TW201022855A - Correction unit, illumination optical system, exposure apparatus and device manufacturing method - Google Patents

Correction unit, illumination optical system, exposure apparatus and device manufacturing method Download PDF

Info

Publication number
TW201022855A
TW201022855A TW098132751A TW98132751A TW201022855A TW 201022855 A TW201022855 A TW 201022855A TW 098132751 A TW098132751 A TW 098132751A TW 98132751 A TW98132751 A TW 98132751A TW 201022855 A TW201022855 A TW 201022855A
Authority
TW
Taiwan
Prior art keywords
light
substrate
extinction
illumination
unit
Prior art date
Application number
TW098132751A
Other languages
Chinese (zh)
Other versions
TWI489219B (en
Inventor
Koji Shigematsu
Norio Miyake
Hirohisa Tanaka
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Publication of TW201022855A publication Critical patent/TW201022855A/en
Application granted granted Critical
Publication of TWI489219B publication Critical patent/TWI489219B/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70191Optical correction elements, filters or phase plates for controlling intensity, wavelength, polarisation, phase or the like
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
    • G03F7/701Off-axis setting using an aperture

Abstract

An illumination optical system, for adjusting pupil intensity distribution to be uniform at every point on an illuminated surface repectively, is provided. A correction unit (9), for correcting pupil intensity distribution of an illuminated pupil of the illumination optical system, includes a first substrate (91) and a second substrate (92) disposed behind the first substrate (91). A first light-decreasing pattern is formed on an exit surface (91b) of the first substrate. A second light-decreasing pattern corresponding to the first light-decreasing pattern is formed on an incident surface (92a) of the second substrate. The relative positions of the first and second light-decreasing patterns can be varied. Corresponding to the variations of the relative positions of the first and second light-decreasing patterns and variations of incident angles of a light toward the first substrate, light-decreasing rates provided by the first and second light-decreasing patterns vary.

Description

201022855 32380pif.doc 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種補正單元、照明光學系統、曝光 裝置以及元件製造方法。更詳細而言,本發明是有關於一 種適合於曝光裝置的照明光學系統,該曝光裝置用以藉由 微影製程來製造例如半導體元件、攝影元件、液晶顯示元 件、薄膜磁頭等的元件。201022855 32380pif.doc VI. Description of the Invention: [Technical Field] The present invention relates to a correction unit, an illumination optical system, an exposure apparatus, and a component manufacturing method. More specifically, the present invention relates to an illumination optical system suitable for an exposure apparatus for manufacturing an element such as a semiconductor element, a photographic element, a liquid crystal display element, a thin film magnetic head or the like by a lithography process.

【先前技術】 於此種典型的曝光裝置中’自光源射出的光經由作為 光學積刀窃(optical integrator)的複眼透鏡(f|y eye lens ), 而形成作為由多個光源所構成的實質性的面光源的二次光 源(通常為照明光瞳上的規定的光強度分佈> 以下,將照 明光瞳上的光強度分佈稱為「光曈強度分佈」。又,所謂照 明光瞳,是定義為藉由照明光瞳與被照射面(於曝光裝置 的情形時為光罩或晶圓)之間的光學系統的作用,使被照 射面成為照明光瞳的傅立葉變換面(F〇urier transf〇rm surface)的位置。 來自二次光源的光藉由聚光透鏡(c〇ndenserlens)而 聚光之後’對形成有規定_案的光罩進行重疊照明。穿 ,光罩的光Μ由投影光學系統而於晶圓上成像,從而將光 2=maSkpattem)投影曝光(轉印)至晶圓上。形成 f光罩賴案實現高麵化,為了 _微細圖案正確地轉 印至曰^圓上,,必須於晶圓上獲得均—的照度分佈。 了將光罩的微細圖案正確地轉印至晶圓上,提出有 5 201022855 32380pif.doc 如下的技術’即’例如形成環帶狀(輪帶狀)或多極狀(二 極狀、四極狀等)的光瞳強度分佈,使投影光學系統的焦 點 /木度(depth of focus )或解像能力(res〇iving p〇wer )提 高(參照專利文獻1)。 [專利文獻1]美國專利公開第2006/0055834號公報 為了忠實地將光罩的微細圖案轉印至晶圓上,不僅必 須將光曈強度分佈調整為預期的形狀,而且必須將與作為 最終被照射面的晶圓上的各點相關的光瞳強度分佈分別調 整得大致均一。若晶圓上的各點處的光瞳強度分佈的均一 性有偏差,則晶圓上的每個位置的圖案的線寬會有偏差, 從而無法以預期的線寬,忠實地將光罩的微細圖案遍及整 個曝光區域地轉印至晶圓上。 又,無論形成於照明光曈的光瞳強度分佈的形狀如 何,若與作為最終被照射面的晶圓上的各點相關的光瞳強 度分佈中,夾持光軸而於規定方向上隔開間隔的一對區域 的光強度的差過大,則恐怕會有圖案偏離預期的位置而被 曝光的問題。 【發明内容】 不赞明疋繼於上迤問題而研製者,提供一種可將稱 射面上的各點處的光瞳強度分佈分別調整得大致均一的 明光學系統。又,本發明提供一種曝光裝置,該曝光裝 可使用將被照射面上的各點處的光瞳強度分佈分別調餐 大致均一的照明光學系統,來在適當的照明條件下進 好的曝光。 201022855 )乂 : supif.doc 此外,本發明提供一種照明光學系統,該照明光 統可對與被照射面上的各點相關的光瞳強度分佈中^ 光軸而於規定方向上隔開間隔的一對區域的光強度差進行 調整。又,本發明提供一種曝光裝置,該曝光裝置可使用 對與被照射面上的各點相關的光瞳強度分佈十,央持光袖 而於規定方向上關_的_職_光差進行調整 的上述照明光學系統’來在適當的照明條件下進行良好 ❹曝光。 為了解決上述問題,本發明的第〗形態提供一種補正 單元,對形成於照明光學系統的照明光瞳的光瞳強度分佈 進行補正,該補正單元包括:透光性的第丨基板,配置在 鄰接於上述照明光曈的前侧且具有倍率(p〇wer)的光學元 件、與鄰接於上述照明光瞳的後側且具有倍率的光學元件 之間的照明光瞳空間内,且沿著上述照明光學系統的光軸 而具有規定的厚度;以及透光性的第2基板,配置於上述 照明光瞳空間内的比上述第1基板更後侧的位置,且沿著 © 上述光轴而具有規定的厚度’其中,上述第丨基板包括: 形成於光的入射侧的面及光的射出側的面中的至少一個面 上的第1消光圖案’上述第2基板包括:與上述第1消光 圖案相對應地形成於光的入射側的面及光的射出侧的面中 的至少一個面上的第2消光圖案,上述第1消光圖案與上 述第2消光圖案的相對位置可變更,對應於上述第1基板 與上述第2基板的相對位置的變化及朝上述第1基板入射 的光的入射角度的變化,上述第1消光圖案及上述第2消 201022855 32380pif.doc 光圖案所產生的消光率發生變化。 光學供一種補正單元’對形成於照明 光瞳強度分佈進行補正,該補正單 =括·第1 >肖光圖案’形成在與上 前側且具有倍率的光學元件、 =,、、、月先瞳的 側且具有倍率的光學元件:照明光瞳的後 更;立晉 照明光曈空間内的比上述第1面 更後侧的位置,且形成在與上述第1面平行的第2面上. 上述第1消光圖案包括至少一個第i單位消 =面^; 第2消光圖案包括與上述至少一個 =域上述 應地形成的至少-個第2單位消光區域,自找 上述第1單位消光區域的-部分與上述第2單: 沩光區域的一部分相重合。 井學ίίϋ的第3職提供—種補正單元,卿成於照明 光,系統的朗光_光瞳強度分佈騎補正該補正單 括·透絲的第1基板,配置在鄰接於上賴明光曈 名刖评且具有倍率的光學元件、與鄰接於上述照明光瞳的 ί側且具有倍率的光學元件之間的照明光瞳空間内,且沿 ^上述照明光學系統的光軸而具有規定的厚度;以及透光 =的第2基板,g己置於上述照明光瞳空間中的比上述第1 基板更後侧的位置1沿著上述光軸而具有規定的厚度, 上述第1基板包括形成於光的入射側的面及光的射出側的 面中的至少一個面上的第1消光圖案,上述第2基板包括 201022855. joupif.doc 形成於光的入射侧的面及光的射出侧的面中的至少一個面 上的第2消光圖案,上述第1消光圖案包括至少一個第1 單位消光區域,上述第2消光圖案包括與上述至少一個第 1單位消光區域相對應地形成的至少一個第2單位消光區 域,上述第1基板與上述第2基板沿著橫切上述光軸的第 1方向而可相對移動。 本發明的第4形態提供一種補正單元,對形成於照明 ^ 光學系統的照明光瞳的光曈強度分佈進行補正,該補正單 元包括.透光性的第1基板,配置在鄰接於上述照明光瞳 的刖側且具有倍率的光學元件、與鄰接於上述照明光瞳的 後侧且具有倍率的光學元件之間的照明光曈空間内,且沿 者上述照明光學系統的光轴而具有規定的厚度;以及透光 性的第2基板,配置於上述照明光瞳空間中的比上述第工 基板更後側的位置,且沿著上述光轴而具有規定的厚度, 上述第1基板包括形成於光的入射侧的面及光的射出侧的 面中的至少一個面上的第1消光圖案’上述第2基板包括 ® 形成於光的入射側的面及光的射出侧的面中的至少一個面 上的第2消光圖案,上述第i消光圖案包括至少一個第j 單位消光區域,上述第2消光圖案包括與上述至少一個第 1單位消光區域相對應地形成的至少一個第2單位消光區 域’上述第1單位消光區域與上述第2單位消光區域對於 以第1入射角入射至上述第丨單位消光區域的光賦予第t 消光率,且對以與上述第丨入射角不同的第2入射角而入 射至上述第1單位消光區域的光賦予與上述第丨消光率不 9 201022855 32380pif.doc 同的第2消光率,上述第1基板與上述第2基板的位置關 係可變更。 本發明的第5形態提供一種照明光學系統,利用來自 光源的光來對被照射面進行照明,該照明光學系統包括: 分佈形成光學系統(distribution creating optieal system), 具有光學積分器’且在比該光學積分更後侧的照明光曈 上形成光瞳強度分佈;以及如第i形態至第4形態中的任[Prior Art] In such a typical exposure apparatus, light emitted from a light source is formed as a substance composed of a plurality of light sources via an optical lens which is an optical integrator (f|y eye lens). A secondary light source of a surface light source (usually a predetermined light intensity distribution on an illumination pupil). Hereinafter, the light intensity distribution on the illumination pupil is referred to as "a pupil intensity distribution". Further, an illumination pupil, It is defined as an effect of an optical system between an illumination pupil and an illuminated surface (a mask or a wafer in the case of an exposure device), so that the illuminated surface becomes a Fourier transform surface of the illumination pupil (F〇urier) The position of the transf〇rm surface. The light from the secondary light source is condensed by the condensing lens (c〇ndenserlens), and the reticle forming the prescribed _ case is superimposed and illuminated. The projection optical system is imaged on the wafer to project (transfer) the light 2=maSkpattem onto the wafer. The f-mask is formed to achieve high surface area, and in order to correctly transfer the fine pattern onto the 曰^ circle, a uniform illuminance distribution must be obtained on the wafer. In order to correctly transfer the fine pattern of the mask onto the wafer, there is a technique of "201022855 32380pif.doc" which is, for example, formed into an endless belt shape (a belt shape) or a multi-pole shape (a bipolar shape or a quadrupole shape). The pupil intensity distribution of the etc. improves the focus/focus or resolution of the projection optical system (refer to Patent Document 1). [Patent Document 1] US Patent Publication No. 2006/0055834 discloses that in order to faithfully transfer a fine pattern of a photomask onto a wafer, it is necessary not only to adjust the pupil intensity distribution to an intended shape, but also to be The intensity distribution of the pupils associated with each point on the wafer on the illuminated surface is adjusted to be substantially uniform. If the uniformity of the pupil intensity distribution at each point on the wafer is deviated, the line width of the pattern at each position on the wafer may be deviated, so that the reticle of the mask may not be faithfully performed with the expected line width. The pattern is transferred to the wafer throughout the entire exposed area. Further, regardless of the shape of the pupil intensity distribution formed in the illumination pupil, if the pupil intensity distribution associated with each point on the wafer as the final illuminated surface is sandwiched by the optical axis and separated in a predetermined direction If the difference in light intensity between a pair of spaced regions is too large, there is a fear that the pattern is exposed from the intended position and is exposed. SUMMARY OF THE INVENTION The developer who does not praise the problem of the upper jaw is provided with a bright optical system that can adjust the intensity distribution of the pupil at each point on the surface on the surface to be substantially uniform. Further, the present invention provides an exposure apparatus which can perform exposure under appropriate lighting conditions by using an illumination optical system in which the pupil intensity distribution at each point on the illuminated surface is substantially uniform. Further, the present invention provides an illumination optical system that can be spaced apart in a predetermined direction from the optical axis intensity distribution associated with each point on the illuminated surface. The light intensity difference of a pair of areas is adjusted. Moreover, the present invention provides an exposure apparatus that can adjust the intensity distribution of the pupil associated with each point on the illuminated surface, and maintains the optical sleeve in the predetermined direction. The above illumination optical system 'to perform a good exposure under appropriate lighting conditions. In order to solve the above problems, the first aspect of the present invention provides a correction unit that corrects a pupil intensity distribution of an illumination pupil formed in an illumination optical system, the correction unit including: a translucent second substrate disposed adjacent to An illumination element space between the optical element having a magnification on the front side of the illumination pupil and an optical element having a magnification adjacent to the rear side of the illumination pupil, and along the illumination a second thickness of the optical system having a predetermined thickness; and a second substrate having a light transmissive property disposed at a position rearward of the first substrate in the illumination pupil space, and having a predetermined value along the optical axis The thickness of the second substrate includes: a first matte pattern formed on at least one of a surface on an incident side of the light and a surface on an exit side of the light; the second substrate includes: the first extinction pattern a second matte pattern formed on at least one of a surface on the incident side of the light and a surface on the light emitting side, wherein the first matte pattern is opposite to the second extinction pattern The change in the relative position of the first substrate and the second substrate and the change in the incident angle of the light incident on the first substrate, the first extinction pattern and the second cancellation 201022855 32380pif.doc light The extinction rate produced by the pattern changes. The optical unit is provided with a correction unit that corrects the intensity distribution formed in the illumination pupil, and the correction sheet includes the first > the first light pattern, and the optical element having the magnification on the upper front side, =, ,,, An optical element having a magnification on the side of the crucible: a rear surface of the illumination pupil; a position on the rear side of the first illumination surface in the illumination space of the Lijin illumination, and being formed on the second surface parallel to the first surface The first matte pattern includes at least one i-th unit elimination surface; the second extinction pattern includes at least one second unit extinction region formed in the above-described at least one= field, and the first unit extinction region is searched for The - part is the same as the second one mentioned above: a part of the calendering area coincides. The third job of the well ίίϋ provides a kind of correction unit, which is in the illumination light, the system's glare _ 瞳 瞳 intensity distribution, the accompaniment of the correction, the first substrate, and the first substrate, which is arranged adjacent to the ray An optical element having a magnification and having a magnification, and an illumination pupil space between the optical element adjacent to the illuminating side of the illumination diaphragm and having a magnification, and having a predetermined thickness along the optical axis of the illumination optical system And the second substrate having the light transmittance = a position 1 which is placed on the rear side of the first substrate in the illumination pupil space has a predetermined thickness along the optical axis, and the first substrate is formed in the first substrate a first matte pattern on at least one of a surface on the incident side of the light and a surface on the side where the light is emitted, and the second substrate includes 201022855. The surface on the incident side of the light and the side on the light exit side of Joupif.doc a second matte pattern on at least one of the surfaces, the first matte pattern including at least one first unit extinction region, and the second extinction pattern including at least one second portion corresponding to the at least one first unit extinction region Bit extinction region, the first substrate and the second substrate are movable relative to the first direction transverse to the optical axis. According to a fourth aspect of the present invention, there is provided a correction unit that corrects a pupil intensity distribution of an illumination pupil formed in an illumination optical system, wherein the correction unit includes a translucent first substrate and is disposed adjacent to the illumination light An optical element having a magnification on the side of the crucible and an optical element having a magnification adjacent to the rear side of the illumination pupil and having a magnification, and having a predetermined optical axis along the illumination optical system a second substrate having a thickness and a light transmissive property disposed at a position on the rear side of the illuminating aperture space, and having a predetermined thickness along the optical axis, wherein the first substrate includes The first matte pattern ′ on at least one of the surface on the incident side of the light and the surface on the light emitting side includes at least one of a surface formed on the incident side of the light and a surface on the light emitting side. a second extinction pattern on the surface, the i-th extinction pattern includes at least one j-th unit extinction region, and the second extinction pattern includes a topography corresponding to the at least one first unit extinction region At least one second unit extinction region 'the first unit extinction region and the second unit extinction region apply a t-th extinction ratio to light incident on the second unit extinction region at a first incident angle, and The second incident light having the second incident angle different from the incident angle and incident on the first unit extinction region is given a second extinction ratio similar to the second extinction ratio 9 201022855 32380pif.doc, and the first substrate and the second substrate are The location relationship can be changed. According to a fifth aspect of the present invention, there is provided an illumination optical system for illuminating an illuminated surface by light from a light source, the illumination optical system comprising: a distribution creating optieal system having an optical integrator The optical integration forms a pupil intensity distribution on the illumination pupil on the rear side; and any of the i-th to fourth aspects

-個補正單70,配置於包含上述後侧的照明光瞳的上述照 明光瞳空間内。The correction sheets 70 are disposed in the illumination pupil space including the illumination pupil on the rear side.

本發明的第6形態提供一種照明光學系統,利用來自 光源的光來對被照射面進行㈣,該_鮮系統包括: 分佈形成光學“,具有光學積分器,且在比該光學積分 器更後侧的照明光瞳上形成光曈強度分饰;以及如第^ 態至第4形態中的任—個補正單元,配跡包含上述後側 的二明光瞳的上述照明光瞳空間内,上述光學積分器沿著 ,定方向而具有細長的矩形狀的單位波前區分面,上述規 疋方向對應於上述補正單元中的第i方向。 本發明的第7形態提供—種曝紐置,該曝光襄置包 •如第5形態或第6形態的照明光學祕,躲定的圖 案進行照明m述規㈣_曝光至感紐基板。 本發明的第8形態提供-種元件製造方法,該元件$ 括:曝光步驟,使用如第7形態的曝光裝置,將 曝光至上述感光性基板;顯影步驟,使轉 有上述規疋的圖案的上述感光性基板顯影,於上述感夫 10 201022855 J2i8upif.doc 性基板的表面上形成與上述規定的圖案相對應的形狀的罩 幕層,以及加工步驟,經由上述罩幕層而對上述感光性基 板的表面進行加卫。 [發明的效果] 本發明的第1形態的照明光學系統包括補正單元,該 補正單元配置於包括比光學積分器更後側的照明光瞳的照 明光瞳空間内,對形成於照明光瞳的光瞳強度分佈進行補 Φ 正。補正單元包括形成有第1消光圖案的第1基板、以及 配置於該第1基板的後侧且形成有第2消光圖案的第2基 板’第1消光圖案與第2消光圖案的相對位置可變更。又, 補正單元以如下的方式構成,即,對應於第1基板與第2 基板的相對位置的變化及朝第丨基板入射的光的入射角度 的變化,第1消光圖案及第2消光圖案所產生的消光率發 生變化。 結果’可藉由補正單元的消光作用,來獨立地對與被 照射面上的各點相關的光瞳強度分佈分別進行調整,進而 ® 可將與各點相關的光瞳強度分佈調整為彼此大致相同的性 狀的分佈。因此,對於本發明的第丨形態的照明光學系統 而言,例如可藉由統一地對被照射面上的各點處的光瞳強 度刀佈進行調整的雄、度濾光片(density filter)、以及獨立 地對與各點相關的光瞳強度分佈分別進行調整的補正單元 的協同作用,來將被照射面上的各點處的光瞳強度分佈分 別調整得大致均一。又,對於本發明的曝光裝置而言,可 使用將被照射面上的各點處的光曈強度分佈分別調整得大 11 201022855 32380pif.doc 致均一的照明光學系鉍 . 曝光,進而可製造=的=當的照明條件下進行良好的 μΪ發=第3形態的照明光學系統包括補正單元,兮 比光學積分器更後側的照明光瞳的二 的一對基板而構成。於第1基板的入 2基板的入射面或射出面上,與= 2基板例如可沿著*域。第1基板與第 向而相對移動。磐器的單位波前區分面的長邊方 …根據上述構成’補正單^實現多種消光率特性,即, =者被照射面峡定方向,消絲根據各種職而變化。 ,此,對於本發明的第3形_照明光學純而言可藉 補正單兀的多H光作用,來對與被照射面 =的光瞳驗分料,祕妹祕狀額上關間才隔 胜對區域的光強度差進行調整。又,對於本發明的曝光 裝置而言,可使用上述照明光㈣統,在適當的照明條件 下進行良好的曝光,進而可製造良好的树,上述照明光 學系統對與被照㈣上的各·_關的光_度分佈中,爽 持光軸而於規定方向上·U1隔的—對區_光強度 行調整。 為讓本發明之上述特徵和優點能更簡易.1,下文特 舉實施例,並配合所附圖式作詳細說明如下。 【實施方式】 201022855 323«Opif.doc 基於附圖來對本發明的實施形態進行說明。圖i是概 略地表示本發明的第1實施形_曝光裝置的構成的圖。 於圖1中’將沿著作域綠基板的晶® W的曝光面(轉 印面)的法線方向設定為Z軸,將於晶a w的曝光面内 ^與圖1的紙面平行的方向蚊為γ軸,將於晶圓w的 光^内的與圖1的紙面垂直的方向設定為X軸。 ❹ 請參照® 1,於第!實施形態的曝光裝置中,自光 供、’、°曝光光束(照a月光)。作為光源i,例如可使用供給193 nm的波長的光的ArF準分子雷射光源、或供給2 * 8伽的 =的光的KrF準分子雷射光源等。自光源丨射出的光束 、生由整形光學系統2以及環帶照明用的繞射光學元件3而 入射至無f、魏(afGeal lens) 4。整形光學祕2具有如 ’即,將來自光源i的大致平行的光束轉換為具 义的矩形狀的剖面的大致平行的光束,並將該光束引 導至繞射光學元件3。 無焦透鏡4是以該無紐鏡4的前難點位置與繞射 ==件3的位置大致—致,且該無焦透鏡4的後侧焦點 置,中虛線所示的規定面Ιρ的位置大致—致的方式 ,行⑦疋的無焦祕(無焦縣㈣統)。祕光學元件 =藉由在基板上形成具有與曝光光束(照明光)的波長 It的間距(Pitd〇的階差而構成’該繞射光學元件3具 黑肪入射光束以預期的角度而繞射的作用。具體而言,環 的繞射光學元件3具有如下的魏,^當具有 形狀的剖面的平行光束入射時,於遠場(加fidd)(或 13 201022855 32380pif.docA sixth aspect of the present invention provides an illumination optical system that performs light on a surface to be illuminated by light from a light source, wherein the system includes: a distribution forming optical "having an optical integrator, and is later than the optical integrator a pupil intensity division on the side illumination pupil; and any one of the correction means in the fourth to fourth aspects, wherein the alignment includes the illumination aperture space of the rear side of the two illuminations, the optical The integrator has an elongated rectangular unit wavefront distinguishing surface along a fixed direction, and the gauge direction corresponds to an i-th direction in the correcting unit. The seventh aspect of the present invention provides an exposure, the exposure襄 • • 如 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • An exposure step of exposing to the photosensitive substrate using an exposure apparatus according to a seventh aspect; and a developing step of developing the photosensitive substrate on which the pattern of the above-described pattern is transferred, in the above-mentioned sensory 10 20102285 A cover layer having a shape corresponding to the predetermined pattern described above on the surface of the J2i8upif.doc substrate, and a processing step of reinforcing the surface of the photosensitive substrate via the mask layer. [Effect of the Invention] An illumination optical system according to a first aspect of the present invention includes a correction unit that is disposed in an illumination pupil space including an illumination pupil on a rear side of the optical integrator, and performs a pupil intensity distribution formed on the illumination pupil The correction unit includes a first substrate on which the first extinction pattern is formed, and a second substrate 'the first matte pattern and the second extinction pattern that are disposed on the rear side of the first substrate and have the second extinction pattern formed thereon In addition, the correction unit is configured to change the relative position of the first substrate and the second substrate and the change in the incident angle of the light incident on the second substrate, the first extinction pattern and The extinction rate produced by the second extinction pattern changes. The result 'can be independently used to correct the intensity of the pupil associated with each point on the illuminated surface by the extinction of the correction unit. The cloths are individually adjusted, and the distribution of the pupil intensity associated with each point can be adjusted to a distribution of properties substantially the same as each other. Therefore, for the illumination optical system of the third aspect of the present invention, for example, A male filter, a density filter that adjusts the pupil strength knives at each point on the illuminated surface, and a correction unit that independently adjusts the pupil intensity distributions associated with each point Acting to adjust the pupil intensity distribution at each point on the illuminated surface to be substantially uniform. Further, for the exposure apparatus of the present invention, the pupil intensity distribution at each point on the surface to be illuminated can be used. Adjusted separately 11 201022855 32380pif.doc A uniform illumination optical system . Exposure, and then can be manufactured = = good μ burst under the lighting conditions = illumination mode of the third form includes correction unit, 兮 optical The integrator is configured by a pair of substrates of two illumination pupils on the rear side. On the incident or exit surface of the second substrate of the first substrate, the =2 substrate may be along the * field, for example. The first substrate moves relative to the first direction. The long side of the unit wavefront discrimination surface of the device ... According to the above configuration, the correction unit has a plurality of extinction characteristics, that is, the = surface is illuminated by the irradiation surface, and the wire is changed according to various positions. Therefore, for the third shape of the present invention, the illumination optics can be supplemented by the multi-H light effect of the positive single 兀, and the light is detected by the light of the illuminated surface = The gap is adjusted for the difference in light intensity in the area. Further, in the exposure apparatus of the present invention, the illumination light (four) system can be used, and good exposure can be performed under appropriate illumination conditions, and a good tree can be manufactured, and the illumination optical system pair and the illumination (4) are respectively In the light-degree distribution of _off, the optical axis is adjusted in the direction of the optical axis and in the predetermined direction. To make the above features and advantages of the present invention simpler, the following embodiments are described in detail below with reference to the accompanying drawings. [Embodiment] 201022855 323 «Opif.doc An embodiment of the present invention will be described based on the drawings. Fig. i is a view schematically showing the configuration of a first embodiment of the exposure apparatus of the present invention. In Fig. 1, 'the normal direction of the exposure surface (transfer surface) of the crystal W along the green field of the writing field is set to the Z axis, and the mosquito in the direction parallel to the paper surface of Fig. 1 will be in the exposure surface of the crystal aw. The γ-axis is set to the X-axis in a direction perpendicular to the plane of the paper of FIG. 1 in the light of the wafer w. ❹ Please refer to ® 1, in the first! In the exposure apparatus of the embodiment, the light beam (in a moonlight) is exposed from light. As the light source i, for example, an ArF excimer laser light source that supplies light of a wavelength of 193 nm or a KrF excimer laser light source that supplies light of 2 * 8 gamma = can be used. The light beam emitted from the light source, the diffractive optical system 2, and the diffractive optical element 3 for the ring illumination are incident on the f-free, afGeal lens 4. The shaping optical lens 2 has a substantially parallel beam that converts substantially parallel beams from the source i into a meaningful rectangular cross section and directs the beam to the diffractive optical element 3. The afocal lens 4 is such that the front difficulty position of the no-beam mirror 4 is substantially the same as the position of the diffraction==piece 3, and the rear side focus of the afocal lens 4 is set, and the position of the predetermined surface Ιρ indicated by the middle dotted line is obtained. In a general way, there is no secret of 7 疋 (No Jiao County (4)). The secret optical element = by forming a pitch on the substrate having a wavelength (It is a step of Pitd〇) with the wavelength of the exposure beam (illumination light) (the pitch of the diffractive optical element 3 is diffracted at a desired angle In particular, the diffractive optical element 3 of the ring has the following Wei, when a parallel beam with a shaped profile is incident, in the far field (plus fidd) (or 13 201022855 32380pif.doc

Uffg CPmmhofei· diffraction)區域)中形成環帶 狀的光強度分佈。 因此,入射至繞射光學元件3的大致平行的光束於無 =透鏡4的光瞳面上形成環帶狀的光強度分佈之後,以環 帶狀的角度分佈自無焦透鏡4射出。在無焦透鏡4的前側 透鏡群4a與後側透鏡群4b之間的光路中,於該無焦透鏡 4的光瞳位置或該光瞳位置的附近,配置有密度滤光片 (density filter ) 5以及圓錐柱狀鏡(axic〇n )系統6。密度 滤光片5具有平行平面板的職,於該密錢光片5的《 ❹ 學面上形成有包含鉻(ehfGme)或氧化鉻等㈣光性點的 漠密圖案。亦即’密度澹光片5根據光的入射位置而具有 透射率不同的透射率分佈。密度遽光片5的具體作用、以 及圓錐柱狀鏡系統6的構成及作用將於後文中敍述。 ,經過無焦透鏡4的光是經由用以使口值(口值=照明 光學系統的光罩侧數值孔徑/投影光學系統的光罩侧數值 孔徑)可變的變焦透鏡(z〇〇m lens) 7,而入射至作為光 學積分器的微型複眼透鏡(micr〇 fly eye lens)(或複眼透 ❹ 鏡)8。該微型複眼透鏡8例如是··包括縱橫且稠密地排列 的多個具有正折射能力的微小透鏡的光學元件,且藉由對 平行平面板實施蝕刻處理來形成微小透鏡群而構成。 構成微型複眼透鏡的各微小透鏡比構成複眼透鏡的各 透鏡部件(lens dement)更微小。又,微型複眼透鏡與由 彼此隔絕的透鏡部件所構成的複眼透鏡不同,多個微小透 鏡(微小折射面)並非彼此隔絕而是形成為一體。然而, 14 201022855 3Z380pif.doc 考慮到具有正折射能力的透鏡要素縱橫地配置著,微型複 眼透鏡是與複眼透鏡相同的波前分割型的光學積分器。再 者’作為微型複眼透鏡8 ’例如亦可使用柱狀(cylindrical) 微型複眼透鏡。柱狀微型複眼透鏡的構成以及作用,例如 揭示於美國專利第6,913,373號公報中。 規定面IP的位置配置於變焦透鏡7的前侧焦點位置或 該前側焦點位置的附近,微型複眼透鏡8的入射面配置於 0 變焦透鏡7的後側焦點位置或該後側焦點位置的附近。換 言之,變焦透鏡7實質上將規定面IP與微型複眼透鏡8 的入射面配置成傅立葉變換的關係,而將無焦透鏡4的光 瞳面與微型複眼透鏡8的入射面配置成大致光學共輕。 因此’與無焦透鏡4的光曈面同樣地,於微型複眼透 鏡8的入射面上形成有例如以光轴AX為中心的環帶狀的 照野(照明視野)。該環帶狀的照野的整體形狀依存於變焦 透鏡7的焦點距離而相似性地變化。微型複眼透鏡8中的 各微小透鏡的入射面(亦即’單位波前分割面)例如為沿 者Y方向具有長邊且沿著X方向具有短邊的矩形狀,且為 與應形成於光罩Μ上的照明區域的形狀(進而為應形成於 晶圓W上的曝光區域的形狀)相似的矩形狀。 對入射至微型複眼透鏡8的光束進行二維分割,於該 微型複眼透鏡.8的後侧焦點面或該後侧焦點面附近的位置 (進而為照明光瞳的位置)’形成具有與形成於微型複眼透 鏡8的入射面的照野大致相同的光強度分佈的二次光源, 即,形成由以光軸ΑΧ為中心的環帶狀的實質性的面光源 15 201022855 32380pif.doc 所構成的二次光源(光瞳強度分佈)。於微型複眼透鏡8 的後侧焦點面或該後侧焦點面的附近配置有補正單元9。 補正單元9的構成以及作用將於後文中敍述。 又,於微型複眼透鏡8的後側焦點面或該後侧焦點面 的附近,根據需要而配置照明孔徑光闌(未圖示),該照明 孔徑光闌具有與環帶狀的二次光源相對應的環帶狀的開口 部(透光部)。照明孔徑光闌可自如地插入至照明光路中、 或自如地自該照明光路中拔出,且照明孔徑光闌可構成 參 為:可切換的、具有大小及形狀不同的開口部的多個孔徑 光闌。作為孔控光闌的切換方式,例如可使用眾所周知的 轉台(turret)方式或滑動(slide)方式等。照明孔徑光闌 配置在與下述的投影光學系統PL的入射光瞳面大致光學 共軛的位置’有助於對二次光源的照明的範圍進行規定。 經過微型複眼透鏡8及補正單元9的光經由聚光光學 系統ίο而重疊地對光罩遮器(maskblind) η進行照明。 如此’於作為照明視場光闌的光罩遮器^上,形成有與微 型複眼透鏡8的微小透鏡的形狀及焦點距離相對應的矩形 ❹ 狀的照野。經過光罩遮器11的矩形狀的開口部(透光部) 的光經由包括前侧透鏡群12a與後側透鏡群12b的成像光 學系統12,而重疊地對形成有規定的圖案的光罩M進行 照明。亦即,成像光學系統12將光罩遮器n的矩形狀開 口部的像形成於光罩Μ上。 在保持於光罩平台(maskstage)MS上的光罩μ上形 成有應轉印的圖案,在整個圖案區域中,沿著γ方向具有 16 201022855 szjuvpildoc 方向具有短邊的矩形狀 (狭缝(siit)狀)的 共與Γ姑被照明。穿透了光罩M的圖案區域的光經由投影 =f=p:Li在保持於晶圓平台的晶圓(感光性An annular band-shaped light intensity distribution is formed in the Uffg CPmmhofei (diffraction) region. Therefore, the substantially parallel light beams incident on the diffractive optical element 3 form an annular band-shaped light intensity distribution on the pupil plane of the non-finger lens 4, and are then emitted from the afocal lens 4 in an angular distribution of the ring shape. In the optical path between the front lens group 4a and the rear lens group 4b of the afocal lens 4, a density filter is disposed in the vicinity of the pupil position of the afocal lens 4 or the vicinity of the pupil position. 5 and a conical cylindrical mirror (axic〇n) system 6. The density filter 5 has a position of a parallel flat plate, and an indifference pattern containing a (4) optical point such as chromium (ehfGme) or chromium oxide is formed on the surface of the dense film 5. That is, the density calender sheet 5 has a transmittance distribution having a different transmittance depending on the incident position of the light. The specific function of the density calender sheet 5 and the configuration and action of the conical prism mirror system 6 will be described later. The light passing through the afocal lens 4 is via a zoom lens (z〇〇m lens) for making the mouth value (mouth value = reticle side numerical aperture of the illumination optical system / reticle side numerical aperture of the projection optical system) variable 7, and incident on a micr〇fly eye lens (or a compound eye lens) 8 as an optical integrator. The micro fly's eye lens 8 is, for example, an optical element including a plurality of microlenses having a positive refractive power which are arranged vertically and horizontally and densely arranged, and is formed by etching a parallel plane plate to form a minute lens group. Each of the minute lenses constituting the micro fly's eye lens is smaller than the lens parts constituting the fly-eye lens. Further, unlike the fly-eye lens composed of the lens members which are separated from each other, the micro fly's eye lens is not integrally isolated from each other but is formed integrally with each other. However, 14 201022855 3Z380pif.doc Considering that the lens elements having positive refractive power are arranged vertically and horizontally, the micro fly-eye lens is the same wavefront-divided optical integrator as the fly-eye lens. Further, as the micro fly's eye lens 8', for example, a cylindrical micro fly's eye lens can be used. The constitution and function of the columnar micro fly-eye lens are disclosed, for example, in U.S. Patent No. 6,913,373. The position of the predetermined surface IP is disposed in the vicinity of the front focus position of the zoom lens 7 or the front focus position, and the incident surface of the micro fly-eye lens 8 is disposed in the vicinity of the rear focus position of the 0 zoom lens 7 or the rear focus position. In other words, the zoom lens 7 substantially arranges the predetermined surface IP and the incident surface of the micro fly-eye lens 8 in a Fourier transform relationship, and arranges the pupil plane of the afocal lens 4 and the incident surface of the micro fly-eye lens 8 to be substantially optically light. . Therefore, similarly to the pupil plane of the afocal lens 4, a ring-shaped field (illumination field of view) centering on the optical axis AX is formed on the incident surface of the micro-folding lens 8. The overall shape of the annular field is similarly changed depending on the focal length of the zoom lens 7. The incident surface of each of the microlens lenses 8 (that is, the 'unit wavefront split surface) is, for example, a rectangular shape having a long side in the Y direction and a short side along the X direction, and is formed in the light. The shape of the illumination area on the cover (and thus the shape of the exposed area to be formed on the wafer W) is similarly rectangular. The light beam incident on the micro fly's eye lens 8 is two-dimensionally divided, and the position near the rear side focus surface or the rear side focus surface of the micro fly-eye lens .8 (and thus the position of the illumination pupil) is formed and formed The secondary light source of the light intensity distribution of the incident surface of the micro fly-eye lens 8 is substantially the same, that is, the second surface light source formed by the ring-shaped substantial surface light source 15 centering on the optical axis 2010 201022855 32380pif.doc Secondary source (stiff intensity distribution). A correction unit 9 is disposed in the vicinity of the rear focal plane or the rear focal plane of the micro fly-eye lens 8. The configuration and function of the correction unit 9 will be described later. Further, an illumination aperture stop (not shown) is disposed in the vicinity of the rear focal plane or the rear focal plane of the micro fly-eye lens 8, and the illumination aperture stop has a ring-shaped secondary light source. Corresponding ring-shaped opening (light transmitting portion). The illumination aperture stop can be freely inserted into the illumination optical path or freely extracted from the illumination optical path, and the illumination aperture stop can be configured as: a plurality of apertures that are switchable and have openings of different sizes and shapes. Light. As the switching method of the aperture stop diaphragm, for example, a well-known turret method or a slide method or the like can be used. The illumination aperture stop is disposed at a position that is substantially optically conjugate with the entrance pupil plane of the projection optical system PL described below, which contributes to the specification of the range of illumination of the secondary light source. The light passing through the micro fly's eye lens 8 and the correction unit 9 is superimposed to illuminate the mask blind η via the collecting optical system ίο. Thus, a rectangular dome-shaped field corresponding to the shape and focal length of the microlens of the micro fly's eye lens 8 is formed on the mask mask as the illumination field stop. The light passing through the rectangular opening (light transmitting portion) of the mask mask 11 is superposed on the mask having the predetermined pattern through the imaging optical system 12 including the front lens group 12a and the rear lens group 12b. M is illuminated. That is, the imaging optical system 12 forms an image of the rectangular opening portion of the mask mask n on the mask. A pattern to be transferred is formed on the mask μ held on the mask stage MS, and has a rectangular shape with a short side in the direction of the γ direction in the γ direction in the entire pattern region (slit (siit) )) A total of aunts and aunts are illuminated. The light that has penetrated the pattern area of the mask M is held on the wafer platform by projection =f=p:Li (photosensitivity)

罩n的像。亦即,以與光罩m上的 ^ g θΒ光學對應的方式,在晶圓W上的沿著Y 區域('有效=二向:=的矩形狀的靜止曝光 ❹ 與投二^式’在 产荖x W的先轴AX正交的平面(XY平面)内, 二步2 =向)來使光罩平台MS與晶圓平台 (捂士M r掃描),進而使光罩M與晶圓w同步移動 田 此來將S罩目輯描曝光至晶11 W上的攝影 二光^域),該攝影區域具有與靜止曝光區/ (移動量)相對應目的長的度寬度’且具有與晶圓w的掃描量The image of the cover n. That is, in the optical correspondence with ^ g θ 光 on the mask m, along the Y region on the wafer W ('effective = two directions: = rectangular static exposure ❹ and cast two 式'荖x W's first axis AX orthogonal plane (XY plane), two steps 2 = direction) to make the mask platform MS and wafer platform (gentle mur scan), and then the mask M and wafer w Synchronous mobile field to expose the S cover to the photographic light field on the crystal 11 W, the photographic area has a length width corresponding to the stationary exposure area / (movement amount) and has Wafer w scan amount

盘第狀鏡系統6自光源側起依序由第1稜鏡構件6a 3、L構件你構成’該第1棱鏡構件知是^朝 =:、且將凹圓錐狀的折射面朝向光罩侧的::,J 射面朝向光源侧的構件凸圓錐狀的折 彼此抵接的方恤獅形面是以可 ^=構件你中的至少—個構件可沿著m及 第稜鏡構件6a與第2稜鏡構件6b的間隔可變。移動 17 201022855 32380pif.doc 接的第1稜鏡構件與第2稜鏡構件%彼此扭 ,的狀態下’圓錐柱狀鏡祕6作為平行平=抵 ;i第的環帶狀的二次光源造成影響。然而: 2a與第2稜鏡構件邰分離,則環帶狀的 一尤秣的見度(環帶狀的二次光源的外徑與内徑之差的 1/2)保持固^,同時,環帶狀的二次光源的外徑(内徑)The disc mirror system 6 is composed of the first jaw member 6a 3 and the L member in order from the light source side. 'The first prism member is known as ^:=, and the concave conical refractive surface faces the mask side. The lion-shaped ribs of the J-faces facing the light source side with the convex conical folds abutting each other are at least one of the members that can be along the m and the third member 6a The interval of the second meandering member 6b is variable. Move 17 201022855 32380pif.doc The first 稜鏡 member and the second 稜鏡 member % are twisted together, and the conical cylindrical mirror 6 is parallel flat = a; the second ring-shaped secondary light source is caused by influences. However, when 2a is separated from the second 稜鏡 member ,, the 带-shaped visibility of the annular band (the difference between the outer diameter and the inner diameter of the annular band-shaped secondary light source) is kept constant, and Outer diameter (inside diameter) of the ring-shaped secondary light source

變化。亦即,環帶狀的二次光源的環帶比(内徑/外徑)以 及大小(外徑)發生變化。 變焦透鏡7具有使環帶狀的二次光源的整體形狀相似 地放大或縮小的功能。例如,將變焦透鏡7的焦點距離自 最小值放大為規定的值’藉此來使環帶狀的二次光源的整 體形狀相似地放大。換言之,藉由變焦透鏡7的作用,環 帶狀的二次光源的環帶比不發生變化,該二次光源的寬度Variety. That is, the annular band-like secondary light source has a ring-to-belt ratio (inner diameter/outer diameter) and a size (outer diameter). The zoom lens 7 has a function of similarly enlarging or reducing the overall shape of the endless belt-shaped secondary light source. For example, the focal length of the zoom lens 7 is enlarged from a minimum value to a predetermined value', whereby the overall shape of the endless belt-shaped secondary light source is similarly enlarged. In other words, by the action of the zoom lens 7, the annular band ratio of the annular secondary light source does not change, and the width of the secondary light source

以及大小(外徑)一同發生變化。如此,可藉由圓錐枉狀 鏡系統6以及變焦透鏡7的作用,來對環帶狀的二次光源 的環帶比與大小(外徑)進行控制。 於第1實施形態中,如上所述,將由微塑複眼透鏡8 形成的二次光源作為光源,對配置於照明光學系統(2〜12 ) 的被照射面的光罩Μ進行柯勒照明(Kohler illumination)。因此,二次光源的形成位置與投景多光學系統 PL的孔徑光闌AS的位置形成光學共軛,可將二次光源的 形成面稱為照明光學系統(2〜12)的照明光瞳面。典槊而 言,相對於照明光瞳面,被照射面(配置有光罩Μ的面’ 或將投影光學系統PL 一併考慮為照明光學系統時的配置 18 201022855 jzjeupif.doc 有晶圓w的面)成為光學性的傅立葉變換面。 再者,所謂光瞳強度分佈,是指照明光學系統(2〜12) 的照明光瞳面、或與該照明光曈面為光學共扼的面上的光 強度分佈(受度分佈)。當由微型複眼透鏡8產生的波前分 割數比較大時,形成於微型複眼透鏡8的入射面的综合性 的光強度分佈、與二次光雜體的齡性的錢度分佈(光 瞳強度刀佈)表現出較雨的相關性。因此,亦可將微型複 ❹ ⑯透鏡8的人射面及與該人射面光學餘的面上的光強度 分佈稱為光瞳強度分佈。於圖i的構成中,繞射光學元件 3、無焦透鏡4、變焦透鏡7、以及微型複眼透鏡8構成分 佈形成光學系統’該分佈形成光學系統在比微型複眼透鏡 8更後側的照明光瞳上形成光瞳強度分佈。 代替環帶照明用的繞射光學元件3,可將多極照明(二 極照明、四極照明、八極照明等)用的繞射光學元件(未 圖示)設定在照明光路中,藉此,可進行多極照明。多極 照明用的繞射光學元件具有如下的功能,即,當具有矩形 狀的剖面的平行光束入射時,於遠場中形成多極狀(二極 狀、四極狀、八極狀等)的光強度分佈。因此,經過多極 照明用的繞射光學元件的光束於微型複眼透鏡8的入射面 上’形成例如由以光軸八\為中心的多個規定形狀(圓弧 狀、圓形狀等)的照野所構成的多極狀的照野。結果是, 於微型複眼透鏡8的後侧焦點面或該後側焦點面的附近, 亦形成與該微型複眼透鏡8的入射面上所形成的照野相同 的多極狀的二次光源。 19 201022855 32380pif,doc 又,代替環帶照明用的繞射光學元件3,可將圓形照 明用的繞射光學元件(未圖示)設定在照明光路中,藉此, 可進行通常的圓形照明。圓形照明用的繞射光學元件具有 如下的功能,即,當具有矩形狀的剖面的平行光東入射時, 於遠場中形成圓形狀的光強度分佈。因此,經過圓形照明 用的繞射光學元件的光束於微型複眼透鏡8的入射面上, 例如形成以光軸AX為中心的圓形狀的照野。結果是,於 微型複眼透鏡8的後侧焦點面或該後侧焦點面的附近,亦 形成與該微塑複眼透鏡8的入射面上所形成的照野相同的 ® 圓形狀的二次光源。又’代替環帶照明用的繞射光學元件 3 ’可將具有適當特性的繞射光學元件(未圖示)設定在照 明光路中,藉此’可進行各種形態的變形照明。例如可使 用眾所周知的轉台方式或滑動方式等’作為繞射光學元件 3的切換方式。 於以下的説明中,為了使第1實施形態的作用效果易 於理解,於微塑複眼透鏡8的後側焦點面或該後侧焦點面 的附近的照明光瞳上’形成由如圖2所示的四個圓弧狀的 ❹ 實質性的面光源(以下,僅稱為「面光源」)2〇a、2〇b、2〇c、 以及2〇dm構成的四極狀的光瞳強度分佈(二次光源)20。 又,將補主單元9配置於比四極狀的光曈強度分佈20的形 成面更後側(光單侧)。又,於以下的說明中,當僅言及「照 明光瞳時,是指微型複眼透鏡8的後側焦點面或該後侧 焦點面的附近的照明光瞳。 請參瞒圖2,形成於照明光瞳的四極狀的光瞳強度分 20 201022855 •5」8Upif.doc 原包:及夾夾=方向上_隔的-對 r的-對圓弧狀的實二 =光曈上的X方向是微型複眼透鏡 鏡的短邊方向(矩形狀的單位波 微小透 X方向對應於晶圓w邊方向),該 ❹ 了:是微型複眼透鏡8的峨的微小透二γ 二===r向),"γ方向對應於= 為方向正交的掃描正交方向(晶圓w上的 邊如圖3所示’於晶圓%上形成有沿著Y方向且i長 且以盘職雜止曝光區域ER, 來^靜曝先域ER相對應的方式、而於光罩Μ上 矩形狀的照明區域(未圖示)。此處,人射至靜 内的1點的光在照明光瞳上所形成的四極狀的 佈’並不依存於入射點的位置,而是具有彼此 目同的形狀。然而,構成四極狀的光曈強度分佈的各 二 ΐ:的光強度存在根據入射點的位置的不同而有所不 ^體而言’如圖4所示’於入射至靜止曝光區域ER 棒广點P1中的光所形成的四極狀的光瞳強度分佈21 面=時,存在如下的傾向:即,在γ方向上隔開間隔的 =21c及21d的光強度’比在乂方向上隔開間隔的面 ^叫及21b的光強度更大。另-方面,如圖5所示, 於自靜止曝光區域ER内的中心點ρι入射至在γ方向上 21 201022855 32380pif.doc 隔開間隔的周邊點P2、P3的光所形成的四極狀的光瞳強 度分佈22的情形時,存在如下的傾向:即,在γ方向上 隔開間隔的面光源22c及22d的光強度,比在X方向上隔 開間隔的面光源22a及22b的光強度更小。 一般而言,無論形成於照明光瞳的光瞳強度分佈的外 形形狀如何,與晶圓W上的靜止曝光區域ER内的中心點 P1相關的光瞳強度分佈(入射至中心點P1的光於照明光 瞳上所形成的光瞳強度分佈)的沿著Y方向(掃描正交方 向)的光強度分佈如圖6(a)所示,其具有在中央為最小 參 且朝周邊增大的凹曲線狀的分佈。另一方面,與晶圓|上 的靜止曝光區域ER内的周邊點P2、P3相關的光瞳強度分 佈的沿著Y方向的光強度分佈如圖6(b)所示,其具有在 中央為最大且朝周邊減少的凸曲線狀的分佈。 而且,光瞳強度分佈的沿著γ方向的光強度分佈存在 如下的傾向:即’雖然不太依存於靜止曝光區域ER内的 沿著X方向(掃描方向)的入射點的位置,但依存於靜止 曝光區域ER内的沿著γ方向(掃描正交方向)的入射點 ❹ 的位置而發生變化。如此,當與晶圓w上的靜止曝光區域 ER内的各點相關的光曈強度分佈(入射至各點的光於照明 光瞳上所形成的光瞳強度分佈)分別大致不均一時,在晶 上的每個位置’圖案的線寬不均勻,無法以預期的: 寬忠實地將光罩Μ的微細圖案遍及整個曝光區域地轉印 至晶圓W上。 於第1實施形態中’如上所述,於無焦透鏡4的光瞳 22 201022855 jzj»upif.doc 位置或該光瞳位置的附近配置了具有如下的透射率分佈的 密度濾光片5,該透射率分佈中的透射率對應於光的入射 位置而有所不同。又,無焦透鏡4的光瞳位置藉由該無焦 透鏡4的後侧透鏡群4b與變焦透鏡7,而與微型複眼透鏡 8的入射面形成光學共輛。因此,藉由密度濾光片5的作 用,對形成於微型複眼透鏡8的入射面的光強度分佈進行 調整(補正),進而亦對形成於微型複眼透鏡8的後側焦點 φ 面、或該後側焦點面的附近的照明光瞳的光瞳強度分佈進 行調整。 、其中,德、度濾光片5統一地對與晶圓w上的靜止曝光 區域ER内的各點相關的光瞳強度分佈進行調整,而並不 依存於各關位置。結果是,藉由密錢光# 5的作用, 例如可將與中心點P1相關的四極狀的光曈強度分佈21調 整為大致均一 ’進而可將各面光源21a〜21d的光強度調整 為彼此大致相等,但於該情形時,關於周邊點P2、P3的 四極狀的光瞳強度分佈22的面光源22a、22b與面光源 罾 22c、22d的光強度之差反而變大。 亦即’為了藉由密度濾光片5的作用來將與晶圓w上 的靜止曝光區域ER内的各點相關的光瞳強度分佈分別調 整為大致均一,必須藉由密度濾光片5之外的其他機構, ^將與各點相關的光曈強度分佈調整為彼此相同的性狀的 分佈。具體而言,例如在與中心點ρι相關的光瞳強度分 佈21以及與周邊點P2、p3相關的光瞳強度分佈22中, 必須使面光源21a、21b與面光源2lc、21d的光強度的大 23 201022855 32380pif.doc 小關係、以及面光源22a、22b與面光源22c、22d的光強 度的大小關係以大致相同的比率相一致。 於第1實施形態中,為了與使中心點P1相關的光瞳 強度分佈的性狀、及與周邊點P2、P3相關的光瞳強度分 佈的性狀大致相一致,而具備了:作為調整機構的補正單 元9,該補正單元9進行調整,以使得在與周邊點P2、P3 相關的光瞳強度分佈22中,面光源22a、22b的光強度小 於面光源22c、22d的光強度。如圖7及圖8所示,補正單 元9包括:沿著光軸AX (對應於Z方向)具有規定的厚 度的一對透光性的基板91及92。各基板91、92例如具有 由石英或螢石般的光學材料所形成的平行平面板的形態。 第1基板91具有例如以光轴AX為中心的圓形狀的外 形形狀’在入射面91a與光軸AX正交的姿態下,該第1 基板91的位置被固定。第2基板92配置於第1基板91 的後侧(光罩侧),具有例如以光轴AX為中心的圓形狀的 外形形狀。又’第2基板92可一面維持該第2基板92的 入射面92a與光軸AX正交的姿態,一面於光轴AX方向 (Z方向)上移動。補正單元9是基於來自驅動控制系統 99的指令’而使第2基板92於光轴AX方向上移動。再 者’亦可將第2基板92的位置固定、且使第1基板91可 於光軸AX方向上移動,或使基板91及92兩者可於光轴 AX方向上移動。 請參照圖9,於基板91的射出面91b及基板92的入 射面92a上,按照規定的分佈而形成了彼此具有相同的外 24 201022855 wj5upif.doc 形形狀及相同的大小的遮光性點51a、51b及遮光性點 52a、:52b。此處’作為單位消躯域的各遮光性點51&、 51b、52a、52b ’例如由鉻或氧化鉻等所形成。又,遮光性 點52a以與遮光性點51a逐一對應方式的分佈而形成,遮 光性點52b以與遮光性點51b逐一對應方式的分佈而形成。 此處,一群遮光性點51a及一群遮光性點52a是配置 成對來自面光源20a的光起作用,一群遮光性點51b及一 群遮光性點是配置成對來自面光源2〇b的光起作用。 於圖9中,為了使圖式變得明瞭,僅表示了形成於基板91 的射出面91b的一對遮光性點51a及51b、以及形成於基 板92的入射面92a的一對遮光性點52a及52b。 以下,為使說明易於理解,使各遮光性點51a、51b、 52a、52b具有圓形狀的外形形狀,且自光軸Αχ方向觀察 遮光性點51a與52a彼此重合,且自光軸ΑΧ方向觀察遮 光性點51b與52b彼此重合。又,為使說明易於理解,僅 著眼於基板91的一對遮光性點51a及51b、及基板92的 φ 一對遮光性點52a及52b來對補正單元9的作用進行說明。 於第2基板92的沿著光轴AX方向的基準狀態(基準 位置)下,若與光軸AX平行的光入射至由圓形狀的遮光 性點51a與52a的組合所構成的組合消光區域,則在補正 單元9正後方的與射出面92b平行的面上,如圖10 (a) 的左侧所示,經圓形狀的遮光性點51a消光的區域51aa、 與經圓形狀的遮光性點52a消光的區域52aa彼此重合。亦 即,在補正單元9的正後方,圓形狀的消光區域51aa與 25 201022855 32380pif.doc 52aa形成如下的消光區域,該消光區域具有與一個圓形狀 的消光區域51aa相當的面積。 當與光轴AX平行的光入射至補正單元9時,即便第 2基板92自基準狀態朝+Z方向移動,使基板%與基板% 在光轴AX方向上的間隔變大,進而使遮光性點51&與遮 光性點52a在光軸AX方向上的間隔變大,如圖1〇 (a) 的右侧所示,消光區域51aa與52aa亦會保持重合而不發 生變化。同樣地,當與光轴AX平行的的光入射時,即便 第2基板92自基準狀態朝-Z方向移動,使遮光性點51a 與遮光性點52a的間隔變小,雖省略了圖示,但消光區域 51aa與52aa仍會保持重合而不發生變化。 於第2基板92的沿著光轴AX方向的基準狀態下,若 入射至由圓形狀的遮光性點51&與52a的組合所構成的組 合消光區域的光相對於光轴Αχ所成的角度,例如沿著γζ 平面自0度起單調遞增,則在補正單元9的正後方,如圖 10 (b)的左侧所示,消光區域51aa及52的朝ζ方向僅移 動彼此不同的距離’且消光區域51 aa與52aa的重合的區 ® 域單調遞減。結果是,於圖l〇(b)的左侧所示的狀態下, 圓形狀的消光區域51aa與52aa對應於重合區域的面積, 而形成具有如下面積的消光區域:該消光區域的面積大於 與一個圓形狀的消光區域51aa相當的面積,且小於與兩個 圓形狀的消光區域51 aa相當的面積。 若自圖1〇 (b)的左側所示的狀態起,第2基板92朝 +z方向移動’使遮光性點51a與52a的間隔單調遞增,則 26 201022855 jz^eupif.doc 如圖10 (b)的右侧所示,消先區域51aa與52aa的重合 區域單調遞減,消光區域51妨與52aa所形成的消光區域 的面積單調遞增。又’若自圖10⑻的左侧所示的狀態 起,第2基板92朝-Z方向移動,使遮光性點51a與52a 的間隔單調遞減,則雖省略了圖示,但消光區域心與 52aa的重合區域仍單調遞增,消光區域51姐與52时所形 成的消光區域的面積單調遞減。And the size (outer diameter) changes together. Thus, the ring band ratio and the size (outer diameter) of the endless belt-shaped secondary light source can be controlled by the action of the conical mirror system 6 and the zoom lens 7. In the first embodiment, as described above, the secondary light source formed by the microplastic fly-eye lens 8 is used as a light source, and Kohler illumination is performed on the mask 配置 disposed on the illuminated surface of the illumination optical system (2 to 12) (Kohler) Illumination). Therefore, the formation position of the secondary light source is optically conjugate with the position of the aperture stop AS of the projection multi-optical system PL, and the formation surface of the secondary light source can be referred to as the illumination pupil plane of the illumination optical system (2 to 12). . In the case of the illumination, the illuminated surface (the surface on which the mask is disposed) or the arrangement in which the projection optical system PL is considered as the illumination optical system 18 201022855 jzjeupif.doc has a wafer w The surface becomes an optical Fourier transform surface. Further, the pupil intensity distribution refers to an illumination pupil plane of the illumination optical system (2 to 12) or a light intensity distribution (acceptance distribution) on a plane optically conjugate with the illumination pupil plane. When the number of wavefront divisions generated by the micro fly-eye lens 8 is relatively large, the comprehensive light intensity distribution formed on the incident surface of the micro fly-eye lens 8 and the age distribution of the secondary optical hybrid (the pupil intensity) Knife cloth) shows a correlation with rain. Therefore, the distribution of the light intensity of the human face of the micro-refractive lens 16 lens and the surface of the human lens surface may be referred to as a pupil intensity distribution. In the configuration of FIG. 1, the diffractive optical element 3, the afocal lens 4, the zoom lens 7, and the micro fly's eye lens 8 constitute a distribution forming optical system 'the illumination light of the distribution forming optical system on the rear side of the micro fly-eye lens 8 A pupil intensity distribution is formed on the crucible. Instead of the diffractive optical element 3 for the ring illumination, a diffractive optical element (not shown) for multi-pole illumination (bipolar illumination, quadrupole illumination, octopolar illumination, etc.) can be set in the illumination optical path, whereby Multi-pole illumination is available. A diffractive optical element for multi-pole illumination has a function of forming a multipole (dipole, quadrupole, octapole, etc.) in a far field when a parallel beam having a rectangular cross section is incident. Light intensity distribution. Therefore, the light beam passing through the diffractive optical element for multipolar illumination forms a plurality of predetermined shapes (arc shape, circular shape, etc.) centered on the optical axis 八 on the incident surface of the micro fly's eye lens 8. The multi-polar field of the wilderness. As a result, a multi-pole secondary light source having the same illumination as that formed on the incident surface of the micro fly-eye lens 8 is formed in the vicinity of the rear focal plane or the rear focal plane of the micro fly-eye lens 8. 19 201022855 32380pif,doc Further, in place of the diffractive optical element 3 for ring illumination, a diffractive optical element (not shown) for circular illumination can be set in the illumination optical path, whereby a normal circular shape can be performed. illumination. The diffractive optical element for circular illumination has a function of forming a circular light intensity distribution in the far field when parallel light having a rectangular cross section is incident on the east. Therefore, the light beam passing through the diffractive optical element for circular illumination is formed on the incident surface of the micro fly's eye lens 8, for example, a circular field having a circular axis centered on the optical axis AX. As a result, a secondary circular light source of the same shape as the field formed on the incident surface of the microplastic fly-eye lens 8 is formed in the vicinity of the rear focal plane or the rear focal plane of the micro fly-eye lens 8. Further, instead of the diffractive optical element 3' for the endless belt illumination, a diffractive optical element (not shown) having appropriate characteristics can be set in the illumination light path, whereby various forms of anamorphic illumination can be performed. For example, a well-known turret mode or a sliding mode or the like can be used as the switching mode of the diffractive optical element 3. In the following description, in order to make the effect of the first embodiment easy to understand, the illumination pupil on the rear focus surface or the vicinity of the rear focus surface of the micro-plastic fly-eye lens 8 is formed as shown in FIG. Four arc-shaped ❹ substantial surface light sources (hereinafter, simply referred to as "surface light sources") quadrupole-shaped pupil intensity distributions composed of 2〇a, 2〇b, 2〇c, and 2〇dm ( Secondary light source) 20. Further, the main unit 9 is disposed on the rear side (light side) of the formation surface of the pupil-shaped pupil intensity distribution 20. In the following description, when only the "illumination pupil" is used, it means an illumination pupil in the vicinity of the rear focal plane or the rear focal plane of the micro fly-eye lens 8. Referring to Fig. 2, it is formed in illumination. The pupil's quadrupole intensity is 20 201022855 •5”8Upif.doc Original package: and clip = direction _ septa--for r-to arc-shaped real two = X-direction on the diaphragm The short-side direction of the micro fly-eye lens mirror (the rectangular unit wave slightly penetrates the X direction corresponds to the w-side direction of the wafer), which is: the microscopic fly-eye lens 8 has a small transmissive γ 2 ===r direction) , the γ direction corresponds to = the orthogonal direction of the scan orthogonal to the direction (the side on the wafer w is as shown in FIG. 3 'formed on the wafer % along the Y direction and i long and is mixed with the disk The exposure area ER is a rectangular illumination area (not shown) on the mask, in the manner corresponding to the first exposure field ER. Here, the light of one point that the person shoots into the static is in the illumination pupil. The quadrupole-like cloth formed on the top does not depend on the position of the incident point, but has the same shape as each other. However, the pupil intensity of the quadrupole is formed. The light intensity of each of the cloths is different depending on the position of the incident point, and the four poles formed by the light incident on the ER rod wide point P1 incident in the static exposure region as shown in Fig. 4 When the pupil intensity distribution 21 surface ==, there is a tendency that the light intensity '=21c and 21d spaced apart in the γ direction is smaller than the surface of the surface and the light of 21b spaced apart in the 乂 direction. The intensity is greater. On the other hand, as shown in FIG. 5, the center point ρι in the self-still exposure area ER is incident on the light of the peripheral points P2 and P3 spaced apart in the γ direction by 21 201022855 32380pif.doc. In the case of the quadrupole pupil intensity distribution 22, there is a tendency that the light intensity of the surface light sources 22c and 22d spaced apart in the γ direction is larger than the surface light sources 22a and 22b spaced apart in the X direction. The light intensity is smaller. In general, regardless of the shape of the pupil intensity distribution formed in the illumination pupil, the pupil intensity distribution associated with the center point P1 in the static exposure region ER on the wafer W (incident to The intensity of the pupil formed by the light at the center point P1 on the illumination pupil As shown in Fig. 6(a), the light intensity distribution along the Y direction (scanning orthogonal direction) has a concave curve-like distribution which increases toward the periphery at the center and on the other hand. The light intensity distribution along the Y direction of the pupil intensity distribution associated with the peripheral points P2 and P3 in the still exposure region ER on the wafer is as shown in FIG. 6(b), which has the largest at the center and decreases toward the periphery. Further, the light intensity distribution along the γ direction of the pupil intensity distribution has a tendency to be 'independently incident in the X direction (scanning direction) in the static exposure region ER. The position of the dot changes depending on the position of the incident point 沿着 in the γ direction (scanning orthogonal direction) in the still exposure region ER. Thus, when the pupil intensity distribution (the intensity distribution of the pupils formed on the illumination pupils incident on the illumination pupils) associated with the respective points in the static exposure region ER on the wafer w are substantially non-uniform, respectively, Each line on the crystal 'the line width of the pattern is not uniform, and it is not possible to faithfully transfer the fine pattern of the mask enamel onto the wafer W throughout the entire exposed area. In the first embodiment, as described above, the density filter 5 having the following transmittance distribution is disposed in the vicinity of the pupil 22 201022855 jzj»upif.doc position of the afocal lens 4 or the vicinity of the pupil position. The transmittance in the transmittance distribution differs depending on the incident position of the light. Further, the pupil position of the afocal lens 4 is optically shared with the incident surface of the micro fly's eye lens 8 by the rear lens group 4b of the afocal lens 4 and the zoom lens 7. Therefore, the light intensity distribution formed on the incident surface of the micro fly's eye lens 8 is adjusted (corrected) by the action of the density filter 5, and is also applied to the rear focus φ surface formed on the micro fly's eye lens 8, or The pupil intensity distribution of the illumination pupil in the vicinity of the rear focal plane is adjusted. The German and German filters 5 uniformly adjust the pupil intensity distribution associated with each point in the still exposure region ER on the wafer w, and do not depend on the respective off positions. As a result, by the action of the dense money light #5, for example, the quadrupole pupil intensity distribution 21 associated with the center point P1 can be adjusted to be substantially uniform', and the light intensities of the surface light sources 21a to 21d can be adjusted to each other. In this case, the difference in light intensity between the surface light sources 22a and 22b and the surface light sources 罾22c and 22d of the quadrupole pupil intensity distribution 22 of the peripheral points P2 and P3 is rather large. That is, in order to adjust the pupil intensity distribution associated with each point in the still exposure region ER on the wafer w to be substantially uniform by the action of the density filter 5, it is necessary to pass the density filter 5 Other mechanisms outside, adjust the distribution of the pupil intensity associated with each point to the distribution of the same traits. Specifically, for example, in the pupil intensity distribution 21 associated with the center point ρι and the pupil intensity distribution 22 associated with the peripheral points P2, p3, the light intensity of the surface light sources 21a, 21b and the surface light sources 21c, 21d must be made. Large 23 201022855 32380pif.doc The small relationship and the magnitude relationship of the light intensities of the surface light sources 22a and 22b and the surface light sources 22c and 22d coincide at substantially the same ratio. In the first embodiment, in order to substantially match the properties of the pupil intensity distribution relating to the center point P1 and the properties of the pupil intensity distribution associated with the peripheral points P2 and P3, correction is provided as the adjustment mechanism. The unit 9, the correction unit 9 is adjusted such that in the pupil intensity distribution 22 associated with the peripheral points P2, P3, the light intensity of the surface light sources 22a, 22b is smaller than the light intensity of the surface light sources 22c, 22d. As shown in Figs. 7 and 8, the correction unit 9 includes a pair of light-transmissive substrates 91 and 92 having a predetermined thickness along the optical axis AX (corresponding to the Z direction). Each of the substrates 91 and 92 has, for example, a form of a parallel flat plate formed of an optical material such as quartz or fluorite. The first substrate 91 has, for example, a circular outer shape centering on the optical axis AX. The position of the first substrate 91 is fixed in a posture in which the incident surface 91a is orthogonal to the optical axis AX. The second substrate 92 is disposed on the rear side (the mask side) of the first substrate 91, and has, for example, a circular outer shape centering on the optical axis AX. Further, the second substrate 92 is movable in the optical axis AX direction (Z direction) while maintaining the posture of the incident surface 92a of the second substrate 92 orthogonal to the optical axis AX. The correction unit 9 moves the second substrate 92 in the optical axis AX direction based on the command ' from the drive control system 99. Further, the position of the second substrate 92 may be fixed, and the first substrate 91 may be moved in the optical axis AX direction or both of the substrates 91 and 92 may be moved in the optical axis AX direction. Referring to FIG. 9, on the emitting surface 91b of the substrate 91 and the incident surface 92a of the substrate 92, the same outer surface 24 201022855 wj5upif.doc shape and the same size of the light blocking point 51a are formed in accordance with a predetermined distribution. 51b and light blocking points 52a, 52b. Here, each of the light-blocking points 51 & 51b, 52a, 52b' as a unit elimination body is formed of, for example, chromium or chromium oxide. Further, the light-blocking dots 52a are formed in a one-to-one correspondence with the light-shielding dots 51a, and the light-shielding dots 52b are formed in a one-to-one correspondence with the light-shielding dots 51b. Here, a group of light-shielding dots 51a and a group of light-blocking dots 52a are arranged to act on light from the surface light source 20a, and a group of light-shielding dots 51b and a group of light-shielding dots are arranged to light from the surface light source 2〇b effect. In Fig. 9, in order to clarify the drawings, only a pair of light-shielding dots 51a and 51b formed on the emitting surface 91b of the substrate 91 and a pair of light-shielding dots 52a formed on the incident surface 92a of the substrate 92 are shown. And 52b. Hereinafter, in order to make the explanation easy to understand, each of the light-shielding dots 51a, 51b, 52a, and 52b has a circular outer shape, and the light-shielding points 51a and 52a are overlapped from the optical axis , direction, and are observed from the optical axis ΑΧ direction. The light blocking spots 51b and 52b coincide with each other. In order to make the description easy to understand, the operation of the correction unit 9 will be described focusing only on the pair of light-shielding dots 51a and 51b of the substrate 91 and the pair of light-shielding dots 52a and 52b of the substrate 92. In the reference state (reference position) along the optical axis AX direction of the second substrate 92, light parallel to the optical axis AX is incident on a combined extinction region composed of a combination of circular shading points 51a and 52a. Then, on the surface parallel to the emission surface 92b immediately behind the correction unit 9, as shown on the left side of FIG. 10(a), the region 51aa where the circular shading point 51a is matted, and the circular shading point. The 52a matte regions 52aa coincide with each other. That is, immediately behind the correction unit 9, the circular extinction areas 51aa and 25 201022855 32380pif.doc 52aa form a matte area having an area corresponding to one circular extinction area 51aa. When the light parallel to the optical axis AX is incident on the correction unit 9, even if the second substrate 92 is moved from the reference state to the +Z direction, the interval between the substrate % and the substrate % in the optical axis AX direction is increased, and the light shielding property is further improved. The interval between the point 51 & and the light-shielding point 52a in the optical axis AX direction becomes large, and as shown on the right side of Fig. 1 (a), the extinction areas 51aa and 52aa also remain coincident without change. In the same manner, when the light parallel to the optical axis AX is incident, even if the second substrate 92 moves from the reference state to the -Z direction, the interval between the light-shielding point 51a and the light-shielding point 52a is reduced, and the illustration is omitted. However, the extinction areas 51aa and 52aa will remain coincident without change. In the reference state of the second substrate 92 along the optical axis AX direction, the angle of the light incident on the combined extinction region composed of the combination of the circular light-shielding points 51 & and 52a with respect to the optical axis Αχ For example, monotonically increasing from 0 degrees along the γ ζ plane, immediately behind the correction unit 9, as shown on the left side of FIG. 10(b), the eccentric directions of the extinction regions 51aa and 52 move only by different distances from each other' And the coincident area® of the extinction area 51aa and 52aa is monotonically decreasing. As a result, in the state shown on the left side of FIG. 10(b), the circular extinction areas 51aa and 52aa correspond to the area of the overlapping area, and a matte area having an area in which the area of the extinction area is larger than The area of one circular shaped extinction area 51aa is smaller than the area corresponding to the two circular extinction areas 51aa. When the second substrate 92 is moved in the +z direction from the state shown on the left side of FIG. 1(b), the interval between the light-shielding points 51a and 52a is monotonically increased, and 26 201022855 jz^eupif.doc is as shown in FIG. 10 ( As shown on the right side of b), the overlapping area of the erasing area 51aa and 52aa monotonously decreases, and the area of the extinction area 51 and the matte area formed by 52aa monotonously increases. Further, when the second substrate 92 is moved in the -Z direction from the state shown on the left side of FIG. 10 (8), the interval between the light-shielding points 51a and 52a is monotonously decreased, and although the illustration is omitted, the matte area is 52aa. The overlap area is still monotonously increasing, and the area of the extinction area formed by the matte area 51 and 52 is monotonously decreasing.

❹ 如此,於補正單元9中,當基板91與92在光軸AX 方向上的間隔為固定時,由圓形狀的遮光性點51a與52a 所構成的組合消光區域發揮如下的消光作用:即,隨著光 對於第1基板91的入射角度變大,消光率增大。藉由對圖 11 (a)的左側的圖、與圖11 (b)的左側的圖進行比較, 以及對圖11 (a)的右侧的圖、與圖11 (b)的右侧的圖進 行比較’可明瞭上述情形。同樣地,當基板91與92在光 轴AX方向上的間隔為固定時,由圓形狀的遮光性點51b 與52b所構成的組合消光區域亦發揮如下的消光作用: ® 即,隨著光對於第1基板91的入射角度變大,消光率增大。 又’於補正單元9中,當光對於第1基板91的入射角 度為0度時,即,當與光轴AX平行的光入射時,由圓形 狀的遮光性點51a與52a所構成的组合消光區域發揮固定 的消光作用,即,無論基板91與92在光軸AX方向上的 間隔的變化如何’消光率不變,且該消光率比較小。藉由 對圖11 (a)的左侧的圖、與圖11 (a)的右侧的圖進行比 較’可明瞭上述情形。同樣地,當與光軸AX平行的光入 27 201022855 32380pif.doc 射時,無論基板91與92的間隔的變化如何,由圓形狀的 遮光性點51b與52b所構成的組合消光區域發揮比較小的 固定的消光作用。 又,於補正單元9中’當光對於第1基板91的入射角 度為固定(入射角度為非0度的規定的值)時,由圓形狀 的遮光性點51a與52a所構成的組合消光區域發揮如下的 消光作用:即,隨著基板91與92光轴AX方向上的間隔 變大,消光率增大。藉由對圖U (b)的左侧的圖、與圖 11 (b)的右侧的圖進行比較,可明瞭上述情形。同樣地, 於補正單元9中’當光對於第〗基板91的人射角度為固定 時,由圓形狀的遮光性點51b與52b所構成的組合消光區 域亦發揮如下的消光作H隨著基板91與92在光轴 AX方向上的間隔變大,消光率增大。In the correction unit 9, when the interval between the substrates 91 and 92 in the optical axis AX direction is fixed, the combined extinction region composed of the circular shading points 51a and 52a exhibits the following extinction effect: As the incident angle of light to the first substrate 91 increases, the extinction ratio increases. By comparing the left side of FIG. 11(a) with the left side of FIG. 11(b), and the right side of FIG. 11(a) and the right side of FIG. 11(b). A comparison 'can explain the above situation. Similarly, when the interval between the substrates 91 and 92 in the optical axis AX direction is fixed, the combined extinction region composed of the circular-shaped light-shielding points 51b and 52b also exhibits the following extinction effect: The incident angle of the first substrate 91 is increased, and the extinction ratio is increased. Further, in the correction unit 9, when the incident angle of light to the first substrate 91 is 0 degrees, that is, when light parallel to the optical axis AX is incident, a combination of circular shading points 51a and 52a is formed. The extinction region exerts a fixed extinction effect, that is, regardless of the change in the interval of the substrates 91 and 92 in the optical axis AX direction, the extinction ratio is constant, and the extinction ratio is relatively small. The above situation can be understood by comparing the graph on the left side of Fig. 11(a) with the graph on the right side of Fig. 11(a). Similarly, when the light parallel to the optical axis AX enters 27 201022855 32380pif.doc, the combined extinction area composed of the circular shading points 51b and 52b is relatively small regardless of the change in the interval between the substrates 91 and 92. The fixed matting effect. Further, in the correction unit 9, when the incident angle of the light to the first substrate 91 is fixed (the incident angle is a predetermined value other than 0 degrees), the combined extinction region composed of the circular shading points 51a and 52a is formed. The matting action is performed such that the interval between the substrates 91 and 92 in the optical axis AX direction increases, and the extinction ratio increases. The above situation can be understood by comparing the graph on the left side of Fig. U (b) with the graph on the right side of Fig. 11 (b). Similarly, in the correction unit 9, when the angle of incidence of the light on the first substrate 91 is fixed, the combined extinction region composed of the circular shading points 51b and 52b also exhibits the following extinction H as the substrate The interval between 91 and 92 in the direction of the optical axis AX becomes large, and the extinction ratio increases.

—於第1實施形態中,第1基板91與第2基板92可.- In the first embodiment, the first substrate 91 and the second substrate 92 are available.

對移動…補正單元9對來自四: 佈2G中、夾持光轴ax而於X方向( ==邊方向)上隔開間隔的-對面光源: 1及遍的光H邊方向)上關_ —對面先 域W上的靜止曝光 口部的中心點Ρι, θ,即’抵達至光罩遮器11的 元9 (即,料G度的入射角度而對於補正 、第1基板91)進行入射。換言之來自 28 201022855 32380pif.d〇c 中心點Ρ1相關的光瞳強度分佈21的面光源21a及21b的 光是以0度的入射角度而入射至第1基板91。 另一方面’如圖13所示,抵達至晶圓w上的靜止曝 光區域ER内的周邊點P2、P3的光,即,抵達至光罩遮器 η的開口部的周邊點P2,、P3,的光是以比較大的入射角度士 Θ來對於補正單元9進行入射。換言之’來自與周邊點P2、 P3相關的光瞳強度分佈22的面光源22a及22b的光是以 比較大的入射角度±6»而入射至第1基板91。 再者,於圖12及圖13中,參照符號B1表示面光源 2〇a (21a、22a)的沿著X方向的最外緣的點,參照符號 B2表示面光源20b(21b、22b)的沿著又方向的最外緣的 點。又,為了使與圖12及圖13相關的說明易於理解,以 參照符號B3來表示面光源20c (21c、22〇的沿著z方向 的最外緣的點(請參照圖2等),且以參照符號I來表示 面光源2〇d(2ld、22d)的沿著ζ方向的最外緣的點(請 =圖2等)。然而’如上所述’來自面光源加⑺c、 =)及面光源施(21d、22d)的光不受到補正單元9的 如此,在與中心點P1相關的光瞳強度 自面光源21a及21b的光受到補正單元9 這些光的光強度的降低程度比較如來自面 ^ 一d 的光並未受_正單^ 9 _絲肖 、 強度不發生變化。結果是,如圖Η所示因此舆中== 關的光瞳強度分佈21即便受到補正單元9的消光作用,亦 29 201022855 32380pif.doc 僅會被調整為與原來的分佈21大致相同性狀的光瞳強度 分佈2Γ。亦即,經補正單元9調整的光曈強度分佈21,亦 維持如下的性狀:即,在Y方向上隔開間隔的面光源21c、 21d的光強度’比在X方向上隔開間隔的面光源2ia,、21b, 的光強度更大。 另一方面,在與周邊點P2、P3相關的光曈強度分佈 22中’來自面光源22a及22b的光受到補正單元9的消光 作用’這些光的光強度會較大幅度地降低。此處,可藉由 使補正單元9中的基板91與92的間隔發生變化,對來自 ® 面光源22a及22b的光的強度降低的程度進行調整。另一 方面,來自面光源22c及22d的光並未受到補正單元9的 消光作用’因此’這些光的光強度不發生變化。結果是, 如圖15所示,與周邊點P2、P3相關的光瞳強度分佈 藉由補正單元9的消光作用,而被調整為與原來的分佈22 不同性狀的光曈強度分佈22’。亦即,經補正單元9調整的 光瞳強度分佈22’變化為如下的性狀:即,在γ方向上隔 開間%的面光源22c、22d的光強度’比在X方向上隔開 ❿ 間隔的面光源22a'、22b'的光強度更大。 如此,藉由補正早元9的消光作用,與周邊點p2、p3 相關的光曈強度分佈22被調整為與關於中心點^的光瞳 強度分佈2Γ大致相同性狀的分佈22,。同樣地,將關於= 中心點P1與周邊點P2、P3之間沿著γ方向排列的各點的 光瞳強度分佈’進而將與晶圓W上的靜止曝光區域£尺内 的各點相關的光曈強度分佈亦調整為與關於中心點ρι的 30 201022855 3238Upif.doc 光瞳強度分佈21’大致相同性狀的分佈。換言之,藉由補正 單元9的消光作用,與晶圓w上的靜止曝光區域ER内的 各點相關的光瞳強度分佈被調整為彼此大致相同性狀的分 佈。以其他方式來表現時,補正單元9具有用以將與各點 相關的光曈強度分佈調整為彼此大致相同性狀的分佈所必 需的消光率特性。 如上所述,在第丨實施形態的補正單元9中,作為第 ❹ 1消光圖案,於第1基板91的射出面91b上,按照規定的 分佈而形成著多個圓形狀的遮光性點51a、51b。又,作為 第2消光圖案,於第2基板92的入射面上,以與多個遮光 性點51a、51b逐一對應的方式而形成著多個圓形狀的遮光 性點52a、52b。圓形狀的遮光性點51a與52a具有彼此相 同的大小’自光軸AX方向觀察,上述遮光性點51a與52a 彼此重合。同樣地,圓形狀的遮光性點51b與52b具有彼 此相同的大小,自光轴Αχ方向觀察,上述遮光性點51b 與52b彼此重合。 β 又,第1基板91與第2基板92可沿著光軸ΑΧ方向 而相對移動。因此’由圓形狀的遮光性點51&與52a所構 成的組合消光區域、以及由圓形狀的遮光性點51b與52b 所構成的組合消光區域是藉由所謂的視差效應(p aral j ax effect)來發揮如下的消光作用:即,消光率隨著光的入射 角度變大而單調遞增,且消光率隨著基板91與92的間隔 變大而單調遞增。然而,當光的入射角度為0度時,消光 率為固定而並不依存於基板91與92的間隔的變化。 31 201022855 32380pif.doc 如此,補正單元9是以如下方式構成:即,根據第1 基板91與第2基板92的間隔的變化(通常為相對位置的 變化)、以及朝第1基板91入射的光的入射角度的變化, 使第1消光圖案(51a、51b)及第2消光圖案(52a、52b) 所產生的消光率發生變化。又,補正單元9配置於照明光 曈的附近的位置,即,配置於作為被照射面的光罩Μ(或 晶圓W)上的、將光的位置資訊轉換成光的角度資訊的位 置。因此’藉由第1實施形態的補正單元9的消光作用, 可獨立地對與被照射面上的各點相關的光瞳強度分佈分別 ® 進行調整’進而可將與各點相關的光瞳強度分佈調整為彼 此大致相同性狀的分佈。 又,於第1實施形態的照明光學系統(2〜12)中,可 藉由補正單元9與密度濾光片5的協同作用,來將與各點 相關的光瞳強度分佈分別調整得大致均一,其中,上述補 正單元9獨立地對與晶圓w上的靜止曝光區域ER内的各 點相關的光瞳強度分佈分別進行調整,上述密度濾光片5 統一地對與各點相關的光曈強度分佈進行調整。因此,於 ρ 第1實施形態的曝光裝置(2〜WS)中,可使用將晶圓W 上的靜止曝光區域ER内的各點處的光瞳強度分佈分別調 整得大致均一的照明光學系統(2〜12),在與光罩Μ的微 細圖案相對應的適當的照明條件下可進行良好的曝光,進 而可以預期的線寬,忠實地將光罩Μ的微細圖案遍及整個 曝光區域地轉印至晶圓W上。 於第1實施形態中’將與靜止曝光區域ER内的各點 32 201022855 i238Upif.d〇c 相關的光瞳強度分佈分別調整得大致均一的動作、進而一 ,的將與各點相_光瞳強度分佈調整為所需的分佈的動 作,例如是基於光曈強度分佈測量裝置(未圖示)的測量 結果來進行,該光瞳強度分佈測量裝置基於經過投影光學 系統PL的光、來對投影光學系統pL的光瞳面上的光曈強 f分佈進行測量。例如,光瞳強度分佈測量裝置包括:電 荷輕合器件(Charge Coupled Device,CCD)攝影部,具 e 有配置於與投影光學系統pL的光曈位置形成光學^軛的 位置的攝影面,輯與投影光學祕PL的像面上的各點 相關的光瞳強度分佈(入射至各點的光線在投影光學系統 PL的光曈面上所形成的光瞳強度分佈)進行監視 (m0nitor )。關於光瞳強度分佈測量裝置的詳細構成以及 作用,可參照美國專利公開第2〇〇8/〇〇3〇7〇7號公報等。 具體而言,光瞳強度分佈測量裝置的測量結果供給至 f制部(未圖式)。控制部基於光曈強度分佈測量裝置的測 4結果來將指令輸出至補正單元9的驅動控制系統99,以 使投影光學系統PL的光瞳面上的光瞳強度分佈成為預期 的分佈。驅動控制系統99基於來自控制部的指令來對第2 基板92的Z方向位置進行控制,以將與晶圓貿上的靜止 =區域ER内的各點相關的光瞳強度分佈調整為所需的 於第1實施形態中,一般認為晶圓(被照射面) 的光量分侧如會受_正單元9的消光作用(調整 的影響。於該情形時,可根據需要,藉由具有公知的構成 33 201022855 32380pif.docFor the moving...correction unit 9 pairs from four: cloth 2G, the optical axis ax is sandwiched in the X direction (== edge direction) - the opposite side light source: 1 and the direction of the light H side) - the center point 静止ι, θ of the stationary exposure port portion on the opposite front field W, that is, 'the arrival of the element 9 of the mask mask 11 (that is, the incident angle of the material G degree for the correction, the first substrate 91) . In other words, the light from the surface light sources 21a and 21b of the pupil intensity distribution 21 associated with the central point Ρ1 of 28 201022855 32380pif.d〇c is incident on the first substrate 91 at an incident angle of 0 degrees. On the other hand, as shown in FIG. 13, the light reaching the peripheral points P2 and P3 in the still exposure region ER on the wafer w, that is, the peripheral point P2, P3 reaching the opening portion of the mask mask η The light of the light is incident on the correction unit 9 at a relatively large incident angle. In other words, the light from the surface light sources 22a and 22b of the pupil intensity distribution 22 associated with the peripheral points P2 and P3 is incident on the first substrate 91 at a relatively large incident angle ±6». Further, in Fig. 12 and Fig. 13, reference numeral B1 denotes a point along the outermost edge of the surface light source 2a (a) (21a, 22a) along the X direction, and reference numeral B2 denotes a surface light source 20b (21b, 22b). The point along the outermost edge of the direction. In addition, in order to make the description relating to FIGS. 12 and 13 easy to understand, the point of the surface light source 20c (21c, 22〇 along the outermost edge in the z direction (see FIG. 2, etc.) is indicated by reference symbol B3, and The point of the outermost edge along the ζ direction of the surface light source 2 〇d (2ld, 22d) is indicated by reference symbol I (please = Fig. 2, etc.). However, 'from the surface light source plus (7) c, =) The light of the surface light source application (21d, 22d) is not subjected to the correction unit 9, and the intensity of the pupil associated with the center point P1 is reduced by the light intensity of the surface light sources 21a and 21b by the correction unit 9. The light from the surface ^ a d is not subject to _ positive single ^ 9 _ silk, the intensity does not change. As a result, as shown in FIG. 舆, even if the pupil intensity distribution 21 of the middle==off is subjected to the extinction of the correction unit 9, 29 201022855 32380pif.doc is only adjusted to light having substantially the same characteristics as the original distribution 21. The intensity distribution is 2Γ. That is, the pupil intensity distribution 21 adjusted by the correction unit 9 also maintains a property that the light intensity '' of the surface light sources 21c and 21d spaced apart in the Y direction is spaced apart from the surface in the X direction. The light sources 2ia, 21b have a greater light intensity. On the other hand, in the pupil intensity distribution 22 associated with the peripheral points P2, P3, the light from the surface light sources 22a and 22b is subjected to the extinction of the correction unit 9, and the light intensity of the light is largely lowered. Here, the degree of decrease in the intensity of light from the surface light sources 22a and 22b can be adjusted by changing the interval between the substrates 91 and 92 in the correction unit 9. On the other hand, the light from the surface light sources 22c and 22d is not subjected to the extinction action of the correction unit 9 so that the light intensity of these lights does not change. As a result, as shown in Fig. 15, the pupil intensity distribution associated with the peripheral points P2, P3 is adjusted to the pupil intensity distribution 22' of a different property from the original distribution 22 by the extinction action of the correction unit 9. That is, the pupil intensity distribution 22' adjusted by the correction unit 9 is changed to a property that the light intensity '' of the surface light sources 22c, 22d spaced apart by 5% in the γ direction is spaced apart from the 方向 interval in the X direction. The surface lights 22a', 22b' have a higher light intensity. Thus, by correcting the extinction action of the early element 9, the pupil intensity distribution 22 associated with the peripheral points p2, p3 is adjusted to a distribution 22 having substantially the same characteristics as the pupil intensity distribution 2Γ of the center point. Similarly, the pupil intensity distribution ' with respect to each point in the γ direction between the center point P1 and the peripheral points P2 and P3 is further related to each point in the stationary exposure area on the wafer W. The pupil intensity distribution is also adjusted to be approximately the same as the distribution of the 30 201022855 3238Upif.doc pupil intensity distribution 21' with respect to the center point ρι. In other words, by the extinction action of the correction unit 9, the pupil intensity distribution associated with each point in the still exposure region ER on the wafer w is adjusted to be substantially the same as the distribution of the same. When expressed in other ways, the correction unit 9 has an extinction rate characteristic necessary for adjusting the pupil intensity distribution associated with each point to a distribution having substantially the same property. As described above, in the correction unit 9 of the first embodiment, a plurality of circular shading points 51a are formed on the emission surface 91b of the first substrate 91 as a ninth extinction pattern in accordance with a predetermined distribution. 51b. Further, as the second matte pattern, a plurality of circular shading points 52a and 52b are formed on the incident surface of the second substrate 92 so as to correspond to the plurality of light-blocking points 51a and 51b one by one. The circular-shaped light-shielding dots 51a and 52a have the same size as each other. The light-shielding dots 51a and 52a overlap each other as viewed from the optical axis AX direction. Similarly, the circular-shaped light-shielding points 51b and 52b have the same size, and the light-shielding points 51b and 52b overlap each other as viewed from the optical axis Αχ direction. Further, the first substrate 91 and the second substrate 92 are relatively movable in the optical axis direction. Therefore, the combined extinction region composed of the circular-shaped light-shielding dots 51 & and 52a, and the combined extinction region composed of the circular-shaped light-shielding dots 51b and 52b are caused by a so-called parallax effect (p aral j ax effect The extinction effect is exerted as follows: the extinction ratio monotonically increases as the incident angle of the light becomes larger, and the extinction ratio monotonically increases as the interval between the substrates 91 and 92 becomes larger. However, when the incident angle of light is 0 degree, the extinction ratio is fixed and does not depend on the change in the interval between the substrates 91 and 92. 31 201022855 32380pif.doc In this way, the correction unit 9 is configured to change the interval between the first substrate 91 and the second substrate 92 (generally, the change in the relative position) and the light incident on the first substrate 91. The change in the incident angle changes the extinction ratio generated by the first matte patterns (51a, 51b) and the second matte patterns (52a, 52b). Further, the correction unit 9 is disposed at a position near the illumination aperture, that is, at a position on the mask Μ (or the wafer W) as the illuminated surface, which converts the positional information of the light into the angle information of the light. Therefore, by the extinction action of the correction unit 9 of the first embodiment, the pupil intensity distributions associated with the respective points on the illuminated surface can be independently adjusted, and the pupil intensity associated with each point can be adjusted. The distribution is adjusted to a distribution of substantially identical traits to each other. Further, in the illumination optical systems (2 to 12) of the first embodiment, the pupil intensity distributions associated with the respective points can be adjusted to be substantially uniform by the synergistic action of the correction unit 9 and the density filter 5, respectively. The correction unit 9 independently adjusts the pupil intensity distributions associated with the respective points in the still exposure region ER on the wafer w, and the density filter 5 collectively pairs the apertures associated with the respective points. The intensity distribution is adjusted. Therefore, in the exposure apparatus (2 to WS) of the first embodiment, an illumination optical system in which the pupil intensity distribution at each point in the static exposure region ER on the wafer W is adjusted to be substantially uniform can be used ( 2 to 12), good exposure can be performed under appropriate illumination conditions corresponding to the fine pattern of the mask ,, and the desired line width can be faithfully transferred to the entire exposure area by the fine pattern of the mask Μ To the wafer W. In the first embodiment, the operation of adjusting the pupil intensity distribution associated with each point 32 201022855 i238Upif.d〇c in the still exposure region ER is substantially uniform, and further, it will be phased with each point. The action of adjusting the intensity distribution to a desired distribution is performed, for example, based on a measurement result of a pupil intensity distribution measuring device (not shown) that performs projection based on light passing through the projection optical system PL. The optical intensity f distribution on the pupil plane of the optical system pL is measured. For example, the pupil intensity distribution measuring device includes a charge coupled device (CCD) photographing unit having a photographing surface disposed at a position where the optical yoke is formed at a pupil position of the projection optical system pL. The pupil intensity distribution (the pupil intensity distribution formed by the light incident on each point on the pupil plane of the projection optical system PL) on the image plane of the projection optical secret PL is monitored (m0nitor). For details of the configuration and function of the pupil intensity distribution measuring device, reference is made to U.S. Patent Publication No. 2,8/3,7,7, and the like. Specifically, the measurement result of the pupil intensity distribution measuring device is supplied to the f-part (not shown). The control unit outputs a command to the drive control system 99 of the correction unit 9 based on the result of the measurement of the pupil intensity distribution measuring device so that the pupil intensity distribution on the pupil plane of the projection optical system PL becomes a desired distribution. The drive control system 99 controls the Z-direction position of the second substrate 92 based on an instruction from the control unit to adjust the pupil intensity distribution associated with each point in the stationary area ER on the wafer trade to a desired level. In the first embodiment, it is considered that the light amount side of the wafer (irradiated surface) is affected by the matting action of the positive unit 9 (adjustment effect. In this case, a known configuration can be used as needed. 33 201022855 32380pif.doc

的光量分佈調整部的作用,來對靜止曝光區域ER内的照 度分佈或靜止曝光區域(照明區域)ER的形狀進行變更“。' 具體而言,對照度分佈進行變更的光量分佈調整部可使用 曰本專利特開2001-313250號及曰本專利特開 2002-100561號(及與這些專利相對應的美國專利^ 6,771,350號及第6,927,836號)中所揭示的構成及方法。 又,作為對照明區域的形狀進行變更的光量分佈調整 可使用國際專利公開第WO2005/048326號小冊子(^該 小冊子相對應的美國專利公開第2〇〇7/〇〇14112號公^ 所揭示的構成及方法。 ’ Τ 再者,於上述第1實施形態中,根據圖7〜 的特定的形態,藉由配置成與光軸Αχ垂直的、具 平面板的形態的i基板91及92來構成補正單元9。: 士,於第1基板91的射出面灿上分佈形成有作 消光圖案的圓形狀的遮光性點51a、51b,於第2基拓The illuminance distribution in the still exposure area ER or the shape of the still exposure area (illumination area) ER is changed by the action of the light amount distribution adjustment unit. Specifically, the light quantity distribution adjustment unit that changes the contrast distribution can be used. The composition and method disclosed in the U.S. Patent Nos. 2001-313,250, the entire disclosures of which are incorporated herein by reference. The light quantity distribution adjustment for changing the shape of the illumination area can be made by using the method disclosed in the pamphlet of the International Patent Publication No. WO2005/048326 (the corresponding publication of the US Patent Publication No. 2/7/14112). Further, in the first embodiment described above, the correction unit 9 is configured by the i-substrate 91 and 92 having a flat plate shape perpendicular to the optical axis 根据 according to the specific embodiment of FIG. A: a circular shape of the light-shielding dots 51a and 51b as a matte pattern is formed on the emission surface of the first substrate 91, and the second base is formed.

==上分佈形成有作為第2消光圖案的圓形狀的 遮^點52a、52b。然而,並不限定於此,補正單元 具體構成可為各種形態。 、 基板能構成補正單元9的基板的形態(外形形狀等)、 基,的姿態、形成各消光圖案的單位消光區域的數 、f位消光區域的形成面的位置“射 =位置等可為各種形態。具體而言,於上 〜作騎紐的基板9卜92,可使關如至少其中 34 201022855 i238Upif.doc 一個面具有曲率的基板。 又,於上述第1實施形態中,一對基板91與92可、X 著光轴ΑΧ方向而相對移動。然而,並不限定於此,亦^ 藉由可繞絲ΑΧ而相對旋轉的—對基板,來構成發揮與 上述第1實施形態的補正單元9相同作用的補正單元。請 參照圖16,上述第1實施形態的變形例的補正單元9Α包 括:沿著光軸ΑΧ而具有規定的厚度的—對透絲的基板 e 93及94。各基板93、94例如具有由石英或螢石般的光學 材料所形成的平行平面板的形態。 第1基板93具有例如以光轴AX為中心的圓形狀的外 形形狀’構成為:可一面維持第1基板93的入射面93a 與光轴AX正交的姿態,一面圍繞光轴ΑΧ旋轉。第2基 板94配置於第1基板%的後側,第2基板94具有例如以 光轴ΑΧ為中心的圓形狀的外形形狀。又,第2基板94 構成為:可一面維持第2基板94的入射面94a與光軸ΑΧ 正交的姿態’ 一面圍繞光轴AX旋轉。於補正單元9A中, ® 第1基板93及第2基板94基於來自驅動控制系統99A的 指令而繞光軸AX旋轉。 如圖Π (a)所示,於基板93的射出面93b上,形成 有沿著以光軸AX為中心的圓的圓周方向排列的多個遮光 性的線狀區域53a及多個遮光性的線狀區域53b。又,如 圖17 (b)所示,於基板94的入射面94a上,形成有沿著 以光轴AX為中心的圓的圓周方向排列的多個遮光性的線 狀區域54a及多個遮光性的線狀區域54b。再者,於圖17 35 201022855 32380pif.doc (a)中’為了使說明易於理解,表示了自基板93的入射 面93a侧起朝光轴AX方向觀察所見的射出面93b的情 況。作為單位消光區域的各線狀區域53a、53b、54a、54b 例如由鉻或氧化鉻等所形成。又,線狀區域54a以與線狀 區域53a逐一對應的方式而分佈形成,線狀區域54b以與 線狀區域53b逐一對應的方式而分佈形成。 以下’為了使說明易於理解,線狀區域53a、53b、54a、 54b具有彼此相同的形狀及大小,沿著以光軸Αχ為中心 的圓的圓周方向而等角度地排列、且自光軸Αχ起隔開間 隔地延伸為放射狀。又,於第1基板93的基準旋轉位置, 一群線狀區域53a位於+Χ軸與+γ軸之間的9〇度的角度範 圍内,一群線狀區域53b位於-X軸與-γ軸之間的角度範 圍内。另一方面,於第2基板94的基準旋轉位置,一群線 狀區域54a位於+X軸與-Y轴之間的角度範圍内,一群線 狀區域54b位於-X軸與+Y軸之間的角度範圍内。 於基板93及94的基準狀態(基準旋轉位置)下,如 圖18所示’自光轴AX方向觀察時,一群線狀區域53a、 ❿ 53b、54a、54b彼此並不重合而是沿著圓周方向隔開間隔。 因此’來自面光源20a〜20d的光並不依存於朝向補正單元 9A(進而為基板93)的入射角度,而是藉由線狀區域53a、 53b、54a、54b而統一地受到消光作用。換言之,於基板 93及94的基準狀態下,並未發揮所謂的視差效應,線狀 區域53a、53b、54a、54b的消光作用為固定。 若使基板93自圖18的基準狀態起,沿著圖μ中的逆 36 201022855 32380pif.doc 時針方向旋轉規定角度,且使基板94自圖18的基準狀態 起,沿著圖18中的順時針方向旋轉規定角度,則可獲得如 下的狀態:即,如圖19中的粗線所示,例如自光轴八乂方 向觀察時’三個線狀區域53a與三個線狀區域54a彼此重 合’且自光轴AX方向觀察時,三個線狀區域53b與三個 線狀區域54b彼此重合。於圖19所示的狀態下,由彼此重 合的三個線狀區域53a與54a所構成的組合消光區域55a、 ❺以及由彼此重合的三個線狀區域53b與54b所構成的組合 消光區域55b藉由所謂的視差效應,來發揮使消光率隨著 光的入射角度變大而單調遞增的消光作用。此處,三個由 線狀區域53a與54a所構成的組合消光區域55a對來自面 光源20a的光起作用,三個由線狀區域53b與54b所構成 的組合消光區域55b對來自面光源20b的光起作用。 而且,若使基板93自圖19所示的狀態起,沿著圖18 中的逆時針方向旋轉規定角度,且使基板94自圖19所示 的狀態起,沿著圖18中的順時針方向僅旋轉規定角度,則 ❹ 可獲得如下的狀態:即,如圖20中的粗線所示,例如自光 軸AX方向觀察時’五個線狀區域53a與五個線狀區域54a 彼此重合,且自光軸ΑΧ方向觀察時,五個線狀區域53b 與五個線狀區域54b彼此重合。亦即,自光轴ΑΧ方向觀 察時,線狀區域53a、53b、54a、54b重合而成的重複區域 55a、55b比圖19所示的狀態進一步增大《於圖20所示的 狀態下,五個由線狀區域53a與54a所構成的組合消光區 域55a、以及五個由線狀區域53b與54b所構成的組合消 37 201022855 32380pif.doc 光區域55b發揮使消光率隨著光的入射角度變大而單調遞 增的消光作用。 如此,於補正單元9A中’根據第1基板93與第2基 板94的圍繞光軸AX的相對旋轉位置的變化,自光軸Αχ 方向觀察時,由第1消光圖案(53a、53b)與第2消光圖 案(54a、54b)重合而成的重複區域55a、55b的大小會發 生變化。補正單元9A發揮如下的消光作用:即,當光對 於第1基板93的入射角度為固定時,隨著第1消光圖案 (53a、53b)與第2消光圖案(54a、54b)的重複區域55a、 ❿ 55b變大,消光率增大。 亦即,於補正單元9A中’根據第1基板93與第2基 板94的圍繞光軸AX的相對位置的變化、以及朝第1基板 93入射的光的入射角度的變化,由第i消光圖案(53a、 53b)及第2消光圖案(54a、54b)所產生的消光率發生變 化。因此,與上述第1實施形態的情形同樣地,可藉由圖 16的變形例的補正單元9A的消光作用,來獨立地對與晶 圓W上的靜止曝光區域ER内的各點相關的光瞳強度分佈 ❹ 分別進行調整’進而可將與各點相關的光曈強度分佈調整 為彼此大致相同性狀的分佈。 再者’於圖16的變形例中,使基板93及94該兩個基 板圍繞光轴AX旋轉’但並不限定於此,亦可藉由使基板 93及94中的至少一個基板圍繞光轴AX旋轉來構成補正 單元。又,於圖16的變形例中,根據圖16及圖17所示的 特定的形態’藉由配置成與光轴Αχ垂直的具有平行平面 38 201022855 3238Upif.doc 板的形態的一對基板93及94 不限二’:單,的具體構成可為各:態然而’== The upper distribution forms the circular obstruction points 52a and 52b as the second extinction pattern. However, the present invention is not limited thereto, and the specific configuration of the correction unit may be various. The substrate can form the form of the substrate of the correction unit 9 (outer shape and the like), the posture of the base, the number of unit extinction regions forming the respective matte patterns, and the position of the formation surface of the f-bit extinction region. Specifically, the substrate 9 of 92 on the upper side can be used as a substrate having at least one of the faces of the surface of the lens. In addition, in the first embodiment, a pair of substrates 91 are provided. The movement is relatively movable in the direction of the X-axis and the X-axis. However, the present invention is not limited thereto, and the correction unit of the first embodiment is configured by a pair of substrates that are relatively rotatable around the wire. In the correction unit of the modification of the first embodiment, the correction unit 9A according to the modification of the first embodiment includes a substrate e 93 and 94 having a predetermined thickness along the optical axis 。. For example, 93 and 94 have a parallel flat plate formed of an optical material such as quartz or fluorite. The first substrate 93 has a circular outer shape shape centered on the optical axis AX, for example, and can be maintained for the first time. The incident surface 93a of the substrate 93 rotates around the optical axis 姿态 in a posture orthogonal to the optical axis AX. The second substrate 94 is disposed on the rear side of the first substrate %, and the second substrate 94 has a circle centered on the optical axis 例如, for example. In addition, the second substrate 94 is configured to be rotatable about the optical axis AX while maintaining the posture of the incident surface 94a of the second substrate 94 orthogonal to the optical axis 。. In the correction unit 9A, the first substrate The substrate 93 and the second substrate 94 are rotated about the optical axis AX based on an instruction from the drive control system 99A. As shown in Fig. (a), the emission surface 93b of the substrate 93 is formed along the optical axis AX. A plurality of light-shielding linear regions 53a and a plurality of light-shielding linear regions 53b arranged in a circular circumferential direction. Further, as shown in FIG. 17(b), an edge is formed on the incident surface 94a of the substrate 94. A plurality of light-shielding linear regions 54a and a plurality of light-shielding linear regions 54b arranged in a circumferential direction of a circle centered on the optical axis AX. Further, in FIG. 17 35 201022855 32380pif.doc (a) In order to make the explanation easy to understand, it is shown from the side of the incident surface 93a of the substrate 93 toward the optical axis AX. In the case of the incident surface 93b, the linear regions 53a, 53b, 54a, 54b as the unit extinction region are formed, for example, of chromium or chromium oxide, and the linear regions 54a are associated with the linear regions 53a one by one. The distribution is formed, and the linear regions 54b are distributed one by one in a manner corresponding to the linear regions 53b. Hereinafter, in order to make the explanation easy to understand, the linear regions 53a, 53b, 54a, 54b have the same shape and size, along The circumference of the circle centered on the optical axis 而 is arranged at equal angles, and is radially extended from the optical axis. Further, at the reference rotational position of the first substrate 93, a group of linear regions 53a are located within an angular range of 9 degrees between the +Χ axis and the +γ axis, and a group of linear regions 53b are located at the -X axis and the -γ axis. The range of angles between. On the other hand, at the reference rotational position of the second substrate 94, a group of linear regions 54a are located within an angular range between the +X axis and the -Y axis, and a group of linear regions 54b are located between the -X axis and the +Y axis. Within the range of angles. In the reference state (reference rotational position) of the substrates 93 and 94, as viewed in the direction of the optical axis AX, as shown in Fig. 18, a group of linear regions 53a, 53b, 54a, 54b do not coincide with each other but along the circumference. The directions are spaced apart. Therefore, the light from the surface light sources 20a to 20d does not depend on the incident angle toward the correction unit 9A (and further on the substrate 93), but is uniformly subjected to the extinction by the linear regions 53a, 53b, 54a, 54b. In other words, in the reference state of the substrates 93 and 94, the so-called parallax effect is not exerted, and the matting action of the linear regions 53a, 53b, 54a, 54b is fixed. When the substrate 93 is rotated from the reference state of FIG. 18, the predetermined angle is rotated along the counter 36 201022855 32380 pif.doc in the figure μ, and the substrate 94 is rotated from the reference state of FIG. 18 along the clockwise direction in FIG. When the direction is rotated by a predetermined angle, a state can be obtained in which, as indicated by a thick line in FIG. 19, for example, when viewed from the optical axis gossip direction, the three linear regions 53a and the three linear regions 54a coincide with each other. And when viewed from the optical axis AX direction, the three linear regions 53b and the three linear regions 54b coincide with each other. In the state shown in Fig. 19, the combined extinction regions 55a, ❺ composed of three linear regions 53a and 54a overlapping each other, and the combined extinction region 55b composed of three linear regions 53b and 54b overlapping each other By the so-called parallax effect, an extinction effect that monotonically increases the extinction ratio as the incident angle of light becomes larger is exerted. Here, three combined extinction regions 55a composed of linear regions 53a and 54a act on the light from the surface light source 20a, and three combined extinction regions 55b composed of the linear regions 53b and 54b are from the surface light source 20b. The light works. Further, when the substrate 93 is rotated from the state shown in FIG. 19 by a predetermined angle in the counterclockwise direction in FIG. 18, and the substrate 94 is brought from the state shown in FIG. 19, it is clockwise in FIG. Only by rotating the predetermined angle, ❹ can obtain a state in which, as shown by a thick line in FIG. 20, for example, when viewed from the optical axis AX direction, the five linear regions 53a and the five linear regions 54a coincide with each other. And, when viewed from the optical axis ΑΧ direction, the five linear regions 53b and the five linear regions 54b coincide with each other. That is, the overlapping regions 55a and 55b in which the linear regions 53a, 53b, 54a, and 54b are overlapped when viewed from the optical axis 进一步 direction are further increased than the state shown in FIG. 19, in the state shown in FIG. Five combined extinction regions 55a composed of linear regions 53a and 54a, and five combined regions composed of linear regions 53b and 54b are used to make the extinction ratio with the incident angle of light. Larger and monotonically increasing extinction. In the correction unit 9A, the first matte pattern (53a, 53b) and the first matte pattern are observed from the change in the relative rotational position of the first substrate 93 and the second substrate 94 around the optical axis AX. The size of the overlapping regions 55a and 55b in which the two matte patterns (54a, 54b) are superposed changes. The correction unit 9A performs a matting action in which the overlapping area 55a of the first matte patterns (53a, 53b) and the second extinction patterns (54a, 54b) is fixed when the incident angle of the light to the first substrate 93 is fixed. ❿ 55b becomes larger and the extinction rate increases. In other words, in the correction unit 9A, the i-th extinction pattern is changed by the change in the relative position of the first substrate 93 and the second substrate 94 around the optical axis AX and the incident angle of the light incident on the first substrate 93. The extinction ratios generated by (53a, 53b) and the second extinction patterns (54a, 54b) change. Therefore, similarly to the case of the first embodiment described above, the light associated with each point in the still exposure region ER on the wafer W can be independently independently caused by the matting action of the correction unit 9A of the modification of Fig. 16 . The 瞳 intensity distribution ❹ is adjusted separately', and the pupil intensity distribution associated with each point can be adjusted to have a distribution of substantially the same nature. Furthermore, in the modification of FIG. 16, the two substrates of the substrates 93 and 94 are rotated about the optical axis AX. However, the present invention is not limited thereto, and at least one of the substrates 93 and 94 may be surrounded by the optical axis. AX is rotated to form a correction unit. Further, in the modification of Fig. 16, a pair of substrates 93 having a parallel plane 38 201022855 3238Upif.doc plate arranged perpendicular to the optical axis 根据 are arranged according to the specific form shown in Figs. 16 and 17 and 94 is not limited to two:: single, the specific composition can be for each: state however

為各種鄉。緒Μ,^變= :具Π=:基板93、94’例如可使用至少其中-個 又,於圖16的變形例中,一對基板93與94 而相對旋轉。然而,並不限定於此’亦可藉由= 切光軸AX的方肖(典型而言,為沿著與光轴AX正交的 XY平面的任意的方向)上可相對移動的—對基板,來= 成發揮與圖】6的變形儀補正單元9A_作用的補正= 兀。於該情形時,重要之處在於’根據第〗基板與第 板的沿著橫切光軸的方向的相對位置的變化,自光轴方 觀察時’帛1消光圖案與第2聽_重合域的^ 域的大小發生變化。 又,於上述第1實施形態及該第i實施形態的變形例 中,在比微型複眼透鏡8的後側焦點面或該後側焦點面附 近的照明光瞳上所形成的光瞳強度分佈20的形成面更後 侧(光罩侧)處,配置有補正單元9 (9A>然而,並不限 定於此,亦可將補正單元9 (9A)配置於光瞳強度分佈2〇 的形成面的位置、或該形成面的前侧(光源侧)^又,亦可 39 201022855 32380pif.doc 將補正單元9 (9A)配置於比微型複眼透鏡8更後側的其 他照明光瞳的位置或該照明光瞳的附近,例如,配置於成 像光學系統12的前侧透鏡群12a與後側透鏡群12b之間的 照明光瞳的位置或該照明光瞳的附近。 一般而言’對形成於照明光曈的光曈強度分佈進行補 正的本發明的第1形態的補正單元包括:透光性的第1基 板,配置在鄰接於照明光瞳的前側的具有倍率(power)的 光學元件、與鄰接於該照明光瞳的後侧的具有倍率的光學 元件之間的照明光瞳空間内,且透光性的第i基板沿著光 ⑩ 軸而具有規定的厚度;以及透光性的第2基板,配置於上 述照明光瞳空間内的比第1基板更後側的位置,且透光性 的第2基板沿著光軸而具有規定的厚度。於第〗基板上形 成有第1消光圖案,於第2基板上形成有與第i消光圖案 相對應的第2消光圖案,第!消光圖案與第2消光圖案的 相對位置可變更。亦即,帛i基板及第2基板中的至少一 個基板可於規定的方向上移動、或可圍繞規定軸線而旋 轉。再者,於「照明光曈空間」内,亦可存在不具有倍率 ❹ 的平行平面板或平面鏡。 ,又’於上述第1實施形態及第1實施形態的變形例中, 形成基板的消光圖案的單位消光區域是形成為遮光區域, 該遮光區域藉由例如由鉻或氧化鉻等所形成的遮光性點來 遮檔入射光。然而’不限定於此’單位消光區域亦可為除 遮光區域的形態以外的形態。例如,亦可將多個消光圖案 巾的至少-㈣光_形成為使人射絲射的散射區域,、 40 201022855 JZJ8upif.doc 或形成為使入射光繞射的繞射區域。一般而言,藉由對透 光性的基板的預期區域實施粗面化加工來形成散射區域, 藉由對預期區域實施繞射面形成加工來形成繞射區域。 圖21是概略地表示本發明的第2實施形態的曝光裝置 的構成的圖。於圖21中’將沿著作為感光性基板的晶圓 W的曝光面(轉印面)的法線方向設定為z軸,將於晶圓 W的曝光面内的與圖21的紙面平行的方向設定為γ軸, 將於晶圓W的曝光面内的與圖21的紙面垂直的方向設定 為X軸。第2實施形態具有與第1實施形態相類似的構成, 但特別是補正單元19的構成與第1實施形態不同。 更詳細而言,在第1實施形態中,於無焦透鏡4的光 瞳位置或該光瞳位置的附近配置著密度濾光片5及圓錐柱 狀鏡系統6,但在第2實施形態中,由於無需密度濾光片, 因此並未設置上述密度濾光片5,可根據需要而設置圓錐 柱狀鏡系統,但在第2實施形態中省略了該圓錐柱狀鏡系 統的設置。於圖21中,對具有與圖1的第1實施形態中的 要素相同的功能的構成要素標註與圖1相同的參照符號。 以下’著眼於與第1實施形態的不同點對第2實施形態的 構成及作用進行說明,省略與第1實施形態重複的說明。 於第2實施形態的曝光裝置中,自光源1射出的光經 由整形光學系統2及環帶照明用的繞射光學元件3而入射 至無焦透鏡4。經過無焦透鏡4的光經由規定面ip及變焦 透鏡7而入射至微型複眼透鏡8。入射至微型複眼透鏡8 的光束經二維分割,於該微型複眼透鏡8的後側焦點面或 41 201022855 32380pif.doc 該後側焦點面_近_、明光瞳上、形賴如由以 帶狀的實質性的面光源所構成的二次光源 (光瞳強私佈 > 於微型複眼透鏡8的後側焦點面或該後 側焦點面的附近配置有補正單幻9。補正單元19的構成 及作用將於後文中敍述。For all kinds of townships. In other words, the substrate 93, 94' can be used, for example, at least one of them. In the modification of Fig. 16, the pair of substrates 93 and 94 are relatively rotated. However, it is not limited to this, and the substrate can be relatively moved by the square of the optical axis AX (typically, in any direction along the XY plane orthogonal to the optical axis AX). , = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = In this case, it is important that 'the 帛1 extinction pattern and the second _ overlap field are observed from the optical axis when the relative position of the substrate and the first plate in the direction transverse to the optical axis is changed. The size of the ^ field changes. Further, in the first embodiment and the modification of the first embodiment, the pupil intensity distribution 20 formed on the illumination pupil near the rear focal plane or the rear focal plane of the micro fly-eye lens 8 is obtained. The correction unit 9 is disposed on the rear side (the mask side) of the formation surface (9A>. However, the present invention is not limited thereto, and the correction unit 9 (9A) may be disposed on the formation surface of the pupil intensity distribution 2〇. The position, or the front side (light source side) of the forming surface, or 39 201022855 32380pif.doc, the correction unit 9 (9A) is disposed at a position of the other illumination pupil on the rear side of the micro fly-eye lens 8 or the illumination In the vicinity of the aperture, for example, the position of the illumination pupil disposed between the front lens group 12a and the rear lens group 12b of the imaging optical system 12 or the vicinity of the illumination pupil. Generally, the pair is formed in the illumination light. The correction unit according to the first aspect of the present invention for correcting the pupil intensity distribution includes: a translucent first substrate, and an optical element having a power adjacent to the front side of the illumination pupil and adjacent to The back side of the illumination diaphragm has In the illumination pupil space between the optical elements, the translucent i-th substrate has a predetermined thickness along the optical axis 10, and the translucent second substrate is disposed in the illumination pupil space. a position closer to the rear side than the first substrate, and the translucent second substrate has a predetermined thickness along the optical axis. The first matte pattern is formed on the first substrate, and the second substrate is formed on the second substrate. The second extinction pattern corresponding to the matte pattern, the relative position of the second matte pattern and the second matte pattern can be changed. That is, at least one of the 帛i substrate and the second substrate can be moved in a predetermined direction, or Rotating around a predetermined axis. Further, in the "illumination pupil space", there may be a parallel plane plate or a plane mirror having no magnification ❹. Further, in the first embodiment and the modification of the first embodiment, The unit extinction region forming the matte pattern of the substrate is formed as a light-shielding region that blocks the incident light by a light-shielding point formed by, for example, chromium or chromium oxide. However, 'not limited to this' unit extinction region It may be a form other than the form of the light-shielding region. For example, at least - (four) light of the plurality of matte pattern towels may be formed as a scattering region for the human ray, 40 201022855 JZJ8upif.doc or formed to be incident A diffraction region of light diffraction. Generally, a scattering region is formed by performing roughening processing on a desired region of a light-transmitting substrate, and a diffraction region is formed by performing a diffraction surface forming process on the intended region. FIG. 21 is a view schematically showing a configuration of an exposure apparatus according to a second embodiment of the present invention. In FIG. 21, 'the normal direction of the exposure surface (transfer surface) of the wafer W which is a photosensitive substrate is set as The z-axis is set to a γ-axis in a direction parallel to the paper surface of FIG. 21 in the exposure surface of the wafer W, and is set to an X-axis in a direction perpendicular to the paper surface of FIG. 21 in the exposure surface of the wafer W. The second embodiment has a configuration similar to that of the first embodiment, but in particular, the configuration of the correction unit 19 is different from that of the first embodiment. More specifically, in the first embodiment, the density filter 5 and the conical prism mirror system 6 are disposed in the vicinity of the pupil position of the afocal lens 4 or the pupil position, but in the second embodiment, Since the density filter 5 is not provided, the density filter 5 is not provided, and a conical cylindrical mirror system can be provided as needed. However, in the second embodiment, the arrangement of the conical prism system is omitted. In Fig. 21, components having the same functions as those of the first embodiment of Fig. 1 are denoted by the same reference numerals as those in Fig. 1. In the following description, the configuration and operation of the second embodiment will be described with a focus on differences from the first embodiment, and the description overlapping with the first embodiment will be omitted. In the exposure apparatus of the second embodiment, the light emitted from the light source 1 is incident on the afocal lens 4 via the shaping optical system 2 and the diffractive optical element 3 for ring illumination. The light that has passed through the afocal lens 4 is incident on the micro fly's eye lens 8 via the predetermined surface ip and the zoom lens 7. The light beam incident on the micro fly's eye lens 8 is two-dimensionally divided on the rear side focal plane of the micro fly-eye lens 8 or 41 201022855 32380pif.doc. The rear side focus surface is close to _, bright light, and shaped like a strip A secondary light source composed of a substantial surface light source (optical smear) A correction single illusion 9 is disposed in the vicinity of the rear focal plane of the micro fly's eye lens 8 or the rear focal plane. The composition of the correction unit 19 And the role will be described later.

經過微型複眼透鏡8及補正單元D的光經由聚光光學 糸統ίο、光罩遮器η以及成像光學系統12而對光罩m 進行重叠照明。穿透光罩案區域的光經由投影光學 系統PL而於晶圓W上形成光罩圖案的像。如此,根據步 進掃描方式,沿著X方向(掃描方向)來使光罩M與晶 圓w同步移動(掃描),藉此來將光罩圖案掃描曝光至晶 圓W的攝影區域(曝光區域)。The light passing through the micro fly's eye lens 8 and the correction unit D is superimposed and illuminated by the concentrating optical system ίο, the mask mask η, and the imaging optical system 12. Light passing through the mask case region forms an image of the reticle pattern on the wafer W via the projection optical system PL. In this manner, according to the step-and-scan method, the mask M is moved (scanned) in synchronization with the wafer w in the X direction (scanning direction), thereby scanning and exposing the mask pattern to the photographing area of the wafer W (exposure area) ).

於以下的說明中,為了使第2實施形態的作用效果易 於理解’於微型複眼透鏡8的後侧焦點面或該後侧焦點面 的附近的照明光瞳上、形成有如圖22所示的四極狀的光曈 強度分佈(二次光源)30。將補正單元19配置於四極狀的 光瞳強度分佈30的形成面的正後方。在以下的說明中,於 僅涉及「照明光曈」的情形時’「照明光瞳」是指微型複眼 透鏡8的後側焦點面或該後側焦點面的附近的照明光瞳。In the following description, in order to make the effect of the second embodiment easy to understand, a quadrupole as shown in FIG. 22 is formed on the illumination pupil in the vicinity of the rear focal plane or the rear focal plane of the micro fly-eye lens 8. A pupil intensity distribution (secondary light source) 30. The correction unit 19 is disposed directly behind the formation surface of the quadrupole aperture intensity distribution 30. In the following description, when only the "illumination pupil" is involved, "the illumination pupil" refers to the illumination pupil of the rear focus surface of the micro fly's eye lens 8 or the vicinity of the rear focus surface.

請參照圖22,形成於照明光瞳的四極狀的光瞳強度分 佈30包括:夾持光軸AX而於X方向上隔開間隔的一對 圓弧狀的實質性的面光源30a、30b ;以及夾持光軸AX而 於Z方向上隔開間隔的一對圓弧狀的實質性的面光源(以 下’僅稱為「面光源」)30c、30d。再者’照明光曈上的X 42 201022855 32380pif.doc 3是St透鏡8的矩形狀的微小透鏡的短邊方向 皁位波刖分割面的短邊方向),該χ 圓W的掃描方向 :⑽應於曰曰 的微小透鏡的長邊方向(即,單位波前分 祕ί)’該2方向對應於與晶圓W的掃描方向 父的掃描正交方向(晶圓W上的γ方向)。 如同第1實施形態的說明中所參照的圖3Referring to FIG. 22, the quadrupole pupil intensity distribution 30 formed in the illumination pupil includes a pair of arc-shaped substantial surface light sources 30a and 30b that are spaced apart in the X direction by the optical axis AX. And a pair of arc-shaped substantial surface light sources (hereinafter referred to as "surface light sources") 30c and 30d which are spaced apart in the Z direction by the optical axis AX. Furthermore, X 42 201022855 32380pif.doc 3 on the illumination pupil is the short-side direction of the short-side soap position of the rectangular micro lens of the St lens 8, and the scanning direction of the circle W: (10) The two directions correspond to the direction orthogonal to the scanning of the parent to the scanning direction of the wafer W (the γ direction on the wafer W) in the longitudinal direction of the minute lens of the crucible (that is, the unit wavefront portion). Figure 3 as referred to in the description of the first embodiment

形成有料γ方向具有長邊、且沿著X方向具 料座矩从形狀的靜止曝光區域ER,讀該靜止曝光區域 ^m 方式於光罩M上形成有矩形狀的照明區域 未圖式)。此處,入射至靜止曝光區域£11内的一個點的 光在』、明光瞳上所形成的四極狀的光瞳強度分佈具有彼此 大致相同的形狀’且不依存於人射點的位置1而,構成 四極狀的紐缝分佈的各面光源的光強度有_會因入射 點的位置而有所不同。 作為比較單純的一例子,考慮如下的情形:即,入射 至靜止曝光區域ER内的周邊點p2、p3的光於照明光瞳 上、分別形成圖23、圖24中所示意性地表示的四極狀的 光瞳強度分佈。亦即,如@ 23所*,於自靜止曝光區域 ER内的中心點P1入射至在+γ方向上隔開間隔的周邊點 Ρ2的光所形成的四極狀的光瞳強度分佈32中,面光源 32a、32b以及32d的光強度彼此大致相等,面光源3以的 光強度大於其他面光源的光強度。 又’如圖24所示,於自靜止曝光區域ER内的中心點 43 201022855 32380pif.doc P1入射至在-Y方向上隔開間隔的周邊點P3的光所形成的 四極狀的光瞳強度分佈33中,面光源33a、33b以及33c 的光強度彼此大致相等,面光源33d的光強度大於其他面 光源的光強度。如此,若與晶圓Wjl的各點相關的光瞳強 度分佈中’夹持光轴AX而於z方向(與掃描正交方向(晶 圓W上的Y方向)相對應的方向)上隔開間隔的一對區 域的光強度之差過大,則有曝光至攝影區域(於圖23及圖 24所示的示例的情形時’為與周邊點p2、p3相對應的周 邊的位置)的圖案偏離預期的位置的問題。 “ Θ 於第2實施職中,具備觀單元19作為對如下的光 強度之差進行調整的調整機構,該光強度之差是指:與周 邊點P2、P3相關的光曈強度分佈32、%中夾持光轴 AX而於Z方向上隔開間隔的一對面光源32c與32d之間、 及-對面光源33c與33d之間的光強度之差。如目25及圖 26所示,補正單元19包括:沿著光軸八义(與γ方向對 應)而具有規疋的厚度的三個透光性的基板191、192以及 193。各基板191〜193例如具有由石英或螢石般的光學材 ❹ 料所形成的平行平面板的形態。 第1基板191例如具有以光轴Αχ為中心的圓形狀的 外形形狀’在第1基板191的入射面19la與光軸Αχ正交 的姿態下,該第1基板191的位置被定位。第2基板192 配置於第1基板191的後侧,且具有與來自面光源3此的 光所通過的區域相對應的外形形狀,例如具有扇形狀的外 形形狀。又’第2基板192構成為:可一面維持第2基板 44 201022855 32380pif.doc 192的入射面192a與光轴ΑΧ正交的姿態,一面於乙方向 (單位波前分割面的長邊方向)上移動。 第3基板193配置於第1基板191的後侧,且具有與 來自面光源30d的光所通過的區域相對應的外形形狀,例 如具有扇形狀的外形形狀。又’第3基板193構成為:可 一面維持第3基板193的入射面193a與光轴AX正交的姿 態,一面於Z方向上移動。以下,為了使說明單純化,第 ❻ 2基板192與第3基板193具有關於穿過光轴AX的χγ 平面成對稱的構成’第2基板192的入射面192a與第3 基板193的入射面193a位於同一面上。補正單元19中, 基於來自驅動控制系統194的指令,第2基板192及第3 基板193分別在Z方向上移動。 請參照圖27,在基板191的射出面191b、基板192 的入射面192a、及基板193的入射面193ab上’按照規定 的分佈而形成著具有彼此相同的外形形狀及相同的大小的 遮光性點151、152及153。此處,作為單位消光區域的各 ❹ 遮光性點151〜153例如由鉻或氧化鉻等所形成。又,遮光 性點151是以與遮光性點152及153逐一對應的方式而分 佈形成。此處,一群遮光性點151是配置成對來自面光源 30c及30d的光起作用,一群遮光性點152是配置成對來 自面光源30c的光起作用,一群遮光性點153是配置成對 來自面光源30d的光起作用。 於圖27中’為了使圖式變得明瞭,僅表示了形成於基 板191的射出面i91b的一對遮光性點151、形成於基板192 45 201022855 32380pif.doc 的入射面192a的一個遮光性點152、以及形成於基板193 的入射面193a的一個遮光性點153。以下,為了使說明易 於理解’各遮光性點151〜153具有圓形狀的外形形狀,於 第2基板192的基準狀態(基準位置)下,自光軸Αχ方 向觀察時’遮光性點151與152彼此重合。於第3基板193 的基準狀態下,自光軸AX方向觀察時,遮光性點ι51與 153彼此重合。又,為了使說明易於理解,僅著眼於基板 191的一對遮光性點151、基板192的一個遮光性點152、 以及基板193的一個遮光性點153來對補正單元19的作用 進行說明。 於第2基板192的基準狀態下,若平行於光軸Αχ的 光入射至由圓形狀的遮光性點151與152的組合所構成的 組合消光區域’則在補正單元19的正後方的平行於射出面 192b的面上,如圖28 (a)所示,經圓形狀的遮光性點151 消光的區域151a、與經圓形狀的遮光性點152消光的區域 152a彼此重合。亦即,在補正單元19的正後方,圓形狀 的消光區域151a與152a形成具有與一個圓形狀的消光區 域151a相當的面積的消光區域。 於第2基板192的基準狀態下,若入射至由圓形狀的 遮光性點151與152所構成的組合消光區域中的光相對於 光軸AX所成的角度,例如沿著¥2平面而自〇度起單調 遞增,在補正單元19的正後方,如圖28 (b)所示,消光 區域151a及152a朝Z方向僅移動彼此不同的距離,消光 區域151a與152a的重合區域單調遞減。結果是,於圖 46 201022855 32380pif.doc (b)所不的狀態下,圓形狀的消光區域151&與152a對應 於重合區域的面積而形成具有如下面積的消光區域:該消 光區域的面積大於與一個圓形狀的消光區域151a相當的 面積’且小於與兩個圓形狀的消光區域151a相當的面積。 >如此,於第2基板192的基準狀態下,由圓形狀的遮 光性點151與152所構成的組合消光區域發揮如下的消光 作用:即,隨著光對於第丨基板191的入射角度變大,消 〇 光率增大。同樣地,於第3基板193的基準狀態下,由圓 形狀的遮光性點151與153所構成的組合消光區域發揮如A stationary exposure region ER having a long side in the γ direction and having a rectangular shape along the X direction is formed, and the stationary exposure region MM is read to form a rectangular illumination region on the mask M (not shown). Here, the intensity of the quadrupole pupil intensity distribution formed at one point in the static exposure area £11 has substantially the same shape as each other and does not depend on the position 1 of the human shot point. The light intensity of each of the surface light sources constituting the quadrupole slit distribution may vary depending on the position of the incident point. As a relatively simple example, a case is considered in which the light incident on the peripheral points p2 and p3 in the still exposure region ER on the illumination pupil forms the quadrupole schematically shown in FIGS. 23 and 24, respectively. The intensity distribution of the pupil. That is, as in @23*, in the quadrupole pupil intensity distribution 32 formed by the light from the center point P1 in the still exposure region ER to the peripheral point Ρ2 spaced apart in the +γ direction, the surface The light intensities of the light sources 32a, 32b, and 32d are substantially equal to each other, and the surface light source 3 has a light intensity greater than that of the other surface light sources. Further, as shown in FIG. 24, a quadrupole pupil intensity distribution formed by light incident from a center point 43 201022855 32380pif.doc P1 in the still exposure region ER to a peripheral point P3 spaced apart in the -Y direction In 33, the light intensities of the surface light sources 33a, 33b, and 33c are substantially equal to each other, and the light intensity of the surface light source 33d is larger than the light intensity of the other surface light sources. Thus, when the pupil intensity distribution associated with each point of the wafer Wj1 is 'clamped with the optical axis AX and separated in the z direction (the direction corresponding to the scanning orthogonal direction (the Y direction on the wafer W)) When the difference in light intensity between the pair of regions is too large, there is a pattern deviation from exposure to the image capturing region (in the case of the example shown in FIGS. 23 and 24, which is a position corresponding to the peripheral points p2 and p3) The problem with the expected location. In the second implementation, the viewing unit 19 is provided as an adjustment mechanism for adjusting the difference in light intensity, and the difference in light intensity means the pupil intensity distribution 32, % associated with the peripheral points P2 and P3. The difference in light intensity between the pair of surface light sources 32c and 32d spaced apart in the Z direction and the opposite light sources 33c and 33d is sandwiched by the optical axis AX. As shown in FIG. 25 and FIG. 26, the correction unit 19 includes three light-transmissive substrates 191, 192, and 193 having a regular thickness along the optical axis (corresponding to the γ direction). Each of the substrates 191 to 193 has, for example, quartz or fluorite-like optics. The first substrate 191 has a circular outer shape shape centering on the optical axis ', for example, in a posture in which the incident surface 19la of the first substrate 191 and the optical axis Αχ are orthogonal to each other. The position of the first substrate 191 is positioned. The second substrate 192 is disposed on the rear side of the first substrate 191 and has an outer shape corresponding to a region through which the light from the surface light source 3 passes, for example, a shape having a fan shape. Shape. Further, the second substrate 192 is configured to be one-dimensional The second substrate 44 is placed on the first substrate 191 in the direction B (the longitudinal direction of the unit wavefront dividing surface) while the incident surface 192a of the second substrate 44 is perpendicular to the optical axis 192. The rear side has an outer shape corresponding to a region through which the light from the surface light source 30d passes, for example, an outer shape having a fan shape. Further, the third substrate 193 is configured to maintain the incident surface of the third substrate 193. 193a moves in the Z direction while being orthogonal to the optical axis AX. Hereinafter, in order to simplify the description, the second substrate 192 and the third substrate 193 have a symmetrical structure with respect to the χγ plane passing through the optical axis AX. The incident surface 192a of the second substrate 192 and the incident surface 193a of the third substrate 193 are located on the same surface. In the correction unit 19, the second substrate 192 and the third substrate 193 are respectively in the Z direction based on an instruction from the drive control system 194. Referring to Fig. 27, on the emission surface 191b of the substrate 191, the incident surface 192a of the substrate 192, and the incident surface 193ab of the substrate 193, 'the same outer shape and the same size are formed in accordance with a predetermined distribution. The light-shielding dots 151, 152, and 153. Here, each of the light-shielding dots 151 to 153 as the unit extinction region is formed of, for example, chromium or chromium oxide, and the light-shielding dots 151 are the light-shielding dots 152 and 153. Distributed in a one-to-one manner, where a group of opaque points 151 are arranged to act on light from surface sources 30c and 30d, a group of opaque points 152 are configured to act on light from surface source 30c, a group The light blocking point 153 is configured to act on light from the surface light source 30d. In Fig. 27, 'a pair of light-shielding dots 151 formed on the emitting surface i91b of the substrate 191 and one light-shielding point formed on the incident surface 192a of the substrate 192 45 201022855 32380pif.doc are shown in order to clarify the drawing. 152 and a light blocking point 153 formed on the incident surface 193a of the substrate 193. In the following, in order to make the description easy to understand, the respective light-shielding points 151 to 153 have a circular outer shape, and the light-shielding points 151 and 152 are viewed from the optical axis 于 direction in the reference state (reference position) of the second substrate 192. Coincide with each other. In the reference state of the third substrate 193, the light-shielding dots 51 and 153 overlap each other when viewed from the optical axis AX direction. Further, in order to make the description easy to understand, attention is paid only to the pair of light-shielding dots 151 of the substrate 191, one light-shielding dot 152 of the substrate 192, and one light-shielding dot 153 of the substrate 193 to explain the action of the correction unit 19. In the reference state of the second substrate 192, when the light parallel to the optical axis 入射 is incident on the combined extinction region ′ formed by the combination of the circular opaque dots 151 and 152, the correction is directly behind the correction unit 19 As shown in FIG. 28(a), the surface of the emission surface 192b overlaps the region 151a which is opaque by the circular opaque point 151 and the region 152a which is opaque with the circular opaque point 152. That is, the circular matte regions 151a and 152a form a matte region having an area corresponding to one circular extinction region 151a directly behind the correction unit 19. In the reference state of the second substrate 192, when incident on the angle formed by the light in the combined extinction region composed of the circular shading points 151 and 152 with respect to the optical axis AX, for example, along the ¥2 plane The twist is monotonically increasing, and immediately behind the correction unit 19, as shown in Fig. 28(b), the matte regions 151a and 152a move only in different distances from each other in the Z direction, and the overlapping regions of the matte regions 151a and 152a monotonously decrease. As a result, in the state of FIG. 46 201022855 32380pif.doc (b), the circular-shaped extinction regions 151 & 152a correspond to the area of the coincident region to form a matte region having an area larger than that of the matte region A circular shaped matte region 151a corresponds to an area 'and is smaller than an area corresponding to the two circular matte regions 151a. > In the reference state of the second substrate 192, the combined matte region composed of the circular light-shielding dots 151 and 152 exhibits a matting action in which the incident angle of the light with respect to the second substrate 191 is changed. Large, the rate of elimination of light increases. Similarly, in the reference state of the third substrate 193, the combined extinction region composed of the circular shading points 151 and 153 functions as

下的消光作用··即,隨著光對於第丨基板191的入 變大,消光率增大。 X 其次,當光對於第1基板191的入射角度為固定時, 例如當光的入射角度為〇度時(入射的光的相對於光軸Αχ 的角度為〇度時),考慮第2基板192自基準狀態起在ζ 方向上移動的情形。如上所述,當第2基板192處於基準 鲁 狀態時’在補正單元I9的正後方’經圓形狀的遮光性點 151消光的區域i51a、與經圓形狀的遮光性點152消光的 區域152a彼此重合。亦即,如圖28 (a)所示,在補正單 元19的正後方,圓形狀的消光區域151&與152a形成具有 與一個圓形狀的消光區域丨51&相當的面積的消光區域'。 另一方面,若第2基板192自基準狀態起在乙方向上 單調移動,則在補正單元19的正後方,消光區域152£1在 z方向上移動,且與消光區域151a重合的區域單調遞減。 亦即,如圖28 (b)所示,在補正單元19的正後方,圓形 47 201022855 32380pif.doc 狀的消光區域151a與152a對應於重合區域的面積而形成 具有如下面積的消光區域.該消光區域的面積大於與一個 圓形狀的消光區域151a相當的面積,且小於與兩個圓形狀 的消光區域151a相當的面積。 如此,當光對於第1基板191的入射角度為〇度時, 一般而言,當光的入射角度為固定時,由圓形狀的遮光性 點151與152所構成的組合消光區域發揮如下的消光作 用:即,隨著自第2基板192的基準狀態起沿著z方向的 移動量變大,消光率增大。同樣地,當光對於第丨基板191 的入射角度為固定時’由圓形狀的遮光性點151與153所 構成的組合消光區域發揮如下的消光作用:即,隨著自第 3基板193的基準狀態起沿著Z方向的移動量變大,消光 率增大。 於第2實施形態中’將自光軸AX方向觀察時,以單 位消光區域即圓形狀的遮光性點151與152彼此重合的基 準狀態作為中心’在自光轴AX方向觀察時,遮光性點 的一部分與遮光性點152的一部分相重合的範圍内,第1 基板191與第2基板192可相對移動。同樣地,將自光軸 AX方向觀察時’以單位消光區域即圓形狀的遮光性點151 與153彼此重合的基準狀態作為中心,在自光轴Αχ方向 觀察時,遮光性點151的一部分與遮光性點I”的一部分 相重合的範圍内,第1基板191與第3基板193可相對移 動。 再者,如圖25所示,補正單元19對來自四極狀的光 201022855 32380pif.doc 瞳強度如佈3〇中、炎持光轴Αχ而在z方向上隔開間隔 的一對面光源30c及30d的光起作用。然而,補正單元19 並不對來自夾持今軸AX而在χ方向上隔開間隔的一對面 先源30a及30b的光起作用。 又,如圖29所示,抵達至晶圓w上的靜止曝光區域 ER内的中心點P1的光,即,抵達至光罩遮器丨丨的開口 部的中心點P1’的光是以〇度的入射角度而對於補正單元 ❹ 19 (即,對於第1基板191)入射。換言之,來自與中心 點pi相關的光瞳強度分佈31的面光源31c的光是以〇度 的入射角度而入射至第1基板191及第2基板192,來自 面光源31d的光是以〇度的入射角度而入射至第丨基板191 及第3基板193。再者,雖然省略了光瞳強度分佈31的圖 示,但各面光源31a〜31d是與光曈強度分佈32 (33)的 各面光源32a〜32d (33a〜33d)同樣地形成。 另一方面,如圖30所示,抵達至晶圓w上的靜止曝 光區域ER内的周邊點P2、P3的光,即,抵達至光罩遮器 β 11的開口部的周邊點P2’、P3’的光是以比較大的入射角度土 Θ來對於補正單元19入射。換言之,來自與周邊點P2、 P3相關的光瞳強度分佈32、33的面光源32c、33c的光是 以比較大的入射角度±0而入射至第1基板191及第2基板 192。來自面光源32d、33d的光分別是以比較大的入射角 度±6»而入射至第1基板191及第3基板193。 再者,於圖29及圖30中,以參照符號B3來表示面 光源30c (31c〜33c)的沿著Z方向的最外緣的點(請參 49 201022855 32380pif.doc 照圖22等),以參照符號B4來表示面光源30d(31d〜33d) 的沿著Z方向的最外緣的點(請參照圖22等)。又,為了 使與圖29及圖30相關的說明易於理解,參照符號B1表 示面光源30a (31a〜33a)的沿著X方向的最外緣的點, 參照符號B2表示面光源30b (31b〜33b)的沿著X方向 的最外緣的點。然而,如上所述,來自面光源30a (31a〜 33a)及面光源30b (31b〜33b)的光不受到補正單元19 的作用。 圖31、圖33以及圖34是對第2基板及第3基板相對 於第1基板的相對位置、與補正單元的消光作用的關係進 行說明的圖。於圖31中’第2基板192處於基準狀態,自 光轴AX方向觀察時’第1基板191的遮光性點151與第 2基板192的遮光性點152彼此重合。另一方面,第3基 板193處於自基準狀態起朝+z方向僅移動了規定距離的 狀態,自光轴AX方向觀察時,第i基板191的遮光性點 151的一部分與第2基板192的遮光性點152的一部分相 重合。 抵達至晶圓W上的靜止曝光區域ER内的中心點ρι ,光,即,抵達至光罩遮器n的開口部的中心點ρι,的光 是以0度的入射角度而對於第i基板191入射 。因此,於 光自面光源30c經由第i基板191及第2基板192而抵達 至中心點pr的情形時,遮光性點151與152的組合消光區 域所遮擋的光的量最小。於光自面光源·經由第i基板 191及第3基板193而抵達至中心•點ρι,的情形時,遮光性 50 201022855 32380pif.doc 點151與153的組合消光區域所遮擋的光的量比較大。 抵達至晶圓W上的靜止曝光區域ER内的周邊點P2、 P3的光’即,抵達至光罩遮器u的開口部的周邊點p2,、 P31的光是以比較大的入射角度θ而對於第1基板191入 射。以下,為了使說明單純化,與靜止曝光區域ER内的 周邊點P2相對應的周邊點p2'位於光罩遮器η的開口部 的+Z方向侧,與靜止曝光區域ER内的周邊點p3相對應 ❹ 的周邊點P3’位於-Z方向侧。 因此,於光自面光源3〇c經由第1基板191及第2基 板192而抵達至周邊點P2,、p3,的情形時,遮光性點151 與152的組合消光區域所遮擋的光的量比較大。於光自面 光源3(Μ經由第1基板191及第3基板193而抵達周邊點 Ρ2’的情形時,遮光性點151與153的組合消光區域所遮擋 的光的量比較小。於光自面光源3〇(1經由第1基板19ι及 第3基板193而抵達至周邊點Ρ3ι的情形時,遮光性點151 _ 與153的組合消光區域所遮檔的光的量最大。 亦即,如圖32的中央所示,於與中心點P1相關的四 極狀的光瞳強度分佈之中,補正單元19對於+z方向侧的 面光源31c產生的消光作用最小,補正單元19對於·ζ方 向侧的面光源31d產生的消光作用比較大^如此,於圖32、 以及相關的圖33及圖34的該部分中,藉由在X方向上細 長地延伸的影線(hatching)區域的z方向的寬度尺寸, 來示意性地表示補正單元19的消光作用的大小。 又’如圖32的左侧所示,在與周邊點P2相關的四極 51 201022855 32380pif.doc 狀的光瞳強度分佈之中,補正單元19對於面光源32c產生 的消光作用比較大,補正單元19對於面光源32d產生的消 光作用比較小。又’如圖32的右侧所示,在與周邊點p3 相關的四極狀的光瞳強度分佈之中,補正單元19對於面光 源33c產生的消光作用比較大,補正單元19對於面光源 33d產生的消光作用最大。 又’如圖33所示,在第2基板192自基準狀態起朝_z 方向僅移動了規定距離,且第3基板193自基準狀態起朝 +Z方向僅移動了規定距離的狀態下,在與中心點P1相關 的四極狀的光瞳強度分佈之中,補正單元19對於面光源 31c產生的消光作用、以及補正單元19對於面光源314產 生的消光作用均比較大。在與周邊點P2相關的四極狀的 光瞳強度分佈之中’補正單元19對於面光源32C產生的消 光作用最大,補正單元19對於面光源32d產生的消光作用 比較小。在與周邊點P3相關的四極狀的光曈強度分佈之 中,補正單元19對於面光源33c產生的消光作用比較小, 補正單元19對於面光源33d產生的消光作用最大。 又,如圖34所示,在第2基板192自基準狀態起朝 +Z方向僅移動了規定距離,且第3基板193自基準狀態起 朝-Z方向僅移動了規定距離的狀態下,在與中心點ρι相 關的四極狀的光瞳強度分佈之中,補正單元19對於面光源 31c產生的消光作用、以及補正單元19對於面光源31(1產 生的消光作用均比較大。在與周邊點p2相關的四極狀的 光瞳強度分佈之中,補正單元19對於面光源32c產生的消 52 201022855 32380pif.doc 光作用比較小’補正單元19對於面光源似產生的消 :最^ \在與周邊點P3相_四極狀的光瞳強度分钸之 ρ 二19對於面光源33C產生的消光作用最大,補 早兀19對於面光源33d產生的消光作用比較小。 如此’例如可將第2基板脱設定於沿著z方向的所 二的位置上i轉第3基板193設定於沿著z方向的所需 ’藉此來對失持光轴AX、而在Z方向上隔開間 β、董、面光源S2c與32d之間及一對面光源说與现 之間所存在的如圖23及圖24所示的絲度差進行調整。 具體,言’當補正單元19的第2基板192位於自基準 狀態起沿著-z方向僅移動所需距離的位置,且第3基板193 位於自基準狀態起沿著+z方向僅移動了所需距離的位置 時,如圖35所示,在與周邊點p2相關的光曈強度分佈% 之中,來自面光源32a及32b的光未受到補正單元19的消 光作用,因此,該光的光強度不發生變化。來自面光源32c 的光受到補正單元19的消光作用,該光的光強度會較大幅 度地降低。來自面光源32d的光即便受到補正單元19的消 光作用,該光的光強度的降低程度亦比較小。結果是,在 經補正單元19調整的與周邊點P2相關的光瞳強度分佈32, 中,於Z方向上隔開間隔的面光源32c'的光強度與面光源 32d'的光強度大致相等。或者,面光源32c'的光強度與面 光源32d·的光強度之差被調整為所需的光強度差。 又,如圖36所示’在與周邊點P3相關的光瞳強度分 佈33之中,來自面光源33a及33b的光未受到補正單元 53 201022855 32380pif.doc 19的消光作用,因此,該光的光強度不發生變化。來自面 光源33c的光即便受到補正單元19的消光作用,該光的光 強度的降低程度亦比較小。來自面光源33d的光受到補正 單元19的消光作用,該光的光強度較大幅度地降低。結果 是’在經補正單元19調整的與周邊點p3相關的光瞳強度 分佈33’中’在Z方向上隔開間隔的面光源33c,的光強度與 面光源33d’的光強度大致相等。或者,面光源33c1的光強 度與面光源33d,的光強度之差被調整為所需的光強度差。 再者’將面光源32c'的光強度與面光源32d'的光強度 之差、以及面光源33c’的光強度與面光源33d,的光強度之 差調整為所需的光強度差的動作,例如是基於光瞳強度分 佈測1裝置(未圖式)的測量結果來進行,該光瞳強度分 佈測量裝置基於經過投影光學系統PL的光來對投影光學 系統PL的光瞳面上的光瞳強度分佈進行測量。具體而言, 光曈強度分佈測量裝置的測量結果供給至控制部(^圖 式)。控制部基於光曈強度分佈測量裝置的測量結果,來將 指令輸出至補正單元19的驅動控制系統194,以使投影光 © 學系統PL的光瞳面上的光曈強度分佈成為預期的分佈。 驅動控制系統194基於來自控制部的指令來對第2基板 192及第3基板193❺z方向位置進行控制,將面光源32c, 的光強度與面光源32d,的光強度之差、及面光源说,的光 強度與面光源33d,的光強度之差調整為所需的光強度差。 如上所述’在第2實施形態的補正單元19中,相對於 在射出面上形成有遮光點151的第i基板191,在入射面 54 201022855 32380pif.doc 上形成有遮光點152及153的第2基板192及第3基板193 可勿別沿著作為單位波前分割面的長邊方向即z方向而相 對移動。因此,參照圖32〜圖34可明瞭,補正單元19實 現多種消光率特性,即,沿著靜止曝光區域ER内的Y方 向(與照明光瞳上的z方向相對應),消光率根據各種形 態而發生變化。再者,於上述說明中,僅著眼於基板ΐ9ι 的一對遮光性點15卜基板192的一個遮光性點152、以及 φ 基板193的一個遮光性點153,但顯然即便於分別分佈形 成著這些遮光性點151〜153時,補正單元19亦發揮與上 述作用相同的作用。 因此,於第2實施形態的照明光學系統(2〜12)中, 可藉由補正單元19的多種消光作用,來對與靜止曝光區域 ER内的各點相關的光瞳強度分佈中、夾持光轴AX而在γ 方向上隔開間隔的一對區域之間(圖23及圖24的示例中 為一對面光源32c與32d之間、及一對面光源33c與33d 之間)的光強度之差進行調整。又,於第2實施形態的曝 參 光裝置(2〜WS)中,可使用照明光學系統(2〜12),在 與光罩Μ的微細圖案相對應的適當的照明條件下進行良 好的曝光,進而可以預期的線寬,忠實地將光罩Μ的微細 圖案遍及整個曝光區域地於預期的位置轉印至晶圓W 上’其中,上述照明光學系統(2〜12)對與晶圓W上的 靜止曝光區域ER内的各點相關的光曈強度分佈中、失持 光轴ΑΧ而在Υ方向上隔開間隔的一對區域的光強度差進 行調整。 55 201022855 32380pif.doc 於第2實施形態中,一般認為晶圓(被照射面) 的光量分佈例如會受到補正單元19的消光作用(1上 用)的影響。於該情形時,可根據需要,藉由具有^作 構成的光量分佈調整部的作用,來對靜止曝光區域^知的 的照度分佈或靜止曝光區域(照明區域)£反的形狀進 再者,於上述第2實施形態中,根據圖25〜圖 示的特定的形態,藉由配置成與光軸Αχ垂直的具有= 平面板的形態的三個基板191〜193來構成補正單、元”行 而且,於第1基板191的射出面上,分佈形成有作為 消光圖案的圓形狀的遮光性點151。又,於第2基板夏 的^射面及第3基板193的人射面上,分佈形成有作 2消光圖案的圓形狀的遮光性點152及作為第3消光 的圓形狀的遮光性點153。然而,並不限定於此補正^ 元19的具體的構成可為各種形態。 例如’構成補正單元19的基板的數量、基板的形態( 形形狀等)、基板的姿態、基板彼此的相對移動的方向形 成各,光圖*的單位消光輯的數量、單位消絲域的^ 狀二單位消光區域的形成面的位置(入射面或射出面)、單 位消光區域的分佈的形態、補正單元19的配置位置等可為 各種形態。具體而言,即便使第2基板192與第3基板193 一體化,使第1基板191可沿著Ζ方向移動,或省略第2 基板192及第3基板193中的任一個基板的設置,亦可發 揮與上述第2實施㈣相同的絲。X,作為透光性的基 56 201022855 3^38Upif.d〇c 板,例如可使用至少一個面具有曲率的基板。 又,於上述第2實施形態中,在比微型複眼透鏡8的 後側焦點面或該後侧焦點面附近的照明光瞳上所形成的光 瞳強度分佈30的形成面更後侧(光罩侧)處,配置有補正 單元19。然而’並不限定於此,亦可將補正單元19配置 於光瞳強度分佈30的形成面的位置、或該形成面的前侧 (光源側)。又,亦可將補正單元19配置在比微型複眼透 鏡8更後侧的其他照明光瞳的位置或該照明光瞳的附近, 例如配置在成像光學系統12的前侧透鏡群丨2 a與後侧透鏡 群12b之間的照明光曈的位置或該照明光曈的附近。 一般而言’對形成於照明光瞳的光瞳強度分佈進行補 正的本發明的第3形態的補正單元包括:,配置在鄰接於The lower extinction action is that the extinction ratio increases as the light enters the second substrate 191. X Next, when the incident angle of light to the first substrate 191 is fixed, for example, when the incident angle of light is 〇 (when the angle of incident light with respect to the optical axis 〇 is 〇), the second substrate 192 is considered. The case of moving in the ζ direction from the reference state. As described above, when the second substrate 192 is in the reference Lu state, the region i51a where the circular shading point 151 is extinguished immediately after the correction unit I9 and the region 152a where the circular shading point 152 is extinguished are mutually coincide. That is, as shown in Fig. 28 (a), immediately after the correction unit 19, the circular matte regions 151 & 152a form a matte region 'having an area corresponding to one circular extinction region 丨 51 & On the other hand, when the second substrate 192 monotonously moves in the B direction from the reference state, the extinction region 152 £1 moves in the z direction immediately behind the correction unit 19, and the region overlapping the extinction region 151a monotonously decreases. That is, as shown in FIG. 28(b), immediately after the correction unit 19, the circle 47 201022855 32380pif.doc-like extinction regions 151a and 152a correspond to the area of the overlap region to form a matte region having the following area. The area of the matte region is larger than the area corresponding to one circular extinction region 151a, and smaller than the area corresponding to the two circular extinction regions 151a. As described above, when the incident angle of the light to the first substrate 191 is 〇, generally, when the incident angle of light is fixed, the combined extinction region composed of the circular shading points 151 and 152 exhibits the following extinction. The effect is that the amount of movement in the z direction increases from the reference state of the second substrate 192, and the extinction ratio increases. Similarly, when the incident angle of the light to the second substrate 191 is fixed, the combined extinction region composed of the circular shading points 151 and 153 exhibits a matting effect as follows: that is, from the reference of the third substrate 193 The amount of movement in the Z direction from the state becomes larger, and the extinction ratio increases. In the second embodiment, when viewed from the optical axis AX direction, the light-shielding point is observed when the light-shielding point 151 and 152, which are unit-shaped light-receiving regions, are overlapped with each other as a center. The first substrate 191 and the second substrate 192 are relatively movable within a range in which a part of the light-shielding dots 152 overlap. Similarly, when viewed from the optical axis AX direction, the reference light of the circular light-shielding points 151 and 153 which are the unit extinction regions, and the 153 overlap with each other, and a part of the light-shielding point 151 when viewed from the optical axis 与 direction The first substrate 191 and the third substrate 193 are relatively movable within a range in which a part of the light-shielding point I" overlaps. Further, as shown in FIG. 25, the correction unit 19 is in accordance with the intensity of the quadrupole light 201022855 32380pif.doc For example, the light of the pair of surface light sources 30c and 30d spaced apart in the z direction acts in the middle of the cloth, but the correction unit 19 does not separate from the current axis AX. The light of the pair of surface precursors 30a and 30b spaced apart is activated. Further, as shown in Fig. 29, the light reaching the center point P1 in the static exposure area ER on the wafer w, that is, reaching the mask mask The light at the center point P1' of the opening portion of the opening is incident on the correction unit ❹ 19 (that is, on the first substrate 191) at an incident angle of the 。 degree. In other words, from the pupil intensity distribution 31 associated with the center point pi. The light of the surface light source 31c is entered with a twist The light is incident on the first substrate 191 and the second substrate 192 at an angle, and the light from the surface light source 31d is incident on the second substrate 191 and the third substrate 193 at an incident angle of the twist. Further, the pupil intensity distribution is omitted. 31, the surface light sources 31a to 31d are formed in the same manner as the surface light sources 32a to 32d (33a to 33d) of the pupil intensity distribution 32 (33). On the other hand, as shown in FIG. The light at the peripheral points P2 and P3 in the static exposure region ER on the wafer w, that is, the light reaching the peripheral points P2', P3' of the opening portion of the mask mask β 11 is a relatively large incident angle soil. Then, the correction unit 19 is incident. In other words, the light from the surface light sources 32c and 33c of the pupil intensity distributions 32 and 33 associated with the peripheral points P2 and P3 is incident on the first substrate 191 at a relatively large incident angle ±0. And the second substrate 192. The light from the surface light sources 32d and 33d is incident on the first substrate 191 and the third substrate 193 at a relatively large incident angle ±6». Further, in Figs. 29 and 30, Reference point B3 denotes the point of the outermost edge of the surface light source 30c (31c to 33c) along the Z direction (see 49 2010228). 55 32380pif.doc, as shown in FIG. 22 and the like, the point of the outermost edge along the Z direction of the surface light source 30d (31d to 33d) is indicated by reference numeral B4 (please refer to FIG. 22 and the like). The description relating to Fig. 30 is easily understood, the reference symbol B1 indicates the point of the outermost edge of the surface light source 30a (31a to 33a) along the X direction, and the reference symbol B2 indicates the direction of the surface light source 30b (31b to 33b) along the X direction. The outermost point. However, as described above, the light from the surface light sources 30a (31a to 33a) and the surface light sources 30b (31b to 33b) is not affected by the correction unit 19. Fig. 31, Fig. 33, and Fig. 34 are views for explaining the relationship between the relative positions of the second substrate and the third substrate with respect to the first substrate and the matting action of the correction unit. In Fig. 31, the second substrate 192 is in the reference state, and when viewed from the optical axis AX direction, the light-shielding point 151 of the first substrate 191 and the light-shielding point 152 of the second substrate 192 overlap each other. On the other hand, the third substrate 193 is moved by a predetermined distance from the reference state in the +z direction, and a part of the light-shielding point 151 of the i-th substrate 191 and the second substrate 192 are observed from the optical axis AX direction. A part of the light-shielding dots 152 coincide. The center point ρι in the static exposure area ER on the wafer W, that is, the light reaching the center point ρι of the opening of the mask mask n, is at an incident angle of 0 degrees for the ith substrate 191 incident. Therefore, when the light self-surface light source 30c reaches the center point pr via the i-th substrate 191 and the second substrate 192, the amount of light blocked by the combined extinction region of the light-shielding points 151 and 152 is the smallest. When the light self-surface light source reaches the center point ρι via the i-th substrate 191 and the third substrate 193, the amount of light blocked by the combined extinction area of the light-shielding property 50 201022855 32380pif.doc points 151 and 153 is compared. Big. The light reaching the peripheral points P2 and P3 in the still exposure region ER on the wafer W reaches the peripheral point p2 of the opening of the mask mask u, and the light of P31 is a relatively large incident angle θ. On the other hand, the first substrate 191 is incident. Hereinafter, in order to simplify the description, the peripheral point p2' corresponding to the peripheral point P2 in the still exposure region ER is located on the +Z direction side of the opening portion of the mask mask η, and the peripheral point p3 in the still exposure region ER. The peripheral point P3' corresponding to ❹ is located on the -Z direction side. Therefore, when the light self-surface light source 3〇c reaches the peripheral points P2 and p3 via the first substrate 191 and the second substrate 192, the amount of light blocked by the combined light-blocking regions of the light-shielding points 151 and 152 is blocked. bigger. When the light is transmitted from the surface light source 3 (the first substrate 191 and the third substrate 193 to the peripheral point '2'), the amount of light blocked by the combined light-shielding regions of the light-shielding points 151 and 153 is relatively small. When the surface light source 3 (1) reaches the peripheral point Ρ3 through the first substrate 191 and the third substrate 193, the amount of light blocked by the combined extinction region of the light-shielding points 151__ and 153 is the largest. As shown in the center of Fig. 32, among the quadrupole pupil intensity distributions associated with the center point P1, the correction unit 19 has the smallest extinction effect on the surface light source 31c on the +z direction side, and the correction unit 19 is on the side of the ζ direction. The surface light source 31d has a relatively large extinction effect. In this portion of FIG. 32 and related FIGS. 33 and 34, the z-direction of the hatching region extending in the X direction is elongated. The width dimension is used to schematically indicate the magnitude of the extinction action of the correction unit 19. Further, as shown on the left side of FIG. 32, among the pupil intensity distributions of the quadrupole 51 201022855 32380 pif.doc associated with the peripheral point P2, The cancellation unit 19 generates a cancellation for the surface light source 32c The light effect is relatively large, and the extinction unit 19 has a relatively small extinction effect on the surface light source 32d. Further, as shown on the right side of FIG. 32, among the quadrupole pupil intensity distributions associated with the peripheral point p3, the correction unit 19 The extinction effect generated by the surface light source 33c is relatively large, and the extinction unit 19 has the largest extinction effect on the surface light source 33d. Further, as shown in FIG. 33, the second substrate 192 is moved by a predetermined distance from the reference state toward the _z direction. In the state in which the third substrate 193 has moved by a predetermined distance in the +Z direction from the reference state, the extinction unit 19 generates the extinction of the surface light source 31c among the quadrupole pupil intensity distributions related to the center point P1. The function and the extinction function of the correction unit 19 for the surface light source 314 are relatively large. Among the quadrupole pupil intensity distributions associated with the peripheral point P2, the correction unit 19 has the largest extinction effect on the surface light source 32C, and the correction unit The extinction effect generated by the surface light source 32d is relatively small. Among the quadrupole pupil intensity distributions associated with the peripheral point P3, the correction unit 19 generates a cancellation for the surface light source 33c. The effect of the correction unit 19 is the largest for the surface light source 33d. As shown in Fig. 34, the second substrate 192 is moved by a predetermined distance from the reference state in the +Z direction, and the third substrate 193 is self-contained. In the state in which the reference state is shifted by only a predetermined distance in the -Z direction, the extinction unit 19 performs the matting action on the surface light source 31c and the correction unit 19 in the quadrupole pupil intensity distribution associated with the center point ρι. The surface light source 31 (1) has a relatively large extinction effect. Among the quadrupole pupil intensity distributions associated with the peripheral point p2, the correction unit 19 produces a small amount of light for the surface light source 32c. 201032855 32380pif.doc light effect is relatively small' The correction unit 19 produces a cancellation for the surface light source: the maximum 消 在 与 与 与 与 与 四 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 The extinction effect produced by 33d is relatively small. Thus, for example, the second substrate can be removed from the second position along the z direction, and the third substrate 193 can be set to be in the z direction, thereby causing the loss of the optical axis AX and the Z. The difference in the degree of the filaments shown in Figs. 23 and 24 existing between the partitions β, Dong, and the surface light sources S2c and 32d and between the pair of surface light sources is adjusted. Specifically, the second substrate 192 of the correction unit 19 is located at a position that moves only by a required distance in the -z direction from the reference state, and the third substrate 193 is moved only in the +z direction from the reference state. When the position of the distance is required, as shown in FIG. 35, among the pupil intensity distribution % associated with the peripheral point p2, the light from the surface light sources 32a and 32b is not subjected to the extinction of the correction unit 19, and therefore, the light of the light The intensity does not change. The light from the surface light source 32c is subjected to the extinction of the correcting unit 19, and the light intensity of the light is largely reduced. Even if the light from the surface light source 32d is subjected to the extinction of the correction unit 19, the degree of reduction in the light intensity of the light is relatively small. As a result, in the pupil intensity distribution 32 associated with the peripheral point P2 adjusted by the correction unit 19, the light intensity of the surface light source 32c' spaced apart in the Z direction is substantially equal to the light intensity of the surface light source 32d'. Alternatively, the difference between the light intensity of the surface light source 32c' and the light intensity of the surface light source 32d· is adjusted to a desired light intensity difference. Further, as shown in Fig. 36, among the pupil intensity distributions 33 associated with the peripheral point P3, the light from the surface light sources 33a and 33b is not subjected to the extinction of the correction unit 53 201022855 32380pif.doc 19, and therefore, the light The light intensity does not change. Even if the light from the surface light source 33c is subjected to the extinction action of the correction unit 19, the degree of reduction in the light intensity of the light is relatively small. The light from the surface light source 33d is subjected to the extinction action of the correction unit 19, and the light intensity of the light is largely lowered. As a result, the light source intensity of the surface light source 33c spaced apart in the Z direction from the pupil intensity distribution 33' associated with the peripheral point p3 adjusted by the correction unit 19 is substantially equal to the light intensity of the surface light source 33d'. Alternatively, the difference between the light intensity of the surface light source 33c1 and the light intensity of the surface light source 33d is adjusted to a desired light intensity difference. Further, the operation of adjusting the difference between the light intensity of the surface light source 32c' and the light intensity of the surface light source 32d' and the light intensity of the surface light source 33c' and the light intensity of the surface light source 33d to a desired light intensity difference For example, based on the measurement result of the pupil intensity distribution measuring device (not shown), the pupil intensity distribution measuring device is based on the light passing through the projection optical system PL on the pupil plane of the projection optical system PL. The 瞳 intensity distribution is measured. Specifically, the measurement result of the pupil intensity distribution measuring device is supplied to the control unit (Fig. The control unit outputs a command to the drive control system 194 of the correction unit 19 based on the measurement result of the pupil intensity distribution measuring device so that the pupil intensity distribution on the pupil plane of the projection light © learning system PL becomes a desired distribution. The drive control system 194 controls the position of the second substrate 192 and the third substrate 193 in the ❺z direction based on an instruction from the control unit, and the difference between the light intensity of the surface light source 32c and the surface light source 32d, and the surface light source. The difference between the light intensity and the light intensity of the surface light source 33d is adjusted to the desired light intensity difference. As described above, in the correction unit 19 of the second embodiment, the light-shielding points 152 and 153 are formed on the incident surface 54 201022855 32380pif.doc with respect to the i-th substrate 191 on which the light-shielding point 151 is formed on the emission surface. The second substrate 192 and the third substrate 193 are not allowed to move relative to each other in the z direction which is the longitudinal direction of the unit wavefront division surface. Therefore, as is clear from FIGS. 32 to 34, the correction unit 19 realizes various extinction ratio characteristics, that is, along the Y direction in the static exposure region ER (corresponding to the z direction on the illumination pupil), and the extinction ratio according to various forms. And it has changed. In the above description, attention is paid only to the pair of light-shielding dots 15 of the substrate ΐ9, one light-shielding dot 152 of the substrate 192, and one light-shielding dot 153 of the φ substrate 193. However, it is obvious that these are formed even separately. When the light-shielding points 151 to 153 are used, the correction unit 19 also functions in the same manner as described above. Therefore, in the illumination optical systems (2 to 12) of the second embodiment, the plurality of extinction actions of the correction unit 19 can be used to sandwich the pupil intensity distribution associated with each point in the still exposure region ER. Light intensity between the pair of regions spaced apart in the γ direction by the optical axis AX (between the pair of surface light sources 32c and 32d and between the pair of surface light sources 33c and 33d in the example of FIGS. 23 and 24) The difference is adjusted. Further, in the exposure light-sensing device (2 to WS) of the second embodiment, the illumination optical system (2 to 12) can be used to perform good exposure under appropriate illumination conditions corresponding to the fine pattern of the mask Μ. And further, the desired line width, faithfully transferring the fine pattern of the mask enamel onto the wafer W at a desired position throughout the entire exposure area, wherein the illumination optical system (2 to 12) is opposite to the wafer W In the pupil intensity distribution of each point in the upper still exposure region ER, the light intensity difference of the pair of regions which are separated by the optical axis 失 and spaced apart in the Υ direction is adjusted. 55 201022855 32380pif.doc In the second embodiment, it is considered that the light amount distribution of the wafer (irradiated surface) is affected by, for example, the extinction action (for one) of the correction unit 19. In this case, the illuminance distribution of the still exposure area or the shape of the static exposure area (lighting area) can be changed by the action of the light amount distribution adjusting unit having the configuration as needed. In the second embodiment, according to the specific embodiment shown in FIG. 25 to FIG. 25, the three sheets 191 to 193 having the form of a flat plate perpendicular to the optical axis 构成 are arranged to constitute a correction unit and a line. Further, a circular light-shielding point 151 as a matte pattern is distributed on the emission surface of the first substrate 191. Further, the distribution is on the surface of the second substrate and the surface of the third substrate 193. A circular light-blocking dot 152 having a two-matting pattern and a circular light-blocking dot 153 serving as a third extinction are formed. However, the specific configuration of the correction element 19 is not limited to various forms. The number of substrates constituting the correction unit 19, the form (shape and shape) of the substrate, the posture of the substrate, and the direction in which the substrates move relative to each other are formed, and the number of unit matts of the light map* and the unit of the extinction field are two. Unit extinction The position (incidence surface or exit surface) of the formation surface of the region, the form of the distribution of the unit extinction region, the arrangement position of the correction unit 19, and the like can be various forms. Specifically, the second substrate 192 and the third substrate 193 are integrated. The first substrate 191 can be moved in the z-direction, or the arrangement of any one of the second substrate 192 and the third substrate 193 can be omitted, and the same wire as the second embodiment (four) can be used. For the optical base 56 201022855 3^38Upif.d〇c plate, for example, a substrate having at least one surface having a curvature can be used. Further, in the second embodiment, the rear focus surface of the micro fly-eye lens 8 or the rear side is later The correction unit 19 is disposed on the rear side (the mask side) of the formation surface of the pupil intensity distribution 30 formed on the illumination pupil near the side focal plane. However, the present invention is not limited thereto, and the correction unit 19 may be provided. The position of the formation surface of the pupil intensity distribution 30 or the front side (light source side) of the formation surface. Further, the correction unit 19 may be disposed at a position other than the micro fly's eye lens 8 on the rear side. Or near the lighting For example, the position of the illumination pupil disposed between the front lens group 丨2a and the rear lens group 12b of the imaging optical system 12 or the vicinity of the illumination pupil. Generally speaking, the pair of pupils formed in the illumination pupil The correction unit according to the third aspect of the present invention, wherein the intensity distribution is corrected, includes:

照明光瞳的前侧的具有倍率的光學元件、與鄰接於上述照 明光瞳的後儀具有倍率岐學元件之間的照明光曈空間 内且透紐的第1基板沿著錄而具有規定的厚度;以 及透光性的第2基板,置於照明光瞳空助的比第i基 ,更後側的位置,且透紐的f 2基板沿著妹而具有規 的厚度於第1基板上形成有包括至少—個第丨單位消 SI消光圖案’於第2基板上形成有包括與第1 的笔“ 對應地形成的至少—個第2單位消光區域 轴的第\方,、。而且,第1基板與第2基板沿著橫切光 而可相對移動。再者,☆「照明光瞳空間」 二二卜不具有倍率的平行平面板或平面鏡。 ;述第2實施形態中,形成基板的消光圖案的 57 201022855 32380pif.doc 單位消光區域是形成為遮光區域,該遮光區域藉由例如由 鉻或氧化鉻等所形成的遮光性點來遮擋入射光。然而,並 不限定於此’單位消光區域亦可為除遮光區域的形態以外 的形態。例如,亦可將多個消光圖案中的至少一個消光圖 案形成為使入射光散射的散射區域,或形成為使入射光繞 射的繞射區域。-般而言,藉由對透光性的基板的預期區 域實施粗面化加工來形成散射區域,藉由對預期區域實施 繞射面形成加工來形成繞射區域。 又,於上述第2實施形態中,第2基板192及第3基 ❿ 板193可分別相對於第!基板191而相對移動。然而,並 =限定於此,亦可將所有的基板191〜193分別設定為固 定。於該情形時,重要的是在自光轴Αχ方向觀察時第 1基板191的第1單位消光區域(與遮光性點151相對應) 的-部分與第2基板192的第2單位消㈣域(與遮光性 點152相對應)的一部分相重合,且自光軸人乂方向觀察 時,第1基板191的第1單位消光區域的一部分與第3基 板193的第3單位消光區域(與遮光性點153相對應)的 ❹ 一部分相重合的狀態下,對各基板191〜193的位置進行固 定。 具體而言,在與上述第2實施形態相對應的構成中, 在第1單位消光區域與第2單位消光區域在ζ方向上錯 位’且第1單位消光區域與第3單位消光區域在ζ方向上 錯位的狀態下,對各基板191〜193的位置進行固定。即便 於對各基板進行固定的構成中,亦可使第2基板192與第 58 201022855 32380pif.doc 3基板193 3基板193 —體化,或省略第2基板192及第 中的任一個基板的設置。 亦即,一般而言,根據對各基板的位置進行 成的本發明的第2形態的補正單元包括:第i消光圖案, 形成在照明光瞳空間内的與光轴垂直的第丨面上·以^第 2消光圖案,形成在照明光瞳空間内的定位於比第1 後側、且與第丨面平行的第2面上。g丨消相案包括至 ^二個第1單位消光區域,第2消光圖案包括與第工單位 消光區域相對應地形成的至少—個第2單位消光區域。而 且j自光軸方向觀察時,第i單位、;肖光區域的—部分與第 2早位消光區域的一部分相重合。An optical element having a magnification on the front side of the illumination pupil, and a first substrate in the illumination pupil space between the graduated elements adjacent to the illumination pupil having a magnification learning element and having a predetermined thickness are recorded along the record And a light-transmissive second substrate placed at a position on the rear side of the illuminating light vacancy, and the f 2 substrate of the permeable layer is formed on the first substrate along a sister thickness The second semiconductor substrate includes at least one of the second unit erasing SI matte patterns, and the second substrate includes at least one second unit extinction region axis formed corresponding to the first pen. (1) The substrate and the second substrate are relatively movable along the transverse light. Further, ☆ "Illumination pupil space" is a parallel plane plate or a plane mirror having no magnification. In the second embodiment, the matte pattern of the substrate is formed. 57 201022855 32380pif.doc The unit matte region is formed as a light-shielding region which blocks the incident light by a light-shielding point formed by, for example, chromium or chromium oxide. . However, the unit extinction region may be a form other than the form of the light-shielding region. For example, at least one of the plurality of extinction patterns may be formed as a scattering region for scattering incident light or as a diffraction region for diffracting incident light. In general, a scattering region is formed by performing roughening processing on a desired region of a light-transmitting substrate, and a diffraction region is formed by performing a diffraction surface forming process on a desired region. Further, in the second embodiment, the second substrate 192 and the third base plate 193 can be respectively opposed to the first! The substrate 191 is relatively moved. However, if it is limited to this, all of the substrates 191 to 193 may be set to be fixed. In this case, it is important that the portion of the first unit extinction region (corresponding to the light-blocking point 151) of the first substrate 191 and the second unit elimination (four) region of the second substrate 192 when viewed from the optical axis Αχ direction. A part of the first unit extinction region of the first substrate 191 and a third unit extinction region of the third substrate 193 (and shading) are observed when a part of the first substrate 191 is overlapped with the light-shielding point 152. The positions of the respective substrates 191 to 193 are fixed in a state in which a part of the points 153 correspond to each other. Specifically, in the configuration corresponding to the second embodiment, the first unit extinction region and the second unit extinction region are displaced in the x direction, and the first unit extinction region and the third unit extinction region are in the x direction. In the state of being displaced, the positions of the respective substrates 191 to 193 are fixed. In other words, in the configuration in which the respective substrates are fixed, the second substrate 192 may be integrated with the substrate 193 3 of the ninth substrate 192 or the second substrate 192 and the second substrate 192 may be omitted. . That is, generally, the correction unit according to the second aspect of the present invention which is formed on the position of each substrate includes an i-th extinction pattern formed on the second plane perpendicular to the optical axis in the illumination pupil space. The second second matte pattern is formed on the second surface that is positioned in the illumination pupil space and is positioned parallel to the first rear side and parallel to the second side. The g丨 phase-removal case includes to two first unit extinction regions, and the second extinction pattern includes at least one second unit extinction region formed corresponding to the dimming region of the dynamometer. Further, when j is viewed from the optical axis direction, the i-th unit and the portion of the oblique light region overlap with a portion of the second early extinction region.

又:請參照第1實施形態及第2實施形態,本發明的 第4形態的補正單元包括··透紐的第i基板,配置於照 明光曈空_ ’且沿著絲而具有規定的厚度;以及透光 性的第2基板,配置於照明光曈空間内的比第丨基板更後 側,且沿著光軸而具有規定的厚度。第1基板包括形成於 光的入射側的面及光的射出側的面中的至少一個面上的第 1消光圖案,第2基板包括形成於光的入射側的面及光的 射出側的面中的至少一個面上的第2消光圖案。第1消光 圖案,括至少一個第1單位消光區域,第2消光圖案包括 與,少—個第1單位消光區域相對應地形成的至少一個第 2單^位消光區域。而且,第丨單位消光區域與第2單位消 光區域對於以第1入射角入射至第1單位消光區域的光賦 予第1消光率,且對於以與上述第丨入射角不同的第2入 59 201022855 32380pif.doc 極狀’舉出了在照明光瞳上形成有四 形照明、即四極照明為示例,以 對本發_作驗果進行朗。誠,_並秘定於四 極照明’例如對於形成環帶狀的光瞳強度分佈的環帶昭 明、形細極狀以外的其他多極狀的光_度分佈的多極 照明等,同樣地亦可應用本發明來獲得相同的作用效果。 於上述實施形態中’代替光罩,亦可使用基於規定的 電子資料(eleetroniedata)來形成規定圖案的可變圖案形 成裝置。若使用此種可變圖案形成裝置,則即便圖案面是 縱向設置,亦可使對同步精度造成的影響為最低限度。再 者,作為可變圖案形成裝置,例如可使用包含基於規定的 電子資料而受到驅動的多個反射元件的數位微鏡裝置 (Digital Micromirror Device,DMD )。使用了 DMD 的曝光 裝置例如揭示於曰本專利特開2004-304135號公報、國際 專利公開第2006/080285號小冊子、及與該小冊子相對^ 的美國專利公開第2007/0296936號公報中。又,除如dmd 的非發光型的反射型空間光調變器以外,可使用透射型空 間光調變器,亦可使用自發光型的影像顯示元件。再者, 即便於圖案面橫向設置時,亦可使用可變圖案形成装置。 此處,援用美國專利公開第2007/0296936號公報的啟示作 為參照。 201022855 32380pif.doc 又,於上述實施形態中’使用微型複眼透鏡8作為光 學積分器,但亦可代替該微型複眼透鏡8而使用内面反射 型的光學積分器(典型而言為圓柱型積分器(r〇d integrator))。於該情形時,以聚光透鏡的前侧焦點位置與 變焦透鏡7的後侧焦點位置相一致的方式,將該聚光透鏡 配置於變焦透鏡7的後侧’以將入射端定位於該聚光透鏡 的後侧焦點位置或該後侧焦點位置的附近的方式,來配置 圓柱型積分器。此時,圓柱型積分器的射出端成為照明視 場光闌11的位置。使用圓柱型積分器時,可將該圓柱型積 分器的下游的視場光闌成像光學系統12内的、與投影光學 系統PL的孔徑光闌AS的位置形成光學共軛的位置稱為照 明光曈面。又,在圓柱型積分器的入射面的位置形成有照 明光瞳面的一次光源的虛像,因此,亦可將該位置及與該 位置形成光學共軛的位置稱為照明光瞳面。此處,可將變 焦透鏡7、上述聚光透鏡以及圓柱型積分器視作分佈 光學系統。 瘳 又,於上述實施形態中,代替繞射光學元件3,或除 了繞射光學it件3以外,例如亦可制空間光調變元件, 該空間光織it収藉由㈣為㈣(an>ay)狀且傾斜角 及傾斜方向_地受_動控制的多個微小的要素鏡面所 構成’使人射光束分縣每個反射面的微小單位並偏向, 藉此來將光束的剖面轉換為預期的形狀或職的大小。使 ^ ί種空間光靖元件的照明光㈣統例如揭示於日本 專利特開2002-353105號公報中。 201022855 32380pif.doc 以保持規定的機械精度、電氣精度、光學精度的方式, 申請案的申請專利範圍中所舉出的各構成要素的 =統(subsystem)加以組裝,藉此來製造上述實施 的曝錢置。為了確保上述各種精度,於該組裝的前 統進行調整以達成光學精度,對各種機 系2進仃娜以達成機械,對各種電氣系統進行調 成電氣精度。將各種子系統組裝為曝光裝置的組裝 i拉匕括·各種子系統彼此的機械連接、電子電路的配線 3、以及氣壓迴路的配管連接等。#然、,於該將各種子 為曝光裝置的組裝步驟之前,存在各子系統各自 t裝步驟。於將各種子系統組裝為曝光裝置的組裝步驟 =之後’進行綜合聰,確保曝紐置整體的各種精度。 再者’較錄溫度及料料奸f理的無塵室 (clean room)中製造曝光裝置。 ◎ 八-人,對使用了上述實施形態的曝光裝置的元件製造 =進行說…圖37是表示半導體元件的製造步驟的流程 φ :Ieharti。如圖37所示,於半導體耕的製造步驟 f牛趣屬膜热鑛於成為半導體元件的基板的晶圓w上 後S4G),將作為感光性材料的光阻劑(咖t_ist) t =經蒸賴金屬膜上(步驟S42)。接著,使用上述 4的曝絲置’將形成於光罩(主光罩)M的圖案 蚀^晶圓W上的各攝影區域(步驟S44:曝光步驟), 結束後的晶圓W顯影,亦即,使轉印有圖案的光 阻劑顯影(步驟S46 :顯影步驟)。然後,將藉由步驟⑽ 62 201022855 3238Upif.docFurther, referring to the first embodiment and the second embodiment, the correction unit of the fourth aspect of the present invention includes the i-th substrate of the through-hole, and is disposed in the illumination light hollow _ 'and has a predetermined thickness along the wire. And the translucent second substrate is disposed on the rear side of the second pupil substrate in the illumination pupil space, and has a predetermined thickness along the optical axis. The first substrate includes a first matte pattern formed on at least one of a surface on the incident side of the light and a surface on the light emitting side, and the second substrate includes a surface formed on the incident side of the light and a surface on the light emitting side. The second extinction pattern on at least one of the faces. The first matte pattern includes at least one first unit extinction region, and the second matte pattern includes at least one second unit extremum region formed corresponding to the less than one first unit extinction region. Further, the second unit extinction region and the second unit extinction region impart a first extinction ratio to light incident on the first unit extinction region at the first incident angle, and a second entry 59 201022855 which is different from the second incident angle. The 32380pif.doc pole shape gives an example of the formation of a four-shaped illumination on the illumination pupil, that is, a quadrupole illumination. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The present invention can be applied to obtain the same effects. In the above embodiment, instead of the photomask, a variable pattern forming device that forms a predetermined pattern based on predetermined electronic data may be used. When such a variable pattern forming apparatus is used, even if the pattern surface is vertically disposed, the influence on the synchronization accuracy can be minimized. Further, as the variable pattern forming device, for example, a digital micromirror device (DMD) including a plurality of reflecting elements driven based on predetermined electronic data can be used. An exposure apparatus using DMD is disclosed in, for example, Japanese Patent Laid-Open No. 2004-304135, International Patent Publication No. 2006/080285, and Japanese Patent Publication No. 2007/0296936. Further, in addition to the non-light-emitting reflective spatial light modulator such as dmd, a transmissive spatial light modulator may be used, or a self-luminous type image display element may be used. Further, even when the pattern surface is arranged laterally, a variable pattern forming device can also be used. The teachings of U.S. Patent Publication No. 2007/0296936 are incorporated herein by reference. 201022855 32380pif.doc Further, in the above embodiment, the micro fly's eye lens 8 is used as an optical integrator, but an inner reflection type optical integrator (typically a cylindrical integrator (usually a cylindrical integrator) may be used instead of the micro fly's eye lens 8. R〇d integrator)). In this case, the condensing lens is disposed on the rear side of the zoom lens 7 such that the front end focus position of the condensing lens coincides with the rear focus position of the zoom lens 7 to position the incident end at the concentrating A cylindrical integrator is arranged in such a manner that the rear focus position of the optical lens or the vicinity of the rear focus position. At this time, the output end of the cylindrical integrator becomes the position of the illumination field stop 11. When a cylindrical integrator is used, a position in the optical field imaging optical system 12 downstream of the cylindrical integrator that is optically conjugate with the position of the aperture stop AS of the projection optical system PL can be referred to as illumination light. Picture. Further, since the virtual image of the primary light source that illuminates the pupil plane is formed at the position of the entrance surface of the cylindrical integrator, the position and the position where the position is optically conjugate with the position can be referred to as an illumination pupil plane. Here, the zoom lens 7, the above-mentioned collecting lens, and the cylindrical integrator can be regarded as a distributed optical system. Further, in the above embodiment, instead of the diffractive optical element 3, or in addition to the diffractive optical element 3, for example, a spatial light modulation element may be formed, which is obtained by (4) (4) (an). Ay) and the inclination angle and the inclination direction are formed by a plurality of microscopic element mirrors that are controlled by the movement, so that the human radiation beam is deflected in a small unit of each reflection surface, thereby converting the beam profile into The expected shape or size of the job. The illuminating light of the spatial illuminating element is disclosed in Japanese Laid-Open Patent Publication No. 2002-353105, for example. 201022855 32380pif.doc The subsystem of each component mentioned in the patent application scope of the application is assembled to maintain the predetermined mechanical precision, electrical precision, and optical precision, thereby manufacturing the above-mentioned exposure. Money set. In order to ensure the above various precisions, the pre-assembly of the assembly is adjusted to achieve optical precision, and various mechanisms are used to achieve the machine, and various electrical systems are adjusted for electrical precision. The various subsystems are assembled into an assembly of an exposure apparatus. The mechanical connection of various subsystems, the wiring of the electronic circuit 3, and the piping connection of the pneumatic circuit are performed. #然, Before each assembly step of the exposure device, there are steps for each subsystem to be installed. In the assembly step of assembling various subsystems into an exposure device, the following is performed to ensure the accuracy of the overall exposure. Furthermore, an exposure apparatus was manufactured in a clean room in which the temperature and the material were recorded. ◎ Eight-person, the manufacturing of the element using the exposure apparatus of the above-described embodiment is explained. Fig. 37 is a flow chart showing the manufacturing procedure of the semiconductor element φ: Ieharti. As shown in FIG. 37, in the manufacturing step of the semiconductor cultivating process, the photoresist is applied as a photosensitive material to the wafer w of the substrate of the semiconductor element (S4G), and the photoresist (coffee t_ist) t = The mixture is evaporated on the metal film (step S42). Next, using the above-mentioned 4 wire holding device', each of the image forming regions formed on the wafer W of the mask (main mask) M is formed (step S44: exposure step), and the wafer W after the completion is developed. That is, the photoresist to which the pattern is transferred is developed (step S46: development step). Then, by step (10) 62 201022855 3238Upif.doc

的表面進躲,的圓W 態的曝光裝置而經轉=圖述實施形 劑層,該絲鑛㈣__層衫。於步H先阻 J由該光阻圖案而對晶圓霤的表面進行加 中進行的加工中,例如包含對於晶 、=8 膜等的成膜中的至少-者。再者,於步驟 施形態的曝光裝置是將塗佈有光阻劑 $ 性基板、即板Ρ來進行圖案的轉印。 作為感九 圖38是表錢晶齡元件等騎晶元件的製造步驟 的流程圖。如圖38所示,於液晶元件的製造步驟中,依序 進行圖案形成步驟(步驟s 5 G )、彩色濾光片(▲他沉) 形成步驟(步驟S52)、單元(cell)組裝步驟(步驟S54)、 以及模組(module)組裝步驟(步驟S56)。 ❹ 於步驟S50的圖案形成步驟中,於作為板p的塗佈有 光阻劑的玻璃基板上,使壯述實施雜的曝光裝置來形 成電路圖案及電極圖案等的規定的圖案。於該圖案形成步 驟中包括:曝光步驟,使用上述實施形態的曝光裝置來將 圖案轉印至光阻劑層;顯影步驟,使轉印有圖案的板ρ顯 影’即’使玻璃基板上的光阻劑層顯影,從而產生與圖案 相對應的形狀的光阻劑層;以及加工步驟,經由該經顯影 的光阻劑層來對玻璃基板的表面進行加工。 於步驟S52的彩色濾光片形成步驟中形成彩色濾光 63 201022855 32380pif.d〇c 片’該彩色濾光片中呈矩陣狀地排列有多個與R (Red,紅 色)、G ( Green,綠色)、B ( Blue,藍色)相對應的三個點 組’或於水平掃描方向上排列有多個由R、G、B的三條 條狀的濾光片組。 於步驟S54的單元組裝步驟中,使用藉由步驟S50而 形成了規定圖案的玻璃基板、與藉由步驟S52而形成的彩 色濾光片’來對液晶面板(液晶單元)進行組裝。具體而 吕’將液晶注入至玻璃基板與彩色慮光片之間,藉此來形 成液晶面板。於步驟S56的模組組裝步驟中,將使上述液 晶面板進行顯示動作的電路及背光模組等的各種零件,安 裝於藉由步驟S54而組裝成的液晶面板。 又,本發明並不限定於應用在半導體元件製造用的曝 光裝置中,例如亦可廣泛地應用於四邊形的玻璃板上所形 成的液晶顯示元件、或電漿顯示器等的顯示裝置用的曝光 裝置、或用以製造攝影元件(CCD等)、微型機器 (micromachine )、薄膜磁頭、以及去氧核糖核酸 (Deoxyribonucleic Acid,DNA )晶片等的各種元件的曝光 裝置。進而,本發明亦可應用於使用光微影步驟來製造形 成有各種元件的光罩圖案的光罩(photomask、reticle等) 時的曝光步驟(曝光裝置)中。 再者,於上述實施形態中,使用ArF準分子雷射光(波 長:193nm)或KrF準分子雷射光(波長:248nm)作為 曝光光束,但並不限定於此,亦可將本發明應用於其他適 當的雷射光源’例如應用於供給波長157 nm的雷射光的 64The surface is immersed in the circular W-state exposure device and is rotated to illustrate the application of the layer of the coating, the silk ore (four) __ layered shirt. In the process of performing the addition of the surface of the wafer slip by the photoresist pattern in the step H, for example, at least one of the film formation of the crystal, the ?8 film, or the like is included. Further, in the exposure apparatus of the step, the pattern is transferred by applying a photoresist substrate, i.e., a sheet. As a feeling nine, Fig. 38 is a flow chart showing a manufacturing procedure of a riding element such as a carbon crystal element. As shown in FIG. 38, in the manufacturing step of the liquid crystal element, the pattern forming step (step s 5 G ), the color filter ( ▲ sinking) forming step (step S52), and the cell assembly step are sequentially performed ( Step S54), and a module assembly step (step S56). In the pattern forming step of the step S50, a predetermined pattern such as a circuit pattern or an electrode pattern is formed on the glass substrate coated with the photoresist as the plate p. The pattern forming step includes: an exposing step of transferring the pattern to the photoresist layer using the exposure apparatus of the above embodiment; and a developing step of developing the pattern-transferred sheet ρ to "lighten" the light on the glass substrate The resist layer is developed to produce a photoresist layer of a shape corresponding to the pattern; and a processing step of processing the surface of the glass substrate via the developed photoresist layer. Color filter 63 is formed in the color filter forming step of step S52. 201022855 32380pif.d〇c sheet. The color filter is arranged in a matrix with a plurality of R (Red, red), G (Green, Green), B (Blue, blue) corresponding to the three dot groups' or a plurality of strips of filter groups of R, G, and B arranged in the horizontal scanning direction. In the cell assembly step of step S54, the liquid crystal panel (liquid crystal cell) is assembled using the glass substrate in which the predetermined pattern is formed in step S50 and the color filter ' formed in step S52. Specifically, the liquid crystal is injected between the glass substrate and the color filter sheet to form a liquid crystal panel. In the module assembling step of step S56, various components such as a circuit for performing display operation of the liquid crystal panel and a backlight module are mounted on the liquid crystal panel assembled in step S54. Further, the present invention is not limited to application to an exposure apparatus for manufacturing a semiconductor element, and can be widely applied to, for example, a liquid crystal display element formed on a quadrilateral glass plate or an exposure apparatus for a display device such as a plasma display. Or an exposure apparatus for manufacturing various elements such as a photographic element (CCD or the like), a micromachine, a thin film magnetic head, and a deoxyribonucleic acid (DNA) wafer. Further, the present invention can also be applied to an exposure step (exposure apparatus) in the case of producing a photomask (photomask, reticle, etc.) in which a mask pattern of various elements is formed by a photolithography step. Further, in the above embodiment, ArF excimer laser light (wavelength: 193 nm) or KrF excimer laser light (wavelength: 248 nm) is used as the exposure light beam, but the invention is not limited thereto, and the present invention may be applied to other A suitable laser source 'for example, for applying laser light with a wavelength of 157 nm

201022855 32380pif.doc f2雷射光源等。 以具ΐ大形態卜亦可應用所謂液浸法,即, 投貪光與Μ起ί射率的介質(典型而言為液體)來將 該情形時’作為將液體填滿於 中的方法,可採用如國際公 ==揭示的局部地填充液體的方法、如日本專利 二2=?號公報中所揭示的使保持著作為曝光對 象的基板的平台在液槽令移動的方法、如日本專利特開平 =•303114號公報中所揭示的在平台上形成規定深度的液 體槽,並將基板保持在該液體槽中的方法。此處,援用國 際公開第WO99/49504號小冊子、日本專利特開平 6-124873號公報以及日本專利特開平1〇·3〇3114號公報的 啟示作為參照。 又,於上述實施形態中,亦可應用美國公開公報第 2〇〇6/〇17〇901號及第2007/0146676號中所揭示的所謂的偏 光照明方法。此處’援用美國專利公開第2006/0170901號 公報及美國專利公開第2007/014的76號公報的啟示作為 參照。 ~ 又,於上述實施形態中,將本發明應用於將光罩Μ的 圖案掃描曝光至晶圓W的攝影區域的步進掃描方式的曝 光裝置。然而,並不限定於此,亦可將本發明應用於重複 如下動作的步進重複(stepandrepeat)方式的曝光裝置, 該動作是指將光罩Μ的圖案一次性地曝光至晶圓w的各 65 201022855 32380pif.doc 曝光區域的動作。 又,於上述實施形態中,將本發明應用於曝光裝置中 的對光罩(或晶圓)進行照明的照明光學系統,但並不限 定於此,亦可將本發明應用於對光罩(或晶圓)以外的被 照射面進行照明的普通的照明光學系統。 雖然本發明已以實施例揭露如上,然其並非用以限定 本發明,任何所屬技術區域中具有通常知識者,在不脫離 本發明之精神和範圍内,當可作些許之更動與潤舞,故本 發明之保護範圍當視後附之申請專利範圍所界定者為準。 ⑮ 【圖式簡單說明】 圖1是概略地表示本發明的第1實施形態的曝光裝置 的構成的圖。 圖2是表示第1實施形態中的形成於照明光瞳的四極 狀的二次光源的圖。 圖3是表示各實施形態中的形成於晶圓上的矩形狀的 靜止曝光區域的圖。 圖4是對第1實施形態中,入射至靜止曝光區域内的 〇 中心點pi的光所形成的四極狀的光瞳強度分佈的性狀進 行說明的圖。 圖5是對第1實施形態中,入射至靜止曝光區域内的 周邊點P2、P3的光所形成的四極狀的光瞳強度分佈的性 狀進行說明的圖。 、圖6 (a)是示意性地表示第1實施形態中的沿著與中 ^點Pl相關的光瞳強度分佈的Z方向的光強度分佈的 66 201022855 i238Upif.doc 圖,圖6 (b)是示意性地表示第1實施形態中的沿著與周 邊點P2、P3相關的光瞳強度分佈的Z方向的光強度分佈 的圖。 圖7是概略地表示第1實施形態的補正單元的構成的 第1圖。 圖8是概略地表示第1實施形態的補正單元的構成的 第2圖。201022855 32380pif.doc f2 laser light source, etc. In the case of a large shape, a so-called liquid immersion method, that is, a method of greedy light and a medium (typically a liquid) that picks up the radiance, can be used as a method of filling a liquid. A method of locally filling a liquid as disclosed in International Publication No. ==, a method of moving a platform for holding a substrate to be an object to be exposed, such as a Japanese patent, as disclosed in Japanese Patent Publication No. 2/? A method of forming a liquid tank having a predetermined depth on a platform and holding the substrate in the liquid tank disclosed in Japanese Laid-Open Patent Publication No. 303114. The inspiration of the publication of the Japanese Patent Publication No. WO99/49504, the Japanese Patent Application Laid-Open No. Hei No. Hei 6-124873, and the Japanese Patent Laid-Open No. Hei. Further, in the above-described embodiment, a so-called polarized illumination method disclosed in U.S. Patent Application Publication No. 2/6/17,901 and No. 2007/0146676 can be applied. The teachings of U.S. Patent Publication No. 2006/0170901 and U.S. Patent Publication No. 2007/014, the disclosure of which is incorporated herein by reference. Further, in the above embodiment, the present invention is applied to a step-and-scan type exposure apparatus that scans and exposes a pattern of a mask to an imaging region of the wafer W. However, the present invention is not limited to this, and the present invention can also be applied to a step-and-repeat type exposure apparatus that repeats the operation of exposing the pattern of the mask to the wafer w at a time. 65 201022855 32380pif.doc The action of the exposure area. Further, in the above embodiment, the present invention is applied to an illumination optical system that illuminates a photomask (or wafer) in an exposure apparatus, but the invention is not limited thereto, and the present invention can also be applied to a photomask ( Ordinary illumination optical system that illuminates the illuminated surface other than the wafer. Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and those skilled in the art can make some changes and dances without departing from the spirit and scope of the present invention. Therefore, the scope of the invention is defined by the scope of the appended claims. [Brief Description of the Drawings] Fig. 1 is a view schematically showing the configuration of an exposure apparatus according to a first embodiment of the present invention. Fig. 2 is a view showing a quadrupole secondary light source formed in an illumination pupil in the first embodiment. Fig. 3 is a view showing a rectangular still exposure region formed on a wafer in each embodiment. Fig. 4 is a view for explaining the behavior of a quadrupole pupil intensity distribution formed by light incident on the center point pi in the still exposure region in the first embodiment. Fig. 5 is a view for explaining the behavior of the quadrupole pupil intensity distribution formed by the light incident on the peripheral points P2 and P3 in the still exposure region in the first embodiment. Fig. 6 (a) is a view schematically showing a light intensity distribution in the Z direction along the pupil intensity distribution associated with the center point P1 in the first embodiment, Fig. 6 (b), Fig. 6 (b) The light intensity distribution in the Z direction along the pupil intensity distribution related to the peripheral points P2 and P3 in the first embodiment is schematically shown. Fig. 7 is a first view schematically showing the configuration of a correction unit according to the first embodiment. Fig. 8 is a view schematically showing the configuration of a correction unit according to the first embodiment.

❹ 圖9是概略地表示第1實施形態的補正單元的構成的 第3圖。 圖(a)、圖1〇 (b)是對第1實施形態的補正單元 的基本作用進行說明的第1圖。 圖11 (a)、圖11 (b)是對第1實施形態的補正單元 的基本作用進行說明的第2圖。 圖12是對第丨實施形態的補正單元的基本作用進行說 明的第3圖。 圖13是對第1實施形態的補正單元的基本作用進行說 明的第4圖。 ^ 圖14是示意性地表示在第丨實施形態中,藉由補正單 7L來對與中心點P1相關的光瞳強度分佈進行調整的情況 圖15是示意性地表示在第丨實施形態中,藉由補正單 元來對與周邊點P2、P3相關的光瞳強度分佈進行調整 情況的圖。 、 圖16是概略地表示第1實施形態的變形例的補正單元 67 201022855 32380pif.doc 的構成的第1圖。 圖17 (a)是表示在圖16的變形例的補正單元的第1 基板上形成有多個遮光性的線狀區域的情況的圖,圖17 (b)是表示在第2基板上形成有多個遮光性的線狀區域的 情況的圖。 圖18是對圖16的變形例的補正單元的基本作用進行 說明的第1圖。 圖19是對圖16的變形例的補正單元的基本作用進行 說明的第2圖。 魯 圖20是對圖16的變形例的補正單元的基本作用進行 說明的第3圖。 圖21是概略地表示本發明的第2實施形態的曝光裝置 的構成的圖。 圖22是表示第2實施形態中’形成於照明光瞳的四極 狀的二次光源的圖。 圖23是對第2實施形態中’入射至靜止曝光區域内的 周邊點P2的光所形成的四極狀的光瞳強度分佈的性狀進 ⑬ 行說明的圖。 圖24是對第2實施形態中,入射至靜止曝光區域内的 周邊點P3的光所形成的四極狀的光曈強度分佈的性狀進 行說明的圖。 圖25是概略地表示第2實施形態的補正單元的構成的 第1圖。 圖26是概略地表示第2實施形態的補正單元的構成的 68 201022855 32380pif.doc 第2圖。 圖27疋概略地表不第2實施形態的補正軍元的構成的 第3圖。 圖28 (a)、圖28 (b)是對第2實施形態的補正單元 的基本作用進行說明的第1圖。 圖29是對第2實施形態的補正單元的基本作用進行說 明的第2圖。 φ 圖30是對第2實施形態的補正單元的基本作用進行說 明的第3圖。 圖31是對第2實施形態中’第2基板及第3基板相對 於第1基板的第1相對位置與補正單元的消光作用的關係 進行說明的圖。 圖32是示意性地表示圖31的補正單元對於一對面光 源所產生的消光作用的大小的圖。 圖33是示意性地表示在第2實施形態中,當將第2 基板及第3基板相對於第1基板而設定於第2相對位置 β _ ’補正單元對於一對面光源所產生的消光作用的大小的 圖。 圖34是示意性地表示在第2實施形態中,當將第2 基板及第3基板相對於第1基板而設定於第3 =對位置 時’補正單元對於一對面光源所產生的消光作用的大小的 圖。 元來月是邊示意性地表示在第2實施形態中,藉由補正單 兀來對與周邊點Μ相關的光瞳強度分佈進行調整的情況 69 201022855 32380pif.doc 的圖。 圖36是示意性地表示在第2實施形態中,藉由補正單 元來對與周邊點P3相關的光瞳強度分佈進行調整的情況 的圖。 圖37是表示半導體元件的製造步驟的流程圖。 圖38是表示液晶顯示元件等的液晶元件的製造步驟 的流程圖。 【主要元件符號說明】 1 :光源 2:整形光學系統 3:繞射光學元件 4:無焦透鏡 4a、12a :前侧透鏡群 4b、12b :後侧透鏡群 5:密度濾光片 6 :圓錐柱狀鏡系統 6a :第1稜鏡構件 0b :第2稜鏡構件 7:變焦透鏡 8:微型複眼透鏡(光學積分器) 9、9A、19 :補正單元 10聚光光學系統 11光罩遮器 12成像光學系統 201022855 izibupif.doc 20、21、21’、22、22’、30、32、33、32丨、33丨:光瞳 強度分佈(二次光源) 20a、20b、20c ' 20d、21a、21a,、21b、21b’、21c、 21d、22a、22af、22b、22b,、22c、22d、30a、30b、30c、 30d、31c、31d、32a、32b、32c、32c’、32d、32d,、33a、 33b、33c、33c,、33d、33d':面光源 51a、51b、52a、52b、151、152、153 :遮光性點 51 aa、52aa、151 a、152a :消光區域 ® 53a、53b、54a、54b :線狀區域 55a、55b :組合消光區域 91、92、93、94、191、192、193 :基板 91a、92a、93a、94a、191a、192a、193a :入射面 91b、92b、93b、191b、192b :射出面 99、99A、194 :驅動控制系統 AS :孔徑光闌 ΑΧ :光轴 • Β卜Β2、Β3、Β4 :參照符號 ER :靜止曝光區域 IP :規定面 Μ :光罩 MS :光罩平台 P1、ΡΓ :中心點 P2、P3、P2'、P3,:周邊點 PL :投影光學系統 71 201022855 32380pif.doc S40 ' S42 ' S44 ' S46、S48、S50、S52 ' S54、S56 : 步驟 W :晶圓 WS :晶圓平台 θ:入射角度Fig. 9 is a view schematically showing a configuration of a correction unit according to the first embodiment. (a) and (b) of Fig. 1 are first views for explaining the basic operation of the correction unit of the first embodiment. Fig. 11 (a) and Fig. 11 (b) are second views for explaining the basic operation of the correction unit of the first embodiment. Fig. 12 is a third diagram for explaining the basic operation of the correction unit of the second embodiment. Fig. 13 is a fourth diagram for explaining the basic operation of the correction unit of the first embodiment. FIG. 14 is a view schematically showing a state in which the pupil intensity distribution related to the center point P1 is adjusted by the correction sheet 7L in the third embodiment. FIG. 15 is a view schematically showing the second embodiment. A diagram for adjusting the pupil intensity distribution associated with the peripheral points P2, P3 by the correction unit. FIG. 16 is a first view schematically showing a configuration of a correction unit 67 201022855 32380pif.doc according to a modification of the first embodiment. (a) of FIG. 17 is a view showing a state in which a plurality of light-shielding linear regions are formed on the first substrate of the correction unit of the modification of FIG. 16, and FIG. 17(b) shows that the second substrate is formed on the second substrate. A diagram of a case of a plurality of light-shielding linear regions. Fig. 18 is a first view for explaining the basic operation of the correction unit of the modification of Fig. 16; Fig. 19 is a second view for explaining the basic operation of the correction unit of the modification of Fig. 16; Lu 20 is a third diagram for explaining the basic operation of the correction unit of the modification of Fig. 16. Fig. 21 is a view schematically showing the configuration of an exposure apparatus according to a second embodiment of the present invention. Fig. 22 is a view showing a quadrupole secondary light source formed in an illumination pupil in the second embodiment. Fig. 23 is a view for explaining the behavior of the quadrupole pupil intensity distribution formed by the light incident on the peripheral point P2 in the still exposure region in the second embodiment. Fig. 24 is a view for explaining the characteristics of the quadrupole pupil intensity distribution formed by the light incident on the peripheral point P3 in the still exposure region in the second embodiment. Fig. 25 is a first view schematically showing the configuration of a correction unit of the second embodiment. Fig. 26 is a view schematically showing the configuration of a correction unit according to the second embodiment; 2010 2855 32380 pif.doc. Fig. 27 is a view schematically showing the configuration of the correction unit of the second embodiment. Fig. 28 (a) and Fig. 28 (b) are first views for explaining the basic operation of the correction unit of the second embodiment. Fig. 29 is a second diagram for explaining the basic operation of the correction unit of the second embodiment. Fig. 30 is a third diagram for explaining the basic operation of the correction unit of the second embodiment. Fig. 31 is a view for explaining the relationship between the first relative position of the second substrate and the third substrate with respect to the first substrate and the matting action of the correction unit in the second embodiment. Fig. 32 is a view schematically showing the magnitude of the extinction action by the correction unit of Fig. 31 on a pair of surface light sources. FIG. 33 is a view schematically showing the extinction effect of the second substrate and the third substrate on the second relative position β _ 'correction unit for the pair of surface light sources in the second embodiment. The size of the map. FIG. 34 is a view schematically showing the extinction action of the correction unit on a pair of surface light sources when the second substrate and the third substrate are set to the third=pair position with respect to the first substrate in the second embodiment. The size of the map. In the second embodiment, the present invention is a schematic diagram showing the adjustment of the pupil intensity distribution associated with the peripheral point 69 in the second embodiment. 69 201022855 32380pif.doc. Fig. 36 is a view schematically showing a state in which the pupil intensity distribution associated with the peripheral point P3 is adjusted by the correction unit in the second embodiment. 37 is a flow chart showing a manufacturing procedure of a semiconductor element. Fig. 38 is a flow chart showing a manufacturing procedure of a liquid crystal element such as a liquid crystal display element. [Description of main component symbols] 1 : Light source 2: shaping optical system 3: diffractive optical element 4: afocal lens 4a, 12a: front lens group 4b, 12b: rear lens group 5: density filter 6: cone Columnar mirror system 6a: first jaw member 0b: second jaw member 7: zoom lens 8: micro fly's eye lens (optical integrator) 9, 9A, 19: correction unit 10 collecting optical system 11 mask mask 12 imaging optical system 201022855 izibupif.doc 20, 21, 21', 22, 22', 30, 32, 33, 32 丨, 33 丨: pupil intensity distribution (secondary light source) 20a, 20b, 20c ' 20d, 21a , 21a, 21b, 21b', 21c, 21d, 22a, 22af, 22b, 22b, 22c, 22d, 30a, 30b, 30c, 30d, 31c, 31d, 32a, 32b, 32c, 32c', 32d, 32d , 33a, 33b, 33c, 33c, 33d, 33d': surface light sources 51a, 51b, 52a, 52b, 151, 152, 153: light-shielding points 51 aa, 52aa, 151 a, 152a: extinction area ® 53a, 53b, 54a, 54b: linear regions 55a, 55b: combined extinction regions 91, 92, 93, 94, 191, 192, 193: substrates 91a, 92a, 93a, 94a, 191a, 192a, 193a: incident surface 91b 92b, 93b, 191b, 192b: exit surface 99, 99A, 194: drive control system AS: aperture stop: optical axis • Β Β 2, Β 3, Β 4: reference symbol ER: static exposure area IP: prescribed area Μ: Mask MS: reticle stage P1, ΡΓ: center point P2, P3, P2', P3,: peripheral point PL: projection optical system 71 201022855 32380pif.doc S40 ' S42 ' S44 ' S46, S48, S50, S52 ' S54 , S56 : Step W : Wafer WS : Wafer Platform θ: Incident Angle

7272

Claims (1)

201022855 i^38Upif.doc 七、申請專利範圍: 1.一種補正單元,對形成於照明光學系統的照明光瞳 的光瞳強度分佈進行補正,上述補正單元包括: 透光性的第1基板,配置在鄰接於上述照明光瞳的前 侧且具有倍率的光學元件、與鄰接於上述照明光曈的後側 且具有倍率的光學元件之間的照明光瞳空間内,沿著上述 照明光學系統的光轴而具有規定的厚度;以及 Φ 透光性的第2基板,配置於上述照明光瞳空間内的比 上述第1基板更後侧的位置,且沿著上述光軸而具有規定 的厚度, 其中’上述第1基板包括··形成於光的入射侧的面及 光的射出侧的面中的至少一個面上的第1消光圖案, 上述第2基板包括:與上述第1消光圖案相對應地形 成於光的入射侧的面及光的射出侧的面中的至少一個面上 的第2消光圖案, φ 上述第1消光圖案與上述第2消光圖案的相對位置可 變更, 對應於上述第1基板與上述第2基板的相對位置的變 化及朝上述第1基板入射的光的入射角度的變化,上述第 1消光圖案及上述第2消光圖案所產生的消光率發生變化。 2·如申請專利範圍第1項所述之補正單元,其中, 上述第1基板及上述第2基板中的至少一個基板於規 定的方向上可移動、或圍繞規定的軸線而可旋轉。 3.如申請專利範圍第2項所述之補正單元,其中, 73 201022855 32380pif.d〇c 述光I基板及上述第2基板令的至少一個基板於上 消光圖聿^可移動’自上述光軸方向觀察時,上述第1 4先圖案及上述第㈣光_彼此重合。上11第1 4二二明專利範圍第3項所述之補正單元,1中, ==包括:至少一個第1單位二 上述4=第=括:至少-個第2單位消光區域, 3^個第2早位消光區域與 ❹ :光區域相對應地形成,且上述至少一個ί2:、= $有與上述第!單位_域相同的外形形狀及相_ 5. 如申請專·_ 2項所狀補正單元,其中, 述光板f上述第2基板中的至少-個基板繞上 ===上述第2消先圓案一: 6. 如申請專利朗第5項所述之補正單元,其中, 光軸包括:沿著以上述第1基板與上述 以父”〜的圓的圓周方向排列的多個第i單位消 无區域。 7. 如申請專利範圍第6項所述之補正單元,其中, 等角第1單位消光區域沿著上述圓的圓周方向而 8·如中請專利範圍第7項所述之補正單元其中, 74 201022855 joupif.doc 上述第1單位消光區域包括··與上述圓的中心隔開間 隔地延伸為放射狀的線狀區域。 9. 如申請專利範圍第2項所述之補正單元,其令, 上述第1基板及上述第2基板中的至少一個基板在橫 切上述光軸的方向上可移動,對應於上述第丨基板與上述 第2基板的沿著橫切上述光軸的方向的相對位置的變化, 自上述光轴方向觀察時,上述第i消光圖案與上述第2消 φ 光圖案重合而成的重複區域的大小發生變化。 10. 如申請專利範圍第1項至第9項中任一項所述之補 正單元,其中, 上述第1基板及上述第2基板具有平行平面板的形態。 11. 如申請專利範圍第1〇項所述之補正單元,其中, 上述第1基板與上述第2基板維持彼此平行的狀態。 12. 如申睛專利範圍第1項至第η項中任一項所述之 補正單元,其中, 上述第1消光圖案形成於上述第1基板的上述射出侧 的面,上述第2消光圖案形成於上述第2基板的上述入 侧的面。 13·如申請專利範圍第丨項至第12項中任一項所述之 補正單元,其中, 上述第1消光圖案包括:經分佈形成的多個第1單位 消光區域, 上述第2消光圖案包括:與上述多個第1單位消光區 域相對應地分佈形成的多個第2單位消光區域。 75 201022855 i238Upif.doc 14·如申請專利範圍第1項至第13項中任一項所述 補正單元,其中, π 之 上述第1消朗案及上述第2消光圖冑中的至少 消光圖案包括:對入射光進行遮擋的遮光區域。 15. 如申請專利_第i項至第14項中任 補正單元,其中, 、,上述第1消光圖案及上述第2消光圖案中的至少一個 消光圖案包括:使入射光散射的散射區域。201022855 i^38Upif.doc VII. Patent application scope: 1. A correction unit for correcting the pupil intensity distribution of the illumination pupil formed in the illumination optical system, the correction unit comprising: a translucent first substrate, configured Light along the illumination optical system in an illumination pupil space between an optical element having a magnification adjacent to the front side of the illumination pupil and an optical element having a magnification adjacent to the rear side of the illumination pupil a second substrate having a predetermined thickness and a Φ transmissive property is disposed at a position on the rear side of the first substrate in the illumination pupil space, and has a predetermined thickness along the optical axis, wherein The first substrate includes a first matte pattern formed on at least one of a surface on the incident side of the light and a surface on the light emitting side, and the second substrate includes: corresponding to the first extinction pattern a second extinction pattern formed on at least one of a surface on the incident side of the light and a surface on the light emitting side, φ a relative position of the first extinction pattern and the second extinction pattern The change in the relative position of the first substrate and the second substrate and the change in the incident angle of the light incident on the first substrate, the extinction ratio of the first matte pattern and the second extinction pattern is generated. Variety. The correction unit according to claim 1, wherein at least one of the first substrate and the second substrate is movable in a predetermined direction or rotatable around a predetermined axis. 3. The correction unit according to claim 2, wherein: 73 201022855 32380pif.d〇c, the at least one substrate of the light I substrate and the second substrate is in a top extinction 聿 ^ movable from the light When viewed in the axial direction, the first preceding pattern and the fourth (fourth) light _ are superposed on each other. In the correction unit described in Item No. 3 of the above-mentioned 11th, 2nd, 2nd, 2nd, == includes: at least one first unit 2, the above 4=the third bracket: at least one second unit extinction area, 3^ The second early extinction area is formed corresponding to the ❹: light area, and the at least one of the above ί2:, = $ has the above! The same shape and phase of the unit_domain are as follows: 5. The application unit _ 2 of the correction unit, wherein at least one of the second substrates of the light plate f is wound up === the second elimination circle 1. The correction unit according to claim 5, wherein the optical axis comprises: a plurality of i-th units arranged along a circumferential direction of the first substrate and the circle of the parent “~” 7. The correction unit according to claim 6, wherein the equiangular first unit extinction area is along the circumferential direction of the circle, and the correction unit is as described in item 7 of the patent scope. Here, 74 201022855 joupif.doc The first unit extinction region includes a linear region extending radially from the center of the circle. 9. The correction unit according to claim 2, At least one of the first substrate and the second substrate is movable in a direction transverse to the optical axis, and corresponds to a direction transverse to the optical axis of the second substrate and the second substrate Relative position change, from the above light When the direction is observed, the size of the overlap region in which the i-th matte pattern and the second quenched φ light pattern are overlapped is changed. 10. The correction unit according to any one of claims 1 to 9 The first substrate and the second substrate have a parallel plane plate. The correction unit according to the first aspect of the invention, wherein the first substrate and the second substrate are parallel to each other. The correction unit according to any one of the preceding claims, wherein the first matte pattern is formed on a surface of the first substrate on the emission side, and the second extinction is performed. The correction unit according to any one of the preceding claims, wherein the first matte pattern comprises: a distributed formation a plurality of first unit extinction regions, wherein the second extinction pattern includes a plurality of second unit extinction regions distributed corresponding to the plurality of first unit extinction regions. 75 201022855 i238Upif.doc 14· The correction unit according to any one of claims 1 to 13, wherein at least the extinction pattern of the first circumstance and the second extinction pattern of π includes: shading to block incident light 15. The compensation unit according to any one of the above-mentioned claims, wherein, at least one of the first matte pattern and the second extinction pattern comprises: a scattering region that scatters incident light . 16. 如申請專鄕圍第丨項至第15項中任—項所述之 補正單元,其中, 上述第1消光圖案及上述第2消光圖案中的至少一個 消光圖案包括:使入射光繞射的繞射區域。 17.-種補正單元,對形成於照明光㈣統的照明光瞳 的光曈強度分佈進行補正’上述補正單元包括:The correction unit according to any one of the preceding claims, wherein the at least one of the first matte pattern and the second extinction pattern comprises: diffracting incident light The diffraction area. 17. The correction unit corrects the pupil intensity distribution of the illumination pupil formed in the illumination light (four) system. The above correction unit includes: 第1消光圖案’形成在與上述照明光學系統的光轴垂 直的第1面上’上述第1面位於料於上述照明光曈的前 侧且具有倍率的絲元件、與鄰接於上賴明光瞳的後侧 且具有倍率的光學元件之間的照明光瞳空間内;以 第2消光圖案,定位於上述照明光曈空間内的比上述 第1面更後_位置’且形成在與上述第i面平行 面上; 上述第Μ光圖案包括至少—個第 上述第2消光圖案包括與上述至少-個第!單位ί 區_對應地形成的H個第2單位消光區域, 76 201022855. j 厶 jovpif.doc 部分 18.、如申請專利範圍第17項所述之補正單元其中, 料1單位消光區域與上述第2單位消光區域具有 ==卜!形狀及相同的大小,上述第1單位消光區 域” 4第2早位錢區域沿著橫切上述光軸的第1方向 而錯位。The first matte pattern 'is formed on the first surface perpendicular to the optical axis of the illumination optical system. The first surface is located on the front side of the illumination pupil and has a magnification. The first element is adjacent to the illumination element and has a magnification. a rear side and an illumination pupil space between the optical elements having a magnification; and a second extinction pattern positioned in the illumination pupil space later than the first surface and formed at the ith position The parallel light surface; the first light pattern includes at least one of the second light extinction patterns including at least one of the above! Unit ί zone_ correspondingly formed H second unit extinction zones, 76 201022855. j 厶jovpif.doc Part 18. The correction unit as described in claim 17 of the patent application, wherein the unit 1 unit extinction zone and the above The two unit extinction regions have a shape of the same size and the same size, and the first unit extinction region 4 is displaced in the first direction transverse to the optical axis. 一 19.如申明專利範圍第17項或第以項所述之補正單 元’上述補正單元包括: 透光性的第1基板’配置在鄰接於上述照明光瞳的前 側且具有倍率的光學元件、與雜於上述照明光瞳的後側 且具有倍率的光學元件之間的照明光瞳空間内,且沿著上 述照明光學系統的光轴而具有規定的厚度;以及 透光性的第2基板,配置於上述照明光曈空間中的比 上述第1基板更後侧的位置,且沿著上述光轴而具有規定 的厚度, 上述第1消光圖案形成於上述第1基板的光的入射側 的面及光的射出側的面中的至少一個面上, 上述第2消光圖案形成於上述第2基板的光的入射側 的面及光的射出侧的面中的至少一個面上。 20. —種補正單元,對形成於照明光學系統的照明光瞳 的光瞳強度分佈進行補正’上述補正單元包括: 透光性的第1基板’配置在鄰接於上述照明光瞳的前 侧且具有倍率的光學元件、與鄰接於上述照明光瞳的後侧 77 201022855 jzj«upif.doc 且具有倍率的光學元件之間的照明光曈空間内,且沿著上 述照明光學系統的光軸而具有規定的厚度;以及 透光性的第2基板,配置於上述照明光曈空間中的比 上述第1基板更後側的位置,且沿著上述光轴而具有規定 的厚度, 上述第1基板包括形成於光的入射侧的面及光的射出 侧的面中的至少一個面上的第1消光圖案, 上述第2基板包括形成於光的入射侧的面及光的射出 侧的面中的至少一個面上的第2消光圖案, © 上述第1消光圖案包括至少一個第i單位消光區域, 上述第2消光圖案包括與上述至少一個第丨單位消光 區域相對應地形成的至少一個第2單位消光區域, 上述第1基板與上述第2基板沿著橫切上述光軸的第 1方向而可相對移動。 21.如申請專利範圍第2〇項所述之補正單元,其中, 上述第1單位消光區域與上述第2單位消光區/域具有 彼此相同的外形形狀及相同的大小, 、 盘上:C向觀察時,以上述第1單位消光區域 ““二肖光區域彼此重合的基準狀態作為中心, t上述先軸方向贿時,以第丨單 光區域的-部分相重合的範=,: 述第1基板與上述第2基板可相對移動。 補正= 項至第2丨射任—項所述之 78 201022855 _ 一心一 w_pif.doc 主基宙板及上述第2基板具有平行平面板的形態。 23·如申請專職圍第22養叙氣單元,其中, 亡述基板與上述第2基板是彼此平行地進行配置。 捕正i =利制第19項至第23項中任-項所述之 補正單7G,其中, 的面上形成於上述第1基板的上述射出侧 侧的面/ 形成於上述第2基板的上述入射 25.如7專利範圍第17項至第24項中任—項所述之 補正單,其中, 述第1 '肖光圖案包括經分佈形成的多個第1單位消 无區域, 相對第1消光圖案包括與上述多個第1單位消光區域 相對應地77佈形成的多個第2單位消光區域。 己6.如申請專嫌㈣”項至第Μ項中任—項所述之 補正早7^ ’其中, 1單位&gt;肖光11域及上述第2單㈣光區域中的 域二一 I位消光區域包括:對人射紐行辅的遮光區 補正項中任-項所述之 至小1單位消光輯及上述第2單位消光區域中的 夕ml早位聽區域包括:使人射光散軸散射區域。 如申請專利範圍第17項至第27項中任一項所述之 79 201022855 J/J6Upif.d〇C 補正單元,其中, 、上述第1單位〉肖光區域及上述第2單位消光區域中的 至J個單位消光區域包I使人射光繞射的繞射區域。 29.—種補正單元,對形成於照明光學系統的照明光瞳 的光瞳強度分佈進行補正,上述補正單元包括: 透光性的第1基板,配置在鄰接於上述照明光曈的前 侧且具有倍率的光學元件、與鄰接於上述照明光瞳的後側 且具有倍率的光學元件之間L絲瞳空_,且沿著上 述照明光學系統的光軸而具有規定的厚度;以及 透光性的第2基板,配置於上述照明光曈空間中的比 上述第1基板更後_位置,且沿著上述光軸而具 的厚度, 上述第1基板包括形成於光的入射侧的面及光的射出 侧的面中的至少一個面上的第i消光圖案, 上述第2基板包括形成於光的入射侧的面及光的射出 侧的面中的至少一個面上的第2消光圖案, 上述第1消光圖案包括至少一個第丨單位消光區域, 上述第2消光圖案包括與上述至少一個第丨單位消光 區域相對應地形成的至少一個第2單位消光區域, 上述第1單位消光區域與上述第2單位消光區域對於 以第1入射角入射至上述第1單位消光區域的光賦予第; 消光率,且對以與上述第1入射角不同的第2入射角而入 射至上述第1單位消光區域的光賦予與上述第丨消光率 同的第2消光率, ' 201022855 q ovpif.doc 上述第1基板與上述第2基板的位置關係可變更。 30·如申請專利範圍第29項所述之補正單元其中, 對應於上述第1基板與上述第2基板的相對位置的變 化及朝上述第1基板人射的光的人射肖度的變化,上述第 1消光圖案及上 2消光_所產生的消光率發生變化。 31.如申請專利範圍第29項所述之補正單元,其中, 自上述光軸方向觀察時,上述第1單位消光區域的一 邛分與上述第2單位消光區域的一部分相重合。 32·如申請專利範圍第29項所述之補正單元,其中, 上述第1基板與上述第2基板沿著橫切上述光軸的第 1方向而可相對移動。 %·種照明光學系統,利用來自光源的光來對被照射 面進行照明,上述照明光學系統包括: ^佈形成光料統’具有光學毅^,且在比上述光 予積^更後觸㈣光瞳上形成光㈣度分佈;以及 时一如中請專利範圍第丨項至第32項中任—項所述的補正 2,配置於包含上述後_照明光曈的上述照明光瞳空 間内。 中,34.如申請專利範圍第%項所述之照明光學系統,其 單位二刀器石著規定方向而具有細長的矩形狀的 早位波刚刀割面,上述補正單元㈣定位, 明光瞳的、夹持上述㈣絲祕的光軸而在*上規'定 方向正交的方向上隔_隔的—㈣域的光起作用。 81 201022855 w:) isupif.doc 35.-種照明光學系統,利用來自光源的光來對被照射 面進行照明,上述照明光學系統包括: 分佈形成光學系統’具有光學積分器,且在比上述光 學積分器更後_㈣光瞳上形成紐·分佈;以及 。如申睛專利範圍第1項至第32項中任一項所述的補正 單元,配置於包含上述後侧的照明光瞳的上述照明光瞳空 間内, 。上述光學積分器沿著規定方向而具有細長的矩形狀的 單位波前分#j面,上述規定方向對應於上频正單元 〇 第1方向。 36·如申請專利範圍第33項至第35項中任一項所述之 照明光學系統,更包括: 光量分仙整部,對上述被·面上_度分佈、或 形成於上述被照射面的照明區域的形狀進行變更。 3?.如申請專利範㈣36項所述之朗光學系統,其 中, 、 ❹ 上述光量分佈調整部對於上述補正單元對上述被 面上的光量分佈所造成的影響進行補正。 專^^33項至㈣财任-項所述之 ,上述照明光學系統是與投影光學系統組合錢,上述 投影光學系卿成與上述觀射Φ成光學餘的面 處於與上述㈣絲系_孔徑麵 輛的位置。 Τ/、 82 201022855. j^joupif.doc 39·如申請專利範圍第33項至第%項中任一項 照明光學系統,其中, 上述分佈形成光學系統在鄰接於上述光學積分器的照 明光瞳上形成上述光瞳強度分佈, w 上述補正單元配置於上述鄰接的照明光曈。 40. 如申請專利範圍第33項至第38項中任一項所述之 照明光學系統,其中, 參上述分佈形成光學系統包括:中繼光學系統, 上述t繼光學系統對來自上述光學積分器的光進行引 導而於上述後侧的照明光瞳上形成光瞳強度分佈, 上述補正單7C配置於包含上述後侧的照明光瞳的上述 照明光曈空間内。 41. 如申請專利範圍第4〇項所述之照明光學系統,其 中, 、 上述中繼光學系統於上述後侧的照明光瞳上,形成與 鄰接於上述光學積分料卿級成光學共_位置。 ® 42.—種曝光裝置,包括: 、如申請專利範圍第33至第41項中任一項所述的照明 光學系統,對規定的圖案進行照明,以將上述規定的圖案 曝光至感光性基板。 43.如申請專利範圍第42項所述之曝光裝置,其中, 上述曝光装置包括: ' 、於上述感光性基板上形成上述規定的圖案的像的投影 光學系統’使上述規定的圖案及上述感光性基板相對於上 83 201022855 j238Upif.doc 述投影光學祕而沿著掃财向相對移動以將上述規定 的圖案投影曝光至上述感光性基板。 44.如申明專利範圍第43項所述之曝光裝置,其中, 上述光學積分器中的上述規定方向對應於與上述掃描 方向正交的方向。 45·一種元件製造方法,包括: 曝光步驟,使用如申請專利範圍第42項至第44項中 所述的曝光裝置’將上述規定的圖案曝光至上述感 无性基板; ,影步驟,使轉印有上述蚊的圖案的上 ==於上述感=基板的表面上形成與上述規定的圖 案相對應的形狀的罩幕層;以及 面進驟,經由上述罩幕層而對上述感光性基板的表A correction unit according to claim 17 or claim 3, wherein the correction unit includes: the translucent first substrate ′ is disposed on an optical element having a magnification adjacent to a front side of the illumination pupil, a second substrate having a predetermined thickness in an illumination pupil space between the optical elements having a magnification on the rear side of the illumination pupil and having a magnification, and a light transmissive second substrate; a position disposed on the rear side of the first substrate in the illumination pupil space, and having a predetermined thickness along the optical axis, wherein the first matte pattern is formed on a surface on the incident side of the first substrate At least one of the surfaces on the light-emitting side, the second matte pattern is formed on at least one of a surface on a light incident side and a light-emitting side surface of the second substrate. 20. A correction unit for correcting a pupil intensity distribution of an illumination pupil formed in an illumination optical system, wherein the correction unit includes: a translucent first substrate ′ disposed adjacent to a front side of the illumination aperture An optical element having a magnification, and an illumination pupil space between the optical element having a magnification adjacent to the rear side 77 201022855 jzj«upif.doc of the illumination pupil, and having an optical axis along the illumination optical system a predetermined thickness and a second substrate having a light transmissive property disposed at a position further rearward of the first substrate than the first substrate, and having a predetermined thickness along the optical axis, wherein the first substrate includes a first matte pattern formed on at least one of a surface on the incident side of the light and a surface on the light emitting side, wherein the second substrate includes at least a surface formed on the incident side of the light and a surface on the light emitting side a second extinction pattern on one surface, © the first matte pattern includes at least one i-th unit extinction region, and the second extinction pattern includes at least one of the second unit extinction regions At least one second unit extinction region formed corresponding to the domain, the first substrate and the second substrate are relatively movable along a first direction transverse to the optical axis. The correction unit according to claim 2, wherein the first unit extinction region and the second unit extinction region/domain have the same outer shape and the same size, and the disk: C direction In the case of observation, the first unit extinction region "the reference state in which the two opacity regions overlap each other is used as the center, and when the above-mentioned first-axis direction is bribed, the portion in which the -th portion of the first-order single-light region overlaps is determined. The 1 substrate and the second substrate are relatively movable. Correction = Item to 2nd Radiation - Item 78 201022855 _ One Heart One w_pif.doc The main base plate and the above second substrate have a parallel plane plate form. 23. If the application of the full-time enclosure 22 gas-cultivating unit is performed, the dead substrate and the second substrate are arranged in parallel with each other. The correction sheet 7G according to any one of the items 19 to 23, wherein the surface is formed on the surface on the emission side of the first substrate/on the second substrate. The above-mentioned incidental invention, wherein the first 'Xiaoguang pattern includes a plurality of first unit elimination regions formed by the distribution, the relative number is the same as the correction sheet according to any one of Item 7 to Item 24. The first matte pattern includes a plurality of second unit extinction regions formed by 77 cloths corresponding to the plurality of first unit extinction regions. 6. In the case of applying for the suspected (4) item to the third item of the item, the correction is as follows: 1 unit&gt; Xiaoguang 11 domain and the second (four) light region in the above-mentioned field 2 The position of the matte region includes: a sub-mesh extinction sequence as described in any one of the correction items of the shading area supplemented by the person shooting line, and an eve ml early listening area in the second unit extinction area including: The axis of the present invention is the 79 201022855 J/J6 Upif.d〇C correction unit according to any one of claims 17 to 27, wherein the first unit > the xiaoguang region and the second unit The diffraction area to the J unit extinction area package I in the extinction area is a diffraction area for diffracting the human light. 29. The correction unit corrects the pupil intensity distribution of the illumination pupil formed in the illumination optical system, and the correction unit The first substrate having a light transmissive property is disposed between an optical element having a magnification adjacent to the front side of the illumination pupil and an optical element having a magnification adjacent to a rear side of the illumination pupil. _, and along the optical axis of the illumination optical system described above a predetermined thickness; and a second substrate having a light transmissive property disposed in the illumination pupil space at a position further than the first substrate and having a thickness along the optical axis, wherein the first substrate includes a first substrate An i-th matte pattern on at least one of a surface on the incident side of the light and a surface on the light-emitting side, wherein the second substrate includes at least one of a surface formed on the incident side of the light and a surface on the light-emitting side a second matte pattern on the surface, the first matte pattern includes at least one second unit extinction region, and the second matte pattern includes at least one second unit extinction region formed corresponding to the at least one second unit extinction region, The first unit extinction region and the second unit extinction region provide a second extinction ratio to light incident on the first unit extinction region at a first incident angle, and a second incident angle different from the first incident angle. The light incident on the first unit extinction region is given a second extinction ratio which is the same as the second extinction ratio, '201022855 q ovpif.doc the position of the first substrate and the second substrate The correction unit according to claim 29, wherein the correction unit corresponds to a change in the relative position of the first substrate and the second substrate, and a person that emits light toward the first substrate The gradation of the first gradation pattern and the gradation of the gradation of the gradation of the gradation of the gradation of A unit of the unit matte region is overlapped with a portion of the second unit matte region. The correction unit according to claim 29, wherein the first substrate and the second substrate are transversely cut The optical axis is relatively movable in the first direction. The illumination optical system illuminates the illuminated surface by using light from a light source, and the illumination optical system includes: a cloth forming light material system having an optical property, and touching (4) after the light accumulation product Forming a light (four) degree distribution on the aperture; and correcting the correction 2 as described in any of the above-mentioned patent scopes to the 32th item, in the above-mentioned illumination pupil space including the above-mentioned rear illumination aperture . 34. The illumination optical system according to Item 5% of the patent application, wherein the unit two-knife stone has a slender rectangular shape of the early position of the cutting blade in a predetermined direction, and the correction unit (4) is positioned, and the light is fixed. The optical axis of the above-mentioned (four) silk is clamped, and the light of the (four) domain is separated in the direction orthogonal to the direction of the *. 81 201022855 w:) isupif.doc 35. An illumination optical system that illuminates an illuminated surface using light from a light source, the illumination optical system comprising: a distribution forming optical system having an optical integrator and being optical The integrator is later _ (four) on the pupil to form a New · distribution; and. The correction unit according to any one of claims 1 to 32, wherein the correction unit is disposed in the illumination aperture space including the illumination aperture on the rear side. The optical integrator has an elongated rectangular unit wavefront portion #j plane along a predetermined direction, and the predetermined direction corresponds to the upper frequency positive unit 〇 first direction. The illumination optical system according to any one of claims 33 to 35, further comprising: a light-quantifying portion, which is distributed on the surface of the surface, or formed on the illuminated surface The shape of the lighting area is changed. 3. The optical system according to claim 36, wherein the light quantity distribution adjusting unit corrects the influence of the correction unit on the light amount distribution on the surface. Specifically, the illumination optical system is combined with the projection optical system, and the projection optical system is formed into an optical residual surface with the above-mentioned observation Φ and is in the above (4) silk system. The position of the aperture face. </ RTI> </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; The pupil intensity distribution is formed on the upper surface, and the correction unit is disposed in the adjacent illumination pupil. The illumination optical system according to any one of claims 33 to 38, wherein the above-mentioned distribution forming optical system comprises: a relay optical system, and the above-described t-optical system pair is from the optical integrator The light is guided to form a pupil intensity distribution on the illumination pupil on the rear side, and the correction sheet 7C is disposed in the illumination pupil space including the illumination pupil on the rear side. The illumination optical system according to claim 4, wherein the relay optical system is formed on the illumination pupil of the rear side to form an optical _ position adjacent to the optical integration material . The illuminating optical system according to any one of claims 33 to 41, wherein the predetermined pattern is illuminated to expose the predetermined pattern to the photosensitive substrate. . The exposure apparatus according to claim 42, wherein the exposure apparatus includes: 'a projection optical system that forms an image of the predetermined pattern on the photosensitive substrate' to make the predetermined pattern and the photosensitive The substrate is relatively moved along the sweeping direction with respect to the projection optical transparency to project the above-described predetermined pattern onto the photosensitive substrate. The exposure apparatus according to claim 43, wherein the predetermined direction in the optical integrator corresponds to a direction orthogonal to the scanning direction. 45. A method of manufacturing a device, comprising: an exposing step of exposing the prescribed pattern to the susceptibility substrate using an exposure apparatus as described in claim 42 to claim 44; a mask layer having a pattern of the above-mentioned mosquitoes == a mask layer having a shape corresponding to the predetermined pattern formed on the surface of the substrate; and a surface step, a table of the photosensitive substrate via the mask layer
TW098132751A 2008-11-28 2009-09-28 Illumination optical system, exposure apparatus and device manufacturing method TWI489219B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US19343408P 2008-11-28 2008-11-28
US19383108P 2008-12-29 2008-12-29

Publications (2)

Publication Number Publication Date
TW201022855A true TW201022855A (en) 2010-06-16
TWI489219B TWI489219B (en) 2015-06-21

Family

ID=42225554

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098132751A TWI489219B (en) 2008-11-28 2009-09-28 Illumination optical system, exposure apparatus and device manufacturing method

Country Status (2)

Country Link
TW (1) TWI489219B (en)
WO (1) WO2010061674A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI559944B (en) * 2014-09-29 2016-12-01 Sharp Kk
TWI658333B (en) * 2016-08-24 2019-05-01 日商佳能股份有限公司 Exposure device, exposure method, and article manufacturing method
TWI668522B (en) * 2016-09-09 2019-08-11 日商佳能股份有限公司 Illumination optical system, exposure device, and article manufacturing method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5190804B2 (en) * 2008-07-16 2013-04-24 株式会社ニコン Dimming unit, illumination optical system, exposure apparatus, and device manufacturing method
JP5187636B2 (en) * 2009-01-16 2013-04-24 株式会社ニコン Correction unit, illumination optical system, exposure apparatus, and device manufacturing method
CN111352231B (en) * 2018-12-24 2021-10-22 上海微电子装备(集团)股份有限公司 Transmittance adjusting device
CN112015053B (en) * 2019-05-30 2022-02-08 上海微电子装备(集团)股份有限公司 Pupil compensation device and photoetching machine
TWI747118B (en) * 2019-12-26 2021-11-21 佳世達科技股份有限公司 Imaging module and electronic device
CN113514910B (en) * 2021-04-13 2023-04-18 长江存储科技有限责任公司 Diffractive optical element, acquisition method and optical system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4545854B2 (en) * 1999-11-05 2010-09-15 キヤノン株式会社 Projection exposure equipment
JP2002100561A (en) * 2000-07-19 2002-04-05 Nikon Corp Aligning method and aligner and method for fabricating device
TW546699B (en) * 2000-02-25 2003-08-11 Nikon Corp Exposure apparatus and exposure method capable of controlling illumination distribution
JP2002158157A (en) * 2000-11-17 2002-05-31 Nikon Corp Illumination optical device and aligner and method for fabricating microdevice
JP4324957B2 (en) * 2002-05-27 2009-09-02 株式会社ニコン Illumination optical apparatus, exposure apparatus, and exposure method
TW200307179A (en) * 2002-05-27 2003-12-01 Nikon Corp Lighting device, exposing device and exposing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI559944B (en) * 2014-09-29 2016-12-01 Sharp Kk
TWI658333B (en) * 2016-08-24 2019-05-01 日商佳能股份有限公司 Exposure device, exposure method, and article manufacturing method
TWI668522B (en) * 2016-09-09 2019-08-11 日商佳能股份有限公司 Illumination optical system, exposure device, and article manufacturing method

Also Published As

Publication number Publication date
TWI489219B (en) 2015-06-21
WO2010061674A1 (en) 2010-06-03

Similar Documents

Publication Publication Date Title
TW201022855A (en) Correction unit, illumination optical system, exposure apparatus and device manufacturing method
JP5326259B2 (en) Illumination optical apparatus, exposure apparatus, and device manufacturing method
JP5428250B2 (en) Illumination optical system, exposure apparatus, optical element, manufacturing method thereof, and device manufacturing method
KR101682727B1 (en) Illumination optical system, exposure device, anf device manufacturing method
TW201104333A (en) Imaging optical system and projection exposure installation for microlithography with an imaging optical system of this type
TW200949459A (en) Spatial light modulating unit, illumination optical system, aligner, and device manufacturing method
TWI283798B (en) A microlithography projection apparatus
JP2014534643A (en) Mirror placement
TW200937138A (en) Spatial light modulator, illumination optical system, aligner, and device manufacturing method
TW201219987A (en) Illumination optical system for microlithography and projection exposure system with an illumination optical system of this type
JP5541604B2 (en) Illumination optical system, exposure apparatus, and device manufacturing method
TW200307179A (en) Lighting device, exposing device and exposing method
TW201027270A (en) Illumination optical system, exposure system and method of fabricating device
JP5182588B2 (en) Optical integrator, illumination optical system, exposure apparatus, and device manufacturing method
JP2010097975A (en) Correction unit, illumination optical system, exposure apparatus, and device manufacturing method
JP5326733B2 (en) Illumination optical system, exposure apparatus, and device manufacturing method
JP5387893B2 (en) Illumination optical system, exposure apparatus, and device manufacturing method
JP5190804B2 (en) Dimming unit, illumination optical system, exposure apparatus, and device manufacturing method
TW497149B (en) An illumination optical apparatus
TWI480705B (en) Illumination optical system, exposure apparatus, and device manufacturing method
JP5201061B2 (en) Correction filter, illumination optical system, exposure apparatus, and device manufacturing method
JP5187631B2 (en) Correction unit, illumination optical system, exposure apparatus, and device manufacturing method
JP2010067943A (en) Correction unit, illumination optical system, exposure device, and method of manufacturing device
WO2003041134A1 (en) Illumination optical device, exposure device, and exposure method
JP5187632B2 (en) Correction unit, illumination optical system, exposure apparatus, and device manufacturing method