JP2007005709A - Low-heat-resistance wiring board for led lighting device, and led lighting device - Google Patents

Low-heat-resistance wiring board for led lighting device, and led lighting device Download PDF

Info

Publication number
JP2007005709A
JP2007005709A JP2005186743A JP2005186743A JP2007005709A JP 2007005709 A JP2007005709 A JP 2007005709A JP 2005186743 A JP2005186743 A JP 2005186743A JP 2005186743 A JP2005186743 A JP 2005186743A JP 2007005709 A JP2007005709 A JP 2007005709A
Authority
JP
Japan
Prior art keywords
lighting device
led lighting
composite material
wiring board
thermal resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005186743A
Other languages
Japanese (ja)
Inventor
Naoshi Irisawa
直志 入沢
Hidetoshi Matsumoto
英俊 松本
Masanori Kawaguchi
将徳 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2005186743A priority Critical patent/JP2007005709A/en
Publication of JP2007005709A publication Critical patent/JP2007005709A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-heat-resistance wiring board for an LED lighting device which has superior heat dissipation characteristics and reliability. <P>SOLUTION: The low-heat-resistance wiring board for the LED lighting device has an insulating layer 2, and desired wiring patterns 3a and 3b laminated on a composite material substrate 1 made of a composite material obtained by dispersing a specified amount of silicon carbide particles in aluminum alloy. An LED element 5 is fixed on a sold pattern 3a across a conductive adhesive layer 4, electrically connected to the solid pattern 3a, and thermally connected to the composite material substrate 1. An upper electrode of the LED element 5 is connected to a land wiring pattern 3b by a metal thin wire 6. The low-heat-resistance wiring board for the LED lighting device is large in heat conductivity and small in difference in thermal expansion from the LED element and wiring patterns, so an LED lighting device having high reliability is obtained and LED elements can be mounted to high density. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、LED照明装置用の低熱抵抗配線基板に関する。   The present invention relates to a low thermal resistance wiring board for an LED lighting device.

LED素子は、省電力、長寿命、小型であることから、表示灯などの光源として利用されている。さらに、近年、半導体技術の発達により輝度の高いLED素子が比較的安価に製造されるようになったことから、蛍光ランプや白熱電球に替わる光源として検討されている。この際、1個のLED素子ではその光束が小さいため、白熱電球、蛍光ランプと同程度の光束を得るためには、基板上に複数のLED素子を格子状に配置して大きな照度を得る方式が多用されている。しかし、LED素子は発光時に発熱を伴うため、このような方式のLED照明装置では、複数のLED素子の発熱による過度な温度上昇がLED素子の輝度の低下、波長のずれ、短寿命化等を招く。そのため、放熱性の高い金属からなるベース金属上にLED素子のベアチップを実装して、熱を金属製の基板等に拡散する構造のLED照明装置が提案されている。   The LED element is used as a light source such as an indicator lamp because of its power saving, long life, and small size. Furthermore, in recent years, high-luminance LED elements have been manufactured at a relatively low cost due to the development of semiconductor technology, and thus are being considered as light sources to replace fluorescent lamps and incandescent bulbs. At this time, since the luminous flux of one LED element is small, in order to obtain a luminous flux equivalent to that of an incandescent bulb and a fluorescent lamp, a method of obtaining a large illuminance by arranging a plurality of LED elements on a substrate in a grid pattern Is frequently used. However, since LED elements generate heat during light emission, in such a type of LED lighting device, excessive temperature rise due to heat generation of a plurality of LED elements reduces the brightness of the LED elements, shifts in wavelength, shortens the lifetime, etc. Invite. Therefore, an LED lighting device having a structure in which a bare chip of an LED element is mounted on a base metal made of a metal having a high heat dissipation property to diffuse heat to a metal substrate or the like has been proposed.

例えば、特許文献1では、アルミニウムなどのベース基板にザグリ加工による凹部が複数個形成されている。LED素子は各凹部内に収容され、LED素子の下面側に配置された電極が凹部の底面に導電性接着剤により固定され、ベース金属と電気的に接続されている。さらにLED素子の上面側に配置された電極は、ベース金属の凹部以外の表面に設けられ、金属ベースとは絶縁層により絶縁された配線パターンに、金属細線により電気的に接続されている。この構造においては、凹部の壁面は光反射面として利用される。この構成は放熱性に優れているが、ベース金属に凹部を設けるための加工コストが大きく、また、絶縁層や配線パターン形成によるLED照明装置が複雑になるという問題があった。   For example, in Patent Document 1, a plurality of recesses formed by counterboring are formed on a base substrate such as aluminum. The LED element is accommodated in each recess, and an electrode disposed on the lower surface side of the LED element is fixed to the bottom surface of the recess with a conductive adhesive and is electrically connected to the base metal. Furthermore, the electrode arranged on the upper surface side of the LED element is provided on the surface other than the concave portion of the base metal, and is electrically connected to the wiring pattern insulated from the metal base by an insulating layer by a thin metal wire. In this structure, the wall surface of the recess is used as a light reflecting surface. Although this configuration is excellent in heat dissipation, there is a problem that the processing cost for providing the concave portion in the base metal is high, and the LED lighting device by forming the insulating layer and the wiring pattern becomes complicated.

また、特許文献2では、アルミニウムなどのベース金属からなる金属基板上に、絶縁層により金属基板と絶縁された2つの配線パターンが設けられている。LED素子は、導電性接着剤を用いて、一方の配線パターン上に固定されるとともに、下面側に配置された電極が電気的に接続される。LED素子の上面側に配置された電極は、金属細線によりもう一方の電気的に接続される。各LED素子の周囲には、ベース金属と一体化された反射板が取り付けられる。この構造例では、市販されている金属ベース基板をほぼそのまま適用できるのでLED素子の実装が容易である。さらに、LED素子としてフリップチップ型LED素子を用いることにより高密度実装が可能となり、その場合金属細線がないことにより光透過性が向上するという特長がある。しかしながら、金属ベース基板上の絶縁層として用いられる、アルミナ粉などを分散させたエポキシ樹脂は、例えば特許文献3に示されているように低熱抵抗率が1〜10W/(m・K)と小さいため、LED素子で発生した熱を放熱させるため、LED素子裏面から金属ベース基板裏面まで伝達する経路の中で、絶縁層による熱抵抗が大きく、放熱性の面で問題があった。エポキシ樹脂からなる絶縁層を薄くすると熱抵抗を下げることができるが、微細なアルミナ粉の均一分散が困難なため、薄層化には限界があった。   In Patent Document 2, two wiring patterns insulated from a metal substrate by an insulating layer are provided on a metal substrate made of a base metal such as aluminum. The LED element is fixed on one wiring pattern using a conductive adhesive, and an electrode disposed on the lower surface side is electrically connected. The electrode arranged on the upper surface side of the LED element is electrically connected to the other by a fine metal wire. A reflector integrated with the base metal is attached around each LED element. In this structural example, since a commercially available metal base substrate can be applied almost as it is, mounting of the LED element is easy. Further, by using a flip-chip type LED element as the LED element, high-density mounting is possible. In that case, there is a feature that light transmittance is improved due to the absence of a thin metal wire. However, an epoxy resin in which alumina powder or the like used as an insulating layer on a metal base substrate is dispersed has a low thermal resistivity as low as 1 to 10 W / (m · K) as shown in Patent Document 3, for example. Therefore, in order to dissipate the heat generated in the LED element, the thermal resistance due to the insulating layer is large in the path for transmitting from the back surface of the LED element to the back surface of the metal base substrate, and there is a problem in terms of heat dissipation. If the insulating layer made of an epoxy resin is thinned, the thermal resistance can be lowered. However, since uniform dispersion of fine alumina powder is difficult, there is a limit to the thinning.

一方、特許文献4ではLED素子を搭載する基板としてダイヤモンドからなる基板を用いるとともに、LED素子上面からも熱拡散させるためにダイヤモンドライクカーボンからなる被覆を施す構成が開示されている。   On the other hand, Patent Document 4 discloses a configuration in which a substrate made of diamond is used as a substrate on which an LED element is mounted, and a coating made of diamond-like carbon is applied in order to thermally diffuse also from the upper surface of the LED element.

実開昭64−13167号公報Japanese Utility Model Publication No. 64-13167 特開昭62−149180号公報JP-A-62-149180 特開2004−39691号公報JP 2004-39691 A 特開2002−329896号公報JP 2002-329896 A

本発明の目的は、従来技術が有する前述の欠点を解消することにある。すなわち、本発明は、LED素子から発生した熱を、放熱面とされる低熱抵抗配線基板の裏面まで低熱抵抗で導いて優れた放熱特性を有するとともに、配線パターンとの熱膨張差が小さく抑えられて信頼性が高いLED照明装置を実現する、高強度、高剛性な、LED照明装置用の低熱抵抗配線基板を低コストで提供する。   The object of the present invention is to eliminate the aforementioned drawbacks of the prior art. That is, the present invention has excellent heat dissipation characteristics by guiding the heat generated from the LED element to the back surface of the low thermal resistance wiring board, which is the heat dissipation surface, with low heat resistance, and the thermal expansion difference from the wiring pattern can be suppressed small. A high-strength, high-rigidity, low thermal resistance wiring board for an LED lighting device that realizes a highly reliable LED lighting device is provided at low cost.

本発明は、前記の目的を達成すべくなされたものである。すなわち、本発明は、LED照明装置用の低熱抵抗配線基板であって、前記LED照明装置用の低熱抵抗配線基板は、複合材料基板と、前記基板上に設けられた絶縁層と、前記絶縁層上に設けられた配線パターンと、を備えていて、前記複合材料基板は、アルミニウムを主成分とするマトリックス中に炭化珪素粒子が分散された複合材料からなる複合材料基板であり、前記配線パターンは、金属導体層からなり、前記絶縁層は、前記基板と前記配線パターンとを電気的に絶縁させ、前記複合材料におけるマトリックス中の炭化珪素粒子の割合が、5〜45体積%であることを特徴とするLED照明装置用の低熱抵抗配線基板を提供する。   The present invention has been made to achieve the above object. That is, the present invention is a low thermal resistance wiring board for an LED lighting device, and the low thermal resistance wiring board for the LED lighting device includes a composite material substrate, an insulating layer provided on the substrate, and the insulating layer. The composite material substrate is a composite material substrate made of a composite material in which silicon carbide particles are dispersed in a matrix mainly composed of aluminum, and the wiring pattern is And the insulating layer electrically insulates the substrate and the wiring pattern, and the ratio of silicon carbide particles in the matrix of the composite material is 5 to 45% by volume. A low thermal resistance wiring board for an LED lighting device is provided.

この場合、前記炭化珪素粉末の粒子径は、1〜100μmであることが好ましい。   In this case, the particle diameter of the silicon carbide powder is preferably 1 to 100 μm.

前記絶縁層は、比抵抗が1010Ω・cm以上の無機材料からなる厚さ1〜20μmの層であることが好ましく、また、ダイヤモンドライクカーボン、あるいは二酸化ケイ素からなることが好ましい。 The insulating layer is preferably a layer having a thickness of 1 to 20 μm made of an inorganic material having a specific resistance of 10 10 Ω · cm or more, and is preferably made of diamond-like carbon or silicon dioxide.

本発明により、良好な熱伝導率および低い熱抵抗を有し、LED素子との熱膨張差が小さく、高強度、高剛性の、LED照明装置用の低熱抵抗配線基板が実現される。本発明のLED照明装置用の低熱抵抗配線基板を用いると、低熱抵抗配線基板の一方の面に実装されたLED素子で発生した熱を、速やかに他方の面に拡散させることができる。また、本発明のLED照明装置用の低熱抵抗配線基板は、配線パターンとの熱膨張差が小さく抑えられているため、信頼性が高いLED照明装置が実現される。また、加工が容易で高強度、高剛性なので、軽量、高剛性な低熱抵抗配線基板が低コストで実現される。   According to the present invention, a low thermal resistance wiring board for an LED lighting device is realized that has good thermal conductivity and low thermal resistance, has a small difference in thermal expansion from the LED element, and has high strength and high rigidity. When the low thermal resistance wiring board for the LED lighting device of the present invention is used, the heat generated by the LED element mounted on one surface of the low thermal resistance wiring substrate can be quickly diffused to the other surface. Moreover, since the low thermal resistance wiring board for the LED lighting device of the present invention has a small difference in thermal expansion from the wiring pattern, a highly reliable LED lighting device is realized. In addition, since it is easy to process and has high strength and high rigidity, a lightweight and high rigidity low thermal resistance wiring board can be realized at low cost.

本発明のLED照明装置用の低熱抵抗配線基板は、アルミニウムを主成分とするマトリックス中に炭化珪素粒子が分散された複合材料(以下複合材料という)からなる基板(以下複合材料基板という)と、前記複合材料基板の一方の面上に設けられた絶縁層と、前記絶縁層上に設けられた配線パターンと、を備えている。   A low thermal resistance wiring board for an LED lighting device of the present invention includes a substrate (hereinafter referred to as a composite material) made of a composite material (hereinafter referred to as a composite material) in which silicon carbide particles are dispersed in a matrix mainly composed of aluminum, and An insulating layer provided on one surface of the composite material substrate; and a wiring pattern provided on the insulating layer.

前記複合材料は、アルミニウムを主成分とするマトリックスをもつため、熱伝導率が大きく、軽量である。また、マトリックス中に炭化珪素粒子を分散させることにより、熱膨張率をアルミニウムより小さくできるとともに、機械的強度および剛性が向上される。すなわち、前記複合材料を用いることにより、薄い板厚、すなわち軽量で、高強度、高剛性で、高熱伝導性かつ低熱膨張な基板が実現される。   Since the composite material has a matrix mainly composed of aluminum, it has a high thermal conductivity and is lightweight. Further, by dispersing the silicon carbide particles in the matrix, the coefficient of thermal expansion can be made smaller than that of aluminum, and the mechanical strength and rigidity are improved. That is, by using the composite material, a thin plate thickness, that is, a lightweight, high strength, high rigidity, high thermal conductivity, and low thermal expansion substrate is realized.

前記複合材料基板は、種々の方法で製造することが可能であり、そのような製造方法として、例えば、炭化珪素粒子を焼結して作製した充填率が70体積%程度の多孔質体に、溶融したアルミニウムもしくはアルミニウム合金を加圧し浸透させる加圧含浸法、粉末冶金法が挙げられるが、アルミニウムを主成分とする溶湯中に炭化珪素粉末を攪拌により混合・分散させ、冷却、凝固させる製造方法(以下、溶湯攪拌法という)を用いると、下記の理由により好ましい。すなわち、溶湯攪拌法により得られた凝固物は、圧延などの塑性加工性が良好なので、まずスラブを鋳造し、これを圧延により塑性加工して、所望の形状とすることができる。そのため、厚さ2mm以下と薄くかつ大面積の基板を容易に、また低コストで製造することができる。もちろん、スラブを経由せず直接所望の厚みの基板をロールキャスト法により鋳造して得ることもできる。   The composite material substrate can be manufactured by various methods. As such a manufacturing method, for example, a porous body having a filling rate of approximately 70% by volume prepared by sintering silicon carbide particles, Examples include a pressure impregnation method and a powder metallurgy method in which molten aluminum or an aluminum alloy is pressurized and permeated. A manufacturing method in which silicon carbide powder is mixed and dispersed by stirring in a molten metal mainly composed of aluminum, and then cooled and solidified. It is preferable to use (hereinafter referred to as a molten metal stirring method) for the following reason. That is, since the solidified material obtained by the molten metal stirring method has good plastic workability such as rolling, a slab is first cast, and this can be plastically processed by rolling to obtain a desired shape. Therefore, it is possible to easily and inexpensively manufacture a substrate having a large area with a thickness of 2 mm or less. Of course, a substrate having a desired thickness can be directly cast by a roll casting method without passing through a slab.

炭化珪素粒子の粒子径は、1から100μmとすることが好ましい。1μm未満では溶湯の粘度が上昇するおそれがあり、また、100μmを超えると炭化珪素粒子が溶湯内で沈降して複合材料の均一性が損なわれ好ましくない。また、粒子に代えて、短繊維、ウィスカーを用いることも可能であるが、コストの点から粒子を用いることが好ましい。粒子としては、アチソン法により合成した塊状の炭化珪素を粉砕して得られる炭化珪素粒子を用いると、工業的に低コストで入手が容易であり、所望の特性が達成されるので、好ましく例示されるが、他の方法による粒子を用いてもよい。   The particle diameter of the silicon carbide particles is preferably 1 to 100 μm. If it is less than 1 μm, the viscosity of the molten metal may increase. If it exceeds 100 μm, silicon carbide particles settle in the molten metal and the uniformity of the composite material is impaired, which is not preferable. In addition, it is possible to use short fibers and whiskers instead of the particles, but it is preferable to use particles from the viewpoint of cost. As the particles, use of silicon carbide particles obtained by pulverizing massive silicon carbide synthesized by the Atchison method is preferable because it is easy to obtain industrially at low cost and achieves desired characteristics. However, particles obtained by other methods may be used.

前記炭化珪素粒子は、複合材料基板に対して5〜45体積%含有される。アルミニウムの熱膨張率は230×10−7/℃で、LED素子(サファイヤ基板上にLEDチップが搭載されている場合は、80×10−7/℃)や金属導体層からなる配線パターンと熱膨張差が大きい。炭化珪素粒子の含有量を5体積%以上とすると、複合材料基板の熱膨張率を低くして、加熱−放冷の繰り返しによる配線パターンと基板との剥離を低減させるとともに、機械的強度および剛性を向上させることができる。また、LED素子との熱膨張差も低減される。 The silicon carbide particles are contained in an amount of 5 to 45% by volume with respect to the composite material substrate. The thermal expansion coefficient of aluminum is 230 × 10 −7 / ° C., and the wiring pattern and heat of the LED element (80 × 10 −7 / ° C. when an LED chip is mounted on a sapphire substrate) or a metal conductor layer. Large expansion difference. When the content of silicon carbide particles is 5% by volume or more, the thermal expansion coefficient of the composite material substrate is lowered to reduce the peeling between the wiring pattern and the substrate due to repeated heating and cooling, and the mechanical strength and rigidity. Can be improved. Moreover, the difference in thermal expansion from the LED element is also reduced.

また、45体積%以下とすると、充分低い熱膨張率が得られるとともに、溶湯攪拌法により製造するときに、炭化珪素粒子を混合したアルミニウムを主成分とする溶湯の粘度が低く保たれるので均一な混合が容易で炭化珪素粒子の偏在が生じ難くなり、また、凝固させたスラブの組成加工もおこない易くなり、製造が容易となって好ましい。また、アルミニウムと同等の高い熱伝導率(160〜200W/(m・K))を維持され、熱抵抗を低く保つことができる。しかしながら、45体積%超含有させることも可能であって、その場合、含有量の増加に伴ってさらに低い熱膨張率が得られる。   Further, when it is 45% by volume or less, a sufficiently low coefficient of thermal expansion can be obtained, and the viscosity of the molten metal mainly composed of aluminum mixed with silicon carbide particles can be kept low when manufactured by the molten metal stirring method. It is easy to mix easily and uneven distribution of silicon carbide particles is difficult to occur, and composition processing of the solidified slab is also easily performed, which facilitates manufacture and is preferable. Moreover, the high thermal conductivity (160-200 W / (m * K)) equivalent to aluminum is maintained, and heat resistance can be kept low. However, it is possible to contain more than 45% by volume, and in that case, a lower thermal expansion coefficient can be obtained as the content increases.

金属導体層からなる前記配線パターンは、銅、銀、金、ニッケルからなる群から選ばれる1種を主成分とする金属を用いて形成されることが好ましい。前記複合材料基板の熱膨張率は、前記炭化珪素粒子の含有量によって100〜200×10−7/℃の間で調整することが可能で、炭化珪素粒子の含有量を10〜30体積%とすると、前記複合材料基板と配線パターンとの熱膨張差を実質的に無くすことができて、配線パターンと配線基板との接合の信頼性が向上され、より好ましい。 The wiring pattern made of a metal conductor layer is preferably formed using a metal whose main component is one selected from the group consisting of copper, silver, gold, and nickel. The coefficient of thermal expansion of the composite material substrate can be adjusted between 100 and 200 × 10 −7 / ° C. depending on the content of the silicon carbide particles, and the content of silicon carbide particles is 10 to 30% by volume. Then, the difference in thermal expansion between the composite material substrate and the wiring pattern can be substantially eliminated, and the reliability of bonding between the wiring pattern and the wiring substrate is improved, which is more preferable.

アルミニウムを主成分とするマトリックスは、熱伝導率が大きく軽量であることから、アルミニウムが好ましく用いられるが、本発明の目的を損なわない範囲で、合金化してもよい。合金化により、高い熱伝導率と軽量性を保ったまま、マトリックスの耐食性を向上させたり、前記溶湯の粘度を下げたりすると、LED照明装置用の低熱抵抗配線基板の信頼性が向上したり、溶湯中に炭化珪素粒子を均一に混合させ易くなり、均質化による信頼性の向上や製造の容易化が実現されたりするので、好ましい。これらの目的で合金化された既知のアルミニウム合金を用いることが好ましく、そのような合金の例としてAC4C、AC4A、ADC3が挙げられるが、これに限定されない。   The matrix mainly composed of aluminum has a high thermal conductivity and is lightweight, and therefore aluminum is preferably used. However, the matrix may be alloyed as long as the object of the present invention is not impaired. By improving the corrosion resistance of the matrix while lowering the viscosity of the molten metal while maintaining high thermal conductivity and light weight by alloying, the reliability of the low thermal resistance wiring board for LED lighting devices is improved, Since it becomes easy to mix silicon carbide particles uniformly in a molten metal and the improvement of the reliability by homogenization and the facilitation of manufacture are implement | achieved, it is preferable. It is preferable to use known aluminum alloys alloyed for these purposes, and examples of such alloys include, but are not limited to, AC4C, AC4A, ADC3.

本発明の、前記複合材料からなる板状の複合材料基板は、その表面に、絶縁層と配線パターンとを備えている。絶縁層は、電気抵抗率が1010Ω・cm以上と高く、薄い厚さで大きい絶縁耐圧が得られ、前記複合材料基板および前記配線パターンとの密着性に優れていればよく、厚さ1〜20μmの無機材料からなる層が好ましく用いられる。無機材料からなる絶縁膜を用いると、必要な絶縁耐圧が薄い膜厚で得られるため、絶縁膜による熱抵抗を小さく抑えることができる。絶縁層に用いられる無機材料としては、ダイヤモンドライクカーボン(以下、DLCという)や金属酸化物が好ましく例示される。 The plate-shaped composite material substrate made of the composite material according to the present invention includes an insulating layer and a wiring pattern on the surface thereof. The insulating layer has a high electric resistivity of 10 10 Ω · cm or more, can obtain a large withstand voltage with a small thickness, and has excellent adhesion to the composite material substrate and the wiring pattern. A layer made of an inorganic material of ˜20 μm is preferably used. When an insulating film made of an inorganic material is used, a required withstand voltage can be obtained with a thin film thickness, so that the thermal resistance due to the insulating film can be reduced. As the inorganic material used for the insulating layer, diamond-like carbon (hereinafter referred to as DLC) and metal oxide are preferably exemplified.

DLCからなる層(以下DLC層)は、高硬度で摩擦係数が低く表面が滑らかで、化学的にも不活性なため、各種部材に摺動特性や表面保護機能などを付与すべく広く用いられているが、熱伝導率が30W/(m・K)以上と大きく、また、薄い膜厚で、緻密で抵抗率が1012Ω・cm以上の絶縁性の優れた膜を得られるため、本発明のLED照明装置用の低熱抵抗配線基板の絶縁層として、好ましく用いることができる。 A layer made of DLC (hereinafter referred to as DLC layer) is widely used to impart sliding characteristics and surface protection functions to various members because of its high hardness, low coefficient of friction, smooth surface and chemical inertness. However, since the thermal conductivity is as high as 30 W / (m · K) or more, and a thin film with a high density and a resistivity of 10 12 Ω · cm or more can be obtained, It can be preferably used as the insulating layer of the low thermal resistance wiring board for the LED lighting device of the invention.

DLC層は、例えば、プラズマCVD法またはイオン蒸着法により200℃以下と低い成膜温度での形成が可能で、アルミニウムと炭化珪素を主成分とする複合材料基板にも、その特性を損なうことなく容易に形成することができる。プラズマCVD法を用いる場合は、対向する二つの電極の間に高周波電力を加えて発生させたグロー放電により、電極間に導入したメタン(CH)などの原料ガスを分解させ、カソード電極にセットした複合材料基板上にDLC層を堆積させる。また、イオン化蒸着法ではフィラメントを加熱して発生した熱電子を利用して容器内に導入したベンゼン(C)ガスを分解・イオン化させ、基板にバイアス電圧を加えてイオン化した粒子を基板表面に堆積させDLC層を得る。原料ガスの種類や濃度、基板温度、バイアス電圧等の、DLC層の堆積条件は、電気抵抗率が1010Ω・cm以上と高く、熱伝導率が20W/(m・K)以上と高いDLC層が得られるように選ばれる。DLC層の厚さは、絶縁性が確保できる範囲内で薄くすることが望ましく、通常1から20μm、より好ましくは2から10μmとされる。DLC層の厚さが1μm未満ではLED素子と複合材料基板が導通するおそれがあり、20μm超では、DLC層形成のコストが嵩むおそれがある。また、ピンホール等のDLC層の欠点の影響を低減するために2μm以上とすることが好ましく、成膜コストの下げるためには、10μm以下とすることが好ましい。 The DLC layer can be formed at a film forming temperature as low as 200 ° C. or less by, for example, a plasma CVD method or an ion deposition method, and the composite material substrate mainly composed of aluminum and silicon carbide does not impair the characteristics. It can be formed easily. When using the plasma CVD method, a raw gas such as methane (CH 4 ) introduced between the electrodes is decomposed by glow discharge generated by applying high-frequency power between two opposing electrodes, and set to the cathode electrode. A DLC layer is deposited on the composite material substrate. In the ionization deposition method, benzene (C 6 H 6 ) gas introduced into the container is decomposed and ionized using the thermoelectrons generated by heating the filament, and a bias voltage is applied to the substrate to form ionized particles. Deposit on the surface to obtain a DLC layer. The deposition conditions for the DLC layer, such as the type and concentration of the source gas, the substrate temperature, and the bias voltage, are as high as 10 10 Ω · cm or higher, and as high as 20 W / (m · K) or higher. It is chosen so that a layer is obtained. The thickness of the DLC layer is desirably thin as long as insulation can be ensured, and is usually 1 to 20 μm, more preferably 2 to 10 μm. If the thickness of the DLC layer is less than 1 μm, the LED element and the composite material substrate may be electrically connected, and if it exceeds 20 μm, the cost for forming the DLC layer may increase. Further, the thickness is preferably 2 μm or more in order to reduce the influence of the defects of the DLC layer such as pinholes, and is preferably 10 μm or less in order to reduce the film formation cost.

本発明における絶縁層には、金属酸化物からなる層、また、窒化物あるいは酸窒化物からなる層も好ましく用いることができる。金属酸化物からなる層としては、酸化ケイ素、酸化アルミニウム、からなる層が例示されるが、これらに限定されない。窒化物あるいは酸窒化物からなる層としては、窒化珪素、窒化アルミニウム、酸窒化珪素、酸窒化アルミニウム、酸窒化珪素−アルミニウム(SiAlON)が例示されるが、これらに限定されない。これらの絶縁膜は、種々の成膜法によって形成することができるが、スパッタリング法を用いると、緻密で絶縁耐圧が大きな膜の形成が容易であり、薄い膜厚で必要な絶縁耐圧が得られるので、LED素子から配線基板裏面までの熱抵抗を小さく抑えることができて好ましい。絶縁層の膜厚は、必要な絶縁耐圧に応じて適切な厚さが選ばれる。例えばスパッタリング法で形成した二酸化ケイ素膜を用いる場合は、膜厚5μmで1kV程度の絶縁耐圧が得られる。   As the insulating layer in the present invention, a layer made of a metal oxide, or a layer made of nitride or oxynitride can also be preferably used. Examples of the layer made of metal oxide include, but are not limited to, a layer made of silicon oxide and aluminum oxide. Examples of the layer made of nitride or oxynitride include, but are not limited to, silicon nitride, aluminum nitride, silicon oxynitride, aluminum oxynitride, and silicon oxynitride-aluminum (SiAlON). These insulating films can be formed by various film forming methods. However, when the sputtering method is used, it is easy to form a dense film having a large withstand voltage, and a necessary withstand voltage can be obtained with a thin film thickness. Therefore, it is preferable because the thermal resistance from the LED element to the back surface of the wiring board can be reduced. As the film thickness of the insulating layer, an appropriate thickness is selected according to the required withstand voltage. For example, when a silicon dioxide film formed by a sputtering method is used, a dielectric breakdown voltage of about 1 kV can be obtained with a film thickness of 5 μm.

前記絶縁層上には所望のパターンの配線パターンが設けられる。配線パターンとして、銅、銀、金、ニッケルからなる群から選ばれる1種を主成分とする金属を用いて形成された金属導体層を用いる場合には、真空蒸着法、スパッタリング法、無電解メッキや電気メッキなどのめっき、などの手法を用いて形成することができる。これらの形成方法は、単独で用いても良いが、あるいは組み合わせて用いることもできる。配線パターンの厚さは0.5〜5μmが例示される。   A wiring pattern having a desired pattern is provided on the insulating layer. When using a metal conductor layer formed of a metal mainly composed of one selected from the group consisting of copper, silver, gold, and nickel as the wiring pattern, vacuum deposition, sputtering, electroless plating Or a plating method such as electroplating. These forming methods may be used alone or in combination. The thickness of the wiring pattern is exemplified by 0.5 to 5 μm.

これらの金属は、熱膨張率が130〜200×10−7/℃であって、複合材料に含有させる炭化珪素粒子の含有量を10〜30体積%とすると、配線パターンと複合材料基板の熱膨張率を一致させることができて、LED照明装置用の配線基板として用いたときに、良好な信頼性が実現される。 These metals have a coefficient of thermal expansion of 130 to 200 × 10 −7 / ° C., and if the content of silicon carbide particles contained in the composite material is 10 to 30% by volume, the heat of the wiring pattern and the composite material substrate The expansion coefficients can be matched, and good reliability is realized when used as a wiring board for an LED lighting device.

所望のパターンは、全面に形成した金属層を、フォトレジストによるマスクを用いてエッチングしたり、あらかじめマスクパターンを形成した上に金属層を形成し、不要部分をマスクとともに除去するリフトオフ法を用いても良い。   For the desired pattern, a metal layer formed on the entire surface is etched using a mask made of photoresist, or a metal layer is formed on a mask pattern previously formed, and a lift-off method is used to remove unnecessary portions together with the mask. Also good.

また、前記複合材料基板上に、DLCや二酸化ケイ素などの、無機膜からなる緻密な絶縁層を表面に設けると、配線パターンを無電解メッキしたり、配線パターンをパターニングする際のエッチング処理したりするときに、該処理液や前処理液により、酸やアルカリに溶解し易い前記複合材料基板が侵されるのを防いで、適用範囲が広がるという効果も得られる。   Further, when a dense insulating layer made of an inorganic film such as DLC or silicon dioxide is provided on the surface of the composite material substrate, the wiring pattern can be electrolessly plated or an etching process for patterning the wiring pattern can be performed. In this case, the treatment liquid and the pretreatment liquid can prevent the composite material substrate, which is easily dissolved in acid or alkali, from being attacked, and the effect of widening the application range can also be obtained.

以上より、アルミニウムと炭化珪素を主成分とした板状複合体からなるベース金属にDLCを絶縁層としたLED照明装置用の低熱抵抗配線基板は、従来技術の、有機材料からなる絶縁層を介して配線パターンを積層させたアルミニウムからなる配線基板と比べて、熱抵抗が小さく、LED素子が発する熱を速やかに配線基板裏面にまで拡散させる効果とともに、熱膨張率が小さくLED素子および配線パターンとの接合の信頼性が向上する効果も認められる。   As described above, the low thermal resistance wiring board for LED lighting devices in which DLC is an insulating layer on a base metal composed of a plate-like composite mainly composed of aluminum and silicon carbide is provided via an insulating layer made of an organic material according to the prior art. Compared with the wiring board made of aluminum with the wiring pattern laminated, the thermal resistance is small, the heat generated by the LED element is quickly diffused to the back surface of the wiring board, and the coefficient of thermal expansion is small. The effect of improving the reliability of bonding is also recognized.

本発明の、LED照明装置用の複合材料基板は、優れた放熱特性を有し、実装されたLED素子との接合および配線パターンとの密着性の信頼性に優れているとともに、高い強度および剛性を備えているので、LED素子が高密度に実装されたLED照明装置を実現できる。   The composite material substrate for an LED lighting device of the present invention has excellent heat dissipation characteristics, excellent reliability of bonding with a mounted LED element and adhesion with a wiring pattern, and high strength and rigidity. Therefore, it is possible to realize an LED lighting device in which LED elements are mounted at a high density.

以下本発明を実施例を用いて説明するが、本発明はこれに限定されない。例1、例2、例4は実施例であって、例3、例5は比較例である。   Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited thereto. Examples 1, 2, and 4 are examples, and examples 3 and 5 are comparative examples.

[例1]
図1に、LED素子が実装されてLED照明装置とされた本例のLED照明装置用の低熱抵抗配線基板について、LED素子実装部分近傍の概略断面図を示す。
[Example 1]
FIG. 1 shows a schematic cross-sectional view of the vicinity of the LED element mounting portion of the low thermal resistance wiring board for the LED lighting apparatus of this example in which the LED element is mounted to be an LED lighting apparatus.

まず、アルミニウム合金(合金組成:AC4C)の溶湯中に、平均粒子径15μmの炭化珪素粒子を20体積%混合し、攪拌しつつ凝固させて、アルミニウム合金中に炭化珪素粒子が分散された複合材料からなるスラブを鋳造した。得られたスラブを圧延して、厚さ2mmの複合材料基板1を作製した。この複合材料基板1の熱膨張率は160×10−7/℃、熱伝導率は180W/(m・K)であった。この複合材料基板1の一方の面上に、メタンガスを用いたプラズマCVD法により、比抵抗が1012Ω・cmで熱伝導率が30W/(m・K)のDLCからなる絶縁層2を5μm堆積させた。次いでDLC層2上にフォトレジストを塗布し、マスク露光、現像をおこなって所望のパターンとした上に、厚さ2μmの銀膜を蒸着法により形成し、リフトオフ法により、ベタパターン3aとランドパターン3bとからなる所望の配線パターンを形成した。 First, 20 vol% of silicon carbide particles having an average particle diameter of 15 μm are mixed in a molten aluminum alloy (alloy composition: AC4C), and solidified while stirring, so that the silicon carbide particles are dispersed in the aluminum alloy. A slab consisting of The obtained slab was rolled to produce a composite material substrate 1 having a thickness of 2 mm. The composite material substrate 1 had a thermal expansion coefficient of 160 × 10 −7 / ° C. and a thermal conductivity of 180 W / (m · K). An insulating layer 2 made of DLC having a specific resistance of 10 12 Ω · cm and a thermal conductivity of 30 W / (m · K) is formed on one surface of the composite material substrate 1 by a plasma CVD method using methane gas. Deposited. Next, a photoresist is applied on the DLC layer 2, mask exposure and development are performed to form a desired pattern, a silver film having a thickness of 2 μm is formed by a vapor deposition method, and a solid pattern 3a and a land pattern are formed by a lift-off method. A desired wiring pattern consisting of 3b was formed.

このようにして得られた本例の低熱抵抗配線基板のベタパターン3aに、LED素子5の下部電極(図示せず)を導電性接着剤を用いて接着し、LED素子5を固定した。これによりLED素子5は、導電性接着剤層4により、複合材料基板1に固定されるとともに下部電極とベタパターン3aとが電気的に接続され、さらにLED素子5と複合材料基板1とが熱的に接続される。   The lower electrode (not shown) of the LED element 5 was bonded to the solid pattern 3a of the low thermal resistance wiring board of this example obtained in this way using a conductive adhesive, and the LED element 5 was fixed. Thereby, the LED element 5 is fixed to the composite material substrate 1 by the conductive adhesive layer 4, the lower electrode and the solid pattern 3 a are electrically connected, and the LED element 5 and the composite material substrate 1 are heated. Connected.

LED素子5の上面側に配置されている上部電極(図示せず)と、ランドパターン3bとを、金属細線6を介して電気的に接続した。さらに、各LED素子の周囲に反射板(図示せず)を取り付けた。この状態でLED素子を動作させて測定した、LED素子と複合材料基板との間の熱抵抗は0.17℃/Wであった。
また、−40℃で30分間保持し、次に125℃で30分間保持するサイクルを繰り返すヒートサイクル試験をおこなったところ、300サイクル経過後も、LED素子が固定された配線パターンと複合材料基板1との間は強固に接着されており、接着状態に異常は認められなかった。
An upper electrode (not shown) disposed on the upper surface side of the LED element 5 and the land pattern 3 b were electrically connected through a fine metal wire 6. Further, a reflector (not shown) was attached around each LED element. The thermal resistance between the LED element and the composite material substrate measured by operating the LED element in this state was 0.17 ° C./W.
Moreover, when the heat cycle test which repeats the cycle hold | maintained at -40 degreeC for 30 minutes and then hold | maintained at 125 degreeC for 30 minutes was performed, after 300 cycles progress, the wiring pattern with which the LED element was fixed, and the composite material board | substrate 1 Between the two, it was firmly bonded, and no abnormality was found in the bonding state.

[例2]
DLCからなる絶縁層の厚さを3μmにし、配線パターンを銀の蒸着膜に変えて厚さ3μmのニッケルの無電解メッキ膜に変えた以外は、例1と同様にして低熱抵抗配線基板を作製した。ニッケル無電解メッキ膜を形成するときに部分メッキをおこなって、例1と同様の、ベタパターンとランドパターンとからなる所望の配線パターンを形成した。
[Example 2]
A low thermal resistance wiring board is fabricated in the same manner as in Example 1 except that the thickness of the insulating layer made of DLC is changed to 3 μm and the wiring pattern is changed to a silver electroless plating film with a thickness of 3 μm. did. When the nickel electroless plating film was formed, partial plating was performed to form a desired wiring pattern composed of a solid pattern and a land pattern as in Example 1.

このようにして得られた本例の低熱抵抗配線基板のベタパターンに、例1と同様にしてLED素子を固定し、下部電極および上部電極を電気的に接続し、反射板(図示せず)を取り付けた。この状態でLED素子を動作させ、LED素子と板状複合体間の熱抵抗を測定したところ、熱抵抗は0.15℃/Wであった。また、300サイクルのヒートサイクル試験後も、LED素子が固定された配線パターンと複合材料基板は強固に接着されており異常は認められなかった。   The LED element is fixed to the solid pattern of the low thermal resistance wiring board of the present example obtained in this manner in the same manner as in Example 1, the lower electrode and the upper electrode are electrically connected, and a reflector (not shown) Attached. When the LED element was operated in this state and the thermal resistance between the LED element and the plate composite was measured, the thermal resistance was 0.15 ° C./W. Further, even after the 300-cycle heat cycle test, the wiring pattern on which the LED elements were fixed and the composite material substrate were firmly bonded, and no abnormality was observed.

[例3]
厚さ2mmのアルミニウム板(熱伝導率は220W/(m・K))の一方の面上に厚さ80μmのアルミナ充填エポキシ樹脂からなる絶縁層(熱伝導率は約4W/(m・K))とさらに絶縁層の上に70μmの銅箔とを積層して、金属ベース基板を作成した。次いで、銅箔をフォトリソグラフィグラフィとエッチングによりパターンニングして、例1と同様の、ベタパターンとランドパターンとからなる所望の配線パターンを形成し、本例の低熱抵抗配線基板を得た。次いで、例1と同様にしてLED素子を固定し、下部電極および上部電極を電気的に接続し、反射板を取り付けた。この状態でLED素子を動作させ、LED素子と板状複合体間の熱抵抗を測定したところ、熱抵抗は0.45℃/Wであった。また、300サイクルのヒートサイクル試験後は、LED素子が固定された配線パターンとアルミニウム板間の接着力の低下が認められた。
[Example 3]
Insulating layer (thermal conductivity is about 4 W / (m · K) made of alumina-filled epoxy resin with a thickness of 80 μm on one surface of a 2 mm thick aluminum plate (thermal conductivity is 220 W / (m · K)) And a 70 μm copper foil on the insulating layer to form a metal base substrate. Next, the copper foil was patterned by photolithography and etching to form a desired wiring pattern composed of a solid pattern and a land pattern, similar to Example 1, to obtain a low thermal resistance wiring board of this example. Next, the LED element was fixed in the same manner as in Example 1, the lower electrode and the upper electrode were electrically connected, and a reflector was attached. When the LED element was operated in this state and the thermal resistance between the LED element and the plate composite was measured, the thermal resistance was 0.45 ° C./W. Moreover, after the 300-cycle heat cycle test, a decrease in the adhesive force between the wiring pattern on which the LED elements were fixed and the aluminum plate was observed.

[例4]
例1と同様にして、アルミニウム合金(AC4C)中に平均粒子径15μm炭化珪素粒子を20体積%分散させた複合材料からなる厚さ2mmの基板1を作製し、この基板1の一方の面上に、スパッタリング法により、SiOからなる絶縁層2を3μm堆積させ、次いで無電解メッキにより厚さ10μmの銅膜を形成した。このとき、例2と同様に部分メッキをおこなって、所望のベタパターン3aとランドパターン3bとを形成した。得られた基板の熱膨張率は160×10−7/℃、熱伝導率は180W/(m・K)であった。SiOからなる絶縁層2は、比抵抗が1014Ω・cmで熱伝導率が1.2W/(m・K)であった。
[Example 4]
In the same manner as in Example 1, a substrate 1 having a thickness of 2 mm made of a composite material in which 20% by volume of silicon carbide particles having an average particle diameter of 15 μm was dispersed in an aluminum alloy (AC4C) was produced. Then, 3 μm of the insulating layer 2 made of SiO 2 was deposited by sputtering, and then a copper film having a thickness of 10 μm was formed by electroless plating. At this time, partial plating was performed in the same manner as in Example 2 to form the desired solid pattern 3a and land pattern 3b. The obtained substrate had a thermal expansion coefficient of 160 × 10 −7 / ° C. and a thermal conductivity of 180 W / (m · K). The insulating layer 2 made of SiO 2 had a specific resistance of 10 14 Ω · cm and a thermal conductivity of 1.2 W / (m · K).

このようにして得られた本例の低熱抵抗配線基板のベタパターン3aに、例1と同様にLED素子5を実装し、反射板を取り付けてLED素子を動作させ、LED素子と板状複合体間の熱抵抗を測定したところ、熱抵抗は0.20℃/Wであった。また、ヒートサイクル後もLED素子が固定された配線パターンと複合材料基板は強固に接着されており異常は認められなかった。   The LED element 5 is mounted on the solid pattern 3a of the low thermal resistance wiring board of the present example obtained in this way in the same manner as in Example 1, the reflector is attached, the LED element is operated, and the LED element and the plate composite When the thermal resistance was measured, the thermal resistance was 0.20 ° C./W. Further, even after the heat cycle, the wiring pattern on which the LED element was fixed and the composite material substrate were firmly bonded, and no abnormality was observed.

[例5]
厚さ2mmのアルミニウム板(熱伝導率は220W/(m・K))の一方の面上に、例1と同様にしてSiOからなる絶縁層2を5μm堆積させ、次いで厚さ2μmの銀の蒸着膜からなる所望の配線パターンを形成し、LED素子を実装し、反射板を取り付けてLED素子を動作させた。LED素子と板状複合体間の熱抵抗を測定したところ、熱抵抗は0.23℃/Wであった。また、ヒートサイクル後はLED素子が固定された配線パターンとアルミニウム板間の接着力の低下が認められた。
[Example 5]
Thick aluminum plate 2 mm (thermal conductivity 220W / (m · K)) on one surface of the insulating layer 2 made of SiO 2 in the same manner as in Example 1 to 5μm deposited, then the thickness of 2μm silver A desired wiring pattern made of the deposited film was formed, an LED element was mounted, a reflector was attached, and the LED element was operated. When the thermal resistance between the LED element and the plate composite was measured, the thermal resistance was 0.23 ° C./W. Further, after the heat cycle, a decrease in the adhesive force between the wiring pattern on which the LED element was fixed and the aluminum plate was observed.

本発明により、高強度、高剛性であるとともに、LED素子や配線パターンと熱膨張差が小さく、またLED素子で発生した熱を速やかに基板に拡散させることができるLED照明装置用低熱抵抗配線基板が実現される。したがって本発明のLED照明装置用低熱抵抗配線基板を用いると、LED素子を効果的に冷却することができて、また、LED素子や配線パターンと、基板との接着力の低下が抑えられるので、信頼性の高いLED照明装置が実現される。また、放熱特性に優れ、基板が高強度で高剛性なので、LED素子を高密度に実装されたLED照明装置を実現できる。   According to the present invention, a low thermal resistance wiring board for an LED lighting device that has high strength and high rigidity, has a small difference in thermal expansion from an LED element or wiring pattern, and can quickly diffuse heat generated in the LED element to the board. Is realized. Therefore, when the low thermal resistance wiring board for LED lighting device of the present invention is used, the LED element can be effectively cooled, and the decrease in the adhesive strength between the LED element and the wiring pattern and the board can be suppressed. A highly reliable LED lighting device is realized. Moreover, since the substrate has excellent heat dissipation characteristics and the substrate has high strength and high rigidity, an LED lighting device in which LED elements are mounted at high density can be realized.

本発明のLED照明装置用の低熱抵抗配線基板を用いたLED照明装置の概略断面図である。It is a schematic sectional drawing of the LED lighting apparatus using the low thermal resistance wiring board for LED lighting apparatuses of this invention.

符号の説明Explanation of symbols

1:複合材料基板
2:絶縁層
3a:ベタパターン
3b:ランドパターン
4:導電性接着剤層
5:LED素子
6:金属細線
1: Composite material substrate 2: Insulating layer 3a: Solid pattern 3b: Land pattern 4: Conductive adhesive layer 5: LED element 6: Fine metal wire

Claims (5)

LED照明装置用の低熱抵抗配線基板であって、
前記LED照明装置用の低熱抵抗配線基板は、複合材料基板と、前記基板上に設けられた絶縁層と、前記絶縁層上に設けられた配線パターンと、を備えていて、
前記複合材料基板は、アルミニウムを主成分とするマトリックス中に炭化珪素粒子が分散された複合材料からなる複合材料基板であり、
前記配線パターンは、金属導体層からなり、
前記絶縁層は、前記基板と前記配線パターンとを電気的に絶縁させ、
前記複合材料におけるマトリックス中の炭化珪素粒子の割合が、5〜45体積%である
ことを特徴とするLED照明装置用の低熱抵抗配線基板。
A low thermal resistance wiring board for an LED lighting device,
The low thermal resistance wiring substrate for the LED lighting device includes a composite material substrate, an insulating layer provided on the substrate, and a wiring pattern provided on the insulating layer,
The composite material substrate is a composite material substrate made of a composite material in which silicon carbide particles are dispersed in a matrix mainly composed of aluminum,
The wiring pattern comprises a metal conductor layer,
The insulating layer electrically insulates the substrate and the wiring pattern,
The low thermal resistance wiring board for an LED lighting device, wherein a ratio of silicon carbide particles in a matrix in the composite material is 5 to 45% by volume.
前記炭化珪素粉末の粒子径が1〜100μmである請求項1に記載のLED照明装置用の低熱抵抗配線基板。   The low thermal resistance wiring board for an LED lighting device according to claim 1, wherein a particle diameter of the silicon carbide powder is 1 to 100 μm. 前記絶縁層が比抵抗が1010Ω・cm以上の無機材料からなる厚さ1〜20μmの層である請求項1または2に記載のLED照明装置用の低熱抵抗配線基板。 The low thermal resistance wiring board for an LED lighting device according to claim 1, wherein the insulating layer is a layer having a thickness of 1 to 20 μm made of an inorganic material having a specific resistance of 10 10 Ω · cm or more. 前記無機材料がダイヤモンドライクカーボンである請求項3に記載のLED照明装置用の低熱抵抗配線基板。   The low thermal resistance wiring board for an LED lighting device according to claim 3, wherein the inorganic material is diamond-like carbon. 前記無機材料が二酸化ケイ素である請求項3に記載のLED照明装置用の低熱抵抗配線基板。
The low thermal resistance wiring board for an LED lighting device according to claim 3, wherein the inorganic material is silicon dioxide.
JP2005186743A 2005-06-27 2005-06-27 Low-heat-resistance wiring board for led lighting device, and led lighting device Pending JP2007005709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005186743A JP2007005709A (en) 2005-06-27 2005-06-27 Low-heat-resistance wiring board for led lighting device, and led lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005186743A JP2007005709A (en) 2005-06-27 2005-06-27 Low-heat-resistance wiring board for led lighting device, and led lighting device

Publications (1)

Publication Number Publication Date
JP2007005709A true JP2007005709A (en) 2007-01-11

Family

ID=37690987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005186743A Pending JP2007005709A (en) 2005-06-27 2005-06-27 Low-heat-resistance wiring board for led lighting device, and led lighting device

Country Status (1)

Country Link
JP (1) JP2007005709A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011007872A1 (en) * 2009-07-17 2011-01-20 電気化学工業株式会社 Manufacturing method of led chip assembly
WO2011013754A1 (en) * 2009-07-31 2011-02-03 電気化学工業株式会社 Led equipment purpose wafer, method for manufacturing same, and led-equipped structure using led equipment purpose wafer
JP2012038948A (en) * 2010-08-09 2012-02-23 Denki Kagaku Kogyo Kk Metal matrix composite substrate for led light emitting device, method for manufacturing the same, and led light emitting device
KR101172950B1 (en) 2009-12-02 2012-08-10 정경화 Graphite substrate for light emitting diode and light emitting diode using the same
JPWO2011007874A1 (en) * 2009-07-17 2012-12-27 電気化学工業株式会社 LED chip assembly, LED package, and manufacturing method of LED package
JP2013030812A (en) * 2012-11-06 2013-02-07 Mitsubishi Chemicals Corp Substrate for led chip fixation and method of manufacturing the same
EP1981094A3 (en) * 2007-04-13 2015-06-03 Oki Data Corporation Semiconductor device, led head and image forming apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1981094A3 (en) * 2007-04-13 2015-06-03 Oki Data Corporation Semiconductor device, led head and image forming apparatus
WO2011007872A1 (en) * 2009-07-17 2011-01-20 電気化学工業株式会社 Manufacturing method of led chip assembly
JPWO2011007874A1 (en) * 2009-07-17 2012-12-27 電気化学工業株式会社 LED chip assembly, LED package, and manufacturing method of LED package
JP5759376B2 (en) * 2009-07-17 2015-08-05 電気化学工業株式会社 Manufacturing method of LED chip assembly
WO2011013754A1 (en) * 2009-07-31 2011-02-03 電気化学工業株式会社 Led equipment purpose wafer, method for manufacturing same, and led-equipped structure using led equipment purpose wafer
KR20120082865A (en) * 2009-07-31 2012-07-24 덴끼 가가꾸 고교 가부시키가이샤 Led equipment purpose wafer, method for manufacturing same, and led-equipped structure using led equipment purpose wafer
US8890189B2 (en) 2009-07-31 2014-11-18 Denki Kagaku Kogyo Kabushiki Kaisha Wafer for LED mounting, method for manufacturing same, and LED-mounted structure using the wafer
JP5789512B2 (en) * 2009-07-31 2015-10-07 電気化学工業株式会社 LED mounting wafer, manufacturing method thereof, and LED mounting structure using the wafer
KR101685231B1 (en) 2009-07-31 2016-12-09 덴카 주식회사 Wafer for led mounting, method for manufacturing same, and led-mounted structure using the wafer
KR101172950B1 (en) 2009-12-02 2012-08-10 정경화 Graphite substrate for light emitting diode and light emitting diode using the same
JP2012038948A (en) * 2010-08-09 2012-02-23 Denki Kagaku Kogyo Kk Metal matrix composite substrate for led light emitting device, method for manufacturing the same, and led light emitting device
JP2013030812A (en) * 2012-11-06 2013-02-07 Mitsubishi Chemicals Corp Substrate for led chip fixation and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US20160014878A1 (en) Thermal management circuit materials, method of manufacture thereof, and articles formed therefrom
US8044427B2 (en) Light emitting diode submount with high thermal conductivity for high power operation
CN107004752B (en) Light emitting device substrate, light emitting device and lighting device
JP2007005709A (en) Low-heat-resistance wiring board for led lighting device, and led lighting device
US20150118391A1 (en) Thermal management circuit materials, method of manufacture thereof, and articles formed therefrom
JP2010500778A (en) LED device and liquid crystal display back panel
JPH07206417A (en) Method of producing heat-sunk electronic part and said electronic part
KR20100025502A (en) Insulated metal components and method of manufacturing the same
CN105152689A (en) Manufacturing method for ceramic-based copper-clad plate
KR101751108B1 (en) Heat Radiating Apparatus of the LED Lighting Fixture using a Silver Paste
CN103917043B (en) Patterned multi-insulating-material circuit substrate
JP5086174B2 (en) High heat dissipation carbon material and electronic parts using the same
US7036219B2 (en) Method for manufacturing a high-efficiency thermal conductive base board
WO2015135247A1 (en) High-power led light engine
KR100981052B1 (en) Printed circuit board for heat dissipation of led and fabricating method thereof
JP2023109954A (en) Device for thermal conduction and electrical insulation
KR101075147B1 (en) Substrate of Metal PCB and Method for Manufacturing thereof
JP2005276962A (en) Semiconductor devices and substrate thereof
US20170023214A1 (en) Composite multi-layer circuit board and manufacturing method thereof
JP5416674B2 (en) Insulating substrate, manufacturing method thereof, light source module and liquid crystal display device using the same
JPH07283499A (en) Compound board for electronic parts
JP2011171687A (en) Insulated substrate, manufacturing method thereof, and forming method of wiring
JP2011199066A (en) Light emitting component, light emitting device, and method for manufacturing the light emitting component
KR20100025459A (en) Insulated metal components and method of manufacturing the same
KR101751109B1 (en) A heat sink manufacturing method of the LED lighting fixture