JP4227610B2 - Manufacturing method of heat dissipation base - Google Patents

Manufacturing method of heat dissipation base Download PDF

Info

Publication number
JP4227610B2
JP4227610B2 JP2005290320A JP2005290320A JP4227610B2 JP 4227610 B2 JP4227610 B2 JP 4227610B2 JP 2005290320 A JP2005290320 A JP 2005290320A JP 2005290320 A JP2005290320 A JP 2005290320A JP 4227610 B2 JP4227610 B2 JP 4227610B2
Authority
JP
Japan
Prior art keywords
copper
semiconductor element
heat dissipation
layer
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005290320A
Other languages
Japanese (ja)
Other versions
JP2006060247A (en
Inventor
清吾 松園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2005290320A priority Critical patent/JP4227610B2/en
Publication of JP2006060247A publication Critical patent/JP2006060247A/en
Application granted granted Critical
Publication of JP4227610B2 publication Critical patent/JP4227610B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Description

本発明は熱放散を行う放熱基体の製造方法に関し、特にガリウム砒素(GaAs)・インジウム燐(InP)・シリコン(Si)等の高発熱の半導体素子が搭載される放熱特性に優れた高信頼性用途の半導体素子収納用パッケージに用いられる放熱基体の製造方法に関するものである。 The present invention relates to a method for manufacturing a heat dissipation base that dissipates heat, and in particular, high reliability with excellent heat dissipation characteristics in which a semiconductor element having high heat generation such as gallium arsenide (GaAs), indium phosphorus (InP), or silicon (Si) is mounted. The present invention relates to a method for manufacturing a heat dissipation base used in a package for housing a semiconductor element for use.

従来、半導体素子を収容するための半導体素子収納用パッケージは、一般に酸化アルミニウム質焼結体・ムライト質焼結体・ガラスセラミックス焼結体等の電気絶縁材料から成り、上面に半導体素子を収容するための凹部を有する絶縁基体と、この絶縁基体の凹部から外表面にかけて被着導出されたタングステン・モリブデン・マンガン・銅・銀等の金属粉末から成る複数個の配線層と、蓋体とから構成されており、絶縁基体の凹部底面に半導体素子をガラス・樹脂・ロウ材等の接着剤を介して接着固定するとともにこの半導体素子の各電極をボンディングワイヤを介して配線層に電気的に接続し、しかる後、絶縁基体に蓋体をガラス・樹脂・ロウ材等から成る封止材を介して接合させ、絶縁基体と蓋体とから成る容器内部に半導体素子等の発熱部品を収容することによって製品としての半導体装置となる。   Conventionally, a package for housing a semiconductor element for housing a semiconductor element is generally made of an electrically insulating material such as an aluminum oxide sintered body, a mullite sintered body, or a glass ceramic sintered body, and houses the semiconductor element on the upper surface. An insulating base having a concave portion for forming, a plurality of wiring layers made of a metal powder such as tungsten, molybdenum, manganese, copper, silver, etc., deposited from the concave portion to the outer surface of the insulating base, and a lid The semiconductor element is bonded and fixed to the bottom surface of the concave portion of the insulating substrate via an adhesive such as glass, resin, or brazing material, and each electrode of the semiconductor element is electrically connected to the wiring layer via a bonding wire. Thereafter, the lid is joined to the insulating base via a sealing material made of glass, resin, brazing material, etc., and a semiconductor element or the like is placed inside the container consisting of the insulating base and the lid. A semiconductor device as a product by housing the heat component.

この従来の半導体素子収納用パッケージは、絶縁基体を構成する酸化アルミニウム質焼結体の熱伝導率が低い(約15W/mK)ため、絶縁基体に収容される半導体素子が作動時に多量の熱を発生した場合、その熱を大気中に良好に放散させることができず、その結果、半導体素子はその発生する熱によって高温となり、半導体素子に熱破壊を起こさせたり、特性に熱変化を与え誤動作を生じさせたりという欠点を有していた。   In this conventional package for housing semiconductor elements, since the thermal conductivity of the aluminum oxide sintered body constituting the insulating base is low (about 15 W / mK), the semiconductor element accommodated in the insulating base generates a large amount of heat during operation. If generated, the heat cannot be dissipated well into the atmosphere, and as a result, the semiconductor element becomes high temperature due to the generated heat, causing the semiconductor element to be thermally destroyed, causing a thermal change in characteristics, and malfunctioning. It had the fault of producing.

そこで、高発熱の半導体素子を収容する半導体素子収納用パッケージにおいては、絶縁基体を介して半導体素子の熱を良好に放散させるために、銅−タングステン・銅−モリブデンといった複合金属材料から成る放熱部品が半導体素子の真下に位置するように設けられている。   Therefore, in a semiconductor element housing package that accommodates a semiconductor element that generates high heat, a heat radiating component made of a composite metal material such as copper-tungsten / copper-molybdenum in order to dissipate the heat of the semiconductor element through an insulating substrate. Is provided directly under the semiconductor element.

例えば、銅−タングステン複合材料から成る放熱部品はタングステンと銅がマトリクス状に構成されており、銅−タングステン複合材料の熱伝導率は比率により異なるが、一般的に150乃至200W/mK程度である。   For example, a heat dissipation component made of a copper-tungsten composite material is composed of tungsten and copper in a matrix, and the thermal conductivity of the copper-tungsten composite material varies depending on the ratio, but is generally about 150 to 200 W / mK. .

しかしながら、パワーICや高周波トランジスタ等の大電流を必要とする半導体素子の発展に伴って、半導体素子の発熱量は年々増加する傾向にあり、現在では250W/mK以上の熱伝導率を持つ放熱部品が求められている。   However, with the development of semiconductor devices that require large currents such as power ICs and high-frequency transistors, the amount of heat generated by the semiconductor devices tends to increase year by year, and at present, heat dissipation components having a thermal conductivity of 250 W / mK or more. Is required.

この問題を解決するために、半導体装置用放熱基板として、モリブデンから成る第1の部材(基材)と銅から成る第2の部材とのクラッド材でC.M.C.(Cu/Mo/Cu)構造のものが開示されている(例えば、特許文献1参照)。このC.M.C.構造のクラッド材から成る半導体装置用放熱基板の熱伝導率は200W/mK以上と非常に高い。   In order to solve this problem, a clad material of a first member (base material) made of molybdenum and a second member made of copper is used as a heat dissipation substrate for a semiconductor device. M.M. C. The thing of (Cu / Mo / Cu) structure is disclosed (for example, refer patent document 1). This C.I. M.M. C. The thermal conductivity of the semiconductor device heat dissipation substrate made of the clad material having a structure is as high as 200 W / mK or more.

また、タングステン−銅合金およびモリブデン−銅合金から成る群より選ばれた少なくとも一種の金属材料から成る第1の部材(基材)の両主面に銅を主材料とする金属材料から成る第2の部材が熱間一軸加圧法または圧延法のいずれかで接合された半導体装置用放熱基板が提案されている(例えば、特許文献2参照)。この半導体装置用放熱基板では250W/mK以上の熱伝導率を達成している。
特開平6−268115号公報 特開平6−268117号公報
A second member made of a metal material mainly composed of copper on both principal surfaces of a first member (base material) made of at least one metal material selected from the group consisting of a tungsten-copper alloy and a molybdenum-copper alloy. There has been proposed a heat dissipation substrate for a semiconductor device in which these members are joined by either a hot uniaxial pressing method or a rolling method (see, for example, Patent Document 2). This semiconductor substrate heat dissipation substrate achieves a thermal conductivity of 250 W / mK or more.
JP-A-6-268115 JP-A-6-268117

しかしながら、特許文献1や特許文献2に開示された半導体装置用放熱基板は、熱伝導率が約250W/mKと非常に高いが、製造方法として圧延法や熱間一軸加工法により基材層と銅層とを貼り合わせているため、例えばこの放熱基体に絶縁枠体を接合すると、接合時の熱応力により基材層と銅層との界面にクラックが発生し易いという問題点がある。   However, the heat dissipation substrates for semiconductor devices disclosed in Patent Document 1 and Patent Document 2 have a very high thermal conductivity of about 250 W / mK. However, as a manufacturing method, the base layer is formed by a rolling method or a hot uniaxial processing method. Since the copper layer is bonded together, for example, when an insulating frame is bonded to this heat dissipation base, there is a problem that cracks are likely to occur at the interface between the base material layer and the copper layer due to thermal stress during bonding.

また、銅層と基材層との間に界面が存在するために、両層の接触抵抗により、熱伝導率が低下することとなるといった問題点がある。   In addition, since there is an interface between the copper layer and the base material layer, there is a problem that the thermal conductivity is lowered due to the contact resistance of both layers.

本発明は上記従来の技術における問題点に鑑み案出されたものであり、その目的は、載置面に載置される半導体素子から発生した熱を良好に放散させることができ、かつ、該半導体素子を長期にわたり正常かつ安定に作動させることが可能な放熱基体を提案することにある。   The present invention has been devised in view of the above-described problems in the prior art, and the object thereof is to dissipate heat generated from a semiconductor element mounted on a mounting surface, and The object is to propose a heat dissipating substrate capable of operating a semiconductor element normally and stably over a long period of time.

本発明の第3の側面に係る放熱基体の製造方法は、タングステンまたはモリブデンの多孔質体に銅を含侵させて複合材料層を形成するとともに、前記複合材料層の上下面を被覆するように前記銅の一部を残すことにより銅層を形成することを特徴とする。   In the method for manufacturing a heat dissipation base according to the third aspect of the present invention, a porous material of tungsten or molybdenum is impregnated with copper to form a composite material layer, and the upper and lower surfaces of the composite material layer are covered. A copper layer is formed by leaving a part of the copper.

本発明の放熱基体の製造方法においては、前記複合材料層の厚みをt1とし、前記銅層の厚みをt2としたとき、30μm≦t2≦300μm且つt2≦0.15×t1となるように、前記銅層の表面を研磨するのが好ましい。   In the manufacturing method of the heat dissipation base of the present invention, when the thickness of the composite material layer is t1 and the thickness of the copper layer is t2, 30 μm ≦ t2 ≦ 300 μm and t2 ≦ 0.15 × t1 are satisfied. It is preferable to polish the surface of the copper layer.

本発明の放熱基体は、タングステンまたはモリブデンの多孔質体に銅を含侵させてなる複合材料層と、該複合材料層の上下面上に位置し且つ複合材料層に含侵している銅と連続的につながっている銅からなる銅層とを含んでなる。したがって、本放熱基体では、タングステンまたはモリブデンの多孔質体に銅を含浸させてなる複合材料層のみで構成された放熱基体に比べて、これに載置される半導体素子で発生した熱を、表面近傍で銅層によって面内の水平方向により多く逃がすことができるのに加え、銅層と複合材料層中の銅とが連続的につながっているため熱伝導の損失が小さくなり、複合材料層内により多く熱を逃がすことができる。   The heat dissipating substrate of the present invention is continuous with a composite material layer formed by impregnating copper into a porous body of tungsten or molybdenum, and copper located on the upper and lower surfaces of the composite material layer and impregnated with the composite material layer. And a copper layer made of copper. Therefore, in the present heat dissipation base, the heat generated in the semiconductor element placed on the surface of the heat dissipation base is less than that of the heat dissipation base composed only of a composite material layer in which a porous body of tungsten or molybdenum is impregnated with copper. In addition to being able to escape more in the horizontal direction in the plane by the copper layer in the vicinity, the copper layer and the copper in the composite material layer are continuously connected, so the heat conduction loss is reduced, and the inside of the composite material layer More heat can be released.

本放熱基体では、複合材料層の上下面に形成される銅層を、多孔質体に銅を含浸させるのと同時に形成することができる。そのため、本放熱基体では、熱間一軸法や圧延法で貼り合わせた銅層を備えるものと異なり、例えば放熱基体に絶縁枠体を接合する時の熱応力に起因して銅層と複合材料層との界面にクラックが発生することはほとんどない。したがって、本光半導体素子収納用パッケージでは、放熱基体に載置され、パッケージ内に収納される半導体素子を長期にわたり正常かつ安定に作動させることが可能となる。   In this heat dissipation base, the copper layers formed on the upper and lower surfaces of the composite material layer can be formed simultaneously with impregnating the porous body with copper. For this reason, in the present heat dissipation base, unlike the case where the copper layer bonded by the hot uniaxial method or the rolling method is provided, for example, the copper layer and the composite material layer are caused by the thermal stress when the insulating frame is joined to the heat dissipation base. There is almost no crack at the interface. Therefore, in the optical semiconductor element housing package, the semiconductor element placed on the heat dissipation base and housed in the package can be operated normally and stably over a long period of time.

以下、本発明を添付図面に基づき詳細に説明する。
図1は本発明の放熱基体を用いた半導体素子収納用パッケージの実施の形態の一例を示す断面図であり、1は絶縁枠体、2は蓋体、3は放熱基体であり、4は半導体素子である。放熱基体3は上面の中央部に半導体素子4が載置される載置部を有しており、絶縁枠体1は放熱基体3の上面に載置部を囲繞するように取着されており、これら絶縁枠体1と蓋体2と放熱基体3とで半導体素子4を収納する容器が構成される。
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a cross-sectional view showing an example of an embodiment of a package for housing a semiconductor element using a heat radiating substrate of the present invention. 1 is an insulating frame, 2 is a lid, 3 is a heat radiating substrate, and 4 is a semiconductor. It is an element. The heat dissipating base 3 has a mounting portion on which the semiconductor element 4 is mounted at the center of the upper surface, and the insulating frame 1 is attached to the upper surface of the heat dissipating base 3 so as to surround the mounting portion. The insulating frame 1, the lid 2 and the heat radiating base 3 constitute a container for housing the semiconductor element 4.

本発明の放熱基体3は、図2にその概略構成を断面図で示すように、タングステンまたはモリブデンの多孔質体に銅を含浸させて成る複合材料層3aとその上下面に形成された銅層3bとから成る。放熱基体3は、半導体素子4の作動に伴い発生する熱を吸収するとともに大気中に放散させる機能を有する。   The heat dissipating substrate 3 of the present invention has a composite material layer 3a formed by impregnating copper into a porous body of tungsten or molybdenum and a copper layer formed on the upper and lower surfaces thereof as shown in a sectional view in FIG. 3b. The heat dissipation base 3 has a function of absorbing heat generated by the operation of the semiconductor element 4 and dissipating it into the atmosphere.

放熱基体3の作製は、予め形成されたタングステンまたはモリブデンの多孔質体に溶浸法により上下面から銅を溶融含浸させて複合材料層3aを形成し、その際に複合材料層3aの上下面に残った銅が銅層3bとなって上下面を被覆しているため、この銅層3bを30乃至200μmの厚さで残すように研磨することによって行なわれる。その後、必要に応じて、銅層3bの表面の耐食性を高め、またロウ材6や接着材7との濡れ性を高める等の目的で、露出する表面にニッケル等のメッキ層(非図示)を施す。
放熱基体3において、複合材料層3aを構成するタングステンまたはモリブデンの多孔質体は、例えば中心粒径が数μm乃至100μmのタングステン粉末またはモリブデン粉末に適量のバインダを混合した後、約10kN/cm程度の圧力でプレス体を成形し、このプレス成形体を約1500℃程度の温度で焼成して焼結させることによって得ることができる。
The heat radiating substrate 3 is produced by melting and impregnating copper from the upper and lower surfaces into a previously formed porous body of tungsten or molybdenum to form a composite material layer 3a. At that time, the upper and lower surfaces of the composite material layer 3a are formed. Since the copper remaining in this layer becomes the copper layer 3b and covers the upper and lower surfaces, the copper layer 3b is polished so as to leave a thickness of 30 to 200 μm. Thereafter, if necessary, a plating layer (not shown) such as nickel is provided on the exposed surface for the purpose of improving the corrosion resistance of the surface of the copper layer 3b and improving the wettability with the brazing material 6 and the adhesive material 7. Apply.
In the heat radiating base 3, the tungsten or molybdenum porous body constituting the composite material layer 3a is, for example, about 10 kN / cm 3 after mixing an appropriate amount of binder with tungsten powder or molybdenum powder having a center particle diameter of several μm to 100 μm. It can be obtained by molding a press body at a moderate pressure, and firing and sintering the press molded body at a temperature of about 1500 ° C.

そして、この多孔質体に銅を含浸させて複合材料層3aが形成されるとともに、その上下面に銅層3bが形成されている。この銅層3bは、通常は、複合材料層3aに多孔質体の上下面から含浸させた銅のうち内部に含浸されきれずに残った分が複合材料層3aの上下面に配置されて形成される。
そして、この放熱基体3においては、図2中に示すように、上下面のそれぞれの銅層3bの厚みをt2、複合材料層3aの厚みをt1としたとき、30μm≦t2≦300μmかつt2≦0.15×t1とすることが重要である。t2<30μmとなると、表面近傍で銅層3bによって面内の水平方向により多く熱を逃がすことができなくなるために、半導体素子4が発生する熱を大気中に良好に放散することが困難になり、半導体素子4の熱破壊が起きたり、特性に熱変化を与え誤動作を生じさせる傾向がある。他方、t2>300μmとなると、半導体素子4の載置部における銅の占める割合が大きくなり過ぎ、熱膨張係数が大きくなり、半導体素子4および放熱基体3と接合材7との間および絶縁枠体1および放熱基体3と接合材6との間で破壊や剥離が生じやすくなる傾向がある。
また、t2>0.15×t1となると、上記と同様に、半導体素子4の載置部における銅の占める割合が大きくなり過ぎ、熱膨張係数が大きくなり、半導体素子4および放熱基体3と接合材7との間および絶縁枠体1および放熱基体3と接合材6との間で破壊や剥離が生じやすくなる傾向がある。
また、複合材料層3aにおいてタングステンまたはモリブデンの多孔質体に含浸させる銅の含有量は、放熱基体3の熱膨張係数を6.5乃至9×10−6/℃と、ガラスセラミックス焼結体から成る絶縁枠体1の熱膨張係数の近傍の値にするために、10乃至25重量%としておくことが好ましい。この銅の含有量が10重量%未満となると、放熱基体3の熱膨張係数が6×10−6/℃以下になるために、半導体素子4および放熱基体3と接合材7との間および絶縁枠体1および放熱基体3と接合材7との間で破壊や剥離が生じやすくなる傾向がある。他方、25重量%を超えると、放熱基体3の熱膨張係数が9×10−6/℃以上になるために、半導体素子4および放熱基体3と接合材7との間および絶縁枠体1および放熱基体3と接合材7との間で破壊や剥離が生じやすくなる傾向がある。
The composite material layer 3a is formed by impregnating the porous body with copper, and the copper layer 3b is formed on the upper and lower surfaces thereof. The copper layer 3b is usually formed by placing the remaining part of the copper impregnated in the composite material layer 3a from the upper and lower surfaces of the porous body on the upper and lower surfaces of the composite material layer 3a. Is done.
In the heat radiating base 3, as shown in FIG. 2, when the thickness of the upper and lower copper layers 3b is t2, and the thickness of the composite material layer 3a is t1, 30 μm ≦ t2 ≦ 300 μm and t2 ≦ It is important to set it to 0.15 × t1. When t2 <30 μm, it becomes difficult to dissipate the heat generated by the semiconductor element 4 well into the atmosphere because more heat cannot be released in the in-plane horizontal direction by the copper layer 3b near the surface. There is a tendency for the semiconductor element 4 to be thermally destroyed or to cause a malfunction due to a thermal change in characteristics. On the other hand, when t2> 300 μm, the proportion of copper in the mounting portion of the semiconductor element 4 becomes too large, the coefficient of thermal expansion becomes large, the semiconductor element 4, the heat dissipation base 3 and the bonding material 7, and the insulating frame 1 and the heat dissipating substrate 3 and the bonding material 6 tend to be easily broken or peeled off.
Further, when t2> 0.15 × t1, as described above, the proportion of copper in the mounting portion of the semiconductor element 4 becomes too large, the thermal expansion coefficient becomes large, and the semiconductor element 4 and the heat dissipation base 3 are joined. There is a tendency that breakage or peeling easily occurs between the material 7 and between the insulating frame 1 and the heat radiation base 3 and the bonding material 6.
Further, the content of copper impregnated in the porous material of tungsten or molybdenum in the composite material layer 3a is such that the thermal expansion coefficient of the heat dissipation base 3 is 6.5 to 9 × 10 −6 / ° C., and the sintered glass ceramics. In order to obtain a value in the vicinity of the thermal expansion coefficient of the insulating frame 1 formed, it is preferably set to 10 to 25% by weight. When the copper content is less than 10% by weight, the thermal expansion coefficient of the heat radiating base 3 becomes 6 × 10 −6 / ° C. or less, so that the semiconductor element 4, the heat radiating base 3 and the bonding material 7 are insulated and insulated. There is a tendency that breakage and peeling are likely to occur between the frame body 1 and the heat dissipation base 3 and the bonding material 7. On the other hand, if it exceeds 25% by weight, the thermal expansion coefficient of the heat radiating base 3 becomes 9 × 10 −6 / ° C. or more, and therefore, between the semiconductor element 4 and the heat radiating base 3 and the bonding material 7 and the insulating frame 1 and There is a tendency that breakage or peeling is likely to occur between the heat dissipation base 3 and the bonding material 7.

このような放熱基体を備えた半導体素子収納用パッケージにおける絶縁枠体1は比誘電率が7以下のガラスセラミックス焼結体(線熱膨張係数:6乃至8×10−6/℃)から成り、具体的には、1)ホウケイ酸ガラスにアルミナもしくはムライトを添加して成る原料粉末より製作されるガラスセラミックス焼結体(比誘電率5〜6)2)コージェライト系結晶化ガラスにアルミナもしくはムライトを添加して成る原料粉末より製作されるガラスセラミックス焼結体(比誘電率5〜6)3)ムライト系結晶化ガラスにアルミナもしくはムライトを添加して成る原料粉末より製作されるガラスセラミックス焼結体(比誘電率5〜6)等で形成されている。 The insulating frame 1 in the package for housing a semiconductor element having such a heat dissipation base is composed of a glass ceramic sintered body (linear thermal expansion coefficient: 6 to 8 × 10 −6 / ° C.) having a relative dielectric constant of 7 or less, Specifically, 1) Sintered glass ceramics (relative dielectric constant 5-6) manufactured from raw powder obtained by adding alumina or mullite to borosilicate glass 2) Alumina or mullite on cordierite crystallized glass Glass ceramics sintered body (relative dielectric constant 5-6) manufactured from raw material powders added with 3) Sintered glass ceramics manufactured from raw material powders formed by adding alumina or mullite to mullite crystallized glass It is formed of a body (relative dielectric constant 5-6) or the like.

絶縁枠体1は放熱基体3とロウ材6を介して接着固定される。なお、絶縁枠体1の放熱基体3との接合部にはロウ付け用の金属層(非図示)が形成される。   The insulating frame 1 is bonded and fixed via a heat dissipation base 3 and a brazing material 6. Note that a brazing metal layer (not shown) is formed at a joint portion between the insulating frame 1 and the heat dissipation base 3.

絶縁枠体1は、例えばホウケイ酸ガラスにアルミナもしくはムライトを添加して成る原料粉末より製作されるガラスセラミックス焼結体から成る場合、原料粉末の組成が重量比で72〜76%のシリカ・15〜17%の酸化ホウ素・2〜4%の酸化アルミニウム・酸化ナトリウム・酸化カリウムおよび酸化チタンの合計量2〜3%から成るホウケイ酸粉末に、アルミナ・石英およびコージェライトの各粉末と有機バインダや溶剤等を添加混合して泥漿物を作るとともに、この泥漿物をドクターブレード法やカレンダーロール法を採用することによってセラミックグリーンシート(セラミック生シート)となし、しかる後に、これらセラミックグリーンシートに適当な打ち抜き加工を施すとともにこれを複数枚積層し、約900℃の温度で焼成することによって作製される。 When the insulating frame 1 is made of a glass ceramic sintered body made of a raw material powder formed by adding alumina or mullite to borosilicate glass, for example, the composition of the raw material powder is 72 to 76% by weight of silica. Borosilicate powder consisting of 2-3% of boron oxide, 2-4% aluminum oxide, sodium oxide, potassium oxide and titanium oxide in total amount of alumina, quartz and cordierite powder, organic binder, A slurry is made by adding a solvent and the like, and this slurry is made into a ceramic green sheet (ceramic raw sheet) by adopting a doctor blade method or a calender roll method, and then suitable for these ceramic green sheets. In addition to punching and stacking multiple sheets, firing at a temperature of about 900 ° C It is prepared me.

また、絶縁枠体1には、その内側の半導体素子4の載置部を取り囲む部位から外表面にかけて導出する配線層8が形成されており、絶縁枠体1の内側に露出する配線層8の一端には半導体素子4の各電極がボンディングワイヤ5を介して電気的に接続され、また、絶縁枠体1の上面に導出された部位には、外部電気回路と接続される外部リードピン9が銀ロウ等のロウ材を介してロウ付け取着されている。   In addition, the insulating frame 1 is formed with a wiring layer 8 led out from a portion surrounding the mounting portion of the semiconductor element 4 inside to the outer surface, and the wiring layer 8 exposed to the inside of the insulating frame 1 is formed. Each electrode of the semiconductor element 4 is electrically connected to one end via a bonding wire 5, and an external lead pin 9 connected to an external electric circuit is silver at a portion led to the upper surface of the insulating frame 1. It is brazed and attached via a brazing material such as brazing.

この配線層8は、半導体素子4の各電極を外部電気回路に接続する際の導電路として機能し、銅・銀・金等の金属粉末により形成されている。   The wiring layer 8 functions as a conductive path for connecting each electrode of the semiconductor element 4 to an external electric circuit, and is formed of a metal powder such as copper, silver, or gold.

配線層8は、銅・銀・金等の金属粉末に適当な有機バインダや溶剤等を添加混合して得た金属ペーストを絶縁枠体1となるセラミックグリーンシートに予め従来周知のスクリーン印刷法等によって所定のパターンに印刷塗布しておくことによって、絶縁枠体1の内側から外表面にかけて被着形成される。   The wiring layer 8 is formed by adding a metal paste obtained by adding and mixing an appropriate organic binder, solvent, or the like to a metal powder such as copper, silver, or gold on a ceramic green sheet serving as the insulating frame 1 in advance. By printing and applying to a predetermined pattern by the above, the insulating frame 1 is deposited from the inner side to the outer surface.

配線層8を形成する銅・銀・金等はその融点が約1000℃と低いものの、絶縁枠体1を構成するガラスセラミックス焼結体の焼成温度が低いことから、絶縁枠体1に所定パターンに被着形成することが可能となる。   Although the melting point of copper, silver, gold, etc. forming the wiring layer 8 is as low as about 1000 ° C., the sintering temperature of the glass ceramic sintered body constituting the insulating frame 1 is low. It is possible to form a film on the substrate.

また、配線層8を形成する銅や銀・金等は、その電気抵抗率が2.5μΩ・cm以下と低いことから、配線層8を介して容器内部に収容する半導体素子4と外部電気回路との間に電極信号の出し入れをしたとしても、配線層8において電気信号が大きく減衰することはなく、その結果、半導体素子4を正確、かつ確実に動作させることができる。   Further, since the electrical resistivity of copper, silver, gold, etc. forming the wiring layer 8 is as low as 2.5 μΩ · cm or less, the semiconductor element 4 and the external electric circuit accommodated inside the container via the wiring layer 8 Even if the electrode signal is taken in and out between, the electric signal is not greatly attenuated in the wiring layer 8, and as a result, the semiconductor element 4 can be operated accurately and reliably.

さらに、配線層8は、この配線層8が被着されている絶縁枠体1の比誘電率が7以下(室温、1MHz)、好適には5.5〜6と低いことから、配線層8を伝わる電気信号の伝搬速度が速いものとなり、その結果、配線層8を介して容器内部に収容する半導体素子4と外部電気回路との間に電気信号の出し入れをしたとしても、電気信号の伝搬に遅延を生じることがなく、半導体素子4に正確、かつ確実に電子信号を出し入れすることができる。
なお、配線層8は、銅や銀から成る場合、その露出する表面にニッケル・金等の耐食性に優れ、かつボンディングワイヤ5のボンディング性に優れる金属を1乃至20μmの厚みにメッキ法によって被着させておくと、配線層8の酸化腐食を有効に防止できるとともに配線層8へのボンディングワイヤ5の接続を強固となすことができる。従って、配線層8は、その露出する表面にニッケル・金等の耐食性に優れ、かつボンディング性に優れる金属を1乃至20μmの厚みに被着させておくことが望ましい。
Further, the wiring layer 8 has a low dielectric constant of 7 or less (room temperature, 1 MHz), preferably 5.5-6, because the insulating frame 1 to which the wiring layer 8 is applied is low. As a result, even if an electric signal is taken in and out between the semiconductor element 4 accommodated in the container and the external electric circuit via the wiring layer 8, the electric signal is propagated. Thus, an electronic signal can be input / output accurately and reliably to / from the semiconductor element 4.
When the wiring layer 8 is made of copper or silver, a metal having excellent corrosion resistance such as nickel and gold and excellent bonding property of the bonding wire 5 is deposited on the exposed surface to a thickness of 1 to 20 μm by a plating method. By doing so, the oxidative corrosion of the wiring layer 8 can be effectively prevented and the connection of the bonding wire 5 to the wiring layer 8 can be strengthened. Therefore, it is desirable that the wiring layer 8 be coated with a metal having excellent corrosion resistance such as nickel / gold and excellent bonding properties on the exposed surface to a thickness of 1 to 20 μm.

また、絶縁枠体1に被着した配線層8にロウ付けされる外部リードピン9は、鉄−ニッケル−コバルト合金や鉄−ニッケル合金等の金属材料から成り、半導体素子4の各電極を外部電気回路に電気的に接続する機能を有する。   The external lead pins 9 that are brazed to the wiring layer 8 attached to the insulating frame 1 are made of a metal material such as iron-nickel-cobalt alloy or iron-nickel alloy, and each electrode of the semiconductor element 4 is connected to the external electricity. It has a function of electrically connecting to a circuit.

外部リードピン9は、例えば、鉄−ニッケル−コバルト合金等の金属から成るインゴット(塊)に圧延加工法や打ち抜き加工法等、従来周知の貴族加工法を施すことによって所定形状に形成される。   The external lead pin 9 is formed in a predetermined shape by subjecting an ingot made of a metal such as an iron-nickel-cobalt alloy to a conventionally known noble processing method such as a rolling method or a punching method.

放熱基体3は、その上面に半導体素子4の載置部を有しており、この載置部には半導体素子4が樹脂・ガラス・ロウ材等の接着材7を介して固定される。なお、接着材7としてロウ材を用いる場合には、通常、ロウ付け用の金属層(非図示)が放熱基体3の半導体素子4との接合部に形成される。また、絶縁枠体1と放熱基体3とは、銀−銅合金等から成るロウ材6を用い、ロウ材6を600℃から900℃の還元雰囲気中で溶融させた後に冷却固化させることで接合される。   The heat dissipating base 3 has a mounting portion for the semiconductor element 4 on its upper surface, and the semiconductor element 4 is fixed to the mounting portion via an adhesive material 7 such as resin, glass, or brazing material. In the case where a brazing material is used as the adhesive material 7, a brazing metal layer (not shown) is usually formed at a joint portion of the heat dissipation base 3 with the semiconductor element 4. The insulating frame 1 and the heat radiating base 3 are joined by using a brazing material 6 made of silver-copper alloy or the like, melting the brazing material 6 in a reducing atmosphere at 600 ° C. to 900 ° C., and then cooling and solidifying it. Is done.

なお、このような放熱基体3に対し、絶縁枠体1としては、放熱基体3の熱膨張係数をその絶縁枠体1の熱膨張係数の近傍の値にする観点からは、熱膨張係数が6乃至8×10−6/℃(室温〜800℃)の。ガラスセラミックス焼結体から成ることが好ましい。 In contrast to such a heat radiating base 3, the insulating frame 1 has a thermal expansion coefficient of 6 from the viewpoint of setting the thermal expansion coefficient of the heat radiating base 3 to a value close to the thermal expansion coefficient of the insulating frame 1. To 8 × 10 −6 / ° C. (room temperature to 800 ° C.). It is preferably made of a glass ceramic sintered body.

かくして上述の本発明の半導体素子収納用パッケージによれば、放熱基体3の上面の載置部に半導体素子4をガラス・樹脂・ロウ材等から成る接着材7を介して接着固定して載置するとともにこの半導体素子4の各電極をボンディングワイヤ5を介して所定の配線層8に接続させ、しかる後に、絶縁枠体1の上面に蓋体2をガラス・樹脂・ロウ材等から成る封止材を介して接合させ、絶縁枠体1と放熱基体3と蓋体2とから成る容器内部に半導体素子4を気密に収容することによって、製品としての半導体装置となる。 Thus, according to the semiconductor element storage package of the present invention described above, the semiconductor element 4 is bonded and fixed to the mounting portion on the upper surface of the heat radiating base 3 through the adhesive material 7 made of glass, resin, brazing material, or the like. At the same time, each electrode of the semiconductor element 4 is connected to a predetermined wiring layer 8 through a bonding wire 5, and then the lid 2 is sealed on the upper surface of the insulating frame 1 with glass, resin, brazing material or the like. The semiconductor element 4 is hermetically accommodated in a container composed of the insulating frame 1, the heat dissipating base 3, and the lid 2, and a semiconductor device as a product is obtained.

(実施例1)まず、中心粒径が数μm乃至100μmのタングステン粉末に適量のバインダを混合した後、約10kN/cmの圧力でプレス体を成形し、このプレス成形体を約1500℃の温度で焼成して得たタングステンから成る焼結多孔質体を準備した。次に、この多孔質体に1200℃の温度で15重量%の銅の溶浸を行なって含浸させ、上下面のそれぞれの銅層の厚みが0,0.015,0.030,0.050,0.10,0.20,0.30,0.50mmになるようにして、評価用の放熱基体試料の作製を行なった。 (Example 1) First, after mixing an appropriate amount of binder with tungsten powder having a center particle diameter of several μm to 100 μm, a press body was formed at a pressure of about 10 kN / cm 3 . A sintered porous body made of tungsten obtained by firing at a temperature was prepared. Next, 15% by weight of copper was infiltrated into the porous body at a temperature of 1200 ° C., and the thicknesses of the upper and lower copper layers were 0, 0.015, 0.030, 0.050, 0.10, 0.20, 0.30. , 0.50 mm, and a heat-radiating substrate sample for evaluation was produced.

そして、これら評価用放熱基体試料につき、JIS R1611に規定のファインセラミックスのレーザーフラッシュ法により熱拡散・比熱容量・熱伝導率試験方法に基づき評価用放熱基体試料の熱伝導率(W/mK)を測定し、またTMA(Thermomechanical Analysis)法により評価用放熱基体試料を昇温させながら各温度に対する評価用放熱基体試料の伸び量を測定し、その値を温度上昇幅の値で除算することによって熱膨張係数(×10−6/℃)を測定した。また、接合界面について、倍率が40倍の顕微鏡にて界面観察を行なった。その後、超音波探傷装置にて同様の観察を行なった。 For these evaluation heat dissipation substrate samples, the thermal conductivity (W / mK) of the evaluation heat dissipation substrate sample is determined based on the thermal diffusion, specific heat capacity, and thermal conductivity test method by the fine ceramic laser flash method specified in JIS R1611. Measure the amount of elongation of the evaluation heat dissipation substrate sample for each temperature while raising the temperature of the evaluation heat dissipation substrate sample by the TMA (Thermomechanical Analysis) method, and divide that value by the value of the temperature increase width The expansion coefficient (× 10 −6 / ° C.) was measured. Further, the interface of the bonded interface was observed with a microscope having a magnification of 40 times. Thereafter, the same observation was performed with an ultrasonic flaw detector.

その結果について、表1にこれらタングステンおよび銅から成る複合材料層とその上下面の銅層との厚み比率を変化させた場合の放熱基体の熱膨張率および熱伝導率の物性値と、温度サイクル試験(TCT:−65/+150℃、1000サイクル)後のサイズが10mm□で、厚みが0.6mmのシリコン製の半導体素子と放熱基体との接合界面状態と、外形サイズが20mm□、キャビティサイズが12mm□で、厚みが1mmの絶縁枠体と放熱基体との接合界面状態とを示す。

Figure 0004227610
As for the results, Table 1 shows the physical property values of the thermal expansion coefficient and thermal conductivity of the heat-dissipating substrate when the thickness ratio between the composite material layer composed of tungsten and copper and the upper and lower copper layers is changed, and the temperature cycle. The size after the test (TCT: -65 / + 150 ° C, 1000 cycles) is 10 mm □, the thickness is 0.6 mm, the bonding interface between the silicon semiconductor element and the heat dissipation base, the outer size is 20 mm □, and the cavity size is 12 shows a bonding interface state between an insulating frame having a thickness of 1 mm and a heat dissipation base.
Figure 0004227610

表1に示す結果より分かるように、No.1乃至No.8の放熱基体では、複合材料層の厚みを2mmに固定して銅層の厚みを0乃至0.50mmで変更した場合に、複合材料層/銅層厚み比率(t2/t1比率)は0乃至0.25と大きくなり、これに伴い熱伝導率および熱膨張率も大きい値を示している。特に、t2/t1=0.015以上で250W/mK以上の値を示した。しかし、銅層厚みが0.30mm以上では熱伝導率は大きく変化しないが、t2/t1=0.15を超えると放熱基体と絶縁体との接合界面でクラックが発生することが確認できた。放熱基体として、250W/mK以上の高放熱性があり絶縁体との信頼性が確保できる複合材料層と銅層との厚み比率は、0.15以下が好適である。   As can be seen from the results shown in Table 1, in the heat radiating substrates No. 1 to No. 8, when the thickness of the composite material layer is fixed to 2 mm and the thickness of the copper layer is changed from 0 to 0.50 mm, the composite material The layer / copper layer thickness ratio (t2 / t1 ratio) increases from 0 to 0.25, and accordingly, the thermal conductivity and the thermal expansion coefficient also show large values. In particular, t2 / t1 = 0.015 or more and a value of 250 W / mK or more was shown. However, although the thermal conductivity does not change greatly when the copper layer thickness is 0.30 mm or more, it has been confirmed that if t2 / t1 = 0.15, cracks occur at the bonding interface between the heat dissipation base and the insulator. As the heat dissipating substrate, the thickness ratio of the composite material layer and the copper layer, which has a high heat dissipating property of 250 W / mK or more and can ensure reliability with the insulator, is preferably 0.15 or less.

また、No.9乃至No.10の放熱基体では、複合材料層の厚みを1mmと3mmに変更し、銅層の厚みを0.10mmと0.30mmに変更した場合でも、熱伝導率が250W/mK以上で熱膨張率も8.0×10−6/℃以下の値を示すことが分かる。 In the heat dissipation bases No. 9 to No. 10, even when the thickness of the composite material layer is changed to 1 mm and 3 mm and the thickness of the copper layer is changed to 0.10 mm and 0.30 mm, the thermal conductivity is 250 W / mK. From the above, it can be seen that the coefficient of thermal expansion also shows a value of 8.0 × 10 −6 / ° C. or less.

なお、多孔質体にモリブデンを用いた場合の結果についても、No.11に示すように、250W/mK以上の良好な熱伝導率を示すことが確認できた。   In addition, also as a result when using molybdenum for a porous body, as shown in No. 11, it has confirmed that it showed favorable thermal conductivity of 250 W / mK or more.

(実施例2)中心粒径が数μm乃至100μmのタングステン粉末に適量のバインダを混合した後、約10kN/cm3の圧力でプレス体を成形し、このプレス成形体を約1500℃の温度で焼成して得たタングステンから成る焼結多孔質体を準備した。次に、この多孔質体に1200℃の温度で銅をそれぞれ10乃至40重量%の含有量(タングステンの量が90乃至60重量%)となるように溶浸させて含浸させ、上下面のそれぞれの銅層の厚みは0.10mmになるようにして評価用の放熱基体試料を作製した。そして、実施例1と同様の評価を行なった。 (Example 2) After mixing an appropriate amount of binder with tungsten powder having a center particle diameter of several μm to 100 μm, a press body is formed at a pressure of about 10 kN / cm 3, and this press formed body is fired at a temperature of about 1500 ° C. A sintered porous body made of tungsten was prepared. Next, the porous body is infiltrated and impregnated at a temperature of 1200 ° C. so that the content of copper is 10 to 40% by weight (the amount of tungsten is 90 to 60% by weight). A heat radiation base sample for evaluation was prepared so that the copper layer had a thickness of 0.10 mm. And evaluation similar to Example 1 was performed.

その結果について、表2に複合材料層とその上下面の銅層との厚み比率が0.05での複合材料層の銅量を10重量%乃至60重量%の間で変化させた場合の放熱基体の熱膨張率と熱伝導率の物性値と、温度サイクル試験(TCT:−65/150℃、1000サイクル)後の半導体素子と放熱基体との接合界面状態および絶縁体と放熱基体との接合界面状態を示す。

Figure 0004227610
Table 2 shows the results of the heat dissipation substrate when the amount of copper in the composite material layer when the thickness ratio of the composite material layer and the upper and lower copper layers is 0.05 is changed between 10 wt% and 60 wt%. Physical property values of coefficient of thermal expansion and thermal conductivity, bonding interface state between semiconductor element and heat dissipation base and temperature interface test (TCT: -65 / 150 ° C, 1000 cycles) and bonding interface state between insulator and heat dissipation base Indicates.
Figure 0004227610

表2に示す結果より分かるように、No.1乃至No.8の放熱基体では、銅−タングステン複合材料層の銅含有率は10乃至60重量%の範囲で変更を行なっており、複合材料層の銅量の比率を上げることで熱膨張率は徐々に増加する。また、特に銅比率が30重量%以上では熱膨張係数が9×10-6/℃以上となり、放熱基体と絶縁体との界面でクラック等が発生する。よって信頼性が確保できる複合材料層の銅料の比率は、10乃至25重量%が好適である。   As can be seen from the results shown in Table 2, in the heat radiating bases No. 1 to No. 8, the copper content of the copper-tungsten composite material layer was changed within the range of 10 to 60% by weight. The coefficient of thermal expansion gradually increases by increasing the copper content ratio. In particular, when the copper ratio is 30% by weight or more, the thermal expansion coefficient is 9 × 10 −6 / ° C. or more, and cracks are generated at the interface between the heat dissipation base and the insulator. Therefore, the ratio of the copper material in the composite material layer that can ensure reliability is preferably 10 to 25% by weight.

また、No.9にタングステンに代えてモリブデンを用いた場合の結果について示す。これから、250W/mK以上の良好な熱伝導率が得られていることが分かる。   Moreover, it shows about the result at the time of using molybdenum instead of tungsten for No.9. From this, it can be seen that a good thermal conductivity of 250 W / mK or more is obtained.

なお、本発明は上述の実施の形態の例に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更を加えることは何ら差し支えない。 Note that the present invention is not limited to the above-described embodiments, and various modifications may be made without departing from the gist of the present invention.

本発明の放熱基体を備えた半導体素子収納用パッケージの実施の形態の一例を示す断面図である。It is sectional drawing which shows an example of embodiment of the package for semiconductor element accommodation provided with the thermal radiation base | substrate of this invention. 本発明の放熱基体の実施の形態の一例を示す断面図である。It is sectional drawing which shows an example of embodiment of the thermal radiation base | substrate of this invention.

符号の説明Explanation of symbols

1・・・・・絶縁枠体
2・・・・・蓋体
3・・・・・放熱基体
3a・・・・・複合材料層
3b・・・・・銅層
4・・・・・半導体素子
8・・・・・配線層
DESCRIPTION OF SYMBOLS 1 ... Insulation frame 2 ... Lid 3 ... Radiation base 3a ... Composite material layer 3b ... Copper layer 4 ... Semiconductor element 8: Wiring layer

Claims (2)

タングステンまたはモリブデンの多孔質体に銅を含侵させて複合材料層を形成するとともに、前記複合材料層の上下面を被覆するように前記銅の一部を残すことにより銅層を形成することを特徴とする、放熱基体の製造方法。Forming a composite material layer by impregnating copper into a porous body of tungsten or molybdenum, and forming a copper layer by leaving a part of the copper so as to cover the upper and lower surfaces of the composite material layer; A method for manufacturing a heat dissipation base. 前記複合材料層の厚みをt1とし、前記銅層の厚みをt2としたとき、30μm≦t2≦300μm且つt2≦0.15×t1となるように、前記銅層の表面を研磨する、請求項1に記載の放熱基体の製造方法。The surface of the copper layer is polished so that 30 μm ≦ t2 ≦ 300 μm and t2 ≦ 0.15 × t1 when the thickness of the composite material layer is t1 and the thickness of the copper layer is t2. 2. A method for producing a heat dissipating substrate according to 1.
JP2005290320A 2005-10-03 2005-10-03 Manufacturing method of heat dissipation base Expired - Fee Related JP4227610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005290320A JP4227610B2 (en) 2005-10-03 2005-10-03 Manufacturing method of heat dissipation base

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005290320A JP4227610B2 (en) 2005-10-03 2005-10-03 Manufacturing method of heat dissipation base

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002048831A Division JP3850312B2 (en) 2002-02-25 2002-02-25 Semiconductor element storage package and semiconductor device

Publications (2)

Publication Number Publication Date
JP2006060247A JP2006060247A (en) 2006-03-02
JP4227610B2 true JP4227610B2 (en) 2009-02-18

Family

ID=36107398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005290320A Expired - Fee Related JP4227610B2 (en) 2005-10-03 2005-10-03 Manufacturing method of heat dissipation base

Country Status (1)

Country Link
JP (1) JP4227610B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8803183B2 (en) 2010-10-13 2014-08-12 Ho Cheng Industrial Co., Ltd. LED heat-conducting substrate and its thermal module
JP6455896B1 (en) * 2017-11-18 2019-01-23 Jfe精密株式会社 Heat sink and manufacturing method thereof
JP6462172B1 (en) * 2018-08-02 2019-01-30 Jfe精密株式会社 Heat sink and manufacturing method thereof
KR20230122028A (en) * 2020-12-24 2023-08-22 스미토모덴키고교가부시키가이샤 Composite materials, semiconductor packages, and manufacturing methods of composite materials

Also Published As

Publication number Publication date
JP2006060247A (en) 2006-03-02

Similar Documents

Publication Publication Date Title
JP4227610B2 (en) Manufacturing method of heat dissipation base
US8450842B2 (en) Structure and electronics device using the structure
JP4969389B2 (en) Heat dissipation member, electronic component storage package and electronic device using the same
JP3850312B2 (en) Semiconductor element storage package and semiconductor device
JP3872391B2 (en) Package for storing semiconductor elements
JP4514598B2 (en) Electronic component storage package and electronic device
JP2000183253A (en) Package for housing semiconductor element
JP2003133487A (en) Semiconductor device housing package
JP3987649B2 (en) Package for storing semiconductor elements
JP2003068954A (en) Package for housing semiconductor element
JP3659306B2 (en) Package for storing semiconductor elements
JP2003037198A (en) Package for housing semiconductor element
JP3659298B2 (en) Package for storing semiconductor elements
JP3971592B2 (en) Package for storing semiconductor elements
JP4485893B2 (en) Electronic component storage package and electronic device
JP3748399B2 (en) Package for storing semiconductor elements
JP3752447B2 (en) Package for storing semiconductor elements
JP3638547B2 (en) Package for storing semiconductor elements
JP4574071B2 (en) Package for housing heat dissipation member and semiconductor element
JP2003068904A (en) Package for semiconductor element storage
JP2006041287A (en) Package for containing electronic component and electronic device
JP2005340560A (en) Package for accommodating electronic component and electronic device
JP2003100932A (en) Package for accommodating semiconductor device
JP2000114442A (en) Package for electronic part
JP2003110045A (en) Package for containing semiconductor element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081128

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees