JPH0454406A - Optical displacement gauge - Google Patents

Optical displacement gauge

Info

Publication number
JPH0454406A
JPH0454406A JP16401190A JP16401190A JPH0454406A JP H0454406 A JPH0454406 A JP H0454406A JP 16401190 A JP16401190 A JP 16401190A JP 16401190 A JP16401190 A JP 16401190A JP H0454406 A JPH0454406 A JP H0454406A
Authority
JP
Japan
Prior art keywords
displacement
light
reference surface
interference
photodetectors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16401190A
Other languages
Japanese (ja)
Inventor
Hiroshi Miyake
三宅 洋
Takahide Iida
隆英 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP16401190A priority Critical patent/JPH0454406A/en
Publication of JPH0454406A publication Critical patent/JPH0454406A/en
Pending legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

PURPOSE:To obtain high resolution by slanting a surface to be inspected or reference surface by a fine angle to the optical axis of coherent light in constitution wherein the coherent light is made incident on the surface to be inspected and reference surface to obtain interference light between the incident light and reflected light. CONSTITUTION:When the normal of the surface S2 to be inspected and reference surface S1 is slanted by a fine angle theta to the optical axis of the coherent light, pieces of luminous flux reflected by the reference surface S1 and surface S2 to be inspected are processed by wave front composition to form interference fringes because of the mutual optical path difference. Plural mutually out-of- phase positions in the interference fringes are detected by photodetectors 2a and 2b and the intense/weak frequencies of the detection signals are counted to measure the extent of the displacement of the object surface S2, and the direction of the displacement can be decided from the lagging/leading relation of the detection signals, etc.

Description

【発明の詳細な説明】 [概  要〕 本発明は、光の干渉現象を利用した光学式変位計におい
て、装置の大型化を招くことなく変位方向の判別を可能
にするため、干渉計の2つの反射面を構成している被検
面と参照面の少なくとも一方の法線を可干渉光の光軸に
対してわずかに傾けることで、互いに位相のずれた複数
の信号を得て、これら複数の信号の遅れ、進みの関係か
ら変位の方向を判別できるようにしたものである。
[Detailed Description of the Invention] [Summary] The present invention is an optical displacement meter that utilizes the interference phenomenon of light. By slightly tilting the normal of at least one of the test surface and the reference surface, which constitute the two reflecting surfaces, with respect to the optical axis of the coherent light, multiple signals with mutually shifted phases can be obtained. The direction of displacement can be determined from the relationship between the delay and advance of the signal.

〔産業上の利用分野〕[Industrial application field]

本発明は、光の干渉現象を利用して被検面の変位を測定
する光学式変位計に関する。
The present invention relates to an optical displacement meter that measures displacement of a surface to be inspected using light interference phenomena.

この種の光学式変位計は、例えば精密ステージ等のよう
に比較的微小な変位を計測する必要のある分野に利用可
能である。
This type of optical displacement meter can be used in fields where it is necessary to measure relatively minute displacements, such as precision stages.

〔従来の技術〕[Conventional technology]

第8図に、フィゾー型干渉計を用いた従来の光学式変位
計の基本構成を示す。
FIG. 8 shows the basic configuration of a conventional optical displacement meter using a Fizeau type interferometer.

同図に示すように、ビームスプリッタ1で反射されたレ
ーザ光を、互いに平行に配置した参照面S1と被検面S
2に垂直に照射する。参照面S1と被検面S2で反射さ
れたそれぞれのレーザ光は、ビームスプリッタ1を介し
同一経路をたどって干渉する。この干渉光の強度を光検
出器2で検出する。すると、第9図に示すように、光検
出器2の出力は被検面S2の変位ΔXに対しλ/2(λ
はレーザ光源の発振波長)を周期としたsin波状の変
動を示し、すなわち光検出器2の出力は被検面S2がλ
/2変位する毎に1周期変化することから、例えば光検
出器2の出力の周期数をカウントし、このカウント数を
λ/2に乗すること等により、被検面S2の変位ΔXを
測定することができる。
As shown in the figure, the laser beam reflected by the beam splitter 1 is split between a reference surface S1 and a test surface S, which are arranged parallel to each other.
Irradiate perpendicularly to 2. The respective laser beams reflected by the reference surface S1 and the test surface S2 follow the same path via the beam splitter 1 and interfere with each other. A photodetector 2 detects the intensity of this interference light. Then, as shown in FIG. 9, the output of the photodetector 2 is λ/2(λ
shows a sinusoidal fluctuation with a period of oscillation wavelength of the laser light source, that is, the output of the photodetector 2 is
Since there is a one-cycle change every /2 displacement, the displacement ΔX of the surface to be inspected S2 is measured by, for example, counting the number of cycles of the output of the photodetector 2 and multiplying this count by λ/2. can do.

また、変位ΔXだけでなく、その変位の方向をも測定し
ようとする場合は、互いに90°位相のずれた2つの信
号を用い、その2相信号の遅れ、進みの関係から方向判
別を行うようにしている。
In addition, if you want to measure not only the displacement ΔX but also the direction of the displacement, use two signals with a phase shift of 90 degrees from each other, and determine the direction from the relationship between the delay and lead of the two-phase signals. I have to.

具体的には、例えば第10図(a)に示すように、互い
に直交する2つの偏光成分の光にλ/8の位相差を生じ
させるλ/8板3と、互いに直交する2つの偏光成分の
光を透過光と屈折光に分離する偏光ビームスプリッタ4
とを、第8図の光路の途中に挿入する(なお、第10図
(ロ)に示すようにλ/8板3が参照面S、を兼ねるよ
うにしてもよい)ことで、互いに90’の位相差を持つ
2つの信号(A相、B相)を作成し、これらをそれぞれ
光検出器2a、2bで検出する。すると、第11図に示
すように、光検出器2a、2bのそれぞれA相、B相に
対応する出力は互いに90°の位相差を持ち、しかも変
位ΔXの方向に応してA相とB相の遅れ、進みの関係が
決定されるので、この関係から方向判別を行うことがで
きる。
Specifically, as shown in FIG. 10(a), for example, a λ/8 plate 3 that generates a phase difference of λ/8 between two polarized light components that are orthogonal to each other, and a Polarizing beam splitter 4 that separates the light into transmitted light and refracted light
are inserted in the middle of the optical path in FIG. 8 (note that the λ/8 plate 3 may also serve as the reference surface S as shown in FIG. Two signals (A phase and B phase) having a phase difference of 2 are generated, and these are detected by photodetectors 2a and 2b, respectively. Then, as shown in FIG. 11, the outputs of the photodetectors 2a and 2b corresponding to the A phase and the B phase have a phase difference of 90 degrees from each other, and the outputs of the photodetectors 2a and 2b have a phase difference of 90 degrees, and the outputs correspond to the A phase and B phase depending on the direction of the displacement ΔX. Since the relationship between phase lag and lead is determined, direction can be determined from this relationship.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来の光学式変位計では、変位方向を判別するため
の手段として、第1O図に示したようなλ/8板3や偏
光ビームスプリッタ4等の偏光素子を使用するため、装
置の大型化が避けられないという問題があった。
The conventional optical displacement meter described above uses polarizing elements such as the λ/8 plate 3 and the polarizing beam splitter 4 as shown in Figure 1O as a means for determining the direction of displacement, which increases the size of the device. The problem was that it was unavoidable.

また、上記の構成において高分解能化を図るには、干渉
信号の内挿、すなわち干渉信号のsin波から変位を逆
算する方法が用いられる。例えば、光検出器から得られ
る干渉信号Iは、 1 = 16 sin (2rバλ/2))Xと表すこ
とができるので、この式から以下のように変位Xを逆算
して求めることができる。
Further, in order to achieve high resolution in the above configuration, interpolation of the interference signal, that is, a method of back calculating the displacement from the sine wave of the interference signal is used. For example, the interference signal I obtained from the photodetector can be expressed as 1 = 16 sin (2rλ/2))X, so from this formula, the displacement .

X=((λ/2)/ 2x)sin−’(1/Io )
この方法によれば、信号のS/N比の範囲まで分解能を
向上させることができる。しかしながら、このような干
渉信号の内挿を実行しようとすると、光学系の構成や回
路構成が複雑になってしまい、そうかと言って、上記従
来の構成では、装置を複雑にすることなく高分解能化を
実現することは困難であった。
X=((λ/2)/2x)sin-'(1/Io)
According to this method, the resolution can be improved to the range of the S/N ratio of the signal. However, when attempting to interpolate such interference signals, the optical system configuration and circuit configuration become complicated.However, with the above conventional configuration, high resolution can be achieved without complicating the device. It was difficult to achieve this goal.

本発明は、上記従来の問題点に鑑みてなされたものであ
り、その目的は、装置の大型化を招くことなく変位方向
の判別を可能にし、しかも簡単な構成で高分解能化を実
現することのできる光学式変位計を提供することにある
The present invention has been made in view of the above conventional problems, and its purpose is to enable discrimination of the displacement direction without increasing the size of the device, and to achieve high resolution with a simple configuration. Our objective is to provide an optical displacement meter that can

〔課題を解決するための手段〕[Means to solve the problem]

本発明の光学式変位計は、可干渉性を有するレーザ等の
光源と、該光源から出力された可干渉光を被検面と参照
面とにそれぞれ入射させ、その反射光を波面合成して干
渉光を得る構成を有し、前記被検面と参照面の少なくと
も一方の法線を前記可干渉光の光軸に対して微小角度だ
け傾けてなる干渉手段と、該干渉手段で得られる干渉光
のうち、互いに位相の異なる複数の干渉光の各々の光強
度を電気信号に変換する複数の光検出器と、該複数の光
検出器のそれぞれの出力信号に基づき前記被検面の変位
およびその方向を測定する変位測定手段とを備えたこと
を特徴とするものである。
The optical displacement meter of the present invention includes a light source such as a coherent laser, and the coherent light output from the light source is made incident on a test surface and a reference surface, respectively, and the reflected light is wavefront-synthesized. Interfering means configured to obtain interference light, in which the normal to at least one of the test surface and the reference surface is tilted by a minute angle with respect to the optical axis of the coherent light; and interference obtained by the interference means. A plurality of photodetectors convert the light intensity of each of the plurality of interference lights having mutually different phases among the light into an electric signal, and a displacement of the surface to be inspected and a The present invention is characterized by comprising a displacement measuring means for measuring the direction.

干渉手段としては、フィゾー型干渉計やマイケルソン型
干渉計等を採用可能であり、特に本発明では、その干渉
計の2つの反射面を構成している被検面と参照面のうち
の一方または両方の法線を可干渉光の光軸に対してわず
かに傾けるようにしたことを大きな特徴としている。傾
ける角度は、互いに位相の異なる複数の干渉光を光検出
器で検出できる範囲内において、可干渉光の波長や光検
出器の配置間隔等に応じ適宜設定可能である。
As the interference means, it is possible to employ a Fizeau type interferometer, a Michelson type interferometer, etc. In particular, in the present invention, one of the test surface and the reference surface, which constitute the two reflecting surfaces of the interferometer, can be used. Another major feature is that both normals are slightly tilted with respect to the optical axis of the coherent light. The angle of inclination can be appropriately set according to the wavelength of the coherent light, the arrangement interval of the photodetectors, etc. within a range in which the photodetector can detect a plurality of interference lights having mutually different phases.

〔作   用〕[For production]

被検面と参照面の少な(とも一方の法線を可干渉光の光
軸に対して微小角度だけ傾けた場合、参照面と被検面で
それぞれ反射された光束は波面合成され、互いの光路差
から干渉縞を発生する。この干渉縞のうち、互いに位相
の異なる複数箇所をそれぞれ光検出器で検出すれば、そ
の検出信号の強弱の周期数をカウントすること等により
被検面の変位の大きさを測定することができ、また、複
数の検出信号の遅れ、進みの関係等から変位の方向を判
別することができる。
When the test surface and the reference surface are small (the normal line of one of them is tilted by a small angle with respect to the optical axis of the coherent light), the light beams reflected by the reference surface and the test surface are wavefront-synthesized, and each other's Interference fringes are generated from the optical path difference.If a photodetector detects multiple locations with different phases among these interference fringes, the displacement of the surface to be detected can be determined by counting the number of cycles of the strength and weakness of the detection signal. The magnitude of the displacement can be measured, and the direction of displacement can be determined based on the delay and lead relationships of the plurality of detection signals.

このように、被検面と参照面のうちの一方または両方を
わずかに傾けるだけで、従来のような偏光素子を使用す
ることなく、変位の大きさと方向を測定できるので、装
置がコンパクトになる。
In this way, the magnitude and direction of displacement can be measured by simply tilting one or both of the test surface and reference surface slightly, without using a conventional polarizing element, making the device more compact. .

また、設置する光検出器の数を増加させ、かつその設置
間隔を狭めれば、その分だけ検出分解能を向上させるこ
とができるので、従来のような干渉信号の内挿を行わな
くとも、簡単に高分解能化を図ることができる。
In addition, by increasing the number of photodetectors installed and narrowing the installation interval, the detection resolution can be improved by that amount. High resolution can be achieved.

〔実  施  例〕〔Example〕

以下、本発明の実施例について、図面を参照しながら説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

第1図は、本発明の第1の実施例の構成図である。FIG. 1 is a block diagram of a first embodiment of the present invention.

同図に示すように、本実施例はフィゾー型干渉針を用い
て構成したものであり、不図示のレーザ光源から出力さ
れたレーザ光を、ビームスプリッタ1を介して、干渉計
の2つの反射面を構成している参照面S1と被検面S2
に照射する。ここで、参照面S1は、レーザ光の一部を
透過し、一部を反射させる材質でできているものであっ
て、その法線がレーザ光の光軸に対して微小角度θだけ
傾けて配置されている。一方、被検面S2は、参照面S
1を透過したレーザ光が入射する位置に、その法線がレ
ーザ光の光軸と平行になるように配置されている。
As shown in the figure, this embodiment is constructed using a Fizeau type interference needle, and a laser beam output from a laser light source (not shown) is transmitted via a beam splitter 1 to two reflection points of an interferometer. Reference surface S1 and test surface S2 forming the surface
irradiate. Here, the reference surface S1 is made of a material that transmits part of the laser beam and reflects part of it, and its normal line is inclined by a small angle θ with respect to the optical axis of the laser beam. It is located. On the other hand, the test surface S2 is the reference surface S
1 is placed at a position where the laser beam transmitted through the laser beam enters, so that its normal line is parallel to the optical axis of the laser beam.

参照面S1と被検面S2で反射されたそれぞれの光束は
ビームスプリッタ1を透過して進行し、その進行中に波
面合成され、成る位置に干渉縞を発生する。このような
干渉縞を発生する位置に、2つの光検出器2a、2bを
所定間隔lだけ離して配置する。この間隔lは、上記干
渉縞のうち、互いに90°位相の異なる2箇所を検出で
きる位置に設定する。ここで、参照面S1の傾斜角度θ
と光検出器2a、2bの配置間隔lの具体的な設定方法
の一例を、以下に第2図を用いて示す。
Each of the light beams reflected by the reference surface S1 and the test surface S2 travels through the beam splitter 1, and as they travel, wavefronts are combined, and interference fringes are generated at the positions formed. Two photodetectors 2a and 2b are placed at a position where such interference fringes are generated, separated by a predetermined distance l. This interval 1 is set at a position where two points having a phase difference of 90 degrees from each other can be detected among the interference fringes. Here, the inclination angle θ of the reference surface S1
An example of a specific method for setting the arrangement interval l between the photodetectors 2a and 2b will be shown below using FIG.

同図に示すように、参照面S1を介して2つの光検出器
2a、2bまで到達するそれぞれのレーザ光の光路をa
l、a2とbl 、b2とし、また、光検出器2a、2
bの配置面から参照面S1までの光路alに対応する距
離をLとする。すると、幾何学的関係より、al、a2
、bl、b2は次のように表すことができる。
As shown in the figure, the optical path of each laser beam reaching the two photodetectors 2a and 2b via the reference surface S1 is a
l, a2 and bl, b2, and photodetectors 2a, 2
Let L be the distance corresponding to the optical path al from the arrangement surface b to the reference surface S1. Then, from the geometrical relationship, al, a2
, bl, b2 can be expressed as follows.

at =t。at=t.

az ==、i、 / cos2θ b、 =L −1!−cos2θ−tanθbz =b
+ / cos2θ すると、参照面S1を介して2つの光検出器2a、2b
まで到達するレーザ光の光路差ΔLは、次のように表す
ことができる。
az ==, i, / cos2θ b, =L −1! −cos2θ−tanθbz =b
+/cos2θ Then, two photodetectors 2a, 2b are detected via the reference plane S1.
The optical path difference ΔL of the laser beam that reaches up to the point ΔL can be expressed as follows.

ΔL= (at 十az )   (bt +bz )
= (at  −J  )  (1+1/cos2θ)
=2・cos2θ・tanθ・(cos2θ+1)/c
os2θ=j!  −5in2θ ここで、位相がπ/2(=90°)異なるのは、光路差
ΔLがλ/4の時であるから、以下のようにθとlの関
係が得られる。
ΔL= (at 10az) (bt +bz)
= (at −J) (1+1/cos2θ)
=2・cos2θ・tanθ・(cos2θ+1)/c
os2θ=j! -5in2θ Here, the phases differ by π/2 (=90°) when the optical path difference ΔL is λ/4, so the following relationship between θ and l can be obtained.

λ/4= 1−5in2θ 、°、θ=(1/2)  −5in−’(λ/41)ζ
λ/8f      :  (λ#!(1)この関係か
ら、例えば、λ=0.78(μm)、!=500(μm
)とした時は、θ= 1.95x 10−’ (rad
)だけ参照面S1を傾ければよい。
λ/4= 1-5in2θ, °, θ=(1/2) -5in-'(λ/41)ζ
λ/8f: (λ#!(1) From this relationship, for example, λ=0.78 (μm), !=500 (μm
), then θ= 1.95x 10-' (rad
) is sufficient to tilt the reference plane S1.

以上のようにしてθおよびlを設定することにより、2
つの光検出器2a、2bからは、第3図に示すように互
いに90°の位相差を持つ検出信号(A相、B相)を得
ることができる。勿論、それぞれの検出信号は、被検面
S2の変位ΔXに対しλ/2を周期としたsin波状の
変動を示す。よって、これらの検出信号に基づき、不図
示の演算回路等により、変位ΔXの大きさと方向を判別
することができる。例えば、光検出器2aの検出信号の
周期数をカウントし、このカウント数をλ/2に乗する
こと等により、被検面S2の変位ΔXを測定することが
できる。また、光検出器2aの検出信号の位相(人相)
が、もう一方の光検出器2bの検出信号の位相(B相)
よりも遅れているのか、進んでいるのかを知ること等に
より、変位ΔXの方向を判断することができる。なお、
被検面S2の移動時にピッチングやヨーイングが起こら
ない限り、A相とB相の位相関係は不変である。
By setting θ and l as described above, 2
As shown in FIG. 3, detection signals (A phase, B phase) having a phase difference of 90 degrees can be obtained from the two photodetectors 2a and 2b. Of course, each detection signal shows a sinusoidal variation with a period of λ/2 relative to the displacement ΔX of the surface to be inspected S2. Therefore, based on these detection signals, the magnitude and direction of the displacement ΔX can be determined by an arithmetic circuit (not shown) or the like. For example, the displacement ΔX of the test surface S2 can be measured by counting the number of cycles of the detection signal of the photodetector 2a and multiplying this count by λ/2. In addition, the phase of the detection signal of the photodetector 2a (physiology)
is the phase of the detection signal of the other photodetector 2b (B phase)
The direction of the displacement ΔX can be determined by knowing whether it is behind or ahead of the displacement ΔX. In addition,
As long as pitching or yawing does not occur during movement of the surface to be inspected S2, the phase relationship between the A phase and the B phase remains unchanged.

従って、本実施例によれば、上述したように参照面S1
をわずかな角度θ傾けるだけで、従来のような偏光ビー
ムスプリッタやλ/8板等の偏光素子(第10図参照)
を使用することなく、変位ΔXの大きさと方向を測定で
きるので、装置の小型化が可能になる。
Therefore, according to this embodiment, as described above, the reference surface S1
By simply tilting the lens at a slight angle θ, polarizing elements such as conventional polarizing beam splitters and λ/8 plates can be used (see Figure 10).
Since it is possible to measure the magnitude and direction of the displacement ΔX without using the device, it is possible to downsize the device.

なお、変位の方向を判別する目的を満たすだけならば、
必ずしも90°の位相差である必要はなく、A相とB相
を明確に区別できる範囲内で位相差を適宜設定すること
ができる。ただし、90°の位相差に設定した場合には
、A相とB相の立上りおよび立下がりの間隔が等間隔と
なることから、上述した周期数のカウントを、より高精
度に行うことができるという利点がある。勿論、位相差
をπ/2(=90°)とする代わりに、π/2+2nπ
(nは自然数)としても、同様な利点が得られる。
Furthermore, if the purpose is simply to determine the direction of displacement,
The phase difference does not necessarily need to be 90°, and the phase difference can be appropriately set within a range that allows the A phase and the B phase to be clearly distinguished. However, if the phase difference is set to 90°, the rising and falling intervals of the A phase and B phase will be at equal intervals, so the above-mentioned number of cycles can be counted with higher precision. There is an advantage. Of course, instead of setting the phase difference to π/2 (=90°), π/2+2nπ
(where n is a natural number), similar advantages can be obtained.

次に、第4図は、本発明の第2の実施例の構成図である
Next, FIG. 4 is a block diagram of a second embodiment of the present invention.

本実施例は、第1図に示した第1の実施例における2個
の光検出器2a、2bの配置間隔lを12等分するよう
な光検出器アレイ12を設置したものであり、その他の
構成は第1の実施例と同しである。
In this embodiment, a photodetector array 12 is installed such that the interval l between the two photodetectors 2a and 2b in the first embodiment shown in FIG. 1 is divided into 12 equal parts. The configuration is the same as that of the first embodiment.

本実施例によれば、第5図に示すように、λ7/24ピ
ッチの12個の検出信号が得られるので、分解能は第1
の実施例の12倍にも高まる。このように、設置する光
検出器の数を増加させ、かつその設置間隔を狭めれば、
その分だけ分解能を向上させることができるので、従来
のような干渉信号の内挿を行わなくとも、簡単に高分解
能化を図ることができる。
According to this embodiment, as shown in FIG. 5, 12 detection signals with a pitch of λ7/24 are obtained, so the resolution is
This is 12 times higher than in the example. In this way, by increasing the number of photodetectors installed and narrowing the installation interval,
Since the resolution can be improved by that amount, the resolution can be easily increased without interpolating the interference signal as in the conventional method.

次に、第6図は、本発明の第3の実施例の構成図である
Next, FIG. 6 is a block diagram of a third embodiment of the present invention.

本実施例は、フィゾー型干渉計の代わりにマイケルソン
型干渉計を用いたものであり、ここでも第1の実施例と
同様に参照面S1の法線をレーザ光軸に対して微小角度
θだけ傾けて配置しである。
In this example, a Michelson type interferometer is used instead of a Fizeau type interferometer, and similarly to the first example, the normal to the reference surface S1 is set at a small angle θ with respect to the laser optical axis. It is placed at an angle.

このようにマイケルソン型干渉計を用いた場合であって
も、フィゾー型干渉計を用いた場合と同様に、2つの光
検出器2a、2bからは第7図に示すような互いに90
°位相のずれた検出信号(A相、B相)を得ることがで
き、この検出信号に基づき被検面S2の変位Δχの大き
さと方向とを測定することができる。勿論、従来のよう
な偏光素子は不要であり、また、第4図に示したように
光検出器の数を増加させることにより簡単に高分解能化
を実現できる。
Even when a Michelson type interferometer is used in this way, as in the case where a Fizeau type interferometer is used, the two photodetectors 2a and 2b have a 90° angle to each other as shown in FIG.
It is possible to obtain detection signals (phase A, phase B) whose phases are shifted by .degree., and it is possible to measure the magnitude and direction of the displacement Δχ of the surface to be inspected S2 based on this detection signal. Of course, there is no need for a conventional polarizing element, and high resolution can be easily achieved by increasing the number of photodetectors as shown in FIG.

なお、上述した各実施例では参照面SIを傾けるように
したが、この代わりに被検面S2を傾けるようにしても
よく、或いは参照面S1と被検面S2の両方を傾けるよ
うにしてもよい。
In each of the above-described embodiments, the reference surface SI is tilted, but the test surface S2 may be tilted instead, or both the reference surface S1 and the test surface S2 may be tilted. good.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来のような偏光素子を使用すること
なく、変位の大きさと方向を測定できるので、装置の小
型化を実現することができる。
According to the present invention, the magnitude and direction of displacement can be measured without using a conventional polarizing element, so it is possible to downsize the apparatus.

更に、従来のような干渉信号の内挿を行わなくとも、光
検出器の数を増加させるだけで簡単に高分解能化を図る
ことができる。
Furthermore, high resolution can be easily achieved by simply increasing the number of photodetectors without interpolating interference signals as in the prior art.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例の構成図、第2図は第1
の実施例における参照面の傾斜角度θと光検出器の配置
間隔!の設定方法の一例を説明するための図、 第3図は第1の実施例における光検出器出力と変位との
関係を示す図、 第4図は本発明の第2の実施例の構成図、第5図は第2
の実施例における光検出器出力と変位との関係を示す図
、 第6図は本発明の第3の実施例の構成図、第7図は第3
の実施例における光検出器出力と変位との関係を示す図
、 第8図はフィゾー型干渉計を用いた従来の光学式変位計
の基本構成図、 第9図は第8図における光検出器出力と変位との関係を
示す図、 第10図(a)および(b)はいずれもフィゾー型干渉
計を用いた従来の光学式変位計の具体的構成図、第11
図は第10図における光検出器出力と変位との関係を示
す図である。 1・・・ビームスプリフタ、 2a、2b・・・光検出器、 12・・・光検出器アレイ、 SI ・・・参照面、 S2 ・・・被検面。
FIG. 1 is a configuration diagram of the first embodiment of the present invention, and FIG. 2 is a configuration diagram of the first embodiment of the present invention.
The inclination angle θ of the reference plane and the arrangement interval of the photodetectors in this example! FIG. 3 is a diagram showing the relationship between the photodetector output and displacement in the first embodiment. FIG. 4 is a configuration diagram of the second embodiment of the present invention. , Figure 5 is the second
Figure 6 is a diagram showing the relationship between the photodetector output and displacement in the third embodiment of the present invention, and Figure 7 is a diagram showing the configuration of the third embodiment of the present invention.
Figure 8 is a diagram showing the basic configuration of a conventional optical displacement meter using a Fizeau interferometer, Figure 9 is a diagram showing the relationship between the photodetector output and displacement in the example of Figure 8 A diagram showing the relationship between output and displacement, Figures 10 (a) and (b) are both concrete configuration diagrams of a conventional optical displacement meter using a Fizeau type interferometer, Figure 11
The figure is a diagram showing the relationship between the photodetector output and displacement in FIG. 10. DESCRIPTION OF SYMBOLS 1... Beam splitter, 2a, 2b... Photodetector, 12... Photodetector array, SI... Reference surface, S2... Test surface.

Claims (1)

【特許請求の範囲】 可干渉性を有する光源と、 該光源から出力された可干渉光を被検面と参照面とにそ
れぞれ入射させ、その反射光を波面合成して干渉光を得
る構成を有し、前記被検面と参照面の少なくとも一方の
法線を前記可干渉光の光軸に対して微小角度だけ傾けて
なる干渉手段と、該干渉手段で得られる干渉光のうち、
互いに位相の異なる複数の干渉光の各々の光強度を電気
信号に変換する複数の光検出器と、 該複数の光検出器のそれぞれの出力信号に基づき前記被
検面の変位およびその方向を測定する変位測定手段とを
備えたことを特徴とする光学式変位計。
[Claims] A configuration comprising: a coherent light source; coherent light outputted from the light source is made incident on a test surface and a reference surface, and the reflected light is wavefront-synthesized to obtain interference light. and an interference means formed by tilting the normal of at least one of the test surface and the reference surface by a minute angle with respect to the optical axis of the coherent light, and interference light obtained by the interference means,
a plurality of photodetectors that convert the light intensity of each of the plurality of interference lights having mutually different phases into electrical signals; and measuring the displacement and direction of the test surface based on the respective output signals of the plurality of photodetectors. An optical displacement meter comprising a displacement measuring means.
JP16401190A 1990-06-25 1990-06-25 Optical displacement gauge Pending JPH0454406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16401190A JPH0454406A (en) 1990-06-25 1990-06-25 Optical displacement gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16401190A JPH0454406A (en) 1990-06-25 1990-06-25 Optical displacement gauge

Publications (1)

Publication Number Publication Date
JPH0454406A true JPH0454406A (en) 1992-02-21

Family

ID=15785079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16401190A Pending JPH0454406A (en) 1990-06-25 1990-06-25 Optical displacement gauge

Country Status (1)

Country Link
JP (1) JPH0454406A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011123037A (en) * 2009-12-14 2011-06-23 Canon Inc Interferometer
JP2012530901A (en) * 2009-06-19 2012-12-06 ザイゴ コーポレーション Iso-optical path interferometer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012530901A (en) * 2009-06-19 2012-12-06 ザイゴ コーポレーション Iso-optical path interferometer
JP2011123037A (en) * 2009-12-14 2011-06-23 Canon Inc Interferometer
US9372066B2 (en) 2009-12-14 2016-06-21 Canon Kabushiki Kaisha Interferometer

Similar Documents

Publication Publication Date Title
US7333214B2 (en) Detector for interferometric distance measurement
JP2673086B2 (en) Method and apparatus for interferometrically determining the phase difference between differently polarized light beams
US5172186A (en) Laser interferometry length measuring an apparatus employing a beam slitter
US5333048A (en) Polarizing interferometric displacement measuring arrangement
JP2586120B2 (en) encoder
US5164791A (en) Minute displacement detector using optical interferometry
JPH08105708A (en) Interferometer
EP0433008A2 (en) Laser interferometric measuring apparatus
JPH02231525A (en) Encoder
US3976379A (en) Interferometers
US3635552A (en) Optical interferometer
US6570660B2 (en) Measuring instrument
JPH046884B2 (en)
JPH0454406A (en) Optical displacement gauge
JPS63193003A (en) Apparatus for measuring depth of recessed part and thickness of film
JPH0454405A (en) Optical displacement gauge
JP2715623B2 (en) Encoder
KR100332035B1 (en) distance measuring apparatus and method using double pass of homodyne laser
GB2107079A (en) Improvements in or relating to interferometers
RU2069839C1 (en) Device determining lateral displacements
JP3461566B2 (en) Interferometer for measuring cone shape
JP2009186254A (en) Beam angle detector
JP2000018918A (en) Laser interference apparatus for detecting moving quantity of movable body
JPS6375518A (en) Movement quantity detector
KR100297988B1 (en) Phase reversal mask phase measuring device