JP3981256B2 - Optical semiconductor element storage package - Google Patents

Optical semiconductor element storage package Download PDF

Info

Publication number
JP3981256B2
JP3981256B2 JP2001311907A JP2001311907A JP3981256B2 JP 3981256 B2 JP3981256 B2 JP 3981256B2 JP 2001311907 A JP2001311907 A JP 2001311907A JP 2001311907 A JP2001311907 A JP 2001311907A JP 3981256 B2 JP3981256 B2 JP 3981256B2
Authority
JP
Japan
Prior art keywords
semiconductor element
optical semiconductor
copper
base
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001311907A
Other languages
Japanese (ja)
Other versions
JP2003124557A (en
Inventor
伸 松田
公明 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001311907A priority Critical patent/JP3981256B2/en
Publication of JP2003124557A publication Critical patent/JP2003124557A/en
Application granted granted Critical
Publication of JP3981256B2 publication Critical patent/JP3981256B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements

Description

【0001】
【発明の属する技術分野】
本発明は光半導体素子を収容するための光半導体素子収納用パッケージに関するものである。
【0002】
【従来の技術】
従来、光半導体素子を収容するための光半導体素子収納用パッケージは、一般に鉄−ニッケル−コバルト合金や鉄−ニッケル合金等の金属材料からなり、上面中央に光半導体素子が載置される載置部を有する基体と、前記光半導体素子載置部を囲繞するようにして基体上に銀ロウ等のロウ材を介して接合され、側部に貫通孔及び切欠部を有する鉄−ニッケル−コバルト合金や鉄−ニッケル合金等の金属材料から成る枠体と、前記枠体の貫通孔もしくは貫通孔周辺の枠体に取着され、内部に光信号が伝達される空間を有する鉄−ニッケル−コバルト合金等の金属材料から成る筒状の固定部材と、前記筒状の固定部材に融点が200〜400℃の金−錫合金等の低融点ロウ材を介して取着された固定部材の内部を塞ぐ非晶質ガラス等から成る透光性部材と、前記枠体の切欠部に挿着され、酸化アルミニウム質焼結体等のセラミックス絶縁体に光半導体素子の各電極がボンディングワイヤを介して電気的に接続される配線層を形成したセラミック端子体と、前記枠体の上面に取着され、光半導体素子を気密に封止する蓋部材とから構成されており、基体の光半導体素子載置部に光半導体素子を載置固定させるとともに該光半導体素子の各電極をボンディングワイヤを介してセラミック端子体の配線層に電気的に接続し、しかる後、前記枠体の上面に蓋部材を接合させ、基体と枠体と蓋部材とから成る容器内部に光半導体素子を気密に収容するとともに筒状固定部材に光ファイバー部材を、例えば、YAG溶接等により取着することによって製品としての光半導体装置となる。
【0003】
なお上述の光半導体素子収納用パッケージにおいては、内部に収容される光半導体素子が高周波領域で駆動し、外部ノイズの影響を受け易いものであるため基体及び枠体を金属材料で形成し、容器内部をシールドしておくことによって光半導体素子に外部ノイズが影響しないようにしている。また基体及び枠体はセラミック端子体や光半導体素子等の線熱膨張係数と合わすため一般に鉄−ニッケル−コバルト合金や鉄−ニッケル合金等が使用されている。
【0004】
しかしながら、この従来の光半導体素子収納用パッケージにおいては、光半導体素子が載置固定される基体の熱伝導率が20W/m・K程度であり、熱を効率良く伝達することができないことから光半導体素子が作動時に熱を発した際、その熱を基体を介して外部に十分放散させることができず、その結果、光半導体素子は該光半導体素子自身の発する熱で高温となり、熱破壊を起こしたり、特性に熱劣化を招来し、誤動作したりするという欠点を有していた。
【0005】
そこで上記欠点を解消するために基体を熱伝導率が高く、かつ線熱膨張係数がセラミック端子体の線熱膨張係数に近似する銅−タングステン合金や銅−モリブデン合金で形成しておくことが考えられる。
【0006】
かかる銅−タングステン合金や銅−モリブデン合金は一般にタングステン粉末やモリブデン粉末を焼成して焼結多孔体を得、次に前記焼結多孔体の空孔内に溶融させた銅を含浸させることによって製造されており、例えば、タングステンから成る焼結多孔体に銅を含浸させる場合は焼結多孔体が75乃至90重量%、銅が10乃至25重量%の範囲に、モリブデンから成る焼結多孔体に銅を含浸させる場合は焼結多孔体が80乃至90重量%、銅が10乃至20重量%の範囲となっている。
【0007】
【発明が解決しようとする課題】
しかしながら、この従来の光半導体素子収納用パッケージにおいては、基体がタングステン粉末やモリブデン粉末を焼成して焼結多孔体を得るとともに該焼結多孔体の空孔内に溶融させた銅を含浸させることによって形成されており熱伝導率が約180W/m・K程度である。
【0008】
そのためこの従来一般に製造されている銅−タングステン合金等を基体として用いた光半導体素子収納用パッケージは鉄−ニッケル−コバルト合金等を基体として用いた光半導体素子収納用パッケージよりも熱放散性に優れているものの近時の発光出力が高く作動時に従来に比し多量の熱を発する光半導体素子を収容した場合、光半導体素子が発する熱を基体を介して外部に完全に放出させることができなくなり、その結果、光半導体素子が該素子自身の発する熱によって高温となり、光半導体素子に熱破壊を招来させたり、特性にばらつきを生じ安定に作動させることができないという欠点を有していた。
【0009】
本発明は上記知見に基づき案出されたもので、その目的は発光出力が高く作動時に多量の熱を発する光半導体素子を常に適温に保持し、光半導体素子を長期間にわたり安定に機能させることができる光半導体素子収納用パッケージを提案することにある。
【0010】
【課題を解決するための手段】
本発明は、上面に光半導体素子が載置される載置部を有する基体と、前記基体上に光半導体素子載置部を囲繞するようにして取着され、側部に貫通孔および切欠部を有する鉄−ニッケル−コバルト合金もしくは鉄−ニッケル合金から成る枠体と、前記貫通孔もしくは貫通孔周辺の枠体に取着され、光ファイバー部材が接合される固定部材と、前記切欠部に挿着され、セラミックス絶縁体に光半導体素子の各電極が接続される配線層が形成されているセラミック端子体と、前記枠体の上面に取着され、光半導体素子を気密に封止する蓋部材とから成る光半導体素子収納用パッケージであって、前記基体は65乃至80重量%の表面に酸化物膜を被着した炭化珪素粉末と20乃至35重量%の銅とから成り、溶融させた前記銅に前記炭化珪素粉末を分散混入させたものであることを特徴とするものである。
【0011】
本発明の光半導体素子収納用パッケージによれば、基体を65乃至80重量%の表面に酸化物膜を被着した炭化珪素粉末と20乃至35重量%の銅とで、溶融させた銅に炭化珪素粉末を分散混入させて形成し、熱伝導率を270W/m・K以上の高いものとなしたことから、基体上に載置される光半導体素子が作動時に多量の熱を発したとしてもその熱は基体の光半導体素子載置部平面方向に素早く広がらせるとともに基体の厚さ方向を良好に伝搬させて外部に効率よく確実に放散させることができ、これによって光半導体素子は常に適温となり、光半導体素子を長期間にわたり安定かつ正常に作動させることが可能となる。
【0012】
また本発明の光半導体素子収納用パッケージによれば、基体を65乃至80重量%の表面に酸化物膜を被着した炭化珪素粉末と20乃至35重量%の銅とで、溶融させた銅に炭化珪素粉末を分散混入させて形成し、その線熱膨張係数を鉄−ニッケル−コバルト合金や鉄−ニッケル合金から成る枠体あるいは酸化アルミニウム質焼結体やガラスセラミック焼結体等のセラミックス絶縁体から成るセラミック端子体の線熱膨張係数(6ppm/℃乃至8ppm/℃:室温〜800℃)に近似するものとなしたことから、基体上に枠体やセラミック端子体を取着させる際や光半導体素子が作動した際等において基体と枠体やセラミック端子体に熱が作用したとしても基体と枠体やセラミック端子体との間には両者の線熱膨張係数の相違に起因する大きな熱応力が発生することはなく、これによって光半導体素子を収容する空所の気密封止が常に完全となり、光半導体素子を安定かつ正常に作動させることが可能となる。また、65乃至80重量%の表面に酸化物膜を被着した炭化珪素粉末と20乃至35重量%の銅とから成る基体は、炭化珪素粉末の表面に酸化物膜を被着させておくことにより、炭化珪素粉末と銅との密着強度が大きく向上して基体としての信頼性が大幅に向上する。また、基体は溶融させた銅に炭化珪素粉末を分散混入させて形成したものであることから、基体のヤング率が銅のヤング率に依存する100GPa程度の軟質なものとなり、その結果、基体上に光半導体素子を載置させた後、基体と光半導体素子に熱が作用して両者間に熱応力が発生したとしても、その熱応力は基体を若干変形させることによって効率よく吸収され、光半導体素子が基体より剥離したり、光半導体素子に割れやクラックを発生したりすることがなく、光半導体素子を常に正常かつ安定に作動させることができる。
【0013】
【発明の実施の形態】
次に、本発明を添付図面に示す実施例に基づき詳細に説明する。
図1及び図2は本発明の光半導体素子収納用パッケージの一実施例を示し、図1において、1は基体、2は枠体、3は蓋部材である。この基体1と枠体2と蓋部材3とにより内部に光半導体素子4を気密に収容する容器5が構成される。
【0014】
前記基体1はその上面に光半導体素子4が載置される載置部1aを有しており、該載置部1aには光半導体素子4が取着されている。
【0015】
前記基体1は光半導体素子4を支持する支持部材として作用するとともに光半導体素子4が作動時に発する熱を良好に吸収し、かつ大気中に効率よく放散させて光半導体素子4を常に適温とする作用をなす。
【0016】
なお前記基体1は表面に酸化物膜を被着した炭化珪素粉末と銅とから成り、溶融させた銅に平均粒径5μm程度の表面に酸化物膜を被着した炭化珪素粉末を分散混入させることによって、製作されている。
【0017】
また前記基体1の上面外周部には該基体1の上面に設けた光半導体素子4が載置される載置部1aを囲繞するようにして枠体2がロウ材等の接着剤を介して取着されており、該枠体2の内側に光半導体素子4を収容するための空所が形成されている。
【0018】
前記枠体2は鉄−ニッケル−コバルト合金や鉄−ニッケル合金で形成されており、例えば、鉄−ニッケル−コバルト合金等のインゴット(塊)をプレス加工により枠状とすることによって形成され、基体1への取着は基体1上面と枠体2の下面とを銀ロウ材を介しロウ付けすることによって行われている。
【0019】
前記枠体2はその側部に貫通孔2aが設けてあり、該貫通孔2aの内壁面には筒状の固定部材6が取着され、更に筒状の固定部材6の内側の一端には、例えば、透光性部材7が取着されている。
【0020】
前記枠体2の側部に形成されている貫通孔2aは固定部材6を枠体2に取着するための取着孔として作用し、枠体2の側部に従来周知のドリル孔あけ加工を施すことによって所定形状に形成される。
【0021】
前記枠体2の貫通孔2aに取着されている固定部材6は光ファイバー部材8を枠体2に固定する際の下地固定部材として作用するとともに光半導体素子4が励起した光を光ファイバー部材8に伝達させる作用をなし、その内側の一端には、例えば、透光性部材7が取着され、また外側の一端には光ファイバー部材8が取着される。
【0022】
前記筒状の固定部材6は鉄−ニッケル−コバルト合金や鉄−ニッケル合金等の金属材料からなり、例えば、鉄−ニッケル−コバルト合金等のインゴット(塊)をプレス加工により筒状とすることによって形成されている。
【0023】
更に前記固定部材6はその内側の一端に、例えば、透光性部材7が取着されており、該透光性部材7は固定部材6の内部空間を塞ぎ、基体1と枠体2と蓋部材3とからなる容器5の気密封止を保持させるとともに固定部材6の内部空間を伝達する光半導体素子4の励起した光をそのまま固定部材6に取着した光ファイバー部材8に伝達させる作用をなす。
【0024】
前記透光性部材7は例えば、酸化珪素、酸化鉛を主成分とした鉛系及びホウ酸、ケイ砂を主成分としたホウケイ酸系の非晶質ガラスで形成されており、該非晶質ガラスは結晶軸が存在しないことから光半導体素子4の励起する光を透光性部材7を通過させて光ファイバー部材8に授受させる場合、光半導体素子4の励起した光は透光性部材7で複屈折を起こすことはなくそのまま光ファイバー部材8に授受されることとなり、その結果、光半導体素子4が励起した光の光ファイバー部材8への授受が高効率となって光信号の伝送効率を高いものとなすことができる。
【0025】
なお、前記透光性部材7の固定部材6への取着は、例えば、透光性部材7の外周部に予め金属層を被着させておき、該金属層と固定部材6とを金−錫合金等のロウ材を介しロウ付けすることによって行われる。
【0026】
更に前記枠体2はその側部に切欠部2bが形成されており、該切欠部2bにはセラミック端子体9が挿着されている。
【0027】
前記セラミック端子体9はセラミックス絶縁体10と複数個の配線層11とから成り、配線層11を枠体2に対し電気的絶縁をもって枠体2の内側から外側にかけて配設する作用をなし、セラミックス絶縁体10の側面に予め金属層を被着させておくとともに該金属層を枠体2の切欠部2b内壁面に銀ロウ等のロウ材を介し取着することによって枠体2の切欠部2bに挿着される。
【0028】
前記セラミック端子体9のセラミックス絶縁体10は酸化アルミニウム質焼結体やガラスセラミック焼結体等から成り、例えば、酸化アルミニウム質焼結体から成る場合には酸化アルミニウム、酸化珪素、酸化マグネシウム、酸化カルシウム等の原料粉末に適当な有機バインダー、可塑剤、溶剤を添加混合して泥漿状となすとともに該泥漿物を従来周知のドクターブレード法やカレンダーロール法を採用することによってセラミックグリーンシート(セラミック生シート)を形成し、次に前記セラミックグリーンシートに適当な打ち抜き加工を施し、所定形状となすとともに必要に応じて複数枚を積層して成形体となし、しかる後、これを1600℃の温度で焼成することによって製作される。
【0029】
また前記セラミック端子体9には枠体2の内側から外側にかけて導出する複数個の配線層11が埋設されており、該配線層11の枠体2の内側に位置する領域には光半導体素子4の各電極がボンディングワイヤ12を介して電気的に接続され、また枠体2の外側に位置する領域には外部電気回路と接続される外部リード端子13が銀ロウ等のロウ材を介してロウ付け取着されている。
【0030】
前記配線層11は光半導体素子4の各電極を外部電気回路に接続する際の導電路として作用し、タングステン、モリブデン、マンガン、銅、銀等の金属粉末により形成されている。
【0031】
前記配線層11はタングステン、モリブデン、マンガン、銅、銀等の金属粉末に適当な有機バインダー、溶剤等を添加混合して得られた金属ペーストをセラミックス絶縁体10となるセラミックグリーンシートに予め従来周知のスクリーン印刷法等の印刷法を用いることにより所定パターンに印刷塗布しておくことによってセラミックス絶縁体10に形成される。
【0032】
なお前記配線層11はその露出する表面にニッケル、金等の耐蝕性に優れ、かつロウ材との濡れ性に優れる金属を1μm〜20μmの厚みにメッキ法により被着させておくと、配線層11の酸化腐蝕を有効に防止することができるとともに配線層11への外部リード端子13のロウ付けを強固となすことができる。従って、前記配線層11はその露出する表面にニッケル、金等の耐蝕性に優れ、かつロウ材との濡れ性に優れる金属を1μm〜20μmの厚みに被着させておくことが好ましい。
【0033】
また前記配線層11には外部リード端子13が銀ロウ等のロウ材を介してロウ付け取着されており、該外部リード端子13は容器5内部に収容する光半導体素子4の各電極を外部電気回路に電気的に接続する作用をなし、外部リード端子13を外部電気回路に接続することによって容器5内部に収容される光半導体素子4は配線層11および外部リード端子13を介して外部電気回路に電気的に接続されることとなる。
【0034】
前記外部リード端子13は鉄−ニッケル−コバルト合金や鉄−ニッケル合金等の金属材料から成り、例えば、鉄−ニッケル−コバルト合金等の金属から成るインゴット(塊)に圧延加工法や打ち抜き加工法等、従来周知の金属加工法を施すことによって所定形状に形成される。
【0035】
更に前記枠体2はその上面に、例えば、鉄−ニッケル−コバルト合金や鉄−ニッケル合金等の金属材料から成る蓋部材3が接合され、これによって基体1と枠体2と蓋部材3とからなる容器5の内部に光半導体素子4が気密に封止されることとなる。
【0036】
前記蓋部材3の枠体2上面への接合は、例えば、シームウェルド法等の溶接によって行われる。
【0037】
本発明の光半導体素子収納用パッケージにおいては、前記基体1を65乃至80重量%の表面に酸化物膜を被着した炭化珪素粉末と20乃至35重量%の銅とで、溶融させた銅に炭化珪素粉末を分散混入させて形成しておくことが重要である。
【0038】
前記基体1を65乃至80重量%の表面に酸化物膜を被着した炭化珪素粉末と20乃至35重量%の銅とで、溶融させた銅に炭化珪素粉末を分散混入させて形成したことから、基体1の熱伝導率が270W/m・K以上の高いものとなり、その結果、基体1上に載置される半導体素子4が作動時に多量の熱を発したとしてもその熱は基体1の載置部1aの平面方向に素早く広がらせるとともに基体1の厚さ方向を良好に伝搬させて外部に効率よく確実に放散させることができ、これによって光半導体素子4は常に適温となり、光半導体素子4を長期間にわたり安定かつ正常に作動させることが可能となる。
【0039】
また上述の65乃至80重量%の表面に酸化物膜を被着した炭化珪素粉末と20乃至35重量%の銅とから成り、溶融させた銅に炭化珪素粉末を分散混入させたものである基体1は、その線熱膨張係数が鉄−ニッケル−コバルト合金や鉄−ニッケル合金から成る枠体2あるいは酸化アルミニウム質焼結体やガラスセラミック焼結体等のセラミックス絶縁体10から成るセラミック端子体9の線熱膨張係数(6ppm/℃乃至8ppm/℃:室温〜800℃)に近似するものとなり、その結果、基体1上に枠体2やセラミック端子体9等を取着させる際や光半導体素子4が作動した際等において基体1と枠体2とセラミック端子体9に熱が作用したとしても基体1と枠体2とセラミック端子体9との間には両者の線熱膨張係数の差に起因する大きな熱応力が発生することはなく、これによって光半導体素子4を収容する容器5の気密封止が常に完全となり、光半導体素子4を安定かつ正常に作動させることが可能となる。
【0040】
なお前記基体1は表面に酸化物膜を被着した炭化珪素粉末の量が65重量%未満となると、言い換えれば銅の量が35重量%を超えると、基体1の線熱膨張係数が枠体2の線熱膨張係数に対して大きく相違することとなり、その結果、基体1に枠体2を強固に取着させておくことができなくなってしまい、また表面に酸化物膜を被着した炭化珪素粉末の量が80重量%を超えると、言い換えれば銅の量が20重量%未満となると基体1の熱伝導率が大きく劣化し、光半導体素子4が作動時に多量の熱を発した場合、その熱を基体1を介して外部に完全に放散させることができなくなり、その結果、光半導体素子4を高温として光半導体素子4に熱破壊を招来させたり、特性にばらつきが生じ安定に作動させることができなくなってしまう。従って、前記基体1は表面に酸化物膜を被着した炭化珪素粉末の量が65乃至80重量%の範囲に、銅の量が20乃至35重量%の範囲に特定される。
【0041】
また前記65乃至80重量%の表面に酸化物膜を被着した炭化珪素粉末と、20乃至35重量%の銅とから成る基体1は炭化珪素粉末の表面に酸化物膜、例えばSiO2等の膜を0.05μm乃至1μm程度の厚みに被着させておくことにより、炭化珪素粉末と銅との密着強度が大きく向上して基体1としての信頼性が大幅に向上する。従って前記基体1は表面に酸化物膜を0.05μm乃至1μmの厚みに被着させた炭化珪素粉末と銅とで形成しておくことが必要である
【0042】
前記炭化珪素粉末の表面に酸化物膜を被着させる方法としては、例えば、炭化珪素粉末を大気中で約1200℃の温度で加熱することによって行われる。
【0043】
更に、前記基体1は溶融させた銅に炭化珪素粉末を分散混入させて形成したことから、基体1のヤング率が銅のヤング率に依存する100GPa程度の軟質なものとなり、その結果、基体1上に光半導体素子4を載置させた後、基体1と光半導体素子4に熱が作用して両者間に熱応力が発生したとしても、その熱応力は基体1を若干変形させることによって効率よく吸収され、光半導体素子4が基体1より剥離したり、光半導体素子4に割れやクラックを発生したりすることがなく、光半導体素子4を常に正常かつ安定に作動させることができる。
【0044】
かくして上述の光半導体素子収納用パッケージによれば、基体1の光半導体素子載置部1a上に光半導体素子4を固定するとともに該光半導体素子4の各電極をボンディングワイヤ12を介して所定の配線層11に接続させ、次に枠体2の上面に蓋部材3を接合させ、基体1と枠体2と蓋部材3とから成る容器5内部に光半導体素子4を収容し、最後に枠体2に取着させた筒状の固定部材6に光ファイバー部材8を取着させることによって最終製品としての光半導体装置となる。
【0045】
なお、本発明は上述の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更は可能である。
【0046】
【発明の効果】
本発明の光半導体素子収納用パッケージによれば、基体を65乃至80重量%の表面に酸化物膜を被着した炭化珪素粉末と20乃至35重量%の銅とで、溶融させた銅に炭化珪素粉末を分散混入させて形成し、熱伝導率を270W/m・K以上の高いものとなしたことから、基体上に載置される光半導体素子が作動時に多量の熱を発したとしてもその熱は基体の光半導体素子載置部平面方向に素早く広がらせるとともに基体の厚さ方向を良好に伝搬させて外部に効率よく確実に放散させることができ、これによって光半導体素子は常に適温となり、光半導体素子を長期間にわたり安定かつ正常に作動させることが可能となる。
【0047】
また本発明の光半導体素子収納用パッケージによれば、基体を65乃至80重量%の表面に酸化物膜を被着した炭化珪素粉末と20乃至35重量%の銅とで、溶融させた銅に炭化珪素粉末を分散混入させて形成し、その線熱膨張係数を鉄−ニッケル−コバルト合金や鉄−ニッケル合金から成る枠体あるいは酸化アルミニウム質焼結体やガラスセラミック焼結体等のセラミックス絶縁体から成るセラミック端子体の線熱膨張係数(6ppm/℃乃至8ppm/℃:室温〜800℃)に近似するものとなしたことから、基体上に枠体やセラミック端子体を取着させる際や光半導体素子が作動した際等において基体と枠体やセラミック端子体に熱が作用したとしても基体と枠体やセラミック端子体との間には両者の線熱膨張係数の相違に起因する大きな熱応力が発生することはなく、これによって光半導体素子を収容する空所の気密封止が常に完全となり、光半導体素子を安定かつ正常に作動させることが可能となる。また、65乃至80重量%の表面に酸化物膜を被着した炭化珪素粉末と20乃至35重量%の銅とから成る基体は、炭化珪素粉末の表面に酸化物膜を被着させておくことにより、炭化珪素粉末と銅との密着強度が大きく向上して基体としての信頼性が大幅に向上する。また、基体は溶融させた銅に炭化珪素粉末を分散混入させて形成したものであることから、基体のヤング率が銅のヤング率に依存する100GPa程度の軟質なものとなり、その結果、基体上に光半導体素子を載置させた後、基体と光半導体素子に熱が作用して両者間に熱応力が発生したとしても、その熱応力は基体を若干変形させることによって効率よく吸収され、光半導体素子が基体より剥離したり、光半導体素子に割れやクラックを発生したりすることがなく、光半導体素子を常に正常かつ安定に作動させることができる。
【図面の簡単な説明】
【図1】本発明の光半導体素子収納用パッケージの一実施例を示す断面図である。
【図2】図1に示す光半導体素子収納用パッケージの平面図である。
【符号の説明】
1・・・・・基体
1a・・・・載置部
2・・・・・枠体
2a・・・・貫通孔
2b・・・・切欠部
3・・・・・蓋部材
4・・・・・光半導体素子
5・・・・・容器
6・・・・・固定部材
7・・・・・透光性部材
8・・・・・光ファイバー部材
9・・・・・セラミック端子体
10・・・・セラミックス絶縁体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical semiconductor element accommodation package for accommodating an optical semiconductor element.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, an optical semiconductor element housing package for accommodating an optical semiconductor element is generally made of a metal material such as iron-nickel-cobalt alloy or iron-nickel alloy, and the optical semiconductor element is placed in the center of the upper surface. An iron-nickel-cobalt alloy having a through hole and a notch formed on a side portion thereof, and a base member having a portion, and a brazing material such as silver brazing, which is joined to the base member so as to surround the optical semiconductor element mounting portion And an iron-nickel-cobalt alloy having a space that is attached to a through-hole of the frame or a frame around the through-hole, and to which an optical signal is transmitted. A cylindrical fixing member made of a metal material such as a metal, and a fixing member attached to the cylindrical fixing member with a low melting point brazing material such as a gold-tin alloy having a melting point of 200 to 400 ° C. Translucent made of amorphous glass A ceramic having a member and a wiring layer that is inserted into a notch portion of the frame and electrically connects each electrode of the optical semiconductor element to a ceramic insulator such as an aluminum oxide sintered body via a bonding wire It comprises a terminal body and a lid member that is attached to the upper surface of the frame body and hermetically seals the optical semiconductor element, and places the optical semiconductor element on the optical semiconductor element mounting portion of the base. Each electrode of the optical semiconductor element is electrically connected to the wiring layer of the ceramic terminal body via a bonding wire, and then a lid member is joined to the upper surface of the frame body, and the base, the frame body, and the lid member are joined. An optical semiconductor device as a product is obtained by housing an optical semiconductor element in an airtight container and attaching an optical fiber member to a cylindrical fixing member by, for example, YAG welding.
[0003]
In the above-described package for housing an optical semiconductor element, since the optical semiconductor element housed therein is driven in a high frequency region and is easily affected by external noise, the base body and the frame body are formed of a metal material, and the container Shielding the inside prevents the external noise from affecting the optical semiconductor element. The base and the frame are generally made of iron-nickel-cobalt alloy or iron-nickel alloy in order to match the linear thermal expansion coefficient of a ceramic terminal body or an optical semiconductor element.
[0004]
However, in this conventional package for storing an optical semiconductor element, the thermal conductivity of the substrate on which the optical semiconductor element is placed and fixed is about 20 W / m · K, and heat cannot be transmitted efficiently. When the semiconductor element generates heat during operation, the heat cannot be sufficiently dissipated to the outside through the base, and as a result, the optical semiconductor element becomes high temperature by the heat generated by the optical semiconductor element itself, and the thermal destruction is caused. It has the disadvantages of causing malfunctions, causing thermal degradation in characteristics, and malfunctioning.
[0005]
Therefore, in order to eliminate the above drawbacks, it is considered that the base is formed of a copper-tungsten alloy or a copper-molybdenum alloy having a high thermal conductivity and a linear thermal expansion coefficient that approximates the linear thermal expansion coefficient of the ceramic terminal body. It is done.
[0006]
Such copper-tungsten alloy and copper-molybdenum alloy are generally produced by firing a tungsten powder or molybdenum powder to obtain a sintered porous body, and then impregnating molten copper into the pores of the sintered porous body. For example, when copper is impregnated into a sintered porous body made of tungsten, the sintered porous body is in the range of 75 to 90% by weight and copper is in the range of 10 to 25% by weight. When copper is impregnated, the sintered porous body is in the range of 80 to 90% by weight and copper is in the range of 10 to 20% by weight.
[0007]
[Problems to be solved by the invention]
However, in this conventional package for housing an optical semiconductor element, the base body bakes tungsten powder or molybdenum powder to obtain a sintered porous body and impregnates the molten copper in the pores of the sintered porous body. The thermal conductivity is about 180 W / m · K.
[0008]
For this reason, the optical semiconductor element storage package using a copper-tungsten alloy or the like that has been generally manufactured as a base is superior in heat dissipation than the optical semiconductor element storage package using an iron-nickel-cobalt alloy or the like as the base. However, if an optical semiconductor element that emits a large amount of heat compared to the conventional case is accommodated during operation, the heat generated by the optical semiconductor element cannot be completely released to the outside through the substrate. As a result, the optical semiconductor element has a disadvantage that it becomes high temperature due to heat generated by the element itself, causing the optical semiconductor element to be thermally destroyed or having a variation in characteristics, and cannot be operated stably.
[0009]
The present invention has been devised based on the above knowledge, and its purpose is to always maintain an optical semiconductor element that emits a large amount of heat at the time of operation with a high light emission output, and to make the optical semiconductor element function stably over a long period of time. This is to propose a package for housing an optical semiconductor element.
[0010]
[Means for Solving the Problems]
The present invention includes a base having a mounting portion on which an optical semiconductor element is mounted and an optical semiconductor element mounting portion mounted on the base so as to surround the through hole and a notch on the side. A frame made of an iron-nickel-cobalt alloy or an iron-nickel alloy, a fixing member attached to the through-hole or a frame around the through-hole, to which an optical fiber member is joined, and inserted into the notch A ceramic terminal body in which a wiring layer to which each electrode of the optical semiconductor element is connected to the ceramic insulator is formed; and a lid member that is attached to the upper surface of the frame body and hermetically seals the optical semiconductor element; an optical semiconductor element storage package consisting, the substrate Ri consists silicon carbide powder and 20 to 35 wt% of copper deposited oxide film 65 to 80 wt% of the surface was melted the Silicon carbide powder on copper The Der Rukoto are dispersed mixed those characterized.
[0011]
According to the optical semiconductor element storage package of the present invention, the base is carbonized into molten copper with silicon carbide powder having an oxide film deposited on the surface of 65 to 80% by weight and 20 to 35% by weight of copper. Even if the optical semiconductor element mounted on the substrate emits a large amount of heat during operation, it is formed by dispersing and mixing silicon powder and has a high thermal conductivity of 270 W / m · K or higher. The heat spreads quickly in the plane direction of the optical semiconductor element mounting portion of the base and can propagate well in the thickness direction of the base to efficiently and reliably dissipate to the outside. It becomes possible to operate the optical semiconductor element stably and normally over a long period of time.
[0012]
Further, according to the optical semiconductor element storage package of the present invention, the base is melted with copper carbide powder having an oxide film deposited on the surface of 65 to 80% by weight and copper of 20 to 35% by weight. Formed by dispersing and mixing silicon carbide powder , and its linear thermal expansion coefficient is a frame made of iron-nickel-cobalt alloy or iron-nickel alloy, or ceramic insulator such as aluminum oxide sintered body or glass ceramic sintered body Since it approximates the linear thermal expansion coefficient (6 ppm / ° C. to 8 ppm / ° C .: room temperature to 800 ° C.) of the ceramic terminal body made of Even when heat is applied to the base body, the frame body, and the ceramic terminal body when the semiconductor element is operated, the difference between the linear thermal expansion coefficients of the base body, the frame body, and the ceramic terminal body is large. Thermal stresses are not generated, thereby becomes always hermetic sealing of the cavity for accommodating the optical semiconductor element completely, the optical semiconductor element can be actuated stably and properly. In addition, in a base made of silicon carbide powder having an oxide film deposited on the surface of 65 to 80% by weight and copper of 20 to 35% by weight, the oxide film is deposited on the surface of the silicon carbide powder. As a result, the adhesion strength between the silicon carbide powder and copper is greatly improved, and the reliability of the substrate is greatly improved. In addition, since the substrate is formed by dispersing and mixing silicon carbide powder in molten copper, the substrate has a soft Young's modulus of about 100 GPa, which depends on the Young's modulus of copper. After the optical semiconductor element is placed on the substrate, even if heat acts on the base and the optical semiconductor element and a thermal stress is generated between the two, the thermal stress is efficiently absorbed by slightly deforming the base. The semiconductor element can be operated normally and stably without the semiconductor element being peeled off from the base and without being cracked or cracked in the optical semiconductor element.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described in detail based on embodiments shown in the accompanying drawings.
1 and 2 show an embodiment of an optical semiconductor element housing package according to the present invention. In FIG. 1, 1 is a base, 2 is a frame, and 3 is a lid member. The base body 1, the frame body 2, and the lid member 3 constitute a container 5 that contains the optical semiconductor element 4 in an airtight manner.
[0014]
The base 1 has a mounting portion 1a on which an optical semiconductor element 4 is mounted, and the optical semiconductor element 4 is attached to the mounting portion 1a.
[0015]
The base body 1 acts as a support member for supporting the optical semiconductor element 4 and absorbs heat generated when the optical semiconductor element 4 is in operation, and efficiently dissipates it into the atmosphere so that the optical semiconductor element 4 is always kept at an appropriate temperature. It works.
[0016]
Note the substrate 1 is made of oxide film and the silicon carbide powder and copper deposited on the surface, the oxide film dispersed and mixed with silicon carbide powder applied to the mean particle size 5μm about surface copper is molten by, it has been manufacturing work.
[0017]
Further, the frame body 2 is placed on the outer peripheral portion of the upper surface of the base body 1 with an adhesive such as a brazing material so as to surround the mounting portion 1a on which the optical semiconductor element 4 provided on the upper surface of the base body 1 is mounted. A space for accommodating the optical semiconductor element 4 is formed inside the frame 2.
[0018]
The frame 2 is formed of an iron-nickel-cobalt alloy or an iron-nickel alloy, and is formed by, for example, forming an ingot such as an iron-nickel-cobalt alloy into a frame shape by pressing. Attachment to 1 is performed by brazing the upper surface of the substrate 1 and the lower surface of the frame body 2 with a silver brazing material.
[0019]
The frame body 2 is provided with a through hole 2a on a side portion thereof, and a cylindrical fixing member 6 is attached to an inner wall surface of the through hole 2a, and further, at one end inside the cylindrical fixing member 6 For example, the translucent member 7 is attached.
[0020]
The through-hole 2a formed in the side part of the frame body 2 acts as an attachment hole for attaching the fixing member 6 to the frame body 2, and a conventionally well-known drilling process is performed on the side part of the frame body 2. To form a predetermined shape.
[0021]
The fixing member 6 attached to the through hole 2a of the frame body 2 acts as a base fixing member when fixing the optical fiber member 8 to the frame body 2, and the light excited by the optical semiconductor element 4 is applied to the optical fiber member 8. For example, a translucent member 7 is attached to one inner end, and an optical fiber member 8 is attached to one outer end.
[0022]
The cylindrical fixing member 6 is made of a metal material such as an iron-nickel-cobalt alloy or an iron-nickel alloy. For example, an ingot such as an iron-nickel-cobalt alloy is formed into a cylindrical shape by pressing. Is formed.
[0023]
Further, for example, a translucent member 7 is attached to one end of the fixing member 6, and the translucent member 7 closes the internal space of the fixing member 6, and the base body 1, the frame body 2, and the lid. The container 5 composed of the member 3 is kept hermetically sealed, and the light excited by the optical semiconductor element 4 that transmits the internal space of the fixing member 6 is transmitted as it is to the optical fiber member 8 attached to the fixing member 6. .
[0024]
The translucent member 7 is made of, for example, lead-based silicon oxide, lead-based amorphous boric acid, and borosilicate-based amorphous glass mainly composed of silica sand. Since the crystal axis does not exist, when the light excited by the optical semiconductor element 4 passes through the translucent member 7 and is transmitted to the optical fiber member 8, the light excited by the optical semiconductor element 4 is duplicated by the translucent member 7. The optical fiber member 8 is transmitted and received without being refracted, and as a result, the transmission and reception of light excited by the optical semiconductor element 4 to the optical fiber member 8 is highly efficient and the transmission efficiency of the optical signal is high. Can be made.
[0025]
The translucent member 7 is attached to the fixing member 6 by, for example, preliminarily depositing a metal layer on the outer peripheral portion of the translucent member 7 and connecting the metal layer and the fixing member 6 to the gold- It is performed by brazing through a brazing material such as a tin alloy.
[0026]
Further, the frame body 2 is formed with a notch 2b on the side thereof, and a ceramic terminal body 9 is inserted into the notch 2b.
[0027]
The ceramic terminal body 9 is composed of a ceramic insulator 10 and a plurality of wiring layers 11. The ceramic terminal body 9 has an action of disposing the wiring layer 11 from the inner side to the outer side of the frame body 2 with electrical insulation with respect to the frame body 2. A metal layer is preliminarily deposited on the side surface of the insulator 10, and the metal layer is attached to the inner wall surface of the notch 2b of the frame 2 via a brazing material such as silver brazing, whereby the notch 2b of the frame 2 is obtained. Inserted.
[0028]
The ceramic insulator 10 of the ceramic terminal body 9 is made of an aluminum oxide sintered body, a glass ceramic sintered body, or the like. For example, in the case of an aluminum oxide sintered body, aluminum oxide, silicon oxide, magnesium oxide, oxide An appropriate organic binder, plasticizer, and solvent are added to the raw material powder such as calcium to make a slurry, and the slurry is made into a ceramic green sheet (ceramic green sheet) by adopting a conventionally known doctor blade method or calendar roll method. Sheet), and then subjecting the ceramic green sheet to an appropriate punching process to obtain a predetermined shape and, if necessary, a plurality of sheets are laminated to form a molded body, which is then heated at a temperature of 1600 ° C. Manufactured by firing.
[0029]
In addition, a plurality of wiring layers 11 led out from the inside to the outside of the frame body 2 are embedded in the ceramic terminal body 9, and the optical semiconductor element 4 is located in a region located inside the frame body 2 of the wiring layer 11. The external lead terminals 13 connected to an external electric circuit are brazed via a brazing material such as silver brazing in a region located outside the frame body 2. It is attached.
[0030]
The wiring layer 11 functions as a conductive path for connecting each electrode of the optical semiconductor element 4 to an external electric circuit, and is formed of a metal powder such as tungsten, molybdenum, manganese, copper, or silver.
[0031]
For the wiring layer 11, a metal paste obtained by adding and mixing a suitable organic binder, solvent, etc. to a metal powder such as tungsten, molybdenum, manganese, copper, silver, etc. is well known in advance in a ceramic green sheet to be a ceramic insulator 10. The ceramic insulator 10 is formed by printing and applying in a predetermined pattern by using a printing method such as the screen printing method.
[0032]
The wiring layer 11 is formed by depositing a metal having excellent corrosion resistance such as nickel and gold and excellent wettability with a brazing material to a thickness of 1 μm to 20 μm by plating. 11 can be effectively prevented, and the brazing of the external lead terminal 13 to the wiring layer 11 can be strengthened. Therefore, the wiring layer 11 is preferably coated with a metal having excellent corrosion resistance, such as nickel and gold, and excellent wettability with the brazing material on the exposed surface to a thickness of 1 μm to 20 μm.
[0033]
Also, external lead terminals 13 are brazed and attached to the wiring layer 11 via a brazing material such as silver solder, and the external lead terminals 13 connect the electrodes of the optical semiconductor element 4 accommodated in the container 5 to the outside. The optical semiconductor element 4 which is electrically connected to the electric circuit and is accommodated in the container 5 by connecting the external lead terminal 13 to the external electric circuit is connected to the external electric circuit via the wiring layer 11 and the external lead terminal 13. It will be electrically connected to the circuit.
[0034]
The external lead terminal 13 is made of a metal material such as iron-nickel-cobalt alloy or iron-nickel alloy. For example, an ingot made of a metal such as iron-nickel-cobalt alloy is rolled or punched. Then, it is formed into a predetermined shape by applying a conventionally known metal processing method.
[0035]
Further, a lid member 3 made of, for example, a metal material such as an iron-nickel-cobalt alloy or an iron-nickel alloy is joined to the upper surface of the frame body 2, whereby the base body 1, the frame body 2, and the lid member 3 are joined together. The optical semiconductor element 4 is hermetically sealed inside the resulting container 5.
[0036]
The lid member 3 is joined to the upper surface of the frame 2 by, for example, welding such as a seam weld method.
[0037]
In the package for housing an optical semiconductor element of the present invention, the base 1 is melted with silicon carbide powder having an oxide film deposited on the surface of 65 to 80% by weight and copper of 20 to 35% by weight. It is important to form the silicon carbide powder by dispersing and mixing it .
[0038]
In an oxide film of silicon carbide powder deposited and 20 to 35 wt% of copper said substrate 1 65 to 80 wt% of the surface, that is formed by a silicon carbide powder to the copper was melted and dispersed mixed from it shall thermal conductivity of the substrate 1 is higher than 270 W / m · K, as a result, the heat also as a semiconductor element 4 mounted on the base body 1 has issued a large amount of heat during operation base 1 Can be quickly spread in the plane direction of the mounting portion 1a and can be propagated in the thickness direction of the substrate 1 efficiently and efficiently and efficiently dissipated to the outside. As a result, the optical semiconductor element 4 always has an appropriate temperature. It becomes possible to operate the element 4 stably and normally over a long period of time.
[0039]
Der The Ri consists of 65 to 80 wt% of silicon carbide powder deposited oxide film on the surface of the 20 to 35% by weight of copper described above, that the silicon carbide powder to the copper was melted and dispersed mixed The substrate 1 has a linear thermal expansion coefficient of a ceramic terminal made of a frame body 2 made of iron-nickel-cobalt alloy or iron-nickel alloy, or a ceramic insulator 10 such as an aluminum oxide sintered body or a glass ceramic sintered body. It approximates the linear thermal expansion coefficient of the body 9 (6 ppm / ° C. to 8 ppm / ° C .: room temperature to 800 ° C.). As a result, when attaching the frame body 2, the ceramic terminal body 9, etc. Even when heat is applied to the base body 1, the frame body 2, and the ceramic terminal body 9 when the semiconductor element 4 is actuated, the linear thermal expansion coefficients of the two are between the base body 1, the frame body 2, and the ceramic terminal body 9. Large due to differences Thermal stresses are not generated, thereby becomes always hermetic sealing of the container 5 housing the optical semiconductor element 4 completely, the optical semiconductor element 4 can be operated stably and properly.
[0040]
Note that when the amount of silicon carbide powder having an oxide film deposited on the surface of the substrate 1 is less than 65% by weight, in other words, when the amount of copper exceeds 35% by weight, the linear thermal expansion coefficient of the substrate 1 becomes a frame. As a result, the frame body 2 cannot be firmly attached to the base body 1 and the surface of the carbonized carbon film is covered with an oxide film. When the amount of silicon powder exceeds 80% by weight, in other words, when the amount of copper is less than 20% by weight, the thermal conductivity of the substrate 1 is greatly deteriorated, and when the optical semiconductor element 4 generates a large amount of heat during operation, The heat cannot be completely dissipated to the outside through the base 1, and as a result, the optical semiconductor element 4 is heated to a high temperature, causing the optical semiconductor element 4 to be thermally destroyed, or having a variation in characteristics, thereby stably operating. It becomes impossible to do. Accordingly, the substrate 1 is specified such that the amount of silicon carbide powder having an oxide film deposited on the surface thereof is in the range of 65 to 80% by weight and the amount of copper is in the range of 20 to 35% by weight.
[0041]
The silicon carbide powder deposited oxide film on the 65 to 80 wt% of the surface, the substrate 1 consisting of a 20 to 35% by weight of copper oxide film on the surface of the silicon carbide powder, for example of SiO 2 or the like the deposited is allowed by us Kukoto a film thickness of about 0.05μm to 1 [mu] m, the reliability of the substrate 1 adhesion strength is greatly improved with the silicon carbide powder and the copper is greatly improved. Therefore, it is necessary to form the substrate 1 with silicon carbide powder and copper with an oxide film deposited on the surface to a thickness of 0.05 μm to 1 μm.
[0042]
Wherein an oxide film on the surface of the silicon carbide powder as a method of depositing, for example, a carbide silicofluoride Motoko powder is carried out by heating at a temperature of about 1200 ° C. in air.
[0043]
Furthermore, the substrate 1 from the formed by dispersing mixing silicon carbide powder to the copper was melted, becomes as soft about 100GPa Young's modulus of the base 1 is dependent on the Young's modulus of copper, as a result, the substrate 1 Even if heat is applied to the base 1 and the optical semiconductor element 4 after the optical semiconductor element 4 is placed thereon and a thermal stress is generated between the two, the thermal stress is improved by slightly deforming the base 1. It is well absorbed, and the optical semiconductor element 4 can be operated normally and stably without the optical semiconductor element 4 being peeled off from the substrate 1 and without being cracked or cracked.
[0044]
Thus, according to the above-described package for housing an optical semiconductor element, the optical semiconductor element 4 is fixed on the optical semiconductor element mounting portion 1a of the base 1, and each electrode of the optical semiconductor element 4 is fixed to the predetermined region via the bonding wire 12. Next, the lid member 3 is joined to the upper surface of the frame body 2, the optical semiconductor element 4 is accommodated in the container 5 including the base body 1, the frame body 2, and the lid member 3. By attaching the optical fiber member 8 to the cylindrical fixing member 6 attached to the body 2, an optical semiconductor device as a final product is obtained.
[0045]
In addition, this invention is not limited to the above-mentioned Example, A various change is possible if it is a range which does not deviate from the summary of this invention.
[0046]
【The invention's effect】
According to the optical semiconductor element storage package of the present invention, the base is carbonized into molten copper with silicon carbide powder having an oxide film deposited on the surface of 65 to 80% by weight and 20 to 35% by weight of copper. Even if the optical semiconductor element mounted on the substrate emits a large amount of heat during operation, it is formed by dispersing and mixing silicon powder and has a high thermal conductivity of 270 W / m · K or higher. The heat spreads quickly in the plane direction of the optical semiconductor element mounting portion of the base and can propagate well in the thickness direction of the base to efficiently and reliably dissipate to the outside. It becomes possible to operate the optical semiconductor element stably and normally over a long period of time.
[0047]
Further, according to the optical semiconductor element storage package of the present invention, the base is melted with copper carbide powder having an oxide film deposited on the surface of 65 to 80% by weight and copper of 20 to 35% by weight. Formed by dispersing and mixing silicon carbide powder , and its linear thermal expansion coefficient is a frame made of iron-nickel-cobalt alloy or iron-nickel alloy, or ceramic insulator such as aluminum oxide sintered body or glass ceramic sintered body Since it approximates the linear thermal expansion coefficient (6 ppm / ° C. to 8 ppm / ° C .: room temperature to 800 ° C.) of the ceramic terminal body made of Even when heat is applied to the base body, the frame body, and the ceramic terminal body when the semiconductor element is operated, the difference between the linear thermal expansion coefficients of the base body, the frame body, and the ceramic terminal body is large. Thermal stresses are not generated, thereby becomes always hermetic sealing of the cavity for accommodating the optical semiconductor element completely, the optical semiconductor element can be actuated stably and properly. In addition, in a base made of silicon carbide powder having an oxide film deposited on the surface of 65 to 80% by weight and copper of 20 to 35% by weight, the oxide film is deposited on the surface of the silicon carbide powder. As a result, the adhesion strength between the silicon carbide powder and copper is greatly improved, and the reliability of the substrate is greatly improved. In addition, since the substrate is formed by dispersing and mixing silicon carbide powder in molten copper, the substrate has a soft Young's modulus of about 100 GPa, which depends on the Young's modulus of copper. After the optical semiconductor element is placed on the substrate, even if heat acts on the base and the optical semiconductor element and a thermal stress is generated between the two, the thermal stress is efficiently absorbed by slightly deforming the base. The semiconductor element can be operated normally and stably without the semiconductor element being peeled off from the base and without being cracked or cracked in the optical semiconductor element.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of an optical semiconductor element housing package of the present invention.
2 is a plan view of the optical semiconductor element housing package shown in FIG. 1. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Base | substrate 1a ... Placement part 2 ... Frame 2a ... Through-hole 2b ... Notch part 3 ... Lid member 4 ... Optical semiconductor element 5... Container 6... Fixing member 7. Translucent member 8... Optical fiber member 9.・ Ceramic insulator

Claims (1)

上面に光半導体素子が載置される載置部を有する基体と、前記基体上に光半導体素子載置部を囲繞するようにして取着され、側部に貫通孔および切欠部を有する鉄−ニッケル−コバルト合金もしくは鉄−ニッケル合金から成る枠体と、前記貫通孔もしくは貫通孔周辺の枠体に取着され、光ファイバー部材が接合される固定部材と、前記切欠部に挿着され、セラミックス絶縁体に光半導体素子の各電極が接続される配線層が形成されているセラミック端子体と、前記枠体の上面に取着され、光半導体素子を気密に封止する蓋部材とから成る光半導体素子収納用パッケージであって、前記基体は65乃至80重量%の表面に酸化物膜を被着した炭化珪素粉末と20乃至35重量%の銅とから成り、溶融させた前記銅に前記炭化珪素粉末を分散混入させたものであることを特徴とする光半導体素子収納用パッケージ。A base having a mounting portion on which an optical semiconductor element is mounted; and an iron having a through-hole and a notch on the side, attached so as to surround the optical semiconductor element mounting portion on the base; A frame made of nickel-cobalt alloy or iron-nickel alloy, a fixing member attached to the through-hole or a frame around the through-hole, to which an optical fiber member is joined, and inserted into the notch, ceramic insulating An optical semiconductor comprising a ceramic terminal body on which a wiring layer to which each electrode of the optical semiconductor element is connected is formed on the body, and a lid member that is attached to the upper surface of the frame body and hermetically seals the optical semiconductor element a package device housing, the substrate Ri consists oxide film of silicon carbide powder deposited and 20 to 35 wt% of copper 65 to 80% by weight of a surface, the carbide to the copper was melted Disperse silicon powder An optical semiconductor element storage package of Der characterized Rukoto those allowed.
JP2001311907A 2001-10-09 2001-10-09 Optical semiconductor element storage package Expired - Fee Related JP3981256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001311907A JP3981256B2 (en) 2001-10-09 2001-10-09 Optical semiconductor element storage package

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001311907A JP3981256B2 (en) 2001-10-09 2001-10-09 Optical semiconductor element storage package

Publications (2)

Publication Number Publication Date
JP2003124557A JP2003124557A (en) 2003-04-25
JP3981256B2 true JP3981256B2 (en) 2007-09-26

Family

ID=19130651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001311907A Expired - Fee Related JP3981256B2 (en) 2001-10-09 2001-10-09 Optical semiconductor element storage package

Country Status (1)

Country Link
JP (1) JP3981256B2 (en)

Also Published As

Publication number Publication date
JP2003124557A (en) 2003-04-25

Similar Documents

Publication Publication Date Title
JP3619393B2 (en) Optical semiconductor element storage package
JP3981256B2 (en) Optical semiconductor element storage package
JP3532114B2 (en) Optical semiconductor element storage package
JP3987649B2 (en) Package for storing semiconductor elements
JP3659306B2 (en) Package for storing semiconductor elements
JP3709084B2 (en) Optical semiconductor element storage package
JP2003304027A (en) Package for housing optical semiconductor element
JP4360567B2 (en) Package for storing semiconductor elements
JP2003037196A (en) Package for housing optical semiconductor element
JP3522132B2 (en) Optical semiconductor element storage package
JP3659305B2 (en) Package for storing semiconductor elements
JP3752447B2 (en) Package for storing semiconductor elements
JPH07211822A (en) Package for accommodating semiconductor element
JP3659304B2 (en) Package for storing semiconductor elements
JP2003142762A (en) Package for housing optical semiconductor element
JP4360568B2 (en) Package for storing semiconductor elements
JP2003101123A (en) Package for storage of optical semiconductor element
JP3659300B2 (en) Package for storing semiconductor elements
JP3792561B2 (en) Package for storing semiconductor elements
JP3659301B2 (en) Package for storing semiconductor elements
JP3971592B2 (en) Package for storing semiconductor elements
JP2000150745A (en) Package for housing optical semiconductor element
JP3709095B2 (en) Optical semiconductor element storage package
JP2003069132A (en) Package for accommodating optical semiconductor element
JP2003008130A (en) Package for housing optical semiconductor element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070629

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees