TW201031006A - Photovoltaic device with increased light trapping - Google Patents

Photovoltaic device with increased light trapping Download PDF

Info

Publication number
TW201031006A
TW201031006A TW98136016A TW98136016A TW201031006A TW 201031006 A TW201031006 A TW 201031006A TW 98136016 A TW98136016 A TW 98136016A TW 98136016 A TW98136016 A TW 98136016A TW 201031006 A TW201031006 A TW 201031006A
Authority
TW
Taiwan
Prior art keywords
layer
particles
window layer
window
type doped
Prior art date
Application number
TW98136016A
Other languages
English (en)
Inventor
Isik C Kizilyalli
Melissa Archer
Harry Atwater
Thomas J Gmitter
Gang He
Andreas Hegedus
Gregg Higashi
Original Assignee
Alta Devices Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alta Devices Inc filed Critical Alta Devices Inc
Publication of TW201031006A publication Critical patent/TW201031006A/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0735Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIIBV compound semiconductors, e.g. GaAs/AlGaAs or InP/GaInAs solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Description

201031006 六、發明說明: 【發明所屬之技術領域】 本發明之實施例大體而言係關於具有增加之效率及較 大可撓性之諸如太陽能電池之光伏(PV)元件,及其製 造方法。 【先前技術】 Φ 隨著化石燃料正以不斷增加之速率被耗盡,對替代能 源之需要正變得愈來愈明顯。得自風、太陽及流水之能 量提供對化石燃料(諸如煤、石油及天然氣)之可再生、 環境友好的替代物。由於幾乎在地球上任何地方可容易 地得到’太陽能可能總有一天成為可行替代物。 為了利用來自太陽之能量’太陽能電池之接面 (junction)吸收光子以產生電子電洞對,該等電子電洞 對由接面之内電場分離以產生電壓,藉此將光能轉換為 ® 電能。可藉由串聯連接太陽能電池增加產生之電壓,且 可藉由並聯連接太陽能電池增加電流。可將太陽能電池 集合在太陽能電池板上。反流器可耦接至若干太陽能電 池板以將DC功率轉換為AC功率。 然而’相對於當代元件之低功率水準而言,生產太陽 能電池之現行南成本正阻止太陽能電池成為主流能源且 限制太陽能電池所適合之應用。因此,需要適合於各種 應用之更有效的光伏元件。 4 201031006 【發明内容】 本發明之實施例大體而言係關於用於以與習知太陽能 電池相比時效率增加的將電磁輻射(諸如太陽能)轉換 為電能之方法及裝置。 本發明之一實施例提供一種光伏(PV )元件。該PV 元件通常包括:一 p+型摻雜層;一 η型摻雜層,其安置 於該Ρ+型摻雜層上方以形成一 ρ_η層,使得在光子由該 ρ-η層吸收時生成電能;一窗層,其安置於該η型摻雜層 上方,及一抗反射塗層,其安置於該窗層上方。 本發明之另一實施例提供一種ρν元件。該ρν元件通 常包括··一 p+型摻雜層;一„型摻雜層,其安置於該p + 型摻雜層上方以形成一 p_n層,使得在光由該p_n層吸 收時生成電能;一窗層’其安置於該η型摻雜層上方; 及一漫射體,其安置於該〆型摻雜層下方。
【實施方式】 本發明之實施例提供用於以與習知太陽 效率增加的將電磁輕射^ 相耵I箱如太%能)轉換為電能之技 術及裝置。 示範性光伏單元 第1圖以橫截面圖示光伏(PV)單元刚之各 層。可使用任何適合半導體生長之方法,諸: 晶法(麵h戈金屬有機化學氣相沈積(mocvd)2 5 201031006 種層形成於基板(未圖示)上。 PV單元100可包含形成於基板上方之窗層1〇6及任何 下伏的緩衝層。窗層106可包含碎化銘鎵(AiGaAs ), 諸如Al〇.3Ga〇.7As。窗層1〇6可未經摻雜。窗層ι〇6可為 透明的以允許光子通過PV單元之前側上的窗層至其他 下伏層。 基層108可形成於窗層106上方。基層ι〇8可包含任 何適合ιιι-ν族化合物半導體,諸如GaAs。基層1〇8可 φ 為單晶體且可經η型摻雜。 如第1圖中所圖示,發射極層110可形成於基層1〇8 上方。發射極層110可包含任何適合ΙΪΙ-ν族化合物半導 體以用於與基層108形成異質接面。舉例而言,若基層 108包含GaAs’則發射極層no可包含不同半導體材料, 諸如AlGaAs (例如,AlojGawAs)。若發射極層11〇與 窗層106二者皆包含AlGaAs,則發射極層11〇之 AlxGai-xAs組合物可與窗層之AlyGai-yAs組合物相同或 不同。發射極層110可為單晶體且可緻密地經p型掺雜 (亦即’ P+型摻雜 > 基層108與發射極層110之組合可 形成用於吸收光子之吸收層。 η型摻雜基層與p+型摻雜發射極層之接觸生成ρ η層 112 ^當光在ρ-η層112附近被吸收以產生電子電洞對 時,内建電場可推動電洞至ρ +型摻雜側且推動電子至η 型摻雜側。自由電荷之此移位產生兩個層1〇8、11()之間 的電壓差,使得電子電流在負載跨接在耦接至此等層之 6 201031006 端子兩端時可流動。 習知光伏半導體元件通常具有p塑摻雜基層及n+型摻 雜發射極層,而非上文所描述之η型摻雜基層1〇8及p+ 型摻雜發射極層11〇。歸因於載流子之漫射長度,基層 通常在習知元件中經ρ型摻雜。 一旦已形成發射極層11〇,空腔或凹座114可足夠深地 形成於發射極層中以到達下伏基層1〇8。可(例如)藉 _ 由使用光微影將光罩施加至發射極層11〇且使用任何適 合技術(諸如濕式或乾式蝕刻)移除發射極層u〇中未 由光罩覆蓋之半導體材料來形成此等凹座114。以此方 式,可經由PV單元100之後侧存取基層1〇8。 對於一些實施例’界面層116可形成於發射極層no 上方。界面層116可包含任何適合ΙΠ_ν族化合物半導 體’諸如GaAs。界面層110可經ρ+型摻雜。 一旦已形成磊晶層,在磊晶剝離(ELO )製程期間, ❹ PV單兀1〇〇之功能層(例如,窗層ι〇6、基層^⑽及發 射極層110)可與緩衝層1〇2及基板分離。 示範性光補獲 為了達成效率,理想光伏(PV)元件之吸收層將吸收 冲射於PV it件之面向光源之前側上的所有光子,因為 開路電壓(Fee)或短路電流(d與光強度成比例。然 而右干損耗機構通常干擾pv元件之吸收層看到或吸 收到達元件之前側的所有光。舉例而言,PV元件之半導 7 201031006 體層可為發亮的(尤其在由純 ▼取或時),且因此可反射 沖射光子之實質部分,從而防 防止此等光子不斷到達吸收 層。若兩個半導體層(例如, 菌層及基層)具有不同折 射率,則在其入射角過高之情 度況下’可根據司乃耳定律 (Snell’s Law)反射到達此箄兩伽 此寻兩個層之間的界面之一些 光子’從而再次防止此等弁早 哥元于到達吸收層。此外,該吸 收層可能並不吸收所有沖射光子. 兀*于,—些光子可通過吸收
層而不影響任何電子電洞對。 因此,需要技術及裝置用以俘獲沖射於ρν元件之前 側上之光’錢得盡可能多的光子可由吸收層吸收且被 轉換為電能。以此方式,Ρν元件之效率可增加。 可將用於在PV元件之半導體層内補獲光的裝置分成 兩個種類:前側光補獲及後側光補獲。藉_在ρν元件 中使用兩種類型之光補獲’其思想係,沖射於ρν元件 之前側上的幾乎所有光子可被俘獲且在半導體層内「回 彈」直至光子由吸收層吸收且被轉換為電能。 示範性前側光補獲 第2圖圖示根據本發明之實施例之抗反射(ar)塗層 802’其安置在鄰近於pv單元1〇〇之前侧上之窗層1%。 根據其目的,AR塗層802可包含允許光通過其表面同時 防止自其表面反射光之任何適合材料。舉例而言,ar塗 層802可包含氟化鎂(MgI?2)、硫化鋅(ZnS )、氮化矽 (SiN)、二氧化鈦(Ti〇2)、二氧化矽(Si〇2),或其任 8 201031006 何組合。可藉由任何適合技術(諸如濺鍍)將AR塗層 802塗覆於窗層ι〇6。 對於一些實施例’可在塗覆抗反射塗層8〇2之前粗糙 化或紋理化窗層106。第3圖圖示經粗縫化之窗層1 〇6。 可(例如)藉由濕式蝕刻或乾式蝕刻實現窗層丨〇6之粗 縫化。可藉由在塗覆AR塗層802之前將小粒子(諸如 聚苯乙烯球)施加於窗層1〇6之表面而達成紋理化。藉 由粗糙化或紋理化窗層106’在可具有不同折射率之AR ® 塗層802與窗層之間的界面處提供不同夾角。以此方 式’更多入射光子可透射至窗層1〇6中而非自ar塗層 8〇2與窗層之間的界面反射,因為根據司乃耳定律,一 些光子之入射角過高。因此’粗糙化或紋理化窗層1〇6 可提供增加之光補獲。 又對於一些實施例’窗層106可包含多個窗層。對於 此等實施例,可如上文所描述在塗覆抗反射塗層8〇2之 ❹ 前粗糙化或紋理化最外窗層(亦即,最接近於PV單元 100之前侧的窗層),如第4圖中所圖示。在第4圖中, 窗層106包含經安置鄰近於基層1〇8之第一窗層1002及 摘入於第一窗層1002與抗反射塗層802之間的第二窗層 1004。第一窗層1002及第二窗層10〇4可包含如上文所 描述適合於窗層106之任何材料,諸如AlGa As,但通常 具有不同組合物。舉例而言,第一窗層1002可包含
Al〇_3Ga0.7As,且第二窗層 1004 可包含 Al〇jGaojAs。此 外,對於一些實施例’該多個窗層中之一些可經摻雜, 9 201031006 而其他未經摻雜。舉例而言,第一窗層i 〇〇2可經摻雜, 且第二窗層1004可未經掺雜。 示範性後側光補獲 對於一些實施例,如上文關於前侧所描述,可粗糙化 或紋理化PV單元100之後侧上的發射極層11〇,以致力 於増加光補獲。第5圖圖示此經粗糙化之發射極層u〇。 鲁 第6圖圖示PV單元100之後側上的漫射體丨2^以致 力於增加由吸收層俘獲之光的量。漫射體12〇2之目的為 漫射或散射通過吸收層而未被吸收之光子,而非類似於 反射角等於入射角之鏡面而反射光子。對於一些實施 例’漫射體1202可由反射層12〇4覆蓋。以此方式,漫 射體1202可提供新的角至入射光子,一些光子可被重定 向回到PV單元之内部。對於被定向至Pv單元之後側的 其他光子,反射層1204可經由漫射體1202將此等光子 ® 重定向回來且朝向pv單元之内部。儘管在光子被散射 且在内部重定向時,一些光可由漫射體12〇2吸收,但許 多光被重疋向至吸收層而得以被吸收且轉換為電能,藉 此增加效率。不具有漫射體及反射層之習知PV元件可 能無法重新俘獲到達元件之後側而最初未由吸收層吸收 的光子。 對於一些實施例’漫射體12〇2可包含介電粒子1302, 如第7圖中所圖示。介電粒子可包含電絕緣且不吸收光 之任何適合材料。介電粒子13〇2可具有約〇 2至2.〇 μιη 10 201031006 之範圍中的直徑。介電粒子13〇2可由白色塗料13〇4覆 蓋,白色塗料13〇4反射光且可充當用於將光子重定向回 至PV單元100之内部的反射層。白色塗料13〇4可(例 如)包含Ti02。 對於一些實施例,漫射體12〇2可包含金屬粒子14〇2, 如第8圖中所圖示。金屬粒子1402可反射未由吸收層吸 收之光子,且藉由具有大量金屬粒子14〇2,在將光子重 ❸ moo之内部之前可使光子在不同方向上 散射若干次。金屬粒子14〇2可具有約15〇至2〇〇 nm2 直徑,從而充當相對緊密的散射體。由於漫射體12〇2中 之較細粒子,PV單元100之厚度可保持較小,藉此維持 PV單元100之所要可撓性。 因為金屬粒子1402為導電的,所以可使界面層116之 側表面鈍化以防止金屬粒子14〇2干擾元件之操作。可使 用任何適合鈍化方法,諸如化學氣相沈積(CVD )或電 參 漿增強型CVD( PECVD )使界面層116純化。鈍化劑1404 可包含任何適合不導電材料,諸如氮化矽(SiN)、Si〇x、 ΤιΟχ、TaOx、硫化鋅(ZnS ) ’或其任何組合。此外,對 於一些實施例’介電層1406可形成於金屬粒子14〇2上 方以致力於避免使任何後側接觸分流,如第8圖中所描 繪。介電層1406可包含任何適合電絕緣材料,諸如 Si〇2、SiN或玻璃。 儘管上述内谷係針對本發明之實施例’但可在不脫離 本發明之基本範疇之情況下設計本發明之其他及更多實 11 201031006 施例,且本發明之範疇係由以下申請專利範圍來確定。 【圖式簡單說明】 因此,可詳細理解本發明之上述特徵結構之方式可 參照實施例獲得上文簡要概述之本發明之更特定描述, 其中某些實施例圖示於附加圖式中。然而,應注意,附 加圖式僅圖示本發明之典型實施例,且因此不欲視為其 Φ 範疇之限制,因為本發明可允許其他同等有效之實施例。 第1圖以橫截面根據本發明之實施例之光伏(pv )單 元的多個磊晶層。 第2圖圖示根據本發明之實施例之添加至pv單元之 别側上之半導體層的抗反射塗層。 第3圖圖示根據本發明之實施例之在塗覆抗反射塗層 之前粗糖化窗層。 第4圖圖不根據本發明之實施例之多個窗層其中在 ❿ t覆抗反射塗層之前粗糙化最外窗層。 第5圖圖示根據本發明之實施例之PV單元之後側上 的經粗糙化之發射極層。 第6圖圖不根據本發明之實施例之PV單元之後側上 的漫射體。 第7圖圖不根據本發明之實施例之充當第6圖之漫射 體的介電粒子及白色塗料。 第8圖圖不根據本發明之實施例之充當第6圖之漫射 12 201031006 體的金屬粒子。 【主要元件符號說明】 100 光伏(PV)單元 106 窗層 108 基層 110 發射極層
112 p-n 層 116 界面層 802 抗反射(AR)塗層 1002 第一窗層 1004 第二窗層 1202 漫射體 1204 反射層 1302 介電粒子 1304 白色塗料 1402 金屬粒子 1404 鈍化劑 1406 介電層 13

Claims (1)

  1. 201031006 七、申請專利範圍: 1. 一種光伏(PV)元件,其包含: 一 P +型摻雜層; 一 η型摻雜層’其安置於該p+型摻雜層上方以形成一 p_n 層’使得在光子由該p-n層吸收時生成電能; 一窗層’其安置於該η型摻雜層上方;及 一抗反射塗層,其安置於該窗層上方。 參 2.如申請專利範圍第1項之PV元件,其中該η型摻雜 層包含η型GaAs ’且該〆型摻雜層包含ρ+型A1GaAs。 3. 如申請專利範圍第1項之PV元件,其中該抗反射塗 層包含MgF2、ZnS、SiN ' Ti02、Si02 .或其任何組合。 4. 如申請專利範圍第丨項之PV元件,其中鄰近於該抗 ❿ 反射塗層之該窗層的一表面已經粗糙化以提供不同角以 用於增加之光補獲。 5. 如申請專利範圍第丨項之Pv元件,其進一步包含插 入於該窗層與該抗反射塗層之間的粒子以提供不同角以 用於增加之光補獲。 6·如申請專利範圍第5項之PV元件,其中該等粒子包 含聚苯乙烯球》 201031006 7.如申請專利範圍第1項之W元件,其中該窗層包含 一第一窗層’其安置於該η型摻雜層上方;及 -第二窗層,其安置於該第一窗層上方。 8. 如申請專利範圍第7項之ρν元件,其令該第一窗層 及該第二窗層包含A1GaAs,但具有不同組合物。 9. 如申請專利範圍第7項之pv元件,其中該第一窗層 經摻雜且該第二窗層未經摻雜。 10.如申請專利範圍第7項之Pv元件,其中鄰近於該抗 反射塗層之該第二窗層的一表面已經粗糙化以提供不同 角以用於增加之光補獲。 ❿ U.如申請專利範圍第7項之PV元件,其進一步包含插 入於該第二窗層與該抗反射塗層之間的粒子以提供不同 角以用於增加之光補獲。 12. 如申請專利範圍第j項之pv元件,其中該p+型務雜 層之一底表面已用粒子粗糙化或紋理化以提供不同角以 用於增加之光補獲。 13. 如申請專利範圍第12項之PV元件,其中該等粒子 15 201031006 包含聚苯乙場球。 14. 一種光伏(pv)元件’其包含: 一 P+型摻雜層; 一 η型摻雜層,其安置於該P+型摻雜層上方以形成一 p 層,使得在光由該ρ-η層吸收時生成電能; 一由層’其安置於該η型摻雜層上方;及 一漫射體,其安置於該p+型摻雜層下方。 其中該漫射體 15.如申請專利範圍第14項之PV元件 包含複數個介電粒子。 70件’其中該複數個 16.如申請專利範圍第15項之ρν 介電粒子由白色塗料覆蓋。
    17·如申請專利範圍第16項之pV元件 料包含Ti02。 其中該白色塗 18.如申請專利範圍第15項之pV ; μ t 70件,其中該等介電 粒子具有約0.2至2.0 μιη之直徑。 其中該漫射體 19.如申請專利範圍第14項之ρν ; 件 包含複數個金屬粒子。 16 201031006 20. 如申請專利範圍第19項之PV元件,其中該等金屬 粒子具有約150至200 nm之直徑。 21. 如申請專利範圍第19項之PV元件,其進一步包含 一安置於該等金屬粒子下方之介電層。 22. 如申請專利範圍第21項之PV元件,其中該介電層 包含Si02、SiN或玻璃。 23. 如申請專利範圍第14項之PV元件,其進一步包含 一安置於該漫射體下方之反射層。 24. 如申請專利範圍第14項之PV元件,其中該p+型摻 雜層之一底表面已用粒子粗糙化或紋理化以提供不同角 以用於增加之光補獲。 參 25. 如申請專利範圍第24項之PV元件,其中該等粒子 包含聚苯乙烯球。 17
TW98136016A 2008-10-23 2009-10-23 Photovoltaic device with increased light trapping TW201031006A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10796208P 2008-10-23 2008-10-23

Publications (1)

Publication Number Publication Date
TW201031006A true TW201031006A (en) 2010-08-16

Family

ID=42120003

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98136016A TW201031006A (en) 2008-10-23 2009-10-23 Photovoltaic device with increased light trapping

Country Status (3)

Country Link
US (2) US8686284B2 (zh)
TW (1) TW201031006A (zh)
WO (1) WO2010048547A2 (zh)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8772628B2 (en) 2004-12-30 2014-07-08 Alliance For Sustainable Energy, Llc High performance, high bandgap, lattice-mismatched, GaInP solar cells
US8686284B2 (en) * 2008-10-23 2014-04-01 Alta Devices, Inc. Photovoltaic device with increased light trapping
US20120104460A1 (en) 2010-11-03 2012-05-03 Alta Devices, Inc. Optoelectronic devices including heterojunction
EP2351099A2 (en) * 2008-10-23 2011-08-03 Alta Devices, Inc. Photovoltaic device with back side contacts
KR20110073600A (ko) * 2008-10-23 2011-06-29 알타 디바이씨즈, 인크. 광전지 장치의 통합
US8674214B2 (en) * 2008-10-23 2014-03-18 Alta Devices, Inc. Thin absorber layer of a photovoltaic device
KR20110086098A (ko) * 2008-10-23 2011-07-27 알타 디바이씨즈, 인크. 광전지 장치
US9691921B2 (en) 2009-10-14 2017-06-27 Alta Devices, Inc. Textured metallic back reflector
US9502594B2 (en) 2012-01-19 2016-11-22 Alta Devices, Inc. Thin-film semiconductor optoelectronic device with textured front and/or back surface prepared from template layer and etching
US20150380576A1 (en) 2010-10-13 2015-12-31 Alta Devices, Inc. Optoelectronic device with dielectric layer and method of manufacture
US20130270589A1 (en) * 2012-04-13 2013-10-17 Alta Devices, Inc. Optoelectronic device with non-continuous back contacts
US20170141256A1 (en) 2009-10-23 2017-05-18 Alta Devices, Inc. Multi-junction optoelectronic device with group iv semiconductor as a bottom junction
US11271128B2 (en) 2009-10-23 2022-03-08 Utica Leaseco, Llc Multi-junction optoelectronic device
US20160155881A1 (en) * 2009-10-23 2016-06-02 Alta Devices, Inc. Thin film iii-v optoelectronic device optimized for non-solar illumination sources
US9768329B1 (en) 2009-10-23 2017-09-19 Alta Devices, Inc. Multi-junction optoelectronic device
US20120305059A1 (en) * 2011-06-06 2012-12-06 Alta Devices, Inc. Photon recycling in an optoelectronic device
US9397238B2 (en) 2011-09-19 2016-07-19 First Solar, Inc. Method of etching a semiconductor layer of a photovoltaic device
US11038080B2 (en) 2012-01-19 2021-06-15 Utica Leaseco, Llc Thin-film semiconductor optoelectronic device with textured front and/or back surface prepared from etching
CN103474504B (zh) * 2012-06-06 2016-09-07 浙江昱辉阳光能源江苏有限公司 一种制备反射膜的方法、太阳能电池板及其晶体硅片
GB201215344D0 (en) 2012-08-29 2012-10-10 Ibm Light-reflecting grating structure for photvoltaic devices
US9590131B2 (en) 2013-03-27 2017-03-07 Alliance For Sustainable Energy, Llc Systems and methods for advanced ultra-high-performance InP solar cells
CN104795454B (zh) * 2014-12-26 2017-05-03 天津蓝天太阳科技有限公司 砷化镓太阳电池顶电池窗口层纳米圆锥体结构及制备方法
CN106374001B (zh) * 2015-07-20 2018-01-09 中国科学院苏州纳米技术与纳米仿生研究所 具有锥形背散射层的GaAs薄膜太阳电池及其制备方法
GR20150100472A (el) * 2015-10-30 2017-07-03 Πανεπιστημιο Πατρων Δισκια πολυκρυσταλλικου πυριτιου με διαμορφωμενες μικροδομες στις επιφανειες τους για την βελτιωση της ηλιακης απορροφησης
RU170349U1 (ru) * 2016-11-07 2017-04-21 Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук ФОТОПРЕОБРАЗОВАТЕЛЬ НА ОСНОВЕ GaAs
RU2646547C1 (ru) * 2016-11-22 2018-03-05 Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук Фотопреобразователь лазерного излучения

Family Cites Families (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4017332A (en) * 1975-02-27 1977-04-12 Varian Associates Solar cells employing stacked opposite conductivity layers
US4107723A (en) * 1977-05-02 1978-08-15 Hughes Aircraft Company High bandgap window layer for GaAs solar cells and fabrication process therefor
US4094704A (en) 1977-05-11 1978-06-13 Milnes Arthur G Dual electrically insulated solar cells
FR2404307A1 (fr) * 1977-09-27 1979-04-20 Centre Nat Etd Spatiales Cellules solaires a double heterojonction et dispositif de montage
US4197141A (en) * 1978-01-31 1980-04-08 Massachusetts Institute Of Technology Method for passivating imperfections in semiconductor materials
US4410758A (en) * 1979-03-29 1983-10-18 Solar Voltaic, Inc. Photovoltaic products and processes
US4295002A (en) 1980-06-23 1981-10-13 International Business Machines Corporation Heterojunction V-groove multijunction solar cell
US4444992A (en) * 1980-11-12 1984-04-24 Massachusetts Institute Of Technology Photovoltaic-thermal collectors
US4338480A (en) * 1980-12-29 1982-07-06 Varian Associates, Inc. Stacked multijunction photovoltaic converters
US4385198A (en) * 1981-07-08 1983-05-24 The United States Of America As Represented By The Secretary Of The Air Force Gallium arsenide-germanium heteroface junction device
US4400221A (en) * 1981-07-08 1983-08-23 The United States Of America As Represented By The Secretary Of The Air Force Fabrication of gallium arsenide-germanium heteroface junction device
US4419533A (en) * 1982-03-03 1983-12-06 Energy Conversion Devices, Inc. Photovoltaic device having incident radiation directing means for total internal reflection
US4479027A (en) * 1982-09-24 1984-10-23 Todorof William J Multi-layer thin-film, flexible silicon alloy photovoltaic cell
US4497974A (en) * 1982-11-22 1985-02-05 Exxon Research & Engineering Co. Realization of a thin film solar cell with a detached reflector
US4633030A (en) * 1985-08-05 1986-12-30 Holobeam, Inc. Photovoltaic cells on lattice-mismatched crystal substrates
US4667059A (en) * 1985-10-22 1987-05-19 The United States Of America As Represented By The United States Department Of Energy Current and lattice matched tandem solar cell
JP2732524B2 (ja) * 1987-07-08 1998-03-30 株式会社日立製作所 光電変換デバイス
US5116427A (en) * 1987-08-20 1992-05-26 Kopin Corporation High temperature photovoltaic cell
US4889656A (en) * 1987-10-30 1989-12-26 Minnesota Mining And Manufacturing Company Perfluoro(cycloaliphatic methyleneoxyalkylene) carbonyl fluorides and derivatives thereof
US4989059A (en) * 1988-05-13 1991-01-29 Mobil Solar Energy Corporation Solar cell with trench through pn junction
JPH02135786A (ja) * 1988-11-16 1990-05-24 Mitsubishi Electric Corp 太陽電池セル
US5217539A (en) * 1991-09-05 1993-06-08 The Boeing Company III-V solar cells and doping processes
US5223043A (en) * 1991-02-11 1993-06-29 The United States Of America As Represented By The United States Department Of Energy Current-matched high-efficiency, multijunction monolithic solar cells
US5385960A (en) * 1991-12-03 1995-01-31 Rohm And Haas Company Process for controlling adsorption of polymeric latex on titanium dioxide
US5330585A (en) * 1992-10-30 1994-07-19 Spectrolab, Inc. Gallium arsenide/aluminum gallium arsenide photocell including environmentally sealed ohmic contact grid interface and method of fabricating the cell
US5342453A (en) * 1992-11-13 1994-08-30 Midwest Research Institute Heterojunction solar cell
US5316593A (en) * 1992-11-16 1994-05-31 Midwest Research Institute Heterojunction solar cell with passivated emitter surface
EP0617303A1 (en) 1993-03-19 1994-09-28 Akzo Nobel N.V. A method of integrating a semiconductor component with a polymeric optical waveguide component, and an electro-optical device comprising an integrated structure so attainable
US5376185A (en) * 1993-05-12 1994-12-27 Midwest Research Institute Single-junction solar cells with the optimum band gap for terrestrial concentrator applications
US6166218A (en) 1996-11-07 2000-12-26 Ciba Specialty Chemicals Corporation Benzotriazole UV absorbers having enhanced durability
DE69828936T2 (de) * 1997-10-27 2006-04-13 Sharp K.K. Photoelektrischer Wandler und sein Herstellungsverfahren
US6231931B1 (en) * 1998-03-02 2001-05-15 John S. Blazey Method of coating a substrate with a structural polymer overlay
US6166318A (en) * 1998-03-03 2000-12-26 Interface Studies, Inc. Single absorber layer radiated energy conversion device
US6278054B1 (en) * 1998-05-28 2001-08-21 Tecstar Power Systems, Inc. Solar cell having an integral monolithically grown bypass diode
US6103970A (en) * 1998-08-20 2000-08-15 Tecstar Power Systems, Inc. Solar cell having a front-mounted bypass diode
EP0993052B1 (en) * 1998-09-28 2009-01-14 Sharp Kabushiki Kaisha Space solar cell
US6150603A (en) * 1999-04-23 2000-11-21 Hughes Electronics Corporation Bilayer passivation structure for photovoltaic cells
JP2001127326A (ja) * 1999-08-13 2001-05-11 Oki Electric Ind Co Ltd 半導体基板及びその製造方法、並びに、この半導体基板を用いた太陽電池及びその製造方法
US6368929B1 (en) 2000-08-17 2002-04-09 Motorola, Inc. Method of manufacturing a semiconductor component and semiconductor component thereof
CA2437124A1 (en) 2001-02-09 2002-08-22 Midwest Research Institute Isoelectronic co-doping
US20030070707A1 (en) 2001-10-12 2003-04-17 King Richard Roland Wide-bandgap, lattice-mismatched window layer for a solar energy conversion device
US6864414B2 (en) * 2001-10-24 2005-03-08 Emcore Corporation Apparatus and method for integral bypass diode in solar cells
WO2003073517A1 (en) * 2002-02-27 2003-09-04 Midwest Research Institute Monolithic photovoltaic energy conversion device
US8067687B2 (en) * 2002-05-21 2011-11-29 Alliance For Sustainable Energy, Llc High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters
TW538481B (en) 2002-06-04 2003-06-21 Univ Nat Cheng Kung InGaP/AlGaAs/GaAs hetero-junction bipolar transistor with zero conduction band discontinuity
US20060162767A1 (en) * 2002-08-16 2006-07-27 Angelo Mascarenhas Multi-junction, monolithic solar cell with active silicon substrate
US8664525B2 (en) * 2003-05-07 2014-03-04 Imec Germanium solar cell and method for the production thereof
KR100762772B1 (ko) 2003-09-09 2007-10-02 아사히 가세이 일렉트로닉스 가부시끼가이샤 적외선 센서 ic, 적외선 센서 및 그 제조 방법
US7566948B2 (en) 2004-10-20 2009-07-28 Kopin Corporation Bipolar transistor with enhanced base transport
US7375378B2 (en) * 2005-05-12 2008-05-20 General Electric Company Surface passivated photovoltaic devices
US10069026B2 (en) * 2005-12-19 2018-09-04 The Boeing Company Reduced band gap absorber for solar cells
US20070277874A1 (en) * 2006-05-31 2007-12-06 David Francis Dawson-Elli Thin film photovoltaic structure
US20080245409A1 (en) * 2006-12-27 2008-10-09 Emcore Corporation Inverted Metamorphic Solar Cell Mounted on Flexible Film
US20100006143A1 (en) * 2007-04-26 2010-01-14 Welser Roger E Solar Cell Devices
US8193609B2 (en) 2008-05-15 2012-06-05 Triquint Semiconductor, Inc. Heterojunction bipolar transistor device with electrostatic discharge ruggedness
US8866005B2 (en) * 2008-10-17 2014-10-21 Kopin Corporation InGaP heterojunction barrier solar cells
KR20110086098A (ko) * 2008-10-23 2011-07-27 알타 디바이씨즈, 인크. 광전지 장치
US8674214B2 (en) * 2008-10-23 2014-03-18 Alta Devices, Inc. Thin absorber layer of a photovoltaic device
EP2351099A2 (en) * 2008-10-23 2011-08-03 Alta Devices, Inc. Photovoltaic device with back side contacts
US8686284B2 (en) 2008-10-23 2014-04-01 Alta Devices, Inc. Photovoltaic device with increased light trapping
KR20110073600A (ko) * 2008-10-23 2011-06-29 알타 디바이씨즈, 인크. 광전지 장치의 통합
US20100132774A1 (en) * 2008-12-11 2010-06-03 Applied Materials, Inc. Thin Film Silicon Solar Cell Device With Amorphous Window Layer
US8642883B2 (en) * 2010-08-09 2014-02-04 The Boeing Company Heterojunction solar cell

Also Published As

Publication number Publication date
US20100126571A1 (en) 2010-05-27
US8895847B2 (en) 2014-11-25
US8686284B2 (en) 2014-04-01
WO2010048547A3 (en) 2010-07-22
WO2010048547A2 (en) 2010-04-29
US20110048519A1 (en) 2011-03-03

Similar Documents

Publication Publication Date Title
TW201031006A (en) Photovoltaic device with increased light trapping
US10505058B2 (en) Photovoltaic device
US20180040746A1 (en) Passivation of light-receiving surfaces of solar cells with high energy gap (eg) materials
EP2279530B1 (en) Method for improving pv aesthetics and efficiency
US20090165845A1 (en) Back contact module for solar cell
US20090032098A1 (en) Photovoltaic device having multilayer antireflective layer supported by front substrate
US20100163104A1 (en) Solar cell
JP2008181965A (ja) 積層型光電変換装置及びその製造方法
US20100313952A1 (en) Photovoltaic modules and methods of manufacturing photovoltaic modules having multiple semiconductor layer stacks
US20080264483A1 (en) Amorphous silicon photovoltaic cells having improved light trapping and electricity-generating method
JP2009283886A (ja) 高性能な光電デバイス
JP2017525136A (ja) 結晶シリコンを用いた太陽電池の受光面のパッシベーション
US10541345B2 (en) Structures for increased current generation and collection in solar cells with low absorptance and/or low diffusion length
US20120152346A1 (en) Light absorption-enhancing substrate stacks
KR101622088B1 (ko) 태양전지
RU2728247C1 (ru) Устройство фотовольтаики
TWI453928B (zh) 太陽能模組及製造具有串聯半導體層堆疊之太陽能模組之方法
WO2014171351A1 (ja) 光電変換素子
TW201526274A (zh) 低表面復合效應之太陽能電池
TW201320361A (zh) 具背面鈍化結構的太陽能電池及其製造方法