TW201100751A - Equal-path interferometer - Google Patents

Equal-path interferometer Download PDF

Info

Publication number
TW201100751A
TW201100751A TW099119849A TW99119849A TW201100751A TW 201100751 A TW201100751 A TW 201100751A TW 099119849 A TW099119849 A TW 099119849A TW 99119849 A TW99119849 A TW 99119849A TW 201100751 A TW201100751 A TW 201100751A
Authority
TW
Taiwan
Prior art keywords
light
reflective surface
optical
partially reflective
interferometer
Prior art date
Application number
TW099119849A
Other languages
Chinese (zh)
Other versions
TWI431243B (en
Inventor
Groot Peter J De
Leslie L Deck
James F Biegen
Chris Koliopoulos
Original Assignee
Zygo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zygo Corp filed Critical Zygo Corp
Publication of TW201100751A publication Critical patent/TW201100751A/en
Application granted granted Critical
Publication of TWI431243B publication Critical patent/TWI431243B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02056Passive reduction of errors
    • G01B9/02058Passive reduction of errors by particular optical compensation or alignment elements, e.g. dispersion compensation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02034Interferometers characterised by particularly shaped beams or wavefronts
    • G01B9/02038Shaping the wavefront, e.g. generating a spherical wavefront
    • G01B9/02039Shaping the wavefront, e.g. generating a spherical wavefront by matching the wavefront with a particular object surface shape
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02056Passive reduction of errors
    • G01B9/02057Passive reduction of errors by using common path configuration, i.e. reference and object path almost entirely overlapping
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02056Passive reduction of errors
    • G01B9/02059Reducing effect of parasitic reflections, e.g. cyclic errors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/0209Low-coherence interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/45Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • G02B21/08Condensers
    • G02B21/14Condensers affording illumination for phase-contrast observation

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

An optical assembly for use in an interferometer is provided. The optical assembly includes first and second partially reflective surfaces positioned along an optical axis and oriented at different non-normal angles to the optical axis. The second partially reflective surface is configured to receive light transmitted through the first partially reflective surface along the optical path, transmit a portion of the received light to a test object to define measurement light for the interferometer and reflect another portion of the received light back towards the first partially reflective surface to define reference light for the interferometer. The reference light makes at least one round trip path between the second and first partially reflective surfaces.

Description

201100751 六、發明說明: 【發明所屬之技術領域】 本發明係有關於望% t τ1 '等路徑干涉儀及相關的方法 【先前技術】 干涉儀使用干涉光束執行物體的量測。干涉儀可被概 括地分類成等路徑,其中,+涉光束越過幾乎相等的光學 距離(例如’在數十微米之内相等)’以及不等路徑,相較 於可見白光的同調長度,其光學路徑差很大(例如,大於 〇.的随且可能達到數公里)。料㈣統可被配置以用低 同调(寬頻及/或$間延伸的)光源操作。不等路徑干涉儀包 括例如雷射菲索(Fizeau)干涉儀,其可被用以測試光學組 件。 等路彳二干涉儀在光學測試方面是受到關注的,例如, 對於分別測量半透明物體的前及後表面。等路徑干涉儀也 可被使用於干涉顯微術中’纟中可使用低同調齒素燈及白 光LED做為光源。例如,干涉顯微術設計可根據路徑平衡 及色散補償的米勞(Mirau)、麥克森(Michels〇n)或林尼克 (Linnik)干涉儀。 【發明内容】 通常,在一特徵中,干涉儀提供幾乎相等的測量及參 考路徑長度,測量路徑延伸至測試物體的表面,參考路徑 延伸至參考元件的表面,且可使用來自低同調光源的光。 201100751 干涉儀的一種應用係當 邱八、…、、π買上對其他物體表面無反應時對 ° 、物體被選擇的表面描繪其輪廓。在—此實施方 不等路徑雷射菲索儀器適用於等路徑幾何:在一些 干涉儀係做為顯微鏡(例如,採用低同調光源 的顯微鏡)的干涉物鏡。 k常在另一特徵中,一干涉儀被提供 儀包括一光源、一參考元株 ^ ^ M /、中干涉 Ο 亏70件、一干涉儀分光器、用於過減 不4要的反射之—孔徑光 ' 一』兄/、寺仏物、及諸如照相機的 ^ ^ ^ . 邛刀通過參考元件的部分反 射表面而到達干涉儀公止怒 考及測分光器將此部分的光分成參 考及測1光束。參考光束接荖 裊面及私Μ 接者從參考几件的部分反射參考 表面反射’仃進回到干涉儀 ^ ^ '1 ^ ^ 器,再一久從分光器反射, 然後通過參考元件,最後 .,+ .s .a v 峨鸣孔铋先闌而到達照相機。 ^ ^,ar θ , 先束攸至少—物體表面反 射使仔測里光回到干涉儀分本哭η丄 ο 與來考Μ社入 儀刀先益且大約同延地且同軸地 與參考先束結合,而在照相機處產生-干涉圖案。參考元 件及分光器係以來自干、.步羞 Μ ^ ^ ^ / ''牛的不同表面之雜散反射被 生雙光束干涉《t。 料而在照相機處產 通常,在另—特徵中, 诸。弁α 敌仏用於-干涉儀中的光學總 成先予尨成包括第一及第二部分 定位且對光軸被定向於… 射表面,沿著光勒被 面被配Ϊ,… 線角。第二部分反射表 的光,將部分的接此本楂…z ^反射表面 的接收先傳达至測試物體以定義干涉儀的測 5 201100751 ϊ光且將另一部分的接收光朝向第— 去以定義干涉儀的參考光,其中,參、反射表面反射回 分反射表面間行進至少一次來回的路:先在第二及第-部 光學總成的實施方式可包括 線角可使得參考光在第二部分 反射回去之前通過第-及第二部分反射表面至著光軸 法線角可使得參考光在其中一次通 7次。非 射接觸其令一個部分反射表面。 的期間以垂直入 第一部分反射表面的非法線角 的非法線角的一又二分之一倍。’’、、第-部分反射表面 第二部分反射表面可被配置以結入 從測試物體反射回到第二部分反射表面之、=(在測量光 參考光至少-次來回行料第二及第 考先(在 後)。 刀反射表面間之 表面=成可包括:第一光學元件,具有第—部分反射 第二二 件’具有第二部分反射表面。第-及 一光予兀件,各自可具有另一表面 膜。邱八g从主 ,…、有一抗反射鍍 、h反射表面可分別位於光學元件的外表面上。部分 反射表面可被形成在光學元件内之各自的内界面。 部分反射表面可與第二部分反射表面間隔一距 =大於捕獲在參考光及測量光間的干涉圖案之成像模 =焦深。干涉儀的光學元件被定位使得參考絲通過在 成像模組的焦深内的玻璃。 第-光學元件可具有另一表面,其具有一抗反射鑛 6 201100751 模。第-光學元件可被定向,使得第一部分反射表面面向 第二光學兀件的第二部分反射表面,I第-光學元件的抗 反射鍍膜背向第二部分反射表面。第一部分反射表面及第 二部分反射表面間的距離係大於用以捕獲在參考光及測量 光間的干涉圖案之成像模組的焦深。 光學總成可包括:一色散補償器,被定位在第-光學 元件及第二光學元件之間以補償在測量光及參考光間的相 Ο 位差’色散補償器被定位靠近第三光學元件且位於成像模 組的焦深之外。 第一光學元件可被定向,使得第一部分反射表面背向 第二光學元件的第二部分反射表面,且第一光學元件的抗 反射鍍膜面向第二部分反射表面。 • &學總成可更包括:-第三部分反射表面。第三部分 反射表面可被配置以:i)接收沿著光軸透射通過第一部分 反射表面的光;i〇將部分的接收光傳送至測試物體以定 © 義測$光;及i i i)將另一部分的接收光朝向第一部分反 射表面反射回去以對干涉儀定義一第二參考光,其中,第 一參考光在第二及第一部分反射表面間行進至少一次來回 的路徑。 光學總成可更包括:一準直器,接收來自光源的光並 將準直光投射至第一部分反射表面。光學總成可更包括: 一場鏡,接收來自光源的光並將光投射至第一部分反射表 面,在參考光被第一部分反射表面反射之後及參考光被檢 測器檢測之前,場鏡被定位於參考光行進的成像路徑之外。 7 201100751 第°卩刀反射表面可具有範圍約1 〇%至約30%的反射 率。第二部分反射表面可具有範圍約4〇%至約6〇%的反射 率。 種干涉系統可包括上述的光學總成及一干涉儀基 座,其包括一光源及一檢測器。光源可被配置以產生透射 通過第彳刀反射表面且由第二部分反射表面接收的光。 檢測器可被配置以接收包括測量光及參考光的結合光並提 供關於結合光的空間分佈的資訊。干涉儀基座可包括:一 孔徑光闌,被定位以阻擋來自干涉儀基座的光,其沿著光 軸接觸第一部分反射表面並且從第—部分反射表面反射回 到干涉儀基座;及—底座,用以支撑測試物體。底座可被 疋位以定義測量光的光學路徑長度,其大體上等於參考光 的光學路徑長度。 τ tw 光門統可包括一移相器’用以改變在測量光及參考 至人 的差移相益可機械地將干涉儀美座 耦5至光學總成且可被配置以 " 的距離,W并趟 元予總成及測試物體間 以改變測量光的光學路徑長度。 光源可為-寬頻光源,用以提供 光源可為-窄頻雷射光源。 调干涉術量測。 光源可在低同調干涉術的寬頻模 雷射模。錢可為H ^奸涉術的 雷射閾值的電流被驅動時在寬頻 體其當以低於其 其雷射間值的電流被驅動時在雷:作,且當以高於 第-部分反射表面可包括1=中操作。 戸十面的表面。 201100751 • 通常’在另-特徵中,—種干涉方法包括:沿 .定t第一及第二部分反射表面,相對於光轴將第-及第二 π刀反射表面以於不同的非法㈣,且沿著平行光抽的 方向將光通過第一部分 丨刀反射表面傳送至第二部分反射表 面。在第二部分反射表面 都八 將第-部分的光傳送至測試物 體以疋義測量光’並且將第二部分的光朝向第—部分反射 表面反射回去以定義參考光。在第-部分反射表面,將第 的光的-部分朝向第二部分反射表面反射,使得參 考先在第二及第一部分反射表面間行進至少一次來回 徑。 干涉方法的實施方式可包括一或多個下列特點。定向 弟Γ及第二部分反射表面可包括將第一及第二部分反射表 面疋向於不同的非法線角,以使得參考光在第二部分反射 表面沿著光軸將參考光反射回去之前至少一次通過第一及 第二部分反射表面之間。 定向第-及第二部分反射表面可包括將第一及第二部 分反射表面定向於不同的非法線角,以使得參考光在其中 -次通過其間的期間以垂直入射接觸其中一個部分反射表 面。 法可包括.在第二部分反射表面’結合測量光(在 其從測試物體反射回到第二部分反射表面之後)及參考光 在其至少-次來回行進於第二及第—部分反射表面間之 後關於結合光的空間分佈的資訊可被提供。_孔徑光閣 可被提供以阻擋以遠離第二部分反射表面的方向從第一部 201100751 :反射表面被反射的光。具有—反射表面的測試物體可被 疋位以定義測量光的光學路徑長度,其大體上等於參考光 的,學路徑長度。在測量光及參考光間的光學路徑長度的 差可被改變。光學總成及測試物體間的距離可被變更以改 變測量光的光學路徑長度,其中,光學總成包括第一及第 二部分反射表面。 方法可包括將具有第一❹反射纟面的光學元件定向 於光學元件的外表s,使得具有第—部分反射表面的光學 -件的外表面面向第二部分反射表面。方法可包括不通過 a °破璃^件而將參考光從第—部分反射表面傳送至第二 部:,射表面。方法可包括將第二部分反射表面定位於距 第一部分反射表面一段距離,此段距離大於檢測在測量光 及參考光間的干涉圖案之成像模組的焦深。 ▲方法可包括使參考光通過一色散補償器,其補償由於 ^考光與測量光行進的光學路徑長度的差造成的測量光與 參考光之間的相位的差’並且將色散補償器定位在成像模 組的焦深之外。 立、方法可包括.沿著光軸定位一第三反射表面;將第三 部分反射表面定向以平行於第二部分反射表面;在第三部 分反射表面’將由第一部分反射表面傳送的光之第三部分 專l至測δ式物體以定義測量《,並且將%的第四部分朝向 ::部分反射表面反射回去以定義第二參考光;及在第— 邛分反射表面,將光的第四部分的一部分朝向第二部分反 射表面反射’使得第二參考光在第二及第一部分反射表面 10 201100751 間行進至少一次來回的路徑。 將光傳送通過第一部分及糾车; 刀反射表面可包括將準直光傳送 ^ ^反射表面。方法可包括在將光傳送通過第一 表面之前將光傳送通過—場鏡,並且在參考光被 第 4为反射表面反射之後及夫去止、+认 设及參考先被檢測器檢測之前將 %鏡定位於參考光行進的成像路徑之外。 雖然在此係說明為用於承主工、, 千坦表面測試的干涉儀,利用 Ο 〇 適當地改變參考元件,知 "目冋的概念可推廣至測量任何的表 面形狀。 h幻衣 【實施方式】 參閱圖1,批例的干涉儀1〇〇被提供用以分析一物體 的前表面形式或其他特徵。干涉儀⑽ 對測試物體m的表面提 ㈣〜成以 代伢,則量路徑並且對一參考元俥 104的表面提供一參考路 亏路徑,其中,測量及參考路徑且有 大約相等的路徑長度。在 ,、有 又在此乾例中,參考元件104係具有 平坦表面的一玻璃杯。士谢^ 先予t成包括多個部分反射表面, 其沿著干涉儀1 〇 〇的光ά — 車106被疋位且以相對於光 的角度傾斜,使得有用 元釉106 ^ ^ 。 町貝】1及參考先沿者光軸106被導 向一檢測器(例如,昭相她,η 〇、 、’、機1 〇8),而不想要的光則沿著與 光軸10 6不平行的方向 χ、 *曰^ 破導引並濾出。這容許使用低同調 光* /原11 U並§π {走4專目-t- ^ * /β —且 /、有夕個反射表面的透明物體的測量變 得谷易。 在此,名詞”氺” >丄 可拓在紫外線、可見光、近紅外線 11 201100751 及紅外線光譜區域的任一區域中的電磁輻射。 一照明分光器112將光從光源1 1 0導引通過一準直器 114’其將光準直並且沿著與光軸ι〇6平行的方向將光導向 參考元件104及干涉儀分光器116。參考元件1〇4在面對 準直器114的表面上具有部分反射(PR)鍍膜118,且在面 對分光器116的表面上具有抗反射(AR)鍍膜12〇。因為PR 鍍膜118及AR鍍膜1 20很薄,名詞” pR鍍膜118,,及” pr 表面118”將可交換地使用,且名詞” AR鍍膜120,,及,’ AR表面1 20”將可交換地使用。分光器丨丨6在面對分光元 件104的表面上具有部分反射(pR)鍍膜122,且在面對測 試物體102的表面上具有抗反射(AR)鍍膜124。因為Pr鍍 膜122及AR鍍膜124很薄,名詞,’ ρβ鍍膜122,,及” pr 表面122”將可交換地使用,且名詞” AR鍍膜1 24”及” AR表面124”將可交換地使用。 來自準直器114的光通過參考元件1〇4的PR鍍膜 118。做為一個例子,PR鍍膜118反射ι7%的入射光並透射 83%的入射光。從而,83%的光通過參考元件ι〇4的ar鍍膜 120並且傳播至分光器124的pR鍍膜122,在此例中其 反射50%的入射光並透射5〇%的入射光。反射的光形成—參 考光束126,且透射的光形成一測量光束128。 參考光束126通過參考元件1〇4的AR表面120並且從 參考元件104的PR表面118部分地反射。從而,參考元件 104的PR表面118係做為一參考表面。被反射的參考光束 1 26接著回到分光器丨丨6的pr表面丨22,在該點其部分地 12 201100751 反射進入一路姆,甘tffcj Π; » 其與原始照明同線且同延(且平行於光軸 f ^相反方向行進,最後在通過孔徑光闌130及成 像透鏡136之後到達照相機1〇8。201100751 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to an equal path interferometer and related method. [Prior Art] An interferometer performs measurement of an object using an interference beam. Interferometers can be broadly classified into equal paths, where the +-beams cross an almost equal optical distance (eg, 'equal within tens of microns') and unequal paths, compared to the coherence length of visible white light, its optics The path difference is large (for example, more than 〇. and may reach several kilometers). The material (4) can be configured to operate with low coherence (wideband and/or inter-extended) light sources. The unequal path interferometer includes, for example, a Fizeau interferometer that can be used to test optical components. Equal-channel interferometers are of interest in optical testing, for example, for measuring the front and back surfaces of translucent objects, respectively. Equal path interferometers can also be used in interference microscopy. A low coherent acne lamp and a white LED can be used as the light source. For example, the interference microscopy design can be based on path balance and dispersion compensation of the Mirau, Michels〇n or Linnik interferometer. SUMMARY OF THE INVENTION Generally, in one feature, an interferometer provides nearly equal measurement and reference path lengths, the measurement path extends to the surface of the test object, the reference path extends to the surface of the reference element, and light from a low coherent light source can be used . 201100751 An application of the interferometer is to describe the contour of the selected surface of the object when Qiu Ba, ..., π buys no reaction to the surface of other objects. In this implementation, the unequal path fascia is suitable for equal path geometry: in some interferometers, the interference objective is used as a microscope (for example, a microscope with a low coherence source). k is often another feature, an interferometer is provided with a light source, a reference element ^ ^ M /, a medium interference 70 loss of 70 pieces, an interferometer beam splitter, and a reflection for over-reducing - Aperture light 'a brother', a temple object, and a camera such as a ^ ^ ^. The file passes through the partially reflective surface of the reference component to reach the interferometer and the spectrometer splits the light into this reference. Measure 1 beam. The reference beam interface and the private receiver reflect the reference surface reflection from the reference part of the reference piece's back into the interferometer ^^ '1 ^ ^ device, then reflect from the beam splitter for a long time, then pass the reference component, and finally. , + .s .av 峨 铋 铋 到达 到达 到达 到达 到达 到达 到达 到达 到达 到达. ^ ^,ar θ , first beam 攸 at least - the surface reflection of the object makes the ray back to the interferometer to cry η 丄 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与The bundles combine to create an interference pattern at the camera. The reference element and the beam splitter are interspersed with a double beam by the stray reflection from the different surfaces of the dry, step shy Μ ^ ^ ^ / '' cow. It is expected to be produced at the camera. Usually, in another feature, it is.弁α enemy 仏 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学. The second part reflects the light of the table, and the part of the light is transmitted to the test object. The transmission of the reflective surface is first transmitted to the test object to define the interferometer. 5 201100751 Twilight and the other part of the received light is directed to the first - Defining the reference light of the interferometer, wherein the parametric and reflective surfaces are reflected back to the path of at least one of the back and forth between the reflective surfaces: the first embodiment of the optical assembly may include a line angle such that the reference light is in the second The reference light is passed through the first and second partial reflection surfaces to the optical axis normal angle before the partial reflection back to the reference light. Non-exposure contact makes it a partially reflective surface. The period is one and a half times the illegal line angle of the illegal line angle perpendicular to the first part of the reflective surface. '', the first partial reflective surface, the second partial reflective surface can be configured to join the reflection from the test object back to the second partial reflective surface = (in the measurement of the optical reference light at least - times back and forth the second and the second The test surface (below). The surface between the knife reflective surfaces = may include: a first optical element having a first partial reflection second second piece having a second partial reflection surface. - and a light-emitting element, each There may be another surface film. The anti-reflective plating, the h reflective surface may be respectively located on the outer surface of the optical element. The partially reflective surfaces may be formed at respective inner interfaces within the optical element. The reflective surface may be spaced apart from the second partially reflective surface by an imaging mode = focal depth greater than the interference pattern captured between the reference light and the measurement light. The optical component of the interferometer is positioned such that the reference filament passes through the depth of focus of the imaging module The inner glass may have another surface having an anti-reflective ore 6 201100751 mode. The first optical element may be oriented such that the first partial reflective surface faces the second optical element a second partial reflective surface, the anti-reflective coating of the I-optical element facing away from the second partially reflective surface. The distance between the first partially reflective surface and the second partially reflective surface is greater than the interference between the reference light and the measuring light The depth of focus of the patterned imaging module. The optical assembly may include: a dispersion compensator positioned between the first optical element and the second optical element to compensate for phase difference ' dispersion between the measuring light and the reference light The compensator is positioned adjacent to the third optical element and outside of the depth of focus of the imaging module. The first optical element can be oriented such that the first partially reflective surface faces away from the second partially reflective surface of the second optical element, and the first optical The anti-reflective coating of the component faces the second partially reflective surface. • The &sense assembly may further comprise: - a third partial reflective surface. The third partial reflective surface may be configured to: i) receive transmission through the first portion along the optical axis Reflecting the light of the surface; i 〇 transmitting part of the received light to the test object to determine the light; and iii) directing the other part of the received light toward the first partial reflective surface The shot is returned to define a second reference light to the interferometer, wherein the first reference light travels at least once back and forth between the second and first partially reflective surfaces. The optical assembly can further include: a collimator that receives light from the source and projects the collimated light onto the first partially reflective surface. The optical assembly can further include: a mirror that receives light from the source and projects the light onto the first partially reflective surface, the field mirror is positioned for reference after the reference light is reflected by the first partially reflective surface and the reference light is detected by the detector The light travels beyond the imaging path. 7 201100751 The 卩 反射 反射 reflective surface can have a reflectance ranging from about 1 〇 % to about 30%. The second partially reflective surface can have a reflectance ranging from about 4% to about 6%. An interferometric system can include the optical assembly described above and an interferometer base that includes a light source and a detector. The light source can be configured to produce light that is transmitted through the second blade reflective surface and received by the second partially reflective surface. The detector can be configured to receive the combined light comprising the measurement light and the reference light and provide information regarding the spatial distribution of the combined light. The interferometer base can include: an aperture stop positioned to block light from the interferometer base that contacts the first partially reflective surface along the optical axis and is reflected from the first partially reflective surface back to the interferometer base; - A base to support the test object. The base can be clamped to define an optical path length of the measurement light that is substantially equal to the optical path length of the reference light. The τ tw optical system can include a phase shifter 'to change the difference between the measuring light and the reference to the human to mechanically couple the interferometer mount 5 to the optical assembly and can be configured with a distance of " , W and the unit between the assembly and the test object to change the optical path length of the measurement light. The light source can be a broadband source to provide a source that can be a narrowband laser source. Interferometry measurement. The source can be a broadband mode laser mode with low coherence interferometry. The money can be driven by the laser threshold when the current of the laser threshold is driven in the broadband body when it is driven at a current lower than its laser-to-laser value, and when it is higher than the first-part reflection The surface can include 1 = medium operation. The surface of the ten sides. 201100751 • Usually 'in another feature', the interference method includes: along the first and second partial reflection surfaces, the first and second π knife reflection surfaces are different from each other in the optical axis (4), And transmitting light through the first partial file reflecting surface to the second partial reflecting surface in the direction of parallel light pumping. At the second partial reflective surface, the first portion of the light is transmitted to the test object to deliberately measure the light' and the second portion of the light is reflected back toward the first partially reflective surface to define the reference light. At the first partial reflective surface, the - portion of the first light is reflected toward the second partially reflective surface such that the reference first travels at least one back and forth between the second and first partially reflective surfaces. Embodiments of the interference method may include one or more of the following features. Orienting the second order and the second partially reflective surface can include directing the first and second partially reflective surfaces to different illegal line angles such that the reference light is at least prior to the second partial reflective surface reflecting the reference light along the optical axis Passing between the first and second partial reflective surfaces at a time. Orienting the first and second partially reflective surfaces can include directing the first and second partial reflective surfaces to different illegal line angles such that the reference light contacts the one of the partially reflective surfaces during normal passage therebetween. The method can include: in the second portion of the reflective surface 'in combination with the measurement light (after it is reflected from the test object back to the second partial reflective surface) and the reference light travels at least one time back and forth between the second and the first partial reflective surface Information about the spatial distribution of the combined light can then be provided. An aperture light barrier may be provided to block light reflected from the first portion 201100751: the reflective surface in a direction away from the second partially reflective surface. A test object having a reflective surface can be clamped to define an optical path length of the measurement light that is substantially equal to the length of the reference path. The difference in optical path length between the measuring light and the reference light can be changed. The distance between the optical assembly and the test object can be altered to change the optical path length of the measurement light, wherein the optical assembly includes first and second partially reflective surfaces. The method can include orienting the optical element having the first pupil reflective face to the outer surface s of the optical element such that the outer surface of the optical member having the first partially reflective surface faces the second partially reflective surface. The method can include transmitting the reference light from the first partially reflective surface to the second portion without passing through the a ° glass breaking member: the surface. The method can include positioning the second partially reflective surface at a distance from the first portion of the reflective surface that is greater than a depth of focus of the imaging module that detects the interference pattern between the measurement light and the reference light. The method may include passing the reference light through a dispersion compensator that compensates for a difference in phase between the measurement light and the reference light due to a difference in length of the optical path along which the measurement light travels and positions the dispersion compensator at Outside the depth of focus of the imaging module. The method may include: positioning a third reflective surface along the optical axis; orienting the third partially reflective surface parallel to the second partially reflective surface; and at the third partial reflective surface 'the light to be transmitted by the first partially reflective surface The three parts are dedicated to the δ-type object to define the measurement, and the fourth part of the % is oriented toward: the partial reflection surface is reflected back to define the second reference light; and on the first------the reflection surface, the fourth of the light A portion of the portion reflects toward the second partially reflective surface such that the second reference light travels at least once back and forth between the second and first partially reflective surfaces 10 201100751. Transmitting light through the first portion and aligning the car; the knife reflecting surface can include transmitting the collimated light to the reflective surface. The method can include transmitting light through the field mirror prior to transmitting the light through the first surface, and after the reference light is reflected by the fourth reflective surface, and before the detection, the + identification, and the reference are detected by the detector, % The mirror is positioned outside of the imaging path through which the reference light travels. Although it is described here as an interferometer for the ultimate work, the use of Ο 适当 to properly change the reference component, the concept of "seeing" can be generalized to measure any surface shape. h 幻衣 [Embodiment] Referring to Figure 1, the interferometer 1 of the prior art is provided for analyzing the front surface form or other features of an object. The interferometer (10) extracts (4) the surface of the test object m, and then provides a reference path for the surface of a reference element 104, wherein the reference path is measured and has approximately equal path lengths. In this example, the reference element 104 is a glass having a flat surface. Xie ^ first includes a plurality of partially reflective surfaces that are clamped along the aperture of the interferometer 1 - the vehicle 106 is tilted and tilted at an angle relative to the light such that the useful glaze 106 ^ ^. The optical axis 106 and the reference leading edge optical axis 106 are directed to a detector (for example, 昭 她, 、, ', machine 1 〇 8), and the unwanted light is not parallel to the optical axis 106 The direction χ, *曰^ breaks the guide and filters out. This allows the use of low-coherence light * / original 11 U and § π { walk 4 special -t- ^ * / β - and /, the measurement of transparent objects with a reflective surface becomes a valley. Here, the noun "氺" >丄 can extend the electromagnetic radiation in any area of the ultraviolet, visible, near-infrared 11 201100751 and infrared spectral regions. An illumination splitter 112 directs light from the source 110 through a collimator 114' which collimates the light and directs the light toward the reference element 104 and the interferometer beam splitter 116 in a direction parallel to the optical axis ι 6 . The reference element 1〇4 has a partially reflective (PR) plating film 118 on the surface facing the collimator 114, and has an anti-reflection (AR) plating film 12 on the surface facing the beam splitter 116. Since the PR coating 118 and the AR coating 1 20 are thin, the noun "pR coating 118," and "pr surface 118" will be used interchangeably, and the noun "AR coating 120,, and, 'AR surface 1 20" will be exchangeable. The spectroscope 丨丨6 has a partially reflective (pR) plating film 122 on the surface facing the spectroscopic element 104, and has an anti-reflection (AR) plating film 124 on the surface facing the test object 102. Because of the Pr plating film 122 and The AR coating 124 is very thin, and the nouns, 'ρβ coating 122, and pr surface 122' will be used interchangeably, and the terms "AR coating 1 24" and "AR surface 124" will be used interchangeably. The light of 114 passes through the PR coating 118 of the reference element 1 〇 4. As an example, the PR coating 118 reflects ι 7% of the incident light and transmits 83% of the incident light. Thus, 83% of the light passes through the reference element ι 4 ar The coating 120 is propagated to the pR coating 122 of the beam splitter 124, which in this case reflects 50% of the incident light and transmits 5% of the incident light. The reflected light forms a reference beam 126 and the transmitted light forms a measuring beam. 128. The reference beam 126 passes through the AR surface 120 of the reference element 1〇4 and Reflected partially from the PR surface 118 of the reference element 104. Thus, the PR surface 118 of the reference element 104 acts as a reference surface. The reflected reference beam 126 then returns to the pr surface 丨22 of the beam splitter ,6, at The point is partially 12 201100751 reflected into a dam, Gan tffcj Π; » it is in line with the original illumination and coextensive (and parallel to the optical axis f ^ direction, and finally after passing through the aperture stop 130 and the imaging lens 136 Arrive at the camera 1〇8.

上述例子對於測量具有範圍從跑1〇〇%之表面反射 率的測試物體是有用的。根據應用,反射率及透射率的值 可與上面提供者不同。例如,參考元件m的PR表面118 可具有範圍約m至約3_反射率,且分光器116的PR 表面122可具有範圍約4〇%至約6〇%的反射率。 在這個例行中,參考光束126來回從分光器116的pR 表面122#進至參考元件1〇4精表面ιΐ8,然後回到pR 表面122。如下說明(圖8),參考元件1〇4的傾斜角度可被 調整使得參考光束126在參考光束丨26與測量光束j 28 。之岫在分光器】16的pR表面122與參考元件1〇4的 PR表面118之間來回行進二次以上,如下面說明。這使得 田在測置光束128及參考光束126之間維持等路徑長度 時,彳文分光器116的PR表面122至測試物體1〇2的表面之 距離可以增加。 測量光束128通過分光器116的AR表面124到達測試 物體102 ’在該處測量光束128從測試物體1〇2的至少一 表面(例如前表面137)反射回到干涉儀分光器116,在該處 ’貝J里光束12 8的一部分沿者與原始照明大概同延且同線的 (且平行於光軸106)路徑透射通過剩下的元件,最後到達 照相機108,在該處測量光束128與參考光束丨26干涉。 結果得到雙光束干涉圖案,其對於例如決定測試物體丄〇2 13 201100751 的表面輪廓是有用的。 在圖1的例子中’測量光束128(在從測試物體102的 表面反射之後)及參考光束126(在來回行進於PR表面122 及118間之後)係在分光器116的pR表面⑵被結合或重 疊。然後,重疊的光束朝向照相機108行進。 、,除了被V引至照相冑(〇8之部分的參考光束^及測 里光束128夕卜’(在偶然反射的其他可能來源中)參考光束 1。4及干涉儀分光g 116可能產生不想要的反射(諸如 139)。要隔離並移除不想要的反射139,參考光束1〇4及 干涉儀分光器116被稍微轉向一角度,如圖所示以便將 不想要的反射139導引至孔徑光闌ι3〇的通光孔徑之外。 圖1顯示來自參考元件的PR表面118之不想要的 第-反射132的例子,且參考光束126之不想要的部分134 透射通過參考元件104而非朝向干涉儀分光器116反射回 去。不想要的第-反射132及不想要的部& 134被孔徑光 闌130阻擋。 在圖1的例子中,干涉儀分光器116相對於垂直光軸 106的定向被傾斜一角度α。參考元件1〇4被傾斜大體上等 於2cx的一角度,使得參考光束126以大約垂直入射照射至 參考元件104的PR表面118。 參閱圖2,在一些實施方式中’要進一步抑制來自參 考元件104及干涉儀分光器116的AR表面之不想要的反 射,參考元件104及干涉儀分光器丨丨6可分別由楔形基板 210及212製成。在此例中,楔形基板212具有面對參考 201100751 兀件的PR表面218及面對測試物體1〇2的ar表面2ΐ6, ’、中PR表面218及AR表面216不平行。楔形基板21〇 具有面對準直器114的外矣而99ί1 丄、 表面220及面對分光器的AR表 面214’其中,PR表面22〇艿ακ»志品οι/· 以υ及AR表面214不平行。相對垂 直光軸106的定向,PR表面?1只 衣由218及PR表面220分別傾斜 大體上等於α及2α的角度。勉ώ站田w 巧没經由使用楔形基板21〇及212, 來自AR表面214及216之不相車的埒封故丄 个μ要的反射將以相對於測量及 ❹ Ο 參考光束具有一角度的方向扞推, 门订進且取後被孔徑光闌130 阻檔。 在圖1的例子中,被觀丢十、日丨θ ^ 义 覜看或測里的表面係測試物體102 的前表面137。干涉儀1〇〇也可被用 吧·!被用以觀看或測量測試物 體102的後表面138。被測量的表面不必然需要是物體的 外表面。干涉们00也可觀看或測量在光學㈣中的内界 面。 由照相機1 0 8檢測到的干涉圖幸 一 / 口朱j由例如一電腦(未 顯示)執行程式加以分析。干涉圖案的分析可提供有關例如 物體m的表Φ137是否與期望的表面輪廊匹配或 資訊。 在圖1的例子中,干涉儀對於#沾 v , m耵於九的偏振不敏感。照明 为光器112將來自光源110的光的一部分(例如 準直器114反射,並且將返回的光的—部分(例如—^ 準直器114傳送至照相機108。在一些實施方式中,干^ 儀也可被配置以使用偏振光。一偏撫 1 用,B v 偏振的照明分光器被使 用且四y刀之一波板被定位於分光器及準吉 平罝器114之間以 15 201100751 旋轉光的偏振態。偏振的照明分光器大體上將沿著第一方 向(通過四分之_波板)偏振的所有光導w 並且大體上將沿荖笸-十^1 第一方向偏振的所有返回光(通過四分 之一波板)傳送至照相機1 〇 8。 參閱圖3,參考元件104及干涉儀分光器116的發明 =的益處在於它們可被配置以對於參考光束126及測量 28具有相等的路徑長度’並且在兩個路徑中具有相 等數量的玻璃。例如,參考元件1G4之玻璃的厚度可與分 光器116之玻璃的厚度相同右 手!相丨』在此例子中,測量光束128 從分光器116的pp矣& & 、 的表面122仃進至物體1〇2的前表面137 並且回到pr表面122的路徑長度係等於參考光束126從 PR表面122行進至參考元件叫精表面118並且回到 PR表面122的路徑長度。 一諸如溫度之環境條件的變化大體上在參考光束⑶及 測篁光束!28中導致相同數量的相位變化。這在例如低同 調干涉術中是有用的,其對於測量及參考光束維持相同的 路徑長度是很重要的。在一些例子中,參考元# ι〇4及分 光器⑴的厚度可能不同,且一額外的光學元件可被使用 以部分或完全修正由此種差異導致的相位差。 若測試物體1〇2的後表面138或是在測試物體1()2的 主體内的表面被測量,在測試物们〇2及分光器ιΐ6間的 距離可被調整’使得測量光束從pR表面122行進至要被測 量的表面之來回的光學路徑長度等於參考光束⑯pR表面 122行進至pr表面118之來回的光學路徑長度。注意因為 16 201100751 I測試物體的折射率可與空氣的折射率不同,即使測量及參 考光束的光學路徑長度相同,測量光束行進的物理距離可 與參考光束行進的物理距離不同。 在圖2的例子中,參考元件210 '及分光! 212也對測 量及參考光束提供相等的路徑長度。 本發明設計的另一個益處在於其與商用的雷射菲索 (Fizeau)干涉儀的整體幾何與機械設計相容,諸如可由The above examples are useful for measuring test objects having a surface reflectance ranging from 1% running. Depending on the application, the values of reflectance and transmittance may differ from those provided above. For example, the PR surface 118 of the reference element m can have a range from about m to about 3_reflectivity, and the PR surface 122 of the beam splitter 116 can have a reflectance ranging from about 4% to about 6%. In this routine, the reference beam 126 travels back and forth from the pR surface 122# of the beam splitter 116 to the reference element 1〇4 fine surface ι 8 and then back to the pR surface 122. As explained below (Fig. 8), the tilt angle of the reference element 1〇4 can be adjusted such that the reference beam 126 is at the reference beam 丨26 and the measuring beam j 28 . Thereafter, the pR surface 122 of the beam splitter 16 travels back and forth between the PR surface 118 of the reference element 1〇4 twice or more as explained below. This allows the distance between the PR surface 122 of the Echo splitter 116 to the surface of the test object 1〇2 to be increased when the field maintains an equal path length between the set beam 128 and the reference beam 126. The measuring beam 128 passes through the AR surface 124 of the beam splitter 116 to the test object 102' where the measuring beam 128 is reflected from at least one surface (e.g., the front surface 137) of the test object 1〇2 back to the interferometer beam splitter 116 where it A portion of the 'Beyond beam 12 8' is approximately coextensive with the original illumination and is in-line (and parallel to the optical axis 106) path through the remaining elements, and finally to the camera 108 where the beam 128 is referenced and referenced. The beam 丨 26 interferes. The result is a two-beam interference pattern which is useful, for example, for determining the surface profile of the test object 丄〇 2 13 201100751. In the example of FIG. 1 'the measurement beam 128 (after reflection from the surface of the test object 102) and the reference beam 126 (after traveling back and forth between the PR surfaces 122 and 118) are bonded to the pR surface (2) of the beam splitter 116 or overlapping. The overlapping beams then travel toward camera 108. , in addition to being referenced by V to the camera 胄 (the reference beam of part 〇 8 and the ray beam 128 ' ( (in other possible sources of accidental reflection) reference beam 1. 4 and interferometer spectrophotog 116 may not want to The desired reflection (such as 139). To isolate and remove the unwanted reflection 139, the reference beam 1〇4 and the interferometer beam splitter 116 are slightly turned at an angle as shown to direct the unwanted reflection 139 to Outside of the aperture aperture of the aperture stop ι3 。 Figure 1 shows an example of an unwanted first reflection 132 from the PR surface 118 of the reference element, and the unwanted portion 134 of the reference beam 126 is transmitted through the reference element 104 instead Reflected back toward the interferometer beam splitter 116. The unwanted first-reflection 132 and unwanted portions & 134 are blocked by the aperture stop 130. In the example of Figure 1, the interferometer beam splitter 116 is relative to the vertical optical axis 106. The orientation is tilted by an angle a. The reference element 1〇4 is tilted substantially at an angle equal to 2cx such that the reference beam 126 is illuminated at approximately normal incidence to the PR surface 118 of the reference element 104. Referring to Figure 2, in some embodiments To enter The unwanted reflections from the AR surface of the reference element 104 and the interferometer beam splitter 116 are suppressed in one step, and the reference element 104 and the interferometer beam splitter 6 can be made of wedge substrates 210 and 212, respectively. In this example, the wedge substrate 212 has a PR surface 218 facing the reference 201100751 element and an ar surface 2ΐ6 facing the test object 1〇2, ', the middle PR surface 218 and the AR surface 216 are not parallel. The wedge substrate 21〇 has a face alignment straightener 114 The outer surface and the 99 11 surface, the surface 220 and the AR surface 214 ′ facing the beam splitter, wherein the PR surface 22 〇艿ακ»志 οι/· is not parallel to the 表面 and AR surface 214. The orientation relative to the vertical optical axis 106, PR The surface? 1 garment is tilted by 218 and the PR surface 220 respectively to be substantially equal to the angles of α and 2α. The station field w is not through the use of the wedge substrates 21 and 212, and the non-phased 来自 from the AR surfaces 214 and 216 The reflection of the μ μ μ will be pushed in an angle relative to the measurement and ❹ Ο reference beam, and the door is set and taken back by the aperture stop 130. In the example of Figure 1, it is observed X. 丨θθ 表面 眺 眺 或 测 测 测 表面 表面The front surface 137 of 102. The interferometer 1 can also be used to view or measure the back surface 138 of the test object 102. The surface to be measured does not necessarily need to be the outer surface of the object. The internal interface in the optical (4) is viewed or measured. The interference pattern detected by the camera 108 is analyzed by, for example, a computer (not shown). The analysis of the interference pattern can provide information about, for example, the object m. Whether table Φ 137 matches or information with the desired surface porch. In the example of Figure 1, the interferometer is insensitive to the polarization of #沾, m耵 to nine. Illumination photodetector 112 reflects a portion of the light from source 110 (e.g., collimator 114, and transmits a portion of the returned light (e.g., collimator 114 to camera 108. In some embodiments, dry ^ The instrument can also be configured to use polarized light. For an offset 1 , a B v polarized illumination beam splitter is used and a four y knife wave plate is positioned between the beam splitter and the quasi-parentizer 114 to rotate 15 201100751 The polarization state of the light. The polarized illumination beam splitter will generally polarize all of the light guides w along the first direction (through the quarter-wave plate) and will generally return all polarizations along the first direction of the 荖笸-十^1 Light (via a quarter-wave plate) is transmitted to camera 1 〇 8. Referring to Figure 3, the invention of reference element 104 and interferometer beam splitter 116 has the benefit that they can be configured to be equal for reference beam 126 and measurement 28. Path length 'and an equal number of glass in both paths. For example, the thickness of the glass of reference element 1G4 can be the same as the thickness of the glass of beam splitter 116. Right side, in this example, measuring beam 128 from The surface 122 of the pp 矣 && of the illuminator 116 is advanced to the front surface 137 of the object 1 〇 2 and the path length back to the pr surface 122 is equal to the reference beam 126 traveling from the PR surface 122 to the reference element called the fine surface. 118 and returning to the path length of the PR surface 122. A change in environmental conditions such as temperature generally results in the same amount of phase change in the reference beam (3) and the sigma beam! 28. This is useful, for example, in low coherence interferometry, It is important to maintain the same path length for the measurement and reference beams. In some examples, the thickness of the reference elements #ι〇4 and the beam splitter (1) may vary, and an additional optical component may be used to partially or completely correct The phase difference caused by such a difference. If the back surface 138 of the test object 1〇2 or the surface inside the body of the test object 1()2 is measured, the distance between the test object 〇2 and the beam splitter ι 6 can be Adjusted 'so that the optical path length of the measuring beam traveling from the pR surface 122 to the surface to be measured is equal to the optical path length of the reference beam 16pR surface 122 traveling back to the pr surface 118 Note that since the refractive index of the test object of 16 201100751 I can be different from the refractive index of air, even if the optical path length of the measurement and reference beam is the same, the physical distance traveled by the measuring beam can be different from the physical distance traveled by the reference beam. In the example, reference element 210' and splitter! 212 also provide equal path lengths for the measurement and reference beams. Another benefit of the design of the present invention is its overall geometric and mechanical design with commercial Fizeau interferometers. Compatible, such as

Zyg0 CorP〇ration’ Middlefield,Connecticut 取得的Zyg0 CorP〇ration’ Middlefield, Connecticut

Zygo GPTTM系統的干涉儀。 參考圖4,一範例的等路徑干涉儀144可被用於相移 干涉術干涉儀144包括一儀器主機142及一干涉儀次總 成140。干涉儀次總成14〇係取決於應用而可附加至儀: 的主機142或從其移除的附件。主機142包括一光源146、 一照明分光器112、一準直器114、一孔徑光闌13〇、—成 像透鏡13 6、及一照相機1 〇 8,類似於圖1的例子中所示者。 〇 光源146可為一雷射光源或是一低同調光源。 在一些實施方式中,光源Ϊ 46可在低同調干涉術的寬 頻杈式及尚同調干涉術的雷射模式間調整。例如,光源146 可為田射一極體,其當以低於其雷射閾值的電流被驅動 時在寬頻模式中操作,且當以高於其雷射閾值的電流被驅 動時在雷射模式中操作。 干涉儀-欠總成140包括一干涉儀分光器116及一參考 元件104’類似於圖i的例子中所示者。干涉儀次總成14〇 的位置可由一機械移相器148調整(由147表示),其可具 17 201100751 有例如i微米等級的準確度。 s a i丄土 移相盗改變在測量光束 128及參考光束126之間的古風妨, „ 的先學路徑長度的差。在此例中, 矛夕相器148機械地將干涉儀戈 "儀乂總成耦合至儀器主機142 上的一基座並且被配置以改變 雯-人〜成1 4〇及測試物體1 02 間的距離’以改變測量光束128的光學路徑長度。 次總成U0可被配置為一可拆卸的附件,其可透過一 附件安裝盤149被安裝在儀器主機142上。在此例中,干 涉儀14 4係與任意偏振的照明相容。 在一些貫施方式中,1可拖7手了、》卜Ά /、了配置干涉儀144以利用偏振 先,使得測量光束及參考光束分別沿著測量路徑及參考路 技的特別部分具有特定的偏振。 當低同調光源146被使用時,等路徑干涉儀144可對 例如具有多個反射表面的一透明物體的特定表面進行測 里。在低同調干涉術中’干涉效應被限制或局部化於等路 "^的情況。 圖5顯示-範例干涉訊號15(),其當以_寬頻(中心波 長為600 nm’半向全寬為15nffl)光源測量時係如同透明物 體的物體位置的函數一樣變化。”零”的物體位置係相告 於等路徑的情況。在此例中,干涉削虎15G的波封的振: 在接近零的位置較高,且在超出零的位置12微米的位置广 顯著地降低。 & 圖6顯示一範例干涉訊號強度i 6〇,其當以—寬頻(中 心波長為600 nm,半高全寬為15nm)光源測量時係如同— 40微米厚的熔融石英物體的物體位置的函數—樣變化。 18 201100751 涉訊號16〇的第一峰值162係出現在零的位置。干涉訊號 • 160的第二峰值164係出現在-60微米,其對應於來自物體 的後表面的反射。 如同可從圖5及6的圖式看到,來自在遠離被測量的 表面超過例如20微米的測試物體1 〇2上的表面之反射對於 在等路徑條件被滿足(亦即,測量路徑及參考路徑大體上具 有相等的路徑長度)時產生的干涉圖案的貢獻將可忽略。在 ◎ 圖I-4所示的例子中,從測試物體102的前表面137及後 表面1 38反射的光可全部到達照相機丨〇8。假定前及後表 面間的距離大於20微米。當干涉儀! 〇〇被用以測量前表面 1 37時,從後表面丨38反射的光可能對於在照相機丄⑽檢 測到的干涉圖案沒有任何重大的貢獻。類似地,當干涉儀 1〇〇被用以測1後表面138時,從前表面反射的光可 能對於在照相機108檢測到的干涉圖案沒有任何重大的貢 獻0 〇 參閱圖7,—等路徑干涉儀可適用於其他的儀器平台, 諸如干涉顯微鏡。-干涉顯微鏡Π0包括一主冑172及-可移動的干涉器接物鏡174。主機172包括一光源、146及 一透鏡與場光鬧總成176(其包括—透鏡173、—場光鬧 175、及一照明孔徑光闌m)以將來自光源""光準直、 過;慮、擴張、及導引朝向一照明分光器178。分光器m :光朝向干涉物鏡174導引。分光器178也接收從干涉物 回的光’並且將返回的光通過_成像孔徑光閣⑽ 及一鏡筒透鏡導引至一照相機1 08。 19 201100751 及一I:物鏡174包括-物鏡184、-干涉儀分光器116、 几件104。要觀看(或測量)物體102的一特別的 表面,一機械掃猫機構186产著一方^旧读㈣的 174 ν 186 /口者方向188掃瞄干涉物鏡 乂調&分光器116_表面122與被觀看的物體ι〇2 苴、之間的距離。可移動的干涉器接物鏡174可取代在 統中使用的米勞、麥克森、或林尼克型的干涉物鏡。 口為顯微鏡;170# $ ^ 使用—等路控干涉儀,其對於掃猫白光干 ♦術是有用的。干渉你 ,兄174可比麥克森或林尼克型的干 涉物鏡更小型。 參閱圖8,在一r« 二貫施方式中,用於等路徑干涉儀的 予’心成1 9 0包括一參考元件1 9 2及一 +'牛慮v 〒兀忏上及干涉儀分光器1 94。 涉儀分光器194相對於垂直光軸1Q6的定向傾斜一角度 >考兀件192相對於垂直光軸⑽的定向傾斜一角度 ^在此配置下,"'參考光束1 96總共從參考元件】92 的=表面200反射二次且從干涉分光器表面2〇2 、二次。在參考光束196與測量光纟198結合之前參 考光束196在分光器194的pR表面2〇2及參考元件M2的 R表面200之間來回行進兩次。 參考元件192的厚度T1係分光器194的厚度τ2的一 半’使得參考光束196及測量光束198通過相等數量的玻 瑪。在分光器194的PR表面2〇2與被測量的物體1〇2的前 ^面137之間的距離可大約為分光器194白勺pR表面2〇2與 ’考元件192㈣表面20。之間的距離的兩倍。類似於圖 中的例子,光學總成190可與一儀器主機—起使用,或 20 201100751 者類似於圖”的例子’可被使用於一干涉顯微鏡中。 光學總成1 9 0的一優點在於與圖1 — 4 一 ’入^ T顯不的例 子相比,其提供在分光器194及測試物體102間增長的工 作距離。 s \、Interferometer for the Zygo GPTTM system. Referring to FIG. 4, an exemplary equal path interferometer 144 can be used for the phase shift interferometer interferometer 144 including an instrumentation host 142 and an interferometer subassembly 140. The interferometer sub-assembly 14 can be attached to the main unit 142 of the instrument or an accessory removed therefrom depending on the application. The main unit 142 includes a light source 146, an illumination beam splitter 112, a collimator 114, an aperture stop 13A, an imaging lens 136, and a camera 1 〇 8, similar to that shown in the example of FIG.光源 Light source 146 can be a laser source or a low coherent source. In some embodiments, the light source Ϊ 46 can be adjusted between the wide frequency 低 mode of the low coherence interferometry and the laser mode of the coherent interferometry. For example, light source 146 can be a field-emitting body that operates in a broadband mode when driven at a current below its laser threshold and in a laser mode when driven at a current above its laser threshold. In operation. Interferometer-under-assembly 140 includes an interferometer beam splitter 116 and a reference element 104' similar to that shown in the example of FIG. The position of the interferometer sub-assembly 14 可由 can be adjusted by a mechanical phase shifter 148 (represented by 147), which can have an accuracy of, for example, an i micron rating. The sai 移 移 改变 改变 改变 改变 改变 改变 改变 改变 改变 改变 改变 改变 改变 改变 改变 改变 改变 改变 改变 改变 改变 改变 改变 改变 改变 改变 改变 改变 改变 改变 改变 改变 改变 改变 改变 改变 改变 改变 改变 改变 改变 改变 改变 改变 改变 改变 改变 改变 改变 改变The assembly is coupled to a pedestal on the instrument mainframe 142 and is configured to vary the distance between the human and the human and the test object 102 to change the optical path length of the measuring beam 128. The sub-assembly U0 can be It is configured as a detachable accessory that can be mounted on the instrument main unit 142 through an accessory mounting plate 149. In this example, the interferometer 14 4 is compatible with illumination of any polarization. In some embodiments, 1 The hand can be dragged, and the interferometer 144 is configured to utilize the polarization first so that the measuring beam and the reference beam respectively have a specific polarization along a specific portion of the measuring path and the reference path technique. When the low coherent light source 146 is In use, the equal path interferometer 144 can measure, for example, a particular surface of a transparent object having a plurality of reflective surfaces. In low coherence interferometry, the 'interference effect is limited or localized to the case of the equal path". 5 display - Example Interference Signal 15(), which is measured as a function of the position of the object of the transparent object as measured by a _ broadband (center wavelength of 600 nm '15 mm full width). "Zero" object position phase In the case of the equal path, in this case, the vibration of the wave seal of the interference 15G is higher at a position close to zero, and is significantly reduced at a position 12 microns beyond the position of zero. & Figure 6 shows An example interferometric signal strength, i 6 〇, is measured as a function of the position of an object of a 40 μm thick fused silica object when measured with a broadband source (center wavelength of 600 nm, full width at half maximum of 15 nm). 18 201100751 The first peak 162 of the signal 16 出现 appears at zero. The second peak 164 of the interference signal 160 appears at -60 microns, which corresponds to the reflection from the back surface of the object. As can be seen from Figures 5 and 6 The pattern shows that the reflection from the surface on the test object 1 〇 2 that is farther away from the surface being measured, for example 20 μm, is satisfied for the equal path condition (ie, the measurement path and the reference path have substantially phase The contribution of the interference pattern generated at the path length will be negligible. In the example shown in Fig. I-4, the light reflected from the front surface 137 and the rear surface 138 of the test object 102 may all reach the camera 丨〇8. Assuming that the distance between the front and back surfaces is greater than 20 microns. When the interferometer! is used to measure the front surface 1 37, the light reflected from the back surface 丨 38 may not have any interference pattern detected on the camera 丄 (10). Significant contribution. Similarly, when the interferometer 1 is used to measure the back surface 138, the light reflected from the front surface may not have any significant contribution to the interference pattern detected at the camera 108. 〇 See Figure 7, - Equal path interferometers are available for other instrumentation platforms, such as interference microscopes. The interference microscope Π0 includes a main 胄172 and a movable interferometer objective 174. The host 172 includes a light source, 146 and a lens and field light assembly 176 (which includes a lens 173, a field aperture 175, and an illumination aperture stop m) to collimate light from the source "" The filter, the expansion, and the guide are directed toward an illumination beam splitter 178. Beam splitter m: Light is directed toward the interference objective 174. The beam splitter 178 also receives the light 'back from the interfering object' and directs the returned light to a camera 108 through the image aperture plate (10) and a barrel lens. 19 201100751 and an I: The objective lens 174 includes an objective lens 184, an interferometer beam splitter 116, and a plurality of pieces 104. To view (or measure) a particular surface of the object 102, a mechanical sweeping mechanism 186 produces an old read (four) 174 ν 186 / mouth direction 188 scan interference objective 乂 adjust & splitter 116_ surface 122 The distance from the object ι〇2 被 that is being viewed. The movable interferometer mirror 174 can replace the Millau, McKinson, or Linnick type of interference objective used in the system. The mouth is a microscope; 170# $ ^ is used - a road-controlled interferometer, which is useful for sweeping cat white light. Dry up, Brother 174 can be smaller than the McKesson or Linnick type of mirror. Referring to Fig. 8, in an r« binary mode, the 'Essence 1 190 for an equal path interferometer includes a reference component 1 9 2 and a +' 牛虑v 〒兀忏 and interferometer splitting 1 94. The orientation of the spectroscope 194 with respect to the orientation of the vertical optical axis 1Q6 is inclined by an angle > the orientation of the test piece 192 with respect to the vertical optical axis (10) is inclined by an angle ^ In this configuration, the " reference beam 1 96 totals from the reference component 】 92 = surface 200 reflected twice and from the interference beam splitter surface 2 〇 2, twice. The reference beam 196 travels back and forth between the pR surface 2〇2 of the beam splitter 194 and the R surface 200 of the reference element M2 twice before the reference beam 196 is combined with the measurement aperture 198. The thickness T1 of the reference element 192 is a half of the thickness τ2 of the beam splitter 194' such that the reference beam 196 and the measuring beam 198 pass an equal number of apertures. The distance between the PR surface 2〇2 of the beam splitter 194 and the front surface 137 of the object 1〇2 to be measured may be approximately the pR surface 2〇2 of the beam splitter 194 and the surface 192 (four) surface 20 of the optical element 194. The distance between them is twice. Similar to the example in the figure, the optical assembly 190 can be used with an instrument mainframe, or 20 201100751, which can be used in an interference microscope. An advantage of the optical assembly is that Compared to the example of Figure 1-4, which provides an increase in the working distance between the beam splitter 194 and the test object 102, s \,

在一些實施方式中,干涉儀分光器(例如116或 及參考元件(例如104或192)可為非平面。例如,若測試 物體102係球面,參考元件(例如1〇4及192)的pR參考表 面(例如118或200)可為可比較的球面形狀。 圃y顯不用 •丨|叫、ΡΊ π跟囟凹 面)表面224的範例干涉儀22〇。干涉儀22〇包括一楔形參 考元件226及一楔形干涉儀分光器228。分光器具有 一 PR表面232及一 AR表面242。參考元件226具有一 μ 表面230及一 AR表面24〇,其中,測試物體222的⑼表 面230及表面224相對於分光器228的pR表面232係非對 稱的。PR表面232將一進入的光束244分開成測量光束 及參考光束236’其在PR表面232結合以形成重疊的光束 238之前行進相等的路徑長度。重疊光束238的干涉圖案 可被分析以提供有關例如測試物體222的表面224是否匹 配或偏離由參考元件226的PR表面230表示之期望的表面 輪廓的資訊。 在干涉儀1GG + ’用於捕取或記錄干涉圖案的成像模 組或系統(包括成像透鏡136及照相機1〇8)具有一定的焦 深,使得在焦深外的物體變成失焦而由照相機1〇8捕取的 影像顯得模糊。在-些實施方式中,干涉儀可被配置以具 21 201100751 有位於成像系統的焦深之外的某些組件以放寬對組件品質 的要求。例如’若玻璃基板係位於成料統的焦深之外, 則玻璃基板的瑕_得失焦且對於由照相们⑽捕取的干 涉圖案具有很小或可,忽略的影響。這容許使用較低成本的 組件以降低系統的總成本,同時仍維持高效率。 參閱圖ίο,在一些實施方式中,除了干涉儀25〇包括 -參考元件252,其相較於干涉儀1〇〇的參考元件1〇4被 翻轉,干涉儀250具有類似於干涉儀_(圖υ的配置。參 考元件252在面對準吉5| 訂半直态114的表面上具有—抗反射鍍膜 12。且在面對干涉儀分光器116的表面上具有一部分反射 鍍膜11 8。從光源! 60輸入的光在碰到pR鍍膜丨18之前先 碰到AR鍍膜120。此一配置可具有一優點,即在干涉儀25〇 的成像系統的焦深内沒有破璃元件。 在此例中,焦深係由光的波長除以數值孔徑的平方來 定義。例如,在50〇nm的波長,具有〇.〇〇5的數值孔徑之 成像系統的焦深係20mm。成像系統被設計以投射在從參考 元件252的PR表面118反射的光與從物體12〇上或物體 120中的表面反射的光之間的干涉的圖案,所以焦點的中 。係位於參考元件2 5 2的p r表面118及被測量的物體12 〇 的表面。當分光器116及參考元件丨〇4被定位以分開超過 焦洙(在此例中係20mm)時,分光器基板變成失焦。這可放 見對於在干涉儀250中使用的玻璃基板的品質之要求,特 別是在高的空間頻率處。 參閱圖11,在一些實施方式中,一干涉儀26〇具有一 22 201100751 配置’其類似於干涉儀250者(圖i〇),甘且 學元件,諸m ㈤並具有-額外的光 的pr表面二 器262,被定位在參考元件252 及分光器116賴表面122之 先學-件可部分地或完全地補償: 束⑵之間的相位差,由光2束126及測量光 的差異所導致。,、係由先束126及m碰到的材料 例如’在圖10的干涉儀250中,雖然光束126及128 〇 距離相同,測量光束128比參考光束126通過更多 的玻璃。做為另-個例子,若參考元件252的厚度與干涉 儀分光器116的 " 扪厚度不冋,即使先束行進相同的距離,在 光束1 26 & 1 28間可能有一相位差。額外的光學元件(例如 色政補償器262)可部分地或完全地補償光束126及間 的相位差。額外的光學元件可被放在成像系統的焦深之 外’以放寬對額外光學元件的品質之要求。在圖u的例子 中,色散補償器262被放置以比參考元件118更靠近分光 〇器116,使得色散補償器262係在成像系統的焦深之外(焦 點中心係位於參考元件252的PR表面118)。 參閱圖12A,在-些實施方式中,一干涉儀包括一光 學總成270,其擇一使用來自干涉儀分光器的前表面或後 表面的反射以對於產生三光束干涉圖案的一測量光束及二 參考光束提供通過玻璃之大體上相等的路徑。光學總成27〇 包括一參考元件252及一干涉儀分光器272。參考元件252 具有一抗反射表面R1及一部分反射表面(具有大約5〇0/〇 的反射率)。分光器272具有二個部分反射表面⑸及R4(各 23 201100751 自具有大約12%的反射率)。表面R1、R2、R3及R4係依序 被定位。 圖12 A中的例子被說明,其不傾斜參考元件及分光器 以排除不想要的反射,且具有不平行的輸入及輸出光束, 以使得光束路徑更容易觀察。第一部分的光被透射通過表 面R1及R2’且在表面R3反射,而形成第—參考光束A278。 第一參考光束278從表面R2部分地反射並且回到表面R4, 參考光束A278在該點部分地反射於_路徑中,其與原始照 明大概是準直且同延的,但行進於相反的方向。 參閱圖12B,第二部分的光被透射通過表面Ri、”及 R3’且在表面R4被反射,而形成第二參考光束B28〇。第 二參考光束280從表面R2部分地反射並且回到表面, 參考光束刪在該點部分地反射於—路徑中,其與原始照 明大概是準直且同延的,但行進於相反的方向。 第三部分的光透射通過表面H R3 & R4,形成 測量光束M282。測量光束M282在表面以與第一參考光束 A278結合,且在表而^ . 仕衣面R3與第二參考光束β28()結合。重疊 的光束朝向照相機108行進,其檢測在第—參考光束 Α278、第二參考光束Β28〇及測量光束Μ282間的干涉。 下面說明決定表面R2、R3及R4的反射率以達成 束干涉圖案的南(例如备 如最大值)的對比之方法。現在不 有的雜散反射,單—影像點的干涉強度係: Ι-\Εα·,Εβ+Ε^ ⑴ B280 在此心心’心分別係參考光束Α278、參考光束 24 201100751 及測量光束M282的複數電場振幅。將表面r 1 . . . R4的複數 反射率分別表示為ri·..4’且將這些表面的透射率分別表示 為h.. 4。追溯二參考光束A及β通過系統,對於輸入場厶 得到In some embodiments, the interferometer beam splitter (eg, 116 or reference element (eg, 104 or 192) can be non-planar. For example, if the test object 102 is spherical, the pR reference of the reference element (eg, 1〇4 and 192) The surface (e.g., 118 or 200) may be a comparable spherical shape. 范例 y 显 显 叫 叫 叫 叫 叫 叫 叫 叫 叫 ΡΊ ΡΊ π π π 表面 表面 表面 范例 范例 范例 范例 范例 范例 范例 范例 范例 范例 范例 范例. Interferometer 22A includes a wedge shaped reference element 226 and a wedge shaped interferometer beam splitter 228. The beam splitter has a PR surface 232 and an AR surface 242. The reference element 226 has a μ surface 230 and an AR surface 24A, wherein the (9) surface 230 and surface 224 of the test object 222 are asymmetric with respect to the pR surface 232 of the beam splitter 228. The PR surface 232 separates an incoming beam 244 into a measuring beam and a reference beam 236' that travel an equal path length before the PR surface 232 combines to form an overlapping beam 238. The interference pattern of the overlapping beams 238 can be analyzed to provide information as to whether, for example, the surface 224 of the test object 222 matches or deviates from the desired surface profile represented by the PR surface 230 of the reference element 226. The interferometer 1GG + 'imaging module or system for capturing or recording the interference pattern (including the imaging lens 136 and the camera 1 〇 8) has a certain depth of focus, so that objects outside the depth of focus become out of focus due to the camera The images captured by 1〇8 appear blurred. In some embodiments, the interferometer can be configured to have certain components outside of the depth of focus of the imaging system to relax the requirements for component quality. For example, if the glass substrate is outside the depth of focus of the feedstock, the 瑕_ of the glass substrate is out of focus and has little or negligible effect on the interference pattern captured by the photographers (10). This allows the use of lower cost components to reduce the overall cost of the system while still maintaining high efficiency. Referring to the drawings, in some embodiments, in addition to the interferometer 25A including a reference element 252 that is flipped over the reference element 1〇4 of the interferometer 1〇〇, the interferometer 250 has an analog-like interferometer_ The reference element 252 has an anti-reflection coating 12 on the surface of the face alignment half 114 and has a portion of the reflective coating 11 8 on the surface facing the interferometer beam splitter 116. The 60 input light hits the AR coating 120 before it hits the pR coating 丨 18. This configuration may have the advantage that there are no glazing elements in the depth of focus of the imaging system of the interferometer 25 。. In this example The depth of focus is defined by the wavelength of the light divided by the square of the numerical aperture. For example, at a wavelength of 50 〇 nm, the focal depth of an imaging system with a numerical aperture of 〇.〇〇5 is 20 mm. The imaging system is designed to project A pattern of interference between light reflected from the PR surface 118 of the reference element 252 and light reflected from the surface of the object 12 or the surface in the object 120, so the focus is located at the pr surface 118 of the reference element 252. And the surface of the object 12 being measured. When the beam splitter 116 and the reference element 丨〇4 are positioned to separate beyond the focus (in this example, 20 mm), the splitter substrate becomes out of focus. This can be seen for the quality of the glass substrate used in the interferometer 250. Requirement, particularly at high spatial frequencies. Referring to Figure 11, in some embodiments, an interferometer 26 has a 22 201100751 configuration 'which is similar to the interferometer 250 (Figure i〇), and components, The pr surface two 262, which has (m) and has - additional light, is positioned to be partially or completely compensated for by the reference element 252 and the pre-study of the surface of the beam splitter 116: the phase difference between the beams (2), Caused by the difference between the light beam 2 126 and the measured light, the material encountered by the first beam 126 and m, for example, in the interferometer 250 of FIG. 10, although the beams 126 and 128 are the same distance, the measuring beam 128 ratio The reference beam 126 passes through more glass. As another example, if the thickness of the reference element 252 is not the same as the thickness of the interferometer beam splitter 116, even if the first beam travels the same distance, the beam 1 26 & 1 28 may have a phase difference. Extra Optical elements (e.g., color compensator 262) may partially or completely compensate for the phase difference between beams 126. Additional optical elements may be placed outside the depth of focus of the imaging system to relax the quality of the additional optical components. In the example of FIG. u, the dispersion compensator 262 is placed closer to the beam splitter 116 than the reference element 118 such that the dispersion compensator 262 is outside the depth of focus of the imaging system (the focus center is located at the reference element 252) PR surface 118). Referring to Figure 12A, in some embodiments, an interferometer includes an optical assembly 270 that alternatively uses reflections from the front or back surface of the interferometer beam splitter to produce a three-beam interference pattern A measuring beam and two reference beams provide a substantially equal path through the glass. The optical assembly 27A includes a reference component 252 and an interferometer beam splitter 272. The reference element 252 has an anti-reflection surface R1 and a portion of the reflective surface (having a reflectance of about 5 〇 0 / 〇). The beam splitter 272 has two partially reflective surfaces (5) and R4 (each having a reflectivity of approximately 12% from 201100751). The surfaces R1, R2, R3 and R4 are sequentially positioned. The example in Figure 12A is illustrated, which does not tilt the reference element and the beam splitter to eliminate unwanted reflections, and has non-parallel input and output beams to make the beam path easier to see. The first portion of the light is transmitted through the surfaces R1 and R2' and reflected at the surface R3 to form a first reference beam A278. The first reference beam 278 is partially reflected from surface R2 and returns to surface R4 at which point reference beam A278 is partially reflected in the _ path, which is approximately collimated and coextensive with the original illumination, but travels in the opposite direction . Referring to Figure 12B, the second portion of the light is transmitted through the surfaces Ri," and R3' and is reflected at surface R4 to form a second reference beam B28. The second reference beam 280 is partially reflected from surface R2 and returned to the surface. The reference beam is partially reflected at the point in the path, which is approximately collimated and coextensive with the original illumination, but travels in the opposite direction. The third part of the light is transmitted through the surface H R3 & R4. The measuring beam M282 is measured at the surface to be combined with the first reference beam A278, and the surface R3 is combined with the second reference beam β28(). The overlapping beams travel toward the camera 108, and the detection is in the - Interference between reference beam 278, second reference beam Β28, and measurement beam Μ 282. A method of determining the reflectance of surfaces R2, R3, and R4 to achieve a south (e.g., maximum) contrast of the beam interference pattern is described below. There is no stray reflection now, the interference intensity of the single-image point is: Ι-\Εα·, Εβ+Ε^ (1) B280 In this heart, the heart is the reference beam Α278, the reference beam 24 201100751 and the measuring light The complex electric field amplitude of M282. The complex reflectances of the surface r 1 . . . R4 are denoted as ri·..4', respectively, and the transmittances of these surfaces are denoted as h.. 4. Trace the reference beams A and β through System, for the input field 厶 get

Ea = EB=Entxt2tWlr,t2txeh (3) 〇 在此9係有關於在二參考光束Α及Β之間的光學路俨差 (0PD)之相位偏移。方程式(2)及(3)被簡化為 二 Ea - E0t't2t3r2r3r4 (4) (5) 假定分光器表面R2;? 及R3係完美的平行,與光學路徑 差相關的相位φ = 〇且-灸去 一參考先束有建設性干涉,我們可 將一等價的參考光束場寫成 〇 Er = 2£' 測量場係 (6)Ea = EB = Entxt2tWlr, t2txeh (3) 〇 In this 9 series, there is a phase shift of the optical path difference (0PD) between the two reference beams Α and Β. Equations (2) and (3) are reduced to two Ea - E0t't2t3r2r3r4 (4) (5) Assume that the beam splitter surface R2; ? and R3 are perfectly parallel, the phase associated with the optical path difference φ = 〇 and - moxibustion To constructive interference with a reference beam, we can write an equivalent reference beam field as 〇Er = 2£' measurement field (6)

Em = E0t2xt22tltlrMem ⑺ 方程式(1)中的強度I祜锌外士、一, 被簡化成一光束等價物 i = \er+em\2 (8) 導致熟悉的強度公式 I = IR + IM+ 24hhi c〇s(0) (9) 25 (10) 201100751 在此 (Π) h = at^:t^r2r,r, 4=¾¾¾Em = E0t2xt22tltlrMem (7) The intensity I 祜 zinc in the equation (1), one, is reduced to a beam equivalent i = \er+em\2 (8) leads to the familiar intensity formula I = IR + IM+ 24hhi c〇s ( 0) (9) 25 (10) 201100751 Here (Π) h = at^:t^r2r,r, 4=3⁄43⁄43⁄4

RR

(12) (13) RM=h\2 (14) 參考光束淨強度N2係單獨來看參考反射(A)或(e 的—個之強度的4❺’其表示要達到良好的條紋對比 光器反射率不需要彳艮高 γ _ h +Im 將條紋對比定義為 (15) 中 分 最大的條紋對比K = 1對於/ 7祜遠忐。m β ~极運成。使用方程式(10)(11),當 τ沈τ次rm 時’最大對比可被達成 其被簡化成 (16) t:rm =ar2r3r4 U7) 做為-特定的例子’令物體12G為―裸玻璃表面,^ 具有4%反射、50%的參考表面(R2)反射率、且對於μ及只 相同的反射率、以及介電錄膜,以料R1達成〇%的反肩 26 (18) 201100751 率。在此實例中, -^1=0 ^2 ~ 50% 及4 =尽 Ru = 4% 對於條紋對比p =丨 (19) 2^4-(1-/?4)2 4% = 〇 其具有解及4 =12.4%。古κ; 率獲利。例如物體可由較高的分光器反射 反射率提供最大的對比 光器反射率對於30%的物體 Α及的計算中,已假定除了測量光束及二參考光束 A及B之外治古甘仙广 々’ tg术 及、他反射到達儀器成像系統。類似於圖10 的例子,在光學總成27〇中的參考元件 先了可被傾斜以減少或消除不想要的反射並且導致平 仃的輸入及輸出光束。 參閱圖13,在一此尬十、丄 Ο = 式光學總成220包括傾 斜一角度α的一平面平抒之八龙 刀先态272與傾斜大約等於2(χ 的角度之參考元件況。在此例中,來自表面…4之 不想要的單-表面的反射未平行於輸出光束路徑返回。 仍有來自表面R4之非計劃中的光束從表面Μ反射並 且再次從表面R4進人至輸出光束。同樣仍有來自表面R3 之非計劃中的光束從表面R2反射並且再次從表面Μ進入 至輪出光束。當照明係低空間及時間同調時,這些光束沒 有正確的路徑長度以產生干涉;因此,它們僅”景光加 到影像且未以其他方式擾就要求的干涉圖案。淨效應可為 27 201100751 將相對的條紋對比減少例如2 〇 %。 參閱圖14,在一些實施方式中,經由修改干涉儀1〇〇 以=用在成像路徑之外的一場鏡3〇2取代使用準直器 而提供干涉儀300。在此關鍵路徑中沒有準直器而使物體 20直接成像於照相機i 〇8。場鏡可被定位於例如光源 110及照明分光器112之間。因為場鏡302未參與物體120 _考元件104的成像,場鏡3〇2不需要具有與準直器 相同的品質,而仍使得干涉儀可獲得準確的測量。場鏡21。 可為例如一繞射或菲涅耳(Fresnel)透鏡。 在圖1所示的例子中,為了測量大的物體120的表面 =性’可能需要使用大的準直器i 14以提供足夠大的光 场。大口徑、高品質的準直器可能很昂貴。在圖14所示的 Η中經由使用一大口徑場鏡3〇〇,其顯然比大口徑準 器便且’而在製造干涉儀3〇〇時可大幅地節省成本。 圖4、10及U所示的干涉儀也可被修改以使用場 代準直器。 V干涉儀可被使用以測量許多類型的物體表面的 例如在硬碟中使用的玻璃碟片的碟片平坦度及碟片 2呈破Μ片具有前及後反射表面。上述干涉儀使用光源 Ζ有低空間同調,使得來自後反射表面的反射對於由 :::表面反射的測量光及從參考表面反射的參 =生的干涉圖案具有可忽略的貢獻。干涉儀也可被 測置其他類型的碟片媒介表面。 其他的特徵、特點及優點係位於本發明的範疇内。 28 201100751 如纟®it’可提供一基座以支撐㈣試物體⑽。基座 可為可調整且被配置以定位測試物體1G2以定義測量光束 8的光學路ϋ長度,其大體上等於參考光束的光學 路徑長度。圖2之楔形參考元件21。的定向可被快速轉動, 使传參考το件的PR表面面對干涉儀分光器。在圖*的干涉 儀人〜成140中的參考元件及干涉儀分光器與圖7的干涉 物鏡174的配置可由其他配置取代,諸如圖8、9、10、U、 〇 12A、12B及13所示者。參考元件及干涉儀分光器的傾斜 角度可與上述者不同。參考元件及干涉儀分光器的部分反 2表面可被形成在光學元件内之各自的内界面且不必然 需要是在如圖1-4及7_14所示的外表面。 【圖式簡單說明】 圖1係用於測量物體的表面之範例干涉儀的圖式。 圖2及3係被佈置以對參考光束及測量光束具有相等 Ο 的路徑長度之範例光學總成的圖式。 圖4係相移干涉術的範例干涉儀的圖式。 圖5及6係圖表。 圖7係適用於干涉顯微術的範例等路徑干涉儀的圖 式。 圖8係範例光學總成的圖式。 圖9係用於測量非平面表面的範例光學總成的圖式。 圖10及11係用於測量物體的表面之範例干涉儀的圖 式0 29 201100751 的範例光學總成 圖1 2A及1 2B係可被使用於干涉儀中 的圖式。(12) (13) RM=h\2 (14) Reference beam net intensity N2 is the reference reflection (A) or (4 of the intensity of e), which means to achieve good fringe contrast The rate does not need to be high γ _ h +Im to define the stripe contrast as (15) the largest stripe in the middle of the comparison K = 1 for / 7 祜 忐. m β ~ pole transport. Use equation (10) (11) When τ sinks τ times rm, the 'maximum contrast can be achieved. It is reduced to (16) t: rm = ar2r3r4 U7). As a specific example, the object 12G is the "bare glass surface, ^ has 4% reflection, 50% of the reference surface (R2) reflectivity, and for μ and only the same reflectivity, and the dielectric film, the material R1 achieves 〇% of the back shoulder 26 (18) 201100751 rate. In this example, -^1=0 ^2 ~ 50% and 4 = do Ru = 4% for the stripe contrast p = 丨(19) 2^4-(1-/?4)2 4% = 〇 it has Solution and 4 = 12.4%. Ancient κ; rate profit. For example, an object can be reflected by a higher spectrometer to provide maximum contrast reflectance. For the calculation of 30% of objects, it has been assumed that in addition to the measuring beam and the two reference beams A and B, the ancient Ganxian And his reflection reaches the instrument imaging system. Similar to the example of Figure 10, the reference elements in the optical assembly 27〇 can be tilted first to reduce or eliminate unwanted reflections and result in a flat input and output beam. Referring to Fig. 13, a tenth, 丄Ο = type optical assembly 220 includes a plane flattened eight-leaf knife precursor 272 tilted by an angle α and a tilted approximately equal to 2 (the reference element angle of the angle of χ. In this example, the unwanted single-surface reflection from surface...4 is not returned parallel to the output beam path. There are still unplanned beams from surface R4 that are reflected from the surface and again from surface R4 to the output beam. There are also unplanned beams from surface R3 that are reflected from surface R2 and again from the surface to the wheel. When the illumination is low spatial and temporally coherent, these beams do not have the correct path length to interfere; They only "view light is added to the image and does not otherwise disturb the required interference pattern. The net effect can be 27 201100751 to reduce the relative stripe contrast by, for example, 2 〇%. Referring to Figure 14, in some embodiments, via modification The interferometer 1 provides an interferometer 300 instead of using a collimator 3〇2 outside the imaging path. There is no collimator in this critical path to directly image the object 20. Camera i 〇 8. The field lens can be positioned between, for example, light source 110 and illumination beam splitter 112. Because field lens 302 is not involved in the imaging of object 120-test element 104, field lens 3〇2 need not be the same as the collimator The quality, while still allowing the interferometer to obtain accurate measurements. The field lens 21. Can be, for example, a diffraction or Fresnel lens. In the example shown in Figure 1, in order to measure the surface of a large object 120 = Sexuality may require the use of a large collimator i 14 to provide a sufficiently large light field. Large diameter, high quality collimators may be expensive. In the crucible shown in Figure 14, a large aperture field mirror is used. That is, it is obviously more cost-effective than a large-diameter device and can be substantially cost-effective when manufacturing an interferometer. The interferometer shown in Figures 4, 10 and U can also be modified to use a field-generation collimator. The V interferometer can be used to measure the flatness of the discs of many types of objects, such as glass discs used in hard discs, and the disc 2 has a front and rear reflective surface. The interferometer uses a light source. Has low spatial coherence, allowing reflection from the back reflection surface There is a negligible contribution to the measurement light reflected by the ::: surface and the interference pattern reflected from the reference surface. The interferometer can also be used to measure other types of disc media surfaces. Other features, features and advantages It is within the scope of the present invention. 28 201100751 Rugao®it' can provide a pedestal to support (iv) the test object (10). The pedestal can be adjustable and configured to position the test object 1G2 to define the optical path of the measuring beam 8. The length, which is substantially equal to the optical path length of the reference beam. The orientation of the wedge-shaped reference element 21 of Figure 2 can be rotated rapidly so that the PR surface of the reference τ piece faces the interferometer beam splitter. The configuration of the reference elements and interferometer beamsplitters in the 140 and the interference objective 174 of FIG. 7 may be replaced by other configurations, such as those shown in Figures 8, 9, 10, U, 〇 12A, 12B, and 13. The tilt angle of the reference element and the interferometer beam splitter can be different from the above. The reference elements and the partial anti-surfaces of the interferometer beamsplitter can be formed at respective internal interfaces within the optical elements and need not necessarily be the outer surfaces as shown in Figures 1-4 and 7-14. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a diagram of an exemplary interferometer for measuring the surface of an object. 2 and 3 are diagrams of an exemplary optical assembly arranged with a path length equal to Ο for the reference beam and the measurement beam. Figure 4 is a diagram of an example interferometer for phase shifting interferometry. Figures 5 and 6 are diagrams. Figure 7 is a diagram of an exemplary equal path interferometer for interference microscopy. Figure 8 is a diagram of an example optical assembly. Figure 9 is a diagram of an exemplary optical assembly for measuring a non-planar surface. Figures 10 and 11 are diagrams of an exemplary interferometer for measuring the surface of an object. Example 0 29 201100751 Example Optical Assembly Figure 1 2A and 1 2B are diagrams that can be used in an interferometer.

的圖式。 圖式。 【主要元件符號說明】 100、220、250、260、300:干涉儀. 102、222 :測試物體; 2 5 2 :參考元件; 104、118、192、210、226、 106 :光軸; 108 :照相機; 110、160 :光源; 11 2 :照明分光器; 114 :準直器; 116、178、194、212、228、272:分光器; 120 :物體; 124、214、216、240、242 : AR 表面; 122、200、202、218、220、230、232 : PR 表面; 126、196、236 :參考光束; 128、198、234 :測量光束; 130、180 :孔徑光闌; 136 :成像透鏡; 1 3 7 :前表面; 138 :後表面; 201100751 140 :干涉儀次總成; 142 :儀器主機; 144 :等路徑干涉儀; 146 :低同調光源; 148 :移相器; 149 :附件安裝盤; 15 0 :干涉訊號; 162 :第一峰值; 164 :第二峰值; 170 :干涉顯微鏡; 172 :主機; 173 :透鏡; 174 :干涉物鏡; 175 :場光闌; 176 :透鏡與場光闌總成; 177 :照明孔徑光闌; 184 :物鏡; 186 ·•機械掃瞄機構; 190、220、270 :光學總成; 210、302 :場鏡; 224 :表面; 238 :重疊光束; 244 :光束; 262 :色散補償器。 31The pattern. figure. [Description of main component symbols] 100, 220, 250, 260, 300: interferometer. 102, 222: test object; 2 5 2 : reference component; 104, 118, 192, 210, 226, 106: optical axis; 108: Camera; 110, 160: light source; 11 2: illumination beam splitter; 114: collimator; 116, 178, 194, 212, 228, 272: beam splitter; 120: object; 124, 214, 216, 240, 242: AR surface; 122, 200, 202, 218, 220, 230, 232: PR surface; 126, 196, 236: reference beam; 128, 198, 234: measuring beam; 130, 180: aperture stop; 136: imaging lens 1 3 7 : front surface; 138 : rear surface; 201100751 140 : interferometer sub-assembly; 142 : instrument main unit; 144 : equal path interferometer; 146 : low coherent light source; 148 : phase shifter; 149 : accessory installation Disk; 15 0: interference signal; 162: first peak; 164: second peak; 170: interference microscope; 172: host; 173: lens; 174: interference objective; 175: field diaphragm; 176: lens and field light阑 assembly; 177: illumination aperture stop; 184: objective lens; 186 ·• mechanical scanning mechanism; 190, 220, 270: total optical 210; 302: field lens; 224: surface; 238: overlapping beam; 244: beam; 262: dispersion compensator. 31

Claims (1)

201100751 七、申請專利範圍: 1.種使用於干涉儀中的光學總成,光學總成包括: 第一及第二部分反射表面,沿著光軸定位且定向於對 光轴之不同的非法線角, 其中’第二部分反射表面被配置以: 〇接收沿著光學路徑透射通過第一部分反射表面的 光; 11)將部分的接收光傳送至測試物體以定義干涉儀的 測量光;及 y Ui)將另一部分的接收光朝向第一部分反射表面反 ::去以定義干涉儀的參考光,#中,參考光在第二及第 一部分反射表面間行進至少一次來回的路徑。 2·如中請專利範圍第i項的光學總成,其中,非法線 :侍參考光在第二部分反射表面將參考光沿著光軸反射 回去之前通過第一及第二部分反射表面至少一次。 3:如申請專利範圍第2項的光學總成,其中,非法線 吏传參考光在其中-次通過其間的期間以垂直人射接觸 具中一個部分反射表面。 八4·如中請專利範圍第1項的光學總成,其中H 刀反射表面的非法線角係第二部分 兩倍。 刀夂射表面的非法線角的 5·如申請專利範圍第丨項的光學油 分及如+ 子〜成,其中’第一部 -又二分之一倍。 〃反射表面的非法線角的 32 201100751 乂 6.如申睛專利範圍第1項的光學總成,其中,第二部 刀反射表面被配置以結合測量光(在測量光從測試物體反 射π到第一部分反射表面之後)及參考光(在參考光至少一 次來回行造於第^ 弟—及第一部分反射表面間之後)。 7.如申請專利範圍第1項的光學總成,包括:第一光 千70件,具有第—部分反射表面;及第二光學元件,具有 第一部分反射表面。 〇 8.如申請專利範圍第7項的光學總成,其中,第一及 第二光學元件,各自具有另一表面,其具有一抗反射鍍膜。 9.如申請專利範圍第7項的光學總成,其中,第一部 刀反射表面係與第二部分反射表面間隔一距離,其大於捕 獲在參考光及測量光間的干涉圖案之成像模組的焦深。 10·如申請專利範圍第9項的光學總成,其中,干涉 儀的光學元件被定位使得參考光未通過在成像模組的焦深 内的玻璃。 〇 11.如申請專利範圍第7項的光學總成,其中,第一 光學元件具有另一表面,其具有一抗反射鍍膜。 12.如申請專利範圍第u項的光學總成,其中,第一 光學兀件被定向,使得第一部分反射表面面向第二光學元 件的第二部分反射表面,且第一光學元件的抗反射鍍膜背 向第一部分反射表面。 1 3·如申請專利範圍第12項的光學總成,其中,第一 部分反射表面及第二部分反射表面間的距離係大於用以捕 獲在參考光及測量光間的干涉圖案之成像模組的焦深。 33 201100751 14. 如申請專利範圍第13項的光學總成,更包括:一 色散補償器,被定位在第一光學元件及第二光學元件之間 以補償在測ΐ光及參考光間的相位差,色散補償器被定位 罪近第三光學元件且位於成像模組的焦深之外。 15. 如申請專利範圍第11項的光學總成,其中,第一 光學元件被定向’使得第一部分反射表面背向第二光學元 件的第二部分反射表面’且第一光學元件的抗反射鍍膜面 向第一部分反射表面。 16. 如申請專利範圍第丨項的光學總成,更包括:一 第二部分反射表面。 17. 如申請專利範圍第16項的光學總成,其中,第三 部分反射表面被配置以: I) 接收沿著光軸透射通過第一部分反射表面的光; II) 將部分的接收光傳送至測試物體以定義測量光. 及 , iU)將另一部分的接收光朝向第一部分反射表面反 射回去以對干涉儀& i ^ 儀疋義—第二參考光,其中,第二參考先 在第二及第一部分反射表面間行進至少一次來回的路徑。 18·如申請專利範圍第7項的光學總成,其中,部八 反射表面係分別在光學元件的外表面上。 " 19.如申請專利範圍第7項的光學總成,其中,部八 反射表面係被形成在光學元件内之各自的内界面。乃 ;2: >申請專利範圍第1項的光學總成,更包括:一 準直為’接收來自光源的光並將準直光投射至第-部分反 34 201100751 射表面。 21 _如申請專利範圍第1項的光學總成,更包括:一 場鏡,接收來自光源的光並將光投射至第一部分反射表 面,在參考光被第一部分反射表面反射之後及參考光被檢 測器檢測之前,場鏡被定位於參考光行進的成像路徑之外。 22·如申請專利範圍第丨項的光學總成,其中,第一 部分反射表面具有範圍約1〇%至約3〇%的反射率。201100751 VII. Patent application scope: 1. An optical assembly for use in an interferometer, the optical assembly comprising: first and second partial reflective surfaces, positioned along the optical axis and oriented to different illegal lines to the optical axis An angle, wherein the 'second partial reflective surface is configured to: 〇 receive light transmitted through the first partial reflective surface along the optical path; 11) transmit a portion of the received light to the test object to define the measurement light of the interferometer; and y Ui The other portion of the received light is directed toward the first partial reflective surface: a reference light defining the interferometer, wherein the reference light travels at least once back and forth between the second and first partially reflective surfaces. 2. The optical assembly of claim i, wherein the illegal line: the reference light passes through the first and second partial reflective surfaces at least once before the second partial reflective surface reflects the reference light back along the optical axis . 3: The optical assembly of claim 2, wherein the illegal line tweeting reference light is a partially reflective surface of the vertical human contact during the passage thereof. VIII. The optical assembly of claim 1, wherein the illegal line angle of the H-knife reflecting surface is twice that of the second part. The illegal line angle of the knives on the surface of the knives is as follows. For example, the optical oil component of the third paragraph of the patent application is as follows: the first part - one-half times.非法 非法 32 32 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 After the first portion reflects the surface) and the reference light (after the reference light is made at least once back and forth between the second body and the first partial reflective surface). 7. The optical assembly of claim 1, comprising: a first light 70, having a first partially reflective surface; and a second optical element having a first partial reflective surface. 8. The optical assembly of claim 7, wherein the first and second optical elements each have another surface having an anti-reflective coating. 9. The optical assembly of claim 7, wherein the first blade reflective surface is spaced apart from the second partially reflective surface by an distance greater than an imaging module that captures an interference pattern between the reference light and the measurement light. Depth of focus. 10. The optical assembly of claim 9, wherein the optical component of the interferometer is positioned such that the reference light does not pass through the glass within the depth of focus of the imaging module. The optical assembly of claim 7, wherein the first optical element has another surface having an anti-reflection coating. 12. The optical assembly of claim 5, wherein the first optical element is oriented such that the first partially reflective surface faces the second partially reflective surface of the second optical element and the anti-reflective coating of the first optical element Back to the first partial reflective surface. The optical assembly of claim 12, wherein the distance between the first partial reflective surface and the second partially reflective surface is greater than an imaging module for capturing an interference pattern between the reference light and the measurement light. Depth of focus. 33 201100751 14. The optical assembly of claim 13, further comprising: a dispersion compensator positioned between the first optical element and the second optical element to compensate for phase between the measured light and the reference light Poor, the dispersion compensator is positioned near the third optical element and is outside the depth of focus of the imaging module. 15. The optical assembly of claim 11, wherein the first optical element is oriented 'such that the first partially reflective surface faces away from the second partially reflective surface of the second optical element' and the anti-reflective coating of the first optical element Facing the first part of the reflective surface. 16. The optical assembly of claim 3, further comprising: a second partial reflective surface. 17. The optical assembly of claim 16, wherein the third partially reflective surface is configured to: I) receive light transmitted through the first partially reflective surface along the optical axis; II) transmit a portion of the received light to Testing the object to define the measurement light. and, iU) reflecting another portion of the received light back toward the first partial reflection surface to the interferometer & i ^ yiyi - the second reference light, wherein the second reference is first in the second And a path that travels at least once back and forth between the first partially reflective surfaces. 18. The optical assembly of claim 7, wherein the portion of the reflective surface is on the outer surface of the optical element. 19. The optical assembly of claim 7, wherein the eight reflective surfaces are formed at respective inner interfaces within the optical component. 2: > The optical assembly of claim 1 of the patent scope further includes: a collimation of 'receiving light from the light source and projecting the collimated light to the first portion of the surface. 21 _ The optical assembly of claim 1, further comprising: a mirror that receives light from the light source and projects the light onto the first partially reflective surface, after the reference light is reflected by the first partially reflective surface and the reference light is detected Prior to detector detection, the field lens is positioned outside of the imaging path through which the reference light travels. The optical assembly of claim 3, wherein the first portion of the reflective surface has a reflectance ranging from about 1% to about 3%. 23. 如申請專利範圍第1項的光學總成,其中,第二 部分反射表面具有範圍約4〇%至約6〇%的反射率。 24. —種干涉系統,包括: 如申請專利範圍第1項的光學總成;及 干β儀基座’包括一光源及一檢測器; 其中’光源被配置以產生透射通過第一部分反射表 且由第一部分反射表面接收的光,且 其中,檢測器被配置以接收包括測量光及 合光並提供關於結合光的空間分佈的資訊。 、… 25_如申請㈣範㈣24項的干涉系統,其中 儀基座更包括-孔徑光闌,被定位心擋來自干涉儀^ 的光,其沿著光軸接觸第一部分反射 土主 耵表面並且從第—邱八 反射表面反射回到干涉儀基座。 〇刀 26.如中請專利範圍第24項的干涉系統,其中,千、牛 儀基座更包括-孔徑光闌,彳干、" 的光,其沿著光軸接觸第一部分反射w、 涉儀基座 反射表面反射回到干涉儀基座。 ㈣-部分 35 201100751 =如宇請專利範圍第24項的干涉系統,更包括 座’用以支撐測試物體。 底 復〜如_請專利範圍第27項的干涉系統,其i 被疋位以疋義測量光的光學 -座 光的光學路徑長度。 長度其大體上等於參考 腹如申請專利範圍第24項的干涉系統 相器,用以改變在測量光及參 更匕括—移 on 芩尤間的先學路徑長度的差。 如.如申請專利範圍第29項的干涉系 器機械地將干涉儀美庙g Z、,移相 卞’儀基座耦合至光學總成且被配置以改键丄 =成及㈣物體間的距離,以改變測量光的光學路徑t 係一專利範圍第24項的干涉系統,其中,光源 見頻先源,用以提供低同調干涉術量測。 請專利範圍第24項的干㈣統,其 货' 乍頻雷射光源。 係可Γ二2專利範圍第24項的干涉系統,其中’光源 文門抑的寬頻模式及高同調干涉術的雷射模 间調整。 係如申請專利範圍第33項的干涉系統’其中,光源 係—雷射二極體, 兀愿 ^营μ ” *以低於其雷射閾值的電流被驅動時 牡見頻模式中振 ^ 乍,且^以高於其雷射閾值的電流被驅動 時在雷射模式中操作。 八c5· *中請專利範圍第1項的干涉系統,其中,第-射表面包括-非平面的表面。 36 201100751 36二-種干涉方法,包括: f光軸弋位第-及第二部分反射表面; 相對於光輛將第—月笛w 非法線角; 及弟二部分反射表面定向於不同的 _平仃光軸的方向將光通過第一部分反射表面傳送 至第二部分反射表面; 得、 在第二部分 反射表面,將第一部分的光傳送至測試物 體以疋義測量光,並一 O 1且將第二部分的光朝向第一部分反射 表面反射回去以定義參考光;及 ,第一部分反射表面’將第二部分的光的一部分朝向 射表面^反射表面反射’使得參考光在第二及第一部分反 射表面間行進至少一次來回的路徑。 申明專利範圍第36項的方法,#中,定向第一 及第二部分反射表面包括將第-及第二部分反射表面定向 t不同的非法線角,以使得參考光在第二部分反射表面沿 者光轴將參考朵/5 4» 〇 先反射回去之前至少一次通過第一及第二部 分反射表面之間。 38.如申請專利範圍第加項的方法,其中,定向第— 及第二部分反射表面包括將第-及第二部分反射表面定向 於不同的非法線角,以使得參考光在其中一次通過其間的 期間以垂直入射接觸其中-個部分反射表面。 39·如申請專利範圍第36項的方法,包括:在第二部 力 表面、、’。口測里光(在其從測試物體反射回到第二部 .分反射表面之後)及參考光(在其至少-次來回行進於第二 37 201100751 及第一部分反射表面間之後)。 40·如申請專利範圍第39項 人朵的处P胃八γ士 、 匕括提供關於結 «尤的空間分佈的資訊。 41 ·如申請專利範圍第%項 ^ fS , m ^ ^ 、的方法包括提供一孔徑 先闌,阻擋以遠離第二部分 表面的方向從第一部分反 射表面被反射的光。 仏如申請專利範圍第36項的方法,包括定位且有一 反射表面的測試物體以定義測量光的光 體上等於參考光的光學路徑長度。 長度,、大 43. 如巾請專利範圍帛42項的方法,包括改變在測量 光及參考光間的光學路徑長度的差。 44. 如申請專利範圍第㈡項的方法,包括改變光學總 成及測試物體間的距離以改變測量光的光學路徑長产,光 學總成包括第一及第二部分反射表面。 、又 如申明專利範圍帛36項的方法,更包括將具有第 :部妓射表面的光學元件定向於光學^件的外表面使 侍具有第-部分反射表面的光學元件的外表面面向第二部 分反射表面。 46. 如申請專利範圍第⑽項的方法,包括不通過任何 玻璃元件而將參考光從第—部分反射表面傳送至第二部分 反射表面。 47. 如申請專利範圍第%項的方法包括將第二部分 反射表面定位於距第—却八^ &主二 乐 4刀反射表面一段距離,此段距離 大於檢測在測量光及表老央p卩站斗_ 園安^上、 〆号光間的干β圖案之成像模組的焦 38 201100751 深。 , 48.如申請專利範圍第47項的方法,包括使參考光通 過色散補償器’其補償由於參考光與測量光行進的光學 路徑長度的差造成的測量光與參考光之間的相位的差,並 且將色散補償器定位在成像模組的焦深之外。 49.如申請專利範圍第%項的方法更包括: 沿著光軸定位一第三反射表面; 〇 將第三部分反射表面定向以平行於第二部分反射表 面; “在第二部分反射表面,將由第一部分反射表面傳送的 光之第二部分傳送至測試物體以定義測量光,並且將光的 P刀朝向第一部分反射表面反射回去以定義第二參考 光;及 ^ 在第σ卩77反射表面,將光的第四部分的一部分朝向 、二部分反射表面反射,使得第二參考光在第二及第—部 反射表面間行進至少一次來回的路徑。 so. *申請專利範圍第%項的方法其中,將光傳送 =過第-部分反射表面包括將準直㈣送通過第—部 射表面。 A如中請專利範圍第36項的方法,更包括在將 迗通過第一部分反射表 斧 衣甸之刖將先傳达通過一場鏡,並且 在參考光被第一部分反射矣&^ 檢測μ 刀反射表面反射之後及參考光被檢測器 ]之前將場鏡定位於參考光行進的成像路徑之外。 3923. The optical assembly of claim 1, wherein the second portion of the reflective surface has a reflectance ranging from about 4% to about 6%. 24. An interference system comprising: an optical assembly as claimed in claim 1; and a dry beta instrument base comprising a light source and a detector; wherein the 'light source is configured to produce transmission through the first partial reflection table and Light received by the first partially reflective surface, and wherein the detector is configured to receive information including the measured light and the combined light and providing a spatial distribution of the combined light. 25_ If the application (4) Fan (4) 24 items of the interference system, wherein the instrument base further comprises an aperture stop, the position is blocked from the light of the interferometer ^, which contacts the first part of the reflective earth surface along the optical axis and Reflected from the surface of the eighth-eighth reflection back to the interferometer base. 〇 26. The interferometric system of claim 24, wherein the oscillating base further comprises an aperture apex, a dry, " light that contacts the first portion along the optical axis to reflect w, The pedestal reflective surface is reflected back to the interferometer base. (4) - Part 35 201100751 = Intervention system of the 24th patent scope, including the seat ' to support the test object. The bottom of the interference system, such as _ the patent scope of the 27th, the i is clamped to measure the optical path length of the optical-seat light of the light. The length is substantially equal to the interference system phase of the reference abdomen as in claim 24, to vary the difference in the length of the path between the measurement light and the reference path. For example, the interferometric system of claim 29 mechanically couples the interferometer meimei g Z, the phase shifting 仪's pedestal to the optical assembly and is configured to change the keys 成=成和(4) between objects The distance, in order to change the optical path of the measuring light t, is an interference system according to item 24 of the patent scope, wherein the source of the light source is used to provide low-coherence interferometry. Please refer to the dry (four) system of the 24th item of the patent scope, and its goods 'frequency laser light source. It is an interference system according to item 24 of the patent scope 2, wherein the broadband mode of the light source and the laser mode adjustment of the high homology interference. For example, the interferometric system of claim 33, in which the light source is a laser diode, 兀 营 ^ μ ” * 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以And operating in a laser mode when the current is higher than its laser threshold. The interferometric system of claim 1 wherein the first-shot surface comprises a non-planar surface. 36 201100751 36 two-interference method, including: f optical axis clamps the first and second partial reflection surface; relative to the light vehicle will be the first month flute w illegal line angle; and the second part of the reflective surface is oriented to different _ The direction of the optical axis of the flat pupil transmits the light to the second partial reflection surface through the first partial reflection surface; and the second partial reflection surface transmits the first portion of the light to the test object to measure the light, and Reflecting the second portion of the light toward the first partially reflective surface to define the reference light; and, the first portion of the reflective surface 'reflecting a portion of the second portion of the light toward the surface of the reflective surface' such that the reference light is in the second The first portion of the reflective surface travels at least once back and forth. In the method of claim 36, the oriented first and second partial reflective surfaces comprise illegal linear angles that direct the first and second partial reflective surfaces to different t So that the reference light passes between the first and second partially reflective surfaces at least once before the second partial reflective surface reflects the reference dot 5 4» 沿 back along the optical axis of the optical axis. 38. The method of directing the first and second partial reflective surfaces includes directing the first and second partially reflective surfaces to different illegal line angles such that the reference light contacts the one of the reference lights at a normal incidence therebetween Partially reflective surface. 39. The method of claim 36, comprising: at the second force surface, '. Measure the ray (after it is reflected from the test object back to the second part. And reference light (after at least one of it travels back and forth between the second 37 201100751 and the first partially reflective surface). 40. As claimed in claim 39, At the end of the page, the information on the spatial distribution of the knots is provided. 41 · The method of applying the patent range % item ^ fS , m ^ ^ , includes providing an aperture 阑, blocking to stay away from the second The direction of the partial surface is reflected from the first portion of the reflective surface. The method of claim 36, comprising positioning the test object having a reflective surface to define an optical path length equal to the reference light on the light body of the measurement light. Length, large 43. The method of the patent scope 帛 42, including changing the difference between the optical path length between the measuring light and the reference light. 44. The method of claim (2), including changing the optical assembly And measuring the distance between the objects to change the optical path length of the measurement light, the optical assembly including the first and second partially reflective surfaces. And the method of claim 36, further comprising directing the optical element having the third portion of the surface to the outer surface of the optical member such that the outer surface of the optical element having the first partial reflective surface faces the second Partially reflective surface. 46. The method of claim (10), wherein the reference light is transmitted from the first partially reflective surface to the second partially reflective surface without passing through any of the glass elements. 47. The method of applying for the ninth item of the patent scope includes positioning the second part of the reflective surface at a distance from the reflective surface of the first-eighth and the main two music, which is greater than the detection in the measurement light and the table p卩站斗_ 园安^上, 〆号光的干β图案的影像模块焦38 201100751 深。 48. The method of claim 47, comprising passing the reference light through a dispersion compensator 'which compensates for a difference in phase between the measurement light and the reference light due to a difference in optical path length between the reference light and the measurement light. And positioning the dispersion compensator outside of the depth of focus of the imaging module. 49. The method of claim 5, further comprising: locating a third reflective surface along the optical axis; 〇 orienting the third partially reflective surface parallel to the second partially reflective surface; “reflecting the surface at the second portion, Transmitting a second portion of the light transmitted by the first partially reflective surface to the test object to define the measurement light and reflecting the P-knife of the light back toward the first partially reflective surface to define a second reference light; and ^ at the σ 卩 77 reflective surface And reflecting a portion of the fourth portion of the light toward the two-part reflective surface such that the second reference light travels at least once back and forth between the second and first reflective surfaces. Wherein, transmitting the light = passing the first-part reflective surface comprises passing the collimation (four) through the first-part surface. A method of claim 36, wherein the method of reflecting the first part is axe It will then pass through a mirror and after the reference light is reflected by the first part 矣&^ to detect the reflection surface of the μ knife and the reference light is detected by the detector ] The field lens was previously positioned outside of the imaging path through which the reference light travels.
TW099119849A 2009-06-19 2010-06-18 An optical assembly for use in an interferometer, an interferometry system, and an interferometry method TWI431243B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US21870309P 2009-06-19 2009-06-19

Publications (2)

Publication Number Publication Date
TW201100751A true TW201100751A (en) 2011-01-01
TWI431243B TWI431243B (en) 2014-03-21

Family

ID=43357064

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099119849A TWI431243B (en) 2009-06-19 2010-06-18 An optical assembly for use in an interferometer, an interferometry system, and an interferometry method

Country Status (8)

Country Link
US (1) US8045175B2 (en)
EP (1) EP2454554B1 (en)
JP (1) JP5087186B1 (en)
KR (1) KR101232204B1 (en)
CN (1) CN102460063B (en)
SG (1) SG176266A1 (en)
TW (1) TWI431243B (en)
WO (1) WO2010148277A2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2382493B1 (en) * 2009-01-27 2017-05-24 Micro-Epsilon Optronic GmbH Device and method for non-contacting measurement of a distance and/or profile
JP5483993B2 (en) * 2009-10-20 2014-05-07 キヤノン株式会社 Interferometer
EP2363685B1 (en) * 2010-02-09 2013-11-20 Attocube Systems AG Positioning device with confocal Fabry-Perot interferometer
DE102011056002A1 (en) * 2011-12-02 2013-06-06 Grintech Gmbh Optically correcting microprobe for white light interferometry
CN103293130B (en) * 2013-05-23 2015-03-04 山西大学 Digital type Rayleigh interferometer
TWI599758B (en) 2014-08-12 2017-09-21 賽格股份有限公司 Method of calibrating a scanning interferometry imaging system, scanning interferometry imaging system, non-transitory computer readable medium, and method of calibrating an scanning interferometry imaging system having a broadband light source
NL2016121A (en) 2015-02-06 2016-09-29 Asml Netherlands Bv A method and apparatus for improving measurement accuracy
US10208927B2 (en) 2016-03-01 2019-02-19 LumenFlow Corp. Control of light uniformity using fresnel field placement of optical elements
JP6685849B2 (en) * 2016-06-17 2020-04-22 株式会社ミツトヨ Optical interference measuring device and optical interference measuring method
WO2018104517A1 (en) * 2016-12-09 2018-06-14 Imec Vzw A method and an imaging system for holographic imaging
CN107450173B (en) * 2017-07-01 2020-06-09 南京理工大学 Mirau type wide-field interference microscope objective optical system
US10359628B2 (en) 2017-07-31 2019-07-23 Visteon Global Technologies, Inc. Beam-splitter with an angled rear surface
US11346747B2 (en) * 2017-10-27 2022-05-31 Harris Corporation QTIP—quantitative test interferometric plate
TWI794416B (en) 2018-02-28 2023-03-01 美商賽格股份有限公司 Metrology of multi-layer stacks and interferometer system
JP7071849B2 (en) * 2018-03-09 2022-05-19 リオン株式会社 Particle counter
US11262191B1 (en) * 2018-07-12 2022-03-01 Onto Innovation Inc. On-axis dynamic interferometer and optical imaging systems employing the same
WO2020217448A1 (en) * 2019-04-26 2020-10-29 株式会社島津製作所 Interference image imaging device
CN110487205B (en) * 2019-07-31 2020-10-13 北京理工大学 Aspheric parameter error interference measurement method combining dispersion confocal positioning
CN116045836B (en) * 2023-04-03 2023-06-02 成都太科光电技术有限责任公司 Phi 1200mm extremely large caliber plane optical interference testing device

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62129707A (en) * 1985-11-29 1987-06-12 Kyocera Corp Method and apparatus for measuring surface configuration
JPH0454406A (en) * 1990-06-25 1992-02-21 Toyota Autom Loom Works Ltd Optical displacement gauge
US5398112A (en) * 1993-10-04 1995-03-14 Wyko Corporation Method for testing an optical window with a small wedge angle
US6195168B1 (en) 1999-07-22 2001-02-27 Zygo Corporation Infrared scanning interferometry apparatus and method
JP4349506B2 (en) * 2000-06-12 2009-10-21 フジノン株式会社 Interferometer device
US6882432B2 (en) 2000-08-08 2005-04-19 Zygo Corporation Frequency transform phase shifting interferometry
US7317531B2 (en) * 2002-12-05 2008-01-08 Kla-Tencor Technologies Corporation Apparatus and methods for detecting overlay errors using scatterometry
US6744522B2 (en) * 2001-02-01 2004-06-01 Zygo Corporation Interferometer for measuring the thickness profile of thin transparent substrates
JP3861666B2 (en) * 2001-11-15 2006-12-20 セイコーエプソン株式会社 Shape measuring method and apparatus
US7130059B2 (en) * 2002-06-24 2006-10-31 Light Gage, Inc Common-path frequency-scanning interferometer
JP2004086148A (en) * 2002-07-01 2004-03-18 Fuji Photo Optical Co Ltd Illumination system for mireau type microscopic interferometer and mireau type microscopic interferometer device equipped with same
JP4062606B2 (en) * 2003-01-20 2008-03-19 フジノン株式会社 Low coherence measurement / high coherence measurement common interferometer apparatus and measurement method thereof
WO2005114096A2 (en) * 2004-05-18 2005-12-01 Zygo Corporation Methods and systems for determining optical properties using low-coherence interference signals
US7259860B2 (en) * 2004-09-22 2007-08-21 Corning Incorporated Optical feedback from mode-selective tuner
JP4311739B2 (en) * 2004-09-24 2009-08-12 フジノン株式会社 Light amount ratio adjusting filter for interferometer device, interferometer device, and optical interference measurement method
US7428057B2 (en) * 2005-01-20 2008-09-23 Zygo Corporation Interferometer for determining characteristics of an object surface, including processing and calibration
JP4538388B2 (en) * 2005-07-21 2010-09-08 株式会社ミツトヨ Phase shift interferometer
DE102007010387B4 (en) * 2007-03-03 2013-02-21 Polytec Gmbh Interferometer for optical measurement of an object

Also Published As

Publication number Publication date
US8045175B2 (en) 2011-10-25
US20110007323A1 (en) 2011-01-13
WO2010148277A3 (en) 2011-04-21
EP2454554A4 (en) 2013-01-02
EP2454554A2 (en) 2012-05-23
EP2454554B1 (en) 2015-08-12
TWI431243B (en) 2014-03-21
KR101232204B1 (en) 2013-02-12
JP5087186B1 (en) 2012-11-28
SG176266A1 (en) 2012-01-30
CN102460063B (en) 2014-04-09
JP2012530901A (en) 2012-12-06
CN102460063A (en) 2012-05-16
WO2010148277A2 (en) 2010-12-23
KR20120026108A (en) 2012-03-16

Similar Documents

Publication Publication Date Title
TW201100751A (en) Equal-path interferometer
US9587977B2 (en) Boresight error monitor for laser radar integrated optical assembly
US20120307258A1 (en) Method and arrangement for robust interferometry
US11231269B2 (en) Arrangement and method for robust single-shot interferometry
KR20100134609A (en) Apparatus and method for measuring surface topography of an object
JP6063166B2 (en) Mechanism for measuring the distance by interferometer method
US11169027B2 (en) Interferometer systems and methods thereof
US8441649B2 (en) Multi-beam interferometer displacement measuring system utilized in a large measuring range
TWI452262B (en) Interferometer system for simultaneous measurement of linear displacement and tilt angle
JP2018081083A (en) Chromatic confocal point distance sensor
NL1032924C2 (en) Monolithic displacement measurement interferometer.
US8780357B2 (en) Optical displacement measurement device with optimization of the protective film
JP2008089356A (en) Aspheric surface measuring element, lightwave interference measuring device and method using the aspheric surface measuring element, aspheric surface shape correction method, and system error correction method
CN100565142C (en) Lightbeam measuring device
JP4208069B2 (en) Refractive index and thickness measuring apparatus and measuring method
JP2018534547A (en) Apparatus and method for measuring phase element parameters and optical fiber dispersion
JP4810693B2 (en) Lightwave interference measurement device
EP2336714B1 (en) Interferometer
JP5699221B2 (en) Interferometer with virtual reference plane
CN109443532A (en) A kind of mutual coherence factor test device of laser light field
US20240053143A1 (en) Interometric optical system
CN111770719A (en) Method for generating two-dimensional interferograms by michelson type free beam interferometer
WO2021163143A1 (en) Interferometer systems and methods thereof
JP2005249576A (en) Interference measuring method and interferometer
KR20240054394A (en) optical thickness measurement device