JPH04297807A - Phase shift micro fizeau interferometer - Google Patents

Phase shift micro fizeau interferometer

Info

Publication number
JPH04297807A
JPH04297807A JP3087577A JP8757791A JPH04297807A JP H04297807 A JPH04297807 A JP H04297807A JP 3087577 A JP3087577 A JP 3087577A JP 8757791 A JP8757791 A JP 8757791A JP H04297807 A JPH04297807 A JP H04297807A
Authority
JP
Japan
Prior art keywords
semiconductor laser
phase shift
light
interferometer
injection current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3087577A
Other languages
Japanese (ja)
Other versions
JP2838171B2 (en
Inventor
Gun Chin
軍 陳
Katsunori Ebara
克典 江原
Taizo Nakamura
泰三 中村
Yukihiro Ishii
行弘 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP3087577A priority Critical patent/JP2838171B2/en
Publication of JPH04297807A publication Critical patent/JPH04297807A/en
Application granted granted Critical
Publication of JP2838171B2 publication Critical patent/JP2838171B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a title instrument of low cost capable of high speed measurement with high precision. CONSTITUTION:This instrument employs a semiconductor laser 12 as the light source and is provided with an injection current adjusting means 5 that adjusts injection current into the semiconductor laser 12 as well as a temperature adjusting means 50 for the semiconductor laser 12. The injection current into the semiconductor laser 12 is changed stepwise to give the interferometer a relative difference in phase, and phase shift interferometry is used to derive test phases; therefore, measurement can be made at high speed and with high precision.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は位相シフトマイクロフィ
ゾー干渉計、特にレーザー光源を用いた干渉計の改良に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a phase-shifting microfizeau interferometer, and more particularly to an improved interferometer using a laser light source.

【0002】0002

【従来の技術】非接触で測定対象の表面微細形状の測定
を行なう場合等に、位相シフト干渉法を用いた干渉顕微
鏡が注目されている。この位相シフト干渉法では、光源
から出射された光の一部を参照ミラーにより反射させる
と共に、前記光源から出射された光の他の部分を試料に
反射させる。そして、前記参照ミラーからの反射光と前
記試料からの反射光を合成し干渉光を生起させ、そこで
、干渉計に位相シフトを導入し、干渉縞を走査させ、そ
の時に干渉縞より試料の表面形状の情報を得るものであ
る。
2. Description of the Related Art Interference microscopes using phase shift interferometry are attracting attention when measuring the fine surface shape of an object in a non-contact manner. In this phase shift interferometry, a part of the light emitted from the light source is reflected by a reference mirror, and another part of the light emitted from the light source is reflected by the sample. Then, the reflected light from the reference mirror and the reflected light from the sample are combined to generate interference light, and a phase shift is introduced into the interferometer to scan the interference fringes. This is to obtain shape information.

【0003】ところで、この位相シフト干渉計において
は、一般に光源として白色光源、或いはヘリウム・ネオ
ンレーザーを用いており、位相シフト干渉法に必要な位
相差は、ピエゾ素子を用いて参照ミラーを動かすことで
得ていた。
By the way, this phase shift interferometer generally uses a white light source or a helium-neon laser as a light source, and the phase difference required for phase shift interferometry is obtained by moving a reference mirror using a piezo element. I was getting it.

【0004】0004

【発明が解決しようとする課題】ところが、このピエゾ
素子には非線形性や、不安定性、ヒステレシス特性等が
あり、しかも装置が高価であり、更に駆動に高電圧が要
求されるという課題があった。すなわち、ピエゾ素子等
により参照ミラーの厳密な移動制御を行なうことは困難
であり測定精度の向上が図りにくく、また駆動制御自体
に時間が係、高速測定には限界があった。このため、位
相シフト干渉法は理論的には極めて優れた表面微細形状
の測定法であるにもかかわらず、高精度、高速性等の特
徴を十分に発揮していないものであった。
[Problems to be solved by the invention] However, this piezo element has nonlinearity, instability, hysteresis characteristics, etc., and the device is expensive, and furthermore, there are problems in that a high voltage is required for driving. . That is, it is difficult to strictly control the movement of the reference mirror using a piezo element or the like, making it difficult to improve measurement accuracy, and drive control itself takes time, which limits high-speed measurement. For this reason, although phase shift interferometry is theoretically an extremely excellent method for measuring surface fine shapes, it has not fully demonstrated its features such as high precision and high speed.

【0005】本発明は前記従来技術の課題に鑑みなされ
たものであり、その目的は高精度で高速測定が可能な安
価な位相シフトマイクロフィゾー干渉計を提供すること
にある。
The present invention has been made in view of the problems of the prior art described above, and its object is to provide an inexpensive phase shift microfizeau interferometer that is capable of high-accuracy and high-speed measurement.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するため
に本発明にかかる位相シフトマイクロフィゾー干渉計は
、前記光源として半導体レーザを用いると共に、該半導
体レーザへの注入電流を調整する注入電流調整手段を設
けたことを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, a phase shift microfizeau interferometer according to the present invention uses a semiconductor laser as the light source, and also has an injection current adjustment that adjusts the injection current to the semiconductor laser. It is characterized by having a means.

【0007】また、請求項2記載の位相シフトマイクロ
フィゾー干渉計は、半導体レーザの温度調整手段を設け
たことを特徴とする。
[0007] Furthermore, the phase shift microfizeau interferometer according to claim 2 is characterized in that a temperature adjusting means for the semiconductor laser is provided.

【0008】[0008]

【作用】本発明にかかる位相シフトマイクロフィゾー干
渉計は、光源として半導体レーザーを用い、その注入電
流を段階的に変えて干渉計に相対的な位相差を与え、干
渉縞を走査させ、位相シフト干渉法を用いて被検位相を
導出する。また、半導体レーザーの温度を一定に保つ温
度調整手段を設けることで、より高精度の検出を行なう
ことができる。
[Operation] The phase shift microfisseau interferometer according to the present invention uses a semiconductor laser as a light source, changes the injected current in stages to give a relative phase difference to the interferometer, scans the interference fringes, and shifts the phase. Derive the phase to be tested using interferometry. Further, by providing a temperature adjustment means for keeping the temperature of the semiconductor laser constant, more accurate detection can be performed.

【0009】[0009]

【実施例】以下、図面に基づき本発明の好適な実施例を
説明する。図1には本発明の一実施例にかかる位相シフ
トマイクロフィゾー干渉計の基本構成が示されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows the basic configuration of a phase shift microfizeau interferometer according to an embodiment of the present invention.

【0010】同図に示す干渉計10は、赤色半導体レー
ザよりなる光源12と、ビームスプリッタ14と、参照
ミラー16と、試料保持手段18とよりなる。そして、
光源12から出射したレーザー光はコリメータレンズ2
0により平行光とされ、更にレンズ22,24,26を
介して前記ビームスプリッタ14に入射される。該ビー
ムスプリッタ14により図中下方に反射された光は対物
レンズ28により再度平行光とされ、更に1/4波長板
30で円偏光となる。そして、円偏光された光は参照ミ
ラー16を照射し、該参照ミラー16の表面で一部の光
が反射されると共に、参照ミラー16を透過した光は試
料保持手段18に保持された被検試料32の表面34で
反射される。
The interferometer 10 shown in the figure includes a light source 12 made of a red semiconductor laser, a beam splitter 14, a reference mirror 16, and a sample holding means 18. and,
The laser beam emitted from the light source 12 passes through the collimator lens 2
0, the light is made into parallel light, and further enters the beam splitter 14 via lenses 22, 24, and 26. The light reflected downward in the drawing by the beam splitter 14 is again converted into parallel light by the objective lens 28, and further converted into circularly polarized light by the quarter-wave plate 30. Then, the circularly polarized light irradiates the reference mirror 16, and a part of the light is reflected on the surface of the reference mirror 16, and the light transmitted through the reference mirror 16 is transmitted to the sample held by the sample holding means 18. It is reflected by the surface 34 of the sample 32.

【0011】この結果、参照ミラー16の表面で反射さ
れた光と被検試料32の表面34で反射された光は、参
照ミラー16により再び重ね合わされて、干渉光を形成
する。そして、再度レンズ28、ビームスプリッタ14
を通過し、図中上方に導光される。この光は結像レンズ
36によりCCDカメラ38の受光面に結像される。カ
メラ38による観察結果はモニタ40により目視観察さ
れると共に、フレームメモリ42に記憶され、マイクロ
コンピュータ44により所望のデータ処理を施された後
、X−Yプロッター46に出力される。
As a result, the light reflected on the surface of the reference mirror 16 and the light reflected on the surface 34 of the test sample 32 are superimposed again by the reference mirror 16 to form interference light. Then, again the lens 28 and the beam splitter 14
and is guided upward in the figure. This light is imaged by the imaging lens 36 on the light receiving surface of the CCD camera 38. The results of observation by the camera 38 are visually observed by a monitor 40, stored in a frame memory 42, subjected to desired data processing by a microcomputer 44, and then output to an XY plotter 46.

【0012】本発明において特徴的なことは、位相シフ
トマイクロフィゾー干渉計の光源として赤色半導体レー
ザーを用い、且つ半導体レーザーの温度を一定に保ち、
その注入電流を段階的に変えて干渉計に相対的な位相差
を与え、干渉縞を走査させ、位相シフト干渉法を用いて
被検位相を導出することである。このために本実施例に
おいては、マイクロコンピュータ44よりの注入電流制
御指令をインタフェース48を介して注入電流制御手段
50に与え、半導体レーザー12への注入電流を制御す
ると共に、温度制御手段52が半導体レーザー12の温
度を一定に保つ。
The characteristic feature of the present invention is that a red semiconductor laser is used as the light source of the phase shift microfisseau interferometer, and the temperature of the semiconductor laser is kept constant.
The injected current is changed stepwise to give a relative phase difference to the interferometer, the interference fringes are scanned, and the phase to be detected is derived using phase shift interferometry. For this purpose, in this embodiment, the injection current control command from the microcomputer 44 is given to the injection current control means 50 via the interface 48 to control the injection current to the semiconductor laser 12, and the temperature control means 52 Keep the temperature of the laser 12 constant.

【0013】すなわち、図2に示すように半導体レーザ
は電流iがしきい値is以上注入されると、レーザ光の
発振を開始する。そして、更に注入電流iを増加してい
くと、その注入電流iの増加に比例して波長λが大きく
なっていく。そして、境界電流iaとなると、段差を有
して波長が大きくなり、また一定の線形領域が続く。本
発明は、半導体レーザのこの特徴的な性質を利用したも
のである。
That is, as shown in FIG. 2, the semiconductor laser starts oscillating laser light when a current i equal to or greater than the threshold value is injected. Then, when the injection current i is further increased, the wavelength λ becomes larger in proportion to the increase in the injection current i. Then, when it comes to the boundary current ia, the wavelength increases with steps, and a constant linear region continues. The present invention utilizes this characteristic property of semiconductor lasers.

【0014】そして、被検位相の導出は以下のように行
なわれる。被検試料表面34及び参照ミラー16の反射
率が低く、二次以上の繰返し反射の影響が無視できると
すれば、像面における干渉縞の強度分布は、次の数1で
表わすことができる。
The phase to be tested is derived as follows. Assuming that the reflectance of the test sample surface 34 and the reference mirror 16 is low and that the influence of secondary and higher-order repeated reflections can be ignored, the intensity distribution of interference fringes on the image plane can be expressed by the following equation 1.

【0015】[0015]

【数1】I(x,y,λ)=a(x,y)+b(x,y
)cos{φ(x,y)}ここで、φ(x,y)は2π
・ω(x,y)/λであり、ω(x,y)は被検面の高
低分布である。従って、このω(x,y)を求めること
により、被検試料の表面情報を得ることができる。また
、a(x,y)及びb(x,y)はそれぞれ被検表面の
特定点については定数と考えることができる。そこで、
何らかの手法で干渉計に位相シフトΔφを導入すると、
前記数1を次の数2のように置き換えられる。
[Equation 1] I (x, y, λ) = a (x, y) + b (x, y
)cos{φ(x,y)}where φ(x,y) is 2π
- ω(x, y)/λ, where ω(x, y) is the height distribution of the test surface. Therefore, by determining this ω(x, y), surface information of the test sample can be obtained. Furthermore, a(x, y) and b(x, y) can each be considered to be constants at specific points on the surface to be inspected. Therefore,
If a phase shift Δφ is introduced into the interferometer by some method,
The above number 1 can be replaced with the following number 2.

【0016】[0016]

【数2】 I(x,y,Δφ)=a(x,y)+b(x,y)co
s{φ(x,y+Δφ)}そして、前記Δφを0,π/
2,π,3π/2と変化させ、それぞれの強度分布I1
,I2,I3,I4を測定することで、次の数3により
φ(x,y)を求めることができる。
[Formula 2] I (x, y, Δφ) = a (x, y) + b (x, y) co
s{φ(x, y+Δφ)} and the said Δφ is 0, π/
2, π, 3π/2, each intensity distribution I1
, I2, I3, and I4, φ(x, y) can be obtained from the following equation 3.

【0017】[0017]

【数3】 φ(x,y)=tan−1{(I4−I2)/(I1−
I3)}このφ(x,y)から被検表面の情報を得るの
である。ところで、従来このΔφの変化を、ピエゾ素子
等を用いて参照ミラー16を動かして得ていたが、本発
明ではレーザの発振波長を偏移させることにより得てい
る。すなわち、図1の干渉顕微鏡は、模式的に図3のよ
うに示される。そして、前記数1は波長λをパラメータ
として次のように書き改めることができる。
[Formula 3] φ(x, y) = tan-1 {(I4-I2)/(I1-
I3)} Information on the surface to be inspected is obtained from this φ(x, y). Incidentally, conventionally, this change in Δφ was obtained by moving the reference mirror 16 using a piezo element or the like, but in the present invention, it is obtained by shifting the oscillation wavelength of the laser. That is, the interference microscope shown in FIG. 1 is schematically shown as shown in FIG. 3. The above equation 1 can be rewritten as follows using the wavelength λ as a parameter.

【0018】[0018]

【数4】 I(x,y,λ)=a(x,y)+b(x,y)cos
{(2π・2ω(x,y)+L)/λ0−Δφ}そして
、前記Δφを変化させ、I1〜I4を得るのである。尚
、Lは参照ミラー16と被検試料32表面との光路長差
である。ここで、半導体レーザ12の注入電流を変化さ
せると、発振波長だけでなくレーザ出力も変化するため
、レーザ強度をモニタし干渉縞の強度を正規化するか、
或いは干渉計の光路差を大きくして必要な位相差を得る
のに必要な注入電流の変化を小さくし、レーザー出力の
変化を最小限にする。この結果、本発明のようにレーザ
波長を偏移させた場合にも、前記数4の干渉縞の強度分
布のバイアスaと振幅bを一定とみなすことができる。
[Formula 4] I (x, y, λ) = a (x, y) + b (x, y) cos
{(2π·2ω(x,y)+L)/λ0−Δφ} Then, by changing the above Δφ, I1 to I4 are obtained. Note that L is the difference in optical path length between the reference mirror 16 and the surface of the test sample 32. Here, when the injection current of the semiconductor laser 12 is changed, not only the oscillation wavelength but also the laser output changes. Therefore, it is necessary to monitor the laser intensity and normalize the intensity of the interference fringes.
Alternatively, the optical path difference of the interferometer may be increased to reduce the change in injection current required to obtain the necessary phase difference, thereby minimizing the change in laser output. As a result, even when the laser wavelength is shifted as in the present invention, the bias a and amplitude b of the intensity distribution of the interference fringes shown in Equation 4 can be regarded as constant.

【0019】一方、注入電流iを変化させ、発振波長を
λ1からλ2に変位させると、位相はそれぞれ次のよう
に表示できる。     λ1:  φ1=2π・(L/2×2)/λ1
=2πL/λ1    λ2:  φ2=2π・(L/
2×2)/λ2=2πL/λ2従って、位相差Δφ=φ
2−φ1=2πLΔλ/λ12となる。このため、Δφ
=2πLΔλ/λ2と表わすことができる。すなわち、 Δφ=2πLΔλ/λ2=0 Δφ=2πLΔλ/λ2=π Δφ=2πLΔλ/λ2=3π/2 Δφ=2πLΔλ/λ2=2π となるΔλを、それぞれ注入電流iを変化させてI1、
I2、I3、I4を得れば良いのである。
On the other hand, when the injection current i is changed and the oscillation wavelength is shifted from λ1 to λ2, the phases can be expressed as follows. λ1: φ1=2π・(L/2×2)/λ1
=2πL/λ1 λ2: φ2=2π・(L/
2×2)/λ2=2πL/λ2 Therefore, the phase difference Δφ=φ
2-φ1=2πLΔλ/λ12. For this reason, Δφ
It can be expressed as =2πLΔλ/λ2. That is, Δφ=2πLΔλ/λ2=0 Δφ=2πLΔλ/λ2=π Δφ=2πLΔλ/λ2=3π/2 Δφ=2πLΔλ/λ2=2π By varying the injection current i, I1,
All you have to do is obtain I2, I3, and I4.

【0020】ところで、波長の変化量Δλは注入電流の
変化Δiに比例するから、 Δλ=α・Δi すなわち2πLΔλ/λ2=2πLαΔi/λ2=2π
の場合を例にとると、 Δi=λ2/Lα となる。一般的な赤色レーザの場合、20℃では670
nmの基準波長に対しα=0.017nm/mA程度で
あるからL=24mmとすると、2πの変化に必要とす
る電流変化は、 Δi(mA)=(670×10−3)2/(24×0.
017)=1.100mAとなる。
By the way, since the amount of change in wavelength Δλ is proportional to the change in injection current Δi, Δλ=α・Δi, that is, 2πLΔλ/λ2=2πLαΔi/λ2=2π
Taking the case of Δi=λ2/Lα as an example. For a typical red laser, 670 at 20℃
Since α=0.017 nm/mA for the standard wavelength of nm, if L=24 mm, the current change required for a change of 2π is Δi (mA) = (670×10-3)2/(24 ×0.
017)=1.100mA.

【0021】従って、前記π/2,π,3π/2はそれ
ぞれ注入電流を0.275mA,0.550mA,0.
825mAづつ変化させればよいことになる。半導体レ
ーザの線形領域は10mA程度あるので、この程度の電
流変化を行なうことは容易である。
Therefore, the injection currents of π/2, π, and 3π/2 are respectively 0.275 mA, 0.550 mA, and 0.
It is sufficient to change it by 825 mA. Since the linear region of a semiconductor laser is about 10 mA, it is easy to change the current to this extent.

【0022】図4には、本実施例にしたがって注入電流
iを時間と共に段階的に増加させた場合が示されている
。そして、図5に示すように、注入電流iの変化に伴い
干渉縞強度分布Iが変化し、各々の受光結果より被検位
相を導くことができることが理解される。
FIG. 4 shows the case where the injection current i is increased stepwise with time according to this embodiment. As shown in FIG. 5, it is understood that the interference fringe intensity distribution I changes as the injection current i changes, and the phase to be detected can be derived from each light reception result.

【0023】以上説明したように、本実施例にかかるマ
イクロフィゾー干渉計によれば、ピエゾ素子等の機械的
可動部分がないため、システムが安定化される。また、
装置の小型化、低価格化を図ることができ、操作性に優
れている。更に本実施例では30mmという長作動距離
の対物レンズを用いているため、注入電流iの変化が少
なくてすみ、半導体レーザの出力の変化を小さくするこ
とができる。
As explained above, according to the micro-Fizeau interferometer according to this embodiment, the system is stabilized because there is no mechanically movable part such as a piezo element. Also,
The device can be made smaller and cheaper, and has excellent operability. Furthermore, since this embodiment uses an objective lens with a long working distance of 30 mm, changes in the injection current i can be reduced, and changes in the output of the semiconductor laser can be reduced.

【0024】尚、半導体レーザの発振波長λは温度にも
依存する。このため、注入電流iをパラメータとする場
合には、温度制御手段50により温度を一定に維持する
ことが好適である。また、半導体レーザの発振波長λを
、半導体レーザの温度によって変化させることも可能で
ある。ちなみに、前記赤色半導体レーザの場合、注入電
流を49mAに設定したときの発振波長の温度による変
化率は、0.061nm/℃であった。
Note that the oscillation wavelength λ of the semiconductor laser also depends on the temperature. Therefore, when the injection current i is used as a parameter, it is preferable to maintain the temperature constant by the temperature control means 50. Furthermore, it is also possible to change the oscillation wavelength λ of the semiconductor laser depending on the temperature of the semiconductor laser. Incidentally, in the case of the red semiconductor laser, the rate of change in the oscillation wavelength due to temperature when the injection current was set to 49 mA was 0.061 nm/°C.

【0025】[0025]

【発明の効果】以上説明したように本発明にかかる位相
シフトマイクロフィゾー干渉計によれば、光源として半
導体レーザーを用い、その注入電流を段階的に変えて干
渉計に相対的な位相差を与え、位相シフト干渉法を用い
て被検位相を導出することとしたので、測定を高速で、
しかも精度良く行なうことができる。
[Effects of the Invention] As explained above, according to the phase shift micro-Fizeau interferometer according to the present invention, a semiconductor laser is used as a light source, and the injected current is changed stepwise to give a relative phase difference to the interferometer. Since we decided to derive the phase to be tested using phase shift interferometry, we could perform measurements at high speed.
Moreover, it can be performed with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例にかかる位相シフトマイクロ
フィゾー干渉計の構成説明図である。
FIG. 1 is an explanatory diagram of the configuration of a phase shift microfizeau interferometer according to an embodiment of the present invention.

【図2】赤色半導体レーザの注入電流と波長の関係の説
明図である。
FIG. 2 is an explanatory diagram of the relationship between injection current and wavelength of a red semiconductor laser.

【図3】図1に示した干渉計の模式化図である。FIG. 3 is a schematic diagram of the interferometer shown in FIG. 1.

【図4】,[Figure 4],

【図5】図1に示した干渉計において、注入電流と干渉
縞強度分布の変化の説明図である。
FIG. 5 is an explanatory diagram of changes in injection current and interference fringe intensity distribution in the interferometer shown in FIG. 1;

【符号の説明】[Explanation of symbols]

12  半導体レーザ 16  参照ミラー 18  試料保持手段 32  被検試料 12 Semiconductor laser 16 Reference mirror 18 Sample holding means 32 Test sample

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  光源から出射された光の一部を反射す
る参照ミラーと、前記光源から出射された光の他の部分
を反射する試料を保持する試料保持手段と、前記参照ミ
ラーからの反射光と、前記試料からの反射光を合成し、
干渉光を生起させる合成手段と、を備えた位相シフトマ
イクロフィゾー干渉計において、前記光源として半導体
レーザを用いると共に、該半導体レーザへの注入電流を
調整する注入電流調整手段を設けたことを特徴とする位
相シフトマイクロフィゾー干渉計。
1. A reference mirror that reflects a part of the light emitted from the light source, a sample holding means that holds a sample that reflects another part of the light emitted from the light source, and a sample holding means that holds a sample that reflects the other part of the light emitted from the light source; combining light and reflected light from the sample;
A phase shift micro-Fizeau interferometer comprising a combining means for generating interference light, characterized in that a semiconductor laser is used as the light source, and injection current adjustment means is provided for adjusting the current injected into the semiconductor laser. A phase-shift microfizeau interferometer.
【請求項2】  請求項1記載の干渉計において、半導
体レーザの温度調整手段を設けたことを特徴とする位相
シフトマイクロフィゾー干渉計。
2. The phase shift microfizeau interferometer according to claim 1, further comprising means for adjusting the temperature of the semiconductor laser.
JP3087577A 1991-03-27 1991-03-27 Phase shift micro Fizeau interferometer Expired - Fee Related JP2838171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3087577A JP2838171B2 (en) 1991-03-27 1991-03-27 Phase shift micro Fizeau interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3087577A JP2838171B2 (en) 1991-03-27 1991-03-27 Phase shift micro Fizeau interferometer

Publications (2)

Publication Number Publication Date
JPH04297807A true JPH04297807A (en) 1992-10-21
JP2838171B2 JP2838171B2 (en) 1998-12-16

Family

ID=13918861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3087577A Expired - Fee Related JP2838171B2 (en) 1991-03-27 1991-03-27 Phase shift micro Fizeau interferometer

Country Status (1)

Country Link
JP (1) JP2838171B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5473434A (en) * 1994-05-16 1995-12-05 Zygo Corporation Phase shifting interferometer and method for surface topography measurement
JP2011511928A (en) * 2007-09-07 2011-04-14 韓国標準科学研究院 Shape measuring apparatus and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5665411U (en) * 1979-10-23 1981-06-01
JPS60211301A (en) * 1984-04-06 1985-10-23 Matsushita Electric Ind Co Ltd Measuring method of interference
JPS61155902A (en) * 1984-12-28 1986-07-15 Tokyo Seimitsu Co Ltd Interference measuring apparatus
JPS62129707A (en) * 1985-11-29 1987-06-12 Kyocera Corp Method and apparatus for measuring surface configuration
JPS6435304A (en) * 1987-07-31 1989-02-06 Hitachi Electr Eng Method and instrument for measurement of absolute distance
JPH03238309A (en) * 1990-02-16 1991-10-24 Yokogawa Electric Corp Surface-shape measuring apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5665411U (en) * 1979-10-23 1981-06-01
JPS60211301A (en) * 1984-04-06 1985-10-23 Matsushita Electric Ind Co Ltd Measuring method of interference
JPS61155902A (en) * 1984-12-28 1986-07-15 Tokyo Seimitsu Co Ltd Interference measuring apparatus
JPS62129707A (en) * 1985-11-29 1987-06-12 Kyocera Corp Method and apparatus for measuring surface configuration
JPS6435304A (en) * 1987-07-31 1989-02-06 Hitachi Electr Eng Method and instrument for measurement of absolute distance
JPH03238309A (en) * 1990-02-16 1991-10-24 Yokogawa Electric Corp Surface-shape measuring apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5473434A (en) * 1994-05-16 1995-12-05 Zygo Corporation Phase shifting interferometer and method for surface topography measurement
JP2011511928A (en) * 2007-09-07 2011-04-14 韓国標準科学研究院 Shape measuring apparatus and method

Also Published As

Publication number Publication date
JP2838171B2 (en) 1998-12-16

Similar Documents

Publication Publication Date Title
US5956141A (en) Focus adjusting method and shape measuring device and interference microscope using said focus adjusting method
JP5149486B2 (en) Interferometer, shape measurement method
US4422764A (en) Interferometer apparatus for microtopography
JP4613351B2 (en) Positioning mechanism
JPH05113316A (en) Three wavelength optical measuring device and method
JPS61202128A (en) Semiconductor laser heterodyne interferometer
Williams et al. Optical ranging by wavelength multiplexed interferometry
JP3569726B2 (en) Apparatus and method for measuring geometric thickness and refractive index of sample
US7405832B2 (en) Apparatus and methods for reduction and compensation of effects of vibrations and of environmental effects in wavefront interferometry
JPH10141926A (en) Method and equipment for measuring shape
JPH04297807A (en) Phase shift micro fizeau interferometer
US5754298A (en) Method and apparatus for imaging semiconductor device properties
JP3235738B2 (en) Absolute length measuring instrument
Schmit et al. White-light interferometry with reference signal
JPH1089912A (en) Interference microscope
JP3779357B2 (en) Confocal scanning optical microscope
JP2529901B2 (en) Phase shift Fize-interferometer error correction method
JP2805045B2 (en) Spatial positioning method
JP3826044B2 (en) Multi-wavelength optical heterodyne interference measurement method and apparatus
JP3184914B2 (en) Surface shape measuring method and surface shape measuring instrument
JPH1089930A (en) Method for adjusting focus and form measuring device using it
JPH0619254B2 (en) Fringe scanning phase interferometer
JPH0723708Y2 (en) Laser frequency meter
CN115727778A (en) Digital holographic metering system
Hercher et al. 2-Frequency Laser Surface Prof Ilometry

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101016

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees