JP2008004760A - Wiring board and electronic device - Google Patents

Wiring board and electronic device Download PDF

Info

Publication number
JP2008004760A
JP2008004760A JP2006172785A JP2006172785A JP2008004760A JP 2008004760 A JP2008004760 A JP 2008004760A JP 2006172785 A JP2006172785 A JP 2006172785A JP 2006172785 A JP2006172785 A JP 2006172785A JP 2008004760 A JP2008004760 A JP 2008004760A
Authority
JP
Japan
Prior art keywords
wiring
metal
composite material
electronic component
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006172785A
Other languages
Japanese (ja)
Inventor
Yoshiaki Ueda
義明 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2006172785A priority Critical patent/JP2008004760A/en
Publication of JP2008004760A publication Critical patent/JP2008004760A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wiring board which can effectively and externally transmit heat generated from an electronic component which works at a large current. <P>SOLUTION: In a wiring board, a mounting part 1a for mounting an electronic component 3 is provided on a base 1, and a wiring 2 is provided whereto an electrode of the electronic component 3 is connected. The wiring 2 consists of a composite material wherein at least either particle 2a of diamond or particle 2a of cubic boron nitride is incorporated in a metal 2b. Heat can be dissipated via the wiring 2 from the electronic component 3 by the wiring 2 consisting of the composite material which is excellent in heat conductivity. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電子部品の作動時に発する熱の放散性が高い電子部品搭載用の配線基板に関する。   The present invention relates to a wiring board for mounting an electronic component, which has high dissipation of heat generated when the electronic component is operated.

従来のパワートランジスタ等の作動時に大量の熱を発生する電子部品が搭載される配線基板の断面図を図5に示す。図5において、11は絶縁体から成る基体、12は配線、13は電子部品、15は金属板、16は放熱板であり、配線基板は、基体11の上側主面に銅(Cu)製金属板から成る配線12を有するとともに、基体11の下側主面にCuから成る金属板15を有して成る。この配線基板には、パワートランジスタ等の作動時に大量の熱を発生する電子部品13が搭載され、配線12に電子部品13の電極がボンディングワイヤ等の電気的接続手段を介して電気的に接続され、金属板15に放熱板16を接合することで、電子部品13の作動時に配線12および電子部品12から発生する熱を基体11の下側主面から放熱板16に熱放散させることができるものである。   FIG. 5 shows a cross-sectional view of a wiring board on which electronic components that generate a large amount of heat during operation of a conventional power transistor or the like are mounted. In FIG. 5, 11 is a base made of an insulator, 12 is a wiring, 13 is an electronic component, 15 is a metal plate, 16 is a heat sink, and the wiring board is made of a copper (Cu) metal on the upper main surface of the base 11. It has wiring 12 made of a plate, and has a metal plate 15 made of Cu on the lower main surface of the base 11. An electronic component 13 that generates a large amount of heat when a power transistor or the like is operated is mounted on the wiring board, and the electrodes of the electronic component 13 are electrically connected to the wiring 12 through an electrical connection means such as a bonding wire. By joining the heat sink 16 to the metal plate 15, heat generated from the wiring 12 and the electronic component 12 during operation of the electronic component 13 can be dissipated from the lower main surface of the base 11 to the heat sink 16 It is.

基体11は、ジルコニア(ZrO)質セラミックスから成る。ZrO質セラミックスは、アルミナ(Al)質セラミックスに比して抗折強度が高いので、Al質セラミックスよりも薄くすることができ、これによって基体11を介しての放熱性を向上させている。 The substrate 11 is made of zirconia (ZrO 2 ) ceramic. Since ZrO 2 ceramics have a higher bending strength than alumina (Al 2 O 3 ) ceramics, the ZrO 2 ceramics can be made thinner than Al 2 O 3 ceramics. Has improved.

配線12および金属板15は高熱伝導性のCu板から成り、同じCu板を基体11の上下両面からサンドイッチ状態に接合することによって、基体11との熱膨張係数差から接合時に発生する反りや曲がりの発生を防止するとともに、金属板15は、電子部品13から発生する熱を放散させる役割をも有する。   The wiring 12 and the metal plate 15 are made of a Cu plate having high thermal conductivity, and the same Cu plate is joined in a sandwich state from both the upper and lower surfaces of the base body 11, thereby causing warpage and bending generated during joining from the difference in thermal expansion coefficient with the base body 11. The metal plate 15 also has a role of dissipating heat generated from the electronic component 13.

ここで、配線12および金属板15はそれぞれDBC法や活性金属ロウ材によって基体11に接合される。   Here, the wiring 12 and the metal plate 15 are joined to the base 11 by the DBC method or the active metal brazing material, respectively.

放熱板16は、熱伝導率が高く熱放散性に優れたCu板から成るもので、金属板15の下表面側にロウ材17を介して接合される。
特開2004−146650号公報
The heat radiating plate 16 is made of a Cu plate having high thermal conductivity and excellent heat dissipation, and is joined to the lower surface side of the metal plate 15 via a brazing material 17.
JP 2004-146650 A

しかしながら、近時の電子部品13は大電流化が進み、電子部品13が作動する際に発生する熱が増大する傾向にある。これに対して、上記従来の配線基板では、電子部品13から発生する熱を十分に放散させたり、配線12に大電流を流した際に配線12から発生する熱を十分に放散させたりする能力が不足しがちであり、電子部品13を十分冷却して正常かつ安定に作動させることができないという問題点があった。   However, recent electronic components 13 have been increased in current, and the heat generated when the electronic components 13 operate tends to increase. On the other hand, in the above conventional wiring board, the ability to sufficiently dissipate the heat generated from the electronic component 13 or to sufficiently dissipate the heat generated from the wiring 12 when a large current flows through the wiring 12. There is a problem that the electronic component 13 cannot be sufficiently cooled and operated normally and stably.

また、上記従来の配線基板においては、基体11と配線12、基体11と金属板15との熱膨張係数差が大きく、基体11と配線12および金属板15とを接合する際に加える熱や、電子部品13が作動する際に発生する熱によって、基体11に配線12および金属板15との熱膨張差による応力が作用し、基体11にクラック等が生じて破損してしまう場合があった。   Further, in the above conventional wiring board, the difference in thermal expansion coefficient between the base body 11 and the wiring 12, the base body 11 and the metal plate 15, the heat applied when the base body 11, the wiring 12 and the metal plate 15 are joined, Due to the heat generated when the electronic component 13 is operated, stress due to a difference in thermal expansion between the wiring 12 and the metal plate 15 acts on the base 11, and the base 11 may be cracked and damaged.

また、上記従来の配線基板においては、配線12がCu製で、比較的軟らかい金属から成ることから、ボンディングワイヤ等の電気的接続手段14を超音波ボンダーで振動を加えて接続する際に、配線12が超音波振動を吸収し易く、ボンディングワイヤ等の電気的接続手段14を配線12に接続し難いという問題点があった。   Further, in the above conventional wiring board, the wiring 12 is made of Cu and made of a relatively soft metal. Therefore, when connecting the electrical connection means 14 such as a bonding wire by applying vibration with an ultrasonic bonder, the wiring There is a problem that 12 easily absorbs ultrasonic vibration and it is difficult to connect the electrical connection means 14 such as a bonding wire to the wiring 12.

また、近時の配線基板は薄型化が求められており、上記従来の配線基板において、基体11を薄型化させた場合、基体11の強度が不十分となり基体11に折損等が生じて破損してしまうという問題点があった。   Further, the recent wiring board is required to be thin, and in the above conventional wiring board, when the base 11 is made thin, the strength of the base 11 becomes insufficient and the base 11 is broken and damaged. There was a problem that it was.

したがって、本発明は上記従来の問題点に鑑みて完成されたものであり、その目的は、大電流で作動する電子部品から発生する熱を効率良く外部へ伝えることができる配線基板を提供することにある。   Accordingly, the present invention has been completed in view of the above-described conventional problems, and an object of the present invention is to provide a wiring board capable of efficiently transferring heat generated from an electronic component operating at a large current to the outside. It is in.

本発明の配線基板は、基体上に、電子部品が搭載される搭載部を有し、前記電子部品の電極が接続される配線が設けられた配線基板であって、前記配線は、ダイヤモンドの粒子および立方晶窒化ホウ素の粒子の少なくとも一方の粒子を金属に含有させた複合材から成ることを特徴とする。   The wiring board of the present invention is a wiring board having a mounting portion on which an electronic component is mounted on a base, and a wiring to which an electrode of the electronic component is connected. The wiring is a diamond particle And a composite material in which at least one of cubic boron nitride particles is contained in a metal.

本発明の配線基板において、好ましくは、前記複合材の前記金属は、銀,銅またはアルミニウムを含むことを特徴とする。   In the wiring board of the present invention, it is preferable that the metal of the composite material includes silver, copper, or aluminum.

本発明の配線基板において、好ましくは、前記複合材の前記金属は、純度99%以上の銀または純度99%以上の銅であることを特徴とする。   In the wiring board of the present invention, preferably, the metal of the composite material is silver having a purity of 99% or more or copper having a purity of 99% or more.

本発明の配線基板において、好ましくは、前記複合材の表面は、前記金属によって覆われていることを特徴とする。   In the wiring board of the present invention, preferably, the surface of the composite material is covered with the metal.

本発明の配線基板において、好ましくは、前記複合材は、前記ダイヤモンドの粒子を前記金属に含有させて成り、前記ダイヤモンドの粒子が30〜80体積%含まれていることを特徴とする。   In the wiring board according to the present invention, preferably, the composite material includes the diamond particles in the metal, and 30 to 80% by volume of the diamond particles are included.

本発明の配線基板において、好ましくは、前記複合材は、前記立方晶窒化ホウ素の粒子を前記金属に含有させて成り、前記立方晶窒化ホウ素の粒子が30〜80体積%含まれていることを特徴とする。   In the wiring board of the present invention, preferably, the composite material includes the cubic boron nitride particles contained in the metal, and the cubic boron nitride particles are contained in an amount of 30 to 80% by volume. Features.

本発明の配線基板において、好ましくは、前記複合材に、前記ダイヤモンドの粒子および前記立方晶窒化ホウ素の粒子が含まれていることを特徴とする。   In the wiring board of the present invention, preferably, the composite material includes the diamond particles and the cubic boron nitride particles.

本発明の配線基板において、好ましくは、前記配線は、前記搭載部を中心に放射状に配置されていることを特徴とする。   In the wiring board according to the present invention, it is preferable that the wiring is arranged radially with the mounting portion as a center.

本発明の電子装置は、上記構成の配線基板の搭載部に電子部品が搭載されて成ることを特徴とする。   The electronic device of the present invention is characterized in that an electronic component is mounted on the mounting portion of the wiring board having the above-described configuration.

本発明の電子装置において、好ましくは、前記配線基板の前記配線は、前記電子部品に一定電位を供給する供給配線を含み、前記電子部品は、前記供給配線に搭載されて接続されていることを特徴とする。   In the electronic device according to the aspect of the invention, it is preferable that the wiring of the wiring board includes a supply wiring that supplies a constant potential to the electronic component, and the electronic component is mounted and connected to the supply wiring. Features.

本発明の電子装置において、好ましくは、前記供給配線は、前記基体の前記搭載部を有する主面とは反対側主面に配置されるとともに、前記絶縁基板に設けられた貫通孔を通じて前記搭載部に導出されて成り、該導出部に前記電子部品が搭載されて接続されていることを特徴とする。   In the electronic device according to the aspect of the invention, it is preferable that the supply wiring is disposed on a main surface opposite to the main surface having the mounting portion of the base body, and the mounting portion is formed through a through hole provided in the insulating substrate. And the electronic component is mounted and connected to the lead-out portion.

本発明の配線基板は、基体上に、電子部品が搭載される搭載部を有し、電子部品の電極が接続される配線が設けられ、配線は、ダイヤモンドの粒子および立方晶窒化ホウ素の粒子の少なくとも一方の粒子を金属に含有させた複合材から成ることから、配線の熱伝導率を大きなものとすることができ、電子部品から発生する熱を配線に沿って十分に放散させることができる。また、配線に大電流を流した際に配線から発生する熱を十分に放散させることができる。したがって、近時の大電流で作動する電子部品を用いても、電子部品が温度上昇するのを防止でき、電子部品を正常かつ安定に作動させることができる。   The wiring board of the present invention has a mounting portion on which an electronic component is mounted on a base, and wiring to which an electrode of the electronic component is connected is provided. The wiring is made up of diamond particles and cubic boron nitride particles. Since it is made of a composite material containing at least one particle in a metal, the thermal conductivity of the wiring can be increased, and heat generated from the electronic component can be sufficiently dissipated along the wiring. Further, the heat generated from the wiring when a large current is passed through the wiring can be sufficiently dissipated. Therefore, even if an electronic component that operates with a recent large current is used, the temperature of the electronic component can be prevented from increasing, and the electronic component can be operated normally and stably.

また、配線が金属にダイヤモンドの粒子および立方晶窒化ホウ素の粒子の少なくとも一方の粒子を含有させた複合材から成ることで、ダイヤモンドおよび立方晶窒化ホウ素は非常に硬い材料であることから、配線が超音波振動を吸収し難く、ボンディングワイヤ等の電気的接続手段を配線に確実かつ短時間で効率良く接続することができる。   In addition, since the wiring is made of a composite material in which at least one of diamond particles and cubic boron nitride particles is contained in a metal, diamond and cubic boron nitride are very hard materials. It is difficult to absorb ultrasonic vibration, and an electrical connection means such as a bonding wire can be reliably and efficiently connected to the wiring in a short time.

また、金属にダイヤモンドの粒子および立方晶窒化ホウ素の粒子の少なくとも一方の粒子を含有させて複合材とすることによって、配線の硬度が増し、即ち配線の剛性が増すことから、配線が基体を補強する作用を為すようになる。その結果、配線基板を放熱板へ実装する際に外力が加わっても、基体がクラック等によって破損してしまうのを防止することができる。   In addition, by adding at least one of diamond particles and cubic boron nitride particles to the metal to make a composite material, the hardness of the wiring is increased, that is, the rigidity of the wiring is increased, so that the wiring reinforces the substrate. It comes to do the action to do. As a result, even if an external force is applied when the wiring board is mounted on the heat sink, the base can be prevented from being damaged by cracks or the like.

本発明の配線基板において、好ましくは、複合材の金属は、銀,銅またはアルミニウムを含むことから、複合材に含有される金属の熱伝導率が優れたものとなり、配線の熱伝導率を向上させることができる。また、これら金属は電気伝導性に優れるので、配線の電気抵抗を小さくすることができる。したがって、配線における熱の発生を少なくできるとともに、電子部品から発生する熱を配線に沿って放散させることができる。   In the wiring board of the present invention, preferably, the metal of the composite material includes silver, copper, or aluminum, so that the thermal conductivity of the metal contained in the composite material is excellent, and the thermal conductivity of the wiring is improved. Can be made. Moreover, since these metals are excellent in electrical conductivity, the electrical resistance of the wiring can be reduced. Therefore, heat generation in the wiring can be reduced and heat generated from the electronic component can be dissipated along the wiring.

本発明の配線基板において、好ましくは、複合材の金属は、純度99%以上の銀または純度99%以上の銅であることから、複合材中の金属の熱伝導率および電気伝導性が極めて優れたものとなり、配線の熱伝導率および電気伝導性をさらに向上させることができる。電子部品が作動する際に発生する熱を極めて効率良く放散させることができる。   In the wiring board of the present invention, preferably, the metal of the composite material is silver having a purity of 99% or more or copper having a purity of 99% or more, so that the thermal conductivity and electrical conductivity of the metal in the composite material are extremely excellent. Thus, the thermal conductivity and electrical conductivity of the wiring can be further improved. The heat generated when the electronic component operates can be dissipated very efficiently.

本発明の配線基板において、好ましくは、複合材の表面は、含有される金属によって覆われていることから、配線に高周波信号を流した際の表皮効果に対応することができ、配線の高周波特性に優れたものとできる。また、複合材の表面を覆う金属によって、配線を基体に接合するための接合材が配線の表面を濡れ広がり易くなり、配線を基体に強固に接合させることができる。また、複合材の表面を覆う金属によって、ボンディングワイヤ等の電気的接続手段との接続強度も向上させることができる。   In the wiring board of the present invention, preferably, since the surface of the composite material is covered with the contained metal, it can cope with the skin effect when a high-frequency signal is passed through the wiring, and the high-frequency characteristics of the wiring It can be made excellent. In addition, the metal covering the surface of the composite material makes it easy for the bonding material for bonding the wiring to the substrate to wet and spread the surface of the wiring, and the wiring can be firmly bonded to the substrate. In addition, the metal covering the surface of the composite material can improve the connection strength with an electrical connection means such as a bonding wire.

本発明の配線基板において、好ましくは、複合材は、ダイヤモンドの粒子を金属に含有させて成り、ダイヤモンドの粒子が30〜80体積%含まれていることから、複合材の熱伝導性を非常に良好なものとすることができる。   In the wiring board according to the present invention, preferably, the composite material includes diamond particles contained in a metal, and 30 to 80% by volume of the diamond particles are contained. Therefore, the thermal conductivity of the composite material is extremely high. It can be good.

本発明の配線基板において、好ましくは、複合材は、立方晶窒化ホウ素の粒子を金属に含有させて成り、立方晶窒化ホウ素の粒子が30〜80体積%含まれていることから、立方晶窒化ホウ素の粒子が熱的化学安定性に優れ900℃程度の高温においても変質し難く、900℃程度の高温雰囲気に曝した場合においても立方晶窒化ホウ素の粒子が有する熱放散性および電気伝導性および硬度を良好に保持することができる。   In the wiring board of the present invention, preferably, the composite material includes cubic boron nitride particles contained in a metal, and the cubic boron nitride particles are contained in an amount of 30 to 80% by volume. Boron particles have excellent thermal chemical stability and are not easily altered even at high temperatures of about 900 ° C. Even when exposed to high temperature atmospheres of about 900 ° C, the heat dissipation and electrical conductivity of cubic boron nitride particles and Hardness can be kept good.

本発明の配線基板において、好ましくは、複合材に、ダイヤモンドの粒子および立方晶窒化ホウ素の粒子が含まれていることから、立方晶窒化ホウ素の粒子によって、複合材を熱的化学安定性に優れたものとすることができ、ダイヤモンドの粒子によって、複合材の熱放散性を補い、熱放散性を極めて良好なものとすることができる。   In the wiring board of the present invention, preferably, since the composite material contains diamond particles and cubic boron nitride particles, the composite material is excellent in thermal chemical stability by the cubic boron nitride particles. The diamond particles can supplement the heat dissipation of the composite material, and the heat dissipation can be made extremely good.

本発明の配線基板において、好ましくは、配線は、搭載部を中心に放射状に配置されていることから、放射状に配置された配線によって、電子部品から発生する熱を効率良く電子部品から離れた場所へと移送することができる。   In the wiring board of the present invention, preferably, since the wiring is arranged radially around the mounting portion, the heat generated from the electronic component is efficiently separated from the electronic component by the radially arranged wiring. Can be transferred to.

本発明の電子装置は、上記構成の配線基板の搭載部に電子部品が搭載されて成ることから、電子部品の冷却効果が大きく、高出力な電子装置とすることができる。   Since the electronic device of the present invention is formed by mounting the electronic component on the wiring board mounting portion having the above-described configuration, the electronic device has a large cooling effect and can be a high-power electronic device.

本発明の電子装置において、好ましくは、配線基板の配線は、電子部品に一定電位を供給する供給配線を含み、電子部品は、供給配線に搭載されて接続されていることから、電子部品から発生する大量の熱を供給配線を介して速やかに電子部品から離れた場所に移送することができるものとなる。   In the electronic device of the present invention, preferably, the wiring of the wiring board includes a supply wiring for supplying a constant potential to the electronic component, and the electronic component is mounted on and connected to the supply wiring. A large amount of heat can be quickly transferred to a place away from the electronic component via the supply wiring.

本発明の電子装置において、好ましくは、供給配線は、基体の搭載部を有する主面と反対側主面に配置されるとともに、基体に設けられた貫通孔を通じて搭載部に導出されて成り、導出部に電子部品が搭載されて接続されていることから、電子部品から発生する熱を供給配線を介して、基体の反対側主面側に導き、配線基板外部に放散させることができるものとなる。   In the electronic device of the present invention, preferably, the supply wiring is arranged on the main surface opposite to the main surface having the mounting portion of the base, and is led out to the mounting portion through a through hole provided in the base. Since the electronic component is mounted and connected to the part, the heat generated from the electronic component can be guided to the opposite main surface side of the base via the supply wiring and dissipated outside the wiring board. .

本発明の配線基板および電子装置について以下に詳細に説明する。図1(a)は本発明の配線基板および電子装置の実施の形態の一例を示す断面図であり、図1(b),(c)は本発明の配線基板および電子装置の実施の形態の他の例を示す断面図である。また、図2は本発明の配線基板に用いられる配線となる複合材表面が金属で覆われている状態を示す拡大断面図である。図3は、本発明の配線基板および電子装置の実施の形態の一例を示す平面図であり、図1(a),(b),(c)は図3の切断線A−A’における断面を示すものである。図4(a),(b)は本発明の配線基板および電子装置の実施の形態の他の例を示す断面図である
これらの図において、1は基体、2は配線、3は電子部品、6は放熱板であり、主として基体1,配線2で配線基板が構成され、主として基体1,配線2,電子部品3で電子装置が構成される。
The wiring board and electronic device of the present invention will be described in detail below. FIG. 1A is a cross-sectional view showing an example of an embodiment of a wiring board and an electronic device according to the present invention, and FIGS. 1B and 1C show an embodiment of the wiring board and the electronic device according to the present invention. It is sectional drawing which shows another example. FIG. 2 is an enlarged cross-sectional view showing a state in which the surface of the composite material to be used in the wiring board of the present invention is covered with metal. 3 is a plan view showing an example of an embodiment of a wiring board and an electronic device according to the present invention, and FIGS. 1A, 1B, and 1C are cross-sectional views taken along a cutting line AA ′ in FIG. Is shown. 4A and 4B are cross-sectional views showing other examples of embodiments of the wiring board and the electronic device of the present invention. In these drawings, 1 is a base, 2 is a wiring, 3 is an electronic component, Reference numeral 6 denotes a heat radiating plate. A wiring board is mainly composed of the base body 1 and the wiring 2, and an electronic device is mainly composed of the base body 1, the wiring 2 and the electronic component 3.

本発明の配線基板は、基体1の一方主面上に、電子部品3が搭載される搭載部1aを有し、電子部品3の電極が接続される配線2が設けられた配線基板であって、配線2は、少なくとも電子部品3側がダイヤモンドの粒子2aおよび立方晶窒化ホウ素(以下、cBNともいう)の粒子2aの少なくとも一方の粒子2aを金属2bに含有させた複合材から成る。   The wiring board of the present invention is a wiring board having a mounting portion 1a on which an electronic component 3 is mounted on one main surface of a base 1, and a wiring 2 to which an electrode of the electronic component 3 is connected. The wiring 2 is made of a composite material containing at least one particle 2a of diamond particles 2a and cubic boron nitride (hereinafter also referred to as cBN) 2a in the metal 2b at least on the electronic component 3 side.

本発明の電子装置は、上記構成の配線基板の搭載部1aに電子部品3が搭載されて成る。   The electronic device according to the present invention includes the electronic component 3 mounted on the mounting portion 1a of the wiring board having the above-described configuration.

本発明における基体1は、Al質セラミックス,AlN質セラミックス,ZrO質セラミックス,窒化珪素(Si)質セラミックス,炭化珪素(SiC)質セラミックス等のセラミックスや、ガラス、樹脂等の絶縁体から成る。以下、セラミックスから成る基体1を例に説明するが、その他の絶縁体でも同じ構成により同じ効果を得ることができる。 The substrate 1 in the present invention is made of ceramics such as Al 2 O 3 ceramics, AlN ceramics, ZrO 2 ceramics, silicon nitride (Si 3 N 4 ) ceramics, silicon carbide (SiC) ceramics, glass, resin, etc. Made of an insulator. Hereinafter, the substrate 1 made of ceramic will be described as an example, but other insulators can obtain the same effect with the same configuration.

図1(a),(b),図3,図4(a),(b)において、基体1はセラミックスから成る場合、例えば、その両主面に予めモリブデン(Mo),マンガン(Mn),タングステン(W)等のメタライズ層が施されており、その上にNi等の金属から成る金属層が被着されている。そして、その上側主面(一方主面)の金属層に銀(Ag)−Cuロウ,Agロウ,Alロウ,Ag−パラジウム(Pd)ロウ,Ag−Cu−Pdロウ等のロウ材や、錫(Sn)−Ag−Cu半田等の半田から成る第一の接合材1bを介して配線2が接合される。図1(b)においては、下側主面の金属層にAg−Cuロウ,Agロウ,Alロウ,Ag−Pdロウ,Ag−Cu−Pdロウ等のロウ材や、Sn−Ag−Cu半田等の半田から成る第二の接合材1cを介して金属板5が接合される。   1 (a), (b), FIG. 3, FIG. 4 (a), (b), when the substrate 1 is made of ceramics, for example, molybdenum (Mo), manganese (Mn), A metallized layer such as tungsten (W) is applied, and a metal layer made of a metal such as Ni is deposited thereon. Then, a brazing material such as silver (Ag) -Cu brazing, Ag brazing, Al brazing, Ag-palladium (Pd) brazing, Ag-Cu-Pd brazing, or the like is formed on the upper main surface (one main surface) of the metal layer. The wiring 2 is joined via the first joining material 1b made of solder such as (Sn) -Ag-Cu solder. In FIG. 1 (b), a brazing material such as Ag-Cu brazing, Ag brazing, Al brazing, Ag-Pd brazing, Ag-Cu-Pd brazing, or Sn-Ag-Cu solder is used for the metal layer on the lower main surface. The metal plate 5 is joined via the second joining material 1c made of solder such as.

なお、図4(b)においては、基体1の上下主面間に貫通孔1eが設けられ、基体1の下側主面に供給配線2cが第二の接合材1cを介して接合され、貫通孔1eを通じて供給配線2cが搭載部1aに導出されている。この場合、貫通孔1eの内面にもメタライズ層および金属層が被着され、貫通孔1eの内面と供給配線2cとが第二の接合材1cを介して接合されていてもよい。または、基体1にメタライズ層が施されずに、Ag−Cu−チタン(Ti)ロウ等の活性金属ロウ材を介して配線2および金属板5が基体1に直接接合されてもよい。またはDBC(Direct Bond Copper)法によって接合してもよい。配線2から基体1への熱伝導が可能なように配線2が基体1に十分強固に固定されておればよい。   In FIG. 4B, a through hole 1e is provided between the upper and lower main surfaces of the base 1, and the supply wiring 2c is bonded to the lower main surface of the base 1 via the second bonding material 1c. The supply wiring 2c is led out to the mounting portion 1a through the hole 1e. In this case, a metallized layer and a metal layer may be deposited also on the inner surface of the through hole 1e, and the inner surface of the through hole 1e and the supply wiring 2c may be bonded via the second bonding material 1c. Alternatively, the wiring 2 and the metal plate 5 may be directly bonded to the base 1 via an active metal brazing material such as Ag—Cu—titanium (Ti) brazing without the metallization layer being applied to the base 1. Or you may join by DBC (Direct Bond Copper) method. It is only necessary that the wiring 2 is sufficiently firmly fixed to the base 1 so that heat conduction from the wiring 2 to the base 1 is possible.

また、図1(c)において、基体1がセラミックスから成る場合、予め基体1の上側主面に凹部1dを設けておき、凹部1dに直接金属2bに粒子2aを含有させた複合材から成る配線2を形成してもよい。凹部1dの内面には、上記同様に金属2bが接合しやすいメタライズ処理が行なわれている。   Further, in FIG. 1C, when the substrate 1 is made of ceramics, a wiring made of a composite material in which a recess 1d is provided in advance on the upper main surface of the substrate 1, and the metal 2b contains particles 2a directly in the recess 1d. 2 may be formed. The metallization process which the metal 2b is easy to join to the inner surface of the recessed part 1d is performed like the above.

基体1は、例えば、Al質セラミックスから成る場合、先ずAl、酸化珪素(SiO)、酸化マグネシウム(MgO)および酸化カルシウム(CaO)等の原料粉末に適当な有機バインダー、可塑剤、溶剤等を添加混合して泥漿状と成す。これを従来周知のドクターブレード法やカレンダーロール法等のテープ成形技術によりセラミックグリーンシートを得る。次に、このセラミックグリーンシートに、必要に応じてWやMo等の高融点金属粉末に適当な有機バインダー、可塑剤、溶剤等を添加混合して得た金属ペーストを、スクリーン印刷法等の厚膜形成技術により印刷塗布して、メタライズ層を所定パターンに形成する。 When the base 1 is made of, for example, Al 2 O 3 ceramics, first, an organic binder suitable for raw material powders such as Al 2 O 3 , silicon oxide (SiO 2 ), magnesium oxide (MgO), and calcium oxide (CaO), A plasticizer, a solvent, etc. are added and mixed to form a slurry. From this, a ceramic green sheet is obtained by a conventionally known tape forming technique such as a doctor blade method or a calendar roll method. Next, a metal paste obtained by adding an appropriate organic binder, plasticizer, solvent, etc. to a high melting point metal powder such as W or Mo, if necessary, is mixed with this ceramic green sheet with a thickness such as a screen printing method. The metallized layer is formed into a predetermined pattern by printing and coating using a film forming technique.

配線2は、配線回路状になるように形成されており、電子部品3の電極をボンディングワイヤ等の電気的接続手段4を介して電気的に接続したり、上面に電子部品3を搭載する搭載部1aとしたりするものである。即ち、配線2は大電流の電気信号を電子部品3に供給するとともに、電子部品3の作動時に発生する熱を電子部品3から逃がして基体1に伝える役割を有するものである。なお、上面に電子部品3を搭載する搭載部1aとなる配線2は、電子部品3に接地電位または電源電圧等の一定電圧を供給する役割、または所定信号を供給する役割を有し、ここでは供給配線2cという。図示しないが、供給配線2cは、目的に応じて、搭載部1aと接地電位,電源電圧または所定信号を供給する配線回路上の他方端子とを接続している。また、搭載部1aに供給配線2cが設けられずに、基体1上に直接電子部品3が搭載されていてもよい。   The wiring 2 is formed so as to form a wiring circuit. The wiring of the electronic component 3 is electrically connected via an electrical connection means 4 such as a bonding wire, or the electronic component 3 is mounted on the upper surface. The part 1a is used. In other words, the wiring 2 has a role of supplying an electric signal of a large current to the electronic component 3 and transferring heat generated during operation of the electronic component 3 from the electronic component 3 to the base 1. Note that the wiring 2 serving as the mounting portion 1a for mounting the electronic component 3 on the upper surface has a role of supplying a constant voltage such as a ground potential or a power supply voltage to the electronic component 3 or a role of supplying a predetermined signal. This is referred to as supply wiring 2c. Although not shown, the supply wiring 2c connects the mounting portion 1a and the other terminal on the wiring circuit for supplying the ground potential, the power supply voltage, or the predetermined signal according to the purpose. Further, the electronic component 3 may be directly mounted on the base 1 without providing the supply wiring 2c in the mounting portion 1a.

配線2は、少なくとも電子部品3の電極が接続される側が、ダイヤモンドの粒子2aおよびcBNの粒子2aの少なくとも一方の粒子2a(以下、単に粒子2aともいう)をAg,CuまたはAl(アルミニウム)等の金属2bに含有させた複合材から成るものである。配線2が金属2bに粒子2aを含有させた複合材から成ることにより、配線2の熱伝導率を向上させることができ、電子部品3が作動する際に発生する熱を、電子部品3の電極に接続された配線2を介して基体1の広面積に拡散させることができる。また、配線2に大電流を流した際に配線2から発生する熱を十分に放散させることができる。したがって、近時の大電流で作動する電子部品3を用いても、電子部品3が温度上昇するのを防止でき、電子部品3を正常かつ安定に作動させることができる。   In the wiring 2, at least the electrode 2 of the electronic component 3 is connected to at least one of the diamond particles 2a and the cBN particles 2a (hereinafter also simply referred to as particles 2a) such as Ag, Cu, or Al (aluminum). It is made of a composite material contained in the metal 2b. Since the wiring 2 is made of a composite material in which the metal 2b contains the particles 2a, the thermal conductivity of the wiring 2 can be improved, and the heat generated when the electronic component 3 is operated is transferred to the electrode of the electronic component 3. It can be diffused over a wide area of the substrate 1 through the wiring 2 connected to the. Further, the heat generated from the wiring 2 when a large current is passed through the wiring 2 can be sufficiently dissipated. Therefore, even if the electronic component 3 that operates with a recent large current is used, the temperature of the electronic component 3 can be prevented and the electronic component 3 can be operated normally and stably.

ダイヤモンドまたはcBNの粒子2aは、熱伝導性に優れているという特性を有している。例えば、一般的に純度95質量%以上のAgの熱伝導率425W/m・K、純度95質量%以上のCuの熱伝導率400W/m・Kまたは純度95質量%以上のAlの熱伝導率236W/m・Kに対して、ダイヤモンドの粒子2aの熱伝導率は2000W/m・K、cBNの粒子2aの熱伝導率は1300W/m・Kと良好な特性を有している。これによって、粒子2aを金属2bに含有させた複合材は、優れた熱伝導性を有するものとなる。このような特性を利用するために、配線2は少なくとも電子部品3の電極が接続される高温側が、粒子2aを金属2bに含有させた複合材から成るのがよい。配線2に沿って熱が基体1等に放散されて十分低温になった後の配線2の他端側部分は、必ずしも複合材でなく、例えばCuまたはAg等の金属のみから成る線路とされてもよい。   The diamond or cBN particles 2a have the property of being excellent in thermal conductivity. For example, the thermal conductivity of Ag with a purity of generally 95% by mass or more is 425 W / m · K, the thermal conductivity of Cu with a purity of 95% by mass or more is 400 W / m · K, or the thermal conductivity of Al with a purity of 95% by mass or more. In contrast to 236 W / m · K, the thermal conductivity of diamond particles 2 a is 2000 W / m · K, and the thermal conductivity of cBN particles 2 a is 1300 W / m · K. As a result, the composite material in which the particles 2a are contained in the metal 2b has excellent thermal conductivity. In order to utilize such characteristics, it is preferable that the wiring 2 is made of a composite material in which particles 2a are contained in the metal 2b on at least the high temperature side to which the electrodes of the electronic component 3 are connected. The other end side portion of the wiring 2 after the heat is dissipated along the wiring 2 to the base body 1 or the like and the temperature becomes sufficiently low is not necessarily a composite material but a line made only of a metal such as Cu or Ag. Also good.

また、この構成により、配線2の熱膨張係数を小さくすることができ、基体1がセラミックス等の熱膨張係数の小さいものから成る場合、基体1と配線2とを接合する際に加える熱や、電子部品3が作動する際に発生する熱によって、基体1に配線2との熱膨張差による応力が大きく作用するのを防止することができる。その結果、基体1がクラック等によって破損してしまうのを有効に防止することができる。   Also, with this configuration, the thermal expansion coefficient of the wiring 2 can be reduced. When the base 1 is made of a material having a low thermal expansion coefficient such as ceramics, the heat applied when the base 1 and the wiring 2 are joined, It is possible to prevent the stress generated by the difference in thermal expansion from the wiring 2 from acting on the base body 1 due to the heat generated when the electronic component 3 operates. As a result, it is possible to effectively prevent the base body 1 from being damaged by cracks or the like.

ダイヤモンドの粒子2aの熱膨張係数は3.1×10-6/K、cBNの粒子2aの熱膨張係数は4.7×10-6/Kであることから、例えばAgの熱膨張係数18.9×10-6/K、Cuの熱膨張係数16.5×10-6/K、またはAlの熱膨張係数23.1×10-6/Kよりも熱膨張係数が小さい粒子2aを金属2bに含有させた複合材から成る配線2は、その熱膨張係数も小さなものとすることができる。 Since the thermal expansion coefficient of the diamond particle 2a is 3.1 × 10 −6 / K and the thermal expansion coefficient of the cBN particle 2a is 4.7 × 10 −6 / K, for example, the thermal expansion coefficient of Ag is 18.9 × 10 −6 / K. Wiring 2 made of a composite material in which particles 2a having a thermal expansion coefficient smaller than that of K, Cu 16.5 × 10 −6 / K, or Al thermal expansion coefficient 23.1 × 10 −6 / K are contained in metal 2b The coefficient of thermal expansion can also be made small.

これによって、基体1に配線2との熱膨張差による応力が大きく作用するのを防止することができることから、配線2の周囲に設けられる第一の接合材1bのメニスカスを小さくしても、基体1へ伝わる応力を充分緩和させることができるようになる。即ち、基体1表面に形成されるメタライズ層は配線2よりも幅広にしておき、第一の接合材1bがメタライズ層の表面から配線2の側面にかけて良好なメニスカスを形成するようにしておくことによって、配線2と基体1との間に生じる熱膨張差をこの第一の接合材1bのメニスカスに吸収させるようにするのであるが、基体1と配線2との熱膨張差が小さい場合には、このメニスカスも小さなものとすることができる。したがって、メタライズ層の幅を狭くし、隣接する配線2同士の間隔を小さくして、配線回路を高密度に設けることができるようになる。   As a result, it is possible to prevent a large amount of stress due to a difference in thermal expansion with the wiring 2 from acting on the base 1, so that the base can be reduced even if the meniscus of the first bonding material 1 b provided around the wiring 2 is reduced. The stress transmitted to 1 can be sufficiently relaxed. That is, the metallized layer formed on the surface of the substrate 1 is made wider than the wiring 2, and the first bonding material 1b forms a good meniscus from the surface of the metallized layer to the side of the wiring 2. The thermal expansion difference generated between the wiring 2 and the substrate 1 is absorbed by the meniscus of the first bonding material 1b. If the thermal expansion difference between the substrate 1 and the wiring 2 is small, This meniscus can also be small. Therefore, the width of the metallized layer is reduced and the distance between adjacent wirings 2 is reduced, so that the wiring circuits can be provided with high density.

また、基体1と配線2との熱膨張差が小さくなることから、基体1に配線2を接合して配線基板とする際に配線基板に生ずる反り変形が小さくなり、従来反り変形を相殺するために設けていた基体1の下側主面の金属板5を設ける必要性が小さくなる。   In addition, since the difference in thermal expansion between the base 1 and the wiring 2 is reduced, the warpage deformation generated in the wiring board when the wiring 2 is joined to the base 1 to form a wiring board is reduced, so that the conventional warpage deformation is offset. The necessity of providing the metal plate 5 on the lower main surface of the base body 1 provided on the substrate 1 is reduced.

また、配線2が金属2bにダイヤモンドの粒子2aおよびcBNの粒子2aの少なくとも一方の粒子2aを含有させた複合材から成ることで、ダイヤモンドおよびcBNは非常に硬い材料であることから、配線2の硬度が増し、ボンディングワイヤ等の電気的接続手段4を超音波ボンダーで振動を加えて接続する際に、配線2が超音波振動を吸収し難く、ボンディングワイヤ等の電気的接続手段4を配線2に確実かつ短時間で効率良く接続することができる。すなわち、配線2表面のCu等金属2bが粒子2aによって保持されるので、超音波振動を加えたときに、金属2bが一緒に振動してしまい難くなり、ボンディングワイヤの接続を確実なものとできる。   Further, since the wiring 2 is made of a composite material in which at least one particle 2a of diamond particles 2a and cBN particles 2a is contained in the metal 2b, diamond and cBN are very hard materials. When the electrical connection means 4 such as a bonding wire is connected by applying vibration with an ultrasonic bonder, the wiring 2 is difficult to absorb the ultrasonic vibration, and the electrical connection means 4 such as a bonding wire is connected to the wiring 2. Reliable and efficient in a short time. That is, since the metal 2b such as Cu on the surface of the wiring 2 is held by the particles 2a, it is difficult for the metal 2b to vibrate together when ultrasonic vibration is applied, and the bonding wire can be reliably connected. .

また、金属2bにダイヤモンドの粒子2aおよび立方晶窒化ホウ素の粒子2aの少なくとも一方の粒子2aを含有させて複合材とすることによって、配線2の硬度が増し、配線2の剛性が増すことから、配線2が基体1を補強する作用を為すようになる。その結果、配線基板を放熱板6へ実装する際に外力が加わっても、基体1がクラック等によって破損し難くできる。すなわち、基体1に接合された配線2の硬度が増すことにより、配線2が変形し難くなり、基体1に配線2が接合されて成る配線基板も変形し難く容易に折損しないものとなる。   Further, since the metal 2b contains at least one particle 2a of diamond particles 2a and cubic boron nitride particles 2a to form a composite material, the hardness of the wiring 2 is increased and the rigidity of the wiring 2 is increased. The wiring 2 works to reinforce the base 1. As a result, even if an external force is applied when the wiring board is mounted on the heat sink 6, the base body 1 can be hardly damaged by cracks or the like. That is, as the hardness of the wiring 2 bonded to the base 1 is increased, the wiring 2 is hardly deformed, and the wiring board formed by bonding the wiring 2 to the base 1 is also difficult to deform and is not easily broken.

好ましくは、複合材を形成する金属2bは、AgまたはCuを含むのがよい。AgまたはCuは熱伝導率が優れているので、配線2の熱伝導率を向上させることができる。電子部品3が作動する際に発生する熱が増大しても、電子部品3から発生する熱を十分に放散させることができる。   Preferably, the metal 2b forming the composite material contains Ag or Cu. Since Ag or Cu has excellent thermal conductivity, the thermal conductivity of the wiring 2 can be improved. Even if the heat generated when the electronic component 3 operates increases, the heat generated from the electronic component 3 can be sufficiently dissipated.

さらに好ましくは、複合材を形成する金属2bは、純度99質量%以上のAgまたは純度99質量%以上のCuであるのがよい。純度99質量%以上のAgは熱伝導率が428W/m・K、純度99質量%以上のCuは熱伝導率が403W/m・Kであるので、配線2の熱伝導率および電気導電率をさらに向上させることができる。そして、電子部品3が作動する際に発生する熱が増大しても、電子部品3から発生する熱を極めて効率良く放散させることができる。   More preferably, the metal 2b forming the composite material is Ag having a purity of 99% by mass or more or Cu having a purity of 99% by mass or more. Ag with a purity of 99% by mass or more has a thermal conductivity of 428 W / m · K, and Cu with a purity of 99% by mass or more has a thermal conductivity of 403 W / m · K. Further improvement can be achieved. And even if the heat generated when the electronic component 3 operates increases, the heat generated from the electronic component 3 can be dissipated very efficiently.

また好ましくは、複合材の表面は、図2に断面図を示すように、複合材を形成する金属2bによって覆われているのがよい。配線2の周囲が低抵抗の金属2bによって覆われることにより、配線に高周波信号を流した際の表皮効果に対応することができ、配線の高周波特性に優れたものとできる。また、複合材の表面を覆う金属2bによって、配線2を基体1に接合するための第一の接合材1bが配線2の表面を濡れ広がり易くなり、基体1との接合強度を高いものとすることができ、配線2を基体1に強固に接合させることができる。また、複合材の表面を覆う金属2bによって、ボンディングワイヤ等の電気的接続手段4との接続強度も向上させることができる。また、複合材の表面を覆う金属2bは粒子2aを含有しているものであるから、粒子2aとの密着強度に優れたものとなる。   Preferably, the surface of the composite material is covered with a metal 2b forming the composite material, as shown in a sectional view in FIG. By covering the periphery of the wiring 2 with the low-resistance metal 2b, it is possible to cope with the skin effect when a high-frequency signal is passed through the wiring, and the high-frequency characteristics of the wiring can be improved. Further, the metal 2b covering the surface of the composite material makes it easy for the first bonding material 1b for bonding the wiring 2 to the base body 1 to wet and spread on the surface of the wiring 2 and to increase the bonding strength with the base body 1. The wiring 2 can be firmly bonded to the base 1. Moreover, the connection strength with the electrical connection means 4 such as a bonding wire can be improved by the metal 2b covering the surface of the composite material. Moreover, since the metal 2b covering the surface of the composite material contains the particles 2a, the adhesion strength with the particles 2a is excellent.

配線2となる複合材の上下主面を覆う金属2bの厚みは、それぞれ20μm〜30μm程度であるのがよく、この厚みで金属2bが複合材の上下主面を覆うことによって、配線2が第一の接合材1bを介して基体1に強固に接合できるとともに、配線2の熱伝導率を良好なものとすることができる。複合材の上下主面を覆う金属2bの厚みが20μm未満の場合、金属2bが全て第一の接合材1bに溶け込んで消失してしまい易く、配線2を第一の接合材1bを介して基体1に接合する際に、粒子2aと第一の接合材1bとの接合力が十分でないために、配線2が基体1から剥離し易くなる。また、複合材の上下主面を覆う金属2bの厚みが30μmを超えて大きい場合、複合材の表面を覆う金属2bにより熱伝導が阻害され易く、配線2の熱伝導率が低下する傾向にある。   The thickness of the metal 2b covering the upper and lower main surfaces of the composite material to be the wiring 2 is preferably about 20 μm to 30 μm. The metal 2b covers the upper and lower main surfaces of the composite material with this thickness, so that the wiring 2 While being able to join firmly to the base | substrate 1 through the one joining material 1b, the thermal conductivity of the wiring 2 can be made favorable. When the thickness of the metal 2b covering the upper and lower main surfaces of the composite material is less than 20 μm, all the metal 2b is likely to melt into the first bonding material 1b and disappear, and the wiring 2 is formed through the first bonding material 1b. 1, the bonding force between the particles 2 a and the first bonding material 1 b is not sufficient, so that the wiring 2 is easily peeled from the substrate 1. Moreover, when the thickness of the metal 2b covering the upper and lower main surfaces of the composite material is larger than 30 μm, the heat conduction is likely to be hindered by the metal 2b covering the surface of the composite material, and the thermal conductivity of the wiring 2 tends to decrease. .

また、配線2となる複合材の側面を覆う金属2bの厚みは、それぞれ20μm〜300μm程度であるのがよく、この厚みで複合材の側面を金属2bが覆うことによって、配線2が第一の接合材1bを介して基体1に強固に接合されるとともに、配線2の熱膨張係数が大きくなるのを防止することができる。複合材の側面を覆う金属2bの厚みが20μm未満の場合、複合材の側面を覆う金属2bの厚みが全て第一の接合材1bに溶け込んで消失してしまい易く、配線2を第一の接合材1bを介して基体1に接合した際に、粒子2aと第一の接合材1bとの接合力が十分でないために、配線2が基体1から剥離し易くなる。また、複合材の側面を覆う金属2bの厚みが300μmを超えて大きい場合、配線2の熱膨張係数が大きくなり、基体1との熱膨張差が大きくなって、基体1にクラック等の破損が発生し易くなる。   Further, the thickness of the metal 2b covering the side surface of the composite material to be the wiring 2 is preferably about 20 μm to 300 μm, respectively, and the metal 2b covers the side surface of the composite material with this thickness, so that the wiring 2 is the first. While being firmly bonded to the base 1 via the bonding material 1b, it is possible to prevent the thermal expansion coefficient of the wiring 2 from increasing. When the thickness of the metal 2b covering the side surface of the composite material is less than 20 μm, all the thickness of the metal 2b covering the side surface of the composite material easily melts into the first bonding material 1b and disappears. When bonded to the substrate 1 through the material 1b, the bonding force between the particles 2a and the first bonding material 1b is not sufficient, so that the wiring 2 is easily peeled from the substrate 1. Further, when the thickness of the metal 2b covering the side surface of the composite material is larger than 300 μm, the thermal expansion coefficient of the wiring 2 is increased, the thermal expansion difference from the base 1 is increased, and the base 1 is damaged such as cracks. It tends to occur.

好ましくは、複合材は、ダイヤモンドの粒子2aを金属2bに含有させて成り、ダイヤモンドの粒子2aが30〜80体積%含まれている。この構成により、複合材の熱放散性を良好なものとすることができるとともに、複合材の硬度を高いものとすることができ、さらに、複合材の熱膨張係数を小さな熱膨張係数のものとし、小さな熱膨張係数の基体1の場合に複合材との熱膨張差による応力が大きく作用しないようにすることができる。ダイヤモンドの粒子2aの含有率を30体積%未満とすると、複合材の熱放散性を良好なものとすることが困難になり、ダイヤモンドの粒子2aの含有率を80体積%を超えて大きくすると、金属2bの含有率が小さくなり脆性破壊し易くなる。   Preferably, the composite material includes diamond particles 2a contained in metal 2b, and 30 to 80% by volume of diamond particles 2a is contained. With this configuration, the heat dissipation property of the composite material can be improved, the hardness of the composite material can be increased, and the thermal expansion coefficient of the composite material can be made to have a small thermal expansion coefficient. In the case of the substrate 1 having a small coefficient of thermal expansion, it is possible to prevent the stress due to the difference in thermal expansion from the composite material from acting greatly. If the content of diamond particles 2a is less than 30% by volume, it will be difficult to improve the heat dissipation of the composite material. If the content of diamond particles 2a is increased to more than 80% by volume, The content of the metal 2b is reduced, and brittle fracture is likely to occur.

また、好ましくは、複合材は、cBNの粒子2aを金属2bに含有させて成り、cBNの粒子2aが30〜80体積%含まれている。cBNの粒子2aは、熱的化学安定性に優れ900℃程度の高温においても変質し難いので、900℃程度の高温雰囲気に曝した場合においてもcBNの粒子2aが有する熱放散性および電気伝導性および硬度を良好に保持することができる。すなわち、cBNの粒子2aを高温雰囲気に曝しても、熱放散性および電気伝導性および硬度の特性を損なうことを防止できることから、cBNの粒子2aを金属2bに含有させる際に高温で加熱したり、複合材から成る配線2を基体1にロウ付け等の手段で接合する際に高温で加熱したりする際にも、複合材のこれら熱放散性および電気伝導性および硬度の特性を損なわないようにすることができる。   Preferably, the composite material includes cBN particles 2a in metal 2b, and 30-80% by volume of cBN particles 2a is contained. The cBN particles 2a are excellent in thermal chemical stability and hardly change in quality even at a high temperature of about 900 ° C. Therefore, even when exposed to a high temperature atmosphere of about 900 ° C., the heat dissipation and electrical conductivity of the cBN particles 2a And the hardness can be kept good. That is, even if the cBN particles 2a are exposed to a high-temperature atmosphere, the heat dissipation, electrical conductivity, and hardness characteristics can be prevented from being impaired. Therefore, when the cBN particles 2a are contained in the metal 2b, they are heated at a high temperature. Even when the wiring 2 made of the composite material is joined to the substrate 1 by means of brazing or the like, even when heated at a high temperature, the heat dissipation, electrical conductivity and hardness characteristics of the composite material are not impaired. Can be.

さらに、複合材の熱膨張係数を小さなものとでき、小さな熱膨張係数の基体の場合に、複合材との熱膨張差による応力が大きく作用しないようにすることができる。なお、cBNの粒子2aの含有率を30体積%未満とすると、複合材の熱放散性を良好なものとすることが困難になり、cBNの粒子2aの含有率を80体積%を超えて大きくすると、金属2bの含有率が小さくなり脆性破壊し易くなる。   Furthermore, the thermal expansion coefficient of the composite material can be made small, and in the case of a substrate having a small thermal expansion coefficient, stress due to the difference in thermal expansion from the composite material can be prevented from acting greatly. If the content of the cBN particles 2a is less than 30% by volume, it becomes difficult to improve the heat dissipation property of the composite material, and the content of the cBN particles 2a exceeds 80% by volume. Then, the content rate of the metal 2b becomes small, and brittle fracture becomes easy.

また、好ましくは、複合材に、ダイヤモンドおよびcBNの粒子双方を含有させてもよい。ダイヤモンドの粒子2aおよびcBNの粒子2aが含まれていることから、cBNの粒子2aによって、複合材を熱的化学安定性に優れたものとすることができ、ダイヤモンドの粒子2aによって、複合材の熱放散性を補い、熱放散性を極めて良好なものとすることができる。また、複合材の硬度を高いものとすることができるとともに、複合材の熱膨張係数を基体1の熱膨張係数に近いものとし、基体1に複合材との熱膨張差による応力が大きく作用してしまうのを有効に防止することができる。例えば、複合材に、ダイヤモンドの粒子2aを10〜30体積%、cBNの粒子2aを50〜70体積%含ませればよい。   Preferably, the composite material may contain both diamond and cBN particles. Since the diamond particles 2a and the cBN particles 2a are included, the composite material can be made excellent in thermal chemical stability by the cBN particles 2a. The heat dissipation can be supplemented and the heat dissipation can be made extremely good. Further, the hardness of the composite material can be increased, and the thermal expansion coefficient of the composite material is made close to the thermal expansion coefficient of the base 1, so that stress due to a difference in thermal expansion from the composite material acts on the base 1 greatly. Can be effectively prevented. For example, the composite material may contain 10 to 30% by volume of diamond particles 2a and 50 to 70% by volume of cBN particles 2a.

ダイヤモンドの粒子2aおよびcBNの粒子2aの少なくとも一方の粒子2aを金属2bに含有させた複合材から成る配線2は、例えば、ダイヤモンドの粒子2aを金属2bとしてのCuに含有させた複合材(以下、Cu−ダイヤモンド複合材ともいう)から成る場合、顆粒状のダイヤモンドの粒子2aと顆粒状のCu粒子とを治具内に充填して加圧するとともに非酸化雰囲気下において約1100℃で加熱することによって所定の形状に形成され、Cu中にダイヤモンドの粒子が分散した状態のCu−ダイヤモンド複合材が形成される。なお、このような製造方法によって製造されるCu−ダイヤモンド複合材のCuの含有率は50〜70体積%とすることができ、治具により平板状または配線2の形状に形成される。平板状に形成される場合は、平板状に形成した後に、切削加工や打ち抜き加工等の金属加工を施すことによって、配線2の所定の形状に作製される。なお、ダイヤモンドの粒子の大きさは0.5mm〜0.6mm、Cu粒子の大きさは0.01mm〜0.6mmのものを用いる。   The wiring 2 made of a composite material in which at least one particle 2a of the diamond particle 2a and the cBN particle 2a is contained in the metal 2b is, for example, a composite material in which the diamond particle 2a is contained in Cu as the metal 2b (hereinafter referred to as the metal 2b). In the case of a Cu-diamond composite material), the granular diamond particles 2a and the granular Cu particles are filled in a jig and pressed, and heated at about 1100 ° C. in a non-oxidizing atmosphere. To form a predetermined shape, and a Cu-diamond composite material in which diamond particles are dispersed in Cu is formed. In addition, the Cu content of the Cu-diamond composite material manufactured by such a manufacturing method can be 50 to 70% by volume, and is formed into a flat plate shape or a wiring 2 shape by a jig. In the case of being formed into a flat plate shape, the wiring 2 is formed into a predetermined shape by performing metal processing such as cutting or punching after the flat plate is formed. Diamond particles having a size of 0.5 mm to 0.6 mm and Cu particles having a size of 0.01 mm to 0.6 mm are used.

または、顆粒状のダイヤモンドの粒子2aを治具内に予め充填しておき、次いで非酸化雰囲気下において治具内のダイヤモンドの粒子2a間に金属2bとして溶融したCuを流し込むことによって所定の形状に形成され、ダイヤモンドの粒子2a間にCuが溶けこんだ状態のCu−ダイヤモンド複合材が形成される。なお、このような製造方法によって製造されるCu−ダイヤモンド複合材のCuの含有率は20〜60体積%とすることができ、治具により平板状または配線2の形状に形成される。平板状に形成される場合は、平板状に形成した後に、切削加工や打ち抜き加工等の金属加工を施すことによって、配線2の所定の形状に作製される。なお、ダイヤモンドの粒子2aの大きさは0.5mm〜0.6mmのものを用いる。   Alternatively, granular diamond particles 2a are filled in advance in a jig, and then molten Cu as metal 2b is poured between the diamond particles 2a in the jig in a non-oxidizing atmosphere to obtain a predetermined shape. Thus, a Cu-diamond composite material in which Cu is dissolved between the diamond particles 2a is formed. Note that the Cu content of the Cu-diamond composite material manufactured by such a manufacturing method can be 20 to 60% by volume, and is formed into a flat plate shape or the shape of the wiring 2 by a jig. In the case of being formed into a flat plate shape, the wiring 2 is formed into a predetermined shape by performing metal processing such as cutting or punching after the flat plate is formed. The diamond particles 2a having a size of 0.5 mm to 0.6 mm are used.

また、配線2は、例えば、ダイヤモンドの粒子2aを金属2bとしてAlに含有させた複合材(以下、Al−ダイヤモンド複合材ともいう)から成る場合、顆粒状のダイヤモンドの粒子2aと顆粒状のAl粒子とを治具内に充填して加圧するとともに非酸化雰囲気下において約700℃で加熱することによって所定の形状に形成され、Al中にダイヤモンドの粒子が分散した状態のAl−ダイヤモンド複合材が形成される。なお、このような製造方法によって製造されるAl−ダイヤモンド複合材のAlの含有率は50〜70体積%とすることができ、治具により平板状または配線2の形状に形成される。平板状に形成される場合は、平板状に形成した後に、切削加工や打ち抜き加工等の金属加工を施すことによって、配線2の所定の形状に作製される。なお、ダイヤモンドの粒子の大きさは0.5mm〜0.6mm、アルミニウム粒子の大きさは0.01mm〜0.6mmのものを用いる。   For example, when the wiring 2 is made of a composite material in which diamond particles 2a are contained in Al as metal 2b (hereinafter also referred to as Al-diamond composite material), granular diamond particles 2a and granular Al The Al-diamond composite material is formed in a predetermined shape by filling particles in a jig and pressurizing them and heating them at about 700 ° C. in a non-oxidizing atmosphere, in which diamond particles are dispersed in Al. It is formed. In addition, the Al content of the Al-diamond composite material manufactured by such a manufacturing method can be 50 to 70% by volume, and is formed into a flat plate shape or a wiring 2 shape by a jig. In the case of being formed into a flat plate shape, the wiring 2 is formed into a predetermined shape by performing metal processing such as cutting or punching after the flat plate is formed. Diamond particles having a size of 0.5 mm to 0.6 mm and aluminum particles having a size of 0.01 mm to 0.6 mm are used.

または、顆粒状のダイヤモンドの粒子2aを治具内に予め充填しておき、次いで非酸化雰囲気下において治具内のダイヤモンドの粒子2a間に金属2bとして溶融したAlを流し込むことによって所定の形状に形成され、ダイヤモンドの粒子2a間にAlが溶けこんだ状態のAl−ダイヤモンド複合材が形成される。なお、このような製造方法によって製造されるAl−ダイヤモンド複合材のAlの含有率は20〜60体積%とすることができ、治具により平板状または配線2の形状に形成される。平板状に形成される場合は、平板状に形成した後に、切削加工や打ち抜き加工等の金属加工を施すことによって、配線2の所定の形状に作製される。なお、ダイヤモンドの粒子2aの大きさは0.5mm〜0.6mmのものを用いる。   Alternatively, granular diamond particles 2a are preliminarily filled in a jig, and then molten Al as a metal 2b is poured between the diamond particles 2a in the jig in a non-oxidizing atmosphere to obtain a predetermined shape. Thus, an Al-diamond composite material in which Al is dissolved between the diamond particles 2a is formed. Note that the Al content of the Al-diamond composite material manufactured by such a manufacturing method can be 20 to 60% by volume, and is formed into a flat plate shape or the shape of the wiring 2 by a jig. In the case of being formed into a flat plate shape, the wiring 2 is formed into a predetermined shape by performing metal processing such as cutting or punching after the flat plate is formed. The diamond particles 2a having a size of 0.5 mm to 0.6 mm are used.

また、配線2は、例えば、cBNの粒子2aを金属2bとしてCuに含有させた複合材(以下、Cu−cBN複合材ともいう)から成る場合、例えば、顆粒状のcBNの粒子2aと顆粒状のCu粒子とを治具内に充填して加圧するとともに非酸化雰囲気下において約1100℃で加熱することによって所定の形状に形成され、Cu中にcBNの粒子2aが分散した状態のCu−cBN複合材が形成される。なお、このような製造方法によって製造されるCu−cBN複合材の金属2bの含有率は50〜70体積%とすることができ、治具により平板状または配線2の形状に形成される。平板状に形成される場合は、平板状に形成した後に、切削加工や打ち抜き加工等の金属加工を施すことによって、配線2の所定の形状に作製される。なお、cBNの粒子2aの大きさは0.5mm〜0.6mm、Cu粒子の大きさは0.01mm〜0.6mmのものを用いる。   For example, when the wiring 2 is made of a composite material in which cBN particles 2a are contained in Cu as the metal 2b (hereinafter also referred to as Cu-cBN composite material), for example, granular cBN particles 2a and granular materials are used. Cu-cBN is formed in a predetermined shape by filling and pressurizing Cu particles in a jig and heating at about 1100 ° C. in a non-oxidizing atmosphere, in which cBN particles 2a are dispersed in Cu. A composite material is formed. In addition, the content rate of the metal 2b of the Cu-cBN composite material manufactured by such a manufacturing method can be 50-70 volume%, and it forms in the shape of flat form or the wiring 2 with a jig | tool. In the case of being formed into a flat plate shape, the wiring 2 is formed into a predetermined shape by performing metal processing such as cutting or punching after the flat plate is formed. The cBN particles 2a have a size of 0.5 mm to 0.6 mm, and the Cu particles have a size of 0.01 mm to 0.6 mm.

または、顆粒状のcBNの粒子2aを治具内に予め充填しておき、次いで非酸化雰囲気下において治具内のcBNの粒子2a間に溶融したCuを流し込むことによって所定の形状に形成され、cBNの粒子2a間にCuが溶けこんだ状態のCu−cBN複合材が形成される。なお、このような製造方法によって製造されるCu−cBN複合材の金属2bの含有率は20〜60体積%となり、治具により平板状または配線2の形状に形成される。平板状に形成される場合は、平板状に形成した後に、切削加工や打ち抜き加工等の金属加工を施すことによって、配線2の所定の形状に作製される。なお、cBN粒子の大きさは0.5mm〜0.6mmのものを用いる。   Alternatively, granular cBN particles 2a are pre-filled in a jig, and then formed into a predetermined shape by pouring molten Cu between the cBN particles 2a in the jig under a non-oxidizing atmosphere, A Cu-cBN composite material in which Cu is dissolved between the cBN particles 2a is formed. In addition, the content rate of the metal 2b of the Cu-cBN composite material manufactured by such a manufacturing method will be 20-60 volume%, and it will form in the shape of a flat plate or the wiring 2 with a jig | tool. In the case of being formed into a flat plate shape, the wiring 2 is formed into a predetermined shape by performing metal processing such as cutting or punching after the flat plate is formed. In addition, the size of cBN particles is 0.5 mm to 0.6 mm.

また、ダイヤモンドの粒子2aとcBNの粒子2aの両方が金属2bに含有される場合においても、上記と同様の方法によって製造される。即ち、顆粒状のダイヤモンドの粒子2aと顆粒状のcBNの粒子2aと顆粒状の金属2bの粒子とを治具内に充填して加圧するとともに非酸化雰囲気下において高温で加熱することによって所定の形状に形成される。または、顆粒状のダイヤモンドの粒子2aと顆粒状のcBNの粒子2aを治具内に予め充填しておき、次いで非酸化雰囲気下において治具内のダイヤモンドの粒子2aとcBNの粒子2a間に溶融した金属を流し込むことによって所定の形状に形成される。   Further, even when both the diamond particle 2a and the cBN particle 2a are contained in the metal 2b, it is produced by the same method as described above. Specifically, granular diamond particles 2a, granular cBN particles 2a, and granular metal 2b particles are filled in a jig, pressed, and heated at a high temperature in a non-oxidizing atmosphere. It is formed into a shape. Alternatively, granular diamond particles 2a and granular cBN particles 2a are pre-filled in a jig, and then melted between diamond particles 2a and cBN particles 2a in the jig in a non-oxidizing atmosphere. It is formed into a predetermined shape by pouring in the metal.

ここで、好ましくは、複合材中のダイヤモンドの粒子2aおよびcBNの粒子2aの表面にはシリコン(Si)やTi等の金属との濡れ性に優れる金属層を被着させておくのがよく、ダイヤモンドの粒子2aおよびcBNの粒子2aの表面に確実に金属2bを密着させることができ、複合材の熱放散性をさらに向上させることができる。この金属層は蒸着法等によって、粒子2aの表面に被着され、厚さ0.01μm〜1μm程度で被着される。   Here, preferably, a metal layer excellent in wettability with a metal such as silicon (Si) or Ti is deposited on the surfaces of the diamond particles 2a and the cBN particles 2a in the composite material, The metal 2b can be reliably adhered to the surface of the diamond particle 2a and the cBN particle 2a, and the heat dissipation of the composite material can be further improved. This metal layer is deposited on the surface of the particle 2a by vapor deposition or the like, and is deposited with a thickness of about 0.01 μm to 1 μm.

粒子2aと金属2bとの密着性の点において好ましくは、金属2bとしてAlを用い、粒子2aの表面にSiから成る金属層を被着させておくのがよい。この構成により、粒子2a表面に被着されたSiとAlとを化学的反応させて、粒子2a表面にAl−Si合金を形成することができ、粒子2aと金属2bとの密着性を極めて良好なものとすることができる。   In view of adhesion between the particles 2a and the metal 2b, preferably, Al is used as the metal 2b, and a metal layer made of Si is deposited on the surface of the particle 2a. With this configuration, Si and Al deposited on the surface of the particle 2a can be chemically reacted to form an Al—Si alloy on the surface of the particle 2a, and the adhesion between the particle 2a and the metal 2b is extremely good. Can be.

以上のように作製された配線2は、基体1の上に被着されたNi等の金属から成る金属層にAg−Cuロウ,Agロウ,Alロウ,Ag−Pdロウ,Ag−Cu−Pdロウ等のロウ材や、Sn−Ag−Cu半田等の半田から成る第一の接合材1bを介して配線2が接合される。または、基体1にメタライズ層が施されずに、Ag−Cu−Tiロウ等の活性金属ロウ材を介して基体1に直接接合される。   The wiring 2 produced as described above is formed on a metal layer made of a metal such as Ni deposited on the substrate 1 with Ag—Cu solder, Ag solder, Al solder, Ag—Pd solder, Ag—Cu—Pd. The wiring 2 is bonded through a first bonding material 1b made of a brazing material such as brazing or solder such as Sn-Ag-Cu solder. Alternatively, the substrate 1 is directly bonded to the substrate 1 through an active metal brazing material such as Ag—Cu—Ti brazing without being provided with a metallized layer.

例えば、配線2となる複合材において金属2bがCu,Agである場合、第一の接合材1bは、Ag−Cuロウ,Agロウ,Sn−Ag−Cu半田,Ag−Cu−Tiロウを用いるのが良く、基体1と配線2との接合を強固なものとすることができる。   For example, when the metal 2b is Cu or Ag in the composite material used as the wiring 2, the first bonding material 1b uses Ag—Cu solder, Ag solder, Sn—Ag—Cu solder, or Ag—Cu—Ti solder. The bonding between the substrate 1 and the wiring 2 can be made strong.

また例えば、配線2となる複合材において金属2bがAlである場合、好ましくは、第一の接合材1bは、Alロウ,Ag−Pdロウ,Ag−Cu−Pdロウ,Sn−Ag−Cu半田,Ag−Cu−Tiロウを用いるのが良く、基体1と配線2との接合を強固なものとすることができる。   For example, when the metal 2b is Al in the composite material used as the wiring 2, it is preferable that the first bonding material 1b is Al solder, Ag-Pd solder, Ag-Cu-Pd solder, Sn-Ag-Cu solder. , Ag—Cu—Ti solder is preferably used, and the bonding between the substrate 1 and the wiring 2 can be made strong.

好ましくは、配線2を基体1に接合した後、配線2の表面にNiから成る金属層を1μm〜8μmの厚さで被着させるのがよく、この構成により、配線2の表面の耐食性を向上させるとともに、電子部品3の接合強度を良好なものとすることができ、ボンディングワイヤ等の電気的接続手段4の接続信頼性を向上させることができる。このNiから成る金属層は、例えば無電解メッキ法によって、被着形成される。   Preferably, after the wiring 2 is bonded to the substrate 1, a metal layer made of Ni is applied to the surface of the wiring 2 with a thickness of 1 μm to 8 μm. With this configuration, the corrosion resistance of the surface of the wiring 2 is improved. In addition, the bonding strength of the electronic component 3 can be improved, and the connection reliability of the electrical connection means 4 such as a bonding wire can be improved. The metal layer made of Ni is deposited by, for example, electroless plating.

また、図1(c)においては、上記の製造方法において、凹部1dが治具の代わりを成し、治具を用いずに粒子2aを金属2bに含有させた複合材から成る配線2を形成することができる。即ち、凹部1dに顆粒状のダイヤモンドの粒子2aまたはcBNの粒子2aと顆粒状の金属の粒子とを充填して加圧するとともに非酸化雰囲気下において高温で加熱することによって所定の形状に形成され、金属2bにダイヤモンドの粒子2aまたはcBNの粒子2aが分散した状態の複合材が形成される。または、凹部1dに顆粒状のダイヤモンドの粒子2aまたはcBNの粒子2aを予め充填しておき、次いで非酸化雰囲気下において凹部1d内のダイヤモンドの粒子2aまたはcBNの粒子2aに溶融した金属2bを流し込むことによって所定の形状に形成され、ダイヤモンドの粒子2aまたはcBNの粒子2a間に金属2bが溶けこんだ状態の複合材が形成される。   Further, in FIG. 1C, in the above manufacturing method, the concave portion 1d replaces the jig, and the wiring 2 made of the composite material in which the particles 2a are contained in the metal 2b without using the jig is formed. can do. That is, the recess 1d is filled with granular diamond particles 2a or cBN particles 2a and granular metal particles, pressed and heated to a high temperature in a non-oxidizing atmosphere, and formed into a predetermined shape. A composite material in which diamond particles 2a or cBN particles 2a are dispersed in metal 2b is formed. Alternatively, the concave diamond 1d is filled with granular diamond particles 2a or cBN particles 2a in advance, and then molten metal 2b is poured into the diamond particles 2a or cBN particles 2a in the concave portions 1d in a non-oxidizing atmosphere. As a result, a composite material having a predetermined shape is formed, in which the metal 2b is dissolved between the diamond particles 2a or the cBN particles 2a.

例えば、配線2がAl−ダイヤモンド複合材から成る場合、凹部1dに顆粒状のダイヤモンドの粒子2aと顆粒状のAl粒子とを充填して加圧するとともに非酸化雰囲気下において約700℃で加熱することによって所定の形状に形成され、Al中にダイヤモンド粒子2aが分散した状態のAl−ダイヤモンド複合材が形成される。   For example, when the wiring 2 is made of an Al-diamond composite material, the recessed diamond 1d is filled with granular diamond particles 2a and granular Al particles and pressurized, and heated at about 700 ° C. in a non-oxidizing atmosphere. As a result, an Al-diamond composite material having a predetermined shape and in which diamond particles 2a are dispersed in Al is formed.

また例えば、配線2がCu−cBN複合材から成る場合、凹部1dに顆粒状のcBN粒子と顆粒状のCu粒子とを充填して加圧するとともに非酸化雰囲気下において約1100℃で加熱することによって所定の形状に形成され、Cu中にCBN粒子2aが分散した状態のCu−cBN複合材が形成される。   Further, for example, when the wiring 2 is made of a Cu-cBN composite material, the concave portion 1d is filled with granular cBN particles and granular Cu particles, pressurized, and heated at about 1100 ° C. in a non-oxidizing atmosphere. A Cu-cBN composite material formed in a predetermined shape and having CBN particles 2a dispersed in Cu is formed.

この場合、配線2を基体1に接合する第一の接合材1bを省略し、凹部1bの内面に施した金属層に金属2bを直接接合することもできるので、凹部1b内の配線2の充填率を大きくすることができ、また、第一の接合材1bを介さずに凹部1b内に接合されるので、配線2と基体1との熱伝導率も良好なものとなる。   In this case, the first bonding material 1b for bonding the wiring 2 to the substrate 1 can be omitted, and the metal 2b can be directly bonded to the metal layer applied to the inner surface of the recess 1b, so that the wiring 2 in the recess 1b can be filled. The rate can be increased, and since the bonding is performed in the recess 1b without the first bonding material 1b, the thermal conductivity between the wiring 2 and the substrate 1 is also good.

そして、基体1の下側主面にAg−Cuロウ,Ag−Cu−Tiロウ等の第三の接合材7を介して、放熱板6を接合することによって、電子部品3から発生する熱を放熱板6に逃がし、電子部品3が温度上昇するのを防止することができる。   Then, the heat generated from the electronic component 3 is generated by joining the heat sink 6 to the lower main surface of the substrate 1 via the third joining material 7 such as Ag—Cu brazing or Ag—Cu—Ti brazing. It can escape to the heat sink 6 and it can prevent that the electronic component 3 rises in temperature.

また上記構成において、図1(b)に示すように基体1の下側主面にもダイヤモンドの粒子2aおよびcBNの粒子2aの少なくとも一方の粒子2aを金属2bに含有させた複合材等から成る金属板5を設けてもよい。図1(b)において、金属板5は配線2が基体1の上面に接合される時と同様に、Ag−Cuロウ,Agロウ,Alロウ,Ag−Pdロウ,Ag−Cu−Pdロウ等のロウ材や、Sn−Ag−Cu半田等の半田、Ag−Cu−Tiロウ等の活性金属ロウ材から成る第二の接合材1cを介して、基体1の下側主面に接合される。配線2の熱膨張係数は、セラミックス等から成る基体1に対して大きく異なるものではないので、従来の配線12がCuから成るものの場合に比して必ずしも金属板5を設ける必要はないのであるが、金属板5を設けた場合は、配線基板の反りや曲がり等の発生をより良好に防ぐことができる。   Further, in the above configuration, as shown in FIG. 1 (b), the lower main surface of the substrate 1 is also made of a composite material in which at least one particle 2a of diamond particles 2a and cBN particles 2a is contained in metal 2b. A metal plate 5 may be provided. In FIG. 1B, the metal plate 5 is made of Ag—Cu solder, Ag solder, Al solder, Ag—Pd solder, Ag—Cu—Pd solder, etc., as in the case where the wiring 2 is joined to the upper surface of the substrate 1. Are bonded to the lower main surface of the substrate 1 through a second bonding material 1c made of a solder material such as Sn-Ag-Cu solder or an active metal brazing material such as Ag-Cu-Ti solder. . Since the thermal expansion coefficient of the wiring 2 is not significantly different from that of the base 1 made of ceramics or the like, it is not always necessary to provide the metal plate 5 as compared with the case where the conventional wiring 12 is made of Cu. In the case where the metal plate 5 is provided, it is possible to better prevent the wiring board from being warped or bent.

また好ましくは、配線2は、図3に平面図を示すように、搭載部1aを中心に放射状に、すなわち配線2が搭載部1aを中心としてその反対側で配線2同士の間隔が拡がるように配置されている。この構成により、放射状に配置された配線2において、電子部品3から発生する熱を基体1の上側主面において短い距離で広く分散させることができる。なお、配線2の本数およびその配置は図3に限るものではなく、たとえ一本でも電子部品3から離れる方向に配線2を放射状に配置することによって熱を放散させることができる。   Preferably, as shown in the plan view of FIG. 3, the wiring 2 is radially centered on the mounting portion 1a, that is, the wiring 2 is centered on the mounting portion 1a so that the distance between the wirings 2 increases on the opposite side. Has been placed. With this configuration, the heat generated from the electronic component 3 can be widely dispersed over a short distance on the upper main surface of the substrate 1 in the wirings 2 arranged radially. Note that the number of wirings 2 and the arrangement thereof are not limited to those in FIG. 3, and heat can be dissipated by arranging the wirings 2 in a radial direction away from the electronic component 3.

上記構成の配線基板の搭載部1aに電子部品3が搭載されて電子装置と成る。即ち、基体1の上面に配線2が設けられ、基体1の下面が放熱板6に接合された後、搭載部1aにパワートランジスタ等の電子部品3が搭載固定され、電子部品3の電極が配線2の回路部とボンディングワイヤ等の電気的接続手段4により電気的に接続されることで電子装置となる。   The electronic component 3 is mounted on the mounting portion 1a of the wiring board having the above structure to form an electronic device. That is, after the wiring 2 is provided on the upper surface of the substrate 1 and the lower surface of the substrate 1 is joined to the heat radiating plate 6, the electronic component 3 such as a power transistor is mounted and fixed on the mounting portion 1a. The electronic device is obtained by being electrically connected to the circuit portion 2 by the electrical connection means 4 such as a bonding wire.

この構成により、電子部品3が温度上昇するのを防止でき、基体1がクラック等によって破損してしまうのを有効に防止することができ、ボンディングワイヤ等の電気的接続手段4を確実かつ短時間で効率良く接続することができ、かつ基体1を薄型化させても、配線2が基体1を補強する作用を為し、基体1がクラック等によって破損してしまうのを防止することができる。   With this configuration, it is possible to prevent the temperature of the electronic component 3 from rising, it is possible to effectively prevent the base body 1 from being damaged by cracks or the like, and the electrical connection means 4 such as a bonding wire can be reliably and short-timed. Thus, even if the substrate 1 is thinned, the wiring 2 functions to reinforce the substrate 1, and the substrate 1 can be prevented from being damaged by cracks or the like.

好ましくは、配線基板の配線2は、電子部品3に一定電位や電気信号を供給する供給配線2cを含み、電子部品3は、供給配線2cに搭載されて接続されていることから、電子部品3から発生する熱を電子部品3の広い底面から供給配線2cを介して放熱させ、効率良く配線基板外部に放散させることができるものとなる。   Preferably, the wiring 2 of the wiring board includes a supply wiring 2c that supplies a constant potential or an electric signal to the electronic component 3, and the electronic component 3 is mounted on and connected to the supply wiring 2c. The heat generated from the heat can be dissipated from the wide bottom surface of the electronic component 3 through the supply wiring 2c, and can be efficiently dissipated outside the wiring board.

また好ましくは、供給配線2cは、図4(b)に示すように、基体1の搭載部1aを有する主面と反対側主面に配置されるとともに、基体1に設けられた貫通孔1dを通じて搭載部1aに導出されて成り、導出部2dに電子部品3が搭載されて接続されていることから、電子部品3から発生する熱を基体1を介さずに供給配線を介して、基体1の搭載部1aとは反対側の主面(下側主面)に導き、配線基板外部に効率良く放散させることができるものとなる。   Preferably, the supply wiring 2c is arranged on the main surface opposite to the main surface having the mounting portion 1a of the base 1 as shown in FIG. 4 (b), and through a through hole 1d provided in the base 1. Since the electronic component 3 is mounted on and connected to the lead-out portion 2d and is connected to the lead-out portion 2a, the heat generated from the electronic component 3 is not connected to the base 1 via the supply wiring. It leads to the main surface (lower main surface) opposite to the mounting portion 1a and can be efficiently diffused outside the wiring board.

また好ましくは、電気的接続手段4はAlまたはAu等から成るボンディングワイヤを用いることができ、電気的接続手段4を介して電子部品3から発生する熱を配線2に逃がすことができる。なお、ボンディングワイヤの断面の直径は200μm〜500μm程度とするのがよい。また、電子部品3と配線2との間の熱伝導を良好にするために、複数本のボンディングワイヤを接続してもよい。また、電気的接続手段4は、Cu板等のリード線から成るものでもよい。   Preferably, the electrical connection means 4 can be a bonding wire made of Al or Au, and the heat generated from the electronic component 3 can be released to the wiring 2 via the electrical connection means 4. The diameter of the cross section of the bonding wire is preferably about 200 μm to 500 μm. Moreover, in order to improve the heat conduction between the electronic component 3 and the wiring 2, a plurality of bonding wires may be connected. The electrical connection means 4 may be a lead wire such as a Cu plate.

このようにして、パワートランジスタ等の電子部品3に大電流の電気信号が供給され、大電流の電気信号で作動することとなる。配線2がダイヤモンドの粒子2aおよびcBNの粒子2aの少なくとも一方の粒子2aを金属2bに含有させた複合材から成ることから、電子部品3に安定的に大電流の電気信号を供給できるとともに、電子部品3から発生する大量の熱を配線2を介して電子部品3から速やかに逃がすことができる。従って、パワートランジスタ等の電子部品3を正常かつ安定に作動させることができる。   In this way, a large current electric signal is supplied to the electronic component 3 such as a power transistor, and the electronic component 3 is operated by the large current electric signal. Since the wiring 2 is made of a composite material in which at least one of the diamond particles 2a and the cBN particles 2a is contained in the metal 2b, an electric signal of a large current can be stably supplied to the electronic component 3, and A large amount of heat generated from the component 3 can be quickly released from the electronic component 3 via the wiring 2. Accordingly, the electronic component 3 such as a power transistor can be operated normally and stably.

なお、本発明は以上の実施の形態の例に限定されず、本発明の要旨を逸脱しない範囲内であれば種々の変更を行なうことは何等支障ない。例えば、基体1はエポキシ樹脂やポリフェニレンサルファイト(PPS)や液晶ポリマー(LCP)等のエンジニアリングプラスチックス等の樹脂から成っていてもよい。この場合、図1(c)に示すように、基体1は、配線2が基体1の凹部1dに埋め込まれるように予め準備された配線2と金型内で一体成型するのが容易であり、配線基板を効率良く製造することができる。   In addition, this invention is not limited to the example of the above embodiment, If it is in the range which does not deviate from the summary of this invention, it will not interfere at all. For example, the substrate 1 may be made of resin such as epoxy resin, engineering plastics such as polyphenylene sulfite (PPS) and liquid crystal polymer (LCP). In this case, as shown in FIG. 1C, the base body 1 is easy to be integrally molded in the mold with the wiring 2 prepared in advance so that the wiring 2 is embedded in the recess 1d of the base body 1. A wiring board can be manufactured efficiently.

また、上記実施の形態の説明において上下左右という用語は、単に図面上の位置関係を説明するために用いたものであり、実際の使用時における位置関係を意味するものではない。   In the description of the above embodiment, the terms “upper, lower, left and right” are merely used to describe the positional relationship in the drawings, and do not mean the positional relationship in actual use.

(a)は本発明の配線基板の実施の形態の一例を示す断面図、(b),(c)は本発明の配線基板の実施の形態の他の例を示す断面図である。(A) is sectional drawing which shows an example of embodiment of the wiring board of this invention, (b), (c) is sectional drawing which shows the other example of embodiment of the wiring board of this invention. 本発明の配線基板に用いられる配線の実施の形態の一例を示し、配線となる複合材表面が金属で覆われている状態を示す断面図である。It is sectional drawing which shows an example of embodiment of the wiring used for the wiring board of this invention, and shows the state by which the composite material surface used as wiring is covered with the metal. 本発明の配線基板および電子装置の実施の形態の一例を示す平面図である。It is a top view which shows an example of embodiment of the wiring board of this invention, and an electronic device. (a),(b)は本発明の配線基板および電子装置の実施の形態の他の例を示す断面図である。(A), (b) is sectional drawing which shows the other example of embodiment of the wiring board of this invention, and an electronic device. 従来の配線基板の実施の形態の例を示す断面図である。It is sectional drawing which shows the example of embodiment of the conventional wiring board.

符号の説明Explanation of symbols

1:基体
1a:搭載部
1b:第一の接合材
1c:第二の接合材
1d:貫通孔
2:配線
2a:ダイヤモンドの粒子または立方晶窒化ホウ素の粒子
2b:金属
2c:供給配線
2d:導出部
3:電子部品
1: Base 1a: Mounting portion 1b: First bonding material 1c: Second bonding material 1d: Through hole 2: Wiring 2a: Diamond particles or cubic boron nitride particles 2b: Metal 2c: Supply wiring 2d: Derivation Part 3: Electronic components

Claims (11)

基体上に、電子部品が搭載される搭載部を有し、前記電子部品の電極が接続される配線が設けられた配線基板であって、前記配線は、ダイヤモンドの粒子および立方晶窒化ホウ素の粒子の少なくとも一方の粒子を金属に含有させた複合材から成ることを特徴とする配線基板。 A wiring board having a mounting portion on which an electronic component is mounted on a substrate and provided with a wiring to which an electrode of the electronic component is connected, wherein the wiring includes diamond particles and cubic boron nitride particles A wiring board comprising a composite material containing at least one of the above particles in a metal. 前記複合材の前記金属は、銀,銅またはアルミニウムを含むことを特徴とする請求項1記載の配線基板。 The wiring board according to claim 1, wherein the metal of the composite material includes silver, copper, or aluminum. 前記複合材の前記金属は、純度99%以上の銀または純度99%以上の銅であることを特徴とする請求項1記載の配線基板。 The wiring board according to claim 1, wherein the metal of the composite material is silver having a purity of 99% or more or copper having a purity of 99% or more. 前記複合材の表面は、前記金属によって覆われていることを特徴とする請求項1乃至請求項3のいずれかに記載の配線基板。 The wiring board according to claim 1, wherein a surface of the composite material is covered with the metal. 前記複合材は、前記ダイヤモンドの粒子を前記金属に含有させて成り、前記ダイヤモンドの粒子が30〜80体積%含まれていることを特徴とする請求項1乃至請求項4のいずれかに記載の配線基板。 5. The composite according to claim 1, wherein the composite material includes the diamond particles in the metal, and the diamond particles are contained in an amount of 30 to 80% by volume. Wiring board. 前記複合材は、前記立方晶窒化ホウ素の粒子を前記金属に含有させて成り、前記立方晶窒化ホウ素の粒子が30〜80体積%含まれていることを特徴とする請求項1乃至請求項4のいずれかに記載の配線基板。 5. The composite material according to claim 1, wherein the cubic boron nitride particles are contained in the metal, and the cubic boron nitride particles are contained in an amount of 30 to 80% by volume. A wiring board according to any one of the above. 前記複合材に、前記ダイヤモンドの粒子および前記立方晶窒化ホウ素の粒子が含まれていることを特徴とする請求項1乃至請求項4のいずれかに記載の配線基板。 The wiring board according to any one of claims 1 to 4, wherein the composite material contains particles of the diamond and particles of the cubic boron nitride. 前記配線は、前記搭載部を中心に放射状に配置されていることを特徴とする請求項1乃至請求項7のいずれかに記載の配線基板。 The wiring board according to claim 1, wherein the wirings are arranged radially with the mounting portion as a center. 請求項1乃至請求項8のいずれかに記載された配線基板の搭載部に電子部品が搭載されて成ることを特徴とする電子装置。 An electronic device comprising an electronic component mounted on the wiring board mounting portion according to claim 1. 前記配線基板の前記配線は、前記電子部品に一定電位を供給する供給配線を含み、前記電子部品は、前記供給配線に搭載されて接続されていることを特徴とする請求項9記載の電子装置。 10. The electronic device according to claim 9, wherein the wiring of the wiring board includes a supply wiring that supplies a constant potential to the electronic component, and the electronic component is mounted and connected to the supply wiring. . 前記供給配線は、前記基体の前記搭載部を有する主面とは反対側主面に配置されるとともに、前記絶縁基板に設けられた貫通孔を通じて前記搭載部に導出されて成り、該導出部に前記電子部品が搭載されて接続されていることを特徴とする請求項9記載の電子装置。 The supply wiring is arranged on the main surface opposite to the main surface having the mounting portion of the base, and is led out to the mounting portion through a through hole provided in the insulating substrate. The electronic device according to claim 9, wherein the electronic component is mounted and connected.
JP2006172785A 2006-06-22 2006-06-22 Wiring board and electronic device Withdrawn JP2008004760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006172785A JP2008004760A (en) 2006-06-22 2006-06-22 Wiring board and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006172785A JP2008004760A (en) 2006-06-22 2006-06-22 Wiring board and electronic device

Publications (1)

Publication Number Publication Date
JP2008004760A true JP2008004760A (en) 2008-01-10

Family

ID=39008900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006172785A Withdrawn JP2008004760A (en) 2006-06-22 2006-06-22 Wiring board and electronic device

Country Status (1)

Country Link
JP (1) JP2008004760A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009224380A (en) * 2008-03-13 2009-10-01 Toshiba Corp Semiconductor device
WO2020090213A1 (en) * 2018-10-31 2020-05-07 住友電気工業株式会社 Heat radiating member

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009224380A (en) * 2008-03-13 2009-10-01 Toshiba Corp Semiconductor device
WO2020090213A1 (en) * 2018-10-31 2020-05-07 住友電気工業株式会社 Heat radiating member
JPWO2020090213A1 (en) * 2018-10-31 2021-10-07 住友電気工業株式会社 Heat dissipation member
JP7196193B2 (en) 2018-10-31 2022-12-26 住友電気工業株式会社 Heat dissipation material
US12112993B2 (en) 2018-10-31 2024-10-08 A.L.M.T. Corp. Heat radiation member

Similar Documents

Publication Publication Date Title
CN103035601B (en) Include the semiconductor devices of Diffusion Welding layer on sintering silver layer
JP6018297B2 (en) Composite laminate and electronic device
JP2015177182A (en) power module
JP2012074591A (en) Circuit board and electronic divice
JP3793562B2 (en) Ceramic circuit board
JP5902557B2 (en) Multilayer wiring board and electronic device
JP2008004760A (en) Wiring board and electronic device
JP2007324182A (en) Wiring board and electronic device
JP2003318330A (en) Ceramic circuit substrate
JP5665479B2 (en) Circuit board and electronic device
JP6819385B2 (en) Manufacturing method of semiconductor devices
JP2015144257A (en) Circuit board and manufacturing method thereof
JP2000340716A (en) Wiring substrate
JPH10275879A (en) Semiconductor package
JPH10189800A (en) Package for housing semiconductor element
JPH10275878A (en) Semiconductor package
JP3441194B2 (en) Semiconductor device and manufacturing method thereof
JP4377748B2 (en) Electronic component storage package and electronic device
JP2006128589A (en) Electronic component housing package and electronic device
JP2012134230A (en) Circuit board and electronic apparatus using the same
JP2016032032A (en) Circuit board and electronic device
JP5777456B2 (en) Ceramic circuit board and electronic device
JP6258635B2 (en) Circuit board and electronic device
JP4485893B2 (en) Electronic component storage package and electronic device
JP2005340560A (en) Package for accommodating electronic component and electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090218

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091209