TW201037860A - Light emitted diode (LED) carrier structure - Google Patents

Light emitted diode (LED) carrier structure Download PDF

Info

Publication number
TW201037860A
TW201037860A TW98111897A TW98111897A TW201037860A TW 201037860 A TW201037860 A TW 201037860A TW 98111897 A TW98111897 A TW 98111897A TW 98111897 A TW98111897 A TW 98111897A TW 201037860 A TW201037860 A TW 201037860A
Authority
TW
Taiwan
Prior art keywords
light
emitting diode
lead frame
insulating layer
insulating
Prior art date
Application number
TW98111897A
Other languages
Chinese (zh)
Inventor
Yuan-Fu Lee
Ming-Hung Chen
Cheng-Wei Chan
Original Assignee
Best Choice Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Best Choice Co Ltd filed Critical Best Choice Co Ltd
Priority to TW98111897A priority Critical patent/TW201037860A/en
Publication of TW201037860A publication Critical patent/TW201037860A/en

Links

Landscapes

  • Led Device Packages (AREA)

Abstract

The present invention discloses a light emitted diode (LED) carrier structure. The LED carrier structure includes a first slug, a first lead frame and an insulating base. A first insulating layer arranges around a die bonding area of the first slug and connects to the first lead frame. The insulating base covers the first lead frame and the first slug but exposes the die bonding area and a bottom surface of the first slug. The first insulating layer insulates the first slug and the first lead frame so that it can replace an insulating pad. Moreover, the first insulating layer can be printed on the first slug. Therefore, the manufacturing process of the LED carrier structure can be accelerated and be more efficient.

Description

.201037860 六、發明說明: 【發明所屬之技術領域】 種應用於 ^ 本發明係為_種發光二極體座體結構, 向功率發光二核體之發光二極體座體結構。’、、、 【先前技術】 々發光一極發具有體積小、壽命長、高指向性 Ο I::材:且與鸯光燈相比較之下,發光二極體不含采ΐί:-. 木 ;::,因此發光二極體被視為高度環保 、、巧 二極體逐漸朝^色彩及高亮度發展,因此又發光.201037860 VI. Description of the Invention: [Technical Field of the Invention] The present invention is applied to a light-emitting diode structure of a light-emitting diode. ',,, 【Prior Art】 々 一 一 具有 具有 具有 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :: Wood;::, therefore, the light-emitting diode is considered to be highly environmentally friendly, and the smart diode gradually develops toward the color and high brightness, so it emits light.

展至大型戶外廣告看板以及交购等體的應用 取代鶴雜及切遏而成騎—代照明光源。 而在發光二接體製程中,由於導線架與散熱基座 之材f,因此需使用絕緣塾片以使得導線架與散熱基座开:金屬 緣狀態’但在絕緣墊μ設置過財,對位組裝的步;成绝 ◎減緩發光二極體製程之速度,並也增加了發光二極體史會大鴨 此外,由於發光二極體體積小,因此受到靜電戍未。 (electrostatic discharge)之影響相當嚴重。舉例來說,、效電 乾燥環境下所累積之靜電量可高達2千至3千伏特,此^趲铃 碰觸到發光二極體,即可能導致發光二極體之損壞。時只要 外,在操作或測試發光二極體時,若不小心輸入過高之&amp;此之 而超過了發光二極體所能承載之範圍,亦將導致發光二電埯’ 損壞’進而造成費用成本之耗損。 〜麵趲&lt; 如中華民國專利第⑽433號所揭露之「發紅、_ 201037860 及其製造方法」,其包含有:一承載器;一封裝殼體;一發光 二極體晶片;以及一靜電防護元件。藉由於承載器中設置有靜 電防護元件,並且結合於承載器之發光二極體晶片可與靜電防 護元件之電性連接,藉此達到保護發光二極體晶片不受靜電突 波破壞之功效。 上述之前案係於發光二極體封裝中額外增設靜電防護元 件,如此雖可有效避免發光二極體晶片受到靜電突波與過電流 之破壞,但卻增加了發光二極體之製作成本,並且製程時須考 {% 量靜電防護元件之體積大小,導致發光二極體整體之體積無法 微小化。 【發明内容】 本發明係為一種發光二極體座體結構,其係於散熱基座上 設置絕緣層,藉以與導線架形成電性絕緣,因此可取代傳統絕 緣墊片之使用,又由於絕緣層可以快速並大量地製作,所以可 ^達到簡化發光二極體製程之功效。 本發明係為一種發光二極體座體結構,其中絕緣層可進一 步混合導電之石墨粉而形成介電層,並且再配合導線架與散熱 基座之結構即可成為埋入式阻抗元件,因此無須再額外設置靜 電保護元件,即可提供靜電防護之功效。 本發明係為一種發光二極體座體結構,由於不需外接靜電 保護元件,因此可降低發光二極體成本並且縮小發光二極體整 體的體積。 為達上述功效,本發明提供一種發光二極體座體結構,其 201037860 包括:一第一散熱基座,其係具有:一固晶區;以及一第一絕 緣層,其係設置於固晶區之外側;一第一導線架,其結合於第 一絕緣層上,且第一導線架相對於固晶區處形成有一開口;以 及一絕緣座體,其係包覆第一散熱基座及第一導線架,並裸露 出固晶區及第一散熱基座之一底面。 為達上述功效本發明又提供一種發光二極體座體結構,其 包括:一第二散熱基座,其係具有一固晶區;一第二導線架, 其係設置有一第二絕緣層,且第二絕緣層係結合於第二散熱基 Ο 座,並且第二導線架相對於固晶區處形成有一開口;以及一絕 緣座體,其係包覆第二散熱基座及第二導線架,並裸露出固晶 區及第二散熱基座之一底面。 藉由本發明的實施,至少可達到下列進步功效: 一、 由於絕緣層可快速設置,並可取代發光二極體座體結構中 絕緣墊片之使用,進而提高了發光二極體之製程速度。 二、 利用絕緣層混合導電石墨粉形成之介電層,用以與導線架 q 及散熱基座形成埋入式阻抗元件,進而達到提供靜電防護 之功效。 三、 由於發光二極體座體結構不需外接靜電防護元件,因此可 降低發光二極體之製作成本。 為了使任何熟習相關技藝者了解本發明之技術内容並據 以實施,且根據本說明書所揭露之内容、申請專利範圍及圖 式,任何熟習相關技藝者可輕易地理解本發明相關之目的及優 點,因此將在實施方式中詳細敘述本發明之詳細特徵以及優 201037860 【實施方式】 〈弟一實施例&gt; 第1圖係為本發明之—種第-散熱基座ίο與第一導線架 20之立體分解實施例圖一。第2圖係為本發明之一種第一散: 基座1〇,與第一導線架20之立體分解實施例圖二。第3圖係為、 本發明之-種發光二極體座體結構之職實施例圖一。第 〇 ^圖係為第3圖之等效電路圖一。第4β圖係為第3圖之等效 i路圖一。第5圖係為本發明之—種第—散熱基座阶與第— 導線架20之立體分解實施例圖三。帛6圖係為本發明種 毛光―極體座體結構1〇〇,之剖視實施例圖二。帛Μ圖係為第 6圖之等效電路圖-。第7B圖係為第6圖之等效電路圖二。 如第1圖至第3圖所示,本實施例係為一種發光二極體座 ,、口構1GG ’其包括:—第—散熱基座1()、⑼;—第一導線 条20 ;以及一絕緣座體30。 〇 •如第1圖及第2圖所示,第-散熱基座1。、丨。,,其係具 ::~固晶區U ;以及一第一絕緣層12 ’並且第-散熱基座 可以^乡邊型體(如第5圖所示)或—不規則型體 (圖未示)。 由於第臂欠熱基座1〇、1〇,之村質可以為具有良好導熱特 :材質’例如:銅、錫、銀…等,因此可藉由固晶區U與 極體晶,粒40結合,而發光二極體晶粒4〇之產熱則可由 政熱基座1G排除,以避免高溫影響發光二極體晶粒4〇之 201037860 i圖所示,第—絕緣層12係設置於固晶m之外側, 第、巴緣層12可以為-絕緣油墨層、一環氧 =犄,第—絕緣層12便可設置於第一散熱基座1〇與第一導線 Λ ,間使*一散熱基座10、10’與第-導線架2〇間為絕 、’之狀恶’所以第—絕緣層12可㈣取代傳統絕緣墊片之使 用。 〇 此外’由於第—絕緣層12可以印刷之方式覆蓋於第一散 ”、、基座10、10,上除了固晶區u以外之表面,因此可同時間内 =速並大量地設置第—絕緣層12,進而簡化了發光二極體座體 結構100以提高發光二極體座體結構1〇〇之製程速度。 如第1圖及第2圖所示’第-導線架2Q,其結合於第一散 二土,1〇 1〇之弟一絕緣層12上,且第一導線架20相對於 弟—散熱基座10、10,固晶區η處形成有-開口 2卜以使得 固晶區11為外露之區域。 Q曰。如第2圖所示’第—散熱基座1G’可具有—延伸部14且固 α區11係形成於延伸部14處,因此第一導線架之開口以 ^又於L伸邛14週邊,並且第一導線架20不與第一散熱基 :,之延伸部14相接觸。又第一散熱基座10,之固晶區11 二成有凹槽部15,以利發光二極體晶粒40結合於固晶區 2 ’並且方便於發光二極體晶粒4()上覆蓋取光層或光波轉換 曰,例如··螢光粉塗佈層(圖未示)。 —石而第導線架20可以為一金屬導線架、一陶瓷電路板或 刷電路板,因此第一導線架2〇可藉由打線與發光二極體 201037860 晶粒40形成電性連接。(如第3圖所示) 如第3圖所示,絕緣座體30,其係包覆第一散熱基座10’ 及第一導線架20,並裸露出第一散熱基座10’之固晶區11及 第一散熱基座10’之一底面16,使得發光二極體晶粒40產熱 可透過第一散熱基座10’裸露之底面16散除,而外露之固晶區 11上方則可加設各種透鏡(圖未示),用以於發光二極體晶粒 40出光時形成不同光場形狀。 如第3圖所示,第一散熱基座10’與絕緣座體30接觸之表 面係可形成一不規則狀表面17,例如:螺紋、咬花、凸體、凹 體…等不規則狀表面17。當進行絕緣座體30之成型作業時, 例如:射出成型、注膠成型…等,由於塑料可填滿不規則狀表 面17與第一絕緣座體30之間隙,所以冷卻固化後之塑料可使 得第一散熱基座10’與絕緣座體30穩固且緊密地咬合,藉此可 阻絕水氣與濕氣之滲透,並且使得發光二極體座體結構100更 為穩固。 又如第2圖所示,第一絕緣層12係可進一步混合有一石 墨粉121或一奈米碳球(圖未示),並且藉由石墨粉121與奈 米碳球可導電之特性以形成一介電層13,又可利用改變石墨粉 121或奈米峻球之混合比例調整介電層13之介電係數,例如: 混合越多之石墨粉121或奈米碳球,則介電層13之介電係數 越高。 如第3圖所示,由於介電層13係位於第一導線架20與第 一散熱基座10’之間,又第一導線架20與第一散熱基座10’可 同時為金屬之材質,所以第一導線架20、介電層13與第一散 201037860 熱基座10’所形成之結構可成為埋入式之阻抗元件,例如:電 容性元件C或電阻性元件R。 因此發光二極體座體結構100與發光二極體晶粒40可形 成如第4A圖之等效電路圖,藉由發光二極體晶粒40與電容性 元件C並聯,使得靜電突波或過電流產生時,電容性元件C 可有效地吸收靜電突波與過電流,用以保護發光二極體晶粒40 不受到靜電突波與過電流之破壞。 如第4B圖所示,藉由改變介電層13之介電係數,可形成 埋入式之電阻性元件R,而發光二極體晶粒40可與電阻性元 件R形成如第4B圖所示之電路結構,因此當靜電突波出現或 過電流輸入時,可藉由電阻性元件R旁路之功能以分擔過高之 電流,如此亦可以保護發光二極體晶粒40不受到靜電突波與 過電流之破壞。而藉由設置於第一散熱基座10’上之介電層 13,發光二極體座體結構100中可形成至少三個電容性元件C 或電阻性元件R。 當發光二極體座體結構100’與多顆發光二極體晶粒40結 時,其係結合方式可以如第5圖及第6圖所示,發光二極體座 體結構100’可與四顆發光二極體晶粒40結合,並藉由打線使 得發光二極體晶粒40形成串聯與並聯之電路結構(如第7A圖 及第7B圖所示),因此發光二極體座體結構100’可操作於直流 電源或交流電源之環境下,並且發光二極體座體結構100’中之 介電層13亦可分別形成電容性元件C或電阻性元件R,進而 保護每一發光二極體晶粒40不受靜電突波之破壞。 10 201037860 &lt;弟二實施例&gt; 第^_、為本發明之-種第二散熱基座21與第二導線架 Ο 體户解貫施例圖一。第9圖係為本發明之-種發光二極 體座體…構之剖視實施例圖三。第1〇Α圖係為第9圖之等 效電路圖-。帛_圖係為第9圖之等效電路圖二。第&quot;圖 係為本發明之—種第二散熱基座21與第二導線架22之立體分 解實施例圖二。第12圖係林發明之—歸光二極體座體結 構200’之剖視實施例圖四。$ 13Α圖係為第12圖之等效電路 圖。第13Β圖係為第12圖之等效電路圖二。 如第8圖及第9圖所示,本實施例係為一種發光二極體座 體結構200,其包括:一第二散熱基座21;—第二導線架I 以及一絕緣座體23。 如第&quot;8圖及第9圖所示,第二散熱基座21具有一固晶區 21卜且第二散熱基座21可以為一多邊型體(如第“圖所示) 或一不規則型體(圖未示)。 ❹第二導線架22設置有-第二絕緣層222,並且第二絕緣層 222可以為—絕緣油墨層、—環氧樹脂層或_絕緣謂層。因 此當第二導線架22與第二散熱基座21結合時,第二絕緣層奶 係夾設於第二導線架22與第二散熱基座21之間,以使得第二 ‘線木22與第―散熱基座21間相互絕緣’用以 塾片之使用,又第二絕緣層222亦可以印刷之方式== 散熱基座21 i ’藉此可簡化並加速發光二極體座體結構· 一陶瓷電路板或 又第二導線架22可以為一金屬導線架 11 201037860 -印刷電路板,因此第二導線架22可藉由打線與發光二極體 晶粒40形成電性連接(如第9圖所示)。 如第8圖及第9圖所示,第二散熱基座21可進—步呈有 一延伸部212,因此第二導線架22相對於第二散熱基座^之 固晶區211處形成之-開口 221係套設於延伸部212周邊,並 且不與第二散熱基座21之延伸部212相接觸。而絕緣座體% 用以包覆第二散熱基座2丨與第二導線架22,並使得固晶區2ιι Ο 及第二散熱基座21之-底面215裸露在外,並且第二散熱基 座21之固晶區211可形成有一凹槽部213,以利與發光二極體 晶粒40結合。 又第二散熱基座21與絕緣座體23接觸之表面可為一不規 'J狀表面214 ’藉此用以加強第二散熱基座21與絕緣座體μ 間之固定強度。而第二散熱基座21、第二導線架22與絕緣座 體23間之結合關係如第—實施例中第—散熱基座⑺、第一導 線架20與絕緣座體30所述,在此不加贅述。 © 此外帛緣層222亦可進—步混合有-石墨粉223或 j米碳球(圖未示),因此亦可以形成—介電層24,並且透 過第二導線架22、介電層24及第二散熱基座21之結合(如第 圖所不)’使;^發光二極體座體結構中可形成埋入式之阻 抗元件,例如:電容性元件c或電阻性元件R。 如第10A圖所示,當發光二極體座體結構2〇〇與發光二極 體晶粒40結合時,可藉由電容性元件C之設置,以使得發光 ,體曰曰粒40可與電容性元件c形成並聯電路結構,以利用 “谷性元件C吸收靜電突波或過電流,達到保護發光二極體晶 12 201037860 ' 粒40之功效。 又如第10B圖所示,亦可利用改變介電層24中石墨粉223 或奈米碳球之混合比例以形成埋入式之電阻性元件R,使得發 光二極體晶粒40可與電阻性元件R形成並聯電路結構,並且 藉由電阻性元件R之設置以旁路之方式分擔靜電突波或過電 流產生時過大之電流,如此也可達到避免發光二極體晶粒40 受到破壞之功效。第二絕緣層222之功效,以及電容性元件C、 電阻性元件R與發光二極體晶粒40之連接方式係類似第一實 f% 施例中之敛述,在此不加贅述。 而由於第二絕緣層222係設置於第二導線架22之表面 上,並且第二導線架具有開口 221,因此在發光二極體座體結 構200中形成至少一對與發光二極體晶粒40並聯之電容性元 件C或電阻性元件R。 如第11圖及第12圖所示,發光二極體座體結構200’可與 多個發光二極體晶粒40結合,並且可分別透過發光二極體座 q體結構200’中之電容性元件C或電阻性元件R與發光二極體 晶粒40形成相對應之電路結構(如第13A圖及第13B圖所 示),藉此達到靜電保護之功效,並且可操作在交流或直流電 源之環境下。詳細功效係如第一實施例中所述,在此不加贅述。 惟上述各實施例係用以說明本發明之特點,其目的在使熟 習該技術者能暸解本發明之内容並據以實施,而非限定本發明 之專利範圍,故凡其他未脫離本發明所揭示之精神而完成之等 效修_或修改,仍應包含在以下所述之申請專利範圍中。 13 201037860 【圖式簡單說明】 第1圖係為本發明之一種第一散熱基座與第一導線架之立體分 解實施例圖一。 第2圖係為本發明之—種第一散熱基座與第一導線架之立體分 解實施例圖二。 第3圖係為本發明之—種發光二極體座體結構之剖視實施例圖 —* 〇 ❹第4A目係為第3圖之等效電路圖一。 第4B圖係為第3圖之等效電路圖二。 第5圖係為本發明之—種第一散熱基座與第一導線架之立體分 解實施例圖三。 第6圖係為本發明之一種發光二極體座體結構之剖視實施例圖 二。 第7A圖係為第6圖之等效電路圖一。 第7B圖係為第6圖之等效電路圖二。 ❹第8圖係為本發明之一種第二散熱基座與第二導線架之立體分 解實施例圖一。 第9圖係為本發明之一種發光二極體座體結構之剖視實施例圖 _一 〇 第l〇A圖係為第9圖之等效電路圖一。 第10B圖係為第9圖之等效電路圖二。 第11圖係為本發明之一種第二散熱基座與第二導線架之立體 分解實施例圖二。 第12圖係為本發明之一種發光二極體座體結構之剖視實施例 14 201037860 圖四。 第13A圖係為第12圖之等效電路圖一。 第13B圖係為第12圖之等效電路圖二。 【主要元件符號說明】 100、100,、200、200,... ....發光二極體座體結構 10、HT.......................... ,第一散熱基座 11、211.......................... ----固晶區 ^ 12...................... ,...第一絕緣層 121 ' 223........................ ----石墨粉 13 、 24 ........................... ...介電層 14、212.......................... ...延伸部 15、213.......................... ...凹槽部 16 ^ 215.......................... ...底面 17、214.......................... ...不規則狀表面 〇 20................................... ...第一導線架 21 ' 221.......................... 開口 21、2Γ.......................... ...第-散熱基座 22................................... ...第-導線架 222................................. ...第-絕緣層 30 &gt; 23 ........................... ...絕緣座體 40................................... ...發光··極體晶粒 C.................................... ...電容性元件 R.................................... ...電阻性元件 15The application to large-scale outdoor advertising billboards and purchases and other applications to replace the crane and cut into a ride-generation lighting source. In the light-emitting two-connection process, due to the material of the lead frame and the heat-dissipating base f, it is necessary to use an insulating cymbal to open the lead frame and the heat-dissipating base: the metal edge state 'but the insulating pad μ is set too rich, Steps of assembly; annihilation ◎ slows down the speed of the light-emitting diode system, and also increases the history of the light-emitting diodes. In addition, due to the small size of the light-emitting diodes, it is subject to static electricity. The effect of (electrostatic discharge) is quite serious. For example, the amount of static electricity accumulated in an efficient dry environment can be as high as 2,000 to 3,000 volts, which may cause damage to the light-emitting diode when it touches the light-emitting diode. As long as it is outside, when operating or testing the light-emitting diode, if you accidentally input too high & this exceeds the range that the light-emitting diode can carry, it will also cause the light-emitting diode to 'damage' and cause Cost of wear and tear. </ br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br> Protective element. The electrostatic diode element is disposed in the carrier, and the LED chip coupled to the carrier can be electrically connected to the electrostatic protection element, thereby protecting the LED chip from electrostatic breakage. In the foregoing case, an electrostatic protection component is additionally added to the LED package, so that the LED of the LED can be effectively prevented from being damaged by electrostatic surge and overcurrent, but the manufacturing cost of the LED is increased, and When the process is required, the volume of the electrostatic protection component is required to be reduced by {%, so that the overall volume of the light-emitting diode cannot be miniaturized. SUMMARY OF THE INVENTION The present invention is a light-emitting diode body structure, which is provided with an insulating layer on a heat dissipation base, thereby forming electrical insulation with the lead frame, thereby replacing the use of the traditional insulating gasket and insulating The layers can be made quickly and in large quantities, so that the effect of simplifying the light-emitting diode process can be achieved. The invention is a light-emitting diode body structure, wherein the insulating layer can further mix the conductive graphite powder to form a dielectric layer, and the structure of the lead frame and the heat dissipation base can be used as a buried impedance element, ESD protection can be provided without the need for additional electrostatic protection components. The present invention is a light-emitting diode body structure. Since no external electrostatic protection element is required, the cost of the light-emitting diode can be reduced and the volume of the light-emitting diode body can be reduced. In order to achieve the above effects, the present invention provides a light-emitting diode body structure, and the 201037860 includes: a first heat dissipation base having: a die bonding region; and a first insulation layer disposed on the solid crystal a first lead frame is coupled to the first insulating layer, and the first lead frame is formed with an opening with respect to the die bonding region; and an insulating base body covers the first heat dissipation base and The first lead frame exposes the solid crystal region and a bottom surface of the first heat dissipation base. In order to achieve the above-mentioned effects, the present invention further provides a light-emitting diode structure, comprising: a second heat dissipation base having a solid crystal region; and a second lead frame provided with a second insulation layer. And the second insulating layer is coupled to the second heat dissipation base, and the second lead frame forms an opening with respect to the die bonding area; and an insulating seat covers the second heat dissipation base and the second lead frame And exposing a solid crystal region and a bottom surface of the second heat sink base. By the implementation of the present invention, at least the following advancements can be achieved: 1. The insulating layer can be quickly set and can replace the use of the insulating spacer in the LED structure of the light-emitting diode, thereby improving the processing speed of the light-emitting diode. 2. A dielectric layer formed by mixing conductive graphite powder with an insulating layer for forming a buried impedance element with the lead frame q and the heat dissipation base, thereby achieving the effect of providing electrostatic protection. Third, since the light-emitting diode body structure does not require an external electrostatic protection component, the manufacturing cost of the light-emitting diode can be reduced. In order to make those skilled in the art understand the technical content of the present invention and implement it, and according to the disclosure, the patent scope and the drawings, the related objects and advantages of the present invention can be easily understood by those skilled in the art. Therefore, detailed features of the present invention and preferred 201037860 will be described in detail in the embodiments. [Embodiment] <First Embodiment> FIG. 1 is a first heat sink base ίο and a first lead frame 20 of the present invention. Figure 1 shows a three-dimensional exploded embodiment. Figure 2 is a first embodiment of the present invention: a base 1 〇, and a perspective exploded view of the first lead frame 20. Fig. 3 is a first embodiment of the working structure of the light-emitting diode of the present invention. The first diagram is the equivalent circuit diagram 1 of Figure 3. The 4th figure is the equivalent i road map 1 of Fig. 3. Figure 5 is a perspective exploded view of the first embodiment of the present invention - the heat dissipation base step and the first lead frame 20. The Fig. 6 is a schematic diagram of a hair-polar body structure of the present invention, and a cross-sectional view of the second embodiment. The diagram is the equivalent circuit diagram of Figure 6. Figure 7B is an equivalent circuit diagram 2 of Figure 6. As shown in FIG. 1 to FIG. 3, this embodiment is a light-emitting diode holder, and the mouth structure 1GG' includes: - a first heat-dissipating base 1 (), (9); - a first wire strip 20; And an insulating base 30. 〇 • As shown in Figures 1 and 2, the first heat sink base 1. Oh. , the fixture:: ~ solid crystal region U; and a first insulating layer 12 ' and the first - heat sink base can be a township side (as shown in Figure 5) or - irregular body (Figure not Show). Since the arm underheated base 1〇, 1〇, the village quality can be good thermal conductivity: material 'for example: copper, tin, silver, etc., so can be formed by the solid crystal region U and the polar body, the grain 40 The heat generation of the light-emitting diode die 4 可由 can be eliminated by the political thermal pedestal 1G to avoid the high temperature affecting the light-emitting diode die 4 2010 201037860 i picture, the first insulating layer 12 is set On the outer side of the solid crystal m, the first and second edge layers 12 may be an insulating ink layer and an epoxy layer 犄. The first insulating layer 12 may be disposed on the first heat dissipation pedestal 1 〇 and the first wire Λ between The heat-dissipating base 10, 10' and the first-conductor frame 2 are absolutely "like", so the first insulating layer 12 can replace the use of the conventional insulating spacer. Further, 'because the first insulating layer 12 can be printed on the first dispersion", the pedestals 10, 10, and the surface other than the solid crystal region u, the same can be set at the same time = speed and a large number of - The insulating layer 12 further simplifies the LED body structure 100 to improve the manufacturing speed of the LED body structure. As shown in Figures 1 and 2, the 'Lead-frame 2Q, the combination thereof On the first two soils, one on the first insulation layer 12, and the first lead frame 20 is formed with an opening 2 in the solid crystal region η relative to the heat sink base 10, 10 to make the solid The crystal region 11 is an exposed region. Q曰. As shown in Fig. 2, the 'first heat dissipation base 1G' may have an extension portion 14 and the solid α region 11 is formed at the extension portion 14, so that the first lead frame is The opening is in the periphery of the extension 14 and the first lead frame 20 is not in contact with the extension portion 14 of the first heat dissipation base: and the first heat dissipation base 10 has a groove in the solid crystal region 11 a portion 15, in order to facilitate the bonding of the light-emitting diode die 40 to the die-bonding region 2' and to cover the light-emitting diode or the light-wave converting germanium on the light-emitting diode die 4 (), for example · · Fluorescent powder coating layer (not shown) - Stone and lead frame 20 can be a metal lead frame, a ceramic circuit board or brush circuit board, so the first lead frame 2 can be wired and illuminated Diode 201037860 The die 40 is electrically connected. (As shown in FIG. 3) As shown in FIG. 3, the insulating base 30 covers the first heat dissipation base 10' and the first lead frame 20, And exposing the solid crystal region 11 of the first heat dissipation base 10' and the bottom surface 16 of the first heat dissipation base 10', so that the heat generating diode 40 can generate heat through the exposed bottom surface of the first heat dissipation base 10' 16 is dispersed, and various lenses (not shown) may be added on the exposed solid crystal region 11 to form different light field shapes when the light emitting diodes 40 emit light. As shown in FIG. 3, A surface of the heat dissipation base 10' that is in contact with the insulating base 30 can form an irregular surface 17, such as an irregular surface 17 such as a thread, a flower, a protrusion, a concave body, etc. When the insulating body 30 is made During the molding operation, for example, injection molding, injection molding, etc., since the plastic can fill the irregular surface 17 and A gap between the insulating bodies 30, so that the cooled and solidified plastic can make the first heat-dissipating base 10' and the insulating base 30 firmly and tightly engage, thereby blocking the penetration of moisture and moisture, and making the light-emitting two The polar body structure 100 is more stable. As shown in FIG. 2, the first insulating layer 12 may further be mixed with a graphite powder 121 or a nano carbon sphere (not shown), and by graphite powder 121 and The carbon spheres can be electrically conductive to form a dielectric layer 13, and the dielectric constant of the dielectric layer 13 can be adjusted by changing the mixing ratio of the graphite powder 121 or the nanospheres. For example, the more the graphite powder is mixed 121 Or a nanocarbon balloon, the dielectric layer 13 has a higher dielectric constant. As shown in FIG. 3, since the dielectric layer 13 is located between the first lead frame 20 and the first heat dissipation base 10', the first lead frame 20 and the first heat dissipation base 10' can be simultaneously made of metal. Therefore, the structure formed by the first lead frame 20, the dielectric layer 13 and the first dispersion 201037860 thermal base 10' can be a buried impedance element, such as a capacitive element C or a resistive element R. Therefore, the LED body structure 100 and the LED die 40 can form an equivalent circuit diagram as shown in FIG. 4A, and the LEDs 40 are connected in parallel with the capacitive component C, so that the electrostatic surge or over When the current is generated, the capacitive element C can effectively absorb the electrostatic surge and the overcurrent to protect the light-emitting diode die 40 from electrostatic surge and overcurrent. As shown in FIG. 4B, by changing the dielectric constant of the dielectric layer 13, a buried resistive element R can be formed, and the light emitting diode die 40 can be formed with the resistive element R as shown in FIG. 4B. The circuit structure is shown, so when an electrostatic surge occurs or an overcurrent is input, the function of bypassing the resistive element R can be used to share an excessive current, so that the light-emitting diode die 40 can be protected from static electricity. Wave and overcurrent damage. At least three capacitive elements C or resistive elements R can be formed in the light-emitting diode body structure 100 by the dielectric layer 13 disposed on the first heat dissipation base 10'. When the light-emitting diode body structure 100' is combined with a plurality of light-emitting diode crystal grains 40, the bonding manner thereof can be as shown in FIG. 5 and FIG. 6, and the light-emitting diode body structure 100' can be combined with The four LED dipoles 40 are combined, and the LEDs 40 are connected in series and in parallel by wire bonding (as shown in FIGS. 7A and 7B), so that the LED body is illuminated. The structure 100' can be operated under the environment of a direct current power source or an alternating current power source, and the dielectric layer 13 in the light emitting diode body structure 100' can also form a capacitive element C or a resistive element R, respectively, thereby protecting each light emitting. The diode grains 40 are not damaged by electrostatic surges. 10 201037860 &lt;Different Embodiments&gt; ^_, the second heat dissipation base 21 and the second lead frame of the present invention are shown in Figure 1. Fig. 9 is a cross-sectional view showing the embodiment of the light-emitting diode of the present invention. The first diagram is the equivalent circuit diagram of Figure 9. The 帛_图 is the equivalent circuit diagram 2 of Figure 9. The first embodiment is a two-dimensional decomposition embodiment of the second heat dissipation base 21 and the second lead frame 22 of the present invention. Figure 12 is a cross-sectional view of the embodiment of the returning light diode structure 200'. The $13 map is the equivalent circuit diagram of Figure 12. Figure 13 is the equivalent circuit diagram 2 of Figure 12. As shown in FIG. 8 and FIG. 9, the embodiment is a light-emitting diode structure 200 comprising: a second heat dissipation base 21; a second lead frame I and an insulating base 23. As shown in the first &lt;8 and FIG. 9, the second heat dissipation base 21 has a solid crystal region 21 and the second heat dissipation base 21 may be a polygonal body (as shown in the figure) or An irregular shape (not shown). The second lead frame 22 is provided with a second insulating layer 222, and the second insulating layer 222 may be an insulating ink layer, an epoxy layer or an insulating layer. When the second lead frame 22 is combined with the second heat dissipation base 21, the second insulation layer is sandwiched between the second lead frame 22 and the second heat dissipation base 21, so that the second 'line wood 22 and the second ―The heat-dissipating pedestals 21 are insulated from each other' for the use of the cymbal, and the second insulating layer 222 can also be printed. == The heat-dissipating pedestal 21 i ' simplifies and accelerates the structure of the light-emitting diode body. The ceramic circuit board or the second lead frame 22 can be a metal lead frame 11 201037860 - a printed circuit board, so that the second lead frame 22 can be electrically connected to the LED die 40 by wire bonding (such as FIG. 9 As shown in FIG. 8 and FIG. 9, the second heat dissipation base 21 can further have an extension portion 212, so the second The lead frame 22 is formed on the periphery of the extending portion 212 with respect to the solid crystal region 211 of the second heat dissipation base ^, and is not in contact with the extending portion 212 of the second heat dissipation base 21. The insulating seat The body % is used to cover the second heat dissipation base 2 and the second lead frame 22, and the solid crystal region 2 ι and the bottom surface 215 of the second heat dissipation base 21 are exposed, and the second heat dissipation base 21 is fixed. The crystal region 211 may be formed with a groove portion 213 for bonding with the LED die 40. The surface of the second heat dissipation base 21 in contact with the insulating body 23 may be a random 'J-shaped surface 214' The reinforcing relationship between the second heat dissipation base 21 and the insulating base body 51 is enhanced. The coupling relationship between the second heat dissipation base 21, the second lead frame 22 and the insulating base 23 is as in the first embodiment. The heat sink base (7), the first lead frame 20 and the insulating base 30 are not described here. © The flange layer 222 can also be mixed with graphite powder 223 or j meter carbon balls (not shown). Therefore, it is also possible to form the dielectric layer 24 and pass through the combination of the second lead frame 22, the dielectric layer 24 and the second heat sink base 21 ( In the figure, the light-emitting diode structure can form a buried impedance element, for example, a capacitive element c or a resistive element R. As shown in Fig. 10A, when the light-emitting diode is When the body structure 2 is combined with the light-emitting diode die 40, the capacitive element C can be disposed so that the light-emitting body 40 can form a parallel circuit structure with the capacitive element c to utilize the " The gluten component C absorbs electrostatic surge or overcurrent to protect the function of the luminescent diode 12 201037860 'granule 40. As shown in FIG. 10B, the mixing ratio of the graphite powder 223 or the nano carbon sphere in the dielectric layer 24 can also be changed to form the buried resistive element R, so that the light emitting diode die 40 can be electrically connected to the resistor. The element R forms a parallel circuit structure, and the electrostatic surge or the excessive current generated when the overcurrent is generated is bypassed by the arrangement of the resistive element R, so that the light-emitting diode die 40 can be prevented from being damaged. efficacy. The effect of the second insulating layer 222, and the manner in which the capacitive element C, the resistive element R, and the light-emitting diode die 40 are connected are similar to those in the first embodiment, and are not described herein. Since the second insulating layer 222 is disposed on the surface of the second lead frame 22, and the second lead frame has the opening 221, at least one pair of the light emitting diode crystal grains are formed in the LED body structure 200. 40 parallel capacitive element C or resistive element R. As shown in FIG. 11 and FIG. 12, the LED body structure 200' can be combined with the plurality of LED dipoles 40, and can respectively pass through the capacitance in the LED body structure 200' of the LED housing. The functional element C or the resistive element R forms a circuit structure corresponding to the LED die 40 (as shown in FIGS. 13A and 13B), thereby achieving the effect of electrostatic protection and being operable in AC or DC. In the environment of power supply. The detailed functions are as described in the first embodiment, and are not described herein. The embodiments are described to illustrate the features of the present invention, and the purpose of the present invention is to enable those skilled in the art to understand the present invention and to implement the present invention without limiting the scope of the present invention. Equivalent repairs or modifications made by the spirit of the disclosure should still be included in the scope of the patent application described below. 13 201037860 [Simple description of the drawings] Fig. 1 is a first embodiment of a three-dimensional decomposition of the first heat dissipation base and the first lead frame of the present invention. Figure 2 is a second perspective view of a first embodiment of the first heat sink base and the first lead frame of the present invention. Fig. 3 is a cross-sectional view showing a structure of a light-emitting diode of the present invention. * 〇 ❹ 4A is the equivalent circuit diagram 1 of FIG. Figure 4B is an equivalent circuit diagram 2 of Figure 3. Figure 5 is a perspective view of a third embodiment of the first heat sink base and the first lead frame of the present invention. Figure 6 is a cross-sectional view showing a cross-sectional embodiment of a light-emitting diode body structure of the present invention. Figure 7A is an equivalent circuit diagram 1 of Figure 6. Figure 7B is an equivalent circuit diagram 2 of Figure 6. Figure 8 is a perspective view of a second embodiment of the second heat sink base and the second lead frame of the present invention. Figure 9 is a cross-sectional view showing a structure of a light-emitting diode of the present invention. Figure 1 is an equivalent circuit diagram of Figure 9. Figure 10B is an equivalent circuit diagram 2 of Figure 9. Figure 11 is a perspective exploded view of a second heat sink base and a second lead frame of the present invention. Figure 12 is a cross-sectional view showing a structure of a light-emitting diode of the present invention. 14 201037860 Figure 4. Fig. 13A is an equivalent circuit diagram 1 of Fig. 12. Figure 13B is an equivalent circuit diagram 2 of Figure 12. [Description of main component symbols] 100, 100, 200, 200, .... Light-emitting diode structure 10, HT.................. ........, the first heat sink base 11, 211.......................... ^ 12......................,...first insulating layer 121 ' 223............... ......... ----Graphite powder 13, 24 ........................... Dielectric Layer 14, 212..........................Extensions 15, 213............ ....................groove 16 ^ 215.......................... .. bottom surface 17, 214.......................... irregular surface 〇20......... .......................... First lead frame 21 ' 221.............. ............ Opening 21, 2Γ.......................... 22......................................The first lead frame 222... .................................-Insulation 30 &gt; 23 ............ .....................Insulation base 40........................... ....... ...lighting · polar body crystal C............................... .... ...capacitive element R. ...................................Resistive element 15

Claims (1)

201037860 七 、申請專利範圍 L —種發光二極體座體結構,其包括: 一第—散熱基座,其係具有:一固晶區;以及一第一絕緣 層’其係設置於該固晶區之外側; 苐導線架’其結合於該第一絕緣層上,且該第一導線 架相對於該固晶區處形成有一開口;以及 系巴緣座體,其係包覆該第一散熱基座及該第一導線架, ❹ 並裸露出該固晶區及該第一散熱基座之—底面。 2‘如申請專利範圍第1項所述之發光二極體座體結構,其中 該第一散熱基座係為一多邊型體或一不規則型體。/ Ή請專利範圍第!項所述之發光二極體座體結構,其中 伸亥=散熱基絲有-延伸部’域固晶區係形成於該延 1甲。卩處,又該開口係套設於該延伸部週邊。 4.=請專利第丨項所述之發光二極體座體結構,立中 °亥固晶區形成有一凹槽部。 'σ ’、 〇兮利觀圍第1項所述之發光二極體座體結構’豆中 琢第一散熱基座與該絕緣座體接觸之表面,I / '、 規則狀表面。 、、係形成一不 6. 如申請專利範圍第1項所述之發光二極 該第-絕緣層係為-絕緣油墨層。體座體結構’其中 ^請專利範圍第!項所述之發光二極體座 該第一絕緣層係為一環氧樹脂。 如申請專利範圍第1項所述之發光二 兮哲 俚體座體結構,豆t s亥第一絕緣層係為一絕緣矽膠層。 再八 16 201037860 9. 如申請專利範圍第1項所述之發光二極體座體結構,其中 該第一絕緣層係進一步混合有一石墨粉以形成一介電層、 10. 如申請專利範圍第1項所述之發光二極體座體結構,^中 該第一絕緣層係進一步混合有一奈米碳球以形成_二一 電 層。 11. 如申請專利範圍第1項所述之發光二極體座體結構,其中 該第一導線架係為一金屬導線架、一陶瓷電路板或—印刷 電路板。 12. —種發光二極體座體結構,其包括: 第-一散熱基座,其係具有1 一固晶區, —第二導線架,其係設置有一第二絕緣層,且該第二絕緣 層係結合於該第二散熱基座’並且該第二導線架相對於 該固晶區處形成有一開口;以及 —絕緣座體,其係包覆該第二散熱基座及該第二導線架, 並裸露出該固晶區及該第二散熱基座之—底面。 ❹13.如申請專利範圍第12項所述之發光二極體座體結構,其中 該固晶區形成有一凹槽部。 14.如申凊專利範圍第〗2項所述之發光二極體座體結構,其中 戎第二散熱基座具有一延伸部,且該固晶區係形成於該延 伸部處,又該開口係套設於該延伸部週邊。 5.如申睛專職圍第12項所述之發光二極體座體結構,其中 该第二散熱基座與該絕緣座體接觸之表面,其係形成—不 規則狀表面。 .如申明專利㈣f 12項所述之發光二極體座體結構,其中 17 201037860 5亥第二散熱基座係為一多邊型體或一不規則型體。 17. 如申請專利範圍第12項所述之發光二極體座體結構,其中 5亥第二絕緣層係為一絕緣油墨層。 18. 如申請專利範圍第12項所述之發光二極體座體結構,其中 該第二絕緣層係為一環氧樹脂層。 19. 如申請專利範圍第12項所述之發光二極體座體結構,其中 该第二絕緣層係為一絕緣矽膠層。 〇 如申w專利範圍第12項所述之發光二極體座體結構,其中 2該第二絕緣層係進一步混合有-石墨粉以形成-介電層。 如=味專利feu第12項所述之發光二極體座體結構,其中 Ϊ第一絕緣層係進—步混合有—奈米碳球以形成—介電 層。 如申明專利範圍g 12項所述之發光二極體 該第二導線架係為一金屬導 、、°構,、中 φ 蜀守琛木 陶瓷電路板或一印刷 電路板。 〇 18201037860 VII. Patent Application Range L-Light-emitting diode body structure, comprising: a first heat-dissipating base having: a solid crystal region; and a first insulating layer disposed on the solid crystal The outer side of the region; the lead frame is coupled to the first insulating layer, and the first lead frame forms an opening with respect to the die bonding region; and the flanged body covers the first heat dissipation The pedestal and the first lead frame ❹ and expose the solid crystal region and the bottom surface of the first heat dissipation base. [2] The light-emitting diode structure according to claim 1, wherein the first heat-dissipating base is a polygonal body or an irregular body. / Please ask for the scope of patents! The illuminating diode body structure described in the above, wherein the extension of the sea = the heat-dissipating base wire has an - extension portion domain solid crystal region formed on the extension. At the hem, the opening is sleeved around the extension. 4. = The structure of the light-emitting diode body described in the above-mentioned patent, the central portion of the solid crystal region is formed with a groove portion. 'σ', the surface of the light-emitting diode structure described in item 1 of the 〇兮利观围', the surface of the first heat-dissipating susceptor in contact with the insulating body, I / ', regular surface. The light-emitting diode is as described in claim 1 of the patent application. The first-insulating layer is an insulating ink layer. Body structure] where ^ please patent scope! The LED housing of the item is an epoxy resin. For example, the first insulating layer of the bean t shai is an insulating silicone layer. The light-emitting diode structure according to claim 1, wherein the first insulating layer is further mixed with a graphite powder to form a dielectric layer, 10. In the light-emitting diode structure of the above aspect, the first insulating layer is further mixed with a nano carbon sphere to form a second electric layer. 11. The light-emitting diode housing structure of claim 1, wherein the first lead frame is a metal lead frame, a ceramic circuit board or a printed circuit board. 12. A light-emitting diode body structure, comprising: a first heat sink base having a solid crystal region, a second lead frame provided with a second insulating layer, and the second An insulating layer is coupled to the second heat dissipation base ′ and the second lead frame is formed with an opening relative to the die bonding region; and an insulating seat covering the second heat dissipation base and the second wire And exposing the solid crystal region and the bottom surface of the second heat dissipation base. The illuminating diode housing structure according to claim 12, wherein the solid crystal region is formed with a groove portion. The illuminating diode housing structure of claim 2, wherein the second heat dissipation base has an extension portion, and the solid crystal region is formed at the extension portion, and the opening The sleeve is sleeved around the extension. 5. The light-emitting diode structure according to Item 12, wherein the surface of the second heat-dissipating base in contact with the insulating body forms an irregular surface. The light-emitting diode structure according to claim 12, wherein the second heat-dissipating base is a polygonal body or an irregular body. 17. The light-emitting diode structure according to claim 12, wherein the second insulating layer is an insulating ink layer. 18. The light emitting diode body structure of claim 12, wherein the second insulating layer is an epoxy layer. 19. The light emitting diode housing structure of claim 12, wherein the second insulating layer is an insulating silicone layer. The light-emitting diode structure according to the invention of claim 12, wherein the second insulating layer is further mixed with graphite powder to form a dielectric layer. The light-emitting diode structure according to the twelfth aspect of the invention, wherein the first insulating layer is further mixed with a nanocarbon ball to form a dielectric layer. The light-emitting diode according to claim 12, wherein the second lead frame is a metal guide, a structure, a medium φ 蜀 琛 陶瓷 ceramic circuit board or a printed circuit board. 〇 18
TW98111897A 2009-04-09 2009-04-09 Light emitted diode (LED) carrier structure TW201037860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98111897A TW201037860A (en) 2009-04-09 2009-04-09 Light emitted diode (LED) carrier structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98111897A TW201037860A (en) 2009-04-09 2009-04-09 Light emitted diode (LED) carrier structure

Publications (1)

Publication Number Publication Date
TW201037860A true TW201037860A (en) 2010-10-16

Family

ID=44856832

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98111897A TW201037860A (en) 2009-04-09 2009-04-09 Light emitted diode (LED) carrier structure

Country Status (1)

Country Link
TW (1) TW201037860A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104566292A (en) * 2013-10-29 2015-04-29 蔡鸿 High-light-efficiency high-heat-conduction heat radiating structure of LED (light emitting diode) capable of emitting light in omnibearing way

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104566292A (en) * 2013-10-29 2015-04-29 蔡鸿 High-light-efficiency high-heat-conduction heat radiating structure of LED (light emitting diode) capable of emitting light in omnibearing way
WO2015062135A1 (en) * 2013-10-29 2015-05-07 蔡鸿 Led light source heat dissipation structure and heat dissipation method thereof
CN104566292B (en) * 2013-10-29 2017-06-16 蔡鸿 A kind of specular removal high heat conduction radiator structure of the comprehensive light extractions of LED

Similar Documents

Publication Publication Date Title
CN104364918B (en) Luminescent device, light emitting device package and lighting unit
US10064272B2 (en) Light emitting device using metal substrate for improving heat dissipation efficiency
JP2013541857A5 (en) LED-based light source using anisotropic conductor
TW201032294A (en) Light emitting diode package
TW201248948A (en) Thermally enhanced light emitting device package
TWM302123U (en) The stand structure of light-emitting diode
TW201115779A (en) Light emitting apparatus
TWM329244U (en) Light emitting diode device
TW201037860A (en) Light emitted diode (LED) carrier structure
US9175819B2 (en) Light-emitting device with graphene enhanced thermal properties and secondary wavelength converting light shade
TWI622189B (en) Light-emitting device
TW201310726A (en) LED package
TW201201354A (en) LED chip package structure
US8487333B2 (en) LED package and method for manufacturing the same
TW200935621A (en) Light emitting diode package structure and light emitting diode packaging method
TWI325640B (en) Led device module with high heat dissipation
TWI254466B (en) Substrate structure of LED module
TW200947642A (en) Package structure and packaging method of light emitting diode
TWM363773U (en) Heat-dissipating device for electronic element
TWM342616U (en) Heat dissipation structure of light emitting diode
TWI756532B (en) Light-emitting device and manufacturing method thereof
TW501377B (en) Lighting apparatus with heat dissipation metal rod
JP2015115578A (en) Light-emitting device, and method for manufacturing the same
TWI286389B (en) Package for light emitted diode chip with crooked substrate
TWI544664B (en) Light-emitting package structure and method of fabricating the same