WO2011007872A1 - Manufacturing method of led chip assembly - Google Patents

Manufacturing method of led chip assembly Download PDF

Info

Publication number
WO2011007872A1
WO2011007872A1 PCT/JP2010/062076 JP2010062076W WO2011007872A1 WO 2011007872 A1 WO2011007872 A1 WO 2011007872A1 JP 2010062076 W JP2010062076 W JP 2010062076W WO 2011007872 A1 WO2011007872 A1 WO 2011007872A1
Authority
WO
WIPO (PCT)
Prior art keywords
led chip
metal
heat spreader
substrate
plate
Prior art date
Application number
PCT/JP2010/062076
Other languages
French (fr)
Japanese (ja)
Inventor
秀樹 広津留
智志 日隈
真也 成田
Original Assignee
電気化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電気化学工業株式会社 filed Critical 電気化学工業株式会社
Priority to JP2011522870A priority Critical patent/JP5759376B2/en
Publication of WO2011007872A1 publication Critical patent/WO2011007872A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/641Heat extraction or cooling elements characterized by the materials

Definitions

  • the present invention relates to a method for manufacturing an LED chip assembly.
  • An LED is an element that emits light when a forward current flows through a pn junction of a semiconductor, and is manufactured using a III-V group semiconductor crystal such as GaAs or GaN.
  • LED devices having excellent conversion efficiency have been developed due to advances in semiconductor epitaxial growth technology and light emitting device process technology, and are widely used in various fields.
  • the LED chip is composed of a p-type layer and an n-type layer obtained by epitaxially growing a group III-V semiconductor crystal on a growth substrate, and a photoactive layer sandwiched between both.
  • a group III-V semiconductor crystal is epitaxially grown on a growth substrate such as single crystal sapphire, and then an electrode or the like is formed to form an LED light emitting element.
  • an object of the present invention is to provide a method for manufacturing an LED chip assembly with significantly improved heat dissipation.
  • the present invention provides an LED chip after mounting one or more LED chips on a metal-impregnated ceramic substrate or metal substrate having a plate thickness of 0.1 to 2 mm and a surface roughness (Ra) of 0.5 ⁇ m or less.
  • the metal-impregnated ceramic substrate or the metal substrate is cut into a width that is at least twice as large as the bottom area of the LED chip (that is, the bonding area between the LED chip and the metal-impregnated ceramic substrate or the metal substrate). It is a manufacturing method of a chip zygote.
  • the metal-impregnated ceramic substrate is made of at least one selected from silicon carbide, aluminum nitride, silicon nitride, diamond and graphite, and has a porosity of 10 to 50% by volume or powder molding
  • the body is impregnated with aluminum or an aluminum alloy by a melt forging method, or impregnated with silicon or a silicon alloy by a melt impregnation method.
  • the metal substrate is made of copper (Cu), nickel ( From a metal plate selected from Ni), molybdenum (Mo), tungsten (W), cobalt (Co), and iron (Fe), an alloy plate containing at least one of the above metal components, or the metal plate and the alloy plate (3) a metal-impregnated ceramic substrate or metal substrate having a thickness of 0.5 to 20 ⁇ m on the surface; Having at least one metal layer selected from Pd, Cu, Ag, Au, Pt and Sn; (4) the LED chip has a non-insulating structure with an output of 0.5 W or more; ) Cutting has at least one embodiment selected from performing at least one method selected from dicing, laser processing, water jet processing, and electric discharge processing; and (6) having an LED chip.
  • the area of the LED impregnated surface of the metal-impregnated ceramic substrate surface or the metal substrate surface is preferably 2 to 100 times the adhesion area with the LED chip.
  • the metal-impregnated ceramic substrate or metal substrate (hereinafter referred to as “heat spreader”) immediately below the LED chip is conductive and has high thermal conductivity, and the difference in linear thermal expansion coefficient from the LED chip. Therefore, it is possible to manufacture an LED chip joined body with greatly improved heat dissipation. As a result, it is possible to provide a high-power LED package that is excellent in heat dissipation and reliability and can be expected to have higher luminance.
  • the LED joined body produced by the present invention has a plate thickness of 0.1 to 2 mm, preferably 0.1 to 0.5 mm, and a surface roughness (Ra) of 0.5 ⁇ m or less, preferably 0.01 to 0.
  • the LED chip is directly mounted on a heat spreader having an area of .2 ⁇ m and more than twice the bottom area of the LED chip, preferably 2 to 100 times, particularly preferably 2 to 25 times.
  • the heat generated in the chip can be efficiently spread in the surface direction, and sufficient heat dissipation characteristics can be ensured even if it is mounted on a circuit board via an insulating layer. As a result, the lighting temperature of the LED chip can be reduced, and further higher brightness of the LED can be realized.
  • the heat spreader is less than twice the bottom area of the LED chip, or if the thickness of the heat spreader is less than 0.1 mm, the heat from the LED chip cannot be sufficiently spread by the heat spreader.
  • the lighting temperature of the LED chip increases.
  • the thickness of the LED chip assembly itself is undesirably large.
  • the plate thickness exceeds 2 mm, the heat resistance of the heat spreader increases.
  • the surface roughness (Ra) of the heat spreader exceeds 0.5 ⁇ m, there is a risk that problems such as a decrease in the adhesion rate with the LED chip may occur.
  • the lower limit is preferably 0.01 ⁇ m.
  • the “adhesion rate” is the ratio of the area of the adhesive layer to the bottom area of the LED chip.
  • the adhesion rate is most preferably 1, more preferably 0.5 or more, and particularly preferably 0.8 or more in terms of heat dissipation characteristics. If the adhesion rate is less than 0.5, the heat generated in the LED chip cannot be sufficiently transmitted to the heat spreader, and the lighting temperature of the LED chip becomes high.
  • a heat spreader made of a metal-impregnated ceramic substrate is made of an inorganic porous body or an inorganic powder molded body having a porosity of 10 to 50% by volume by aluminum or aluminum alloy, preferably an aluminum content of 80 to 97% by mass by a melt forging method.
  • the aluminum-silicon alloy is preferably produced by impregnation by the method of Japanese Patent No. 3468358, for example.
  • the metal-impregnated ceramic substrate has a thermal conductivity of 100 to 600 W / mK, preferably 100 to 300 W / mK at a temperature of 25 ° C., and a linear expansion coefficient of 3 to 12 ⁇ 10 ⁇ at a temperature of 25 ° C. to 150 ° C.
  • the thermal conductivity and the linear expansion coefficient can be increased or decreased depending on the type of impregnated metal, the impregnation rate, the inorganic porous body, or the inorganic powder molded body.
  • silicon or a silicon alloy is applied to an inorganic porous body or an inorganic powder molded body having a porosity of 10 to 50% by volume by a melt impregnation method, for example, by the method of JP-A-5-32458 Even those produced by impregnation can be used.
  • the material of the inorganic porous body or the inorganic powder molded body is preferably at least one inorganic component selected from silicon carbide, aluminum nitride, silicon nitride, diamond and graphite.
  • the ratio of the inorganic component in the inorganic porous body or the inorganic powder molded body is 50 to 90% by volume, particularly 65 to 80% by volume, and the void ratio (porosity) is 10 to 50% by volume, particularly 20 to 35% by volume. It is preferable that When the proportion of the inorganic component is less than 50% by volume, the linear thermal expansion coefficient of the metal-impregnated ceramic substrate becomes too large.
  • the metal cannot be sufficiently impregnated and the thermal conductivity may be too small.
  • the porosity can be adjusted by adjusting the particle size of inorganic components, molding pressure, sintering conditions, and the like.
  • the inorganic powder molded body can be produced by molding only the powder of the inorganic component, or can be produced using an inorganic binder such as silica sol or alumina sol.
  • an inorganic binder such as silica sol or alumina sol.
  • a general ceramic powder forming method such as press forming or cast forming is employed.
  • an inorganic porous body can be manufactured by sintering the said inorganic powder molded object, for example.
  • a metal-impregnated ceramic substrate In order to form a metal-impregnated ceramic substrate from an inorganic porous body or inorganic powder molded body impregnated with metal, cutting and surface processing are usually performed.
  • the shape of the inorganic porous body or inorganic powder molded body impregnated with metal is a columnar shape
  • the outer shape is processed to a predetermined size using a diamond grindstone with a cylindrical grinder, etc. It is preferable to cut to a thickness of about 0.1 to 0.5 mm thicker than the shape.
  • There is no limitation on the cutting method but a multi-wire saw having a small cutting margin and suitable for mass production is preferable.
  • a wire to which an abrasive such as a loose abrasive type and diamond is attached is used.
  • a processing machine such as a double-side grinding machine, a rotary grinding machine, a surface grinding machine, or a lapping machine is used to process the plate thickness to 0.1 to 2 mm and the surface roughness (Ra) to 0.5 ⁇ m or less.
  • a processing machine such as a double-sided grinder, rotary grinder, surface grinder, lapping machine, etc.
  • Surface processing is performed to 2 mm and the surface roughness (Ra) is 0.5 ⁇ m or less, and then outer periphery processing is performed into a predetermined shape by a water jet processing machine, an electric discharge processing machine, a laser processing machine, a dicing machine, a cylindrical grinding machine, or the like.
  • the surface processing may be performed after the outer periphery processing is performed first.
  • the heat spreader made of a metal substrate is a metal plate selected from copper (Cu), nickel (Ni), molybdenum (Mo), tungsten (W), cobalt (Co) and iron (Fe), It is preferable that it is comprised from the laminated plate comprised by the alloy plate containing at least 1 type, or 2 or more types chosen from the said metal plate and the said alloy plate.
  • the shape a flat plate shape, a cylindrical shape, or the like is used.
  • the surface thereof is particularly preferably made of at least one metal selected from Ni, Co, Pd, Cu, Ag, Au, Pt and Sn. It is preferable to have a metal layer having a thickness of 0.5 to 20 ⁇ m made of Ni or Au. A particularly preferred metal layer thickness is 2 to 10 ⁇ m. Thereby, the adhesion rate of the LED chip is improved. If the thickness of the metal layer is less than 0.5 ⁇ m, the effect of improving the adhesion rate is small, and if it exceeds 20 ⁇ m, there is a risk of peeling due to the difference in thermal expansion between the metal layer and the heat spreader.
  • the metal layer can be formed by performing electroless plating or electrolytic plating with the above metal species after washing the heat spreader. It can also be formed by metal vapor deposition or metal coating.
  • the “LED chip” refers to a structure composed of an LED element made of a III-V semiconductor crystal and a holding substrate.
  • a III-V group semiconductor crystal emitting light in the ultraviolet to blue wavelength region is used, and specifically, InGaN, AlGaAs, AlGaInP, or the like.
  • the holding substrate is (a) a growth substrate used when epitaxially growing a group III-V semiconductor crystal, or (b) a group III-V semiconductor crystal is epitaxially grown on a single crystal growth substrate, and then passed through a metal layer.
  • the high thermal conductivity substrate is bonded to the single crystal growth substrate, and then the single crystal growth substrate is removed.
  • Examples thereof are sapphire, silicon carbide, silicon, Cu / W, Cu / Mo, and the like.
  • LED chips that require an output of 0.5 W or more use the holding substrate belonging to (b) above from the viewpoint of thermal conductivity, and the LED chips have a non-insulating structure.
  • the advantage of the non-insulating LED chip is that high brightness can be obtained in a small area.
  • the LED chip and the heat spreader are attached by brazing, soldering, or using a high thermal conductive adhesive.
  • soldering or brazing As the solder, cream solder, eutectic solder, lead-free solder or the like is used.
  • brazing a brazing method using a eutectic metal layer on the back surface of the LED chip is preferable, and the thickness of the bonding layer can be reduced to 1 to 5 ⁇ m.
  • the “high thermal conductive adhesive” refers to an adhesive having a thermal conductivity of 10 W / mK or more, and examples thereof include an Ag paste, a high thermal conductive silicone adhesive, and an Ag-based conductive adhesive. .
  • the thickness of the adhesive layer is preferably 0.1 mm or less, particularly preferably 0.05 mm or less. When the thickness of the adhesive layer exceeds 0.1 mm, the thermal resistance increases.
  • “attachment” means that the LED chip and the heat spreader are bonded, and is used in the same concept as bonding.
  • the number of LED chips mounted on the heat spreader is such that the area of the heat spreader is in the range of twice or more the bottom area of the LED chip and does not hinder the mounting and heat dissipation of the individual LED chips. If so, the number is not limited. For this reason, it can also be set as the LED chip assembly which attached two or more LED chips to one heat spreader. An advantage of mounting two or more LED chips is that man-hours in the mounting process can be reduced.
  • the heat spreader to which the LED chip is mounted is cut into a range in which the area of the heat spreader is twice or more the bottom area of the LED chip. The reason for cutting with such an area ratio is described above.
  • the advantage of the method of cutting after mounting one or more LED chips on the heat spreader is that the cleanliness of the mounting surface when the LED chips are mounted is contaminated with an oxide layer or the like. Therefore, there is no need for a cleaning treatment such as an acid treatment, and the LED chip can be arranged on the heat spreader with high positional accuracy, so that problems during cutting and mounting can be drastically reduced. That is, in general, cutting and mounting are performed by an automatic machine. However, if the positional accuracy is poor, it is difficult to deal with the automatic machine, and it is necessary to perform manual alignment separately. It becomes unnecessary.
  • the heat spreader can be cut by dicing, laser processing, water jet processing, and electric discharge processing. Dicing and laser processing are optimal in terms of processing accuracy and processing speed.
  • Example 1 ⁇ Heat spreader A, B using inorganic porous material> Silicon carbide powder A (commercial product: average particle size 200 ⁇ m) 1800 g, silicon carbide powder B (commercial product: average particle size 20 ⁇ m) 900 g, silicon carbide powder C (commercial product: average particle size 2 ⁇ m) 300 g, and molded binder (methylcellulose) 150 g of trade name “Metroze” manufactured by Shin-Etsu Chemical Co., Ltd.) was weighed and mixed with a stirring mixer for 30 minutes.
  • a linear expansion coefficient measurement specimen (diameter 3 mm, length 10 mm) and a thermal conductivity measurement specimen (25 mm ⁇ 25 mm ⁇ 1 mm) are cut out by grinding, and the temperature is 25 ° C. to 150 ° C.
  • the thermal conductivity at a temperature of 25 ° C. was measured by a laser flash method (ULVAC, Inc .; TC3000).
  • the linear expansion coefficient was 5.0 ⁇ 10 ⁇ 6 / K
  • the thermal conductivity was 250 W / mK.
  • the metal-impregnated ceramic material was processed into a cylindrical shape having a diameter of 50.8 mm and a height of 100 mm using a diamond grinder with a cylindrical grinder, and then a diamond abrasive grain was used with a multi-wire saw, and the cutting speed was 0. It was cut into a disk shape (plate thickness 0.3 mm) at a rate of 0.2 mm / min, and further ground to a plate thickness of 0.22 mm with a double-sided grinder using a # 600 diamond grindstone. After that, polishing is performed to a thickness of 0.2 mm using diamond abrasive grains on a lapping machine, and then ultrasonic cleaning is performed in pure water and then in isopropyl alcohol, followed by drying.
  • Spreader A was manufactured. This surface roughness (Ra) was 0.05 ⁇ m.
  • the heat spreader A was subjected to electroless Ni—P plating and electro Au plating to form a plating layer (5 ⁇ m thickness) of (Ni—P: 4 ⁇ m + Au: 1 ⁇ m).
  • the surface roughness (Ra) was 0.1 ⁇ m.
  • the resist layer (15 ⁇ m thick) is formed at intervals of 4 mm by UV curing.
  • the same procedure was performed except that the four inorganic powder compacts were assembled together with the cylindrical graphite jig produced here.
  • Manufactures a metal-impregnated ceramic material (linear expansion coefficient at a temperature of 25 ° C. to 150 ° C .: 6.0 ⁇ 10 ⁇ 6 / K, thermal conductivity at a temperature of 25 ° C .: 220 W / mK), and processes the heat spreader
  • the heat spreader b was manufactured by applying a plating layer and a resist layer to a and the heat spreader a.
  • each of the four types (A, B, a, b) of heat spreaders 1 manufactured above has an LED chip of 3 W output (manufactured by Cree: EZ1000 / 1 mm ⁇ 1 mm ⁇ 0.1 mm). ) 120 pieces of 4 were bonded on the heat spreader 1 at intervals of 4.0 mm using a positioning jig. Adhesion is performed using a high thermal conductive adhesive (Kyocera Chemical Co., Ltd .: CT284R Ag paste system) in the heat spreaders A and a, and in the heat spreaders B and b, an adhesive layer 5 of cream solder is provided between the resist layers 3.
  • a high thermal conductive adhesive Kelco., Ltd .: CT284R Ag paste system
  • the LED chip assembly is mounted on a metal aluminum-based circuit board (20 mm ⁇ 20 mm ⁇ 1.5 mm) by wire bonding with cream solder and gold wire, and this is a commercially available heat radiation sheet (thermal conductivity of double-sided adhesive made of silicone rubber). 2 W / mK), and bonded to aluminum radiating fins (thermal resistance: 5.2 ° C./W dimensions: 50 mm ⁇ 50 mm ⁇ 17 mm). A voltage with an output of 3 W was applied to the LED chip, and the upper surface temperature of the LED chip was measured by infrared thermography.
  • the upper surface temperature of the LED chip of the LED chip assembly manufactured using the heat spreader A, the heat spreader B, the heat spreader a, and the heat spreader b is an average value of 5 pieces, 69 ° C, 60 ° C, 70 ° C. and 61 ° C.
  • Comparative Example 1 In the LED chip assembly of Example 1 using the heat spreader B, when the LED chip was directly mounted on the circuit board using the cream solder without producing the LED chip assembly, the upper surface temperature of the LED chip was 105. ° C.
  • Examples 11-15 In the case of the heat spreader B of Example 1, except that instead of the plating layer (5 ⁇ m thickness) of (Ni—P: 4 ⁇ m + Au: 1 ⁇ m), a plating layer having the metal type and metal layer thickness shown in Table 2 was formed. The LED chip assembly was manufactured in the same manner as described above, and the upper surface temperature of the LED chip was measured. The results are shown in Table 2.
  • Examples 16 to 22 Comparative Examples 6 to 8 ⁇ LED chip assembly using heat spreaders C and D made of metal substrate> Copper-tungsten having a shape of 50.8 mm ⁇ 10 mm in diameter, a linear expansion coefficient of 6.5 ⁇ 10 ⁇ 6 / K at a temperature of 25 ° C. to 150 ° C., and a thermal conductivity of 160 W / mK at a temperature of 25 ° C.
  • An LED chip assembly was manufactured in the same manner as in the case of the heat spreader B of Example 1 except that these heat spreaders C were used. Table 3 shows the measurement results of the upper surface temperature of the LED chip.
  • Examples 23-25 Except for changing the interval at the time of the cutting process in the dicing apparatus after joining the LED chip of the heat spreader C as shown in Table 3 and manufacturing a heat spreader in which the ratio of the area of the heat spreader to the bottom area of the LED chip is different, An LED chip assembly was manufactured in the same manner as in Example 16, and the upper surface temperature of the LED chip was measured. The results are shown in Table 3.
  • Example 26 Instead of a copper-tungsten (Cu / W) metal substrate, the diameter is 50.8 mm, the plate thickness is 0.3 mm, the surface roughness (Ra) is 0.08 ⁇ m, and the linear expansion coefficient is 25 ° C to 150 ° C.
  • Example 27 ⁇ LED chip assembly by heat spreader c made of metal substrate>
  • the LED chip is bonded to a copper / tungsten (Cu / W) alloy plate having a plate thickness of 0.2 mm and Ra of 0.1 ⁇ m in the same manner as the heat spreader A by using a high thermal conductive adhesive to join the LED chip.
  • the body was manufactured.
  • the upper surface temperature of this LED chip was 71 ° C.
  • Example 28 ⁇ LED chip assembly by heat spreaders E and F using an inorganic porous body> 1300 g of silicon carbide powder D (commercial product: average particle size 150 ⁇ m), 700 g of silicon carbide powder E (commercial product: average particle size 10 ⁇ m), and 300 g of silica sol (Nissan Chemical Co., Ltd .: Snowtex) are weighed and stirred. After mixing for 30 minutes, a molded body was produced by press molding into a plate having dimensions of 160 mm ⁇ 160 mm ⁇ 5 mm at a surface pressure of 30 MPa. The obtained molded body was dried at a temperature of 120 ° C. for 1 hour, and then fired in a nitrogen atmosphere at a temperature of 1400 ° C.
  • Ten inorganic porous bodies are formed as a structure (170 mm ⁇ 170 mm ⁇ 40 mm) with a release plate (160 mm ⁇ 160 mm ⁇ 0.8 mm) coated with a graphite release agent on each sheet, and iron plates ( A plate thickness of 12 mm) was placed and connected with 8 bolts to form a single laminate.
  • a metal-impregnated ceramic material (155 mm ⁇ 155 mm ⁇ 3 mm) was produced in the same manner as in the heat spreader A of Example 1, and the linear expansion coefficient at a temperature of 25 ° C. to 150 ° C. and the thermal conductivity at a temperature of 25 ° C. were measured. However, they were 7.5 ⁇ 10 ⁇ 6 / K and 200 W / mK, respectively.
  • This metal-impregnated ceramic material is surface-processed into a plate shape with a plate thickness of 0.4 mm using a diamond grinder with a surface grinder, and then subjected to a pressure of 250 MPa by a water jet processing machine (Abrasive Jet Cutter NC manufactured by Sugino Machine).
  • the garnet having a particle size of 100 ⁇ m was used as the abrasive grains under the condition of a processing speed of 100 mm / min, and cut into a shape having a diameter of 50.8 mm ⁇ 0.4 mm.
  • Example 29 ⁇ LED chip assembly using heat spreaders G and H using inorganic porous material> A stainless steel plate using an isotropic graphite molded body (manufactured by Tokai Carbon Co., Ltd .: G458, porosity: 13% by volume, dimensions: 100 mm ⁇ 100 mm ⁇ 100 mm) as an inorganic porous body, and a graphite release material applied as a release plate A metal-impregnated ceramic material was produced according to the production of the heat spreader A except that (100 mm ⁇ 100 mm ⁇ 0.8 mm) was used.
  • the outer periphery is processed into a cylindrical shape with a diameter of 50.8 mm ⁇ 100 mm using a diamond grinder with a cylindrical grinder, and further using diamond abrasive grains with a multi-wire saw Then, it was cut into a disc having a thickness of 0.4 mm at a cutting speed of 0.5 mm / min.
  • the obtained disc is ground to a plate thickness of 0.3 mm using a # 600 diamond grindstone with a double-sided grinder, ultrasonically washed in water and then in isopropyl alcohol, and dried.
  • the following heat spreader G was manufactured.
  • the surface roughness (Ra) was 0.15 ⁇ m.
  • the heat spreader G was provided with a plating layer similar to that of the heat spreader B to obtain a heat spreader H.
  • An LED chip with an output of 3 W (EZ1000 / 1 mm ⁇ 1 mm ⁇ 0.1 mm) is joined to the heat spreader H with cream solder at intervals of 4 mm, and then at a cutting speed of 0.5 mm / s with an electric discharge machine. Cutting to a shape of 3.9 mm ⁇ 3.9 mm, ultrasonic cleaning in pure water, drying to produce an LED chip assembly, and measuring the upper surface temperature of the LED chip, it was 66 ° C. It was.
  • Example 30 ⁇ LED chip assembly by heat spreaders I and J using inorganic porous material>
  • a mixed powder of aluminum nitride powder (average particle size 2 ⁇ m) 2880 g, yttria powder (average particle size 1 ⁇ m) 120 g, molding binder (methylcellulose) 150 g, and pure water 150 g was press-molded at a surface pressure of 10 MPa, and further molding pressure 100 MPa.
  • % Inorganic porous material (diameter 52 mm ⁇ 100 mm) was produced.
  • a heat spreader I (diameter 50.8 mm ⁇ 0.2 mm) was produced in the same manner as the heat spreader A of Example 1 except that this inorganic porous material was used and that pure aluminum was used instead of the aluminum alloy. did.
  • the surface roughness (Ra) was 0.06 ⁇ m.
  • the heat spreader I was provided with a plating layer similar to that of the heat spreader B, whereby a heat spreader J was obtained.
  • two LED chips (EZ700 / 0.7 mm ⁇ 0.7 mm ⁇ 0.1 mm) 4 with an output of 1 W are provided on the heat spreader J at intervals of 2 mm on the heat spreader 1. It joined by the adhesive layer 5 of cream solder (refer the process 2 of FIG. 2). Then, it is cut into a shape of 3.9 mm ⁇ 3.9 mm at a cutting speed of 8 mm / s with a laser processing machine, subjected to ultrasonic cleaning in pure water, dried, and 120 LED chip assemblies 6 Was manufactured (see step 3 in FIG. 2).
  • the obtained LED chip assembly has a structure in which four LED chips are mounted on the upper surface of one heat spreader, and the area of the LED chip mounting surface of the LED chip assembly is the bottom area of the LED chip. It was 7.8 times. Moreover, when a voltage was applied to the LED chip so that the output was 4 W and the upper surface temperature of the LED chip was measured, it was 70 ° C.
  • Example 31 ⁇ LED chip assembly using heat spreaders K and L using an inorganic porous material> Cylindrical body as in Example 30 except that a mixture of 2790 g of silicon nitride powder (average particle size 1 ⁇ m), 150 g of yttria powder (average particle size 1 ⁇ m), and 60 g of magnesium oxide powder (average particle size 1 ⁇ m) was used. (Diameter 55 mm ⁇ 110 mm) was produced. This was fired for 4 hours at a temperature of 1880 ° C.
  • the heat spreader I was manufactured by performing the same process as the heat spreader I
  • the heat spreader L was manufactured by performing the same process as the heat spreader J.
  • the heat spreader K had a surface roughness (Ra) of 0.05 ⁇ m.
  • the upper surface temperature of the LED chip of the LED chip assembly manufactured using the heat spreader K was 72 ° C.
  • that manufactured using the heat spreader L was 66 ° C.
  • Example 32 ⁇ LED chip assembly by heat spreader c, d using inorganic powder compact> 7 g of diamond powder A (Diamond Innovations, MBG-600, average particle size: 120 ⁇ m) and 3 g of diamond powder B (Diamond Innovations, MBG-600, average particle size: 15 ⁇ m) in an alumina mortar After mixing for a minute, a graphite jig Y having an outer diameter of 52.4 mm ⁇ 9 mm was inserted into a cylindrical graphite jig X having an outer dimension of 70 mm ⁇ 70 mm ⁇ 20 mm (inner diameter: diameter 52.5 mm ⁇ 20 mm). Thereafter, 10 g of diamond mixed powder was filled, and a graphite jig Y was further inserted on the upper surface of the diamond mixed powder to produce an inorganic powder molded body having a porosity of 35%.
  • diamond powder A Diamond Innovations, MBG-600, average particle size: 120 ⁇ m
  • diamond powder B Diamond Innovations
  • This inorganic powder molded body was made into a laminate in accordance with the manufacture of the heat spreader a and subjected to an impregnation treatment to produce a composite in which a metal-impregnated ceramic material (70 mm ⁇ 70 mm ⁇ 20 mm) was surrounded by a cylindrical graphite jig. This was ground into a plate-like body (70 mm ⁇ 70 mm ⁇ 1 mm) from both main surface sides (70 mm ⁇ 70 mm) using a diamond grindstone with a surface grinder until the metal-impregnated ceramic material was exposed. .
  • the outer periphery was processed into a disc shape (diameter 50.8 mm ⁇ 1 mm) with a water jet processing machine, and the heat spreader c was manufactured.
  • This surface roughness (Ra) was 0.4 ⁇ m.
  • a heat spreader d was manufactured by applying a plating layer and a resist layer in the same manner as the heat spreader b.
  • the heat conductivity of the heat spreader c at a temperature of 25 ° C. was 500 W / mK.
  • the upper surface temperature of the LED chip of the LED chip assembly manufactured using the heat spreader c was 66 ° C.
  • that manufactured using the heat spreader d was 58 ° C.
  • Example 33 A disk having an outer dimension of 52 mm ⁇ 20 mm in diameter using an inorganic porous material (outer dimension: diameter 52 mm ⁇ height 100 mm, porosity 20%) manufactured in the manufacturing process of the heat spreader A of Example 1 at a machining center using a diamond grindstone. It was processed into. This disk and lump silicon were put in a graphite crucible coated with BN powder and set in an electric furnace. The furnace was evacuated and held at 1650 ° C. for 8 hours to impregnate the disc with silicon.
  • the heat spreader M was manufactured by performing the same process as the heat spreader A, and the heat spreader N was manufactured by performing the same process as the heat spreader B.
  • the heat spreader M had a surface roughness (Ra) of 0.08 ⁇ m.
  • the upper surface temperature of the LED chip of the LED chip assembly manufactured using the heat spreader M was 69 ° C., and that manufactured using the heat spreader N was 61 ° C.

Abstract

Provided is a manufacturing method of an LED chip assembly wherein heat radiating properties have been significantly improved by mounting a heat spreader directly below an LED chip. The manufacturing method of the LED chip assembly is characterized in that, after mounting one or two or more LED chips on a metal-impregnated ceramic substrate or metal substrate wherein the substrate thickness is 0.1 to 2 mm and the surface roughness (Ra) is at most 0.5 μm, the metal-impregnated ceramic substrate or metal substrate is cut into a piece which includes the LED chip and is two to one hundred times the extent of the bottom area of the LED chip.

Description

LEDチップ接合体の製造方法Manufacturing method of LED chip assembly
 本発明は、LEDチップ接合体の製造方法に関する。 The present invention relates to a method for manufacturing an LED chip assembly.
LEDは、半導体のpn接合に順方向電流を流すと発光する素子であり、GaAs、GaN等のIII-V族半導体結晶を用いて製造される。近年、半導体のエピタキシャル成長技術と発光素子プロセス技術の進歩により、変換効率の優れるLED素子が開発され、様々な分野において幅広く使用されている。 An LED is an element that emits light when a forward current flows through a pn junction of a semiconductor, and is manufactured using a III-V group semiconductor crystal such as GaAs or GaN. In recent years, LED devices having excellent conversion efficiency have been developed due to advances in semiconductor epitaxial growth technology and light emitting device process technology, and are widely used in various fields.
LEDチップは、成長基板上にIII-V族半導体結晶をエピタキシャル成長させたp型層とn型層及び両者に挟まれる光活性層から構成される。一般的には、例えば単結晶サファイア等の成長基板上に、III-V族半導体結晶をエピタキシャル成長させた後、電極等を形成しLED発光素子を形成する。 The LED chip is composed of a p-type layer and an n-type layer obtained by epitaxially growing a group III-V semiconductor crystal on a growth substrate, and a photoactive layer sandwiched between both. Generally, for example, a group III-V semiconductor crystal is epitaxially grown on a growth substrate such as single crystal sapphire, and then an electrode or the like is formed to form an LED light emitting element.
しかし、成長基板、例えば単結晶サファイアの熱伝導率が40W/mK程度であるので、III-V族半導体素子で発生する熱を十分に放熱することができない。とくに、大電流を流す高出力LEDでは素子の温度が上昇して、発光効率の低下や素子寿命の低下を起こしてしまう。これを解決するため、成長基板上にIII-V族半導体結晶をエピタキシャル成長させた後に、金属層を介してパッケージ基板(保持基板)を接合し、その後、成長基板を除去する方法が提案されているが(特許文献1)、十分に満足できるものではなかった。すなわち、パッケージ基板(保持基板)は導電性でもあるため、実装に際しては非絶縁構造としなければならない。たとえば、回路基板等の実装基板に半田接合する際、接合部直下に樹脂等の熱伝導率の低い絶縁層を配置する必要があったが、この絶縁層が十分な放熱を阻害してしまう。 However, since the thermal conductivity of the growth substrate, for example, single crystal sapphire is about 40 W / mK, the heat generated in the III-V group semiconductor device cannot be sufficiently dissipated. In particular, in a high-power LED through which a large current flows, the temperature of the element rises, causing a decrease in light emission efficiency and a decrease in element life. In order to solve this, a method has been proposed in which a group III-V semiconductor crystal is epitaxially grown on a growth substrate, a package substrate (holding substrate) is bonded through a metal layer, and then the growth substrate is removed. (Patent Document 1) was not satisfactory. That is, since the package substrate (holding substrate) is also conductive, it must have a non-insulating structure when mounted. For example, when solder bonding to a mounting substrate such as a circuit board, it is necessary to dispose an insulating layer having a low thermal conductivity such as a resin directly under the bonding portion, but this insulating layer hinders sufficient heat dissipation.
一方、LEDチップの発熱による障害を少しでも軽減させるべく高出力LED発光装置では、放熱板、例えば銅(Cu)板を介して、LEDチップを回路基板等に実装する方法が提案されている(特許文献2)。しかし、Cuの線膨張係数が17×10-6/K程度であり、LEDチップの5×10-6/K程度と大きく相違しているので、使用中に接合部にクラック等が発生し放熱特性が低下してしまう。
特開2006-128710号公報 特表2008-544488号パンフレット
On the other hand, a method for mounting an LED chip on a circuit board or the like via a heat radiating plate, for example, a copper (Cu) plate has been proposed in a high-power LED light-emitting device in order to reduce the damage caused by heat generation of the LED chip as much as possible ( Patent Document 2). However, the coefficient of linear expansion of Cu is about 17 × 10 −6 / K, which is very different from about 5 × 10 −6 / K of the LED chip. The characteristics will deteriorate.
JP 2006-128710 A Special table 2008-544488 pamphlet
本発明の目的は、上記に鑑み、放熱性を著しく改善したLEDチップ接合体の製造方法を提供することである。 In view of the above, an object of the present invention is to provide a method for manufacturing an LED chip assembly with significantly improved heat dissipation.
本発明は、板厚が0.1~2mm、表面粗さ(Ra)が0.5μm以下である金属含浸セラミックス基板又は金属基板に、LEDチップの一個又は二個以上を装着した後、LEDチップを含みLEDチップの底面積(すなわちLEDチップと金属含浸セラミックス基板又は金属基板との接着面積)の2倍以上の広さに、上記金属含浸セラミックス基板又は金属基板を切断することを特徴とするLEDチップ接合体の製造方法である。 The present invention provides an LED chip after mounting one or more LED chips on a metal-impregnated ceramic substrate or metal substrate having a plate thickness of 0.1 to 2 mm and a surface roughness (Ra) of 0.5 μm or less. The metal-impregnated ceramic substrate or the metal substrate is cut into a width that is at least twice as large as the bottom area of the LED chip (that is, the bonding area between the LED chip and the metal-impregnated ceramic substrate or the metal substrate). It is a manufacturing method of a chip zygote.
本発明においては、(1)金属含浸セラミックス基板が、炭化珪素、窒化アルミニウム、窒化珪素、ダイヤモンド及び黒鉛から選ばれた少なくとも1種からなる、気孔率が10~50体積%の多孔体又は粉末成形体に、溶湯鍛造法にてアルミニウム又はアルミニウム合金を含浸させるか、又は溶融含浸法にてシリコン又はシリコン合金を含浸させたものであること、(2)金属基板が、銅(Cu)、ニッケル(Ni)、モリブデン(Mo)、タングステン(W)、コバルト(Co)及び鉄(Fe)から選ばれた金属板、上記金属成分の少なくとも1種を含む合金板、又は上記金属板及び上記合金板から選ばれた2種以上で構成された積層板であること、(3)金属含浸セラミックス基板又は金属基板が、表面に0.5~20μmの厚みのCo、Pd、Cu、Ag、Au、Pt及びSnから選ばれた少なくとも1種の金属層を有していること、(4)LEDチップが、出力0.5W以上の非絶縁構造であること、(5)切断が、ダイシング、レーザー加工、ウォータージェット加工及び放電加工から選ばれた少なくとも1つの方法で行うこと、から選ばれた少なくとも1つの実施態様を有していること、(6)LEDチップを有する金属含浸セラミックス基板面又は金属基板面のLEDチップ装着面の面積が、LEDチップとの接着面積の2倍~100倍であることが好ましい。 In the present invention, (1) the metal-impregnated ceramic substrate is made of at least one selected from silicon carbide, aluminum nitride, silicon nitride, diamond and graphite, and has a porosity of 10 to 50% by volume or powder molding The body is impregnated with aluminum or an aluminum alloy by a melt forging method, or impregnated with silicon or a silicon alloy by a melt impregnation method. (2) The metal substrate is made of copper (Cu), nickel ( From a metal plate selected from Ni), molybdenum (Mo), tungsten (W), cobalt (Co), and iron (Fe), an alloy plate containing at least one of the above metal components, or the metal plate and the alloy plate (3) a metal-impregnated ceramic substrate or metal substrate having a thickness of 0.5 to 20 μm on the surface; Having at least one metal layer selected from Pd, Cu, Ag, Au, Pt and Sn; (4) the LED chip has a non-insulating structure with an output of 0.5 W or more; ) Cutting has at least one embodiment selected from performing at least one method selected from dicing, laser processing, water jet processing, and electric discharge processing; and (6) having an LED chip. The area of the LED impregnated surface of the metal-impregnated ceramic substrate surface or the metal substrate surface is preferably 2 to 100 times the adhesion area with the LED chip.
本発明によれば、LEDチップ直下の金属含浸セラミックス基板又は金属基板(以下、これらを「ヒートスプレッダー」という。)が、導電性かつ高熱伝導性であり、しかもLEDチップとの線熱膨張係数差が小さいので、放熱性を飛躍的に改善したLEDチップ接合体を製造することができる。その結果、放熱性、信頼性に優れ、更なる高輝度化も期待できる、高出力のLEDパッケージを提供することができる。 According to the present invention, the metal-impregnated ceramic substrate or metal substrate (hereinafter referred to as “heat spreader”) immediately below the LED chip is conductive and has high thermal conductivity, and the difference in linear thermal expansion coefficient from the LED chip. Therefore, it is possible to manufacture an LED chip joined body with greatly improved heat dissipation. As a result, it is possible to provide a high-power LED package that is excellent in heat dissipation and reliability and can be expected to have higher luminance.
本発明の製造方法の一例を示す説明図Explanatory drawing which shows an example of the manufacturing method of this invention 本発明の製造方法の他の一例を示す説明図Explanatory drawing which shows another example of the manufacturing method of this invention
 1 ヒートスプレッダー
 2 金属層
 3 レジスト層
 4 LEDチップ
 5 接着層
 6 LEDチップ接合体
DESCRIPTION OF SYMBOLS 1 Heat spreader 2 Metal layer 3 Resist layer 4 LED chip 5 Adhesive layer 6 LED chip assembly
本発明によって製造されるLED接合体は、板厚が0.1~2mm、好ましくは0.1~0.5mmで、表面粗さ(Ra)が0.5μm以下、好ましくは0.01~0.2μmであり、しかもLEDチップの底面積の2倍以上、好ましくは2~100倍、特に好ましくは2~25倍の面積のヒートスプレッダーに、LEDチップが直接装着された構造であるので、LEDチップで発生した熱を効率的に面方向に広げることができ、たとい絶縁層を介して回路基板に実装しても、十分な放熱特性を確保することができる。その結果、LEDチップの点灯温度を低減することでき、LEDの更なる高輝度化が実現できる。 The LED joined body produced by the present invention has a plate thickness of 0.1 to 2 mm, preferably 0.1 to 0.5 mm, and a surface roughness (Ra) of 0.5 μm or less, preferably 0.01 to 0. The LED chip is directly mounted on a heat spreader having an area of .2 μm and more than twice the bottom area of the LED chip, preferably 2 to 100 times, particularly preferably 2 to 25 times. The heat generated in the chip can be efficiently spread in the surface direction, and sufficient heat dissipation characteristics can be ensured even if it is mounted on a circuit board via an insulating layer. As a result, the lighting temperature of the LED chip can be reduced, and further higher brightness of the LED can be realized.
ヒートスプレッダーの面積がLEDチップの底面積の2倍未満であるか、又はヒートスプレッダーの板厚が0.1mm未満であると、LEDチップからの熱をヒートスプレッダーで十分に広げることができずに、LEDチップの点灯温度が高くなる。一方、底面積の100倍をこえると、LEDチップ接合体の構造自体が大きくなり好ましくない。また、板厚が2mmをこえると、ヒートスプレッダーの熱抵抗が大きくなる。ヒートスプレッダーの表面粗さ(Ra)が0.5μmをこえると、LEDチップとの接着率が低下するなどの不具合が生じる恐れがある。表面粗さは小さいほどよいが、加工費が増大するので下限値は0.01μmが好ましい。 If the area of the heat spreader is less than twice the bottom area of the LED chip, or if the thickness of the heat spreader is less than 0.1 mm, the heat from the LED chip cannot be sufficiently spread by the heat spreader. The lighting temperature of the LED chip increases. On the other hand, if it exceeds 100 times the bottom area, the structure of the LED chip assembly itself is undesirably large. On the other hand, when the plate thickness exceeds 2 mm, the heat resistance of the heat spreader increases. When the surface roughness (Ra) of the heat spreader exceeds 0.5 μm, there is a risk that problems such as a decrease in the adhesion rate with the LED chip may occur. The smaller the surface roughness, the better. However, the processing cost increases, so the lower limit is preferably 0.01 μm.
本明細書において「接着率」とは、LEDチップの底面積に対する接着層の面積の比のことである。接着率が1であることが最も好ましく、放熱特性の面より0.5以上が好ましく、特に0.8以上が好ましい。接着率が0.5未満では、LEDチップで発生した熱を十分にヒートスプレッダーに伝達することができず、LEDチップの点灯温度が高くなる。 In the present specification, the “adhesion rate” is the ratio of the area of the adhesive layer to the bottom area of the LED chip. The adhesion rate is most preferably 1, more preferably 0.5 or more, and particularly preferably 0.8 or more in terms of heat dissipation characteristics. If the adhesion rate is less than 0.5, the heat generated in the LED chip cannot be sufficiently transmitted to the heat spreader, and the lighting temperature of the LED chip becomes high.
金属含浸セラミックス基板からなるヒートスプレッダーは、気孔率が10~50体積%の無機多孔体又は無機粉末成形体に、溶湯鍛造法にてアルミニウム又はアルミニウム合金、好ましくはアルミニウム含有率が80~97質量%のアルミニウム-シリコン合金を、例えば特許3468358号の方法によって含浸させて製造されたものであることが好ましい。また、金属含浸セラミックス基板は、温度25℃の熱伝導率が100~600W/mK、好ましくは100~300W/mKであり、また温度25℃~150℃の線膨張係数が3~12×10-6/K、好ましくは4~9×10-6/Kであることが好ましい。熱伝導率と線膨張係数は、含浸金属種、含浸率、無機多孔体又は無機粉末成形体の材質によって増減させることができる。 A heat spreader made of a metal-impregnated ceramic substrate is made of an inorganic porous body or an inorganic powder molded body having a porosity of 10 to 50% by volume by aluminum or aluminum alloy, preferably an aluminum content of 80 to 97% by mass by a melt forging method. The aluminum-silicon alloy is preferably produced by impregnation by the method of Japanese Patent No. 3468358, for example. The metal-impregnated ceramic substrate has a thermal conductivity of 100 to 600 W / mK, preferably 100 to 300 W / mK at a temperature of 25 ° C., and a linear expansion coefficient of 3 to 12 × 10 − at a temperature of 25 ° C. to 150 ° C. 6 / K, preferably 4 to 9 × 10 −6 / K. The thermal conductivity and the linear expansion coefficient can be increased or decreased depending on the type of impregnated metal, the impregnation rate, the inorganic porous body, or the inorganic powder molded body.
また、上記溶湯鍛造法のかわりに溶融含浸法によって、気孔率が10~50体積%の無機多孔体又は無機粉末成形体に、シリコン又はシリコン合金を、例えば特開平5-32458号公報の方法によって含浸させて製造されたものでも使用できる。 Further, instead of the above-mentioned molten metal forging method, silicon or a silicon alloy is applied to an inorganic porous body or an inorganic powder molded body having a porosity of 10 to 50% by volume by a melt impregnation method, for example, by the method of JP-A-5-32458 Even those produced by impregnation can be used.
無機多孔体又は無機粉末成形体の材質は、炭化珪素、窒化アルミニウム、窒化珪素、ダイヤモンド及び黒鉛から選ばれた無機成分の少なくとも1種であることが好ましい。無機多孔体又は無機粉末成形体中の無機成分の割合が50~90体積%、特に65~80体積%であり、空隙の割合(気孔率)が10~50体積%、特に20~35体積%であることが好ましい。無機成分の割合が50体積%未満であると、金属含浸セラミックス基板の線熱膨張係数が大きくなり過ぎる。一方、90体積%をこえると、金属を十分に含浸させることができず、熱伝導率が小さくなりすぎる恐れがある。気孔率の調整は、無機成分の粒度調整、成形圧力、焼結条件などによって行うことができる。 The material of the inorganic porous body or the inorganic powder molded body is preferably at least one inorganic component selected from silicon carbide, aluminum nitride, silicon nitride, diamond and graphite. The ratio of the inorganic component in the inorganic porous body or the inorganic powder molded body is 50 to 90% by volume, particularly 65 to 80% by volume, and the void ratio (porosity) is 10 to 50% by volume, particularly 20 to 35% by volume. It is preferable that When the proportion of the inorganic component is less than 50% by volume, the linear thermal expansion coefficient of the metal-impregnated ceramic substrate becomes too large. On the other hand, if it exceeds 90% by volume, the metal cannot be sufficiently impregnated and the thermal conductivity may be too small. The porosity can be adjusted by adjusting the particle size of inorganic components, molding pressure, sintering conditions, and the like.
無機粉末成形体は、無機成分の粉末のみを成形して製造することもできるし、例えばシリカゾル、アルミナゾル等の無機バインダーと共に用いて製造することもできる。成形には、プレス成形、鋳込み成形等の一般的なセラミックス粉末の成形方法が採用される。また、無機多孔体は、例えば上記無機粉末成形体を焼結処理することによって製造することができる。無機多孔体と無機粉末成形体の形状には制約はなく、平板状、円柱状などで用いられる。 The inorganic powder molded body can be produced by molding only the powder of the inorganic component, or can be produced using an inorganic binder such as silica sol or alumina sol. For forming, a general ceramic powder forming method such as press forming or cast forming is employed. Moreover, an inorganic porous body can be manufactured by sintering the said inorganic powder molded object, for example. There is no restriction | limiting in the shape of an inorganic porous body and an inorganic powder molded object, It uses by flat form, a column shape, etc.
金属を含浸した無機多孔体又は無機粉末成形体から金属含浸セラミックス基板にするには、通常、切断加工と面加工が施される。金属を含浸した無機多孔体又は無機粉末成形体の形状が円柱状である場合、円筒研削盤等によりダイヤモンド砥石を用いて所定寸法に外形加工した後、マルチワイヤソー、内周刃切断機等で最終形状より0.1~0.5mm程度厚い板厚に切断加工するのがよい。切断方法には限定はないが、切断代が少なく量産性に適したマルチワイヤソーが好適である。マルチワイヤソーの切断では、遊離砥粒タイプ及びダイヤモンド等の研削材を付着したワイヤーが用いられる。面加工では、両面研削盤、ロータリー研削盤、平面研削盤、ラップ盤等の加工機を用い、板厚が0.1~2mm、表面粗さ(Ra)が0.5μm以下に加工される。 In order to form a metal-impregnated ceramic substrate from an inorganic porous body or inorganic powder molded body impregnated with metal, cutting and surface processing are usually performed. When the shape of the inorganic porous body or inorganic powder molded body impregnated with metal is a columnar shape, the outer shape is processed to a predetermined size using a diamond grindstone with a cylindrical grinder, etc. It is preferable to cut to a thickness of about 0.1 to 0.5 mm thicker than the shape. There is no limitation on the cutting method, but a multi-wire saw having a small cutting margin and suitable for mass production is preferable. In the cutting of a multi-wire saw, a wire to which an abrasive such as a loose abrasive type and diamond is attached is used. In the surface processing, a processing machine such as a double-side grinding machine, a rotary grinding machine, a surface grinding machine, or a lapping machine is used to process the plate thickness to 0.1 to 2 mm and the surface roughness (Ra) to 0.5 μm or less.
金属を含浸した無機多孔体又は無機粉末成形体の形状が板状である場合は、両面研削盤、ロータリー研削盤、平面研削盤、ラップ盤等の加工機を用い、板厚が0.1~2mm、表面粗さ(Ra)が0.5μm以下に面加工をし、次いでウォータージェット加工機、放電加工機、レーザー加工機、ダイシングマシン、円筒研削盤等で所定形状に外周加工を行う。この場合、外周加工をさきに行ってから面加工をしてもよい。 When the shape of the inorganic porous body or inorganic powder compact impregnated with metal is a plate, use a processing machine such as a double-sided grinder, rotary grinder, surface grinder, lapping machine, etc. Surface processing is performed to 2 mm and the surface roughness (Ra) is 0.5 μm or less, and then outer periphery processing is performed into a predetermined shape by a water jet processing machine, an electric discharge processing machine, a laser processing machine, a dicing machine, a cylindrical grinding machine, or the like. In this case, the surface processing may be performed after the outer periphery processing is performed first.
一方、金属基板からなるヒートスプレッダーは、銅(Cu)、ニッケル(Ni)、モリブデン(Mo)、タングステン(W)、コバルト(Co)及び鉄(Fe)から選ばれた金属板、上記金属成分の少なくとも1種を含む合金板、又は上記金属板及び上記合金板から選ばれた2種以上で構成された積層板から構成されていることが好ましい。その形状は、平板状、円柱状などが用いられる。 On the other hand, the heat spreader made of a metal substrate is a metal plate selected from copper (Cu), nickel (Ni), molybdenum (Mo), tungsten (W), cobalt (Co) and iron (Fe), It is preferable that it is comprised from the laminated plate comprised by the alloy plate containing at least 1 type, or 2 or more types chosen from the said metal plate and the said alloy plate. As the shape, a flat plate shape, a cylindrical shape, or the like is used.
金属含浸セラミックス基板又は金属基板のいずれのヒートスプレッダーにあっても、その表面に、Ni、Co、Pd、Cu、Ag、Au、Pt及びSnから選ばれた少なくとも1種の金属による、特に好ましくはNi又はAuによる、厚みが0.5~20μmの金属層を有していることが好ましい。特に好ましい金属層の厚みは2~10μmである。これによって、LEDチップの接着率が向上する。金属層の厚みが0.5μm未満であると、接着率の向上効果が小さく、20μmをこえると、金属層とヒートスプレッダーとの熱膨張差による剥離が生じる恐れがある。金属層は、ヒートスプレッダーを洗浄後、上記金属種による無電解めっき又は電解めっきを施すことによって形成させることができる。また、金属蒸着法や金属被覆法によっても形成させることができる。 In any heat spreader of a metal-impregnated ceramic substrate or a metal substrate, the surface thereof is particularly preferably made of at least one metal selected from Ni, Co, Pd, Cu, Ag, Au, Pt and Sn. It is preferable to have a metal layer having a thickness of 0.5 to 20 μm made of Ni or Au. A particularly preferred metal layer thickness is 2 to 10 μm. Thereby, the adhesion rate of the LED chip is improved. If the thickness of the metal layer is less than 0.5 μm, the effect of improving the adhesion rate is small, and if it exceeds 20 μm, there is a risk of peeling due to the difference in thermal expansion between the metal layer and the heat spreader. The metal layer can be formed by performing electroless plating or electrolytic plating with the above metal species after washing the heat spreader. It can also be formed by metal vapor deposition or metal coating.
本明細書において「LEDチップ」とは、III-V族半導体結晶からなるLED素子と保持基板からなる構造体のことである。LED素子としては紫外~青色の波長域の光を発するIII-V族半導体結晶が使用され、具体的にはInGaN、AlGaAs、AlGaInPなどである。保持基板とは、(イ)III-V族半導体結晶をエピタキシャル成長する際に用いた成長基板、又は(ロ)単結晶成長基板上にIII-V族半導体結晶をエピタキシャル成長させた後に、金属層を介して高熱伝導性基板を接合し、その後、単結晶成長基板を除去される高熱伝導性基板、のことである。それらを例示すれば、サファイア、炭化珪素、シリコン、Cu/W、Cu/Moなどである。これらの中、0.5W以上の出力が要求されるLEDチップでは、熱伝導率の点から、上記(ロ)に属する保持基板が使用され、LEDチップは非絶縁構造となる。非絶縁構造LEDチップの利点は、狭い面積で高輝度が得られることである。 In the present specification, the “LED chip” refers to a structure composed of an LED element made of a III-V semiconductor crystal and a holding substrate. As the LED element, a III-V group semiconductor crystal emitting light in the ultraviolet to blue wavelength region is used, and specifically, InGaN, AlGaAs, AlGaInP, or the like. The holding substrate is (a) a growth substrate used when epitaxially growing a group III-V semiconductor crystal, or (b) a group III-V semiconductor crystal is epitaxially grown on a single crystal growth substrate, and then passed through a metal layer. The high thermal conductivity substrate is bonded to the single crystal growth substrate, and then the single crystal growth substrate is removed. Examples thereof are sapphire, silicon carbide, silicon, Cu / W, Cu / Mo, and the like. Among these, LED chips that require an output of 0.5 W or more use the holding substrate belonging to (b) above from the viewpoint of thermal conductivity, and the LED chips have a non-insulating structure. The advantage of the non-insulating LED chip is that high brightness can be obtained in a small area.
LEDチップとヒートスプレッダーの装着は、ロウ付け、はんだ付け、又は高熱伝導接着剤を用いて行われる。好ましくは、はんだ付け又はロウ付けである。はんだとしては、クリームはんだ、共晶はんだ、鉛フリーはんだなどが使用される。ロウ付けは、LEDチップ裏面の共晶金属層を利用したロウ付け法が好ましく、これによって接合層の厚みを1~5μmに薄くすることができる。また、「高熱伝導性接着剤」とは、熱伝導率が10W/mK以上の接着剤のことであり、例えばAgペースト、高熱伝導シリコーン接着剤、Ag系導電性接着剤などをあげることができる。接着層(装着層)の厚みは0.1mm以下が好ましく、特に0.05mm以下が好ましい。接着層の厚みが0.1mmをこえると熱抵抗が大きくなる。なお、本明細書においては、「装着」とは、LEDチップとヒートスプレッダーを接着するという意味であり、接合などと同等概念で用いている。 The LED chip and the heat spreader are attached by brazing, soldering, or using a high thermal conductive adhesive. Preferably, soldering or brazing. As the solder, cream solder, eutectic solder, lead-free solder or the like is used. For the brazing, a brazing method using a eutectic metal layer on the back surface of the LED chip is preferable, and the thickness of the bonding layer can be reduced to 1 to 5 μm. The “high thermal conductive adhesive” refers to an adhesive having a thermal conductivity of 10 W / mK or more, and examples thereof include an Ag paste, a high thermal conductive silicone adhesive, and an Ag-based conductive adhesive. . The thickness of the adhesive layer (mounting layer) is preferably 0.1 mm or less, particularly preferably 0.05 mm or less. When the thickness of the adhesive layer exceeds 0.1 mm, the thermal resistance increases. In the present specification, “attachment” means that the LED chip and the heat spreader are bonded, and is used in the same concept as bonding.
本発明では、ヒートスプレッダーに装着されるLEDチップの個数は、ヒートスプレッダーの面積が、LEDチップの底面積の2倍以上の範囲であり、個々のLEDチップの実装、放熱に支障をきたさない配置であれば個数には制約はない。このため、1つのヒートスプレッダーに二個以上のLEDチップを装着したLEDチップ接合体とすることもできる。二個以上のLEDチップを搭載することの利点は、実装工程での工数を低減できることである。 In the present invention, the number of LED chips mounted on the heat spreader is such that the area of the heat spreader is in the range of twice or more the bottom area of the LED chip and does not hinder the mounting and heat dissipation of the individual LED chips. If so, the number is not limited. For this reason, it can also be set as the LED chip assembly which attached two or more LED chips to one heat spreader. An advantage of mounting two or more LED chips is that man-hours in the mounting process can be reduced.
ついで、LEDチップの装着されたヒートスプレッダーは、ヒートスプレッダーの面積が、LEDチップの底面積の2倍以上の範囲に切断される。このような面積比で切断する理由は上記した。 Next, the heat spreader to which the LED chip is mounted is cut into a range in which the area of the heat spreader is twice or more the bottom area of the LED chip. The reason for cutting with such an area ratio is described above.
本発明のように、ヒートスプレッダーに一個又は二個以上のLEDチップを装着してから切断する方法の利点は、LEDチップを装着する際の装着面の清浄度が、酸化層等で汚染されていないので、酸処理等の洗浄処理が不要であること、またLEDチップを位置精度良くヒートスプレッダーに配置することができるので、切断及び実装の際の不具合が激減できること、などである。すなわち、一般に、切断や実装は自動機で行われるが、位置精度が悪いと、自動機での対応が難しく、別途、手動にて位置合わせを行う必要があるが、本発明によればそれが不要となることである。しかし、本発明においては、更なる位置精度を高めるため、自動機に加え、治具でLEDチップの位置精度を確保する、ヒートスプレッダー基板にはんだレジストを塗布するなどの処置を否定するものではない。 As in the present invention, the advantage of the method of cutting after mounting one or more LED chips on the heat spreader is that the cleanliness of the mounting surface when the LED chips are mounted is contaminated with an oxide layer or the like. Therefore, there is no need for a cleaning treatment such as an acid treatment, and the LED chip can be arranged on the heat spreader with high positional accuracy, so that problems during cutting and mounting can be drastically reduced. That is, in general, cutting and mounting are performed by an automatic machine. However, if the positional accuracy is poor, it is difficult to deal with the automatic machine, and it is necessary to perform manual alignment separately. It becomes unnecessary. However, in the present invention, in order to further increase the positional accuracy, in addition to the automatic machine, measures such as securing the positional accuracy of the LED chip with a jig or applying a solder resist to the heat spreader substrate are not denied. .
ヒートスプレッダーの切断は、ダイシング、レーザー加工、ウォータージェット加工及び放電加工により行うことができる。加工精度及び加工速度の点から、ダイシング及びレーザー加工が最適である。 The heat spreader can be cut by dicing, laser processing, water jet processing, and electric discharge processing. Dicing and laser processing are optimal in terms of processing accuracy and processing speed.
 以下、適宜図面を引用して、本発明を実施例によって詳細に説明するが、本発明はこれらによって限定されるものではない。
実施例1
<無機多孔体を用いたヒートスプレッダーA、B>
炭化珪素粉末A(市販品:平均粒子径200μm)1800g、炭化珪素粉末B(市販品:平均粒子径20μm)900g、炭化珪素粉末C(市販品:平均粒子径2μm)300g、及び成形バインダー(メチルセルロース、信越化学工業社製商品名「メトローズ」)150gを秤取し、攪拌混合機で30分間混合した。これを、面圧10MPaでプレス成形し、続いて圧力100MPaでCIP成形をして円柱状成形体(直径55mm×高さ110mm)を製造した後、大気雰囲気中、温度600℃で2時間脱脂処理後、アルゴン雰囲気下、温度2100℃で2時間焼成した。得られた焼結体をマシニングセンターでダイヤモンド製の砥石を用い、外形寸法が直径52mm×高さ100mmに加工して無機多孔体(気孔率20%)を製造した。得られた無機多孔体に窒化硼素の離型剤を塗布してから、筒状黒鉛治具(外寸法:70mm×70mm×100mm、内寸法:直径52.5mm×高さ100mm)に挿入して構造体とした。
Hereinafter, the present invention will be described in detail with reference to the drawings as appropriate, but the present invention is not limited thereto.
Example 1
<Heat spreader A, B using inorganic porous material>
Silicon carbide powder A (commercial product: average particle size 200 μm) 1800 g, silicon carbide powder B (commercial product: average particle size 20 μm) 900 g, silicon carbide powder C (commercial product: average particle size 2 μm) 300 g, and molded binder (methylcellulose) 150 g of trade name “Metroze” manufactured by Shin-Etsu Chemical Co., Ltd.) was weighed and mixed with a stirring mixer for 30 minutes. This was press-molded at a surface pressure of 10 MPa, then CIP-molded at a pressure of 100 MPa to produce a cylindrical molded body (diameter 55 mm × height 110 mm), and then degreased at a temperature of 600 ° C. for 2 hours. Thereafter, it was baked at a temperature of 2100 ° C. for 2 hours in an argon atmosphere. The obtained sintered body was processed into a diameter of 52 mm × height of 100 mm using a diamond grindstone at a machining center to produce an inorganic porous body (porosity 20%). After applying a boron nitride release agent to the obtained inorganic porous material, it is inserted into a cylindrical graphite jig (external dimensions: 70 mm × 70 mm × 100 mm, internal dimensions: diameter 52.5 mm × height 100 mm). It was set as a structure.
黒鉛離型材の塗布されたステンレス板からなる離型板(70mm×100mm×0.8mm)を挟んで上記構造体の4個を組み立て(140.8mm×140.8mm×100mm)、両側に鉄板(厚み12mm)を配置し、ボルト8本で連結して一つの積層体とした。この積層体を電気炉で温度700℃に予備加熱した後、あらかじめ加熱しておいたプレス金型(内径400mm×高さ300mm)内に収め、シリコンを12質量%及びマグネシウムを1質量%含有するアルミニウム合金の溶湯(温度800℃)を注ぎ、100MPaの圧力で25分間加圧してアルミニウム合金を含浸させた。室温まで冷却した後、湿式バンドソーにて離型板の形状に沿って切断して離型板を剥がし、旋盤で黒鉛治具部分を除去して金属含浸セラミックス材料(直径52mm×高さ100mm)の4個を製造した。これを530℃の温度で3時間アニール処理して含浸時の歪み除去した。 Four pieces of the above structure are assembled (140.8 mm × 140.8 mm × 100 mm) with a release plate (70 mm × 100 mm × 0.8 mm) made of a stainless steel plate coated with graphite release material, and iron plates ( (Thickness 12 mm) is arranged and connected with eight bolts to form a single laminate. This laminate is preheated to a temperature of 700 ° C. in an electric furnace and then placed in a preheated press mold (inner diameter: 400 mm × height: 300 mm), and contains 12% by mass of silicon and 1% by mass of magnesium. A molten aluminum alloy (temperature: 800 ° C.) was poured, and the aluminum alloy was impregnated by applying pressure of 100 MPa for 25 minutes. After cooling to room temperature, it is cut along the shape of the release plate with a wet band saw to peel off the release plate, and the graphite jig portion is removed with a lathe to remove the metal-impregnated ceramic material (diameter 52 mm × height 100 mm). Four pieces were produced. This was annealed at a temperature of 530 ° C. for 3 hours to remove distortion during impregnation.
得られた金属含浸セラミックス材料から、研削加工により線膨張係数測定用試験体(直径3mm長さ10mm)と熱伝導率測定用試験体(25mm×25mm×1mm)を切り出し、温度25℃~150℃の線膨張係数を熱膨張計(セイコー電子工業社製;TMA300)で、温度25℃での熱伝導率をレーザーフラッシュ法(アルバック社製;TC3000)で測定した。その結果、線膨張係数は5.0×10-6/K、熱伝導率は250W/mKであった。 From the obtained metal-impregnated ceramic material, a linear expansion coefficient measurement specimen (diameter 3 mm, length 10 mm) and a thermal conductivity measurement specimen (25 mm × 25 mm × 1 mm) are cut out by grinding, and the temperature is 25 ° C. to 150 ° C. The thermal conductivity at a temperature of 25 ° C. was measured by a laser flash method (ULVAC, Inc .; TC3000). As a result, the linear expansion coefficient was 5.0 × 10 −6 / K, and the thermal conductivity was 250 W / mK.
ついで、金属含浸セラミックス材料を、円筒研削盤でダイヤモンドの砥石を用いて、直径50.8mm×高さ100mmの円柱形状に外周加工を行ってから、マルチワイヤソーでダイヤモンド砥粒を用い、切り込み速度0.2mm/minで、円板状(板厚0.3mm)に切断加工し、更に両面研削盤で#600のダイヤモンド砥石を用いて板厚0.22mmに研削加工した。その後、ラップ盤でダイヤモンドの砥粒を用いて、板厚0.2mmまで研磨加工をしてから、純水中、次いでイソプロピルアルコール中で超音波洗浄を行い乾燥し、金属含浸セラミックス基板からなるヒートスプレッダーAを製造した。この表面粗さ(Ra)は0.05μmであった。 Next, the metal-impregnated ceramic material was processed into a cylindrical shape having a diameter of 50.8 mm and a height of 100 mm using a diamond grinder with a cylindrical grinder, and then a diamond abrasive grain was used with a multi-wire saw, and the cutting speed was 0. It was cut into a disk shape (plate thickness 0.3 mm) at a rate of 0.2 mm / min, and further ground to a plate thickness of 0.22 mm with a double-sided grinder using a # 600 diamond grindstone. After that, polishing is performed to a thickness of 0.2 mm using diamond abrasive grains on a lapping machine, and then ultrasonic cleaning is performed in pure water and then in isopropyl alcohol, followed by drying. Spreader A was manufactured. This surface roughness (Ra) was 0.05 μm.
ヒートスプレッダーAに、無電解Ni―Pめっき及び電気Auめっきを行い、(Ni-P:4μm+Au:1μm)のめっき層(5μm厚)を形成した。この表面粗さ(Ra)は0.1μmであった。ついで、このめっき層の施されたヒートスプレッダーの片面に、市販の紫外線硬化型のはんだレジストをスクリーン印刷機で塗布した後、紫外線硬化させてレジスト層(15μm厚)を4mm間隔で形成しヒートスプレッダーBとした。 The heat spreader A was subjected to electroless Ni—P plating and electro Au plating to form a plating layer (5 μm thickness) of (Ni—P: 4 μm + Au: 1 μm). The surface roughness (Ra) was 0.1 μm. Next, after applying a commercially available UV curable solder resist on one side of the heat spreader to which this plating layer has been applied with a screen printer, the resist layer (15 μm thick) is formed at intervals of 4 mm by UV curing. B.
<無機粉末成形体を用いたヒートスプレッダーa、b>
炭化珪素粉末Aを352g、炭化珪素粉末Bを176g、炭化珪素粉末Cを59g秤取し、攪拌混合機で30分間混合した。これを、筒状黒鉛治具(外寸法:70mm×70mm×110mm、内寸法:直径55mm×高さ110mm)に充填し、面圧10MPaでプレス成形して無機粉末成形体(直径55mm×高さ110mmの円柱体、気孔率30%)を製造した。ついで、上記ヒートスプレッダーAの製造において構造体の4個を組み立てたことのかわりに、ここで製造された筒状黒鉛治具ごと無機粉末成形体の4個を組み立てたこと以外は、同様にして金属含浸セラミックス材料(温度25℃~150℃の線膨張係数:6.0×10-6/K、温度25℃での熱伝導率:220W/mK)を製造し、それを加工してヒートスプレッダーaと、ヒートスプレッダーaにめっき層とレジスト層を施ししてヒートスプレッダーbを製造した。
<Heat spreader a, b using inorganic powder compact>
352 g of silicon carbide powder A, 176 g of silicon carbide powder B, and 59 g of silicon carbide powder C were weighed and mixed with a stirring mixer for 30 minutes. This is filled into a cylindrical graphite jig (outer dimensions: 70 mm × 70 mm × 110 mm, inner dimensions: diameter 55 mm × height 110 mm), and press-molded with a surface pressure of 10 MPa to form an inorganic powder compact (diameter 55 mm × height). 110 mm cylinders, porosity 30%) were produced. Then, instead of assembling the four structural bodies in the production of the heat spreader A, the same procedure was performed except that the four inorganic powder compacts were assembled together with the cylindrical graphite jig produced here. Manufactures a metal-impregnated ceramic material (linear expansion coefficient at a temperature of 25 ° C. to 150 ° C .: 6.0 × 10 −6 / K, thermal conductivity at a temperature of 25 ° C .: 220 W / mK), and processes the heat spreader The heat spreader b was manufactured by applying a plating layer and a resist layer to a and the heat spreader a.
<ヒートスプレッダーA、B、a又はbによるLEDチップ接合体>
図1に示すように、上記で製造された4種(A、B、a、b)のヒートスプレッダー1のそれぞれに、出力3WのLEDチップ(Cree社製:EZ1000/1mm×1mm×0.1mm)4の120個をヒートスプレッダー1上に、位置決め治具を使用して4.0mm間隔で接着した。接着は、A、aのヒートスプレッダーでは高熱伝導接着剤(京セラケミカル社製:CT284R Agペースト系)を用いて行い、B、bのヒートスプレッダーではレジスト層3の間にクリームはんだの接着層5により行った(図1の工程2参照)。その後、ダイシング装置(ディスコ社製:DAD3350)にて、刃幅0.1mmのレジンボンドタイプのダイヤモンドブレード(R07-SD400)にて、送り速度8mm/sで、3.9mm×3.9mmの形状に切断加工をし、純水中で超音波洗浄を行い、乾燥して120個のLEDチップ接合体6を製造した(図1の工程3参照)。得られたLEDチップ接合体のLEDチップの装着面の面積は、いずれもLEDチップの底面積の15.2倍であった。
<LED chip assembly by heat spreader A, B, a or b>
As shown in FIG. 1, each of the four types (A, B, a, b) of heat spreaders 1 manufactured above has an LED chip of 3 W output (manufactured by Cree: EZ1000 / 1 mm × 1 mm × 0.1 mm). ) 120 pieces of 4 were bonded on the heat spreader 1 at intervals of 4.0 mm using a positioning jig. Adhesion is performed using a high thermal conductive adhesive (Kyocera Chemical Co., Ltd .: CT284R Ag paste system) in the heat spreaders A and a, and in the heat spreaders B and b, an adhesive layer 5 of cream solder is provided between the resist layers 3. (See step 2 in FIG. 1). Then, with a dicing machine (Disco: DAD3350), a resin bond type diamond blade (R07-SD400) with a blade width of 0.1 mm and a feed rate of 8 mm / s and a shape of 3.9 mm × 3.9 mm Were subjected to ultrasonic cleaning in pure water and dried to produce 120 LED chip assemblies 6 (see step 3 in FIG. 1). The area of the LED chip mounting surface of the obtained LED chip assembly was 15.2 times the bottom area of the LED chip.
<LEDチップ接合体の放熱特性>
LEDチップ接合体を、クリームはんだと金ワイヤーによるワイヤーボンディングにより、金属アルミニウムベースの回路基板(20mm×20mm×1.5mm)に実装し、これをシリコーンゴム製両面粘着の市販放熱シート(熱伝導率2W/mK)を挟んで、アルミニウム製の放熱フィン(熱抵抗:5.2℃/W 寸法:50mm×50mm×17mm)に接着した。LEDチップに出力が3Wとなる電圧を印可し、LEDチップの上面温度を赤外線サーモグラフィーにより測定した。その結果、ヒートスプレッダーA、ヒートスプレッダーB、ヒートスプレッダーa、ヒートスプレッダーbを用いて製造されたLEDチップ接合体のLEDチップの上面温度は、5個の平均値で、それぞれ69℃、60℃、70℃、61℃であった。
<Heat dissipation characteristics of LED chip assembly>
The LED chip assembly is mounted on a metal aluminum-based circuit board (20 mm × 20 mm × 1.5 mm) by wire bonding with cream solder and gold wire, and this is a commercially available heat radiation sheet (thermal conductivity of double-sided adhesive made of silicone rubber). 2 W / mK), and bonded to aluminum radiating fins (thermal resistance: 5.2 ° C./W dimensions: 50 mm × 50 mm × 17 mm). A voltage with an output of 3 W was applied to the LED chip, and the upper surface temperature of the LED chip was measured by infrared thermography. As a result, the upper surface temperature of the LED chip of the LED chip assembly manufactured using the heat spreader A, the heat spreader B, the heat spreader a, and the heat spreader b is an average value of 5 pieces, 69 ° C, 60 ° C, 70 ° C. and 61 ° C.
比較例1
ヒートスプレッダーBを用いた実施例1のLEDチップ接合体において、LEDチップ接合体を作製せずにLEDチップを、直接、クリームはんだを用いて回路基板に実装したところ、LEDチップの上面温度は105℃であった。
Comparative Example 1
In the LED chip assembly of Example 1 using the heat spreader B, when the LED chip was directly mounted on the circuit board using the cream solder without producing the LED chip assembly, the upper surface temperature of the LED chip was 105. ° C.
実施例2~4 比較例2、3
マルチワイヤソー加工時の切断幅をかえ、板厚の異なるヒートスプレッダーを製造したこと、及びクリームはんだの接着層5をロウ材(Au/Sn=80/20(質量比))の接着層5に変更したこと以外は、実施例1のヒートスプレッダーBの場合と同様にしてLEDチップ接合体を製造し、LEDチップの上面温度を測定した。それらの結果を表1に示す。
Examples 2 to 4 Comparative Examples 2 and 3
Changed the cutting width during multi-wire saw processing, manufactured heat spreaders with different plate thicknesses, and changed the adhesive layer 5 of cream solder to the adhesive layer 5 of brazing material (Au / Sn = 80/20 (mass ratio)) Except for the above, an LED chip assembly was manufactured in the same manner as in the case of the heat spreader B of Example 1, and the upper surface temperature of the LED chip was measured. The results are shown in Table 1.
実施例5~7 比較例4
ラップ盤加工時のダイヤモンドの砥粒の粒度をかえ、表面粗さの異なるヒートスプレッダーを製造したこと、及びクリームはんだの接着層5をロウ材(Au/Sn=80/20(質量比))の接着層5に変更したこと以外は、実施例1のヒートスプレッダーBの場合と同様にしてLEDチップ接合体を製造し、LEDチップの上面温度を測定した。それらの結果を表1に示す。
Examples 5 to 7 Comparative Example 4
Changing the grain size of diamond abrasive grains during lapping, producing a heat spreader with different surface roughness, and bonding the solder layer 5 of the solder paste (Au / Sn = 80/20 (mass ratio)) Except having changed into the contact bonding layer 5, the LED chip assembly was manufactured like the case of the heat spreader B of Example 1, and the upper surface temperature of the LED chip was measured. The results are shown in Table 1.
実施例8~10 比較例5
クリームはんだの接着層5をロウ材(Au/Sn=80/20(質量比))の接着層5に変更したこと、及びダイシング装置での切断加工時の間隔を表1のように変えて、LEDチップの底面積に対するヒートスプレッダーの面積の比率が異なるヒートスプレッダーを製造したこと以外は、実施例1のヒートスプレッダーBの場合と同様にしてLEDチップ接合体を製造し、LEDチップの上面温度を測定した。それらの結果を表1に示す。
Examples 8 to 10 Comparative Example 5
The adhesive layer 5 of the cream solder was changed to the adhesive layer 5 of the brazing material (Au / Sn = 80/20 (mass ratio)), and the interval at the time of the cutting process with the dicing apparatus was changed as shown in Table 1, An LED chip assembly is manufactured in the same manner as in the case of the heat spreader B of Example 1, except that the heat spreader having a different ratio of the heat spreader area to the bottom area of the LED chip is manufactured. It was measured. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
実施例11~15
(Ni-P:4μm+Au:1μm)のめっき層(5μm厚)のかわりに、表2に示す金属種及び金属層厚みのめっき層を形成させたこと以外は、実施例1のヒートスプレッダーBの場合と同様にしてLEDチップ接合体を製造し、LEDチップの上面温度を測定した。それらの結果を表2に示す。
Examples 11-15
In the case of the heat spreader B of Example 1, except that instead of the plating layer (5 μm thickness) of (Ni—P: 4 μm + Au: 1 μm), a plating layer having the metal type and metal layer thickness shown in Table 2 was formed. The LED chip assembly was manufactured in the same manner as described above, and the upper surface temperature of the LED chip was measured. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
実施例16~22 比較例6~8
<金属基板からなるヒートスプレッダーC、DによるLEDチップ接合体>
形状が直径50.8mm×10mmで、温度25℃~150℃の線膨張係数が6.5×10-6/K、温度25℃での熱伝導率が160W/mKである、銅-タングステン(Cu/W)からなる金属板の板厚と表面粗さを表3のように変更した金属基板からなるヒートスプレッダーCを種々用意した。これらのヒートスプレッダーCを用いたこと以外は、実施例1のヒートスプレッダーBの場合と同様にしてLEDチップ接合体を製造した。LEDチップの上面温度の測定結果を表3に示す。
Examples 16 to 22 Comparative Examples 6 to 8
<LED chip assembly using heat spreaders C and D made of metal substrate>
Copper-tungsten having a shape of 50.8 mm × 10 mm in diameter, a linear expansion coefficient of 6.5 × 10 −6 / K at a temperature of 25 ° C. to 150 ° C., and a thermal conductivity of 160 W / mK at a temperature of 25 ° C. Various heat spreaders C made of a metal substrate, in which the thickness and surface roughness of the metal plate made of Cu / W) were changed as shown in Table 3, were prepared. An LED chip assembly was manufactured in the same manner as in the case of the heat spreader B of Example 1 except that these heat spreaders C were used. Table 3 shows the measurement results of the upper surface temperature of the LED chip.
実施例23~25
ヒートスプレッダーCのLEDチップ接合後のダイシング装置での切断加工時の間隔を表3のように変えて、LEDチップの底面積に対するヒートスプレッダーの面積の比率が異なるヒートスプレッダーを製造したこと以外は、実施例16と同様にしてLEDチップ接合体を製造し、LEDチップの上面温度を測定した。それらの結果を表3に示す。
Examples 23-25
Except for changing the interval at the time of the cutting process in the dicing apparatus after joining the LED chip of the heat spreader C as shown in Table 3 and manufacturing a heat spreader in which the ratio of the area of the heat spreader to the bottom area of the LED chip is different, An LED chip assembly was manufactured in the same manner as in Example 16, and the upper surface temperature of the LED chip was measured. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
実施例26
銅-タングステン(Cu/W)からなる金属基板のかわりに、直径が50.8mm、板厚が0.3mm、表面粗さ(Ra)が0.08μm、温度25℃~150℃の線膨張係数が7.5×10-6/K、温度25℃での熱伝導率が200W/mKである、銅-モリブデン-銅(Cu/Mo/Cu)の3層積層板(各層の厚みは、0.1mm)からなる金属基板をヒートスプレッダーDとして用いたこと以外は、実施例16と同様にしてLEDチップ接合体を製造した。このLEDチップの上面温度は64℃であった。
Example 26
Instead of a copper-tungsten (Cu / W) metal substrate, the diameter is 50.8 mm, the plate thickness is 0.3 mm, the surface roughness (Ra) is 0.08 μm, and the linear expansion coefficient is 25 ° C to 150 ° C. Is a three-layer laminate of copper-molybdenum-copper (Cu / Mo / Cu) having a thermal conductivity of 200 W / mK at a temperature of 25 × 10 −6 / K and a temperature of 25 ° C. (the thickness of each layer is 0 LED chip assembly was manufactured in the same manner as in Example 16 except that a metal substrate made of 0.1 mm) was used as the heat spreader D. The upper surface temperature of this LED chip was 64 ° C.
実施例27
<金属基板からなるヒートスプレッダーcによるLEDチップ接合体>
板厚が0.2mm、Raが0.1μmの銅/タングステン(Cu/W)合金板に、ヒートスプレッダーAと同様にして、LEDチップを高熱伝導接着剤を用いて接着を行い、LEDチップ接合体を製造した。このLEDチップの上面温度は71℃であった。
Example 27
<LED chip assembly by heat spreader c made of metal substrate>
The LED chip is bonded to a copper / tungsten (Cu / W) alloy plate having a plate thickness of 0.2 mm and Ra of 0.1 μm in the same manner as the heat spreader A by using a high thermal conductive adhesive to join the LED chip. The body was manufactured. The upper surface temperature of this LED chip was 71 ° C.
実施例28
<無機多孔体を用いたヒートスプレッダーE、FによるLEDチップ接合体>
炭化珪素粉末D(市販品:平均粒子径150μm)1300g、炭化珪素粉末E(市販品:平均粒子径10μm)700g、シリカゾル(日産化学社製:スノーテックス)300gを秤取し、攪拌混合機で30分間混合した後、160mm×160mm×5mmの寸法の板状に面圧30MPaでプレス成形して成形体を製造した。得られた成形体を、温度120℃で1時間乾燥後、窒素雰囲気下、温度1400℃で2時間焼成して、気孔率が35%の焼結体を製造し、マシニングセンターでダイヤモンド砥石を用いて、外形寸法が155mm×155mm×3mmの形状に加工して無機多孔体を製造した。
Example 28
<LED chip assembly by heat spreaders E and F using an inorganic porous body>
1300 g of silicon carbide powder D (commercial product: average particle size 150 μm), 700 g of silicon carbide powder E (commercial product: average particle size 10 μm), and 300 g of silica sol (Nissan Chemical Co., Ltd .: Snowtex) are weighed and stirred. After mixing for 30 minutes, a molded body was produced by press molding into a plate having dimensions of 160 mm × 160 mm × 5 mm at a surface pressure of 30 MPa. The obtained molded body was dried at a temperature of 120 ° C. for 1 hour, and then fired in a nitrogen atmosphere at a temperature of 1400 ° C. for 2 hours to produce a sintered body having a porosity of 35%, using a diamond grindstone at a machining center. The outer dimensions were processed into a shape of 155 mm × 155 mm × 3 mm to produce an inorganic porous body.
無機多孔体の10枚を一枚ごとに黒鉛離型剤が塗布された離型板(160mm×160mm×0.8mm)を挟んで構造体(170mm×170mm×40mm)となし、両側に鉄板(板厚12mm)を配置してボルト8本で連結して一つの積層体とした。以下、実施例1のヒートスプレッダーAと同様にして金属含浸セラミックス材料(155mm×155mm×3mm)を製造し、温度25℃~150℃の線膨張係数と温度25℃での熱伝導率を測定したところ、それぞれ7.5×10-6/K、200W/mKであった。 Ten inorganic porous bodies are formed as a structure (170 mm × 170 mm × 40 mm) with a release plate (160 mm × 160 mm × 0.8 mm) coated with a graphite release agent on each sheet, and iron plates ( A plate thickness of 12 mm) was placed and connected with 8 bolts to form a single laminate. Hereinafter, a metal-impregnated ceramic material (155 mm × 155 mm × 3 mm) was produced in the same manner as in the heat spreader A of Example 1, and the linear expansion coefficient at a temperature of 25 ° C. to 150 ° C. and the thermal conductivity at a temperature of 25 ° C. were measured. However, they were 7.5 × 10 −6 / K and 200 W / mK, respectively.
この金属含浸セラミックス材料を、平面研削盤でダイヤモンドの砥石を用いて、板厚0.4mmの板状に面加工した後、ウォータージェット加工機(スギノマシン製アブレッシブ・ジェットカッタNC)により、圧力250MPa、加工速度100mm/minの条件で、研磨砥粒として粒度100μmのガーネットを使用して、直径50.8mm×0.4mmの形状に切断加工した。その後、両面研削盤で#800のダイヤモンド砥石を用いて、板厚0.3mmに研削加工を行い、純水中、次いでイソプロピルアルコール中で超音波洗浄を行い乾燥し、金属含浸セラミックス基板からなるヒートスプレッダーEを製造した。この表面粗さ(Ra)は0.1μmであった。また、ヒートスプレッダーEに、上記ヒートスプレッダーBと同様なめっき層を施してヒートスプレッダーFとした。 This metal-impregnated ceramic material is surface-processed into a plate shape with a plate thickness of 0.4 mm using a diamond grinder with a surface grinder, and then subjected to a pressure of 250 MPa by a water jet processing machine (Abrasive Jet Cutter NC manufactured by Sugino Machine). The garnet having a particle size of 100 μm was used as the abrasive grains under the condition of a processing speed of 100 mm / min, and cut into a shape having a diameter of 50.8 mm × 0.4 mm. Then, using a # 800 diamond grindstone with a double-side grinding machine, grinding to a plate thickness of 0.3 mm, ultrasonic cleaning in pure water and then isopropyl alcohol, drying, and heat consisting of a metal-impregnated ceramic substrate Spreader E was manufactured. The surface roughness (Ra) was 0.1 μm. Further, the heat spreader E was coated with the same plating layer as the heat spreader B to obtain a heat spreader F.
ヒートスプレッダーEを用いて製造されたLEDチップ接合体のLEDチップの上面温度と、ヒートスプレッダーFを用いて製造されたLEDチップ接合体のLEDチップの上面温度を測定したところ、それぞれ、70℃、62℃、であった。 When the upper surface temperature of the LED chip of the LED chip assembly manufactured using the heat spreader E and the upper surface temperature of the LED chip of the LED chip assembly manufactured using the heat spreader F were measured, respectively, 62 ° C.
実施例29
<無機多孔体を用いたヒートスプレッダーG、HによるLEDチップ接合体>
無機多孔体として等方性黒鉛成形体(東海カーボン社製:G458、気孔率:13体積%、寸法:100mm×100mm×100mm)を用い、また離型板として黒鉛離型材の塗布されたステンレス板(100mm×100mm×0.8mm)を用いたこと以外は、ヒートスプレッダーAの製造に準じて金属含浸セラミックス材料を製造した。
Example 29
<LED chip assembly using heat spreaders G and H using inorganic porous material>
A stainless steel plate using an isotropic graphite molded body (manufactured by Tokai Carbon Co., Ltd .: G458, porosity: 13% by volume, dimensions: 100 mm × 100 mm × 100 mm) as an inorganic porous body, and a graphite release material applied as a release plate A metal-impregnated ceramic material was produced according to the production of the heat spreader A except that (100 mm × 100 mm × 0.8 mm) was used.
この金属含浸セラミックス材料を、ダイヤモンドソーで切断加工した後、円筒研削盤でダイヤモンドの砥石を用いて、直径50.8mm×100mmの円柱形状に外周加工を行い、更にマルチワイヤソーでダイヤモンド砥粒を用いて、切り込み速度0.5mm/minで板厚0.4mmの円板に切断加工した。得られた円板を、両面研削盤で#600のダイヤモンド砥石を用いて板厚0.3mmに研削加工を行い、水中、次いでイソプロピルアルコール中で超音波洗浄を行い乾燥し、金属含浸セラミックス基板からなるヒートスプレッダーGを製造した。この表面粗さ(Ra)は0.15μmであった。また、ヒートスプレッダーGに、上記ヒートスプレッダーBと同様なめっき層を施してヒートスプレッダーHとした。 After cutting this metal-impregnated ceramic material with a diamond saw, the outer periphery is processed into a cylindrical shape with a diameter of 50.8 mm × 100 mm using a diamond grinder with a cylindrical grinder, and further using diamond abrasive grains with a multi-wire saw Then, it was cut into a disc having a thickness of 0.4 mm at a cutting speed of 0.5 mm / min. The obtained disc is ground to a plate thickness of 0.3 mm using a # 600 diamond grindstone with a double-sided grinder, ultrasonically washed in water and then in isopropyl alcohol, and dried. From the metal-impregnated ceramic substrate The following heat spreader G was manufactured. The surface roughness (Ra) was 0.15 μm. Further, the heat spreader G was provided with a plating layer similar to that of the heat spreader B to obtain a heat spreader H.
ヒートスプレッダーHに、出力3WのLEDチップ(Cree社製:EZ1000/1mm×1mm×0.1mm)を4mm間隔でクリームはんだで接合した後、放電加工機にて、切断速度0.5mm/sで3.9mm×3.9mmの形状に切断加工を行い、純水中で超音波洗浄を行い、乾燥してLEDチップ接合体を製造し、LEDチップの上面温度を測定したところ、66℃であった。 An LED chip with an output of 3 W (EZ1000 / 1 mm × 1 mm × 0.1 mm) is joined to the heat spreader H with cream solder at intervals of 4 mm, and then at a cutting speed of 0.5 mm / s with an electric discharge machine. Cutting to a shape of 3.9 mm × 3.9 mm, ultrasonic cleaning in pure water, drying to produce an LED chip assembly, and measuring the upper surface temperature of the LED chip, it was 66 ° C. It was.
実施例30
<無機多孔体を用いたヒートスプレッダーI、JによるLEDチップ接合体>
窒化アルミニウム粉末(平均粒子径2μm)2880g、イットリア粉末(平均粒子径1μm)120g、成形バインダー(メチルセルロース)150g、及び純水150gの混合粉末を、面圧10MPaでプレス成形した後、更に成形圧力100MPaでCIP成形して円柱体(直径55mm×110mm)を製造した。これを、大気雰囲気中、温度600℃で2時間脱脂処理後、窒素雰囲気下、温度1780℃で4時間焼成して焼結体を製造した後、マシニングセンターでダイヤモンド砥石を用いて、気孔率が22%の無機多孔体(直径52mm×100mm)を製造した。
Example 30
<LED chip assembly by heat spreaders I and J using inorganic porous material>
A mixed powder of aluminum nitride powder (average particle size 2 μm) 2880 g, yttria powder (average particle size 1 μm) 120 g, molding binder (methylcellulose) 150 g, and pure water 150 g was press-molded at a surface pressure of 10 MPa, and further molding pressure 100 MPa. To produce a cylindrical body (diameter 55 mm × 110 mm). This was degreased at a temperature of 600 ° C. for 2 hours in an air atmosphere, then fired at a temperature of 1780 ° C. for 4 hours in a nitrogen atmosphere to produce a sintered body, and then the porosity was 22 using a diamond grindstone at a machining center. % Inorganic porous material (diameter 52 mm × 100 mm) was produced.
この無機多孔体を用いたこと、及びアルミニウム合金のかわりに純アルミニウムを用いたこと以外は、実施例1のヒートスプレッダーAと同様にしてヒートスプレッダーI(直径50.8mm×0.2mm)を製造した。この表面粗さ(Ra)は0.06μmであった。また、ヒートスプレッダーIに、上記ヒートスプレッダーBと同様なめっき層を施してヒートスプレッダーJとした。 A heat spreader I (diameter 50.8 mm × 0.2 mm) was produced in the same manner as the heat spreader A of Example 1 except that this inorganic porous material was used and that pure aluminum was used instead of the aluminum alloy. did. The surface roughness (Ra) was 0.06 μm. Further, the heat spreader I was provided with a plating layer similar to that of the heat spreader B, whereby a heat spreader J was obtained.
図2に示すように、ヒートスプレッダーJに、出力1WのLEDチップ(Cree社製:EZ700/0.7mm×0.7mm×0.1mm)4の2個をヒートスプレッダー1上に2mm間隔で、クリームはんだの接着層5により接合した(図2の工程2参照)。その後、レーザー加工機にて、切断速度8mm/sで3.9mm×3.9mmの形状に切断加工をし、純水中で超音波洗浄を行い、乾燥して120個のLEDチップ接合体6を製造した(図2の工程3参照)。 As shown in FIG. 2, two LED chips (EZ700 / 0.7 mm × 0.7 mm × 0.1 mm) 4 with an output of 1 W are provided on the heat spreader J at intervals of 2 mm on the heat spreader 1. It joined by the adhesive layer 5 of cream solder (refer the process 2 of FIG. 2). Then, it is cut into a shape of 3.9 mm × 3.9 mm at a cutting speed of 8 mm / s with a laser processing machine, subjected to ultrasonic cleaning in pure water, dried, and 120 LED chip assemblies 6 Was manufactured (see step 3 in FIG. 2).
得られたLEDチップ接合体は、1つのヒートスプレッダーの上面に4個のLEDチップが実装された構造となり、LEDチップ接合体のLEDチップの装着面の面積は、いずれもLEDチップの底面積の7.8倍であった。また、出力が4WとなるようにLEDチップに電圧を印可し、LEDチップの上面温度を測定したところ、70℃であった。 The obtained LED chip assembly has a structure in which four LED chips are mounted on the upper surface of one heat spreader, and the area of the LED chip mounting surface of the LED chip assembly is the bottom area of the LED chip. It was 7.8 times. Moreover, when a voltage was applied to the LED chip so that the output was 4 W and the upper surface temperature of the LED chip was measured, it was 70 ° C.
実施例31
<無機多孔体を用いたヒートスプレッダーK、LによるLEDチップ接合体>
窒化珪素粉末(平均粒子径1μm)2790g、イットリア粉末(平均粒子径1μm)150g、及び酸化マグネシウム粉末(平均粒子径1μm)60gの混合物を用いたこと以外は、実施例30と同様にして円柱体(直径55mm×110mm)を製造した。これを、0.9MPaの窒素加圧雰囲気下、温度1880℃で4時間焼成して焼結体を製造した後、マシニングセンターでダイヤモンド砥石を用いて、気孔率が13%の無機多孔体(直径52mm×100mm)を製造した。以下、ヒートスプレッダーIと同様な処理を行ってヒートスプレッダーKを、またヒートスプレッダーJと同様な処理を行ってヒートスプレッダーLを製造した。その結果、ヒートスプレッダーKの表面粗さ(Ra)は0.05μmであった。また、ヒートスプレッダーKを用いて製造されたLEDチップ接合体のLEDチップの上面温度は72℃であり、ヒートスプレッダーLを用いて製造されたそれは66℃であった。
Example 31
<LED chip assembly using heat spreaders K and L using an inorganic porous material>
Cylindrical body as in Example 30 except that a mixture of 2790 g of silicon nitride powder (average particle size 1 μm), 150 g of yttria powder (average particle size 1 μm), and 60 g of magnesium oxide powder (average particle size 1 μm) was used. (Diameter 55 mm × 110 mm) was produced. This was fired for 4 hours at a temperature of 1880 ° C. in a nitrogen-pressurized atmosphere of 0.9 MPa to produce a sintered body, and then an inorganic porous body having a porosity of 13% (diameter: 52 mm) using a diamond grindstone at a machining center. × 100 mm) was manufactured. Thereafter, the heat spreader I was manufactured by performing the same process as the heat spreader I, and the heat spreader L was manufactured by performing the same process as the heat spreader J. As a result, the heat spreader K had a surface roughness (Ra) of 0.05 μm. Moreover, the upper surface temperature of the LED chip of the LED chip assembly manufactured using the heat spreader K was 72 ° C., and that manufactured using the heat spreader L was 66 ° C.
実施例32
<無機粉末成形体を用いたヒートスプレッダーc、dによるLEDチップ接合体>
ダイヤモンド粉末A(Diamond Innovations社製、MBG-600、平均粒子径:120μm)7gと、ダイヤモンド粉末B(Diamond Innovations社製、MBG-600、平均粒子径:15μm)3gを、アルミナ製の乳鉢で10分間混合した後、外形寸法70mm×70mm×20mm(内径寸法:直径52.5mm×20mm)の筒状の黒鉛治具Xに、外形寸法が直径52.4mm×9mmの黒鉛治具Yを挿入した後、ダイヤモンドの混合粉末10gを充填し、更にダイヤモンドの混合粉末の上面に黒鉛治具Yを挿入して、気孔率が35%の無機粉末成形体を製造した。
Example 32
<LED chip assembly by heat spreader c, d using inorganic powder compact>
7 g of diamond powder A (Diamond Innovations, MBG-600, average particle size: 120 μm) and 3 g of diamond powder B (Diamond Innovations, MBG-600, average particle size: 15 μm) in an alumina mortar After mixing for a minute, a graphite jig Y having an outer diameter of 52.4 mm × 9 mm was inserted into a cylindrical graphite jig X having an outer dimension of 70 mm × 70 mm × 20 mm (inner diameter: diameter 52.5 mm × 20 mm). Thereafter, 10 g of diamond mixed powder was filled, and a graphite jig Y was further inserted on the upper surface of the diamond mixed powder to produce an inorganic powder molded body having a porosity of 35%.
この無機粉末成形体をヒートスプレッダーaの製造に準じて積層体となし含浸処理を施して金属含浸セラミックス材料(70mm×70mm×20mm)が筒状黒鉛治具で囲まれた複合体を製造した。これを、金属含浸セラミックス材料が露出するまで、両主面側(70mm×70mm)より、平面研削盤でダイヤモンド砥石を用いて研削加工を行い、板状体(70mm×70mm×1mm)に加工した。その後、ウォータージェット加工機で、円板(直径50.8mm×1mm)形状に外周加工を行い、ヒートスプレッダーcを製造した。この表面粗さ(Ra)は0.4μmであった。また、ヒートスプレッダーbと同様にしてめっき層とレジスト層を施してヒートスプレッダーdを製造した。 This inorganic powder molded body was made into a laminate in accordance with the manufacture of the heat spreader a and subjected to an impregnation treatment to produce a composite in which a metal-impregnated ceramic material (70 mm × 70 mm × 20 mm) was surrounded by a cylindrical graphite jig. This was ground into a plate-like body (70 mm × 70 mm × 1 mm) from both main surface sides (70 mm × 70 mm) using a diamond grindstone with a surface grinder until the metal-impregnated ceramic material was exposed. . Thereafter, the outer periphery was processed into a disc shape (diameter 50.8 mm × 1 mm) with a water jet processing machine, and the heat spreader c was manufactured. This surface roughness (Ra) was 0.4 μm. Further, a heat spreader d was manufactured by applying a plating layer and a resist layer in the same manner as the heat spreader b.
その結果、ヒートスプレッダーcの温度25℃の熱伝導率は500W/mKであった。また、ヒートスプレッダーcを用いて製造されたLEDチップ接合体のLEDチップの上面温度は66℃であり、ヒートスプレッダーdを用いて製造されたそれは58℃であった。 As a result, the heat conductivity of the heat spreader c at a temperature of 25 ° C. was 500 W / mK. Moreover, the upper surface temperature of the LED chip of the LED chip assembly manufactured using the heat spreader c was 66 ° C., and that manufactured using the heat spreader d was 58 ° C.
<無機多孔体にシリコンを含浸させたヒートスプレッダーM、NによるLEDチップ接合体>
(実施例33)
実施例1のヒートスプレッダーAの製造過程で製造された無機多孔体(外形寸法:直径52mm×高さ100mm 気孔率20%)を、マシニングセンターでダイヤモンド砥石を用い、外形寸法が直径52mm×20mmの円盤に加工した。この円盤と塊状のシリコンを、BN粉を塗布した黒鉛坩堝に入れ、電気炉内にセットした。炉内を真空引きし、1650℃で8時間保持して円盤にシリコンを含浸させた。室温まで冷却した後、円筒研削盤で余分なシリコンを除去して金属含浸セラミックス材料を製造し、実施例1と同様にして、温度25℃~150℃の線膨張係数と温度25℃での熱伝導率を測定したところ、線膨張係数は4.3×10-6/K、熱伝導率は210W/mKであった。
<LED chip assembly using heat spreaders M and N in which silicon is impregnated into an inorganic porous body>
(Example 33)
A disk having an outer dimension of 52 mm × 20 mm in diameter using an inorganic porous material (outer dimension: diameter 52 mm × height 100 mm, porosity 20%) manufactured in the manufacturing process of the heat spreader A of Example 1 at a machining center using a diamond grindstone. It was processed into. This disk and lump silicon were put in a graphite crucible coated with BN powder and set in an electric furnace. The furnace was evacuated and held at 1650 ° C. for 8 hours to impregnate the disc with silicon. After cooling to room temperature, excess silicon was removed with a cylindrical grinder to produce a metal-impregnated ceramic material. In the same manner as in Example 1, the linear expansion coefficient at a temperature of 25 ° C. to 150 ° C. and the heat at a temperature of 25 ° C. When the conductivity was measured, the linear expansion coefficient was 4.3 × 10 −6 / K, and the thermal conductivity was 210 W / mK.
以下、ヒートスプレッダーAと同様な処理を行ってヒートスプレッダーMを、またヒートスプレッダーBと同様な処理を行ってヒートスプレッダーNを製造した。その結果、ヒートスプレッダーMの表面粗さ(Ra)は0.08μmであった。また、ヒートスプレッダーMを用いて製造されたLEDチップ接合体のLEDチップの上面温度は69℃であり、ヒートスプレッダーNを用いて製造されたそれは61℃であった。 Hereinafter, the heat spreader M was manufactured by performing the same process as the heat spreader A, and the heat spreader N was manufactured by performing the same process as the heat spreader B. As a result, the heat spreader M had a surface roughness (Ra) of 0.08 μm. Moreover, the upper surface temperature of the LED chip of the LED chip assembly manufactured using the heat spreader M was 69 ° C., and that manufactured using the heat spreader N was 61 ° C.
最後に実施例・比較例の条件の要点を表4にまとめて示す。 Finally, the main points of the conditions of Examples and Comparative Examples are summarized in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

Claims (7)

  1. 板厚が0.1~2mm、表面粗さ(Ra)が0.5μm以下である金属含浸セラミックス基板又は金属基板に、LEDチップの一個又は二個以上を装着した後、LEDチップを含みLEDチップの底面積の2倍以上の広さに、上記金属含浸セラミックス基板又は金属基板を切断することを特徴とするLEDチップ接合体の製造方法。 After mounting one or more LED chips on a metal-impregnated ceramic substrate or metal substrate having a plate thickness of 0.1 to 2 mm and a surface roughness (Ra) of 0.5 μm or less, an LED chip including an LED chip A method for producing an LED chip assembly, comprising cutting the metal-impregnated ceramic substrate or the metal substrate to have a width of at least twice the bottom area of the substrate.
  2. 金属含浸セラミックス基板が、炭化珪素、窒化アルミニウム、窒化珪素、ダイヤモンド及び黒鉛から選ばれた少なくとも1種からなる、気孔率が10~50体積%の多孔体又は粉末成形体に、溶湯鍛造法にてアルミニウム又はアルミニウム合金を含浸させるか、又は溶融含浸法にてシリコン又はシリコン合金を含浸させたものであることを特徴とする請求項1記載のLEDチップ接合体の製造方法。 A metal-impregnated ceramic substrate is made of at least one selected from silicon carbide, aluminum nitride, silicon nitride, diamond and graphite, and a porous or powder molded body having a porosity of 10 to 50% by volume by a melt forging method. 2. The method for producing an LED chip joined body according to claim 1, wherein the LED chip joined body is impregnated with aluminum or an aluminum alloy, or impregnated with silicon or a silicon alloy by a melt impregnation method.
  3. 金属基板が、銅(Cu)、ニッケル(Ni)、モリブデン(Mo)、タングステン(W)、コバルト(Co)及び鉄(Fe)から選ばれた金属板、上記金属成分の少なくとも1種を含む合金板、又は上記金属板及び上記合金板から選ばれた2種以上で構成された積層板であることを特徴とする請求項1記載のLEDチップ接合体の製造方法。 A metal plate, a metal plate selected from copper (Cu), nickel (Ni), molybdenum (Mo), tungsten (W), cobalt (Co) and iron (Fe), an alloy containing at least one of the above metal components 2. The method of manufacturing an LED chip assembly according to claim 1, wherein the LED chip assembly is a laminated plate composed of two or more selected from a plate or the metal plate and the alloy plate.
  4. 金属含浸セラミックス基板又は金属基板が、その表面に0.5~20μmの厚みのCo、Pd、Cu、Ag、Au、Pt及びSnから選ばれた少なくとも1種の金属層を有していることを特徴とする請求項1~3のいずれかに記載のLEDチップ接合体の製造方法。 The metal-impregnated ceramic substrate or metal substrate has at least one metal layer selected from Co, Pd, Cu, Ag, Au, Pt and Sn having a thickness of 0.5 to 20 μm on the surface thereof. The method for producing an LED chip joined body according to any one of claims 1 to 3.
  5. LEDチップが、出力0.5W以上の非絶縁構造であることを特徴とする請求項1~4のいずれかに記載のLEDチップ接合体の製造方法。 5. The method of manufacturing an LED chip assembly according to claim 1, wherein the LED chip has a non-insulating structure with an output of 0.5 W or more.
  6. 切断が、ダイシング、レーザー加工、ウォータージェット加工及び放電加工から選ばれた少なくとも1種により行うことを特徴とする請求項1~5のいずれかに記載のLEDチップ接合体の製造方法。 6. The method for producing an LED chip joined body according to claim 1, wherein the cutting is performed by at least one selected from dicing, laser processing, water jet processing, and electric discharge processing.
  7. LEDチップを有する金属含浸セラミックス基板面又は金属基板面のLEDチップ装着面の面積が、LEDチップとの接着面積の2倍~100倍であることを特徴とする請求項1~6のいずれかに記載のLEDチップ接合体の製造方法。 7. The metal-impregnated ceramic substrate surface having an LED chip or the area of the LED chip mounting surface of the metal substrate surface is 2 to 100 times the adhesion area with the LED chip. The manufacturing method of LED chip conjugate | zygote of description.
PCT/JP2010/062076 2009-07-17 2010-07-16 Manufacturing method of led chip assembly WO2011007872A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011522870A JP5759376B2 (en) 2009-07-17 2010-07-16 Manufacturing method of LED chip assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-168958 2009-07-17
JP2009168958 2009-07-17

Publications (1)

Publication Number Publication Date
WO2011007872A1 true WO2011007872A1 (en) 2011-01-20

Family

ID=43449482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062076 WO2011007872A1 (en) 2009-07-17 2010-07-16 Manufacturing method of led chip assembly

Country Status (3)

Country Link
JP (1) JP5759376B2 (en)
TW (1) TWI491082B (en)
WO (1) WO2011007872A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105679914A (en) * 2014-11-21 2016-06-15 程君 Manufacturing method for LED composite glass substrate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003101123A (en) * 2001-09-20 2003-04-04 Kyocera Corp Package for storage of optical semiconductor element
JP2003115612A (en) * 1994-12-06 2003-04-18 Sharp Corp Light emitting device
JP2005050838A (en) * 2003-07-29 2005-02-24 Citizen Electronics Co Ltd Surface mounted led and light emitting device employing it
JP2007005709A (en) * 2005-06-27 2007-01-11 Asahi Glass Co Ltd Low-heat-resistance wiring board for led lighting device, and led lighting device
JP2007142479A (en) * 2003-03-14 2007-06-07 Sumitomo Electric Ind Ltd Semiconductor device
JP2007250979A (en) * 2006-03-17 2007-09-27 Zeniya Sangyo Kk Semiconductor package

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1605523A4 (en) * 2003-03-14 2012-04-04 Sumitomo Electric Industries Semiconductor device
JP2008091831A (en) * 2006-10-05 2008-04-17 Toshiba Corp Submount substrate for led, manufacturing method thereof, and light emitting device using the substrate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003115612A (en) * 1994-12-06 2003-04-18 Sharp Corp Light emitting device
JP2003101123A (en) * 2001-09-20 2003-04-04 Kyocera Corp Package for storage of optical semiconductor element
JP2007142479A (en) * 2003-03-14 2007-06-07 Sumitomo Electric Ind Ltd Semiconductor device
JP2005050838A (en) * 2003-07-29 2005-02-24 Citizen Electronics Co Ltd Surface mounted led and light emitting device employing it
JP2007005709A (en) * 2005-06-27 2007-01-11 Asahi Glass Co Ltd Low-heat-resistance wiring board for led lighting device, and led lighting device
JP2007250979A (en) * 2006-03-17 2007-09-27 Zeniya Sangyo Kk Semiconductor package

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105679914A (en) * 2014-11-21 2016-06-15 程君 Manufacturing method for LED composite glass substrate
CN105679914B (en) * 2014-11-21 2018-02-23 环视先进数字显示无锡有限公司 A kind of manufacture method of LED compound glasses substrate

Also Published As

Publication number Publication date
TW201115800A (en) 2011-05-01
JP5759376B2 (en) 2015-08-05
TWI491082B (en) 2015-07-01
JPWO2011007872A1 (en) 2012-12-27

Similar Documents

Publication Publication Date Title
US8546842B2 (en) LED chip assembly, LED package, and manufacturing method of LED package
TWI526261B (en) Composite material substrate for led luminescent element, method for manufacturing the same and led luminescent element
JP5789512B2 (en) LED mounting wafer, manufacturing method thereof, and LED mounting structure using the wafer
EP2397455B1 (en) Substrate comprising aluminum/graphite composite, heat dissipation part comprising same, and led luminescent member
JP2011139000A (en) Power module structure and method of manufacturing the same
JP2010278171A (en) Power semiconductor and manufacturing method of the same
JP5759376B2 (en) Manufacturing method of LED chip assembly
JP5296638B2 (en) LED mounting structure, manufacturing method thereof, and LED mounting substrate
JP5681035B2 (en) LED light source package
JP2010109081A (en) Metal matrix composite substrate for led light emitting device, and led light emitting device using the same
JP2012038948A (en) Metal matrix composite substrate for led light emitting device, method for manufacturing the same, and led light emitting device
JP5881280B2 (en) Manufacturing method of LED light emitting element holding substrate and manufacturing method of LED light emitting element
JP2013012623A (en) Led light-emitting element holding substrate and manufacturing method thereof and led light-emitting element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10799930

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011522870

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10799930

Country of ref document: EP

Kind code of ref document: A1