JP2000150745A - Package for housing optical semiconductor element - Google Patents

Package for housing optical semiconductor element

Info

Publication number
JP2000150745A
JP2000150745A JP10327216A JP32721698A JP2000150745A JP 2000150745 A JP2000150745 A JP 2000150745A JP 10327216 A JP10327216 A JP 10327216A JP 32721698 A JP32721698 A JP 32721698A JP 2000150745 A JP2000150745 A JP 2000150745A
Authority
JP
Japan
Prior art keywords
layer
optical semiconductor
iron
semiconductor element
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10327216A
Other languages
Japanese (ja)
Other versions
JP3457898B2 (en
Inventor
Kazuhiro Kawabata
和弘 川畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP32721698A priority Critical patent/JP3457898B2/en
Publication of JP2000150745A publication Critical patent/JP2000150745A/en
Application granted granted Critical
Publication of JP3457898B2 publication Critical patent/JP3457898B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

PROBLEM TO BE SOLVED: To prevent decrease in cooling efficiency of an optical semiconductor element by an electronic cooling element caused by action of heat from the electronic cooling element for cooling the optical semiconductor element on the optical semiconductor element. SOLUTION: A radiating plate 14 on which an optical semiconductor. element 4 is placed via an electronic cooling element 5 has a core body 14b consisting of a unidirectional composite material having carbon fibers arrayed in the thickness direction and connected by carbon. Both the upper and lower surfaces of the core body 14b are coated with a metal layer 15 having a three-layered structure of a chromium-iron alloy layer 15a, a copper layer 15b and an iron- nickel alloy layer or an iron-nickel-cobalt alloy layer 15c by diffusion bonding. The chromium-iron alloy layer 15a, the copper layer 15b and the iron-nickel alloy layer or iron-nickel-cobalt layer 15c have generally the same thickness.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光半導体素子を収容
するための光半導体素子収納用パッケージに関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical semiconductor element housing package for housing an optical semiconductor element.

【0002】[0002]

【従来の技術】従来、光半導体素子を収容するための光
半導体素子収納用パッケージは、一般に鉄ーニッケルー
コバルト合金や銅ータングステン合金等の金属材料から
成り、上面中央部に光半導体素子が電子冷却素子を間に
挟んで載置される載置部を有する基体と、前記光半導体
素子載置部を囲繞するようにして基体上に銀ロウ等のロ
ウ材を介して接合され、側部に貫通孔及び切欠部を有す
る鉄ーニッケルーコバルト合金等の金属材料から成る枠
体と、前記枠体の貫通孔もしくは貫通孔周辺の枠体に取
着され、内部に光信号が伝達される空間を有する鉄ーニ
ッケルーコバルト合金等の金属材料から成る筒状の固定
部材と、前記筒状の固定部材に融点が200〜400℃
の金ー錫合金等の低融点ロウ材を介して取着された固定
部材の内部を塞ぐ非晶質ガラス等から成る透光性部材
と、前記枠体の切欠部に挿着され、酸化アルミニウム質
焼結体から成る絶縁体に光半導体素子の各電極がボンデ
ィングワイヤを介して電気的に接続されるメタライズ配
線層が形成されているセラミック端子体と、前記枠体の
上面に取着され、光半導体素子を気密に封止する蓋部材
とから構成されており、前記基体の光半導体素子載置部
に光半導体素子を間にペルチェ素子等の電子冷却素子を
挟んで載置固定させるとともに該光半導体素子の各電極
をボンディングワイヤを介してセラミック端子体のメタ
ライズ配線層に電気的に接続し、しかる後、前記枠体の
上面に蓋部材を接合させ、基体と枠体と蓋部材とから成
る容器内部に光半導体素子を気密に収容するとともに筒
状固定部材に光ファイバー部材を、例えば、YAG溶接
等により取着することによって製品としての光半導体装
置となる。
2. Description of the Related Art Conventionally, an optical semiconductor device housing package for housing an optical semiconductor device is generally made of a metal material such as an iron-nickel-cobalt alloy or a copper-tungsten alloy. A base having a mounting portion to be mounted with the electronic cooling element interposed therebetween, and a base material joined to the optical semiconductor device mounting portion via a brazing material such as silver brazing so as to surround the mounting portion; A frame made of a metal material such as an iron-nickel-cobalt alloy having a through-hole and a notch, and a frame around the through-hole or the through-hole of the frame, and an optical signal is transmitted inside. A cylindrical fixing member made of a metal material such as an iron-nickel-cobalt alloy having a space, and a melting point of the cylindrical fixing member of 200 to 400 ° C.
A translucent member made of amorphous glass or the like that closes the inside of the fixing member attached via a low melting point brazing material such as a gold-tin alloy, and an aluminum oxide that is inserted into the cutout of the frame and is inserted. A ceramic terminal body in which a metallized wiring layer in which each electrode of the optical semiconductor element is electrically connected to an insulator made of a porous sintered body through a bonding wire is attached to an upper surface of the frame, A lid member for hermetically sealing the optical semiconductor element, and mounting and fixing the optical semiconductor element on the optical semiconductor element mounting portion of the base with an electronic cooling element such as a Peltier element interposed therebetween. Each electrode of the optical semiconductor element is electrically connected to the metallized wiring layer of the ceramic terminal body via a bonding wire, and thereafter, a lid member is joined to the upper surface of the frame, and the base, the frame, and the lid are separated from each other. Light guide inside the container An optical fiber member into the cylindrical fixing member accommodates the device in an airtight, for example, the optical semiconductor device as a product by attaching the YAG welding or the like.

【0003】かかる光半導体装置は電子冷却素子により
光半導体素子を冷却しつつ光半導体素子に外部電気回路
から供給される駆動信号によって光励起を起こさせ、該
励起した光を透光性部材を介し光ファイバー部材に授受
させるとともに該光ファイバー部材の光ファイバー内を
伝達させることによって高速通信等に使用される。
In such an optical semiconductor device, while the optical semiconductor element is cooled by an electronic cooling element, optical excitation is caused to the optical semiconductor element by a drive signal supplied from an external electric circuit, and the excited light is transmitted through an optical fiber through a light transmitting member. It is used for high-speed communication and the like by transmitting and receiving the member and transmitting the inside of the optical fiber of the optical fiber member.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、この従
来の光半導体素子収納用パッケージにおいては、基体及
び枠体を形成している鉄ーニッケルーコバルト合金や銅
ータングステン合金等の金属材料やセラミック端子体の
絶縁体を形成している酸化アルミニウム質焼結体の熱伝
導率が15W/m・k以上であることから、光半導体素
子をペルチェ素子等の電子冷却素子で冷却しつつ外部電
気回路から供給される駆動信号によって光励起させた場
合、ペルチエ素子等の電子冷却素子は光半導体素子が載
置される上面側は低温となっているものの基体と接する
下面側は高温(約100℃)となっているため電子冷却
素子の発する熱が基体、枠体、セラミック端子体及びボ
ンディングワイヤを介して光半導体素子に大きく作用
し、この電子冷却素子の熱によって光半導体素子の電子
冷却素子による冷却効率が大きく低下してしまうという
欠点を有していた。そのため従来は光半導体素子が作動
時に発する熱と、基体、枠体等を介して光半導体素子に
伝達される電子冷却素子の熱の両方を吸収するために電
子冷却素子の出力を高いものとする必要があった。
However, in this conventional package for housing an optical semiconductor element, a metal material such as an iron-nickel-cobalt alloy or a copper-tungsten alloy or a ceramic terminal forming a base and a frame is used. Since the thermal conductivity of the aluminum oxide sintered body forming the insulator of the body is 15 W / m · k or more, the optical semiconductor element is cooled by an electronic cooling element such as a Peltier element or the like from an external electric circuit. When photo-excitation is performed by a supplied drive signal, the temperature of the upper surface of the electronic cooling element such as a Peltier element on which the optical semiconductor element is mounted is low, but the temperature of the lower surface in contact with the base is high (about 100 ° C.). Therefore, the heat generated by the electronic cooling element greatly affects the optical semiconductor element via the base, the frame, the ceramic terminal body, and the bonding wire, and this electronic cooling element It had a drawback that the cooling efficiency by the electronic cooling element of the optical semiconductor element is reduced greatly by heat. Therefore, conventionally, the output of the electronic cooling element is increased to absorb both the heat generated by the optical semiconductor element during operation and the heat of the electronic cooling element transmitted to the optical semiconductor element via the base, the frame, and the like. Needed.

【0005】本発明は上記欠点に鑑み案出されたもの
で、その目的は電子冷却素子の熱が光半導体素子に作用
するのを有効に防止し、低出力の電子冷却素子によって
も光半導体素子を常に適温として光半導体素子を長期間
にわたり正常に、かつ安定に作動させることができる光
半導体素子収納用パッケージを提供することにある。
The present invention has been devised in view of the above-mentioned drawbacks, and has as its object to effectively prevent the heat of the electronic cooling element from acting on the optical semiconductor element, and to provide the optical semiconductor element with a low-output electronic cooling element. It is an object of the present invention to provide an optical semiconductor element housing package that can always operate the optical semiconductor element normally and stably for a long time by setting the temperature of the optical semiconductor element to an appropriate temperature.

【0006】[0006]

【課題を解決するための手段】本発明は、枠状の基体
と、該基体の穴部に挿着され、上面に光半導体素子が電
子冷却素子を介して載置される載置部を有する放熱板
と、前記基体上に光半導体素子載置部を囲繞するように
して取着され、側部に貫通孔及び切欠部を有する枠体
と、前記貫通孔もしくは貫通孔周辺の枠体に取着され、
光ファイバー部材が接合される筒状の固定部材と、前記
切欠部に挿着され、絶縁体に光半導体素子の各電極が電
気的に接続されるメタライズ配線層が形成されているセ
ラミック端子体と、前記枠体の上面に取着され、光半導
体素子を気密に封止する蓋部材とからなる光半導体素子
収納用パッケージであって、前記放熱板は厚み方向に配
列した炭素繊維を炭素で結合した一方向性複合材料から
成る芯体の上下両面にクロムー鉄合金層、銅層、鉄ーニ
ッケル合金層もしくは鉄ーニッケルーコバルト合金層の
3層構造を有する金属層が拡散接合により被着されて形
成されており、かつ前記クロムー鉄合金層、銅層、鉄ー
ニッケル合金層もしくは鉄ーニッケルーコバルト合金層
の各々の厚みが略同一厚みであることを特徴とするもの
である。
According to the present invention, there is provided a frame-shaped base, and a mounting part which is inserted into a hole of the base and on which an optical semiconductor element is mounted via an electronic cooling element. A radiator plate, a frame attached to the base so as to surround the optical semiconductor element mounting portion, and having a through hole and a cutout on a side portion; and a frame around the through hole or the through hole. Dressed,
A cylindrical fixing member to which an optical fiber member is joined, and a ceramic terminal body in which a metallized wiring layer that is inserted into the cutout and electrically connects each electrode of the optical semiconductor element to an insulator is formed. An optical semiconductor element housing package attached to the upper surface of the frame body and comprising a lid member for hermetically sealing the optical semiconductor element, wherein the heat sink is formed by bonding carbon fibers arranged in the thickness direction with carbon. A metal layer having a three-layer structure of a chromium-iron alloy layer, a copper layer, an iron-nickel alloy layer, or an iron-nickel-cobalt alloy layer is formed on both upper and lower surfaces of a core made of a unidirectional composite material by diffusion bonding. And the thickness of each of the chromium-iron alloy layer, copper layer, iron-nickel alloy layer or iron-nickel-cobalt alloy layer is substantially the same.

【0007】本発明の光半導体素子収納用パッケージに
よれば、光半導体素子が電子冷却素子を間に挟んで載置
される放熱体として、放熱体の上面側から下面側にかけ
ての熱伝導率が300W/m・k以上である部材、即
ち、厚み方向に配列した炭素繊維を炭素で結合した一方
向性複合材料から成る芯体の上下両面にクロムー鉄合金
層、銅層、鉄−ニッケル合金層もしくは鉄ーニッケルー
コバルト合金層の3層構造を有する金属層を拡散接合さ
せたものを使用したことから光半導体素子をペルチェ素
子等の電子冷却素子で冷却しつつ外部電気回路から供給
される駆動信号によって光励起させた場合、電子冷却素
子の発した熱は放熱体の上面側から下面側に選択的に伝
達されるとともに大気中に放散されて枠状の基体、枠
体、セラミック端子体及びボンディングワイヤを介して
光半導体素子に作用することはなく、その結果、光半導
体素子の電子冷却素子による冷却効率は高いものとな
り、低出力の電子冷却素子でも光半導体素子を常に適温
として光半導体素子を長期間にわたり正常、かつ安定に
作動させることが可能となる。
According to the package for storing an optical semiconductor element of the present invention, the optical semiconductor element has a thermal conductivity from the upper surface side to the lower surface side of the heat radiator as a radiator mounted with the electronic cooling element interposed therebetween. A chromium-iron alloy layer, a copper layer, and an iron-nickel alloy layer on both upper and lower surfaces of a core member made of a unidirectional composite material in which carbon fibers arranged in the thickness direction are bonded with carbon, that is, a member having a power of 300 W / mk or more. Or, a drive supplied from an external electric circuit while cooling the optical semiconductor device with an electronic cooling device such as a Peltier device because a diffusion-bonded metal layer having a three-layer structure of an iron-nickel-cobalt alloy layer is used. When light is excited by a signal, the heat generated by the thermoelectric cooler is selectively transmitted from the upper surface to the lower surface of the heat radiator and is radiated into the atmosphere to be frame-shaped base, frame, ceramic terminal. The optical semiconductor element does not act on the optical semiconductor element via the bonding wires, and as a result, the cooling efficiency of the electronic semiconductor element of the optical semiconductor element becomes high. The element can operate normally and stably for a long period of time.

【0008】[0008]

【発明の実施の形態】次に、本発明を添付図面に基づき
詳細に説明する。図1乃至図4は本発明の光半導体素子
収納用パッケージの一実施例を示し、1は枠状の基体、
14は放熱体、2は枠体、3は蓋部材である。この基体
1と放熱板14と枠体2と蓋部材3とで内部に光半導体
素子4を収容するための容器が構成される。
Next, the present invention will be described in detail with reference to the accompanying drawings. 1 to 4 show one embodiment of the package for housing an optical semiconductor element of the present invention, wherein 1 is a frame-shaped base,
14 is a radiator, 2 is a frame, and 3 is a lid member. The base 1, the heat radiating plate 14, the frame 2, and the lid member 3 constitute a container for housing the optical semiconductor element 4 therein.

【0009】前記枠状の基体1は鉄ーニッケルーコバル
ト合金や鉄ーニッケル合金等の金属材料から成り、その
中央部に放熱板14が挿着される穴が形成されている。
The frame-shaped substrate 1 is made of a metal material such as an iron-nickel-cobalt alloy or an iron-nickel alloy, and has a central portion formed with a hole into which a heat sink 14 is inserted.

【0010】前記枠状の基体1は、例えば、鉄ーニッケ
ルーコバルト合金等のインゴット(塊)に圧延加工法や
打ち抜き加工法等、従来周知の金属加工法を施すことに
よって所定の形状に形成される。
The frame-shaped substrate 1 is formed into a predetermined shape by subjecting an ingot (lumps) of, for example, an iron-nickel-cobalt alloy to a conventionally known metal working method such as a rolling method or a punching method. Is done.

【0011】前記基体1はまたその中央部に形成された
穴内に放熱板14が挿着されており、該放熱板14は光
半導体素子4を支持するための支持部材として作用し、
その上面の略中央部に光半導体素子4を載置するための
載置部14aを有し、該載置部14aには光半導体素子
4が間にペルチェ素子等の電子冷却素子5を挟んで錫ー
ビスマス等の低温半田を介して接着固定される。
A heat sink 14 is inserted into a hole formed at the center of the base 1, and the heat sink 14 functions as a support member for supporting the optical semiconductor element 4.
A mounting portion 14a for mounting the optical semiconductor element 4 is provided substantially at the center of the upper surface, and the optical semiconductor element 4 is interposed between the mounting portions 14a with an electronic cooling element 5 such as a Peltier element interposed therebetween. It is bonded and fixed via low-temperature solder such as tin-bismuth.

【0012】前記放熱板14は、図3に示すように、厚
み方向に配列した炭素繊維を炭素で結合した一方向性複
合材料から成る芯体14bの上下両面にクロムー鉄合金
層15a、銅層15b、鉄ーニッケル合金層もしくと鉄
ーニッケルーコバルト合金層15cの3層構造を有する
金属層15を拡散接合により被着させたものから成り、
その熱伝導率は一方向性複合材料からなる芯体14bの
炭素繊維の方向、即ち、放熱体14の上面側から下面側
にかけての方向の熱伝導率が300W/m・k以上、炭
素繊維に対し直交する方向の熱伝導率が30W/m・k
以下であり、放熱板14の上面側から下面側に向けて熱
が一方向に選択的に効率良く伝達するようになってい
る。そのためこの一方向性複合材料から成る芯体14b
を用いた放熱板14の上面に半導体素子4を間にペルチ
ェ素子等の電子冷却素子5を挟んで載置固定させた場
合、電子冷却素子5の発する熱は放熱板14の上面側か
ら下面側にかけて一方向に伝達し、放熱板14の下面側
から大気中に効率良く放散されることとなる。
As shown in FIG. 3, the radiator plate 14 includes a chromium-iron alloy layer 15a and a copper layer on both upper and lower surfaces of a core 14b made of a unidirectional composite material in which carbon fibers arranged in the thickness direction are bonded with carbon. 15b, a metal layer 15 having a three-layer structure of an iron-nickel alloy layer or an iron-nickel-cobalt alloy layer 15c deposited by diffusion bonding;
The heat conductivity is 300 W / m · k or more in the direction of the carbon fibers of the core 14 b made of the unidirectional composite material, that is, in the direction from the upper surface side to the lower surface side of the radiator 14. On the other hand, the thermal conductivity in the direction perpendicular to the direction is 30 W / m · k
In the following, heat is selectively and efficiently transmitted in one direction from the upper surface side to the lower surface side of the heat sink 14. Therefore, the core body 14b made of the unidirectional composite material
When the semiconductor element 4 is placed and fixed on the upper surface of the heat sink 14 using an electronic cooling element 5 such as a Peltier element, the heat generated by the electronic cooling element 5 is from the upper side to the lower side of the heat sink 14. , And is efficiently radiated from the lower surface side of the heat sink 14 into the atmosphere.

【0013】前記放熱板14の一方向性複合材料から成
る芯体14bは、例えば、一方向に配列した炭素繊維の
束を、固体のピッチあるいはコークスなどの微粉末を分
散させたフェノール樹脂などの熱硬化性樹脂の溶液中に
含浸させ、次にこれを乾燥させて一方向に炭素繊維が配
列している複数枚のシートを形成するとともに各々のシ
ートを炭素繊維の方向が同一となるようにして複数枚積
層し、次に前記積層された複数枚のシートに所定の圧力
を加えるとともに加熱して熱硬化性樹脂部分を硬化さ
せ、最後にこれを不活性雰囲気中、高温で焼成し、フェ
ノール樹脂とピッチあるいはコークスの微粉末を炭化さ
せる(炭素を形成する)とともに該炭素で各々の炭素繊
維を結合させることによって製作されている。
The core 14b made of the unidirectional composite material of the heat radiating plate 14 is made of, for example, a bundle of carbon fibers arrayed in one direction, such as a solid pitch or a phenol resin in which fine powder such as coke is dispersed. Impregnated in a solution of thermosetting resin, and then dried to form a plurality of sheets in which carbon fibers are arranged in one direction, and to make each sheet have the same direction of carbon fibers. Then, a predetermined pressure is applied to the plurality of stacked sheets and heated to cure the thermosetting resin portion, and finally, this is fired at a high temperature in an inert atmosphere to obtain phenol. It is manufactured by carbonizing resin and fine powder of pitch or coke (forming carbon) and bonding each carbon fiber with the carbon.

【0014】また前記放熱板14の一方向性複合材料か
らなる芯体14bはその上下両面にクロムー鉄合金層1
5aと銅層15bと鉄ーニッケル合金層もしくは鉄ーニ
ッケルーコバルト合金層15cとの3つの層からなる金
属層15が被着されており、該金属層15のクロムー鉄
合金層15aと銅層15bと鉄ーニッケル合金層もしく
は鉄ーニッケルーコバルト合金層15cの各々はその厚
みが略同一厚みとなっている。
A core 14b made of a unidirectional composite material of the heat sink 14 has chromium-iron alloy layers 1 on its upper and lower surfaces.
5a, a copper layer 15b, and an iron-nickel alloy layer or an iron-nickel-cobalt alloy layer 15c. And the iron-nickel alloy layer or the iron-nickel-cobalt alloy layer 15c have substantially the same thickness.

【0015】前記金属層15を略同一厚みのクロムー鉄
合金層15aと銅層15bと鉄−ニッケル合金層もしく
は鉄ーニッケルーコバルト合金層15cの3つの層で形
成するのは一方向性複合材料からなる放熱板14の熱膨
張係数を約10×10-6/℃〜13×10-6/℃(室温
〜800℃)として枠状の基体1及び後述する鉄ーニッ
ケルーコバルト合金や鉄ーニッケル合金から成る枠体2
の熱膨張係数に近似させるとともに放熱板14を平坦と
するためであり、一方向性複合材料からなる芯体14b
の上下両面に金属層15を被着させた放熱板14は、芯
体14bと上面金属層15との間及び芯体14bと下面
金属層15との間に両者の熱膨張係数の相違に起因する
熱応力が発生するがその各々の熱応力は金属層15の芯
体14bに対する被着位置が異なることから互いに相殺
され、その結果、放熱板14は芯体14bと金属層15
との間に発生する熱応力によって変形することはなく常
に平坦となり、これによって放熱板14の上面に光半導
体素子4を間に電子冷却素子5を挟んで強固に取着固定
させることが可能となるとともに電子冷却素子5が発す
る熱を放熱板14を介して大気中に効率良く放散させる
ことが可能となる。
The metal layer 15 is formed of three layers of a chromium-iron alloy layer 15a, a copper layer 15b, and an iron-nickel alloy layer or an iron-nickel-cobalt alloy layer 15c having substantially the same thickness. The thermal expansion coefficient of the heat radiating plate 14 made of about 10 × 10 −6 / ° C. to 13 × 10 −6 / ° C. (room temperature to 800 ° C.) and the frame-shaped base 1 and an iron-nickel-cobalt alloy or iron-nickel Frame 2 made of alloy
The core 14b is made of a unidirectional composite material so as to approximate the thermal expansion coefficient of
The heat radiating plate 14 in which the metal layers 15 are adhered to the upper and lower surfaces of the core 14b is caused by the difference in thermal expansion coefficient between the core 14b and the upper metal layer 15 and between the core 14b and the lower metal layer 15. However, the respective thermal stresses are offset by the different positions of the metal layer 15 on the core body 14b, and as a result, the heat sink 14 is attached to the core body 14b and the metal layer 15b.
Therefore, the optical semiconductor element 4 can be firmly fixed to the upper surface of the heat radiating plate 14 with the electronic cooling element 5 interposed therebetween, without being deformed by the thermal stress generated between the optical semiconductor element 4 and the flat surface. At the same time, the heat generated by the electronic cooling element 5 can be efficiently radiated into the atmosphere via the radiator plate 14.

【0016】なお、前記金属層15は一方向性複合材料
からなる芯体14bの上下両面に拡散接合させることに
よって被着されており、具体的には、一方向性複合材料
からなる芯体14bの上下両面に厚さ50μm以下のク
ロムー鉄合金の箔と銅の箔と鉄ーニッケル合金もしくは
鉄ーニッケルーコバルト合金の箔を順次、載置させ、次
にこれを真空ホットプレスで5MPaの圧力をかけつつ
1200℃の温度を1時間印加することによって行われ
る。
The metal layer 15 is applied to the upper and lower surfaces of a core 14b made of a unidirectional composite material by diffusion bonding. Specifically, the core 14b made of a unidirectional composite material is used. A chromium-iron alloy foil and a copper foil and an iron-nickel alloy or an iron-nickel-cobalt alloy foil having a thickness of 50 μm or less are sequentially placed on the upper and lower surfaces, and then a pressure of 5 MPa is applied by a vacuum hot press. This is performed by applying a temperature of 1200 ° C. for 1 hour while applying.

【0017】また前記金属層15のクロムー鉄合金層1
5aは金属層15を一方向性複合材料からなる芯体14
bに強固に接合させる作用をなし、また銅層15bはク
ロムー鉄合金層15aと鉄ーニッケル合金層もしくと鉄
ーニッケルーコバルト合金層15cとを強固に接合させ
るとともに両者の相互拡散を有効に防止する作用をな
し、更に鉄ーニッケル合金層もしくは鉄ーニッケルーコ
バルト合金層15cはクロムー鉄合金層15a及び銅層
15bと相まって放熱板14の熱膨張係数を約10×1
-6/℃〜13×10-6/℃(室温〜800℃)とする
作用をなす。
The chromium-iron alloy layer 1 of the metal layer 15
5a is a metal layer 15 formed by a core 14 made of a unidirectional composite material.
b), and the copper layer 15b firmly joins the chromium-iron alloy layer 15a and the iron-nickel alloy layer or the iron-nickel-cobalt alloy layer 15c, and effectively interdiffuses the two. In addition, the iron-nickel alloy layer or the iron-nickel-cobalt alloy layer 15c, together with the chromium-iron alloy layer 15a and the copper layer 15b, has a thermal expansion coefficient of about 10 × 1
It functions to be 0 -6 / ° C to 13 × 10 -6 / ° C (room temperature to 800 ° C).

【0018】前記一方向性複合材料から成る芯体14b
を用いた放熱板14はまたその重量が軽いことからこの
放熱板14を使用した光半導体素子収納用パッケージに
光半導体素子4を収容して光半導体装置を形成した際、
該光半導体装置の重量も極めて軽量なものとなり、近時
の小型化、軽量化が進む電子装置にも実装が可能とな
る。
A core 14b made of the unidirectional composite material
When the optical semiconductor device 4 is housed in the optical semiconductor device housing package using the heat sink 14 and the optical semiconductor device is formed, the heat sink 14 using the heat sink 14 is light in weight.
The weight of the optical semiconductor device is also extremely light, and it is possible to mount the optical semiconductor device on electronic devices that have recently been reduced in size and weight.

【0019】更に前記放熱板14が挿着された基体1の
上面には、光半導体素子4が載置される載置部14aを
囲繞するようにして枠体2が接合されており、該枠体2
の内側に光半導体素子4を収容するための空所が形成さ
れている。
Further, a frame 2 is joined to the upper surface of the base 1 on which the heat sink 14 is inserted so as to surround a mounting portion 14a on which the optical semiconductor element 4 is mounted. Body 2
A space for accommodating the optical semiconductor element 4 is formed inside the inside.

【0020】前記枠体2は鉄ーニッケルーコバルト合金
や鉄ーニッケル合金等の金属材料から成り、例えば、鉄
ーニッケルーコバルト合金等のインゴット(塊)をプレ
ス加工により枠状とすることによって形成され、枠状の
基体1への取着は基体1上面と枠体2の下面とを銀ロウ
材を介しロウ付けすることによって行われている。
The frame 2 is made of a metal material such as an iron-nickel-cobalt alloy or an iron-nickel alloy. For example, the frame 2 is formed by pressing an ingot (mass) of an iron-nickel-cobalt alloy or the like into a frame shape by pressing. The attachment to the frame-shaped substrate 1 is performed by brazing the upper surface of the substrate 1 and the lower surface of the frame 2 via a silver brazing material.

【0021】前記鉄ーニッケルーコバルト合金や鉄ーニ
ッケル合金等の金属材料から成る枠体2はその熱膨張係
数が約10×10-6/℃〜13×10-6/℃(室温〜8
00℃)であり、基体1の熱膨張係数(約10×10-6
/℃〜13×10-6/℃:室温〜800℃)に近似する
ことから枠体2を基体1上に取着させた後、両者に熱が
印加されたとしても両者間には大きな熱応力が発生する
ことはなく、基体1上に枠体2を極めて強固に取着して
おくことが可能となる。
The frame 2 made of a metal material such as the iron-nickel-cobalt alloy or the iron-nickel alloy has a thermal expansion coefficient of about 10 × 10 −6 / ° C. to 13 × 10 −6 / ° C. (room temperature to 8 ° C.).
00 ° C.) and the coefficient of thermal expansion of the substrate 1 (about 10 × 10 −6).
/ ° C. to 13 × 10 −6 / ° C .: room temperature to 800 ° C.), so that even if heat is applied to both after the frame 2 is attached to the base 1, a large heat is applied between them. No stress is generated, and the frame 2 can be extremely firmly attached to the base 1.

【0022】前記枠体2はまたその側部に貫通孔2aが
設けてあり、該貫通孔2aの内壁面には筒状の固定部材
9が取着され、更に筒状の固定部材9の内側の一端に
は、例えば、透光性部材10が取着されている。
The frame 2 is provided with a through hole 2a on a side portion thereof. A cylindrical fixing member 9 is attached to an inner wall surface of the through hole 2a. At one end, for example, a light-transmissive member 10 is attached.

【0023】前記枠体2の側部に形成されている貫通孔
2aは固定部材9を枠体2に取着するための取着孔とし
て作用し、枠体2の側部に従来周知のドリル孔あけ加工
を施すことによって所定形状に形成される。
A through hole 2a formed in the side of the frame 2 acts as a mounting hole for mounting the fixing member 9 to the frame 2, and a well-known drill is formed in the side of the frame 2. It is formed in a predetermined shape by performing drilling.

【0024】前記枠体2の貫通孔2aに取着されている
固定部材9は光ファイバー部材11を枠体2に固定する
際の下地固定部材として作用するとともに光半導体素子
4が励起した光を光ファイバー部材11に伝達させる作
用をなし、その内側の一端には、例えば、透光性部材1
0が取着され、また外側の一端には光ファイバー部材1
1が取着接続される。
A fixing member 9 attached to the through hole 2a of the frame 2 functions as a base fixing member for fixing the optical fiber member 11 to the frame 2, and also converts the light excited by the optical semiconductor element 4 into an optical fiber. A function of transmitting the light to the member 11 is provided.
0 is attached, and an optical fiber member 1
1 is attached and connected.

【0025】前記筒状の固定部材9は鉄ーニッケルーコ
バルト合金や鉄ーニッケル合金等の金属材料から成り、
例えば、鉄ーニッケル合金のインゴット(塊)をプレス
加工により筒状とすることによって形成される。
The cylindrical fixing member 9 is made of a metal material such as an iron-nickel-cobalt alloy or an iron-nickel alloy.
For example, it is formed by pressing an iron-nickel alloy ingot into a tubular shape.

【0026】更に前記固定部材9はその内側の一端に、
例えば、透光性部材10が取着されており、該透光性部
材10は固定部材9の内部空間を塞ぎ、基体1と枠体2
と蓋部材3とから成る容器の気密封止を保持させるとと
もに固定部材9の内部空間を伝達する光半導体素子4の
励起した光をそのまま固定部材9に取着接続される光フ
ァイバー部材11に伝達させる作用をなす。
Further, the fixing member 9 is provided at one inner end thereof.
For example, a translucent member 10 is attached, the translucent member 10 closes the internal space of the fixing member 9, and the base 1 and the frame 2
The light excited by the optical semiconductor element 4 that transmits the internal space of the fixing member 9 is transmitted to the optical fiber member 11 that is attached to and connected to the fixing member 9 as it is, while maintaining the hermetic sealing of the container including the lid member 3 and the container. Works.

【0027】前記透光性部材10は例えば、酸化珪素、
酸化鉛を主成分とした鉛系及びホウ酸、ケイ砂を主成分
としたホウケイ酸系の非晶質ガラスで形成されており、
該非晶質ガラスは結晶軸が存在しないことから光半導体
素子4の励起する光を透光性部材10を通過させて光フ
ァイバー部材11に授受させる場合、光半導体素子4の
励起した光は透光性部材10で複屈折を起こすことはな
くそのまま光ファイバー部材11に授受されることとな
り、その結果、光半導体素子4が励起した光の光ファイ
バー部材11への授受が高効率となって光信号の伝送効
率を高いものとなすことができる。
The light transmitting member 10 is made of, for example, silicon oxide,
It is made of lead-based and boric acid containing lead oxide as a main component, and borosilicate-based amorphous glass containing silica sand as a main component.
Since the amorphous glass has no crystal axis, the light excited by the optical semiconductor element 4 is transmitted and received by the optical fiber member 11 through the light-transmitting member 10. The birefringence does not occur in the member 10 and is transmitted and received to the optical fiber member 11 as it is. As a result, the transmission and reception of the light excited by the optical semiconductor element 4 to and from the optical fiber member 11 becomes highly efficient, and the transmission efficiency of the optical signal is increased. Can be made higher.

【0028】前記透光性部材10の固定部材9への取着
は例えば、図4に示すように、透光性部材10の外周部
に予めメタライズ層12を被着させておき、該メタライ
ズ層12と固定部材9とを金ー錫合金等のロウ材を介し
ロウ付けすることによって行われる。この場合、透光性
部材10の固定部材9への取着が金ー錫合金等によるロ
ウ付けにより行われることから取着の信頼性が高いもの
となり、これによって固定部材9と透光性部材10との
取着部における光半導体素子4を収容する容器の気密封
止が完全となり、容器内部に収容する光半導体素子4を
長期間にわたり正常、かつ安定に作動させることができ
る。
As shown in FIG. 4, for example, as shown in FIG. 4, the light transmitting member 10 is attached to the fixing member 9 by previously attaching a metallization layer 12 to the outer periphery of the light transmitting member 10. This is performed by brazing the fixing member 9 and the fixing member 9 via a brazing material such as a gold-tin alloy. In this case, since the attachment of the translucent member 10 to the fixing member 9 is performed by brazing with a gold-tin alloy or the like, the attachment is highly reliable. The hermetic sealing of the container housing the optical semiconductor element 4 at the portion where the optical semiconductor element 4 is attached to the container 10 is completed, and the optical semiconductor element 4 housed inside the container can be normally and stably operated for a long period of time.

【0029】なお、前記透光性部材10の外周部に予め
被着されているメタライズ層12は透光性部材10を構
成する非晶質ガラスの融点が約700℃と低く、従来周
知のMo−Mn法を採用することによって形成すること
かできないことから図4に示すように、非晶質ガラスに
対して活性があり、強固に接合するチタン、チタンータ
ングステン、窒化タンタルの少なくとも1種から成る第
1層12aと、この第1層12aが透光性部材10を固
定部材9にロウ付けする際の熱によって後述する第3層
12cに拡散し、メタライズ層12の透光性部材10に
対する接合強度が低下するのを有効に防止する白金、ニ
ッケル、ニッケルークロムの少なくとも1種から成る第
2層12bと、メタライズ層12に対するロウ材の濡れ
性を改善し、メタライズ層12にロウ材を強固に接合さ
せて透光性部材10を固定部材9に強固に取着させる
金、白金、銅の少なくとも1種から成る第3層12cと
を順次、積層させることによって形成されており、特に
チタンー白金ー金を順次積層させて形成したメタライズ
層12は透光性部材10との接合強度が強く、かつロウ
材との濡れ性が良好で透光性部材10を固定部材9にロ
ウ付けすることが可能なことからメタライズ層12とし
て極めて好適である。
The metallized layer 12 previously applied to the outer peripheral portion of the light transmitting member 10 has a low melting point of about 700 ° C. of the amorphous glass constituting the light transmitting member 10, and the conventionally known Mo is used. As shown in FIG. 4, since at least one of titanium, titanium-tungsten, and tantalum nitride that are active and strongly bonded to amorphous glass because they cannot be formed by employing the Mn method, The first layer 12a and the first layer 12a diffuse into a third layer 12c, which will be described later, due to heat generated when the translucent member 10 is brazed to the fixing member 9, and the metallized layer 12 is applied to the translucent member 10. A second layer (12b) made of at least one of platinum, nickel, and nickel-chromium, which effectively prevents a decrease in bonding strength; A third layer 12c made of at least one of gold, platinum, and copper, in which a brazing material is firmly bonded to the oil layer 12 and the translucent member 10 is firmly attached to the fixing member 9, is sequentially laminated. Particularly, the metallized layer 12 formed by sequentially laminating titanium-platinum-gold has a strong bonding strength with the light-transmitting member 10 and a good wettability with the brazing material, so that the light-transmitting member 10 is fixed. Since it can be brazed to the member 9, it is very suitable as the metallized layer 12.

【0030】更に前記チタン、チタンータングステン、
窒化タンタルの少なくとも1種から成る第1層12a
と、白金、ニッケル、ニッケルークロムの少なくとも1
種から成る第2層12bと、金、白金、銅の少なくとも
1種から成る第3層12cとの3層構造を有するメタラ
イズ層12はその各々の金属材料、窒化物を透光性部材
10の外周部にスパッタリング法や蒸着法、イオンプレ
ーティング法、メッキ法等により順次、所定厚みに被着
させることによって形成される。
The above titanium, titanium-tungsten,
First layer 12a made of at least one kind of tantalum nitride
And at least one of platinum, nickel and nickel-chromium
The metallized layer 12 having a three-layer structure of a second layer 12b made of a seed and a third layer 12c made of at least one of gold, platinum, and copper is made of a metal material and a nitride of the light-transmitting member 10. It is formed by sequentially applying a predetermined thickness to the outer peripheral portion by a sputtering method, a vapor deposition method, an ion plating method, a plating method, or the like.

【0031】また更に前記メタライズ層12をチタン、
チタンータングステン、窒化タンタルの少なくとも1種
から成る第1層12aと、白金、ニッケル、ニッケルー
クロムの少なくとも1種から成る第2層12bと、金、
白金、銅の少なくとも1種から成る第3層12cとで形
成する場合、第1層12aの層厚は500オングストロ
ーム未満となるとメタライズ層12の透光性部材10に
対する接合強度が弱くなる傾向にあり、また2000オ
ングストロームを超えると透光性部材10に第1層12
aを被着させる際に第1層12a中に大きな応力が発生
内在し、該内在応力によって第1層12aが透光性部材
10より剥離し易くなる傾向にあることから第1層12
aの厚みは500オングストローム乃至2000オング
ストロームの範囲としておくことが好ましく、第2層1
2bの層厚は500オングストローム未満となると透光
性部材10を固定部材9にロウ付けする際の熱によって
第1層12aが第3層12cに拡散するのを有効に防止
することができず、メタライズ層12の透光性部材10
に対する接合強度が低下してしまう危険性があり、また
10000オングストロームを超えると第1層12a上
に第2層12bを被着させる際に第2層12b中に大き
な応力が発生内在し、該内在応力によって第2層12b
が第1層12aより剥離し易くなる傾向にあることから
第2層12bの厚みは500オングストローム乃至10
000オングストロームの範囲としておくことが好まし
く、第3層12cの層厚は0.5μm未満であるとメタ
ライズ層12に対するロウ材の濡れ性が大きく改善され
ず、透光性部材10を固定部材9に強固にロウ付け取着
するのが困難となる傾向にあり、また5μmを超えると
第2層12b上に第3層12cを被着させる際に第3層
12c中に大きな応力が発生内在し、該内在応力によっ
て第3層12cが第2層12bより剥離し易くなる傾向
にあることから第3層12cの厚みは0.5μm乃至5
μmの範囲としておくことが好ましい。
Further, the metallized layer 12 is made of titanium,
A first layer 12a made of at least one of titanium-tungsten and tantalum nitride; a second layer 12b made of at least one of platinum, nickel and nickel-chromium;
When the third layer 12c made of at least one of platinum and copper is used, if the thickness of the first layer 12a is less than 500 angstroms, the bonding strength of the metallized layer 12 to the translucent member 10 tends to be weak. When the thickness exceeds 2000 angstroms, the first layer 12
When the first layer 12a is applied, a large stress is generated in the first layer 12a and the first layer 12a tends to be easily separated from the light transmitting member 10 due to the intrinsic stress.
The thickness of a is preferably in the range of 500 Å to 2000 Å, and the second layer 1
If the thickness of the layer 2b is less than 500 angstroms, it is not possible to effectively prevent the first layer 12a from diffusing into the third layer 12c due to heat generated when the translucent member 10 is brazed to the fixing member 9, Transparent member 10 of metallized layer 12
When the thickness exceeds 10,000 Å, a large stress is generated in the second layer 12b when the second layer 12b is deposited on the first layer 12a. 2nd layer 12b by stress
Has a tendency to peel off more easily than the first layer 12a, so that the thickness of the second layer 12b is 500 Å to 10 Å.
When the thickness of the third layer 12c is less than 0.5 μm, the wettability of the brazing material with respect to the metallized layer 12 is not significantly improved, and the light transmitting member 10 is fixed to the fixing member 9. There is a tendency that it is difficult to firmly braze and attach. If it exceeds 5 μm, a large stress is generated in the third layer 12c when the third layer 12c is applied on the second layer 12b, Since the third layer 12c tends to be easily separated from the second layer 12b due to the intrinsic stress, the thickness of the third layer 12c is 0.5 μm to 5 μm.
It is preferable to keep the range of μm.

【0032】更に前記枠体2はその側部に切欠部2bが
形成されており、該切欠部2bにはセラミック端子体6
が挿着されている。
Further, the frame 2 has a notch 2b formed on a side thereof, and the notch 2b has a ceramic terminal 6
Is inserted.

【0033】前記セラミック端子体6は電気絶縁材料か
ら成る絶縁体7と複数個のメタライズ配線層8とから成
り、メタライズ配線層8を枠体2に対し電気的絶縁をも
って枠体2の内側から外側にかけて配設する作用をな
し、絶縁体7の側面に予めメタライズ金属層を被着させ
ておくとともに該メタライズ金属層を枠体2の切欠部2
a内壁面に銀ロウ等のロウ材を介し取着することによっ
て枠体2の切欠部2aに挿着される。
The ceramic terminal 6 comprises an insulator 7 made of an electrically insulating material and a plurality of metallized wiring layers 8. The metallized wiring layer 8 is electrically insulated from the frame 2 from the inside to the outside of the frame 2. The metallized metal layer is previously applied to the side surface of the insulator 7 and the metallized metal layer is attached to the cutout 2 of the frame 2.
By being attached to the inner wall surface through a brazing material such as silver brazing, it is inserted into the cutout 2a of the frame 2.

【0034】前記セラミック端子体6の絶縁体7は酸化
アルミニウム質焼結体やムライト質焼結体、ガラスセラ
ミック焼結体等から成り、例えば、酸化アルミニウム質
焼結体から成る場合には酸化アルミニウム、酸化珪素、
酸化マグネシウム、酸化カルシウム等の原料粉末に適当
な有機バインダー、溶剤等を添加混合して泥漿物を作る
とともに、該泥漿物をドクターブレード法やカレンダー
ロール法を採用することによってセラミックグリーンシ
ート(セラミック生シート)と成し、しかる後、前記セ
ラミックグリーンシートに適当な打ち抜き加工を施すと
ともにこれを複数枚積層し、約1600℃の温度で焼成
することによって製作される。
The insulator 7 of the ceramic terminal body 6 is made of an aluminum oxide sintered body, a mullite sintered body, a glass ceramic sintered body, or the like. , Silicon oxide,
An appropriate organic binder, a solvent, and the like are added to and mixed with raw material powders such as magnesium oxide and calcium oxide to form a slurry, and the slurry is formed into a ceramic green sheet (ceramic green sheet) by employing a doctor blade method or a calendar roll method. After that, the ceramic green sheet is manufactured by subjecting the ceramic green sheet to appropriate punching processing, laminating a plurality of the sheets, and firing at a temperature of about 1600 ° C.

【0035】また前記セラミック端子体6には枠体2の
内側から外側にかけて導出する複数個のメタライズ配線
層8が埋設されており、該メタライズ配線層8の枠体2
の内側に位置する領域には光半導体素子4の各電極がボ
ンディングワイヤ12を介して電気的に接続され、また
枠体2の外側に位置する領域には外部電気回路と接続さ
れる外部リード端子13が銀ロウ等のロウ材を介し取着
されている。
A plurality of metallized wiring layers 8 extending from the inside to the outside of the frame 2 are embedded in the ceramic terminal body 6.
Each electrode of the optical semiconductor element 4 is electrically connected to a region located inside the frame 2 through a bonding wire 12, and an external lead terminal connected to an external electric circuit is located in a region located outside the frame 2. Reference numeral 13 is attached via a brazing material such as a silver brazing material.

【0036】前記メタライズ配線層8は光半導体素子4
の各電極を外部電気回路に接続する際の導電路として作
用し、タングステン、モリブデン、マンガン等の高融点
金属粉末により形成されている。
The metallized wiring layer 8 is formed of the optical semiconductor element 4
These electrodes function as conductive paths when connecting the electrodes to an external electric circuit, and are formed of a high melting point metal powder such as tungsten, molybdenum, and manganese.

【0037】前記メタライズ配線層8はタングステン、
モリブデン、マンガン等の高融点金属粉末に適当な有機
バインダー、溶剤等を添加混合して得た金属ペーストを
絶縁体7となるセラミックグリーンシートに予め従来周
知のスクリーン印刷法により所定パターンにに印刷塗布
しておくことによって絶縁体7に形成される。
The metallized wiring layer 8 is made of tungsten,
A metal paste obtained by adding a suitable organic binder, a solvent, etc. to a high melting point metal powder such as molybdenum, manganese, etc., is applied to a ceramic green sheet serving as an insulator 7 in a predetermined pattern in advance by a conventionally known screen printing method. By forming, the insulator 7 is formed.

【0038】なお、前記メタライズ配線層8はその露出
する表面にニッケル、金等の耐蝕性に優れ、かつロウ材
との濡れ性に優れる金属を1μm〜20μmの厚みにメ
ッキ法により被着させておくと、メタライズ配線層8の
酸化腐蝕を有効に防止することができるとともにメタラ
イズ配線層8への外部リード端子13のロウ付けを強固
となすことができる。従って、前記メタライズ配線層8
は、その露出する表面にニッケル、金等の耐蝕性に優
れ、かつロウ材との濡れ性に優れる金属を1μm〜20
μmの厚みに被着させておくことが好ましい。
The metallized wiring layer 8 is formed by coating a metal having excellent corrosion resistance such as nickel and gold and having excellent wettability with a brazing material to a thickness of 1 μm to 20 μm on the exposed surface by plating. By doing so, the oxidation corrosion of the metallized wiring layer 8 can be effectively prevented, and the brazing of the external lead terminals 13 to the metallized wiring layer 8 can be made firm. Therefore, the metallized wiring layer 8
Is a metal having excellent corrosion resistance, such as nickel and gold, having excellent wettability with a brazing material on the exposed surface of 1 μm to 20 μm.
It is preferable that it is applied to a thickness of μm.

【0039】また前記メタライズ配線層8には外部リー
ド端子13が銀ロウ等のロウ材を介してロウ付け取着さ
れており、該外部リード端子13は容器内部に収容する
光半導体素子4の各電極を外部電気回路に電気的に接続
する作用をなし、外部リード端子13を外部電気回路に
接続することによって容器内部に収容される光半導体素
子4はボンディングワイヤ12、メタライズ配線層8及
び外部リード端子13を介して外部電気回路に接続され
ることとなる。
An external lead terminal 13 is attached to the metallized wiring layer 8 by brazing via a brazing material such as silver brazing. The external lead terminal 13 is attached to each of the optical semiconductor elements 4 housed in the container. The optical semiconductor element 4 accommodated in the container by connecting the external lead terminal 13 to the external electric circuit serves as a bonding wire 12, a metallized wiring layer 8, and an external lead. The terminal 13 is connected to an external electric circuit.

【0040】前記外部リード端子13は鉄ーニッケルー
コバルト合金や鉄ーニッケル合金等の金属材料から成
り、例えば、鉄ーニッケルーコバルト合金等の金属材料
から成るインゴット(塊)に圧延加工法や打ち抜き加工
法等、従来周知の金属加工法を施すことによって所定の
形状に形成される。
The external lead terminals 13 are made of a metal material such as an iron-nickel-cobalt alloy or an iron-nickel alloy. For example, an ingot made of a metal material such as an iron-nickel-cobalt alloy is rolled or stamped. It is formed into a predetermined shape by applying a conventionally known metal working method such as a working method.

【0041】更に前記枠体2はその上面に、例えば、鉄
ーニッケルーコバルト合金や鉄ーニツケル合金等の金属
材料から成る蓋部材3が接合され、これによって基体1
と枠体2と蓋部材3とからなる容器の内部に光半導体素
子4が気密に封止されることとなる.前記蓋部材3の枠
体2上面への接合は、例えば、シームウェルド法等の溶
接によって行われる。
Further, a lid member 3 made of a metal material such as, for example, an iron-nickel-cobalt alloy or an iron-nickel alloy is joined to the upper surface of the frame 2 to thereby form the base 1.
The optical semiconductor element 4 is hermetically sealed inside a container composed of the frame member 2 and the lid member 3. The joining of the lid member 3 to the upper surface of the frame 2 is performed by, for example, welding such as a seam welding method.

【0042】かくして本発明の光半導体素子収納用パッ
ケージによれば、放熱板14の光半導体素子載置部14
aに光半導体素子4を間にペルチェ素子等の電子冷却素
子5を間に挟んで載置固定するとともに光半導体素子4
の各電極をボンデイングワイヤ12を介して外部リード
端子3に電気的に接続し、次に枠体2の上面に蓋部材3
を接合させ、基体1と放熱板15と枠体2と蓋部材3と
から成る容器内部に光半導体素子4を収容し、最後に枠
体2に取着させた筒状の固定部材9に光ファイバー部材
11を取着接続させることによって最終製品としての光
半導体装置となる。
Thus, according to the optical semiconductor element housing package of the present invention, the optical semiconductor element mounting portion 14 of the heat sink 14 is provided.
a, the optical semiconductor element 4 is mounted and fixed with an electronic cooling element 5 such as a Peltier element interposed therebetween.
Are electrically connected to the external lead terminals 3 via the bonding wires 12, and then the lid member 3 is attached to the upper surface of the frame 2.
And the optical semiconductor element 4 is housed in a container including the base 1, the heat radiating plate 15, the frame 2, and the cover 3, and finally the optical fiber is attached to the cylindrical fixing member 9 attached to the frame 2. By attaching and connecting the member 11, an optical semiconductor device as a final product is obtained.

【0043】かかる光半導体装置は電子冷却素子5によ
り光半導体素子4を冷却しつつ光半導体素子4に外部電
気回路から供給される駆動信号によって光励起を起こさ
せ、該励起した光を透光性部材10を介し光ファイバー
部材11に授受させるとともに該光ファイバー部材11
の光ファイバー内を伝達させることによって高速通信等
に使用される。なお、この場合、光半導体素子4が電子
冷却素子5を間に挟んで載置される放熱板14が、厚み
方向に配列した炭素繊維を炭素で結合した一方向性複合
材料から成る芯体14bの上下両面にクロムー鉄合金層
15a、銅層15b、鉄−ニッケル合金層もしくは鉄ー
ニッケルーコバルト合金層15cの3層構造を有する金
属層15を拡散接合により被着させたもので形成されて
おり、放熱板14の上面側から下面側にかけての方向の
熱伝導率が300W/m・k以上で放熱板14の上面側
から下面側に向けて熱が一方向に選択的に効率良く伝達
するようになっていることから電子冷却素子5の発する
熱は放熱板14の上面側から下面側にかけて一方向に伝
達し、放熱板14の下面側から大気中に効率良く放散さ
れて、基体1、枠体2、セラミック端子体6及びボンデ
ィングワイヤ12を介して光半導体素子4に作用するこ
とは殆どなく、その結果、光半導体素子4の電子冷却素
子5による冷却効率は高いものとなり、低出力の電子冷
却素子5でも光半導体素子4を常に適温として光半導体
素子4を長期間にわたり正常、かつ安定に作動させるこ
とが可能となる。
In such an optical semiconductor device, while the optical semiconductor element 4 is cooled by the electronic cooling element 5, the optical semiconductor element 4 is optically excited by a drive signal supplied from an external electric circuit, and the excited light is transmitted to the light transmitting member. The optical fiber member 11 is transmitted to and received from the optical fiber member 11 through the optical fiber member 11.
It is used for high-speed communication and the like by transmitting through an optical fiber. In this case, the heat radiating plate 14 on which the optical semiconductor element 4 is placed with the electron cooling element 5 interposed therebetween has a core 14b made of a unidirectional composite material in which carbon fibers arranged in the thickness direction are bonded with carbon. And a metal layer 15 having a three-layer structure of a chromium-iron alloy layer 15a, a copper layer 15b, an iron-nickel alloy layer or an iron-nickel-cobalt alloy layer 15c formed on both upper and lower surfaces by diffusion bonding. When the heat conductivity in the direction from the upper surface side to the lower surface side of the heat sink 14 is 300 W / m · k or more, heat is selectively and efficiently transmitted in one direction from the upper surface side to the lower surface side of the heat sink 14. As a result, the heat generated by the electronic cooling element 5 is transmitted in one direction from the upper surface side to the lower surface side of the radiator plate 14, and is efficiently radiated from the lower surface side of the radiator plate 14 into the atmosphere, so that the base 1, Frame 2, ceramic The optical semiconductor element 4 hardly acts on the optical semiconductor element 4 via the terminal body 6 and the bonding wire 12. As a result, the cooling efficiency of the optical semiconductor element 4 by the electronic cooling element 5 is high, and the electronic cooling element 5 with low output can be used. The optical semiconductor element 4 can be normally and stably operated for a long period of time by keeping the optical semiconductor element 4 at an appropriate temperature.

【0044】また本発明は上述の実施例に限定されるも
のではなく、本発明の要旨を逸脱しない範囲であれば種
々の変更は可能である。
The present invention is not limited to the above-described embodiment, and various changes can be made without departing from the gist of the present invention.

【0045】[0045]

【発明の効果】本発明の光半導体素子収納用パッケージ
によれば、光半導体素子が電子冷却素子を間に挟んで載
置される放熱体として、放熱体の上面側から下面側にか
けての熱伝導率が300W/m・k以上である部材、即
ち、厚み方向に配列した炭素繊維を炭素で結合した一方
向性複合材料から成る芯体の上下両面にクロムー鉄合金
層、銅層、鉄ーニッケル合金層もしくは鉄ーニッケルー
コバルト合金層の3層構造を有する金属層を拡散接合さ
せたものを使用したことから光半導体素子をペルチェ素
子等の電子冷却素子で冷却しつつ外部電気回路から供給
される駆動信号によって光励起させた場合、電子冷却素
子の発した熱は放熱体の上面側から下面側に選択的に伝
達されるとともに大気中に放散されて枠状の基体、枠
体、セラミック端子体及びボンディングワイヤを介して
光半導体素子に作用することはなく、その結果、光半導
体素子の電子冷却素子による冷却効率は高いものとな
り、低出力の電子冷却素子でも光半導体素子を常に適温
として光半導体素子を長期間にわたり正常、かつ安定に
作動させることが可能となる。
According to the package for housing an optical semiconductor element of the present invention, the heat conduction from the upper surface to the lower surface of the heat radiator is used as the heat radiator in which the optical semiconductor element is mounted with the electronic cooling element interposed therebetween. A chromium-iron alloy layer, a copper layer, an iron-nickel alloy on both upper and lower surfaces of a member having a ratio of 300 W / mk or more, that is, a core made of a unidirectional composite material in which carbon fibers arranged in the thickness direction are bonded by carbon. The optical semiconductor element is supplied from an external electric circuit while being cooled by an electronic cooling element such as a Peltier element since a diffusion layer of a metal layer having a three-layer structure of an iron-nickel-cobalt alloy layer is used. When photo-excited by a drive signal, heat generated by the thermoelectric cooler is selectively transmitted from the upper surface to the lower surface of the heat radiator and is radiated into the air to form a frame-shaped base, a frame, and a ceramic terminal. In addition, the optical semiconductor element does not act on the optical semiconductor element via the bonding wire, and as a result, the cooling efficiency of the optical semiconductor element by the electronic cooling element is high, and the optical semiconductor element is always kept at an appropriate temperature even with the low-power electronic cooling element. The element can operate normally and stably for a long period of time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光半導体素子収納用パッケージの一実
施例を示す断面図である。
FIG. 1 is a sectional view showing an embodiment of a package for housing an optical semiconductor element of the present invention.

【図2】図1に示す半導体素子収納用パッケージの蓋部
材を除いた平面図である。
FIG. 2 is a plan view of the semiconductor device housing package shown in FIG. 1 without a cover member.

【図3】図1に示す半導体素子収納用パッケージに使用
される放熱板の一部拡大断面図である。
FIG. 3 is a partially enlarged cross-sectional view of a heat sink used in the semiconductor element housing package shown in FIG. 1;

【図4】図1に示す半導体素子収納用パッケージに使用
される透光性部材を説明するための一部拡大断面図であ
る。
FIG. 4 is a partially enlarged cross-sectional view for explaining a light-transmitting member used for the semiconductor device housing package shown in FIG. 1;

【符号の説明】[Explanation of symbols]

1・・・・基体 2・・・・枠体 2a・・・貫通孔 2b・・・切欠部 3・・・・蓋部材 4・・・・光半導体素子 5・・・・電子冷却素子 6・・・・セラミック端子体 7・・・・絶縁体 8・・・・メタライズ配線層 9・・・・固定部材 10・・・・透光性部材 11・・・・光ファイバー部材 14・・・・放熱板 14a・・・載置部 14b・・・芯体 15・・・・金属層 15a・・・クロムー鉄合金層 15b・・・銅層 15c・・・鉄ーニッケル合金層もしくは鉄ーニッケル
ーコバルト合金層
DESCRIPTION OF SYMBOLS 1 ... Base body 2 ... Frame 2a ... Through-hole 2b ... Notch 3 ... Cover member 4 ... Optical semiconductor element 5 ... Electronic cooling element 6 ... ··· Ceramic terminal 7 ··· Insulator 8 ··· Metallized wiring layer 9 ··· Fixing member 10 ··· Translucent member 11 ··· Optical fiber member 14 ··· Heat dissipation Plate 14a ・ ・ ・ Placement part 14b ・ ・ ・ Core 15 ・ ・ ・ ・ ・ ・ Metal layer 15a ・ ・ ・ Chrome-iron alloy layer 15b ・ ・ ・ Copper layer 15c ・ ・ ・ Iron-nickel alloy layer or iron-nickel-cobalt alloy layer

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01S 5/022 H01L 23/36 M Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) H01S 5/022 H01L 23/36 M

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】枠状の基体と、該基体の穴部に挿着され、
上面に光半導体素子が電子冷却素子を介して載置される
載置部を有する放熱板と、前記基体上に光半導体素子載
置部を囲繞するようにして取着され、側部に貫通孔及び
切欠部を有する枠体と、前記貫通孔もしくは貫通孔周辺
の枠体に取着され、光ファイバー部材が接合される筒状
の固定部材と、前記切欠部に挿着され、絶縁体に光半導
体素子の各電極が電気的に接続されるメタライズ配線層
が形成されているセラミック端子体と、前記枠体の上面
に取着され、光半導体素子を気密に封止する蓋部材とか
らなる光半導体素子収納用パッケージであって、前記放
熱板は厚み方向に配列した炭素繊維を炭素で結合した一
方向性複合材料から成る芯体の上下両面にクロムー鉄合
金層、銅層、鉄ーニッケル合金層もしくは鉄ーニッケル
ーコバルト合金層の3層構造を有する金属層が拡散接合
により被着されて形成されており、かつ前記クロムー鉄
合金層、銅層、鉄ーニッケル合金層もしくは鉄ーニッケ
ルーコバルト合金層の各々の厚みが略同一厚みであるこ
とを特徴とする光半導体素子収納用パッケージ。
1. A frame-shaped base, inserted into a hole of the base,
A heatsink having a mounting portion on which an optical semiconductor element is mounted via an electronic cooling element; and a heat sink attached to the base so as to surround the optical semiconductor element mounting portion, and a through hole formed in a side portion. And a frame having a notch, a cylindrical fixing member attached to the through-hole or the frame around the through-hole, and joined to the optical fiber member, and an optical semiconductor mounted on the insulator by being inserted into the notch. An optical semiconductor comprising a ceramic terminal body on which a metallized wiring layer to which each electrode of the element is electrically connected is formed, and a lid member attached to the upper surface of the frame body and hermetically sealing the optical semiconductor element. An element storage package, wherein the radiator plate has a chromium-iron alloy layer, a copper layer, an iron-nickel alloy layer on both upper and lower surfaces of a core made of a unidirectional composite material in which carbon fibers arranged in a thickness direction are bonded with carbon. Iron-nickel-cobalt alloy layer A metal layer having a three-layer structure is formed by being applied by diffusion bonding, and each of the chromium-iron alloy layer, copper layer, iron-nickel alloy layer, or iron-nickel-cobalt alloy layer has substantially the same thickness. A package for housing an optical semiconductor element, characterized in that:
JP32721698A 1998-11-17 1998-11-17 Optical semiconductor element storage package Expired - Fee Related JP3457898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32721698A JP3457898B2 (en) 1998-11-17 1998-11-17 Optical semiconductor element storage package

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32721698A JP3457898B2 (en) 1998-11-17 1998-11-17 Optical semiconductor element storage package

Publications (2)

Publication Number Publication Date
JP2000150745A true JP2000150745A (en) 2000-05-30
JP3457898B2 JP3457898B2 (en) 2003-10-20

Family

ID=18196620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32721698A Expired - Fee Related JP3457898B2 (en) 1998-11-17 1998-11-17 Optical semiconductor element storage package

Country Status (1)

Country Link
JP (1) JP3457898B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003012498A1 (en) * 2001-07-30 2003-02-13 The Furukawa Electric Co., Ltd. Bonded structure of plane optical waveguide and metal member and optical waveguide module using the bonded structure
US7520683B2 (en) 2004-09-06 2009-04-21 Opnext Japan, Inc. Optical module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003012498A1 (en) * 2001-07-30 2003-02-13 The Furukawa Electric Co., Ltd. Bonded structure of plane optical waveguide and metal member and optical waveguide module using the bonded structure
US7520683B2 (en) 2004-09-06 2009-04-21 Opnext Japan, Inc. Optical module

Also Published As

Publication number Publication date
JP3457898B2 (en) 2003-10-20

Similar Documents

Publication Publication Date Title
JP3619393B2 (en) Optical semiconductor element storage package
JP3532114B2 (en) Optical semiconductor element storage package
JP2000150745A (en) Package for housing optical semiconductor element
JP3522132B2 (en) Optical semiconductor element storage package
JP3709084B2 (en) Optical semiconductor element storage package
JP2000183253A (en) Package for housing semiconductor element
JP2000150746A (en) Package for housing optical semiconductor element
JP2003298126A (en) Thermoelectric element module, package for housing semiconductor element, and semiconductor module
JP3659306B2 (en) Package for storing semiconductor elements
JP3987649B2 (en) Package for storing semiconductor elements
JP3709095B2 (en) Optical semiconductor element storage package
JP3659304B2 (en) Package for storing semiconductor elements
JP4360567B2 (en) Package for storing semiconductor elements
JP2003318451A (en) Thermoelectric module, package for containing semiconductor element and semiconductor module
JP3659300B2 (en) Package for storing semiconductor elements
JP3659305B2 (en) Package for storing semiconductor elements
JP2003037196A (en) Package for housing optical semiconductor element
JP4360568B2 (en) Package for storing semiconductor elements
JPH07211822A (en) Package for accommodating semiconductor element
JP3981256B2 (en) Optical semiconductor element storage package
JP3709082B2 (en) Optical semiconductor element storage package
JP3659301B2 (en) Package for storing semiconductor elements
JP2003152231A (en) Thermoelectric element module, package for housing semiconductor element, and semiconductor module
JP2003243730A (en) Thermoelement module, package storing semiconductor element and semiconductor module
JP2000133753A (en) Semiconductor-element storing package

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees