JPS62129707A - Method and apparatus for measuring surface configuration - Google Patents

Method and apparatus for measuring surface configuration

Info

Publication number
JPS62129707A
JPS62129707A JP60269140A JP26914085A JPS62129707A JP S62129707 A JPS62129707 A JP S62129707A JP 60269140 A JP60269140 A JP 60269140A JP 26914085 A JP26914085 A JP 26914085A JP S62129707 A JPS62129707 A JP S62129707A
Authority
JP
Japan
Prior art keywords
measured
prototype
interference
standard
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60269140A
Other languages
Japanese (ja)
Inventor
Hideki Uchida
秀樹 内田
Masashi Furuse
古瀬 昌司
Takayoshi Morooka
高義 諸岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP60269140A priority Critical patent/JPS62129707A/en
Publication of JPS62129707A publication Critical patent/JPS62129707A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To enhance measuring accuracy, by preliminarily storing the reference wavelength error and inherent aberration of an interference apparatus, which is based on a standard fixed thereto and a second rotary or freely movable standard, as values for correction. CONSTITUTION:The parallel laser beam from a laser beam source 1 is allowed to irradiate the first plane standard 7 fixed to an interference apparatus and the second plane standard 13 having the almost same accuracy as the standard 1 mounted to a specimen rotary stand 2 and the reflected beams from both standards 7, 13 interfere to form an interference fringe corresponding to the reference wavelength error and aberration of the interference apparatus and the image of said interference fringe is picked up by an image pickup apparatus 6. The image pickup signal from the apparatus 6 corresponding to the rotation of the stand 12 is subjected to averaging processing by a computer 21 to store error correction quantity in a data storage 20 and the interference fringe data by the standard 7 and the article to be measured mounted to the stand is corrected and a surface configuration not affected by the reference wavelength error and aberration of the interference apparatus is measured with high accuracy. Further, even if the second standard is moved to the direction crossing an optical axis at a right angle without being rotated, the similar result can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野」 本発明は、干渉計のもつ固有収差および参照波面の誤差
を取り除き、原器以上の測定精度を得るようにした表面
形状測定方法および装置に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a surface profile measurement method and apparatus that eliminates inherent aberrations of an interferometer and errors in a reference wavefront, thereby obtaining measurement accuracy higher than that of a prototype. .

〔従来の技術〕[Conventional technology]

フィゾー、シェアリング、トワイマン・グリーン屋等の
各種干渉計により、被測定物の面形状(平面9球面、非
球面)や光学レンズの波面収差を測定する場合、その測
定精度は干渉計に使用されている参照面の精度や干渉計
自身の持つ系全体の収差、すなわち固有収差によって制
限δれる。
When measuring the surface shape of the object to be measured (plane 9 spherical, aspherical) or the wavefront aberration of an optical lens using various interferometers such as Fizeau, Shearing, and Twyman Green-ya, the measurement accuracy depends on the interferometer used. It is limited by the accuracy of the reference plane and the aberrations of the entire system of the interferometer itself, that is, the inherent aberrations.

そのため、現在市販でれている干渉計の測定精度はλ/
20(但し、λは波長)程度で、触針式の形状測定器と
比較して低いものとなっている。
Therefore, the measurement accuracy of currently commercially available interferometers is λ/
20 (where λ is the wavelength), which is lower than that of a stylus-type shape measuring device.

干渉計自身の固有収差を取り除く方法としては、球面形
状の測定に限って云えば被測定物を動がし3つの条件下
での測定結果を差し引きする方法がブラニング(Bru
nlng)  らによって提案でれている。この方法を
第6図に従い詳述する。今回図(a)のように干渉計か
らきた光束りを集光するコリメータレンズCの焦点位置
に、被測定物Nの被検面Sの曲率中心が一致するように
被測定物Nを配置して、該被測定物Nの干渉測定を行う
。その結果、得られた波面形状をWl とする。次に、
同図(b)に示すように被測定物Nを光軸まわpに18
00 回転式せて同様な測定を行い、その結果得られた
波面形状をW2 とする。また、同図(e)に示すよう
にコリメータレンズCの焦点位置に被測定物Nを置き、
その波形形状W8を測定する。そして、これら3つの測
定結果から次式のような計算を行うと、実際に得たい被
測定物Nの被検面形状の球面からのずれが求められる。
As a method for removing the inherent aberration of the interferometer itself, when it comes to measuring spherical shapes, there is a method called moving the object to be measured and subtracting the measurement results under three conditions.
nlng) et al. This method will be explained in detail according to FIG. As shown in Figure (a), the object to be measured N is placed so that the center of curvature of the surface S to be measured coincides with the focal position of the collimator lens C that condenses the light beam coming from the interferometer. Then, the interference measurement of the object to be measured N is performed. As a result, the obtained wavefront shape is designated as Wl. next,
As shown in the same figure (b), the object to be measured
Similar measurements were made using a 00 rotary system, and the resulting wavefront shape was designated as W2. In addition, as shown in the same figure (e), place the object N to be measured at the focal position of the collimator lens C,
The waveform shape W8 is measured. Then, by performing calculations as shown in the following equation from these three measurement results, the actual deviation of the shape of the surface to be measured of the object N to be measured from the spherical surface can be determined.

w 0= −!−(w1+w2−w3−w8)但し、「
刊はデータ自身の180゛  回転を表わす。
w0=-! -(w1+w2-w3-w8) However, "
The rotation represents a 180° rotation of the data itself.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかるに、このような従来の固有収差を取り除く方法は
、 (1)第6図(a) 、 (b)における位置合わせの
精度が直接測定結果の精度に影響する。言い換えれば、
同図(b)における試料位置は同図(、)における被測
定物Nの位置に対し、干渉計の光軸に対して正確に18
0  回転した位置でなければならず、また(a)。
However, in the conventional method of removing such inherent aberrations, (1) The accuracy of alignment in FIGS. 6(a) and 6(b) directly affects the accuracy of the measurement results. In other words,
The sample position in (b) of the same figure is exactly 18 mm with respect to the optical axis of the interferometer with respect to the position of the object to be measured N in (,) of the same figure.
0 must be in a rotated position and (a).

(b)図共に被検面Sの中心軸と光軸とが一致しておシ
、しかも両状態において光軸方向においても同位置に被
測定物Nが置かれていなければならない。
(b) In both figures, the central axis of the surface to be measured S and the optical axis must match, and the object N must be placed at the same position in the optical axis direction in both states.

(2)1つの被測定物に対して常に3回の測定を要し、
面倒であるのみならず、測定時間が長時間に亘ると外乱
の影響も無視できなくなる。
(2) Three measurements are always required for one object to be measured;
Not only is it troublesome, but if the measurement time is extended over a long period of time, the influence of external disturbances cannot be ignored.

などの欠点がらり、実用上不向きであった。Due to the following drawbacks, it was not suitable for practical use.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明に係る表面形状測定方法および装置は上述したよ
うな問題を解決すべくな芒れたもので、その目的は、干
渉装置のもつ参照波面の誤差および固有収差を被測定物
の干渉測定結果から取り除き、測定精度を向上させるよ
うにしだ表面形状測定方法および装置を提供することに
ある。
The surface shape measuring method and device according to the present invention are designed to solve the above-mentioned problems, and the purpose thereof is to reduce the error and inherent aberration of the reference wavefront of the interference device into interference measurement results of the object to be measured. It is an object of the present invention to provide a method and apparatus for measuring the surface shape of a surface shape, which improves measurement accuracy.

そのため、本発明に係る表面形状測定方法は、干渉装置
に固定された第1の原器と、光軸まわりに回転もしくは
光軸と直交する方向に移動可能な第2の原器を用い、こ
の第2の原器を回転もしくは移動でせることによυ何点
かで測定した結果より、干渉装置のもつ参照波長の誤差
および固有収差をあらかじめ求め、これをデータとして
保存し、しかる後実際の被検面の測定結果より前記デー
タを差し引くことにより被検面の面形状を測定するよう
にしたものである。
Therefore, the surface profile measurement method according to the present invention uses a first prototype fixed to an interference device and a second prototype that can rotate around the optical axis or move in a direction perpendicular to the optical axis. By rotating or moving the second prototype, the error in the reference wavelength and the inherent aberration of the interferometer are determined in advance from the results of measurements at several points, and this is saved as data, and then the actual The shape of the surface to be inspected is measured by subtracting the data from the measurement results of the surface to be inspected.

また、本発明に係る干渉装置は、干渉装置に固定された
第1の原器と、第2の原器と被測定物を干渉装置の光軸
まわシに回転もしくは光軸と直交する方向に移動式せる
装置と、その回転もしくは移動を制御する装置と、前記
第2の原器を用いて前記回転もしくは移動装置の何点か
の各位置毎に測定した結果より干渉装置のもつ参照波面
および固有収差をあらかじめ求め、これをデータとして
格納する装置とを備え、前記回転もしくは移動装置に被
測定物を取付けてその被検面の測定結果よシ前記データ
を差し引くことにより被検面の面形状を測定するように
したものである。
Furthermore, the interference device according to the present invention includes a first prototype fixed to the interference device, a second prototype, and an object to be measured that are rotated around the optical axis of the interference device or in a direction perpendicular to the optical axis. The reference wavefront of the interference device and the reference wavefront of the interference device are determined from the results of measurements at each position of the rotating or moving device using a movable moving device, a device that controls its rotation or movement, and the second prototype. A device for determining the inherent aberration in advance and storing it as data, the object to be measured is attached to the rotating or moving device, and the surface shape of the surface to be measured is obtained by subtracting the data from the measurement result of the surface to be measured. It was designed to measure.

〔作用〕[Effect]

本発明においては干渉装置のもつ参照波面の誤差および
固有収差をあらかじめ測定し、これを実際の測定結果か
ら差し引くようにしているので、表面形状を原器以上の
精度で測定することが可能となる。また、あらかじめ参
照波面の誤差および固有収差を測定した後は、被測定物
の測定において該被測定物を光軸層りに回転てせたシ光
軸と直交する方向にずらしたシする必要がなく、一度の
測定でよいため、測定が容易で、同一形状の被測定物を
何個も測定する場合測定時間を短縮し得る。
In the present invention, the error and inherent aberration of the reference wavefront of the interference device are measured in advance and subtracted from the actual measurement results, making it possible to measure the surface shape with an accuracy higher than that of the prototype. . In addition, after measuring the error and inherent aberration of the reference wavefront in advance, it is necessary to rotate the object to be measured relative to the optical axis and shift it in a direction perpendicular to the optical axis when measuring the object to be measured. The measurement is easy because it only needs to be measured once, and the measurement time can be shortened when measuring many objects of the same shape.

〔実施例〕〔Example〕

本発明における収差補正は、干渉装置自身の収差または
参照面の形状誤差をららかしめ測定し、メモリ内にデー
タとして保存し、実際の被検面測定時にその測定結果か
ら前記データを差し引くことに被検面を測定することに
ある。この収差および参照面の形状誤差を測定するため
、干渉装置に固定てれる第1の原器に加えである程度精
度の高い平面または球面を有する第2の原器を別に用意
し、これを試料台の上に載せて光軸まわシに何回か回転
もしくは光軸と直交する方向に移動させ、その何点かの
位置において測定したデータを平均化することにより、
あらかじめ参照面(第1の原器の参照面)自身の収差を
測定してやる。この方法は参照面自身は干渉装置に固定
てれているのに対し、第2の原器の平面または球面はラ
ンダムに位置を変化嘔せ、その位置毎にデータを取って
いるため、これらのデータを平均することにより、参照
面の形状誤差がより精度よく測定可能になるものである
。このため、第2の原器の平面または球面は、その面方
向の位置は各位置における測定において変化しているこ
とが必要である。但し、その他の位置合わせ、ティルト
(上記平面または球面の光軸に対する傾き)およびデフ
ォーカス(球面形状時の最適位置からの軸方向のずれ)
については、少ない所に設置する必要があるが、これら
は後で行うコンピュータ処理である程度補正することが
でき、その補正によりデータと参照面との間に大幅な位
置関係のずれが起シ得ない範囲に取付ければよい。
Aberration correction in the present invention involves correcting and measuring the aberrations of the interference device itself or shape errors of the reference surface, storing the data as data in memory, and subtracting the data from the measurement results when actually measuring the surface to be measured. The purpose is to measure the test surface. In order to measure this aberration and the shape error of the reference surface, in addition to the first prototype fixed to the interference device, a second prototype with a flat or spherical surface with a certain degree of precision is prepared separately, and this is placed on the sample stand. By placing it on top of the optical axis and rotating it several times or moving it in a direction perpendicular to the optical axis, and averaging the data measured at several positions,
The aberrations of the reference surface (the reference surface of the first prototype) itself are measured in advance. In this method, while the reference surface itself is fixed to the interference device, the flat or spherical surface of the second prototype changes its position randomly, and data is collected for each position. By averaging the data, the shape error of the reference surface can be measured with higher accuracy. For this reason, it is necessary that the position of the plane or spherical surface of the second prototype in the surface direction changes during measurement at each position. However, other alignment, tilt (tilt of the plane or spherical surface with respect to the optical axis), and defocus (deviation in the axial direction from the optimal position when the spherical shape is used)
, it is necessary to install it in a few places, but these can be corrected to some extent by computer processing later, and this correction will prevent large deviations in the positional relationship between the data and the reference surface. Just install it within the range.

また、本測定方法により糸の収差および参照面の形状誤
差を測定した後、実際の被測定物を測定するわけである
が、この被測定物についても平面方向の位置精度は全く
必要がない。それは前記測定した参照面の形状誤差およ
び系の固有収差が参照面および干渉計の系に対し、一対
一の位置対応をもっているためでるる。
Further, after measuring the aberration of the thread and the shape error of the reference surface using this measurement method, the actual object to be measured is measured, and positional accuracy in the plane direction is not required at all for this object. This is because the shape error of the measured reference surface and the inherent aberration of the system have a one-to-one positional correspondence with the reference surface and the interferometer system.

以下、本発明を図面に示す実施例に基づいて詳則に説明
する。
Hereinafter, the present invention will be explained in detail based on embodiments shown in the drawings.

第1図は本発明をフィゾー干渉計に適用した場合の一実
施例を示す光学系の図、第2図は試料回外の可干渉性の
良い光束を発するものとして、例えばHe−Ne  レ
ーザーが使用てれる。2は発散レンズ、3はハーフミラ
−14はコリメータレンズ、5は結像レンズ、6はCC
O等の撮像装置、7は平面原器、8は被測定物、10は
平面原器(第1の原器)7を光軸方向に移動させるピエ
ゾ素子等の駆動装置である。また、同図(b)は球面形
状を測定する場合の光学系の要部を示すもので、11は
コリメータレンズ4を一体的に備えた球面原器(第1の
原器)である。
Fig. 1 is a diagram of an optical system showing an example of applying the present invention to a Fizeau interferometer, and Fig. 2 shows an example of an optical system that emits a highly coherent beam of sample supination, such as a He-Ne laser. It can be used. 2 is a diverging lens, 3 is a half mirror, 14 is a collimator lens, 5 is an imaging lens, 6 is a CC
7 is a flat prototype, 8 is an object to be measured, and 10 is a driving device such as a piezo element that moves the flat prototype (first prototype) 7 in the optical axis direction. Further, FIG. 2B shows the main parts of the optical system for measuring the spherical shape, and 11 is a spherical prototype (first prototype) integrally equipped with a collimator lens 4.

前記被測定物8および後述する第2の原器13が配役で
れる試料回転台12は、第2図に示すようにパルスモー
タ14の回転がウオーム15を介して伝達されることに
より、光軸方向を回転軸方向として回転されるようにな
っており、また回転後−回一回自動的にティルトおよび
デフォーカス(コリメータレンズの焦点位置からのずれ
)を取り除かれるように構成されている。
As shown in FIG. 2, the sample rotating table 12 on which the object to be measured 8 and a second prototype 13 (to be described later) are mounted rotates on the optical axis by transmitting the rotation of a pulse motor 14 via a worm 15. It is configured to be rotated with the direction as the rotation axis direction, and tilt and defocus (deviation from the focal position of the collimator lens) are automatically removed once after rotation.

第1図(IL)において、光源1から発射てれた波長λ
の単色光からなるレーザー光は、発散レンズ2により発
散光となり、ハーフミラ−3で反射され、コリメータレ
ンズ4によって再び平行光とされた後、平面原器7を経
て被測定物8の表面、すなわち被検面Sを照射する。こ
の時、その光束の一部は平面原器7の参照面Rで反射し
、また他の一部は被検面Sで反射する。これらの反射光
の波面はそれぞれ参照面Rと被検面Sの形態に応じた形
状となっている。2つの反射光は同一光路を戻ることに
より互いに重ね合わされ、コリメータレンズ4およびハ
ーフミラ−3を通過し、結像レンズ5によって撮像装置
6の撮像面に結像されることにより、両度射光の相互干
渉に基づく干渉縞を形成する。
In FIG. 1 (IL), the wavelength λ emitted from the light source 1
The monochromatic laser beam becomes a diverging beam by a diverging lens 2, is reflected by a half mirror 3, is made into a parallel beam again by a collimator lens 4, and then passes through a flat prototype 7 to the surface of the object to be measured 8, i.e. Irradiate the surface S to be inspected. At this time, a part of the light beam is reflected by the reference surface R of the flat prototype 7, and another part is reflected by the test surface S. The wavefronts of these reflected lights have shapes corresponding to the shapes of the reference surface R and the test surface S, respectively. The two reflected lights are superimposed on each other by returning along the same optical path, pass through the collimator lens 4 and the half mirror 3, and are imaged on the imaging surface of the imaging device 6 by the imaging lens 5. Form interference fringes based on interference.

すなわち、令弟1図(、)のように平面測定を行う場合
、平面原器7と被測定物8の間隔をdとすると、参照面
Rにて反射した参照光と、被検面Sで反射した反射光と
は往復2dの光路差が生じる。
In other words, when performing a plane measurement as shown in Figure 1 (, ), if the distance between the plane prototype 7 and the object to be measured 8 is d, the reference light reflected on the reference surface R and the surface to be measured S are There is an optical path difference of 2d in the round trip between the reflected light and the reflected light.

この2dの光路差から生まれる干渉模様の強度は、I 
”cos (2πλd+φ) (但し、φは定数)とな
る。すなわち、光路差2dがλ/2の奇数倍のとき、 2d=λ/2(2n−1)  <但しnは整数)となυ
、互いに打ち消し合って暗くなり、2/2の偶数倍のと
き、 2d=λ/2(2n) となり、互いに強め合って明るくなる。この結果、相互
干渉に基づく干渉縞からなる干渉像を形成し、等編線に
相当するその干渉縞の本数、形状、幅等により被検面S
の平面度が測定でれる、但し、縞の強度の強弱からのみ
で平面度を測定すると、2、/2シか精度がないため、
駆動装置10により平面原器γを光軸方向に振動させて
dの値をIJ ニアに変動でせ、その時の干渉模様の明
暗の変化の位相から読み取り精度を上げるようにしてお
シ、このような手法をフリンジスキャニングと称してい
る。
The intensity of the interference pattern created from this 2d optical path difference is I
"cos (2πλd+φ) (where φ is a constant). In other words, when the optical path difference 2d is an odd multiple of λ/2, 2d=λ/2(2n-1) <where n is an integer) υ
, they cancel each other out and become darker, and when they are an even multiple of 2/2, 2d=λ/2(2n), and they strengthen each other and become brighter. As a result, an interference image consisting of interference fringes based on mutual interference is formed, and the number, shape, width, etc. of the interference fringes, which correspond to equal knitting lines, are
However, if the flatness is measured only from the intensity of the stripes, the accuracy is only 2./2cm, so
The drive device 10 vibrates the flat prototype γ in the optical axis direction to vary the value of d near IJ, and the reading accuracy is improved from the phase of the change in brightness of the interference pattern at that time. This method is called fringe scanning.

また、同図(b)に示すように球面形状の被検面gを有
する被測定物8の場合は、被検面gの曲率中心が球面原
器11の焦点位置と一致するように該被測定物8を配置
すればよい。
In addition, in the case of the object to be measured 8 having a spherical test surface g as shown in FIG. What is necessary is to arrange the measurement object 8.

このように、読み増9精度が上がると次に問題になるの
が参照面Rの精度である。この精度は直接dl’i−寄
与するため、現在参照面Rの精度で干渉計自身の精度を
制限してしまっている。そこで、本発明は前述した通υ
参照面R自身のもつ誤差をららかしめ測定し、この測定
値をデータとして保存し、被検面s (s’)の測定結
果より前記データを差し引くことにより、読み増り精度
の向上を行うものである。
As described above, when the reading accuracy increases, the next problem is the accuracy of the reference surface R. Since this accuracy directly contributes to dl'i-, the accuracy of the reference plane R currently limits the accuracy of the interferometer itself. Therefore, the present invention is directed to the above-mentioned general
Measures the error of the reference surface R itself, stores this measurement value as data, and subtracts the data from the measurement result of the test surface s (s') to improve reading accuracy. It is.

以下、その詳細について説明する。The details will be explained below.

第3図は上記したフィゾー干渉計のシステム図を示す。FIG. 3 shows a system diagram of the Fizeau interferometer described above.

同図においては、第2図に示した試料回転台12が示て
れている。21はコンピュータ、22は硝気コンバータ
、23は駆動装置10のためのDCアンプ、24はパル
スモータ14を制御するためのコントローラ、25はフ
レームメモリである。
In the figure, the sample rotating table 12 shown in FIG. 2 is shown. 21 is a computer, 22 is a nitrogen gas converter, 23 is a DC amplifier for the drive device 10, 24 is a controller for controlling the pulse motor 14, and 25 is a frame memory.

先ず、平面原器7の参照波面の誤差を測定するために、
該原器7と同程度の精度を有する被測定物を第2平面原
器13として試料回転台12に配置する。この時、測定
した結果はその原器13の形状Bと参照面Rの形状Aと
の和A+Bとなる。
First, in order to measure the error of the reference wavefront of the flat prototype 7,
An object to be measured having the same degree of accuracy as the prototype 7 is placed on the sample rotating table 12 as a second flat prototype 13 . At this time, the measured result is the sum A+B of the shape B of the prototype 13 and the shape A of the reference surface R.

次に、第2の平面原器13を光軸方向を回転軸方向とし
て適宜角度回動でせるかもしくは適宜な移動装置により
光軸と直交する方向に移動させることにより全く異なっ
た位置での測定を行い、そのデータをデータストレージ
20に保存する。この作業をn回行い、その測定結果を
同ストレージ20にて平均してやると、その結果はA+
C1(但しC= −(B1+B2・・・・Bn月となる
。今、Bのエラ−がランダムなものであるならば、Cの
誤差は測定でれる回数nの平方根だけBの最大誤差より
減少しでいく。また、この平均値はこの時の測定回数が
多ければ多い程診照面Rからのずれ債を表わす。このた
め、もし第2の原器Sに”/20 の精度の平面原器7
を用い25回測定すれば、参照1fiRの誤差は’/1
ooで測定可能である。そこで、そのデータ(平均値)
をデータストレージ20に保存しておく。そして、次に
第1図にて説明した如く一般の被側定*8を試料回転台
12に配置して測定を行い、この測定結果から前述のデ
ータを差し引くと、’/l OOの測定が可能となるわ
けである。
Next, measurement can be performed at a completely different position by rotating the second planar prototype 13 at an appropriate angle with the optical axis direction as the rotation axis direction, or by moving it in a direction perpendicular to the optical axis using an appropriate moving device. The data is stored in the data storage 20. If this process is performed n times and the measurement results are averaged on the same storage 20, the result will be A+
C1 (However, C = -(B1+B2...Bn months.) Now, if the error of B is random, the error of C will be reduced from the maximum error of B by the square root of the number of measurements n. In addition, this average value represents the deviation from the diagnostic surface R as the number of measurements increases.For this reason, if the second prototype S is a flat prototype with an accuracy of "/20" 7
If you measure 25 times using , the error of reference 1fiR is '/1
It can be measured with oo. Therefore, the data (average value)
is stored in the data storage 20. Next, as explained in Fig. 1, a general lateral measurement *8 is placed on the sample rotating table 12 and measured, and when the above-mentioned data is subtracted from this measurement result, the measurement of '/l OO is obtained. This makes it possible.

また、このデータの取シ込みは、平面原器7を交換した
および干渉計自体の光学配置を変化させたときのみ行え
ばよく、同一形状のものを数多、く測定する場合大変有
利で、しかも被測定物8の測定は唯一回でよいため迅速
な測定が行える利点を有する。
In addition, this data needs to be imported only when the flat prototype 7 is replaced or the optical arrangement of the interferometer itself is changed, which is very advantageous when measuring many objects of the same shape. Furthermore, since the object to be measured 8 only needs to be measured once, there is an advantage that the measurement can be carried out quickly.

なお、このような測定は球面形状の被測定物8(第1図
(b))にもそのまま適用できることは云うまでもない
。その場合、求められる誤差は、球面原器11の参照面
Rの誤差に、参照面Rと被検面g間のレンズの収差が加
わったものとなり、測定精度は球面原器11の精度に測
定回数の平方根の逆舷を掛けた精度となる。
It goes without saying that such measurements can also be applied to the spherical object 8 (FIG. 1(b)). In that case, the required error is the error of the reference surface R of the spherical prototype 11 plus the aberration of the lens between the reference surface R and the test surface g, and the measurement accuracy is the accuracy of the spherical prototype 11 plus the aberration of the lens between the reference surface R and the test surface g. The accuracy is multiplied by the square root of the number of times.

第4図は本発明をシェアリング干渉計に適用した場合の
実施例でめる。図中第1図と同一構成部材のものに対し
ては同一符号を以って示している。
FIG. 4 shows an example in which the present invention is applied to a shearing interferometer. Components in the figure that are the same as those in FIG. 1 are designated by the same reference numerals.

30は集光レンズ、31.32はビームスプリンタ、3
3.34は全反射鏡、35は全反射鏡33を光軸方向に
移動させるピエゾ素子等の駆動装置、36は結像レンズ
で、構造自体は従来のシェアリング干渉計と異なる点は
ない。
30 is a condenser lens, 31.32 is a beam splinter, 3
3.34 is a total reflection mirror, 35 is a driving device such as a piezo element that moves the total reflection mirror 33 in the optical axis direction, and 36 is an imaging lens, and the structure itself is the same as that of a conventional shearing interferometer.

光源1から出た光は発散レンズ2およびビームスプリッ
タ31を経てコリメータレンズ4を透過し、光軸と平行
な平行光線とされた後、集光レンズ30によって集光さ
れ被検面ぎを照射する。ここで反射した光束の波面は被
検面ぎの形態に応じた形状となっている。そして、この
光束は再び集光レンズ30、コリメータレンズ4および
ビームスプリッタ31を透過し、第2のビームスプリッ
タ32によって2分され、一部透過し、一部反射する。
The light emitted from the light source 1 passes through the diverging lens 2 and beam splitter 31, passes through the collimator lens 4, becomes a parallel beam parallel to the optical axis, and is then condensed by the condensing lens 30 to illuminate the surface to be inspected. . The wavefront of the light beam reflected here has a shape that corresponds to the shape of the surface to be inspected. Then, this light beam passes through the condenser lens 30, collimator lens 4, and beam splitter 31 again, is split into two by the second beam splitter 32, and is partially transmitted and partially reflected.

そのうち透過光は全反射鏡33によって反射式れ、再び
ビームスプリンタ32に戻る。また、ビームスプリンタ
32によって反射した反射光は全反射鏡34によって反
射し、再び該スプリッタ32に戻る。この時、全反射鏡
34は入射光の光軸と直交しておらず、この直交する方
向から微小角度θだけ傾いているため、実線で示す如く
入射した光束は該反射鏡34にて反射すると破線で示す
如くビームスプリンタ32に戻り、入射時の光束と微小
量ずれることになる。したがって、各全反射鏡33.3
4に反射しビームスプリンタ32に戻り、再び重ね合わ
嘔れた両光束は横方向に微小量Δdだけずれて干渉を起
こす。そして、重ね合わぢれた光束は結像レンズ36に
よって撮像装置6上に結像され干渉縞を形成する。
The transmitted light is reflected by the total reflection mirror 33 and returns to the beam splinter 32 again. Further, the reflected light reflected by the beam splitter 32 is reflected by the total reflection mirror 34 and returns to the splitter 32 again. At this time, the total reflection mirror 34 is not orthogonal to the optical axis of the incident light, but is tilted by a small angle θ from this orthogonal direction, so that the incident light beam is reflected by the reflection mirror 34 as shown by the solid line. As shown by the broken line, the beam returns to the beam splinter 32, and there is a slight deviation from the incident light beam. Therefore, each total reflection mirror 33.3
4 and returns to the beam splinter 32, and the two light beams overlap again and are laterally shifted by a minute amount Δd, causing interference. The superimposed light beams are then imaged onto the imaging device 6 by the imaging lens 36 to form interference fringes.

シェアリング干渉計の場合、基準参照面を用いず、被測
定波面を2つに分け、横ずらしを与えて自分自身で干渉
を起と嘔せるものであるだめ、系全体の固有収差が測定
結果に直接影響を与える。
In the case of a shearing interferometer, the wavefront to be measured is divided into two without using a standard reference surface, and the measurement result is caused by the inherent aberration of the entire system. have a direct impact on

そのため、シェアリング干渉計においては系全体の固有
収差のキャンセルは不可欠となっているが、本発明にお
いては上述した方法をそのまま採用することで、この固
有収差自身もキャンセルでき、シェアリング干渉計への
適用はより有用なものと云える。
Therefore, in a shearing interferometer, it is essential to cancel the inherent aberration of the entire system, but in the present invention, by directly adopting the method described above, this inherent aberration itself can be canceled, and the shearing interferometer It can be said that the application of is more useful.

その場合、被測定物8の測定に先立ち、フィゾー型干渉
計の場合と同様に球面原器を被測定物8の位置にセント
し、この原器を回転させながら何回も測定し、その測定
データを平均化してデータストレージに保存しておき、
しかる後一般の被測定物8の測定を行い、この測定結果
から前記データを差し引けばよい。
In that case, prior to measuring the object to be measured 8, as in the case of the Fizeau interferometer, a spherical prototype is placed at the position of the object to be measured 8, and the measurement is performed several times while rotating the prototype. Average the data and save it in data storage.
Thereafter, the general object to be measured 8 may be measured, and the data may be subtracted from the measurement results.

第5図は本発明をトワイマン・グリーン干渉計に適用し
た場合の実施例である。40は参照面ミラー、41は参
照面ミラー41を光軸方向に移動させるピエゾ素子等の
駆動装置である。
FIG. 5 shows an embodiment in which the present invention is applied to a Twyman-Green interferometer. 40 is a reference surface mirror, and 41 is a drive device such as a piezo element that moves the reference surface mirror 41 in the optical axis direction.

光源1から出た光は発散レンズ2によって発散てれた後
ビームスプリンター31により2分嘔れ、その一方はコ
リメータレンズ4によって集光された後被測定物8の被
検面ざを照射する。そして、この光は該被検面ぎによっ
て反射され、再び元の光路を通ってビームスプリッタ3
1に戻る。一方、ビームスプリンタ31によって反射し
た光は参照面ミラー41で反射し、再びビームスプリン
タ31に戻ることで前記被検面ぎからの光と重なり合わ
される。そして、この重なり合わでれた光束は結像レン
ズ5に撮像装置6の撮像面に結像でれ干渉縞を形成する
The light emitted from the light source 1 is diverged by a diverging lens 2 and then deflected for 2 minutes by a beam splinter 31. One of the lights is condensed by a collimator lens 4 and then illuminates the surface of the object to be measured 8 to be measured. Then, this light is reflected by the test surface and passes through the original optical path again to the beam splitter 3.
Return to 1. On the other hand, the light reflected by the beam splinter 31 is reflected by the reference surface mirror 41, returns to the beam splinter 31 again, and is overlapped with the light from the test surface. The overlapping light beams are then imaged by the imaging lens 5 on the imaging surface of the imaging device 6 to form interference fringes.

この場合、参照面ミラー41は第1の原器を構成し、被
測定物8の測定に先たち、球面形状を有する第2の原器
が前記被測定物8の位置にセットされることにより、前
記参照面ミラー41の参照面Rの形状誤差があらかじめ
測定されることは、上述した実施例と全く同様である。
In this case, the reference surface mirror 41 constitutes a first prototype, and prior to the measurement of the object to be measured 8, a second prototype having a spherical shape is set at the position of the object to be measured 8. , the shape error of the reference surface R of the reference surface mirror 41 is measured in advance, which is exactly the same as in the embodiment described above.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明に係る表面形状測定方法およ
び装置によれば、ろらかしめ干渉装置の持つ参照波面の
誤差および固有収差を測定し、これをデータとして保存
し、実際の被検面の測定結果よシ前記データを差し引く
ようにしているので、装置自体が持つエラー以上の高精
度測定が可能で、また被検面測定に際しては唯一回の測
定だけで、回転てせたり、ずらしたシして何度もfa1
1定する必要がなく、同一形状のものを多数測定する場
合に非常に有利である。
As explained above, according to the surface shape measuring method and device according to the present invention, the error and inherent aberration of the reference wavefront of the interferometer are measured, and this is stored as data, and the measurement of the actual surface to be measured is performed. Since the above data is subtracted from the measurement result, it is possible to perform highly accurate measurements that exceed the errors inherent in the device itself.Also, when measuring the surface to be measured, only one measurement is required, and it is possible to avoid rotating or shifting the surface. and many times fa1
It is not necessary to make one constant measurement, which is very advantageous when measuring many items of the same shape.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明をフィゾー型干渉計に適用した場合の一
実地例を示す光学系の図、第2図は試料回転台の一例を
示す正面図、第3図はフィゾー干渉計のシステム図、第
4図は本発明をシェアリング干渉計に適用した場合の実
施例を示す光学系の図、第5図は本発明をトワイマン・
グリーン干渉計に適用した場合の実施例を示す光学系の
図、第6図は従来の固有収差を塩9除ぐ方法を示す図で
おる。 1・・・・光源、6・ ・・撮像装置、T・・・・平面
原器(第1の原器)、8・・・・被測定物、12・・・
・試料回転台、13・・・・第2の原!、14・・・・
パルスモータ、20・・・・データストレージ、24・
・・・パルスモータ用コントローラ、R・・・・参照面
、S、ぎ・・・・被検面。
Fig. 1 is a diagram of an optical system showing an example of applying the present invention to a Fizeau interferometer, Fig. 2 is a front view showing an example of a sample rotating table, and Fig. 3 is a system diagram of the Fizeau interferometer. , FIG. 4 is a diagram of an optical system showing an embodiment in which the present invention is applied to a shearing interferometer, and FIG. 5 is a diagram of an optical system in which the present invention is applied to a Twyman
FIG. 6 is a diagram showing an optical system according to an embodiment when applied to a Green interferometer, and FIG. 6 is a diagram showing a conventional method for removing inherent aberrations. 1...Light source, 6...Imaging device, T...Planar prototype (first prototype), 8...Object to be measured, 12...
・Sample turntable, 13...Second source! , 14...
Pulse motor, 20... Data storage, 24.
...Controller for pulse motor, R...Reference surface, S, Gi...Test surface.

Claims (2)

【特許請求の範囲】[Claims] (1)干渉装置に固定された第1の原器と、光軸まわり
に回転もしくは光軸と直交する方向に移動可能な第2の
原器を用い、この第2の原器を回転もしくは移動させる
ことにより何点かで測定した結果より、干渉装置のもつ
参照波長の誤差および固有収差をあらかじめ求め、これ
をデータとして保存し、しかる後実際の被検面の測定結
果より前記データを差し引くことにより被検面の面形状
を測定するようにしたことを特徴とする表面形状測定方
法。
(1) Using a first prototype fixed to the interference device and a second prototype that can rotate around the optical axis or move in a direction perpendicular to the optical axis, rotate or move the second prototype. Errors in the reference wavelength and inherent aberrations of the interference device are determined in advance from the results of measurements taken at several points, this is stored as data, and then the aforementioned data is subtracted from the measurement results of the actual surface to be inspected. A surface shape measuring method characterized in that the surface shape of a surface to be inspected is measured.
(2)干渉装置に固定された第1の原器と、第2の原器
と被測定物を干渉装置の光軸まわりに回転もしくは光軸
と直交する方向に移動させる装置と、その回転もしくは
移動を制御する装置と、前記第2の原器を用いて前記回
転もしくは移動装置の何点かの各位置毎に測定した結果
より干渉装置のもつ参照波面および固有収差をあらかじ
め求め、これをデータとして格納する装置とを備え、前
記回転もしくは移動装置に被測定物を取付けてその被検
面の測定結果より前記データを差し引くことにより被検
面の面形状を測定するようにしたことを特徴とする干渉
装置。
(2) A first prototype fixed to the interference device, a device for rotating the second prototype and the object to be measured around the optical axis of the interference device or in a direction orthogonal to the optical axis; The reference wavefront and inherent aberration of the interference device are obtained in advance from the results of measurements at each position of several points of the rotation or movement device using the movement control device and the second prototype, and these are used as data. The object to be measured is attached to the rotating or moving device, and the surface shape of the surface to be measured is measured by subtracting the data from the measurement result of the surface to be measured. interference device.
JP60269140A 1985-11-29 1985-11-29 Method and apparatus for measuring surface configuration Pending JPS62129707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60269140A JPS62129707A (en) 1985-11-29 1985-11-29 Method and apparatus for measuring surface configuration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60269140A JPS62129707A (en) 1985-11-29 1985-11-29 Method and apparatus for measuring surface configuration

Publications (1)

Publication Number Publication Date
JPS62129707A true JPS62129707A (en) 1987-06-12

Family

ID=17468244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60269140A Pending JPS62129707A (en) 1985-11-29 1985-11-29 Method and apparatus for measuring surface configuration

Country Status (1)

Country Link
JP (1) JPS62129707A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04297807A (en) * 1991-03-27 1992-10-21 Mitsutoyo Corp Phase shift micro fizeau interferometer
US5768150A (en) * 1993-10-14 1998-06-16 Asahi Kogaku Kogyo Kabushiki Kaisha Device and method for measuring a characteristic of an optical element
JP2009103597A (en) * 2007-10-24 2009-05-14 Mitsutoyo Corp Dimension measuring method
JP2010102745A (en) * 2008-10-21 2010-05-06 Pulstec Industrial Co Ltd Method for measuring wavefront aberration of laser light
JP2012530901A (en) * 2009-06-19 2012-12-06 ザイゴ コーポレーション Iso-optical path interferometer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04297807A (en) * 1991-03-27 1992-10-21 Mitsutoyo Corp Phase shift micro fizeau interferometer
US5768150A (en) * 1993-10-14 1998-06-16 Asahi Kogaku Kogyo Kabushiki Kaisha Device and method for measuring a characteristic of an optical element
JP2009103597A (en) * 2007-10-24 2009-05-14 Mitsutoyo Corp Dimension measuring method
JP2010102745A (en) * 2008-10-21 2010-05-06 Pulstec Industrial Co Ltd Method for measuring wavefront aberration of laser light
JP2012530901A (en) * 2009-06-19 2012-12-06 ザイゴ コーポレーション Iso-optical path interferometer

Similar Documents

Publication Publication Date Title
US6624894B2 (en) Scanning interferometry with reference signal
US7327469B2 (en) Method for compensating errors in interferometric surface metrology
JP3237309B2 (en) System error measuring method and shape measuring device using the same
WO2003033994B1 (en) Measurement of complex surface shapes using a spherical wavefront
US20130044332A1 (en) Surface profile measurement apparatus and alignment method thereof and an improved sub-aperture measurement data acquisition method
JP2003057016A (en) High speed measuring method for shape of large caliber surface and measuring instrument therefor
US7898671B2 (en) Interferometer having a mirror system for measuring a measured object
JPS62129707A (en) Method and apparatus for measuring surface configuration
US7042578B2 (en) Method and apparatus for absolute figure metrology
JP3146590B2 (en) Shape measuring method and shape measuring system
JPH06174430A (en) Center thickness measuring method and device used for it
JPH05223541A (en) Shape measuring method and shape measuring system
JP2001227929A (en) Angle measuring method and apparatus
JPH04269602A (en) Interference measuring apparatus and adjusting method
JP2753545B2 (en) Shape measurement system
JP3178059B2 (en) Shape measuring method and shape measuring system
JPH05223540A (en) Measuring system of shape of toric surface
JP2006090950A (en) Measuring system of inclination of surface to be tested
JP2000088545A (en) Method of measuring nonspherical shape
JP3146591B2 (en) Reference surface shape measurement method and shape measurement system
JPH085347A (en) System error measurement method and shape measuring instrument using it
JPH0321806A (en) Interferometer
JP3393910B2 (en) Surface shape measurement method
JPH0534120A (en) Method and apparatus for measuring shape of surface
JPH0562923B2 (en)