TW200950123A - Method of preparing the dye-sensitized solar cell - Google Patents

Method of preparing the dye-sensitized solar cell Download PDF

Info

Publication number
TW200950123A
TW200950123A TW098108569A TW98108569A TW200950123A TW 200950123 A TW200950123 A TW 200950123A TW 098108569 A TW098108569 A TW 098108569A TW 98108569 A TW98108569 A TW 98108569A TW 200950123 A TW200950123 A TW 200950123A
Authority
TW
Taiwan
Prior art keywords
mol
epoxy resin
solar cell
dye
frit
Prior art date
Application number
TW098108569A
Other languages
Chinese (zh)
Other versions
TWI469381B (en
Inventor
Jung-Hyun Son
Sang-Kyu Lee
Han-Bok Joo
Jong-Dai Park
Original Assignee
Dongjin Semichem Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongjin Semichem Co Ltd filed Critical Dongjin Semichem Co Ltd
Publication of TW200950123A publication Critical patent/TW200950123A/en
Application granted granted Critical
Publication of TWI469381B publication Critical patent/TWI469381B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • H01G9/2077Sealing arrangements, e.g. to prevent the leakage of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention relates to a method for preparing a dye-sensitized solar cell, particularly to a method for preparing a dye-sensitized solar cell, which uses a low melting point glass frit composition and a photo-curable resin composition thus enabling low temperature laser sintering to decrease damage to device which is unstable to heat, and conducts pre-sealing with a photo-curable resin composition thus increasing efficiency of glass frit sealing and process efficiency, thereby preventing volatilization of an electrolyte of a solar cell which is operated with exposed to severs external environment from the sealed part thus prolonging endurance life, and providing seal having resistance against external shock or damage and high intensity thus prolonging life of a dye-sensitized solar cell and increasing durability thereof.

Description

200950123 六、發明說明: 【發明所屬之技術領域3 發明領域 本發明係有關一種用於製備染料敏化之太陽能電池的 5 方法,本發明更有關一種用於製備一染料敏化之太陽能電 池的方法,該方法係使用一低熔點玻璃料組成物與一光可 固化樹脂組成物,因此使低溫雷射燒結變得可能,以降低 對一熱不穩定之元件的傷害’且本方法係以光可固化樹脂 進行預密封,因此增加玻璃料密封的效率與製程效率,藉 ίο 此避免一太陽能電池(其係暴露至嚴苛的外界環境下而操 作)之一電解液自該密封部位的揮發,因而延長耐用壽命, 且藉此提供具有對抗外界撞擊或傷害與高強度的密封性, 因而延長一染料敏化之太陽能電池的壽命且增加電池的耐 久性。 15200950123 VI. Description of the Invention: [Technical Field 3 of the Invention] Field of the Invention The present invention relates to a method for preparing a dye-sensitized solar cell, and more to a method for preparing a dye-sensitized solar cell The method uses a low melting glass frit composition and a photocurable resin composition, thereby making low temperature laser sintering possible to reduce damage to a thermally unstable component and the method is optically The curing resin is pre-sealed, thereby increasing the efficiency of the frit sealing and the process efficiency, thereby avoiding the evaporation of the electrolyte from the sealing portion of one of the solar cells, which is operated under exposure to a harsh external environment. Extending the durability life, and thereby providing a seal against external impact or damage and high strength, thereby extending the life of a dye-sensitized solar cell and increasing the durability of the battery. 15

20 【先前技術3 發明背景 自 1991 年 Swiss Federal Institute of Technology Lausanne(EPFL)之Michael Gratzel等人發明一染料敏化之 奈米顆粒—氧化欽太陽能電池後’很多與此方面有關之研 究係持續發展。因為與現存之矽太陽能電池相較,染料敏 化之太陽能電池具有非常低的製造成本,故可取代現存之 非晶矽太陽能電池。而且,染料敏化之太陽能電池係為一 種光電化學太陽能電池,其主要是由染料分子(可吸收可見 光以產生電子-電洞對)與過渡金屬氧化物(用於傳送所產生 3 200950123 之電子)所組成。 一般而言,一染料敏化之太陽能電池的單位晶胞係由 上與下透明基板、分別形成於該等透明基板上之導電透明 電極、一吸附染料之過渡金屬氧化物的多孔層(形成於該相 5 當於一第一電極之導電透明電極上)、一催化薄膜電極(形成 於該相當於一第二電極之導電透明電極上)、與一填充於過 渡金屬氧化物(例如Ti〇2)之多孔性電極與催化薄膜電極間 之電解液所構成。 因此,為了穩定維持該填充於第一與第二電極間之電 10 解液,一熱塑性聚合物薄膜係置放於該第一與第二電極之 間’且被熱壓以與第一及第二電極結合,藉此以形成一空 室,一電解液係可注入於此空室,且儲存在該第一與第二 電極之間。 然而’因為熱塑性聚合物薄膜不具有一精巧結構,其 15 易於因高溫、過度的日光、熱循環等而惡化,且電解液係 因夜晚/白天或冬天/夏天等之熱循環而揮發,而降低太陽能 電池的效率,最終結束電池的壽命。而且,熱塑性聚合物 薄膜係容易因外界撞擊而受損(起因於其之有限的機械強 度),而縮短一太陽能電池的壽命,因而產生耐久性的問題。 20 【發明内容】 發明概要 為了克服前述習知的問題,本發明之一目的係在提供 一種用於製備一染料敏化之太陽能電池的方法,該方法係 使用一低炼點玻璃料組成物與一光可固化樹脂組成物’因 200950123 - 而使低溫雷燒結變得可能,以降低對一熱不穩定之元件的 傷害,且本方法係以光可固化樹脂進行預密封,因此增加 玻璃料密封的效率與製程效率,藉此避免一太陽能電池(其 係暴露至嚴苛的外界環境下而操作)之—電解液自該密封 5部位的揮發,因而延長耐用壽命,且提供具有對抗外界撞 擊或傷害與高強度的密封性,因而延長一染料敏化之太陽 " 能電池的壽命且增加電池的耐久性。 ❹ 為了達到前述的目的,本發明提供一種用於製備一染 料敏化之太陽能電池的方法,包含接合一上基板與一接合 10 基板,该接合基板係接合至該上基板,其包含下列步驟: 沿該染料敏化之太陽能電池的一密封線,於該上基板或該 接合基板之一接合表面上施用一玻璃料;在該上基板或該 接合基板之該接合表面的邊緣且遠離該密封線處,施用一 光可固化樹脂組成物;接合該上基板與該接合基板 ,以形 15 成一總成;照射光線以固化該總成上之光可固化樹脂組成 φ 物’以固化該總成;以及沿該總成的玻璃料照射雷射以燒 結之。 本發明亦提供一種由前述方法所製備之染料敏化太陽 能電池。 20 依據本發明之用於製造一種染料敏化之太陽能電池的 方法’一低熔點玻璃料組成物與一光可固化樹脂組成物係 被使用’以使低溫雷射燒結變得可能,以降低對一熱不穩 定之兀件的傷害,且以光可固化樹脂進行預密封,以增加 玻璃料密封的效率與製程效率,藉此避免一太陽能電池(其 5 200950123 ^暴露至嚴苛㈣界環境下而操作)之—電解液自該密封 縣的揮發,因而延長耐用壽命且提供具有對抗外界撞 ,或傷害與高強度的密封性,因而延長—染料敏化之太陽 能電池的壽命且增加電池的耐久性。 圖式簡單說明 第1圖係概略顯示依據本發明之一具體實施例之用於 製備一染料敏化之太陽能電池的方法。 【實施方式】 實施本發明的方式 本發明將參考圖式來作詳細的解釋。 本發明係有關-種用於製備一染料敏化之太陽能電池 的方法,包含接合一上基板與一接合至該上基板的接合基 板,該方法包含下列步驟:沿該染料敏化之太陽能電池的 一雄、封線’於該上基板或該接合基板之一接合表面上施用 一玻璃料;在該上基板或該接合基板之該接合表面上的邊 緣且遠離該密封線處’施用一光可固化樹脂組成物;接合 該上基板與該接合基板,以形成一總成;照射光線以固化 該總成上之光可固化樹脂組成物,以固化該總成;以及沿 該總成的玻璃料照射雷射以燒結之。 一般而言’ 一染料敏化之太陽能電池係由一第一電極 (相當於第1圖之下基板-一接合基板,其由一具有含染料之 多孔性薄膜的一基板所構成)、一第二電極(相當於第1圖之 上電極,其相對該第一電極(下電極)而排列)、以及一填充 於該等電極間之電解液所組成。於本發明中,為了長期穩 200950123 定儲存電解液於該第一與第二電極之間,第一與第二電極 係,此空間相隔,其間之空室係藉燒結玻璃料而密封且 該密封之空室係被填充有一電解液。至於多孔性薄膜,各 種已知之染料可吸附之多孔性薄膜皆可使用,舉例言之, 5過渡金屬氧化物(例如,具有10至丨5 nm尺寸之Ti〇2)係可被 應用且燒結以獲得—多孔性薄膜。透明基板(其上形成有該 夕孔性薄膜)係不必限制於一平坦基板且其可包含一彎曲 ❹基板,而且,可使用各種常使用於—太陽能電池(其包括一 由可見光或特定波長光波可穿透之材料(例如,玻璃)所製得 1〇 之基板)的透明基板。一導電基板較佳係用於一電極。透明 基板的具體例子包括已知之透明玻璃、透明樹脂、PET、 ITO、或FTO等。同時,為了得到導電性,除了前述材料, 可進一步於該多孔性薄膜與該基板間包括一導電薄膜或一 塗層(ITO、FTO、或導電聚合物)至於該相對於第一電極 15 設置之第二電極(上基板),可使用任何常使用以作為一太陽 _ 能電池之第二電極的基板,且其不必限制於一平坦基板, 而可包括一彎曲基板。該基板較佳係由可讓可見光或特定 波長之光波所穿透之材料所製成,例如玻璃,且為了此原 因,其可由已知之透明玻璃、PET玻璃、ITO玻璃、FTO玻 20 璃等所製成。為了得到導電性,較佳係可進一步包含一導 電薄膜或塗層(ITO、FTO、或導電聚合物)。而且,為了增 加太陽光的吸收效果並活化反應,在該第一電極最外側處 可進一步包含一催化金屬層。 染料敏化之太陽能電池的上基板可由玻璃所製成,且 7 200950123 必要的話’下基板或接合基板可由玻璃所製成(如第1圖所 不)’或其可由其他材料所製成(假如一染料敏化之太陽能電 池僅具有上與下基板,該下基板係相當於一接合基板;而 Μ如其具有多於二層的多層結構,-接合基板係接合至該 5上基板的底部’且其他基板可接合至該接合基板下方)。 如第1圖所示,可於一基板上製造多個染料敏化之太陽 能電池的晶胞(於第!圖中呈2χ2陣列),或於一基板上僅製 造一晶胞。因為各晶胞必須維持其接合面上的密封,如第1 圖所不,玻璃料組成物係沿密封線而施加,該密封線係呈 10環狀曲線而密封晶胞的外部。密封線可依據元件形狀而呈 各種形狀。圖所示,玻璃料係沿接合面上之密封線而 施加。接合面可為上基板的底部或下基板(或接合至上基板 之接合基板)的頂部,其維持該接合部位的密封性。玻璃料 可藉各種習知已知的方法而施加,且舉例言之,玻璃料可 15製備呈一玻璃膠,並藉網版印刷方法而印刷並乾燥。 至於玻璃料,任何習知之玻璃料皆可使用,且較佳是 使用含0 〜30 _% p2〇5、〇 〜5〇 m〇1% 〜则收20 [Prior Art 3 Background of the Invention Since Michael Gratzel et al. of the Swiss Federal Institute of Technology Lausanne (EPFL) in 1991 invented a dye-sensitized nanoparticle-oxidized Qin solar cell, many research related to this aspect continued to develop. . Since the dye-sensitized solar cell has a very low manufacturing cost as compared with the existing solar cell, it can replace the existing amorphous germanium solar cell. Moreover, the dye-sensitized solar cell is a photoelectrochemical solar cell mainly composed of dye molecules (which can absorb visible light to generate electron-hole pairs) and transition metal oxides (for transmitting electrons generated by 200950123) Composed of. In general, a unit cell of a dye-sensitized solar cell is formed of an upper and lower transparent substrate, a conductive transparent electrode respectively formed on the transparent substrate, and a porous layer of a transition metal oxide adsorbing the dye (formed on The phase 5 is on a conductive transparent electrode of a first electrode), a catalytic thin film electrode (formed on the conductive transparent electrode corresponding to a second electrode), and a filling metal oxide (for example, Ti〇2) The electrolyte is formed between the porous electrode and the catalytic thin film electrode. Therefore, in order to stably maintain the electric solution 10 filled between the first and second electrodes, a thermoplastic polymer film is placed between the first and second electrodes 'and is hot pressed to be the first and the second The two electrodes are combined to form an empty chamber, and an electrolyte solution can be injected into the empty chamber and stored between the first and second electrodes. However, because the thermoplastic polymer film does not have a delicate structure, its 15 is liable to be deteriorated by high temperature, excessive sunlight, thermal cycling, etc., and the electrolyte is volatilized by thermal cycles such as night/day or winter/summer, and is lowered. The efficiency of the solar cell ultimately ends the life of the battery. Moreover, the thermoplastic polymer film is liable to be damaged by external impact (caused by its limited mechanical strength), and shortens the life of a solar cell, thereby causing a problem of durability. SUMMARY OF THE INVENTION In order to overcome the aforementioned problems, it is an object of the present invention to provide a method for preparing a dye-sensitized solar cell using a low-refining frit composition and A photocurable resin composition 'because 200950123 - makes low temperature thunder sintering possible to reduce damage to a thermally unstable component, and the method is pre-sealed with a photocurable resin, thus increasing the frit seal Efficiency and process efficiency, thereby avoiding a solar cell (which is exposed to harsh external environments) - the volatilization of the electrolyte from the seal 5, thereby extending the durability life and providing resistance to external impact or Damage and high-strength sealing, thus extending the life of a dye-sensitized solar & battery, and increasing the durability of the battery. In order to achieve the foregoing objects, the present invention provides a method for preparing a dye-sensitized solar cell comprising bonding an upper substrate and a bonding 10 substrate, the bonding substrate being bonded to the upper substrate, comprising the steps of: Applying a frit on a bonding surface of the upper substrate or the bonding substrate along a sealing line of the dye-sensitized solar cell; at an edge of the bonding surface of the upper substrate or the bonding substrate and away from the sealing line Applying a photocurable resin composition; bonding the upper substrate and the bonding substrate to form an assembly; irradiating light to cure the photocurable resin composition φ on the assembly to cure the assembly; And exposing the laser along the frit of the assembly to sinter. The present invention also provides a dye-sensitized solar cell prepared by the aforementioned method. 20 A method for producing a dye-sensitized solar cell according to the present invention 'a low-melting glass frit composition and a photocurable resin composition are used' to enable low-temperature laser sintering to reduce A heat-labile component that is pre-sealed with a photocurable resin to increase the efficiency and process efficiency of the frit seal, thereby avoiding a solar cell (the 5 200950123 ^ exposure to the harsh (four) boundary environment And the operation) - the evaporation of the electrolyte from the sealed county, thereby extending the durability and providing a seal against external impact, or damage and high strength, thereby extending the life of the dye-sensitized solar cell and increasing the durability of the battery. Sex. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing a method for preparing a dye-sensitized solar cell according to an embodiment of the present invention. [Embodiment] Mode for Carrying Out the Invention The present invention will be explained in detail with reference to the drawings. The present invention relates to a method for preparing a dye-sensitized solar cell comprising bonding an upper substrate and a bonded substrate bonded to the upper substrate, the method comprising the steps of: sensitizing the solar cell along the dye Applying a frit to the bonding surface of the upper substrate or the bonding substrate; applying a photocurable on the edge of the bonding surface of the upper substrate or the bonding substrate and away from the sealing line a resin composition; bonding the upper substrate and the bonding substrate to form an assembly; irradiating light to cure the photocurable resin composition on the assembly to cure the assembly; and irradiating the glass frit along the assembly The laser is sintered. In general, a dye-sensitized solar cell consists of a first electrode (corresponding to the substrate below the first drawing - a bonded substrate composed of a substrate having a porous film containing a dye), The two electrodes (corresponding to the upper electrode of Fig. 1 arranged in relation to the first electrode (lower electrode)) and an electrolyte filled between the electrodes. In the present invention, in order to stably store the electrolyte between the first and second electrodes for a long period of time, the first and second electrode systems are separated from each other, and the empty space therebetween is sealed by the frit and the seal is sealed. The empty chamber is filled with an electrolyte. As for the porous film, various known dye-adsorbable porous films can be used. For example, a 5-transition metal oxide (for example, Ti〇2 having a size of 10 to 丨5 nm) can be applied and sintered. Obtained - a porous film. The transparent substrate (on which the thin film is formed) is not necessarily limited to a flat substrate and may include a curved germanium substrate, and various commonly used solar cells (which include a visible or specific wavelength light wave) may be used. A transparent substrate made of a permeable substrate (for example, glass). A conductive substrate is preferably used for an electrode. Specific examples of the transparent substrate include known transparent glass, transparent resin, PET, ITO, or FTO, and the like. Meanwhile, in order to obtain conductivity, in addition to the foregoing materials, a conductive film or a coating (ITO, FTO, or conductive polymer) may be further included between the porous film and the substrate, and the first electrode 15 is disposed. As the second electrode (upper substrate), any substrate which is often used as the second electrode of a solar cell can be used, and it is not necessarily limited to a flat substrate, but may include a curved substrate. The substrate is preferably made of a material that can transmit light of visible light or a specific wavelength, such as glass, and for this reason, it can be made of known transparent glass, PET glass, ITO glass, FTO glass, etc. production. In order to obtain conductivity, it is preferred to further comprise a conductive film or coating (ITO, FTO, or conductive polymer). Further, in order to increase the absorption effect of sunlight and activate the reaction, a catalytic metal layer may be further contained at the outermost side of the first electrode. The upper substrate of the dye-sensitized solar cell may be made of glass, and 7 200950123 if necessary, 'the lower substrate or the bonding substrate may be made of glass (as shown in FIG. 1)' or it may be made of other materials (if A dye-sensitized solar cell has only upper and lower substrates, the lower substrate is equivalent to a bonding substrate; and if it has a multilayer structure of more than two layers, the bonding substrate is bonded to the bottom of the upper substrate of the 5 Other substrates may be bonded to the underlying bonding substrate). As shown in Fig. 1, a plurality of unit cells of a dye-sensitized solar cell (in the form of a 2χ2 array in the figure) can be fabricated on a substrate, or only a unit cell can be fabricated on a substrate. Since each unit cell must maintain a seal on its joint surface, as shown in Fig. 1, the frit composition is applied along a seal line which has a 10-ring curve to seal the outside of the unit cell. The seal line can take various shapes depending on the shape of the element. As shown, the frit is applied along the seal line on the joint surface. The bonding surface may be the top of the bottom substrate or the lower substrate (or the bonding substrate bonded to the upper substrate) of the upper substrate, which maintains the sealing property of the bonding portion. The frit can be applied by a variety of conventionally known methods, and by way of example, the frit 15 can be prepared as a glass paste and printed and dried by screen printing. As for the glass frit, any conventional glass frit can be used, and it is preferable to use 0 to 30 _% p2 〇 5, 〇 〜 5 〇 m 〇 1% 〜

ZnO 0 ~ 15 mol% BaO '0-20 mol% As203'0-20 mol%ZnO 0 ~ 15 mol% BaO '0-20 mol% As203'0-20 mol%

Sb2〇3、〇 〜5 m〇1% In2〇3、〇 ~ 10 mol% Fe2〇3、〇 〜5 mol% 20 A12〇3、〇 〜20 m〇1% b2〇3、〇 〜1〇 _% Bi2〇3、與〇 ~ 1〇 mol% Ti02的破璃料。 一含有破璃料之玻璃料膠係沿邊緣而施加,且該玻璃 料膠組成物可包含a)該玻璃料,b)-有機接合劑,以及c) 有機’谷劑。該玻璃料膠組成物較佳係包含a)60至90重量 200950123 -伤之破璃料’ b) 0.1至5重量份之有機接合劑,以及c) 5至35 重量份之有機溶劑。 該破璃料較佳係包含10 ~ 25 mol% P205'40 ~ 50 mol% ~ 2〇 mol% ZnO、1 ~ 15 mol% BaO、1 ~ 10 mol% 5 Sb2〇i 、 1 ,Λ 〜10 mol% Fe203、0.1 〜5 mol% Al2〇3、0.1 ~ 5 m〇1% ^2〇3、1 〜W mol% Bi203、與0.1 〜5 m〇i% Ti〇2,更 佳係 L a 15 〜20 mol% P205、40 〜50 mol% V205、10 ~ 20 ❹ m〇1% Zn〇、5 〜l〇 mol% BaO、3 〜7 m〇l% Sb2〇3、5 〜1〇 腕1% Fe2〇3、0.1 ~ 5 mol% A1203、0.1 ~ 5 mol% b2〇3、丄 ~ 5 10 mol% Bl2〇3、0.1 〜5 mol% Ή〇2。 假若破璃料組份的含量超出前述範圍,玻璃化作用可 絲法達成、防水性質可㈣顯惡化、或電射燒結可能無 法達成。 μ 玻璃料較佳具有自300到40(TC的玻螭轉化溫度(Tg),以 15及自300到400它的軟化點(Tdsp)。在此等範圍中,低溫g下之 燒結穩定性最佳。 m 而且,玻璃料較佳具有一仏丨至如咖的顆粒尺寸。在 此範圍中,使低溫製程變得可行,因而適用於密封—對熱 不穩定的元件,且一雷射製程係變得可行, … 闷而増加電齑 2〇 元件之密封效果。 < 在玻璃料膠組成物中,a)玻璃料係如前所述, b)有機接合劑,可使用市售可得之有機接合劑。有而有關 劑的具體例子包括乙基機維素類之共聚物或丙烯酸義接合 共聚物。而且,至於幻有機溶劑,可使用佐土之 J 與使用於 9 200950123 本發明之玻璃料膠組成物的有機接合劑相容之任何有機溶 劑’且具體例子包括適用於乙基機維素類之有機接合劑的 丁基卡必醇醋醆酯(butylcarbitolacetate (BCA))、松油醇 (TPN)、鄰苯二甲酸二丁酯(DBp)、或其等之混合物。欲使 5用之100重量份之有機溶劑中的30至70重量份有機溶劑係 與一有機接合劑混合以製備一載體,而後剩餘的有機溶劑 與玻璃料係與所製得之載體混合,以製備一玻璃料膠組成 物,此可進一步改良玻璃料膠組成物的分散性。於載體的 製備中,30至70重量份的有機溶劑更佳係由20至55重量份 〇之虹八、3至10重量份的TPN、與1至5重量份的DBP所構 成,且在與玻璃料混合時,BCA係使用作為溶劑。 為了控制熱膨脹係數,玻璃料膠組成物可進一步包含 一填充劑。填充劑的具體例子包括0,lt〇2〇卿堇青石較 佳係在0.1至30重量份的含量。 而且,玻璃料膠組成物較佳具有5〇〇至5〇〇〇〇 cps的黏 度’更佳係2_至35_ cps。在此範圍内,使得網版印刷 方法的應用變得可行,因而進一步改良可使用性。 而後,於上基板或接合基板(其接合至上基板)之接合表 面上’-光可固化樹脂組成物係與密封線空間相隔而施用 〕於該表面之周圍,其可進-步增加破璃料的密封效果。光 可固化樹脂組成物可施用至施有破璃料之上基板上,即如 圖所示’或者其可施用至下基板的頂部上。就配置而 言’光可固化樹脂組成物較佳係施用至施有玻璃料之相同 基板上。詳言之,相當於第一電極之下基板(或接合基板) 200950123 5 ❿ 10 15 ❹ 係備置有一電極與一包含染料之多孔性薄膜,即如第1圖所 示(若有必要,其可進一步包含一連接線,以連接單元晶 胞)’且於上基板(相當於第二電極)上’如所示施用該玻璃 料與光可固化樹脂組成物。較佳地,於施用時,玻璃料與 樹脂組成物對於完整的密封線不會達成密封效果,而密封 線之一部份係被開口以作為電解液入口,故一電解液可於 後被填充入總成之接合表面間的空室中。 光可固化樹脂組成物可用各種習知所知之方法而施 用,且舉例言之,可使用例如網版印刷方法或格勒西亞印 刷(gravia printing)等。 至於光可固化樹脂組成物,可使用一般的光可固化樹 脂組成物,且該光可固化樹脂組成物較佳係包含(a)1〇〇重量 份之環氧樹脂,(b) 0.01至20重量份之光聚合引發劑,⑷ 0.01至10重量份之偶合劑,(d) 〇‘01至1〇〇重量份之無機填充 劑’與(e) 0.05至10重量份之光酸產生劑。 光可固化樹脂組成物具有5,〇〇〇〜i5〇,〇〇〇cps的黏度,較 佳係10’00〇~l〇〇,〇〇〇cps(在25 t時),藉此使得網版印刷製 程變得可行,因而縮短製程時間並降低成本。 光可固化樹脂組成物之較佳組成係如下。 就a)環氧樹脂而言,可使用雙酚A型環氧樹脂、雙酚F 型環氧樹脂、频AD型環氧樹脂、萘型環氧樹脂、聯苯型 %氧祕脂、縮水甘油胺型環氧樹脂、萘酚酚醛清漆型環氧 樹脂(naphthol n〇v〇lac type ep〇xy resin)、二環戊二烯型環氧 樹脂、酚酚醛清漆型環氧樹脂(phen〇1 n〇v〇lac type ep〇xy 20 200950123 resin)、環脂肪環氧樹脂、前述環氧樹脂之預聚物、聚喊改 . 質之環氧樹脂、聚石夕氧改質之環氧樹脂、環氧樹脂與其他 . 聚合物之共聚物、或其等之混合物。 就b)光聚合引發劑而言,可使用重氮鹽、芳香族錄鹽、 5芳香族錤銘鹽、芳香族脑鹽、金屬芳香類化合物、芳香 烴鋼化合物(steel arene comp〇und)及其等之混合物。 特別地,就光固化性而言,芳香族錡鹽係較佳,而京尤 固化性與附著性而言,芳香族錄六氣墙酸鹽、芳香族疏、 六氟亞銻酸鹽或其等之混合物係較佳。 ❹ ίο 以100重量份之環氧樹脂為基礎,光聚合引發劑較佳係 使用〇.01至20重量份的含量,更佳是0.1至10重量份,最佳 是1至6重量份。假若超過20重量份,其無法參與此反應, 且剩餘的組份可能惡化光可固化樹脂組成物的性質。 - 0偶合劑係用於增加黏著性(黏附性),且可使用魏偶 ' 15合劑(諸如二甲氧基矽苯曱酸或γ-縮水甘油醚氧基丙基三甲 氧基矽烷)、一鈦偶合劑、一聚矽氡化合物、或其等之混合 物。 以100重置份之環氧樹脂為基礎,偶合劑較佳係使用 0.01至10重量份的含量,更佳是01至5重量份,最佳是〇1 20至2重量份。假若其超過10重量份,其無法參與此反應,且 剩餘的組份可能惡化光可固化樹脂組成物的性質。 就d)無機填充劑而言,可使用板形或球形無機填充 劑,諸如二氧化矽、滑石、MgO、雲母、蒙脫石、氧化鋁、 石墨、氧化鈹、氮化鋁、碳化矽、富鋁紅柱石、矽等。 12 200950123 就無機填充劑而言,滑石為特佳,此乃因其具有絕佳 的阻斷性能與光穿透性,而可避免光固化後的收縮。 而且,為了增加光可固化樹脂組成物中之黏附性與和 環氧樹脂的分散性,無機填充劑可被取代物所取代。Sb2〇3, 〇~5 m〇1% In2〇3, 〇~10 mol% Fe2〇3, 〇~5 mol% 20 A12〇3, 〇~20 m〇1% b2〇3, 〇~1〇_ % Bi2〇3, and 〇~ 1〇mol% Ti02 glass frit. A frit containing glass frit is applied along the edges, and the frit composition may comprise a) the frit, b) - an organic cement, and c) an organic granule. The frit composition preferably comprises a) from 60 to 90 parts by weight of 200950123 - damaged glass frit "b) from 0.1 to 5 parts by weight of the organic binder, and c) from 5 to 35 parts by weight of the organic solvent. Preferably, the glass frit comprises 10-25 mol% P205'40 ~ 50 mol% ~ 2 mol% ZnO, 1-15 mol% BaO, 1-10 mol% 5 Sb2〇i, 1 , Λ~10 mol % Fe203, 0.1 to 5 mol% Al2〇3, 0.1 to 5 m〇1% ^2〇3, 1 to W mol% Bi203, and 0.1 to 5 m〇i% Ti〇2, more preferably L a 15 ~ 20 mol% P205, 40 〜50 mol% V205, 10 ~ 20 ❹ m〇1% Zn〇, 5 〜l〇mol% BaO, 3 〜7 m〇l% Sb2〇3, 5 〜1〇 wrist 1% Fe2 〇3, 0.1 ~ 5 mol% A1203, 0.1 ~ 5 mol% b2 〇 3, 丄 ~ 5 10 mol% Bl2 〇 3, 0.1 〜 5 mol% Ή〇 2. If the content of the glass frit component exceeds the above range, the vitrification can be achieved by wire method, the waterproof property can be deteriorated, or the electrospinning may not be achieved. The μ glass frit preferably has a glass transition temperature (Tg) of from 300 to 40 (TC), 15 and a softening point (Tdsp) from 300 to 400. In these ranges, the sintering stability at the low temperature g is the highest. Preferably, the glass frit preferably has a particle size of from 100 to 10,000. In this range, the low temperature process is made feasible, and thus is suitable for sealing - heat unstable components, and a laser process system It becomes feasible, ... the sealing effect of the 闷 増 増 増 〇 〇 。 & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & Organic cement. Specific examples of the agent include an ethyl group or a acrylate copolymer. Further, as for the organic solvent, any organic solvent which is compatible with the organic binder of the glass frit composition of the present invention of 9 200950123 can be used, and specific examples include those suitable for the ethyl group. A mixture of an organic binder of butylcarbitolacetate (BCA), terpineol (TPN), dibutyl phthalate (DBp), or the like. To make 30 to 70 parts by weight of the organic solvent in 100 parts by weight of the organic solvent mixed with an organic binder to prepare a carrier, and then the remaining organic solvent and the glass frit are mixed with the prepared carrier to A frit paste composition is prepared which further improves the dispersibility of the frit paste composition. In the preparation of the carrier, 30 to 70 parts by weight of the organic solvent is more preferably composed of 20 to 55 parts by weight of 八 八 八, 3 to 10 parts by weight of TPN, and 1 to 5 parts by weight of DBP, and When the glass frit is mixed, BCA is used as a solvent. In order to control the coefficient of thermal expansion, the frit composition may further comprise a filler. Specific examples of the filler include 0, and the content of lt〇2〇qing cordierite is preferably 0.1 to 30 parts by weight. Further, the frit paste composition preferably has a viscosity of from 5 〇〇 to 5 〇〇〇〇 cps, more preferably from 2 to 35 cps. Within this range, the application of the screen printing method becomes feasible, thereby further improving the usability. Then, on the bonding surface of the upper substrate or the bonding substrate (which is bonded to the upper substrate), the '-photocurable resin composition is applied separately from the sealing line space> around the surface, which can further increase the glass frit The sealing effect. The photocurable resin composition can be applied to the substrate on which the frit is applied, i.e., as shown in the figure or it can be applied to the top of the lower substrate. In terms of configuration, the photocurable resin composition is preferably applied to the same substrate to which the glass frit is applied. In detail, it is equivalent to the substrate under the first electrode (or the bonding substrate) 200950123 5 ❿ 10 15 ❹ The electrode is provided with a porous film containing a dye, as shown in Fig. 1 (if necessary, it can be Further comprising a connecting line for connecting the unit cell] and applying the frit and the photocurable resin composition as shown on the upper substrate (corresponding to the second electrode). Preferably, at the time of application, the frit and the resin composition do not achieve a sealing effect on the complete sealing line, and one part of the sealing line is opened as an electrolyte inlet, so that an electrolyte can be filled later Into the empty space between the joint surfaces of the assembly. The photocurable resin composition can be applied by various known methods, and, for example, a screen printing method or a gravia printing or the like can be used. As the photocurable resin composition, a general photocurable resin composition can be used, and the photocurable resin composition preferably contains (a) 1 part by weight of an epoxy resin, (b) 0.01 to 20 Parts by weight of the photopolymerization initiator, (4) 0.01 to 10 parts by weight of the coupling agent, (d) 〇 '01 to 1 part by weight of the inorganic filler' and (e) 0.05 to 10 parts by weight of the photoacid generator. The photocurable resin composition has a viscosity of 5, 〇〇〇~i5〇, 〇〇〇cps, preferably 10'00〇~l〇〇, 〇〇〇cps (at 25 t), thereby making the net The printing process becomes feasible, thus reducing process time and reducing costs. The preferred composition of the photocurable resin composition is as follows. For a) epoxy resin, bisphenol A epoxy resin, bisphenol F epoxy resin, frequency AD epoxy resin, naphthalene epoxy resin, biphenyl type oxygen secret grease, glycidol can be used. Amine type epoxy resin, naphthol n 〇 var type ep〇xy resin, dicyclopentadiene type epoxy resin, phenol novolak type epoxy resin (phen〇1 n 〇v〇lac type ep〇xy 20 200950123 resin), ring-fat epoxy resin, pre-polymer of epoxy resin, poly-episode modification, epoxy resin, poly-stone modified epoxy resin, ring a copolymer of an oxygen resin with another polymer, or a mixture thereof. For the b) photopolymerization initiator, a diazonium salt, an aromatic salt, a 5-aromatic sulfonium salt, an aromatic brain salt, a metal aromatic compound, an aromatic hydrocarbon compound (steel arene comp〇und), and a mixture of such. In particular, in terms of photocurability, an aromatic sulfonium salt is preferred, and in terms of curability and adhesion, aromatic hexahydrocarbonate, aromatic sulfonate, hexafluoroantimonite or Mixtures of the like are preferred.光 ίο The photopolymerization initiator is preferably used in an amount of from 0.01 to 20 parts by weight, more preferably from 0.1 to 10 parts by weight, most preferably from 1 to 6 parts by weight, based on 100 parts by weight of the epoxy resin. If it exceeds 20 parts by weight, it cannot participate in this reaction, and the remaining components may deteriorate the properties of the photocurable resin composition. - 0 coupling agent is used to increase adhesion (adhesion), and Wei's 15 mixture (such as dimethoxyindoline or γ-glycidoxypropyltrimethoxydecane) can be used. A titanium coupling agent, a polyfluorene compound, or a mixture thereof. The coupling agent is preferably used in an amount of 0.01 to 10 parts by weight, more preferably 01 to 5 parts by weight, most preferably 1 to 20 parts by weight, based on 100 parts by weight of the epoxy resin. If it exceeds 10 parts by weight, it cannot participate in the reaction, and the remaining components may deteriorate the properties of the photocurable resin composition. In the case of d) inorganic fillers, plate-shaped or spherical inorganic fillers such as cerium oxide, talc, MgO, mica, montmorillonite, alumina, graphite, cerium oxide, aluminum nitride, cerium carbide, and rich may be used. Aluminite, enamel, etc. 12 200950123 In the case of inorganic fillers, talc is particularly preferred because of its excellent barrier properties and light penetration, and avoids shrinkage after photocuring. Further, in order to increase the adhesion in the photocurable resin composition and the dispersibility of the epoxy resin, the inorganic filler may be substituted by the substituent.

以100重量份之環氧樹脂為基礎,無機填充劑較佳係使 用0.01至100重量份的含量,更佳是01至80重量份。假若超 過100重量份’其可能干擾樹脂組成物的反應,因而惡化組 成物的性質。無機填充劑較佳具有0.1至30 μιη的平均顆粒 尺寸。 就e)光酸產生劑而言,任何可藉照光以產生路易士酸 或布氏酸(因而藉光產生酸)的化合物皆可使用而不受限 制。舉例言之’可使用磺酸化合物(諸如,有機磺酸)、一鏘 類化合物(諸如,鑰鹽)、或其等之混合物。光酸產生劑的具 體例子包括鄰苯二甲醯亞胺三氟曱烷磺酸酯、二硝基苄基 15 甲苯磺酸鹽、η-癸基二亞颯、萘亞胺三氟甲烷磺酸酯、二 苯基碘鹽六氟磷酸鹽、二苯基碘六氟砷酸鹽(diphenyliodo hexafluoroarcenate)、二苯基碘六氟亞銻酸鹽(diphenyliodo hexafluoroantimonate)、二苯基對曱氧苯基锍三氟甲磺酸 鹽、一本基對異丁乳苯基疏三氟曱確酸鹽、三苯基疏六氟 2〇 珅酸鹽(triphenyl sulfonium hexafluoroarcenate)、三苯基銃 六氟亞録酸鹽(triphenyl sulfonium hexafluoroantimonate)、 三苯基銃三氟甲續酸鹽、二丁基萘疏三氟甲績酸鹽等。 以100重量份之環氧樹脂為基礎,光酸產生劑較佳係使 用0.05至10重量份的含量。假若超過1〇重量份,光酸產生 13 200950123 劑吸收過多深紫外光,且產生很多酸, 樹脂組成物的性質。 可固化樹脂組成物可進—步包含—間隔物。就間隔 5 物而言’料可穩定特-面板厚度之間隔物皆可使用而 不受_ ’且較佳係、使用可維持_面板之厚度在5~5〇聊、 更佳疋5〜25㈣間隔物。間隔物的形狀可為球形、圓木形 等’且縣可财轉雜厚度,則縣邱射限於此。 、重量伤之ί衣氧樹脂為基礎,間隔物較佳係使用在讀 至10重量份的含量。 10 i述的光可固化樹脂組成物較佳具有85域更多之固 化樹脂的環氧樹脂變化率。 15 因而惡化光可固化 而後’所製得之上基板與接合基板(其接合至上基板) 係接合以製得—總成。於第1圖中,-下基板係相當於該接 合基板。由於在下與接合基板被接合以形成—總成後内部 進出(intent acces s)係受限,故下與接合基板的接合必須在 兀成所有用於組成一晶胞之必要步驟(包括如第1圖示之電 極的形成、染料吸收等)後才進行。 而且’當玻螭料與光可固化樹脂組成物係沿該密封線 而施用時,其等可完全地被施用,以維持完整的密封,或 者,假若需要的話,可留下一連接線,以與該内部空室聯 繫。於本發明之染料敏化太陽能電池中,因為一電解液必 須被填入’故可留下一電解液入口。 於所接合之總成中’玻璃料與光可固化樹脂組成物係 未被固化。因此,下一個步驟係照射光線,以固化總成上 20 200950123 . ,之光可固化樹脂紐_成物,而固化總成。如第1圖所示,假使 一光可固化樹脂組成物係可被UV固化,則照射UV以固 化。而後’必須固化總成的玻璃料。為了固化總成的玻璃 料’沿該施用之玻璃料而照射雷射,以燒結之。如前述, 5 可使用低熔點玻璃料,因而可使用低輸出功率雷射,藉此 最小化對元件的熱傷害。其中該已被固化且圍繞破璃料的 ' 樹脂組成物層係避免氣體產生以及與氧的接觸,並於玻璃 • 料燒結期間支撐該總成。因此,玻璃料密封的效率與製程 效率可藉預密封(pre-sealing)而增加。 1〇 因此,染料敏化之太陽能電池的雙層密封係藉玻璃料 與一樹脂組成物而維持。而後,如第1圖所示,一位於密封 線與光可固化樹脂組成物施用部位間之空室可被切割,以 . 分離光可固化樹脂組成物的固化部位。於第丨圖中,多個晶 . 胞係被製造於一個基板上,因此,切割步驟係被進行以用 15 於製備多個晶胞。而且,於玻璃料燒結或切割後,可將一 電解液注入於前述之電解液入口中,而後使用如破璃料以 進行最後密封,而完成密封。 9 纟發明並不限於前述實蘭及所_之®式,且在不 偏離本發明所附隨之申請專利範圍所述的目的與範圍下, 20 熟於此技者可進行各種改良或變更。 【圖式簡單說明3 第1圖係概略顯示依據本發明之一具體實施例之用於 製備一染料敏化之太陽能電池的方法。 【主要元件符號說明】 (無) 15The inorganic filler is preferably used in an amount of from 0.01 to 100 parts by weight, more preferably from 01 to 80 parts by weight, based on 100 parts by weight of the epoxy resin. If it exceeds 100 parts by weight, it may interfere with the reaction of the resin composition, thereby deteriorating the properties of the composition. The inorganic filler preferably has an average particle size of from 0.1 to 30 μm. In the case of e) photoacid generators, any compound which can be lighted to produce Lewis acid or Brucella (and thus acid by light) can be used without limitation. For example, a sulfonic acid compound such as an organic sulfonic acid, a monoterpenoid such as a key salt, or a mixture thereof may be used. Specific examples of the photoacid generator include phthalimide, trifluorosulfonate, dinitrobenzyl 15 tosylate, η-mercaptodifluorene, naphthalimide, trifluoromethanesulfonic acid Ester, diphenyliodide hexafluorophosphate, diphenyliodo hexafluoroarcenate, diphenyliodo hexafluoroantimonate, diphenyl-p-oxyphenyl hydrazine Trifluoromethanesulfonate, a base-p-isobutyl lactyl phenyl sulfonium triflate, triphenyl sulfonium hexafluoroarcenate, triphenylsulfonium hexafluoroaric acid Triphenyl sulfonium hexafluoroantimonate, triphenylsulfonium trifluoromethane hydrochloride, dibutylnaphthalene trifluoromethane hydrochloride, and the like. The photoacid generator is preferably used in an amount of from 0.05 to 10 parts by weight based on 100 parts by weight of the epoxy resin. If more than 1 part by weight, photoacid generation 13 200950123 absorbs too much deep ultraviolet light and produces a lot of acid, resin composition properties. The curable resin composition may further comprise a spacer. For spacers, the spacers can be used without any _ 'and better, the use can be maintained _ the thickness of the panel is 5~5 〇, better 疋5~25 (4) Spacer. The shape of the spacer may be spherical, round, etc. and the county may be rich in thickness, and the county is limited to this. Based on the weight of the epoxy resin, the spacer is preferably used in an amount of up to 10 parts by weight. The photocurable resin composition described in the above description preferably has an epoxy resin change rate of more than 85 domains of the cured resin. 15 Thus, the deteriorated light is curable and then the resulting upper substrate is bonded to the bonded substrate (which is bonded to the upper substrate) to produce an assembly. In Fig. 1, the lower substrate corresponds to the bonded substrate. Since the intent acces s is limited after the bonding to the bonding substrate is formed to form the assembly, the bonding of the lower bonding substrate must be performed in all necessary steps for forming a unit cell (including, for example, the first This is done after the formation of the electrode shown, dye absorption, etc.). Moreover, 'when the glass coating and the photocurable resin composition are applied along the sealing line, they may be completely applied to maintain a complete seal, or, if necessary, leave a connecting line to Contact the internal empty room. In the dye-sensitized solar cell of the present invention, since an electrolyte must be filled in, an electrolyte inlet can be left. The frit and photocurable resin composition are not cured in the joined assembly. Therefore, the next step is to illuminate the light to cure the assembly to cure the resin, and to cure the assembly. As shown in Fig. 1, if a photocurable resin composition is UV-curable, UV is irradiated to cure. Then the glass frit of the assembly must be cured. In order to cure the glass frit of the assembly, a laser is irradiated along the applied frit to be sintered. As mentioned above, 5 low melting glass frits can be used, so low output lasers can be used, thereby minimizing thermal damage to the components. Wherein the resin composition layer that has been cured and surrounds the frit is resistant to gas generation and contact with oxygen and supports the assembly during sintering of the glass. Therefore, the efficiency and process efficiency of the frit seal can be increased by pre-sealing. 1) Therefore, the double-layer sealing of the dye-sensitized solar cell is maintained by the glass frit and a resin composition. Then, as shown in Fig. 1, an empty space between the sealing line and the application site of the photocurable resin composition can be cut to separate the cured portion of the photocurable resin composition. In the figure, a plurality of crystal cell lines are fabricated on one substrate, and therefore, a dicing step is performed to prepare a plurality of unit cells. Further, after the frit is sintered or cut, an electrolyte may be injected into the aforementioned electrolyte inlet, and then, for example, a glass frit is used for final sealing to complete the sealing. The invention is not limited to the above-described embodiments, and various modifications and changes can be made thereto without departing from the spirit and scope of the invention as set forth in the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing a method for preparing a dye-sensitized solar cell according to an embodiment of the present invention. [Main component symbol description] (none) 15

Claims (1)

200950123 ' , 七、申請專利範圍: % 1. 一種用於製備一染料敏化之太陽能電池的方法,該電池 包含接合一上基板與一接合至該上基板的接合基板,該 方法包含下列步驟: 5 沿著該染料敏化之太陽能電池的一密封線,於該上基 板或該接合基板之一接合表面上施用玻璃料(glass frit); 在該上基板或該接合基板之該接合表面上的邊緣且遠 - 離該密封線處,施用一光可固化樹脂組成物; . 接合該上基板與該接合基板’以形成一總成; @ 10 以固化該總成上之光可固化樹脂組成物的光線照射,以 固化該總成;以及 沿該總成的玻璃料照射雷射以燒結之。 2. 如申請專利範圍第1項的方法,更包含切割一位於密封 線與光可固化樹脂組成物施用部位之間之空室的步驟, 15 以分離該光可固化樹脂組成物的固化部位。 3. 如申請專利範圍第1項的方法,其中該玻璃料包含〇〜3〇 ❹ mol% P2〇5、〇 〜50 mol% V205、〇 〜20 mol% ZnO、0 〜15 mol% BaO、〇 〜20 mol% As203、〇 ~ 20 mol% Sb203、0 〜 5 mol% In2〇3、〇 ~ i〇 mol% Fe203、0 ~ 5 mol% Al2〇3、0 20 ~ 20 mol% B203、0 ~ 10 mol% Bi203、與0 ~ 10 mol% Ti02 〇 4. 如申請專利範圍第1項的方法,其中該施用玻璃料的步 驟包含施用一玻璃料膠組成物,該玻璃料膠組成物包含 a)該玻璃料;b) —有機接合劑;以及c)一有機溶劑。 16 200950123 5. 如申請專利範圍第4項的方法,其中該玻璃料膠包含_ 至9〇重置份之該玻填料,b) 〇1至5重量份之該有機接合 劑,以及c) 5至35重量份之該有機溶劑。 6. 如申料職圍第!項的綠,其中該光可固化樹脂組 5 Ο 10 15 參 20 成物包含_〇重量份之環氧樹脂,(b) 〇.〇1至20重量份之 -光聚合引發劑’ (c) 〇_〇1至1〇重量份之一偶合劑⑷ 〇.〇1至1〇〇重量份之—無機填充劑,與⑷⑽5至1〇重量份 之一光酸產生劑。 7·如申請專利範圍第6項的方法,其中該a)jf氧樹脂係選自 於由雙酚A型環氧樹脂、雙酚F型環氧樹脂、雙酚ad型環 氧劃旨、萘型環氧樹脂、聯苯型環氧樹脂、縮水甘油胺 型環氧樹脂、萘酚酚醛清漆型環氧樹脂(naphth〇i _〇iac 5Φ poxy resin)、―;衣戊二歸型環氧樹月旨、酴紛酸清漆 型環氧樹脂(phenol novolac type ep〇xy似⑻、環脂肪環 氧樹脂、該環氧樹脂之預聚物、㈣改f之環氧樹脂、 聚碎氧改質之環氧樹脂、該環氧樹脂與其他聚合物之一 共聚物、與其等之混合物所構成之組群。 8_如申請專利範圍第6項的方法’其中該的光聚合引發劑係 選自於由重氮鹽、芳香族錄鹽、芳香族鎭紹鹽、芳香族 毓紹鹽、金屬芳香類化合物、芳香烴鋼化合物(咖a咖 compound)及其等之混合物所構成之組群。 9·如申凊專利範圍第6項的方法,其中該c)偶合劑係選自於 由-石夕燒偶合劑、一欽偶合劑、一聚石夕氧化合物、與其 之混合物所構成之組群。 17 v 200950123 10.如申請專利範圍第6項的方法,其中該d)無機填充劑係 選自於由二氧化矽、滑石、MgO、雲母、蒙脫石、氧化 鋁、石墨、氧化鈹、氮化鋁、碳化矽、富鋁紅柱石、矽、 與其等之混合物所構成之組群。 5 11.如申請專利範圍第11項的方法,其中該e)光酸產生劑係 選自於由一磺酸化合物、一鑕類化合物、與其等之混合 物所構成之組群。 12. —種染料敏化之太陽能電池,其係由申請專利範圍第1 至11項中之任一項的方法所製得。200950123 ', VII. Patent Application Range: % 1. A method for preparing a dye-sensitized solar cell comprising bonding an upper substrate and a bonded substrate bonded to the upper substrate, the method comprising the steps of: 5 applying a frit on a bonding surface of the upper substrate or the bonding substrate along a sealing line of the dye-sensitized solar cell; on the bonding surface of the upper substrate or the bonding substrate Edge and far away from the sealing line, applying a photocurable resin composition; bonding the upper substrate and the bonding substrate ' to form an assembly; @10 to cure the photocurable resin composition on the assembly Irradiating the light to cure the assembly; and irradiating the laser along the frit of the assembly to sinter. 2. The method of claim 1, further comprising the step of cutting a vacant chamber between the sealing line and the application site of the photocurable resin composition, 15 to separate the cured portion of the photocurable resin composition. 3. The method of claim 1, wherein the glass frit comprises 〇~3〇❹ mol% P2〇5, 〇~50 mol% V205, 〇~20 mol% ZnO, 0 〜15 mol% BaO, 〇 ~20 mol% As203, 〇~ 20 mol% Sb203, 0 〜 5 mol% In2〇3, 〇~ i〇mol% Fe203, 0 ~ 5 mol% Al2〇3, 0 20 ~ 20 mol% B203, 0 ~ 10 The method of claim 1, wherein the step of applying the frit comprises applying a frit composition comprising a) the mol% Bi203, and 0 to 10 mol% Ti02 〇4. Glass frit; b) - an organic binder; and c) an organic solvent. The method of claim 4, wherein the frit paste comprises _ to 9 〇 a portion of the glass filler, b) 〇 1 to 5 parts by weight of the organic cement, and c) 5 Up to 35 parts by weight of the organic solvent. 6. If you are applying for the job title! Green of the item, wherein the photocurable resin group 5 Ο 10 15 -20 is an epoxy resin containing _ 〇 parts by weight, (b) 〇. 〇 1 to 20 parts by weight of a photopolymerization initiator' (c) 〇_〇1 to 1 part by weight of the coupling agent (4) 〇.〇1 to 1 part by weight of the inorganic filler, and (4) (10) 5 to 1 part by weight of the photoacid generator. 7. The method of claim 6, wherein the a)jf oxygen resin is selected from the group consisting of bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol ad type epoxy, naphthalene Epoxy resin, biphenyl type epoxy resin, glycidylamine type epoxy resin, naphthol phenolic varnish type epoxy resin (naphth〇i _〇iac 5Φ poxy resin), ―; Month, varnish type epoxy resin (phenol novolac type ep〇xy like (8), ring fat epoxy resin, prepolymer of the epoxy resin, (four) modified epoxy resin, poly-oxygen modified a group of the epoxy resin, a copolymer of the epoxy resin and one of the other polymers, and a mixture thereof, etc. 8_ The method of claim 6 wherein the photopolymerization initiator is selected from the group consisting of A group consisting of a mixture of a diazonium salt, an aromatic salt, an aromatic sulfonium salt, an aromatic sulfonium salt, a metal aromatic compound, an aromatic hydrocarbon compound, and the like. The method of claim 6, wherein the coupling agent is selected from the group consisting of Chin a coupling agent group, a polyethylene oxide compound evening stone, consisting of a mixture of its. The method of claim 6, wherein the d) inorganic filler is selected from the group consisting of cerium oxide, talc, MgO, mica, montmorillonite, alumina, graphite, cerium oxide, nitrogen. A group of aluminum, tantalum carbide, mullite, lanthanum, and the like. The method of claim 11, wherein the e) photoacid generator is selected from the group consisting of a monosulfonic acid compound, a monoterpenoid, and the like. A dye-sensitized solar cell produced by the method of any one of claims 1 to 11. 18 200950123 霸 四、指定代表圖: (一) 本案指定代表圖為:第(1 )圖。 (二) 本代表圖之元件符號簡單說明: (無) 五、本案若有化學式時,請揭示最能顯示發明特徵的化學式:18 200950123 霸四、Designated representative map: (1) The representative representative of the case is: (1). (2) A brief description of the symbol of the representative figure: (none) 5. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention:
TW98108569A 2008-03-20 2009-03-17 Method of preparing the dye-sensitized solar cell TWI469381B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080025962A KR101518871B1 (en) 2008-03-20 2008-03-20 Method of preparing the dye-sensitized solar cell

Publications (2)

Publication Number Publication Date
TW200950123A true TW200950123A (en) 2009-12-01
TWI469381B TWI469381B (en) 2015-01-11

Family

ID=41078828

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98108569A TWI469381B (en) 2008-03-20 2009-03-17 Method of preparing the dye-sensitized solar cell

Country Status (5)

Country Link
JP (1) JP5492433B2 (en)
KR (1) KR101518871B1 (en)
CN (1) CN101540234B (en)
DE (1) DE102009012545A1 (en)
TW (1) TWI469381B (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5507954B2 (en) * 2009-10-19 2014-05-28 三星エスディアイ株式会社 Glass paste composition, electrode substrate, production method thereof, and dye-sensitized solar cell
KR101097270B1 (en) 2010-03-25 2011-12-21 삼성에스디아이 주식회사 Photoelectric conversion device
KR20120028494A (en) * 2010-09-15 2012-03-23 주식회사 동진쎄미켐 Dye sensitized solar cell with advanced power efficiency
CN101950690A (en) * 2010-09-27 2011-01-19 彩虹集团公司 Dye sensitized solar cell and sealing method thereof
KR101144038B1 (en) 2010-11-11 2012-05-24 현대자동차주식회사 Curved dye-sensitized solar cell and method for manufacturing the same
KR20120087657A (en) * 2011-01-28 2012-08-07 엘지이노텍 주식회사 Solar cell
CN102324308B (en) * 2011-06-29 2012-10-17 西安建筑科技大学 Method for improving interface caking property of dye sensitized solar cell substrate
KR101349344B1 (en) * 2011-12-06 2014-01-17 한국전기연구원 organic-inorganic sealant for internal and external protection of photovoltaic cell
CN102709062B (en) * 2012-06-05 2016-07-13 南昌航空大学 A kind of encapsulating method of dye-sensitized solar cells
KR101674449B1 (en) * 2012-11-28 2016-11-09 주식회사 오리온 Method for manufacturing dye-sensitized solar cell using the same
WO2015030193A1 (en) * 2013-08-30 2015-03-05 積水化学工業株式会社 Method for reactivating counter electrode active material for dye-sensitive solar cell, method for regenerating dye-sensitive solar cell in which said method is used, catalyst layer for dye-sensitive solar cell, counter electrode, electrolyte, and dye-sensitive solar cell
KR101570740B1 (en) * 2014-05-21 2015-11-23 주식회사 오리온 Glass materials for large scale dye-sensitized solar cell sealing
CN105693097B (en) * 2015-03-26 2018-12-18 王双喜 A kind of high thermal conductivity low meiting sealing frils
PL3182466T3 (en) * 2015-12-14 2020-11-02 Oxford Photovoltaics Limited Photovoltaic module encapsulation
JP6798547B2 (en) * 2016-03-30 2020-12-09 日本ゼオン株式会社 Sealing agent composition for organic solar cells, sealing agent for organic solar cells, electrodes for organic solar cells and organic solar cells

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3885975A (en) * 1972-04-24 1975-05-27 Corning Glass Works Low melting vanadate glasses
JP4860831B2 (en) * 2001-03-01 2012-01-25 株式会社リコー Photo-curable epoxy resin composition and photo-curable display element sealing agent
JP4467879B2 (en) * 2002-11-22 2010-05-26 株式会社フジクラ Manufacturing method of dye-sensitized solar cell
CN1181565C (en) * 2002-12-25 2004-12-22 中国科学院等离子体物理研究所 Sealing method of dye sensitized nanofilm solar cell
JP2004319197A (en) * 2003-04-15 2004-11-11 Fujikura Ltd Photoelectric conversion element and its manufacturing method
JP5098185B2 (en) * 2006-02-20 2012-12-12 大日本印刷株式会社 Dye-sensitized solar cell module
US8076570B2 (en) * 2006-03-20 2011-12-13 Ferro Corporation Aluminum-boron solar cell contacts
KR20070103204A (en) * 2006-04-18 2007-10-23 주식회사 동진쎄미켐 Photocuarable resin composition having high thermal conductivity
US20080057390A1 (en) * 2006-08-31 2008-03-06 Seiko Epson Corporation Secondary battery
CN100495759C (en) * 2007-04-26 2009-06-03 南京大学 Anti-ageing packaging method for dye sensing sun cell
CN100511723C (en) * 2007-05-29 2009-07-08 中国科学院等离子体物理研究所 Packaging structure for dye sensitized solar cell plate

Also Published As

Publication number Publication date
KR20090100651A (en) 2009-09-24
DE102009012545A1 (en) 2009-10-22
KR101518871B1 (en) 2015-05-21
JP2009231285A (en) 2009-10-08
TWI469381B (en) 2015-01-11
CN101540234B (en) 2012-07-04
JP5492433B2 (en) 2014-05-14
CN101540234A (en) 2009-09-23

Similar Documents

Publication Publication Date Title
TW200950123A (en) Method of preparing the dye-sensitized solar cell
Luo et al. Healable transparent electronic devices
TWI462369B (en) Dye-sensitized solar cell and method for preparing the same
Chen et al. Self‐healing materials for next‐generation energy harvesting and storage devices
Li et al. Novel planar-structure electrochemical devices for highly flexible semitransparent power generation/storage sources
Wu et al. An all-solid-state dye-sensitized solar cell-based poly (N-alkyl-4-vinyl-pyridine iodide) electrolyte with efficiency of 5.64%
Purandare et al. High brightness phosphorescent organic light emitting diodes on transparent and flexible cellulose films
WO2007046499A1 (en) Dye-sensitized photoelectric conversion device and method for manufacturing same
TW200908355A (en) Dye-sensitised solar cell module and manufacturing method thereof
CN102356103B (en) Polymers made of mixtures having vinyl ether monomers
Zhang et al. Long alkyl side chains simultaneously improve mechanical robustness and healing ability of a photoswitchable polymer
KR20080072425A (en) Dye-sensitized solar cell and method for preparing the same
KR20120114888A (en) Sealing material for dye sensitized solar cell and method for sealing dye sensitized solar cell using the same
JP2007220608A (en) Method of manufacturing dye-sensitized solar cell, and dye-sensitized solar cell
TW201213378A (en) Photoelectric conversion element using thermoset sealing agent for photoelectric conversion element
Li et al. Drum Tower‐Inspired Kirigami Structures for Rapid Fabrication of Multifunctional Shape‐Memory Smart Devices with Complex and Rigid 3D Geometry in a Two‐Stage Photopolymer
CN102486970A (en) Dye-sensitized solar cell and preparation method thereof
CN1444294A (en) Sealing method of dye sensitized nanofilm solar cell
CN103108531A (en) Three-dimensional net-shaped high thermal conductivity graphite framework structure and manufacture method thereof
TW201025704A (en) Interconnection of adjacent devices
JP2003123862A (en) Dye sensitized solar battery
Kang et al. Thermal Energy Harvest and Reutilization by the Combination of Thermal Conducting Reactive Mesogens and Heat-Storage Mesogens
Cao et al. Recent Advances in UV-Cured Encapsulation for Stable and Durable Perovskite Solar Cell Devices
CN105670646B (en) High heat conduction main chain tail direct type liquid crystal polymer membrane material and preparation method thereof
JP2009146737A (en) Semiconductor electrode, its manufacturing method, and dye-sensitized solar cell

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees