber member 10 becomes highly efficient, and the transmission efficiency of the optical signal is increased. Can be made higher. The attachment of the translucent member 9 to the fixing member 8 is performed, for example, as shown in FIG. This is performed by brazing the layer 11 and the fixing member 8 via a brazing material such as a gold-tin alloy. In this case, the attachment of the translucent member 9 to the fixing member 8 is performed by brazing with a gold-tin alloy or the like, so that the attachment is highly reliable. 9, the container housing the optical semiconductor element 4 and the driving element 5 at the portion where the optical semiconductor element 4 and the driving element 5 are housed is completely hermetically sealed, and the optical semiconductor element 4 and the driving element 5 housed inside the container operate normally and stably for a long time Can be done. The metallized layer 11 previously coated on the outer periphery of the light transmitting member 9 has a low melting point of about 700 ° C. of the amorphous glass constituting the light transmitting member 9, and the conventionally known Mo is used. As shown in FIG. 2, since at least one of titanium, titanium-tungsten, and tantalum nitride, which are active with respect to amorphous glass and can be strongly bonded, cannot be formed by employing the Mn method. And a third layer 11c, which will be described later, generated by heat generated when the first layer 11a brazes the translucent member 9 to the fixing member 8.
And platinum, nickel, which effectively prevent the metallized layer 11 from being reduced in bonding strength to the translucent member 9.
Second layer 11 of at least one of nickel-chromium
b, at least one of gold, platinum and copper, which improves the wettability of the brazing material with respect to the metallized layer 11 and firmly joins the brazing material to the metallized layer 11 to firmly attach the translucent member 9 to the fixing member 8. The metallized layer 11 is formed by sequentially laminating one kind of third layer 11c. In particular, the metallized layer 11 formed by sequentially laminating titanium-platinum-gold has a strong bonding strength with the translucent member 9, and It is very suitable as the metallized layer 11 because the wettability with the brazing material is good and the translucent member 9 can be brazed to the fixing member 8. The above titanium, titanium-tungsten,
First layer 11a made of at least one kind of tantalum nitride
And at least one of platinum, nickel and nickel-chromium
The metallized layer 11 having a three-layer structure of a second layer 11b made of a seed and a third layer 11c made of at least one of gold, platinum, and copper is made of a metal material and a nitride of the light-transmitting member 9. It is formed by sequentially applying a predetermined thickness to the outer peripheral portion by a sputtering method, a vapor deposition method, an ion plating method, a plating method, or the like. Further, the metallized layer 11 is made of titanium,
A first layer 11a made of at least one of titanium-tungsten and tantalum nitride, a second layer 11b made of at least one of platinum, nickel, and nickel-chromium;
In the case where the third layer 11c made of at least one of platinum and copper is used, if the thickness of the first layer 11a is less than 500 angstroms, the bonding strength of the metallized layer 11 to the translucent member 9 tends to be weak. If the thickness exceeds 2,000 angstroms, a large stress is generated in the first layer 11a when the first layer 11a is applied to the light transmitting member 9, and the first layer 11a is formed by the internal stress. It is preferable that the thickness of the first layer 11a be in the range of 500 Å to 2000 Å because the film tends to be more easily peeled off, and the light transmitting member 9 is fixed when the thickness of the second layer 11b is less than 500 Å. The first layer 1 is heated by heat when brazing to the member 8.
1a cannot be effectively prevented from diffusing into the third layer 11c, and there is a risk that the bonding strength of the metallized layer 11 to the translucent member 9 may be reduced.
When the thickness exceeds Å, the second layer 1 is formed on the first layer 11a.
When the first layer 1b is deposited, a large stress is generated inside the second layer 11b, and the second layer 11b is caused by the intrinsic stress.
1a, the second layer 11
The thickness of b is preferably in the range of 500 Å to 10000 Å, and if the thickness of the third layer 11 c is less than 0.5 μm, the metallized layer 1
1, the wettability of the brazing material is not greatly improved, and it tends to be difficult to firmly braze and attach the translucent member 9 to the fixing member 8, and if it exceeds 5 μm, the second layer 11b
When the third layer 11c is deposited thereon, a large stress is generated inside the third layer 11c, and the third layer 11c is generated by the intrinsic stress.
The thickness of the third layer 11c is preferably set in the range of 0.5 μm to 5 μm because c tends to be more easily peeled off than the second layer 11b. Further, a lid member 3 made of a metal material such as, for example, an iron-nickel-cobalt alloy or an iron-nickel alloy is joined to the upper surface of the frame 2 to thereby form the base 1.
The optical semiconductor element 4 and the driving element 5 are hermetically sealed inside a container including the frame 2 and the lid member 3. The lid member 3 is joined to the upper surface of the frame 2 by, for example, welding such as a seam welding method. Thus, according to the package for housing an optical semiconductor element of the present invention, the optical semiconductor element 4 is mounted on the optical semiconductor element mounting area 1a of the base 1, and the driving element 5 is mounted on the driving element mounting area 1b.
And the optical semiconductor element 4 and the driving element 5
Are electrically connected to the metallized wiring layer 7 via electrical connection means such as a bonding wire.
The lid member 3 is joined to the upper surface of the optical semiconductor element 4 and the driving element 5 inside the container including the base 1, the frame 2, and the lid member 3.
And a cylindrical fixing member 8 finally attached to the frame 2.
By attaching and connecting the optical fiber member 10 to the optical semiconductor device, an optical semiconductor device as a final product is obtained. Such an optical semiconductor device causes the drive element 5 to perform a predetermined drive based on a drive signal supplied from an external electric circuit, and causes a predetermined optical excitation of the optical semiconductor element 4 with the drive of the drive element 5. Then, the excited light is transmitted / received to / from the optical fiber member 10 through the translucent member 9 and transmitted through the optical fiber of the optical fiber member 10 to be used for high-speed communication or the like. It should be noted that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention.
The case where the optical semiconductor element 4 excites light by driving the driving element 5 has been described.
The present invention is also applicable to a case where the optical semiconductor element 4 converts light transmitted through the optical element 0 into an electric signal, and the driving element 5 amplifies the converted electric signal. According to the package for housing an optical semiconductor element of the present invention, the optical semiconductor element mounting area and the driving area are provided on the base on which the optical semiconductor element and the driving element for driving the optical semiconductor element are mounted. Notch holes are provided so as to divide the element mounting region, and a unidirectional composite material in which carbon fibers arranged in the thickness direction in the notch holes are bonded by carbon, and the exposed outer surface is a coating layer. Since the covered heat shielding member is provided, a drive signal is supplied to the drive element from an external electric circuit to cause a predetermined drive, and a predetermined optical excitation is applied to the optical semiconductor element with the drive of the drive element. When awakened,
The drive element emits a large amount of heat during operation, and even if a part of the heat tries to act on the optical semiconductor element via the base, the transfer of heat is cut off by the heat shutoff member and does not act on the optical semiconductor element, As a result, the optical semiconductor element is always at the appropriate temperature,
It becomes possible to operate the optical semiconductor element normally and stably for a long period of time.
【図面の簡単な説明】
【図1】本発明の光半導体素子収納用パッケージの一実
施例を示す断面図である。
【図2】図1に示す光半導体素子収納用パッケージの透
光性部材を説明するための一部拡大断面図である。
【符号の説明】
1・・・・・・・・基体
1a・・・・・・・光半導体素子載置領域
1b・・・・・・・駆動素子載置領域
1c・・・・・・・切欠孔
2・・・・・・・・枠体
2a・・・・・・・貫通孔
3・・・・・・・・蓋部材
4・・・・・・・・光半導体素子
5・・・・・・・・駆動素子
7・・・・・・・・メタライズ配線層
8・・・・・・・・固定部材
9・・・・・・・・透光性部材
10・・・・・・・・光ファイバー部材BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view showing one embodiment of an optical semiconductor element housing package of the present invention. FIG. 2 is a partially enlarged cross-sectional view illustrating a light-transmitting member of the package for housing an optical semiconductor element shown in FIG. [Description of Signs] 1.... Base 1a... Optical semiconductor element mounting area 1b... Driving element mounting area 1c. Notch hole 2 Frame 2a Through hole 3 Cover member 4 Optical semiconductor element 5 ... Driving element 7 Metallized wiring layer 8 Fixing member 9 Transparent member 10 ..Optical fiber members
Claims (1)
駆動する駆動素子が載置される光半導体素子載置領域及
び駆動素子載置領域を有する基体と、前記基体上に光半
導体素子載置領域及び駆動素子載置領域を囲繞するよう
にして取着され、側部に貫通孔を有する枠体と、前記貫
通孔もしくは貫通孔周辺の枠体に取着され、光ファイバ
ー部材が接合される筒状の固定部材と、前記枠体の上面
に取着され、光半導体素子及び駆動素子を気密に封止す
る蓋部材とから成る光半導体素子収納用パッケージであ
って、前記基体に切欠孔を形成し、光半導体素子載置領
域と駆動素子載置領域とを区分するとともに該切欠孔内
に厚み方向に配列した炭素繊維を炭素で結合した一方向
性複合材料から成り、かつ露出する外表面が被覆層で被
覆されている熱遮断部材を配設したことを特徴とする光
半導体素子収納用パッケージ。(57) Claims: 1. An optical semiconductor element mounting area on which an optical semiconductor element and a driving element for driving the optical semiconductor element are mounted on the upper surface, and a base having the driving element mounting area. A frame having a through hole on the side and a frame around the through hole or a frame around the through hole, the frame being attached to the substrate so as to surround the optical semiconductor element mounting area and the driving element mounting area. An optical semiconductor element housing package comprising: a cylindrical fixing member attached to the optical fiber member; and a lid member attached to the upper surface of the frame body and hermetically sealing the optical semiconductor element and the driving element. A one-way composite in which a notch is formed in the base to separate an optical semiconductor element mounting area and a driving element mounting area and carbon fibers arranged in the thickness direction in the notch are bonded with carbon; Made of material and exposed outer surface is coated In an optical semiconductor device package for housing, characterized in that the heat block member being coated is disposed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33465198A JP3522132B2 (en) | 1998-11-25 | 1998-11-25 | Optical semiconductor element storage package |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33465198A JP3522132B2 (en) | 1998-11-25 | 1998-11-25 | Optical semiconductor element storage package |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000164742A JP2000164742A (en) | 2000-06-16 |
JP3522132B2 true JP3522132B2 (en) | 2004-04-26 |
Family
ID=18279750
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33465198A Expired - Fee Related JP3522132B2 (en) | 1998-11-25 | 1998-11-25 | Optical semiconductor element storage package |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3522132B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002359426A (en) | 2001-06-01 | 2002-12-13 | Hitachi Ltd | Optical module and optical communication system |
CN103184365A (en) * | 2013-04-10 | 2013-07-03 | 苏州天兼金属新材料有限公司 | Novel lead-free copper-based alloy rod and preparation method thereof |
-
1998
- 1998-11-25 JP JP33465198A patent/JP3522132B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000164742A (en) | 2000-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3532114B2 (en) | Optical semiconductor element storage package | |
JP3619393B2 (en) | Optical semiconductor element storage package | |
JP3522132B2 (en) | Optical semiconductor element storage package | |
JP3709084B2 (en) | Optical semiconductor element storage package | |
JP3457898B2 (en) | Optical semiconductor element storage package | |
JP3709095B2 (en) | Optical semiconductor element storage package | |
JP2000183253A (en) | Package for housing semiconductor element | |
JP3457901B2 (en) | Optical semiconductor element storage package | |
JP3987649B2 (en) | Package for storing semiconductor elements | |
JP3659306B2 (en) | Package for storing semiconductor elements | |
JP4360568B2 (en) | Package for storing semiconductor elements | |
JP3709082B2 (en) | Optical semiconductor element storage package | |
JP3659300B2 (en) | Package for storing semiconductor elements | |
JP2003304027A (en) | Package for housing optical semiconductor element | |
JP4360567B2 (en) | Package for storing semiconductor elements | |
JP3981256B2 (en) | Optical semiconductor element storage package | |
JP2003069127A (en) | Package for accommodating optical semiconductor element and optical semiconductor device | |
JP3659299B2 (en) | Package for storing semiconductor elements | |
JP3659304B2 (en) | Package for storing semiconductor elements | |
JP3488392B2 (en) | Optical semiconductor element storage package | |
JP2003037196A (en) | Package for housing optical semiconductor element | |
JP3659301B2 (en) | Package for storing semiconductor elements | |
JP3659298B2 (en) | Package for storing semiconductor elements | |
JP2001102636A (en) | Package for housing optical semiconductor element | |
JP2002222887A (en) | Package for storing semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040127 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040203 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090220 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090220 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100220 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110220 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |