JP3659298B2 - Package for storing semiconductor elements - Google Patents

Package for storing semiconductor elements Download PDF

Info

Publication number
JP3659298B2
JP3659298B2 JP30433598A JP30433598A JP3659298B2 JP 3659298 B2 JP3659298 B2 JP 3659298B2 JP 30433598 A JP30433598 A JP 30433598A JP 30433598 A JP30433598 A JP 30433598A JP 3659298 B2 JP3659298 B2 JP 3659298B2
Authority
JP
Japan
Prior art keywords
semiconductor element
insulator
frame
heat sink
package
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30433598A
Other languages
Japanese (ja)
Other versions
JP2000133755A (en
Inventor
和弘 川畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP30433598A priority Critical patent/JP3659298B2/en
Publication of JP2000133755A publication Critical patent/JP2000133755A/en
Application granted granted Critical
Publication of JP3659298B2 publication Critical patent/JP3659298B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Description

【0001】
【発明の属する技術分野】
本発明はLSI(大規模集積回路素子)等の半導体素子を収容するための半導体素子収納用パッケージに関するものである。
【0002】
【従来の技術】
従来、半導体素子を収容するための半導体素子収納用パッケージは、上面に半導体素子が載置される載置部を有する銅、銅ータングステン合金等の金属材料からなる放熱板と、該放熱板の上面に前記載置部を囲繞するようにして取着された酸化アルミニウム質焼結体やムライト質焼結体、窒化アルミニウム質焼結体、炭化珪素質焼結体、ガラスセラミックス焼結体等の電気絶縁材料から成る枠状の絶縁体と、該枠状絶縁体の内周部から外周部にかけて被着導出されているタングステン、モリブデン、マンガン等の高融点金属粉末からなる複数個のメタライズ配線層と、前記枠状絶縁体の上面に取着され、絶縁体の穴を塞ぐ蓋体とから構成されており、放熱板の半導体素子載置部に半導体素子をガラス、樹脂、ロウ材等の接着剤を介して接着固定するとともに該半導体素子の各電極をボンディングワイヤを介して枠状絶縁体に形成したメタライズ配線層に電気的に接続し、しかる後、枠状絶縁体に蓋体を該絶縁体の穴を塞ぐようにしてガラス、樹脂、ロウ材等から成る封止材を介して接合させ、放熱板と枠状絶縁体と蓋体とから成る容器内部に半導体素子を気密に収容することによって製品としての半導体装置となる。
【0003】
なお、上述の半導体素子収納用パッケージにおいては、半導体素子が載置される放熱板が銅や銅ータングステン合金等の金属材料で形成されており、該銅や銅ータングステン合金等は熱伝導性に優れていることから放熱板は半導体素子の作動時に発する熱を良好に吸収するとともに大気中に良好に放散させることができ、これによって半導体素子を常に適温とし半導体素子に熱破壊が発生したり、特性に熱劣化が発生したりするのを有効に防止している。
【0004】
しかしながら、この従来の半導体素子収納用パッケージでは、放熱板が銅で形成されている場合、該銅はその熱膨張係数が約18×10-6/℃で枠状絶縁体を構成する酸化アルミニウム質焼結体やムライト質焼結体、窒化アルミニウム質焼結体、炭化珪素質焼結体、ガラスセラミックス焼結体等の熱膨張係数(酸化アルミニウム質焼結体の熱膨張係数は約7×10-6/℃、ムライト質焼結体の熱膨張係数は約4×10-6/℃、窒化アルミニウム質焼結体の熱膨張係数は約4×10-6/℃、炭化珪素質焼結体の熱膨張係数は約3×10-6/℃、ガラスセラミックス焼結体の熱膨張係数は約4×10-6/℃)と大きく相異することから、容器内部に半導体素子を気密に収容し、半導体装置となした後、枠状絶縁体と放熱板の各々に半導体素子が作動時に発生する熱等が印加された場合、放熱板と枠状絶縁体との間に両者の熱膨張係数の相異に起因する大きな熱応力が発生し、該熱応力によって放熱板が枠状絶縁体より剥がれたり、枠状絶縁体に割れやクラックが発生して容器の気密封止が破れ、容器内部に収容する半導体素子を長期間にわたり、正常、且つ安定に作動させることができないという欠点を有していた。
【0005】
また放熱板が銅ータングステン合金で形成されている場合、該銅ータングステン合金は重いことから容器内部に半導体素子を気密に収容し、半導体装置となした際、半導体装置の重量が重くなり、近時の小型化、軽量化が進む電子装置にはその実装が困難となってしまう欠点を有していた。
【0006】
そこで上記欠点を解消するために放熱板を銅や銅ータングステン合金等の金属材料で形成するのに変えて所定の方向に配列された炭素繊維の各々を炭素で結合した一方向性複合材料で形成することが提案されている(特開平9ー321190号公報参照)。
【0007】
かかる一方向性複合材料は炭素繊維の配列方向(炭素繊維の長さ方向)のみに熱を伝達するという特性を有するため炭素繊維の配列方向を絶縁基体の半導体素子が搭載される凹部底面に対し直角方向としておくと半導体素子が作動時に発する熱を良好に吸収し、該吸収した熱を大気中に効率良く放散させることが可能となる。
【0008】
またこの一方向性複合材料は軟質であるため枠状絶縁体と熱膨張係数が相違し、枠状絶縁体との間に熱膨張係数の相違に起因する熱応力が発生したとしても該熱応力は一方向性複合材料から成る放熱板を適度に変形させることによって吸収され、その結果、枠状絶縁体と放熱板とは極めて強固に接合し、半導体素子の作動時に発する熱を長期間にわたり大気中に放散させることが可能となる。
【0009】
【発明が解決しようとする課題】
しかしながら、この一方向性複合材料を放熱板として使用した場合、該一方向性複合材料はその表面及び内部に多数の気孔を有しており、多孔質であることから容器内部に半導体素子を収容し、半導体装置となした後、ヘリウムを使用して半導体装置の気密封止の検査をした際、ヘリウムの一部が前記気孔内にトラップされ、このトラップされたヘリウムによって検査結果に誤差が生じ、半導体装置の気密封止の正確な検査ができないという欠点を誘発した。
【0010】
本発明は上述の諸欠点に鑑み案出されたもので、その目的は内部に収容する半導体素子を常に適温として正常、かつ安定に作動させることができ、かつ内部に半導体素子を収容して形成される半導体装置の気密封止の正確な検査ができる半導体素子収納用パッケージを提供することにある。
【0011】
【課題を解決するための手段】
本発明は、上面に半導体素子が載置される載置部を有する放熱板に前記載置部を囲繞するようにして枠状の絶縁体を取着させた半導体素子収納用パッケージであって、前記放熱板は厚み方向に配列した炭素繊維を炭素で結合した一方向性複合材料から成り、かつ露出する外表面が被覆層で被覆されていることを特徴とするものである。
【0012】
また本発明は、前記被覆層が金属材料から成ることを特徴とするものである。
【0013】
本発明の半導体素子収納用パッケージによれば、厚み方向に配列された炭素繊維を炭素で結合した一方向性複合材料を放熱板として使用することから半導体素子が作動時に発した熱は放熱板に選択的に吸収されるとともに放熱板を介して大気中に効率良く放散され、その結果、半導体素子は常に適温となり、半導体素子を長期間にわたり正常、かつ安定に作動させることが可能となる。
【0014】
また本発明の半導体素子収納用パッケージによれば、一方向性複合材料から成る放熱板は弾性率が30GPa以下で、軟質であることから放熱板と枠状絶縁体との間に両者の熱膨張係数の相違に起因する熱応力が多少発生したとしてもその熱応力は放熱板を適度に変形させることによって吸収され、その結果、枠状絶縁体と放熱板とは極めて強固に接合し、半導体素子が発する熱を常に大気中へ効率良く放散させることができる。
【0015】
更に本発明の半導体素子収納用パッケージによれば、一方向性複合材料から成る放熱板はその重量が銅ータングステン合金に比べて1/5程度であり、極めて軽量なものであることから半導体素子収納用パッケージ内に半導体素子を収容し、半導体装置となした場合、半導体装置の重量は極めて軽量なものとなり、その結果、近時の小型化、軽量化が進む電子装置への実装も可能となる。
【0016】
また更に本発明の半導体素子収納用パッケージによれば、一方向性複合材料から成る放熱板の露出する外表面を被覆層で被覆したことから放熱板の内部及び表面に多数の気孔が形成されており多孔質であるとしてもその気孔は被覆層によって完全に塞がれ、その結果、容器内部に半導体素子を収容し、半導体装置となした後、ヘリウムを使用して半導体装置の気密封止の検査をする場合、ヘリウムの一部が放熱板の気孔内にトラップされることが有効に防止されて半導体装置の気密封止の検査を極めて正確に行うことが可能となる。
【0017】
【発明の実施の形態】
次に本発明を添付図面に基づき詳細に説明する。
図1は本発明の半導体素子収納用パッケージの一実施例を示し、1は放熱板、2は枠状の絶縁体、3は蓋体である。この放熱板1と枠状絶縁体2と蓋体3とで半導体素子4を収容する容器5が構成される。
【0018】
前記放熱板1はその上面に半導体素子が載置される載置部1aを有しており、該載置部1a上には半導体素子4がガラス、樹脂、ロウ材等の接着剤を介し載置固定される。
【0019】
前記放熱板1は半導体素子4を支持する支持部材として作用するとともに半導体素子4が作動時に発する熱を良好に吸収するとともに大気中に効率良く放散させ、半導体素子4を常に適温とする作用をなす。
【0020】
前記放熱板1は炭素繊維を厚み方向に配列させるとともに各々の炭素繊維を炭素で結合した一方向性複合材料で形成されており、例えば、一方向に配列した炭素繊維の束を、固体のピッチあるいはコークスなどの微粉末を分散させたフェノール樹脂などの熱硬化性樹脂の溶液中に含浸させ、次にこれを乾燥させて一方向に炭素繊維が配列している複数枚のシートを形成するとともに各々のシートを炭素繊維の方向が同一となるようにして複数枚積層し、次に前記積層された複数枚のシートに所定の圧力を加えるとともに加熱して熱硬化性樹脂部分を硬化させ、最後にこれを不活性雰囲気中、高温で焼成し、フェノール樹脂とピッチあるいはコークスの微粉末を炭化させる(炭素を形成する)とともに該炭素で各々の炭素繊維を結合させることによって製作されている。
【0021】
前記放熱板1を形成する一方向性複合材料は炭素繊維の方向、即ち、放熱板1の上面から下面にかけての方向の熱伝導率が300W/m・k以上、炭素繊維に対し直交する方向の熱伝導率が30W/m・k以下であり、放熱板1の上面側から下面側に向けて熱が一方向に選択的に効率良く伝達するようになっている。そのためこの一方向性複合材料から成る放熱板1の上面に半導体素子4を載置固定させた場合、半導体素子4の作動時に発する熱は放熱板1の上面から下面にかけて一方向に伝達し、放熱板1の下面から大気中に効率良く放散されることとなる。
【0022】
また前記一方向性複合材料から成る放熱板1はその重量が銅ータングステン合金に比較して1/5程度であり、軽いことからこの放熱板1を使用した半導体素子収納用パッケージに半導体素子4を収容して半導体装置を形成した際、該半導体装置の重量も極めて軽量なものとなり、近時の小型化、軽量化が進む電子装置にも実装が可能となる。
【0023】
前記放熱板1はまたその上面外周部に該放熱板1の上面に設けた半導体素子4が載置される載置部1aを囲繞するようにして枠状の絶縁体2がロウ材やガラス、樹脂等の接着剤を介して取着されており、放熱板1と枠状絶縁体2とで半導体素子4を収容するための空所が内部に形成される。
【0024】
前記放熱板1に取着される枠状絶縁体2は酸化アルミニウム質焼結体、ムライト質焼結体、窒化アルミニウム質焼結体、炭化珪素質焼結体、ガラスセラミックス焼結体等の電気絶縁材料から成り、例えば、酸化アルミニウム質焼結体から成る場合には、酸化アルミニウム、酸化珪素、酸化マグネシウム、酸化カルシウム等の原料粉末に適当な有機バインダー、溶剤等を添加混合して泥漿物を作るとともに、該泥漿物をドクターブレード法やカレンダーロール法を採用することによってセラミックグリーンシート(セラミック生シート)と成し、しかる後、前記セラミックグリーンシートに適当な打ち抜き加工を施すとともにこれを複数枚積層し、約1600℃の温度で焼成することによって製作される。
【0025】
前記枠状絶縁体2の放熱板1上への取着はロウ材やガラス、樹脂等の接着剤を使用することによって行われ、ロウ材を使用して行う場合には、予め枠状絶縁体2の下面にタングステンやモリブデン、マンガン等の高融点金属粉末から成るメタライズ金属層6を被着させておくとともに放熱板1の上面に鉄やニッケル、クロム、チタン、モリブデン、タンタル、タングステン等の厚さ50μm以下の薄板状金属部材を拡散接合により被着させておき、この薄板状金属部材と枠状絶縁体下面に被着形成したメタライズ金属層6とを半田等のロウ材を介しロウ付けすることによって行われる。
【0026】
なお、前記枠状絶縁体1下面への金属層6の被着は、タングステン、モリブデン、マンガン等の高融点金属粉末に適当な有機バインダー、溶剤等を添加混合して得た金属ペーストを枠状絶縁体2となるセラミックグリーンシートの所定位置に予め従来周知のスクリーン印刷法により所定パターンに印刷塗布しておき、セラミックグリーンシートを焼成し枠状絶縁体2となす際に同時に枠状絶縁体2下面に被着される。
【0027】
また前記放熱板1の薄板状金属部材の拡散接合による被着は、特開平9ー321190号公報に記載の方法、具体的には、一方向性複合材料の一主面に鉄やニッケル、クロム、チタン、モリブデン、タンタル、タングステン等の厚さ50μm以下の薄板状金属部材を載置させ、次にこれを真空ホットプレスで5MPaの圧力をかけつつ1200℃の温度を1時間印加することによって行われる。
【0028】
前記上面に枠状絶縁体2が取着された一方向性複合材料から成る放熱板1はその弾性率が30GPa以下であり、軟質であることから放熱板1と枠状絶縁体2との間に両者の熱膨張係数の相違に起因する熱応力が多少発生したとしてもその熱応力は放熱板1を適度に変形させることによって吸収され、その結果、枠状絶縁体2と放熱板1とは極めて強固に接合し、半導体素子4が発する熱を常に大気中へ効率良く放散させることができる。
【0029】
更に前記放熱板1の上面に取着されている枠状絶縁体2はその内周部から上面にかけて導出する複数個のメタライズ配線層7が被着形成されており、枠状絶縁体2の内周部に露出するメタライズ配線層7の一端には半導体素子4の各電極がボンディングワイヤ9を介して電気的に接続され、また枠状絶縁体2の上面に導出された部位には外部電気回路と接続される外部リードピン8が銀ロウ等のロウ材を介してロウ付け取着されている。
【0030】
前記メタライズ配線層7は半導体素子4の各電極を外部電気回路に接続する際の導電路として作用し、タングステン、モリブデン、マンガン等の高融点金属粉末により形成されている。
【0031】
前記メタライズ配線層7はタングステン、モリブデン、マンガン等の高融点金属粉末に適当な有機バインダー、溶剤等を添加混合して得た金属ペーストを枠状絶縁体2となるセラミックグリーンシートに予め従来周知のスクリーン印刷法により所定パターンにに印刷塗布しておくことによって枠状絶縁体2の内周部から上面にかけて被着形成される。
【0032】
なお、前記メタライズ配線層7はその露出する表面にニッケル、金等の耐蝕性に優れ、かつロウ材との濡れ性に優れる金属を1μm〜20μmの厚みにメッキ法により被着させておくと、メタライズ配線層7の酸化腐蝕を有効に防止することができるとともにメタライズ配線層7への外部リードピン8のロウ付けを強固となすことができる。従って、前記メタライズ配線層7は、その露出する表面にニッケル、金等の耐蝕性に優れ、かつロウ材との濡れ性に優れる金属を1μm〜20μmの厚みに被着させておくことが好ましい。
【0033】
また前記メタライズ配線層7には外部リードピン8が銀ロウ等のロウ材を介してロウ付け取着されており、該外部リードピン8は容器5内部に収容する半導体素子4の各電極を外部電気回路に電気的に接続する作用をなし、外部リードピン8を外部電気回路に接続することによって容器5内部に収容される半導体素子4はメタライズ配線層7及び外部リードピン8を介して外部電気回路に接続されることとなる。
【0034】
前記外部リードピン8は鉄ーニッケルーコバルト合金や鉄ーニッケル合金等の金属材料から成り、例えば、鉄ーニッケルーコバルト合金等の金属から成るインゴット(塊)に圧延加工法や打ち抜き加工法等、従来周知の金属加工法を施すことによって所定の形状に形成される。
【0035】
更に前記上面に枠状絶縁体2が取着されている放熱板1はその露出する外表面が被覆層10で被覆されており、該被覆層10によって放熱板1を形成する一方向性複合材料の気孔が完全に塞がれている。
【0036】
前記放熱板1はその気孔が被覆層10により完全に塞がれていることから容器5内部に半導体素子4を収容し、半導体装置となした後、ヘリウムを使用して半導体装置の気密封止の検査をする場合、ヘリウムの一部が放熱板1の気孔内にトラップされることはなく、半導体装置の気密封止の検査を極めて正確に行うことが可能となる。
【0037】
前記被覆層10は金属や鉛ホウ酸系やホウケイ酸系のガラス、エポキシ樹脂やシリコーン樹脂、ウレタン樹脂等の樹脂から成り、金属はガラスや樹脂に比べ熱伝導率が高く、熱を伝え易く、放熱板1を伝達してきた熱をそのまま大気中に効率よく放散することができることから金属で形成しておくことが好ましい。
【0038】
なお、前記被覆層10を金属で形成する場合、放熱板1への被覆層10の被着は、例えば、まず放熱板1の露出する外表面に無電解メッキ法や電解メッキ法によりニッケルを1μm〜10μmの厚みに被着させ、次に前記ニッケルメッキ層表面に溶融させた銀ー銅合金やチタンー銀ー銅合金等を被着させることによって行われる。
【0039】
かくして上述の半導体素子収納用パッケージによれば、放熱板1の半導体素子載置部1a上に半導体素子4をガラス、樹脂、ロウ材等の接着剤を介して接着固定するとともに該半導体素子4の各電極をボンディングワイヤ9を介して所定のメタライズ配線層7に接続させ、しかる後、前記枠状絶縁体2の上面に蓋体3をガラス、樹脂、ロウ材等から成る封止材を介して接合させ、放熱板1、枠状絶縁体2及び蓋体3とから成る容器5内部に半導体素子4を気密に収容することによって製品としての半導体装置となる。
【0040】
なお、本発明は上述の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更は可能である。
【0041】
【発明の効果】
本発明の半導体素子収納用パッケージによれば、厚み方向に配列された炭素繊維を炭素で結合した一方向性複合材料を放熱板として使用することから半導体素子が作動時に発した熱は放熱板に選択的に吸収されるとともに放熱板を介して大気中に効率良く放散され、その結果、半導体素子は常に適温となり、半導体素子を長期間にわたり正常、かつ安定に作動させることが可能となる。
【0042】
また本発明の半導体素子収納用パッケージによれば、一方向性複合材料から成る放熱板は弾性率が30GPa以下で、軟質であることから放熱板と枠状絶縁体との間に両者の熱膨張係数の相違に起因する熱応力が多少発生したとしてもその熱応力は放熱板を適度に変形させることによって吸収され、その結果、枠状絶縁体と放熱板とは極めて強固に接合し、半導体素子が発する熱を常に大気中へ効率良く放散させることができる。
【0043】
更に本発明の半導体素子収納用パッケージによれば、一方向性複合材料から成る放熱板はその重量が銅ータングステン合金に比べて1/5程度であり、極めて軽量なものであることから半導体素子収納用パッケージ内に半導体素子を収容し、半導体装置となした場合、半導体装置の重量は極めて軽量なものとなり、その結果、近時の小型化、軽量化が進む電子装置への実装も可能となる。
【0044】
また更に本発明の半導体素子収納用パッケージによれば、一方向性複合材料から成る放熱板の露出する外表面を被覆層で被覆したことから放熱板の内部及び表面に多数の気孔が形成されており多孔質であるとしてもその気孔は被覆層によって完全に塞がれ、その結果、容器内部に半導体素子を収容し、半導体装置となした後、ヘリウムを使用して半導体装置の気密封止の検査をする場合、ヘリウムの一部が放熱板の気孔内にトラップされることが有効に防止されて半導体装置の気密封止の検査を極めて正確に行うことが可能となる。
【図面の簡単な説明】
【図1】本発明の半導体素子収納用パッケージの一実施例を示す断面図である。
【符号の説明】
1・・・・・・・・放熱板
2・・・・・・・・枠状の絶縁体
3・・・・・・・・蓋体
4・・・・・・・・半導体素子
7・・・・・・・・メタライズ配線層
8・・・・・・・・外部リード端子
10・・・・・・・被覆層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a package for housing a semiconductor element for housing a semiconductor element such as an LSI (Large Scale Integrated Circuit Element).
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a package for housing a semiconductor element for housing a semiconductor element includes a heat sink made of a metal material such as copper or copper-tungsten alloy having a mounting portion on which the semiconductor element is mounted, and the heat sink. Aluminum oxide sintered body, mullite sintered body, aluminum nitride sintered body, silicon carbide sintered body, glass ceramic sintered body, etc. attached so as to surround the mounting portion on the upper surface A frame-like insulator made of an electrically insulating material, and a plurality of metallized wiring layers made of refractory metal powder such as tungsten, molybdenum, manganese and the like, which are deposited and led out from the inner periphery to the outer periphery of the frame-like insulator And a lid that is attached to the upper surface of the frame-like insulator and closes the hole of the insulator, and the semiconductor element is bonded to the semiconductor element mounting portion of the heat sink with glass, resin, brazing material, or the like. Glue through the agent At the same time, each electrode of the semiconductor element is electrically connected to the metallized wiring layer formed on the frame-shaped insulator via bonding wires, and then the lid is closed on the frame-shaped insulator so as to close the hole of the insulator. And a semiconductor device as a product by being bonded through a sealing material made of glass, resin, brazing material, etc., and containing a semiconductor element in a container made of a heat sink, a frame-like insulator, and a lid. It becomes.
[0003]
In the semiconductor element storage package described above, the heat sink on which the semiconductor element is placed is formed of a metal material such as copper or copper-tungsten alloy, and the copper or copper-tungsten alloy is thermally conductive. Therefore, the heat sink can absorb the heat generated during the operation of the semiconductor element well and dissipate it well into the atmosphere. This effectively prevents thermal degradation of the characteristics.
[0004]
However, in this conventional package for housing semiconductor elements, when the heat sink is made of copper, the copper has a thermal expansion coefficient of about 18 × 10 −6 / ° C., and the aluminum oxide material constituting the frame insulator Thermal expansion coefficient of sintered body, mullite sintered body, aluminum nitride sintered body, silicon carbide sintered body, glass ceramic sintered body, etc. (The thermal expansion coefficient of aluminum oxide sintered body is about 7 × 10 -6 / ° C, the coefficient of thermal expansion of the mullite sintered body is about 4 × 10 -6 / ° C, and the coefficient of thermal expansion of the aluminum nitride sintered body is about 4 × 10 -6 / ° C. The coefficient of thermal expansion of the glass ceramics is about 3 × 10 −6 / ° C., and the coefficient of thermal expansion of the sintered glass ceramics is about 4 × 10 −6 / ° C.). After forming the semiconductor device, a semiconductor element is formed on each of the frame-shaped insulator and the heat sink. When heat generated at times is applied, a large thermal stress is generated between the heat sink and the frame-like insulator due to the difference in thermal expansion coefficient between the two, and the heat sink causes the frame-like insulation. The defect is that it peels off from the body, or the frame-shaped insulator is cracked or cracked and the hermetic sealing of the container is broken, and the semiconductor element accommodated in the container cannot be operated normally and stably over a long period of time. Had.
[0005]
Also, when the heat sink is formed of a copper-tungsten alloy, the copper-tungsten alloy is heavy, so the semiconductor element is hermetically accommodated inside the container, and when it becomes a semiconductor device, the weight of the semiconductor device becomes heavy, Recently, electronic devices that are becoming smaller and lighter have the drawback of being difficult to mount.
[0006]
Therefore, in order to eliminate the above drawbacks, the heat sink is made of a metal material such as copper or copper-tungsten alloy, and a unidirectional composite material in which carbon fibers arranged in a predetermined direction are bonded with carbon. It has been proposed to form (see Japanese Patent Application Laid-Open No. 9-321190).
[0007]
Such a unidirectional composite material has the property of transferring heat only in the carbon fiber arrangement direction (carbon fiber length direction). If the direction is perpendicular, the heat generated by the semiconductor element during operation can be satisfactorily absorbed, and the absorbed heat can be efficiently dissipated into the atmosphere.
[0008]
In addition, since this unidirectional composite material is soft, the thermal expansion coefficient is different from that of the frame-like insulator, and even if thermal stress is generated between the frame-like insulator and the thermal expansion coefficient, Is absorbed by appropriately deforming the heat sink made of a unidirectional composite material. As a result, the frame insulator and the heat sink are extremely firmly bonded, and the heat generated during the operation of the semiconductor element is sustained over a long period of time. It is possible to dissipate inside.
[0009]
[Problems to be solved by the invention]
However, when this unidirectional composite material is used as a heat sink, the unidirectional composite material has a large number of pores on the surface and inside thereof, and is porous, so that a semiconductor element is accommodated inside the container. When the semiconductor device is inspected for hermetic sealing of the semiconductor device using helium, a part of the helium is trapped in the pores, and the trapped helium causes an error in the inspection result. This has led to the disadvantage that an accurate inspection of the hermetic sealing of the semiconductor device is not possible.
[0010]
The present invention has been devised in view of the above-described drawbacks, and its purpose is to form a semiconductor element accommodated inside the semiconductor element so that the semiconductor element accommodated therein can always operate normally and stably at an appropriate temperature. It is an object of the present invention to provide a package for housing a semiconductor element capable of accurately inspecting hermetic sealing of a semiconductor device.
[0011]
[Means for Solving the Problems]
The present invention is a package for housing a semiconductor element in which a frame-like insulator is attached so as to surround the mounting portion on a heat sink having a mounting portion on which a semiconductor element is mounted. The heat radiating plate is made of a unidirectional composite material in which carbon fibers arranged in the thickness direction are bonded with carbon, and the exposed outer surface is covered with a coating layer.
[0012]
According to the present invention, the coating layer is made of a metal material.
[0013]
According to the package for housing a semiconductor element of the present invention, heat generated during operation of the semiconductor element is applied to the heat sink because a unidirectional composite material in which carbon fibers arranged in the thickness direction are bonded with carbon is used as the heat sink. The semiconductor element is selectively absorbed and efficiently dissipated into the atmosphere through the heat radiating plate. As a result, the semiconductor element always has an appropriate temperature, and the semiconductor element can be operated normally and stably over a long period of time.
[0014]
Further, according to the package for housing a semiconductor element of the present invention, since the heat sink made of a unidirectional composite material has a modulus of elasticity of 30 GPa or less and is soft, the thermal expansion of both between the heat sink and the frame insulator is performed. Even if some thermal stress due to the difference in coefficient is generated, the thermal stress is absorbed by appropriately deforming the heat sink, and as a result, the frame-like insulator and the heat sink are bonded extremely firmly, and the semiconductor element The heat generated by can always be efficiently dissipated into the atmosphere.
[0015]
Furthermore, according to the package for housing a semiconductor element of the present invention, the heat dissipation plate made of a unidirectional composite material is about 1/5 of the weight of a copper-tungsten alloy, and is extremely light. When a semiconductor element is housed in a storage package to form a semiconductor device, the weight of the semiconductor device becomes extremely light, and as a result, it can be mounted on an electronic device that has recently become smaller and lighter. Become.
[0016]
Furthermore, according to the semiconductor element storage package of the present invention, since the exposed outer surface of the heat sink made of the unidirectional composite material is covered with the coating layer, a large number of pores are formed inside and on the surface of the heat sink. Even if it is porous, the pores are completely closed by the covering layer. As a result, the semiconductor element is accommodated inside the container to form a semiconductor device, and then helium is used to hermetically seal the semiconductor device. When inspecting, it is possible to effectively prevent a part of helium from being trapped in the pores of the heat radiating plate, and to inspect the hermetic sealing of the semiconductor device very accurately.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 shows an embodiment of a package for housing a semiconductor element according to the present invention, wherein 1 is a heat sink, 2 is a frame-like insulator, and 3 is a lid. The heat radiating plate 1, the frame-like insulator 2, and the lid 3 constitute a container 5 that houses the semiconductor element 4.
[0018]
The heat radiating plate 1 has a mounting portion 1a on which a semiconductor element is mounted, and the semiconductor element 4 is mounted on the mounting portion 1a via an adhesive such as glass, resin, or brazing material. It is fixed.
[0019]
The heat radiating plate 1 functions as a support member for supporting the semiconductor element 4 and absorbs heat generated when the semiconductor element 4 is activated and efficiently dissipates it into the atmosphere so that the semiconductor element 4 is always kept at an appropriate temperature. .
[0020]
The heat radiating plate 1 is formed of a unidirectional composite material in which carbon fibers are arranged in the thickness direction and the carbon fibers are bonded with carbon. For example, a bundle of carbon fibers arranged in one direction is formed into a solid pitch. Or impregnate a solution of a thermosetting resin such as phenol resin in which fine powder such as coke is dispersed, and then dry it to form a plurality of sheets in which carbon fibers are arranged in one direction. A plurality of sheets are laminated so that the directions of the carbon fibers are the same, and then a predetermined pressure is applied to the laminated sheets and heated to cure the thermosetting resin portion, and finally This is fired at a high temperature in an inert atmosphere to carbonize the phenol resin and pitch or coke fine powder (to form carbon) and to bond each carbon fiber with the carbon. Thus it has been produced.
[0021]
The unidirectional composite material forming the heat radiating plate 1 has a carbon fiber direction, that is, a heat conductivity in the direction from the upper surface to the lower surface of the heat radiating plate 1 of 300 W / m · k or more in a direction perpendicular to the carbon fiber. The thermal conductivity is 30 W / m · k or less, and heat is selectively and efficiently transmitted in one direction from the upper surface side to the lower surface side of the heat radiating plate 1. Therefore, when the semiconductor element 4 is placed and fixed on the upper surface of the heat radiating plate 1 made of this unidirectional composite material, the heat generated during the operation of the semiconductor element 4 is transmitted in one direction from the upper surface to the lower surface of the heat radiating plate 1 to dissipate heat. It will be efficiently dissipated from the lower surface of the plate 1 into the atmosphere.
[0022]
Further, since the weight of the heat radiating plate 1 made of the unidirectional composite material is about 1/5 that of the copper-tungsten alloy and is light, the semiconductor element 4 is mounted on the semiconductor element housing package using the heat radiating plate 1. When the semiconductor device is formed by housing the semiconductor device, the weight of the semiconductor device becomes extremely light, and the semiconductor device can be mounted on an electronic device that has recently been reduced in size and weight.
[0023]
The heat dissipating plate 1 also has a frame-like insulator 2 formed of brazing material or glass so as to surround the mounting portion 1a on which the semiconductor element 4 provided on the upper surface of the heat dissipating plate 1 is mounted on the outer periphery of the upper surface. It is attached via an adhesive such as a resin, and a space for accommodating the semiconductor element 4 is formed inside the heat sink 1 and the frame-like insulator 2.
[0024]
The frame-like insulator 2 attached to the heat radiating plate 1 is an electric material such as an aluminum oxide sintered body, a mullite sintered body, an aluminum nitride sintered body, a silicon carbide sintered body, or a glass ceramic sintered body. For example, in the case of an aluminum oxide sintered body, an appropriate organic binder, solvent, etc. are added to and mixed with raw material powders such as aluminum oxide, silicon oxide, magnesium oxide, calcium oxide, etc. The slurry is formed into a ceramic green sheet (ceramic green sheet) by adopting a doctor blade method or a calender roll method, and thereafter, the ceramic green sheet is subjected to an appropriate punching process and a plurality of sheets are formed. It is manufactured by laminating and firing at a temperature of about 1600 ° C.
[0025]
The frame insulator 2 is attached to the heat radiating plate 1 by using an adhesive such as a brazing material, glass or resin. When the brazing material is used, the frame-shaped insulator is preliminarily used. A metallized metal layer 6 made of a refractory metal powder such as tungsten, molybdenum, manganese or the like is deposited on the lower surface of 2 and a thickness of iron, nickel, chromium, titanium, molybdenum, tantalum, tungsten, or the like is deposited on the upper surface of the heat sink 1. A thin metal member having a thickness of 50 μm or less is deposited by diffusion bonding, and the thin metal member and the metallized metal layer 6 deposited on the lower surface of the frame-like insulator are brazed via a brazing material such as solder. Is done by.
[0026]
The metal layer 6 is deposited on the lower surface of the frame-shaped insulator 1 by adding a metal paste obtained by adding and mixing an appropriate organic binder, solvent, etc. to a refractory metal powder such as tungsten, molybdenum, or manganese. When a ceramic green sheet is preliminarily printed and applied to a predetermined position of a ceramic green sheet to be the insulator 2 by a well-known screen printing method and the ceramic green sheet is baked to form the frame insulator 2, the frame insulator 2 is simultaneously formed. It is applied to the lower surface.
[0027]
In addition, the thin plate metal member of the heat radiating plate 1 is deposited by diffusion bonding according to the method described in JP-A-9-321190, specifically, iron, nickel, chromium on one main surface of the unidirectional composite material. A thin plate-like metal member having a thickness of 50 μm or less such as titanium, molybdenum, tantalum, or tungsten is placed, and then a temperature of 1200 ° C. is applied for 1 hour while applying a pressure of 5 MPa with a vacuum hot press. Is called.
[0028]
The heat radiating plate 1 made of a unidirectional composite material with the frame-like insulator 2 attached to the upper surface has a modulus of elasticity of 30 GPa or less and is soft, so that it is between the heat radiating plate 1 and the frame-like insulator 2. Even if some thermal stress due to the difference in thermal expansion coefficient between the two is generated, the thermal stress is absorbed by appropriately deforming the heat sink 1. As a result, the frame-like insulator 2 and the heat sink 1 are Bonding very firmly, the heat generated by the semiconductor element 4 can always be efficiently dissipated into the atmosphere.
[0029]
Further, the frame-like insulator 2 attached to the upper surface of the heat radiating plate 1 is formed with a plurality of metallized wiring layers 7 led out from the inner periphery to the upper surface, Each electrode of the semiconductor element 4 is electrically connected to one end of the metallized wiring layer 7 exposed at the peripheral portion via a bonding wire 9, and an external electric circuit is connected to a portion led to the upper surface of the frame-like insulator 2. The external lead pin 8 connected to is brazed and attached via a brazing material such as silver brazing.
[0030]
The metallized wiring layer 7 functions as a conductive path for connecting each electrode of the semiconductor element 4 to an external electric circuit, and is formed of a refractory metal powder such as tungsten, molybdenum, or manganese.
[0031]
The metallized wiring layer 7 is known in advance in advance to a ceramic green sheet to be a frame-like insulator 2 using a metal paste obtained by adding and mixing an appropriate organic binder, solvent, etc. to a refractory metal powder such as tungsten, molybdenum or manganese. By coating and applying in a predetermined pattern by a screen printing method, the frame-shaped insulator 2 is deposited from the inner periphery to the upper surface.
[0032]
The metallized wiring layer 7 is formed by depositing a metal having excellent corrosion resistance such as nickel and gold and excellent wettability with a brazing material to a thickness of 1 μm to 20 μm on the exposed surface by plating. The oxidation corrosion of the metallized wiring layer 7 can be effectively prevented, and the brazing of the external lead pin 8 to the metallized wiring layer 7 can be strengthened. Therefore, the metallized wiring layer 7 is preferably coated with a metal having excellent corrosion resistance such as nickel and gold and excellent wettability with the brazing material on the exposed surface to a thickness of 1 μm to 20 μm.
[0033]
Further, external lead pins 8 are brazed to the metallized wiring layer 7 via a brazing material such as silver solder, and the external lead pins 8 connect each electrode of the semiconductor element 4 accommodated in the container 5 to an external electric circuit. The semiconductor element 4 accommodated in the container 5 is connected to the external electric circuit via the metallized wiring layer 7 and the external lead pin 8 by connecting the external lead pin 8 to the external electric circuit. The Rukoto.
[0034]
The external lead pin 8 is made of a metal material such as an iron-nickel-cobalt alloy or an iron-nickel alloy. For example, an ingot made of a metal such as an iron-nickel-cobalt alloy is conventionally rolled, punched, or the like. It is formed into a predetermined shape by applying a known metal processing method.
[0035]
Further, the heat radiating plate 1 with the frame-like insulator 2 attached to the upper surface is covered with a coating layer 10 on the exposed outer surface, and the unidirectional composite material forming the heat radiating plate 1 with the coating layer 10 The pores are completely blocked.
[0036]
Since the pores of the heat radiating plate 1 are completely closed by the covering layer 10, the semiconductor element 4 is accommodated in the container 5 to form a semiconductor device, and then the semiconductor device is hermetically sealed using helium. When this inspection is performed, a part of helium is not trapped in the pores of the heat radiating plate 1, and it is possible to perform the airtight sealing inspection of the semiconductor device extremely accurately.
[0037]
The coating layer 10 is made of metal, lead boric acid or borosilicate glass, epoxy resin, silicone resin, urethane resin, etc., and the metal has higher thermal conductivity than glass or resin, and can easily transfer heat. Since the heat transmitted through the heat radiating plate 1 can be efficiently dissipated as it is in the atmosphere, it is preferably formed of metal.
[0038]
When the coating layer 10 is made of metal, the deposition of the coating layer 10 on the heat sink 1 is performed by, for example, first depositing 1 μm of nickel on the exposed outer surface of the heat sink 1 by electroless plating or electrolytic plating. It is carried out by depositing a silver-copper alloy, titanium-silver-copper alloy or the like melted on the surface of the nickel plating layer.
[0039]
Thus, according to the above-described package for housing a semiconductor element, the semiconductor element 4 is bonded and fixed onto the semiconductor element mounting portion 1a of the heat radiating plate 1 through an adhesive such as glass, resin, brazing material, and the like. Each electrode is connected to a predetermined metallized wiring layer 7 through a bonding wire 9, and then a lid 3 is formed on the upper surface of the frame-like insulator 2 through a sealing material made of glass, resin, brazing material or the like. A semiconductor device as a product is obtained by bonding and housing the semiconductor element 4 in a container 5 including the heat radiating plate 1, the frame-like insulator 2, and the lid 3.
[0040]
In addition, this invention is not limited to the above-mentioned Example, A various change is possible if it is a range which does not deviate from the summary of this invention.
[0041]
【The invention's effect】
According to the package for housing a semiconductor element of the present invention, heat generated during operation of the semiconductor element is applied to the heat sink because a unidirectional composite material in which carbon fibers arranged in the thickness direction are bonded with carbon is used as the heat sink. The semiconductor element is selectively absorbed and efficiently dissipated into the atmosphere through the heat radiating plate. As a result, the semiconductor element always has an appropriate temperature, and the semiconductor element can be operated normally and stably over a long period of time.
[0042]
Further, according to the package for housing a semiconductor element of the present invention, since the heat sink made of a unidirectional composite material has a modulus of elasticity of 30 GPa or less and is soft, the thermal expansion of both between the heat sink and the frame insulator is performed. Even if some thermal stress due to the difference in coefficient is generated, the thermal stress is absorbed by appropriately deforming the heat sink, and as a result, the frame-like insulator and the heat sink are bonded extremely firmly, and the semiconductor element The heat generated by can always be efficiently dissipated into the atmosphere.
[0043]
Furthermore, according to the package for housing a semiconductor element of the present invention, the heat dissipation plate made of a unidirectional composite material is about 1/5 of the weight of a copper-tungsten alloy, and is extremely light. When a semiconductor element is housed in a storage package to form a semiconductor device, the weight of the semiconductor device becomes extremely light, and as a result, it can be mounted on an electronic device that has recently become smaller and lighter. Become.
[0044]
Furthermore, according to the semiconductor element storage package of the present invention, since the exposed outer surface of the heat sink made of the unidirectional composite material is covered with the coating layer, a large number of pores are formed inside and on the surface of the heat sink. Even if it is porous, the pores are completely closed by the covering layer. As a result, the semiconductor element is accommodated inside the container to form a semiconductor device, and then helium is used to hermetically seal the semiconductor device. When inspecting, it is possible to effectively prevent a part of helium from being trapped in the pores of the heat radiating plate, and to inspect the hermetic sealing of the semiconductor device very accurately.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of a package for housing a semiconductor element of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ...... Radiating plate 2 ...... Frame-shaped insulator 3 ...... Lid 4 ...... Semiconductor element 7 ... .... Metalized wiring layer 8 ... External lead terminal 10 ... Coating layer

Claims (2)

上面に半導体素子が載置される載置部を有する放熱板に前記載置部を囲繞するようにして枠状の絶縁体を取着させた半導体素子収納用パッケージであって、前記放熱板は厚み方向に配列した炭素繊維を炭素で結合した一方向性複合材料から成り、かつ露出する外表面が被覆層で被覆されていることを特徴とする半導体素子収納用パッケージ。A package for housing a semiconductor element, wherein a frame-like insulator is attached to a heat sink having a mounting portion on which a semiconductor element is mounted so as to surround the mounting portion. A package for housing a semiconductor element, comprising a unidirectional composite material in which carbon fibers arranged in the thickness direction are bonded with carbon, and an exposed outer surface is covered with a coating layer. 前記被覆層が金属材料から成ることを特徴とする請求項1に記載の半導体素子収納用パッケージ。2. The package for housing a semiconductor element according to claim 1, wherein the covering layer is made of a metal material.
JP30433598A 1998-10-26 1998-10-26 Package for storing semiconductor elements Expired - Fee Related JP3659298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30433598A JP3659298B2 (en) 1998-10-26 1998-10-26 Package for storing semiconductor elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30433598A JP3659298B2 (en) 1998-10-26 1998-10-26 Package for storing semiconductor elements

Publications (2)

Publication Number Publication Date
JP2000133755A JP2000133755A (en) 2000-05-12
JP3659298B2 true JP3659298B2 (en) 2005-06-15

Family

ID=17931773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30433598A Expired - Fee Related JP3659298B2 (en) 1998-10-26 1998-10-26 Package for storing semiconductor elements

Country Status (1)

Country Link
JP (1) JP3659298B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7213482B2 (en) * 2018-09-28 2023-01-27 株式会社カネカ Graphite composites and semiconductor packages

Also Published As

Publication number Publication date
JP2000133755A (en) 2000-05-12

Similar Documents

Publication Publication Date Title
JP4227610B2 (en) Manufacturing method of heat dissipation base
JP3659336B2 (en) Package for storing semiconductor elements
JP3659298B2 (en) Package for storing semiconductor elements
JP3659306B2 (en) Package for storing semiconductor elements
JP3659297B2 (en) Package for storing semiconductor elements
JP2000183253A (en) Package for housing semiconductor element
JP3987649B2 (en) Package for storing semiconductor elements
JP3659299B2 (en) Package for storing semiconductor elements
JP3659300B2 (en) Package for storing semiconductor elements
JP3659301B2 (en) Package for storing semiconductor elements
JP4360567B2 (en) Package for storing semiconductor elements
JP4454164B2 (en) Package for storing semiconductor elements
JP3659304B2 (en) Package for storing semiconductor elements
JP4360568B2 (en) Package for storing semiconductor elements
JP3659305B2 (en) Package for storing semiconductor elements
JP3659467B2 (en) Package for storing semiconductor elements
JP3752447B2 (en) Package for storing semiconductor elements
JP3752440B2 (en) Package for storing semiconductor elements
JP3792561B2 (en) Package for storing semiconductor elements
JP3971592B2 (en) Package for storing semiconductor elements
JP3748399B2 (en) Package for storing semiconductor elements
JP3638547B2 (en) Package for storing semiconductor elements
JP2003046042A (en) Semiconductor element for storing package and semiconductor device
JP2003273266A (en) Package for housing semiconductor element
JP2003100932A (en) Package for accommodating semiconductor device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050301

A61 First payment of annual fees (during grant procedure)

Effective date: 20050308

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20100325

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees