JP2009231285A - Method of manufacturing dye sensitized solar battery - Google Patents

Method of manufacturing dye sensitized solar battery Download PDF

Info

Publication number
JP2009231285A
JP2009231285A JP2009067240A JP2009067240A JP2009231285A JP 2009231285 A JP2009231285 A JP 2009231285A JP 2009067240 A JP2009067240 A JP 2009067240A JP 2009067240 A JP2009067240 A JP 2009067240A JP 2009231285 A JP2009231285 A JP 2009231285A
Authority
JP
Japan
Prior art keywords
dye
epoxy resin
solar cell
sensitized solar
glass frit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009067240A
Other languages
Japanese (ja)
Other versions
JP5492433B2 (en
Inventor
Jung-Hyun Son
禎▲ひゅん▼ 孫
Sang-Kyu Lee
祥圭 李
Kanfuku Shu
漢福 朱
Jong-Dai Park
鍾大 朴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongjin Semichem Co Ltd
Original Assignee
Dongjin Semichem Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongjin Semichem Co Ltd filed Critical Dongjin Semichem Co Ltd
Publication of JP2009231285A publication Critical patent/JP2009231285A/en
Application granted granted Critical
Publication of JP5492433B2 publication Critical patent/JP5492433B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • H01G9/2077Sealing arrangements, e.g. to prevent the leakage of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a dye-sensitized solar battery which has a resistance against an external impact and damage and achieves airtightness having a high strength and has a high durability. <P>SOLUTION: The method of manufacturing the dye sensitized solar battery includes a step in which glass frit is coated on an upper plate or on a bonding surface of a bonding plate for bonding with the upper plate along an airtight line of a dye-sensitized solar battery, a step in which a light curing resin composition is coated on the upper plate or on the bonding surface of the bonding plate for bonding with the upper plate, on a position surrounding an outer enclosure by keeping a distance from the airtight line, a step in which the upper plate and the bonding plate are bonded to form a bonded body, a step in which the bonded body is cured by being irradiated by light for curing the light curing resin composition, and a step in which laser is irradiated along the glass frit of the bonded body for calcination. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は染料感応太陽電池(Dye-Sensitized Solar Cell;DSSC)の製造方法に関するものであって、特に低融点ガラスフリット組成物と光硬化型樹脂組成物を適用することにより、レーザーの低温焼成が可能で、熱に弱い素子に対するダメージを減らすことができ、光硬化型樹脂でプレシーリングをすることにより、ガラスフリットシーリングの効率を向上させ工程効率を増大させることができ、そのために苛酷な外部環境に曝されて使用される太陽電池の電解質が気密部位から揮発することを防止して寿命を延長することができ、外部衝撃や損傷に対して抵抗性を有し、高い強度を有する気密を提供して、染料感応太陽電池の寿命を延長し耐久性を高める効果を得ることができる染料感応太陽電池の製造方法に関するものである。   The present invention relates to a method for producing a dye-sensitized solar cell (DSSC), and in particular, by applying a low-melting glass frit composition and a photocurable resin composition, low-temperature firing of a laser can be achieved. Possible to reduce damage to heat-sensitive elements, and pre-sealing with photo-curing resin can increase the efficiency of glass frit sealing and increase process efficiency, which makes it a harsh external environment It can prevent the electrolyte of solar cells used by being exposed to air from evaporating from the airtight part, extend the life, provide resistance to external impact and damage, and provide high strength airtightness Thus, the present invention relates to a method for producing a dye-sensitized solar cell, which can obtain the effect of extending the life of the dye-sensitized solar cell and increasing the durability.

1991年度スイス国立ローザンヌ高等技術院(EPFL)のマイケルグラチェル(Michael Gratzel )研究チームによって染料感応ナノ粒子酸化チタン太陽電池が開発されて以来、この分野では多くの研究が行われている。染料感応太陽電池は既存のシリコン系太陽電池に比べて製造単価が顕著に低いため既存の非晶質シリコン太陽電池を代替できる可能性を有しており、シリコン太陽電池とは異なり、染料感応太陽電池は可視光線を吸収して電子−ホール対を生成できる染料分子と、生成された電子を伝達する遷移金属酸化物を主構成材料とする光電気化学的太陽電池である。   Much work has been done in this field since the dye-sensitized nanoparticle titanium oxide solar cells were developed by the Michael Gratzel research team at the Swiss National Institute of Advanced Technology (EPFL) in 1991. Dye-sensitive solar cells have a significantly lower unit price than existing silicon-based solar cells, so they have the potential to replace existing amorphous silicon solar cells. Unlike silicon solar cells, dye-sensitive solar cells The battery is a photoelectrochemical solar cell mainly composed of a dye molecule capable of generating an electron-hole pair by absorbing visible light and a transition metal oxide that transmits the generated electrons.

一般的な染料感応太陽電池の単位セル構造は、上下部透明な基板と、その透明基板の表面にそれぞれ形成される導電性透明電極を基本にして、第1電極に該当する片側の導電性透明電極上にはその表面に染料が吸着された遷移金属酸化物多孔質層が形成され、第2電極に該当する他側の導電性透明電極上には触媒薄膜電極が形成され、前記遷移金属酸化物は例えばTiO2であり、多孔質電極と触媒薄膜電極の間には電解質が充填される構造を有する。 The unit cell structure of a typical dye-sensitized solar cell is based on a transparent substrate on the top and bottom and a conductive transparent electrode formed on the surface of the transparent substrate. A transition metal oxide porous layer having a dye adsorbed on its surface is formed on the electrode, and a catalyst thin film electrode is formed on the other conductive transparent electrode corresponding to the second electrode. The object is, for example, TiO 2 and has a structure in which an electrolyte is filled between the porous electrode and the catalyst thin film electrode.

したがって、このような第1電極と第2電極の間に充填される電解質を安定的に維持するために第1電極と第2電極の間には熱可塑性高分子フィルムを置き、加熱圧着工程によりこれらを接合し、前記第1電極と第2電極の間に電解質が注入されて保管される一定の空間を形成し維持する。   Therefore, in order to stably maintain the electrolyte filled between the first electrode and the second electrode, a thermoplastic polymer film is placed between the first electrode and the second electrode, and the thermocompression bonding process is performed. These are joined to form and maintain a certain space where electrolyte is injected and stored between the first electrode and the second electrode.

しかし、前記熱可塑性高分子フィルムの場合、その構造が緻密でなく、高温、強烈な陽光、熱サイクリングなどによって劣化し、電解質が夜/昼間または冬/夏などの熱サイクリングを通じて揮発して太陽電池の効率を低下させ、ついには寿命を終えるようにする要因になり、高分子フィルムの有する機械的強度の限界のため外部の衝撃などによって損傷が発生する問題点があり、このような問題は太陽電池の寿命を短縮させてその耐久性に致命的な問題となっているのが実情である。   However, in the case of the thermoplastic polymer film, the structure is not precise, and it deteriorates due to high temperature, intense sunlight, thermal cycling, etc., and the electrolyte volatilizes through thermal cycling such as night / daytime or winter / summer, so that the solar cell. This is a factor that lowers the efficiency of the film and eventually ends its life, and there is a problem that damage occurs due to external impact due to the limit of the mechanical strength of the polymer film. The fact is that the lifespan of the battery is shortened, which is a fatal problem in its durability.

本発明は、このような従来の技術の問題点を解決するためのものであって、低融点ガラスフリット組成物と光硬化型樹脂組成物を適用することにより、レーザーの低温焼成が可能で、熱に弱い素子のダメージを減らすことができ、光硬化型樹脂にプレシーリングをすることにより、ガラスフリットシーリングの効率を向上させ製造効率を増大させることができ、そのために苛酷な外部環境に曝されて使用される太陽電池の電解質が気密部位から揮発することを防止して寿命を延長することができ、外部衝撃や損傷に対して抵抗性を有し、高い強度を有する気密を提供して、染料感応太陽電池の寿命を延長し耐久性を高める効果を得ることができる染料感応太陽電池の製造方法を提供することを目的とする。   The present invention is for solving such problems of the prior art, and by applying a low-melting glass frit composition and a photocurable resin composition, low-temperature firing of a laser is possible, The damage to heat-sensitive elements can be reduced, and by pre-sealing the photo-curing resin, the efficiency of glass frit sealing can be improved and the production efficiency can be increased, so that it is exposed to a harsh external environment. The electrolyte of the solar cell used can be prevented from volatilizing from the hermetic part and the life can be extended, it is resistant to external impact and damage, and provides a high strength airtight, An object of the present invention is to provide a method for producing a dye-sensitized solar cell capable of extending the life of the dye-sensitized solar cell and improving the durability.

このような目的を実現するため、本発明は、上板と前記上板と結合する結合板の合着を含む染料感応太陽電池の製造方法において、前記上板または前記上板と結合する結合板の結合面に前記染料感応太陽電池の気密ラインに沿ってガラスフリットを塗布する工程;前記上板または前記上板と結合する結合板の結合面に前記気密ラインと離隔して、その外郭を囲む位置に光硬化型樹脂組成物を塗布する工程;前記上板及び結合板を合着して結合体を製作する工程;前記合着された結合体に前記光硬化型樹脂組成物を硬化させる光を照射して硬化する工程;及び前記合着された結合体の前記ガラスフリットに沿ってレーザーを照射して焼成する工程を含むことを特徴とする染料感応太陽電池の製造方法を提供する。   In order to achieve such an object, the present invention provides a method for manufacturing a dye-sensitized solar cell including bonding of an upper plate and a bonding plate bonded to the upper plate, and the upper plate or the bonding plate bonded to the upper plate. Applying a glass frit along the airtight line of the dye-sensitized solar cell to the joint surface of the dye; the airtight line being separated from the airtight line on the joint surface of the upper plate or the joint plate to be joined to the upper plate and surrounding the outer shell A step of applying a photocurable resin composition to a position; a step of bonding the upper plate and a bonding plate to produce a bonded body; a light for curing the photocurable resin composition on the bonded bonded body And a method of producing a dye-sensitized solar cell, comprising: a step of irradiating a laser along the glass frit of the bonded body and baking it.

また、本発明は前記製造方法によって製造された染料感応太陽電池を提供する。   The present invention also provides a dye-sensitized solar cell manufactured by the manufacturing method.

本発明の染料感応太陽電池の製造方法によれば、低融点ガラスフリット組成物と光硬化型樹脂組成物を適用することにより、レーザーの低温焼成が可能で、熱に弱い素子に対するダメージを減らすことができ、光硬化型樹脂でプレシーリングをすることにより、ガラスフリットシーリングの効率が向上し製造効率を高めることができる。また、苛酷な外部環境に曝されて使用される太陽電池の電解質の気密部位からの揮発が防止され、外部衝撃や損傷に対して抵抗性を有し、高い強度を有する気密が得られるため、染料感応太陽電池の寿命が延長され耐久性を高める効果を得ることができる。   According to the method for producing a dye-sensitized solar cell of the present invention, by applying a low-melting glass frit composition and a photocurable resin composition, laser can be fired at a low temperature and damage to heat-sensitive elements can be reduced. By pre-sealing with a photocurable resin, the efficiency of glass frit sealing can be improved and the production efficiency can be increased. In addition, volatilization from the airtight part of the electrolyte of the solar cell used by being exposed to a harsh external environment is prevented, it has resistance to external impact and damage, and a high strength airtightness is obtained. The life of the dye-sensitized solar cell is extended, and the effect of increasing the durability can be obtained.

本発明の染料感応太陽電池の製造方法の一実施例であって染料感応太陽電池の製造方法の工程を概略的に示した図面である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram schematically illustrating a process of a method for producing a dye-sensitized solar cell according to an embodiment of the method for producing a dye-sensitized solar cell of the present invention.

以下、本発明について図面を参照して詳しく説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings.

本発明による染料感応太陽電池の製造方法は、上板と前記上板と結合する結合板の合着を含む染料感応太陽電池の製造方法において、前記上板または前記上板と結合する結合板(下板)の結合面に前記染料感応太陽電池の気密ラインに沿ってガラスフリットを塗布する工程;前記上板または前記上板と結合する結合板の結合面に前記気密ラインと離隔してその外郭を囲む位置に光硬化型樹脂組成物を塗布する工程;前記上板及び結合板を合着して結合体を製作する工程;前記合着された結合体に前記光硬化型樹脂組成物を硬化する光を照射して硬化する工程;及び前記合着された結合体の前記ガラスフリットに沿ってレーザーを照射して焼成する工程を含むことを特徴とする。   A method for manufacturing a dye-sensitized solar cell according to the present invention includes a method for manufacturing a dye-sensitized solar cell including a bonding of an upper plate and a bonding plate bonded to the upper plate. Applying a glass frit to the bonding surface of the lower plate) along the airtight line of the dye-sensitized solar cell; separating the outer wall from the airtight line on the bonding surface of the upper plate or the bonding plate bonded to the upper plate; A step of applying a photocurable resin composition to a position that surrounds; a step of bonding the upper plate and a bonding plate to produce a bonded body; and curing the photocurable resin composition to the bonded bonding body Irradiating and curing the light; and irradiating and firing a laser along the glass frit of the bonded body.

一般的な染料感応太陽電池は、染料を含む多孔質膜を片側に有する基板からなる第1電極(図1の下板−結合板に該当)と、前記第1電極(下板)に対向して配置される第2電極(図1の上板)と、これら電極の間に充填される電解質とを含んで構成される。本発明の場合はこのような第1電極と第2電極との間に電解質を長期間安定的に保管するようにするために第1電極と第2電極を離隔して配置し、これらの間の空間をガラスフリット焼成体によって気密し、このように形成された気密空間に電解質が満たされるようにするものであって、前記多孔質膜は染料が結合(吸着)される公知の多様な多孔質膜がこれに該当し、これに関する具体的な例としては遷移金属酸化物多孔質、例えば、10〜15nm大きさのTiO2を塗布しこれを焼成して得られる多孔質膜が挙げられる。前記多孔質膜が形成される透光板は必ずしも平板に限定されるものではなく屈曲面を有する板もこれに含まれ、可視光線またはこれを外れる一定の波長帯のウェーブ(光波)を透過させる物質、例えば、ガラスからなる板など太陽電池に適用される公知の多様な透光板がこれに含まれる。伝導性を有するものが電極としての役割を果たすために好ましい。これに関する具体的な例として前記透光板は公知の透光ガラス、透光樹脂、PET(ポリエチレンテレフタレート)、ITO(酸化インジウムスズ)またはFTO(フッ素ドープ酸化スズ)などがこれに該当し、伝導性を有するようにするために前記材質に追加して、前記多孔質膜と板の間に選択的に伝導性フィルムまたはコーティング層(ITO、FTOまたは伝導性高分子)を追加的にさらに含むように構成することができる。前記第1電極の反対側に対をなして対向して配置される第2電極(上板)としては公知の太陽電池第2電極に適用される板がこれに含まれ、必ずしも平板を限定されるものではなく、屈曲面を有する板もこれに含まれ、可視光線またはこれを外れる一定の波長帯のウェーブを透過させる物質からなることが良い。このために公知の透光ガラス、PETガラス、ITOガラスまたはFTOガラスなどの材質でこれを構成することができ、好ましくは伝導性を有するようにするために前記材質に選択的に伝導性フィルムまたはコーティング層(ITO、FTOまたは伝導性高分子)を追加的にさらに含むように構成することができ、太陽光の吸収効率を高め、反応の活性化のために白金などの触媒金属層を第1電極側最外郭面にさらに含むようにすることができる。 A general dye-sensitized solar cell is opposed to a first electrode (corresponding to a lower plate-bonding plate in FIG. 1) having a porous film containing a dye on one side and the first electrode (lower plate). And the second electrode (the upper plate in FIG. 1) and the electrolyte filled between these electrodes. In the case of the present invention, in order to stably store the electrolyte for a long period of time between the first electrode and the second electrode, the first electrode and the second electrode are spaced apart from each other. The air-tight space is sealed with a glass frit fired body so that the electrolyte is filled in the air-tight space formed in this manner, and the porous film has a variety of known porous materials to which a dye is bound (adsorbed). A specific example of this is a porous film obtained by applying a transition metal oxide porous material, for example, TiO 2 having a size of 10 to 15 nm and baking it. The translucent plate on which the porous film is formed is not necessarily limited to a flat plate, and includes a plate having a bent surface, and transmits visible light or a wave (light wave) of a certain wavelength band that deviates from this. This includes various known light-transmitting plates applied to solar cells such as a plate made of a material such as glass. What has conductivity is preferable in order to serve as an electrode. Specific examples of the light-transmitting plate include known light-transmitting glass, light-transmitting resin, PET (polyethylene terephthalate), ITO (indium tin oxide), FTO (fluorine-doped tin oxide), and the like. In addition to the above material, a conductive film or a coating layer (ITO, FTO, or conductive polymer) is additionally included between the porous film and the plate in order to have a property. can do. The second electrode (upper plate) disposed opposite to the first electrode in a pair includes a plate applied to a well-known solar cell second electrode, and is not necessarily limited to a flat plate. In this case, a plate having a bent surface is also included, and it is preferable that the plate is made of a material that transmits visible light or waves in a certain wavelength band that deviates from the visible light. For this purpose, it can be composed of a material such as a known translucent glass, PET glass, ITO glass or FTO glass, preferably a conductive film or a selective film on the material in order to have conductivity. A coating layer (ITO, FTO, or conductive polymer) can be additionally included, and the first catalyst metal layer such as platinum is used to increase the efficiency of sunlight absorption and activate the reaction. It can be further included in the outermost surface on the electrode side.

前記染料感応太陽電池は、上板がガラス基板からなり、下板または結合板も図1に示したように必要によってはガラス基板からなることもでき、その他の他の材質の下板または結合板(図1に示したように上板及び下板のみの構造である場合には下板が結合板になり、これよりさらに多くの層を有する多層構造である場合には上板の下面に結合板が結合し、その下部に追加的な板がさらに結合することができる)からなることができる。   In the dye-sensitized solar cell, the upper plate is made of a glass substrate, and the lower plate or the bonding plate can be made of a glass substrate as shown in FIG. (As shown in FIG. 1, when the structure is composed of only the upper and lower plates, the lower plate becomes a coupling plate, and when it has a multilayer structure having more layers than this, it is coupled to the lower surface of the upper plate. The plate can be joined and an additional plate can be further joined below it).

このような染料感応太陽電池は、図1に示したように一つの基板に多数の染料感応太陽電池セル(図1の場合には2×2)を形成することができ、一つの基板に一つのセルのみを製造することもできる。それぞれのセルはその結合面で気密を維持する必要があるので、図1に示したようにセルの外郭を閉曲線で気密する気密ラインに沿ってガラスフリット組成物を塗布する。前記気密ラインはデバイスの形状によって多様な形状にこれを構成することができ、図1に示したように結合面に気密ラインに沿ってガラスフリットを塗布する。前記結合面は、上板の下面が結合面になることができ、下板(または前記上板と結合する結合板)の上面が結合面になることもできる。これは最終的に結合部位の気密を維持する役割を果たす。前記ガラスフリットの塗布は公知の多様な方法を通してこれを遂行することができ、その例としては前記ガラスフリットをガラスペーストとして製造して、スクリーンプリンティング法で印刷及び乾燥することができる。   In such a dye-sensitized solar cell, as shown in FIG. 1, a large number of dye-sensitive solar cells (2 × 2 in the case of FIG. 1) can be formed on one substrate. Only one cell can be produced. Since each cell needs to maintain hermeticity at its bonding surface, the glass frit composition is applied along a hermetic line that hermetically seals the outer shell of the cell with a closed curve as shown in FIG. The airtight line may be formed in various shapes according to the shape of the device, and a glass frit is applied to the bonding surface along the airtight line as shown in FIG. In the coupling surface, the lower surface of the upper plate can be a coupling surface, and the upper surface of the lower plate (or the coupling plate coupled to the upper plate) can be a coupling surface. This ultimately serves to maintain the tightness of the binding site. The glass frit can be applied through various known methods. For example, the glass frit can be manufactured as a glass paste and printed and dried by a screen printing method.

前記ガラスフリットとしては公知のガラスフリットを使用することができる。好ましくは、P25 0〜30モル%;V25 0〜50モル%;ZnO 0〜20モル%;BaO 0〜15モル%;As23 0〜20モル%;Sb23 0〜20モル%;In23 0〜5モル%;Fe23 0〜10モル%;Al23 0〜5モル%;B23 0〜20モル%;Bi23 0〜10モル%;及びTiO2 0〜10モル%を含有するガラスフリットを使用するのが良い。 As the glass frit, a known glass frit can be used. Preferably, P 2 O 5 0~30 mol%; V 2 O 5 0~50 mol%; ZnO 0 to 20 mole%; BaO 0 to 15 mole%; As 2 O 3 0~20 mol%; Sb 2 O 3 0-20 mole%; In 2 O 3 0~5 mole%; Fe 2 O 3 0~10 mol%; Al 2 O 3 0~5 mole%; B 2 O 3 0 to 20 mole%; Bi 2 O It is preferred to use a glass frit containing 30-10 mol%; and 0-10 mol% TiO 2 .

好ましくは、前記ガラスフリットを含有するガラスフリットペーストを周縁に沿って塗布し、前記ガラスフリットペースト組成物は(a)前記ガラスフリット、(b)有機バインダー、及び(c)有機溶媒を含むことができる。好ましくは、(a)前記ガラスフリット60〜90質量部、(b)有機バインダー0.1〜5質量部、(c)有機溶媒5〜35質量部を含むのが良い。   Preferably, a glass frit paste containing the glass frit is applied along the periphery, and the glass frit paste composition includes (a) the glass frit, (b) an organic binder, and (c) an organic solvent. it can. Preferably, (a) 60 to 90 parts by mass of the glass frit, (b) 0.1 to 5 parts by mass of an organic binder, and (c) 5 to 35 parts by mass of an organic solvent may be included.

好ましくは、前記ガラスフリットは、P25 10〜25モル%;V25 40〜50モル%;ZnO 10〜20モル%;BaO 1〜15モル%;Sb23 1〜10モル%;Fe23 1〜10モル%;Al23 0.1〜5モル%;B23 0.1〜5モル%;Bi23 1〜10モル%;及びTiO2 0.1〜5モル%を含有するのが良く、さらに好ましくは、P25 15〜20モル%;V25 40〜50モル%;ZnO 10〜20モル%;BaO 5〜10モル%;Sb23 3〜7モル%;Fe23 5〜10モル%;Al23 0.1〜5モル%;B23 0.1〜5モル%;Bi23 1〜5モル%;及びTiO2 0.1〜5モル%を含むのが良い。 Preferably, the glass frit is P 2 O 5 10 to 25 mole%; V 2 O 5 40~50 mol%; ZnO 10 to 20 mole%; BaO 1 to 15 mol%; Sb 2 O 3 1~10 mol Fe 2 O 3 1-10 mol%; Al 2 O 3 0.1-5 mol%; B 2 O 3 0.1-5 mol%; Bi 2 O 3 1-10 mol%; and TiO 2 0 good to contain .1~5 mol%, more preferably, P 2 O 5 15 to 20 mole%; V 2 O 5 40~50 mol%; ZnO 10 to 20 mole%; BaO 5 to 10 mol% ; Sb 2 O 3 3~7 mole%; Fe 2 O 3 5~10 mol%; Al 2 O 3 0.1~5 mol%; B 2 O 3 0.1~5 mol%; Bi 2 O 3 1 5 mol%; and it may comprise a TiO 2 0.1 to 5 mol%.

本発明を構成するガラスフリット成分の含量が前記範囲を外れる場合、ガラス化しなかったり、耐水性が顕著に低下したり、レーザー焼成が行われないことがある。   When the content of the glass frit component constituting the present invention is out of the above range, vitrification may not occur, water resistance may be significantly reduced, or laser firing may not be performed.

好ましくは、前記ガラスフリットはガラス転移温度(Tg)が300〜400℃であり、軟化温度(Tdsp)が300〜400℃であるのが良い。前記範囲内である場合、低温で優れた焼成安定性を示す。   Preferably, the glass frit has a glass transition temperature (Tg) of 300 to 400 ° C. and a softening temperature (Tdsp) of 300 to 400 ° C. When it is within the above range, excellent firing stability is exhibited at a low temperature.

また、前記ガラスフリットは粒子が0.1〜20μmの大きさを有するのが良い。前記範囲内である場合、低温加工が可能で熱に弱い素子の気密密封に適し、レーザーで加工が可能で電気素子の密封効率を向上させることができる。   The glass frit preferably has a particle size of 0.1 to 20 μm. When it is within the above range, low-temperature processing is possible and suitable for hermetic sealing of heat-sensitive elements, laser processing is possible, and the sealing efficiency of electric elements can be improved.

また、前記ガラスフリットペースト組成物で、前記(a)ガラスフリットは前述の通りであり、前記(b)有機バインダーは通常市販される有機バインダーを使用することができる。有機バインダーの具体的な一例としては、エチルセルロース系またはアクリル系共重合体を使用することができる。また、前記(c)有機溶媒は本発明のガラスフリットペースト組成物に使用される有機バインダーと相溶可能な有機溶媒を使用できるのはもちろんであり、具体的例として有機バインダーがエチルセルロース系である場合、ブチルカルビトールアセテート(BCA)、テルピネオール(TPN)、ジブチルフタレート(DBP)を単独または2種以上混合して使用することができる。好ましくは、前記使用される有機溶媒100質量部中の30〜70質量部の有機溶媒に有機バインダーを先ず混合してビヒクルを製造した後、製造されたビヒクルに残量の有機溶媒とガラスフリットを混合してガラスフリットペースト組成物を製造するのが良い。この場合、ガラスフリットペースト組成物の分散性をさらに向上させることができる。さらに好ましくは、前記ビヒクルの製造時、30〜70質量部の有機溶媒はBCA20〜55質量部、TPN3〜10質量部、DBP1〜5質量部を含有するのが良く、ガラスフリットと混合時に使用する溶媒はBCAを使用するのが良い。   In the glass frit paste composition, (a) the glass frit is as described above, and (b) the organic binder can be a commercially available organic binder. As a specific example of the organic binder, an ethyl cellulose-based or acrylic copolymer can be used. Further, as the organic solvent (c), it is possible to use an organic solvent compatible with the organic binder used in the glass frit paste composition of the present invention. As a specific example, the organic binder is an ethyl cellulose type. In this case, butyl carbitol acetate (BCA), terpineol (TPN), and dibutyl phthalate (DBP) can be used alone or in admixture of two or more. Preferably, a vehicle is manufactured by first mixing an organic binder with 30 to 70 parts by mass of an organic solvent in 100 parts by mass of the organic solvent used, and then the remaining amount of the organic solvent and glass frit are added to the manufactured vehicle. It is preferable to produce a glass frit paste composition by mixing. In this case, the dispersibility of the glass frit paste composition can be further improved. More preferably, at the time of manufacturing the vehicle, 30 to 70 parts by mass of the organic solvent may contain 20 to 55 parts by mass of BCA, 3 to 10 parts by mass of TPN, and 1 to 5 parts by mass of DBP, and is used when mixing with glass frit. BCA is preferably used as the solvent.

前記ガラスフリットペースト組成物は熱膨張係数の調節のためにフィラーをさらに含むことができる。前記フィラーの具体的な例としては、0.1〜20μmのコージライト(cordierite)を使用することができ、その含量は0.1〜30質量部であるのが良い。   The glass frit paste composition may further include a filler for adjusting a thermal expansion coefficient. As a specific example of the filler, 0.1 to 20 μm cordierite can be used, and the content thereof is preferably 0.1 to 30 parts by mass.

また、前記ガラスフリットペースト組成物は粘度が500〜50000cpsであることが好ましい。さらに好ましくは、2000〜35000cpsである。前記範囲内の粘度を有する場合、スクリーンプリンティング技法による塗布を可能にして作業性をさらに向上させることができる。   The glass frit paste composition preferably has a viscosity of 500 to 50,000 cps. More preferably, it is 2000-35000 cps. When the viscosity is within the above range, it is possible to further improve workability by enabling application by a screen printing technique.

本発明の染料感応太陽電池の製造方法では、次に、前記上板または前記上板と結合する結合板の結合面に前記気密ラインと離隔してその外郭を囲む位置に光硬化型樹脂組成物を塗布する。この塗布によりガラスフリットのシーリング効率を一層向上させることができる。前記光硬化型樹脂組成物は、図1に示したように、上板にガラスフリットと共に同一箇所に塗布することもでき、下板の上面に塗布することもでき、好ましくは整列側面から有利なように一側面に共に塗布するのが良い。つまり、前記第1電極である下板(または結合板)は、図1に示したように、電極及び染料を含む多孔質膜を備え(必要によっては単位セルの間を連結する連結線も追加的にさらに備えることもできる)、第2電極である上板は前記ガラスフリット及び光硬化型樹脂組成物が図示したように一側面に共に塗布される。ここで、前記塗布中にガラスフリット及び樹脂組成物の気密を気密ライン全体に対して行わず、後に結合体の結合面の間の空間に電解質を満たせるように一部分を開放して、電解質注入口として準備しておくのが好ましい。   In the method for producing a dye-sensitized solar cell according to the present invention, the photocurable resin composition is then placed at a position surrounding the outer wall of the upper plate or a bonding surface of the bonding plate bonded to the upper plate so as to be separated from the hermetic line. Apply. By this application, the sealing efficiency of the glass frit can be further improved. As shown in FIG. 1, the photo-curable resin composition can be applied to the upper plate together with the glass frit at the same location, or can be applied to the upper surface of the lower plate, preferably from the alignment side. It is good to apply together on one side. That is, the lower plate (or coupling plate) as the first electrode includes a porous film containing an electrode and a dye as shown in FIG. 1 (additional connection lines connecting unit cells are added if necessary) The glass frit and the photocurable resin composition are coated on one side as shown in the figure, as the upper plate as the second electrode. Here, during the coating, the glass frit and the resin composition are not hermetically sealed over the entire hermetic line, and a part thereof is opened so that the space between the bonding surfaces of the bonded body can be filled with an electrolyte later. It is preferable to prepare as follows.

前記光硬化型樹脂組成物の塗布も公知の多様な方法によりこれを遂行することができ、その例としてスクリーンプリンティング法やグラビア印刷などを適用することができる。   The photo-curable resin composition can be applied by various known methods, and examples thereof include screen printing and gravure printing.

このような光硬化型樹脂組成物としては通常の光硬化型樹脂組成物を使用することができ、好ましくは、本発明に使用される光硬化型樹脂組成物は(a)エポキシ樹脂100質量部、(b)光重合開始剤0.01〜20質量部、(c)カップリング剤0.01〜10質量部、(d)無機充填剤0.01〜100質量部、及び(e)光酸発生剤0.05〜10質量部を含有することができる。   As such a photocurable resin composition, an ordinary photocurable resin composition can be used. Preferably, the photocurable resin composition used in the present invention is (a) 100 parts by mass of an epoxy resin. (B) 0.01-20 parts by weight of a photopolymerization initiator, (c) 0.01-10 parts by weight of a coupling agent, (d) 0.01-100 parts by weight of an inorganic filler, and (e) a photoacid. 0.05-10 mass parts of generating agents can be contained.

本発明の光硬化型樹脂組成物は、5,000〜150,000cps、好ましくは10,000〜100,000cpsの粘度(25℃で)を有することによって、スクリーンプリンティング工程が可能で、工程時間を短縮させ、工程に入る費用を節減することができるという長所を有する。   The photocurable resin composition of the present invention has a viscosity (at 25 ° C.) of 5,000 to 150,000 cps, preferably 10,000 to 100,000 cps, so that a screen printing process is possible, and the process time is reduced. It has the advantage that it can be shortened and the cost of entering the process can be reduced.

以下、前記光硬化型樹脂組成物の好ましい具体的成分を説明する。   Hereinafter, preferable specific components of the photocurable resin composition will be described.

前記(a)のエポキシ樹脂は、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、脂環式エポキシ樹脂、前記エポキシ樹脂のプレポリマー(prepolymer)、ポリエーテル変性エポキシ樹脂、シリコーン変性エポキシ樹脂、前記エポキシ樹脂と他のポリマーとの共重合体などを単独または2種以上混合して使用することができる。   The epoxy resin of (a) is bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, naphthalene type epoxy resin, biphenyl type epoxy resin, glycidylamine type epoxy resin, naphthol novolak type epoxy resin, diester. Cyclopentadiene type epoxy resin, phenol novolac type epoxy resin, alicyclic epoxy resin, prepolymer of the epoxy resin, polyether modified epoxy resin, silicone modified epoxy resin, co-polymerization of the epoxy resin with other polymers A coalescence etc. can be used individually or in mixture of 2 or more types.

前記(b)の光重合開始剤は、芳香族ジアゾニウム塩、芳香族スルホニウム塩、芳香族ヨードアルミニウム塩、芳香族スルホニウムアルミニウム塩、メタロセン化合物、鉄アレーン(arene)系化合物などを使用することができる。   As the photopolymerization initiator (b), aromatic diazonium salts, aromatic sulfonium salts, aromatic iodoaluminum salts, aromatic sulfonium aluminum salts, metallocene compounds, iron arene compounds, and the like can be used. .

特に、光硬化性の側面からは芳香族スルホニウム塩が好ましく、硬化性、接着性などの側面からは芳香族スルホニウムヘキサフルオロホスフェート化合物、芳香族スルホニウムヘキサフルオロアンチモネートまたはこれらを混合して使用するのが好ましい。   In particular, an aromatic sulfonium salt is preferable from the viewpoint of photocuring, and an aromatic sulfonium hexafluorophosphate compound, an aromatic sulfonium hexafluoroantimonate, or a mixture thereof is used from the aspects of curability and adhesiveness. Is preferred.

前記光重合開始剤は、エポキシ樹脂100質量部に対して0.01〜20質量部使用すことが好ましく、さらに好ましくは0.1〜10質量部使用され、最も好ましくは1〜6質量部使用される。その含量が20質量部を超過する場合には組成物の反応に参加せず、残る成分が光硬化型樹脂組成物の物性を低下させる要因として作用することがある。   The photopolymerization initiator is preferably used in an amount of 0.01 to 20 parts by weight, more preferably 0.1 to 10 parts by weight, and most preferably 1 to 6 parts by weight, based on 100 parts by weight of the epoxy resin. Is done. When the content exceeds 20 parts by mass, it does not participate in the reaction of the composition, and the remaining components may act as a factor for reducing the physical properties of the photocurable resin composition.

前記(c)のカップリング剤は接着力(密着特性)を高めるための添加剤であって、トリメトキシシリル安息香酸、γ−グリシドキシプロピルトリメトキシシラン等のシラン系カップリング剤、チタン系のカップリング剤、シリコーン化合物などを単独または2種以上を混合して使用することができる。   The coupling agent (c) is an additive for increasing adhesive strength (adhesion properties), and is a silane coupling agent such as trimethoxysilylbenzoic acid or γ-glycidoxypropyltrimethoxysilane, titanium These coupling agents, silicone compounds and the like can be used alone or in admixture of two or more.

前記カップリング剤はエポキシ樹脂100質量部に対して0.01〜10質量部使用することが好ましく、さらに好ましくは0.1〜5質量部使用され、最も好ましくは0.1〜2質量部使用される。その含量が10質量部を超過する場合には組成物の反応に参加せず、残る成分が光硬化型樹脂組成物の物性を低下させる要因として作用することがある。   The coupling agent is preferably used in an amount of 0.01 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, and most preferably 0.1 to 2 parts by weight, based on 100 parts by weight of the epoxy resin. Is done. When the content exceeds 10 parts by mass, it does not participate in the reaction of the composition, and the remaining components may act as a factor that lowers the physical properties of the photocurable resin composition.

前記(d)の無機フィラーとしては、シリカ(silica)、滑石(talc)、酸化マグネシウム(MgO)、マイカ(mica)、モンモリロナイト(montmorillonite)、アルミナ(alumina)、グラファイト(graphite)、酸化ベリリウム(beryllium oxide)、窒化アルミニウム(aluminium nitride)、炭化ケイ素(silicon carbide)、ムライト(mullite)、シリコン(silicon)等の板状型または球形の無機フィラーを使用することができる。   Examples of the inorganic filler (d) include silica, talc, magnesium oxide (MgO), mica, montmorillonite, alumina, graphite, and beryllium oxide. Plate-type or spherical inorganic fillers such as oxide, aluminum nitride, silicon carbide, mullite, silicon, etc. can be used.

特に、前記無機フィラーとしては水分に対するバリア特性及び光透過性に優れ、光硬化後収縮を防止する滑石(talc)を使用するのが良い。   In particular, as the inorganic filler, it is preferable to use talc which is excellent in moisture barrier property and light transmittance and prevents shrinkage after photocuring.

また、前記無機フィラーは、光硬化型樹脂組成物でエポキシ樹脂との分散特性と接着力の増大のために、無機フィラーに置換基を導入して使用することもできる。   In addition, the inorganic filler may be used by introducing a substituent into the inorganic filler in order to increase the dispersion characteristics and the adhesive strength with the epoxy resin in the photocurable resin composition.

前記無機フィラーはエポキシ樹脂100質量部に対して0.01〜100質量部使用することが好ましく、さらに好ましくは0.1〜80質量部使用する。その含量が100質量部を超過する場合には光硬化型樹脂組成物の反応を妨げて物性を低下させる要因として作用することがある。前記無機フィラーは平均粒径が0.1〜50μmの粒子を使用すればさらに良い。   The inorganic filler is preferably used in an amount of 0.01 to 100 parts by weight, more preferably 0.1 to 80 parts by weight, based on 100 parts by weight of the epoxy resin. When the content exceeds 100 parts by mass, the reaction of the photocurable resin composition may be hindered to act as a factor for reducing physical properties. The inorganic filler is better if particles having an average particle diameter of 0.1 to 50 μm are used.

前記(e)の光酸発生剤は、露光によってルイス酸、ブレンステッド酸成分を生成して、光によって酸を発生できる化合物であれば制限されない。例えば、前記光酸発生剤としては、有機スルホン酸などの硫化塩系化合物、オニウム塩などのオニウム塩系化合物、及びこれらの混合物を使用することができる。光酸発生剤の非限定的な例としては、フタルイミドトリフルオロメタンスルホネート(phthalimidotrifluoromethane sulfonate)、ジニトロベンジルトシレート(dinitrobenzyltosylate)、n−デシルジスルホン(n-decyl disulfone)、ナフチルイミドトリフルオロメタンスルホネート(naphthylimido trifluoromethane sulfonate)、ジフェニルヨード塩(ヨードニウム塩)ヘキサフルオロホスフェート、ジフェニルヨード塩ヘキサフルオロアルセネート、ジフェニルヨード塩ヘキサフルオロアンチモネート、ジフェニルパラメトキシフェニルスルホニウムトリフレート、ジフェニルパラトルエニルスルホニウムトリフレート、ジフェニルパライソブチルフェニルスルホニウムトリフレート、トリフェニルスルホニウムヘキサフルオロアルセネート、トリフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムトリフレート、ジブチルナフチルスルホニウムトリフレートなどがある。   The photoacid generator (e) is not limited as long as it is a compound capable of generating a Lewis acid and Bronsted acid component by exposure and generating an acid by light. For example, as the photoacid generator, a sulfide salt compound such as organic sulfonic acid, an onium salt compound such as onium salt, and a mixture thereof can be used. Non-limiting examples of photoacid generators include phthalimidotrifluoromethane sulfonate, dinitrobenzyltosylate, n-decyl disulfone, naphthylimido trifluoromethane sulfonate (naphthylimido trifluoromethane sulfonate). ), Diphenyliodo salt (iodonium salt) hexafluorophosphate, diphenyliodo salt hexafluoroarsenate, diphenyliodo salt hexafluoroantimonate, diphenylparamethoxyphenylsulfonium triflate, diphenylparatolenylsulfonium triflate, diphenylparaisobutylphenylsulfonium Triflate, triphenylsulfonium hexafluoroarsenate, triphenylsulfoniu Hexafluoroantimonate, triphenylsulfonium triflate, and the like dibutyl Luna borderless Le triflate.

前記光酸発生剤はエポキシ樹脂100質量部に対して0.05〜10質量部含まれることが好ましい。その含量が10質量部を超過する場合には光酸発生剤が遠紫外線を多く吸収し、酸が多量発生して光硬化型樹脂組成物の物性を低下させることがある。   The photoacid generator is preferably contained in an amount of 0.05 to 10 parts by mass with respect to 100 parts by mass of the epoxy resin. When the content exceeds 10 parts by mass, the photoacid generator may absorb a lot of far ultraviolet rays, and a large amount of acid may be generated, thereby reducing the physical properties of the photocurable resin composition.

また、前記光硬化型樹脂組成物は選択的にスペーサをさらに含むことができる。前記光硬化型樹脂組成物に適用可能なスペーサとしては硬化後パネルの厚さを一定に維持させられるものであれば特に限定されず、パネルの厚さを5〜50μm、好ましくは5〜25μmに維持できるものが良い。スペーサの形態は球形、丸太型などがあり、スペーサの形態もパネルの厚さを一定に維持させられるものであれば特に限られない。前記スペーサの含量はエポキシ樹脂100質量部に対して0.01〜10質量部含まれることが好ましい。   The photocurable resin composition may further include a spacer selectively. The spacer applicable to the photocurable resin composition is not particularly limited as long as the thickness of the panel after curing can be kept constant, and the thickness of the panel is 5 to 50 μm, preferably 5 to 25 μm. What can be maintained is good. The spacer has a spherical shape, a log shape, and the like, and the shape of the spacer is not particularly limited as long as the thickness of the panel can be kept constant. It is preferable that the content of the spacer is 0.01 to 10 parts by mass with respect to 100 parts by mass of the epoxy resin.

このような成分からなる本発明の光硬化型樹脂組成物はその硬化物のエポキシ変化率が85%以上であるのことが好ましい。   The photocurable resin composition of the present invention composed of such components preferably has an epoxy change rate of 85% or more in the cured product.

次に、このように準備された上板及び前記上板に結合する結合板を合着して結合体を準備する。前記結合板は図1の場合には下板がこれに該当し、前記結合体として合着が行われた後にはそれ以上の内部接近が制限されるので、前記ガラスフリットまたは樹脂組成物の塗布工程を前後としてセルの構成において必要な加工工程を全て終えた後に上板及び結合板の合着を行わなければならない。これには図1に示したような電極形成、染料吸着工程等が適用される。   Next, the upper plate prepared in this way and the bonding plate bonded to the upper plate are bonded together to prepare a combined body. In the case of FIG. 1, the bonding plate corresponds to the lower plate, and after the bonding is performed as the bonded body, further internal approach is restricted, so that the glass frit or the resin composition is applied. The upper plate and the bonding plate must be joined after all the necessary processing steps in the cell configuration are completed before and after the process. For this, an electrode formation, a dye adsorption process and the like as shown in FIG. 1 are applied.

また、前記ガラスフリット及び光硬化型樹脂組成物の塗布では、前記気密ラインに沿って塗布する場合にこれを全て塗布して完全に気密が維持されるようにすることができ、必要によって内部空間と連結される連結口を残してこれを塗布することもでき、本発明の染料感応太陽電池の場合、電解質を充填することが必要であるのでこのために電解質注入口は残してこれを塗布することができる。   Further, in the application of the glass frit and the photocurable resin composition, when applying along the airtight line, it can be applied completely so that the airtightness can be maintained. This can also be applied by leaving the connection port connected to the electrode, and in the case of the dye-sensitized solar cell of the present invention, it is necessary to fill the electrolyte, so for this purpose the electrolyte injection port is left and applied. be able to.

このように合着された結合体のガラスフリット及び光硬化型樹脂組成物はまだ硬化しない状態であるので、次に前記合着された結合体に前記光硬化型樹脂組成物を硬化させる光を照射して硬化する工程を行う。図1にこれに関する具体的な例を示したように、塗布した光硬化型樹脂組成物がUVに硬化される場合には図示したように紫外線を照射してこれを硬化させる。その次に、前記合着された結合体の前記ガラスフリットを硬化させることが必要であるので、このために前記塗布されたガラスフリットに沿ってレーザーを照射して焼成する工程を行う。前記ガラスフリットは前述のように好ましくは低融点ガラスフリットを使用することができ、そのために前記照射されるレーザーはその出力の低いレーザーを使用することができ、そのためにデバイスに及ぼす熱的損傷を最少化することができる。この場合に、すでに硬化してガラスフリットを囲んでいる樹脂組成物層はガラスフリットの焼成時ガス発生及び酸素との接触を遮断する役割を果たし、ガラスフリット焼成時結合体を支持する役割を果たすので、プレシーリング(pre-sealing)を通じてガラスフリットシーリングの効率を向上させ工程効率を増大させる効果を得ることができる。   Since the glass frit and the photocurable resin composition of the bonded body thus bonded are not yet cured, the light that cures the photocurable resin composition is then applied to the bonded bonded body. A step of curing by irradiation is performed. As shown in a specific example in FIG. 1, when the applied photocurable resin composition is cured to UV, it is cured by irradiating with ultraviolet rays as illustrated. Next, since it is necessary to harden the glass frit of the bonded bonded body, for this purpose, a step of firing by irradiating a laser along the applied glass frit is performed. As described above, the glass frit may preferably be a low melting glass frit, so that the irradiated laser can use a laser having a low output, and therefore, the thermal damage to the device is prevented. It can be minimized. In this case, the resin composition layer that is already cured and surrounds the glass frit serves to block gas generation and contact with oxygen during firing of the glass frit, and serves to support the bonded body during firing of the glass frit. Therefore, it is possible to improve glass frit sealing efficiency through pre-sealing and to increase the process efficiency.

これを通じて染料感応太陽電池セルの気密はガラスフリット及び樹脂組成物によって二重気密が維持され、以降に、図1にその具体的な例を示したように、前記気密ラインと光硬化型樹脂組成物塗布部分の間を切断して、光硬化型樹脂組成物が硬化された部分を分離することができる。特に、図1の場合には多数のセルを一つの基板に設けているので、これをそれぞれ切断して多数のセルに作るダイシング(dicing)作業を行う。また、前記ガラスフリット焼成工程以降またはダイシング(dicing)作業以降に前述の電解質注入口に前記電解質を注入した後、ガラスフリットなどを利用して最終的に気密作業を行うようにして気密を完了するようにすることもできる。   Through this, the airtightness of the dye-sensitized solar cell is maintained by the glass frit and the resin composition, and the airtight line and the photocurable resin composition are used as shown in FIG. By cutting between the object application portions, the portion where the photocurable resin composition is cured can be separated. In particular, in the case of FIG. 1, since a large number of cells are provided on a single substrate, a dicing operation is performed by cutting each of the cells into a large number of cells. Further, after the glass frit firing step or after the dicing operation, the electrolyte is injected into the electrolyte injection port, and the airtight operation is finally performed using the glass frit or the like to complete the airtightness. It can also be done.

以上で説明した本発明は前述の実施例及び添付した図面によって限定されるのではなく、下記の特許請求の範囲に記載された本発明の思想及び領域から逸脱しない範囲内で当該技術分野の当業者が多様に修正及び変更させたものも本発明の範囲内に含まれることはもちろんである。   The present invention described above is not limited by the foregoing embodiments and the accompanying drawings, but is within the scope of the technical field within the scope of the spirit and scope of the present invention described in the claims below. It goes without saying that various modifications and changes made by a trader are also included in the scope of the present invention.

Claims (12)

上板と前記上板と結合する結合板の合着を含む染料感応太陽電池の製造方法において、前記上板または前記上板と結合する結合板の結合面に前記染料感応太陽電池の気密ラインに沿ってガラスフリットを塗布する工程;前記上板または前記上板と結合する結合板の結合面に前記気密ラインと離隔して、その外郭を囲む位置に光硬化型樹脂組成物を塗布する工程;前記上板及び結合板を合着して結合体を製作する工程;前記合着された結合体に前記光硬化型樹脂組成物を硬化させる光を照射して硬化する工程;及び前記合着された結合体の前記ガラスフリットに沿ってレーザーを照射して焼成する工程を含むことを特徴とする染料感応太陽電池の製造方法。   In a method for manufacturing a dye-sensitized solar cell including bonding of an upper plate and a bonding plate bonded to the upper plate, an airtight line of the dye-sensitive solar cell is formed on a bonding surface of the upper plate or a bonding plate bonded to the upper plate. A step of applying a glass frit along the step; a step of applying a photocurable resin composition to a position surrounding the outer wall of the upper plate or a bonding surface of the bonding plate bonded to the upper plate, spaced from the hermetic line; Bonding the upper plate and the bonding plate to produce a bonded body; irradiating the bonded bonded body with light for curing the photocurable resin composition; and curing the bonded body; A method for producing a dye-sensitized solar cell, comprising a step of firing by irradiating a laser along the glass frit of the bonded body. 後工程として、前記気密ラインと光硬化型樹脂組成物塗布部分の間を切断して、光硬化型樹脂組成物が硬化された部分を分離する工程をさらに含む請求項1に記載の染料感応太陽電池の製造方法。   The dye-sensitive sun according to claim 1, further comprising a step of cutting between the airtight line and the photocurable resin composition application portion and separating a portion where the photocurable resin composition is cured as a post-process. Battery manufacturing method. 前記ガラスフリットが、P25 0〜30モル%;V25 0〜50モル%;ZnO 0〜20モル%;BaO 0〜15モル%;As23 0〜20モル%;Sb23 0〜20モル%;In23 0〜5モル%;Fe23 0〜10モル%;Al23 0〜5モル%;B23 0〜20モル%;Bi23 0〜10モル%;及びTiO2 0〜10モル%を含有する請求項1に記載の染料感応太陽電池の製造方法。 Said glass frit, P 2 O 5 0~30 mol%; V 2 O 5 0~50 mol%; ZnO 0 to 20 mole%; BaO 0 to 15 mole%; As 2 O 3 0~20 mol%; Sb 2 O 3 0 to 20 mol%; In 2 O 3 0 to 5 mol%; Fe 2 O 3 0 to 10 mol%; Al 2 O 3 0 to 5 mol%; B 2 O 3 0 to 20 mol%; 2. The method for producing a dye-sensitized solar cell according to claim 1, comprising 0 to 10 mol% of O 3 ; and 0 to 10 mol% of TiO 2 . 前記ガラスフリットの塗布が、(a)前記ガラスフリット;(b)有機バインダー;及び(c)有機溶媒を含むガラスフリットペースト組成物を塗布する請求項1に記載の染料感応太陽電池の製造方法。   The method for producing a dye-sensitized solar cell according to claim 1, wherein the glass frit is applied by applying a glass frit paste composition containing (a) the glass frit; (b) an organic binder; and (c) an organic solvent. 前記ガラスフリットペーストが、(a)前記ガラスフリット60〜90質量部;(b)有機バインダー0.1〜5質量部;及び(c)有機溶媒5〜35質量部を含む請求項4に記載の染料感応太陽電池の製造方法。   5. The glass frit paste according to claim 4, wherein the glass frit paste comprises (a) 60 to 90 parts by mass of the glass frit; (b) 0.1 to 5 parts by mass of an organic binder; and (c) 5 to 35 parts by mass of an organic solvent. A method for producing a dye-sensitized solar cell. 前記光硬化型樹脂組成物が、(a)エポキシ樹脂100質量部;(b)光重合開始剤0.01〜20質量部;(c)カップリング剤0.01〜10質量部;(d)無機フィラー0.01〜100質量部;及び(e)光酸発生剤0.05〜10質量部を含む請求項1に記載の染料感応太陽電池の製造方法。   The photocurable resin composition comprises: (a) 100 parts by mass of an epoxy resin; (b) 0.01 to 20 parts by mass of a photopolymerization initiator; (c) 0.01 to 10 parts by mass of a coupling agent; The method for producing a dye-sensitized solar cell according to claim 1, comprising 0.01 to 100 parts by mass of an inorganic filler; and (e) 0.05 to 10 parts by mass of a photoacid generator. 前記(a)のエポキシ樹脂が、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、フェノールノボラック(phenol novolac)型エポキシ樹脂、脂環式エポキシ樹脂、前記エポキシ樹脂のプレポリマー、ポリエーテル変性エポキシ樹脂、シリコーン変性エポキシ樹脂及び前記エポキシ樹脂と他のポリマーとの共重合体からなる群より選択される1以上である請求項6に記載の染料感応太陽電池の製造方法。   The epoxy resin (a) is bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, naphthalene type epoxy resin, biphenyl type epoxy resin, glycidylamine type epoxy resin, naphthol novolac type epoxy resin, di Cyclopentadiene type epoxy resin, phenol novolac type epoxy resin, alicyclic epoxy resin, prepolymer of the above epoxy resin, polyether modified epoxy resin, silicone modified epoxy resin and co-use of the epoxy resin with other polymers The method for producing a dye-sensitized solar cell according to claim 6, which is at least one selected from the group consisting of polymers. 前記(b)の光重合開始剤が、芳香族ジアゾニウム塩、芳香族スルホニウム塩、芳香族ヨードアルミニウム塩、芳香族スルホニウムアルミニウム塩、メタロセン化合物及び鉄アレーン系化合物からなる群より選択される1以上である請求項6に記載の染料感応太陽電池の製造方法。   The photopolymerization initiator (b) is at least one selected from the group consisting of aromatic diazonium salts, aromatic sulfonium salts, aromatic iodoaluminum salts, aromatic sulfonium aluminum salts, metallocene compounds, and iron arene compounds. A method for producing a dye-sensitized solar cell according to claim 6. 前記(c)のカップリング剤が、シラン系カップリング剤、チタン系のカップリング剤及びシリコーン化合物からなる群より選択される1以上である請求項6に記載の染料感応太陽電池の製造方法。   The method for producing a dye-sensitized solar cell according to claim 6, wherein the coupling agent (c) is one or more selected from the group consisting of a silane coupling agent, a titanium coupling agent, and a silicone compound. 前記(d)の無機フィラーが、シリカ、滑石、酸化マグネシウム、マイカ、モンモリロナイト、アルミナ、グラファイト、酸化ベリリウム、窒化アルミニウム、炭化ケイ素、ムライト及びシリコンからなる群より選択される1以上である請求項6に記載の染料感応太陽電池の製造方法。   The inorganic filler (d) is one or more selected from the group consisting of silica, talc, magnesium oxide, mica, montmorillonite, alumina, graphite, beryllium oxide, aluminum nitride, silicon carbide, mullite, and silicon. A method for producing a dye-sensitized solar cell as described in 1 above. 前記(e)の光酸発生剤が、硫化塩系化合物、オニウム塩系化合物及びこれらの混合物からなる群より選択される請求項6に記載の染料感応太陽電池の製造方法。   The method for producing a dye-sensitized solar cell according to claim 6, wherein the photoacid generator (e) is selected from the group consisting of a sulfide-based compound, an onium salt-based compound, and a mixture thereof. 請求項1〜11のいずれか1項記載の染料感応太陽電池の製造方法によって製造された染料感応太陽電池。   The dye-sensitized solar cell manufactured by the manufacturing method of the dye-sensitive solar cell of any one of Claims 1-11.
JP2009067240A 2008-03-20 2009-03-19 Method for producing dye-sensitized solar cell Expired - Fee Related JP5492433B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2008-0025962 2008-03-20
KR1020080025962A KR101518871B1 (en) 2008-03-20 2008-03-20 Method of preparing the dye-sensitized solar cell

Publications (2)

Publication Number Publication Date
JP2009231285A true JP2009231285A (en) 2009-10-08
JP5492433B2 JP5492433B2 (en) 2014-05-14

Family

ID=41078828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009067240A Expired - Fee Related JP5492433B2 (en) 2008-03-20 2009-03-19 Method for producing dye-sensitized solar cell

Country Status (5)

Country Link
JP (1) JP5492433B2 (en)
KR (1) KR101518871B1 (en)
CN (1) CN101540234B (en)
DE (1) DE102009012545A1 (en)
TW (1) TWI469381B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011086869A (en) * 2009-10-19 2011-04-28 Samsung Sdi Co Ltd Glass paste composition, electrode substrate and manufacturing method of the same, and dye-sensitized solar cell
KR20160052462A (en) * 2013-08-30 2016-05-12 세키스이가가쿠 고교가부시키가이샤 Method for reactivating counter electrode active material for dye-sensitive solar cell, method for regenerating dye-sensitive solar cell in which said method is used, catalyst layer for dye-sensitive solar cell, counter electrode, electrolyte, and dye-sensitive solar cell

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101097270B1 (en) 2010-03-25 2011-12-21 삼성에스디아이 주식회사 Photoelectric conversion device
KR20120028494A (en) * 2010-09-15 2012-03-23 주식회사 동진쎄미켐 Dye sensitized solar cell with advanced power efficiency
CN101950690A (en) * 2010-09-27 2011-01-19 彩虹集团公司 Dye sensitized solar cell and sealing method thereof
KR101144038B1 (en) 2010-11-11 2012-05-24 현대자동차주식회사 Curved dye-sensitized solar cell and method for manufacturing the same
KR20120087657A (en) * 2011-01-28 2012-08-07 엘지이노텍 주식회사 Solar cell
CN102324308B (en) * 2011-06-29 2012-10-17 西安建筑科技大学 Method for improving interface caking property of dye sensitized solar cell substrate
KR101349344B1 (en) * 2011-12-06 2014-01-17 한국전기연구원 organic-inorganic sealant for internal and external protection of photovoltaic cell
CN102709062B (en) * 2012-06-05 2016-07-13 南昌航空大学 A kind of encapsulating method of dye-sensitized solar cells
KR101674449B1 (en) * 2012-11-28 2016-11-09 주식회사 오리온 Method for manufacturing dye-sensitized solar cell using the same
KR101570740B1 (en) * 2014-05-21 2015-11-23 주식회사 오리온 Glass materials for large scale dye-sensitized solar cell sealing
CN105693097B (en) * 2015-03-26 2018-12-18 王双喜 A kind of high thermal conductivity low meiting sealing frils
PL3182466T3 (en) * 2015-12-14 2020-11-02 Oxford Photovoltaics Limited Photovoltaic module encapsulation
JP6798547B2 (en) * 2016-03-30 2020-12-09 日本ゼオン株式会社 Sealing agent composition for organic solar cells, sealing agent for organic solar cells, electrodes for organic solar cells and organic solar cells

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256058A (en) * 2001-03-01 2002-09-11 Ricoh Co Ltd Photocuring type epoxy resin composition and photocuring type sealant for display element
JP2004172048A (en) * 2002-11-22 2004-06-17 Fujikura Ltd Method of manufacturing photoelectric conversion element
JP2004319197A (en) * 2003-04-15 2004-11-11 Fujikura Ltd Photoelectric conversion element and its manufacturing method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3885975A (en) * 1972-04-24 1975-05-27 Corning Glass Works Low melting vanadate glasses
CN1181565C (en) * 2002-12-25 2004-12-22 中国科学院等离子体物理研究所 Sealing method of dye sensitized nanofilm solar cell
JP5098185B2 (en) * 2006-02-20 2012-12-12 大日本印刷株式会社 Dye-sensitized solar cell module
US8076570B2 (en) * 2006-03-20 2011-12-13 Ferro Corporation Aluminum-boron solar cell contacts
KR20070103204A (en) * 2006-04-18 2007-10-23 주식회사 동진쎄미켐 Photocuarable resin composition having high thermal conductivity
US20080057390A1 (en) * 2006-08-31 2008-03-06 Seiko Epson Corporation Secondary battery
CN100495759C (en) * 2007-04-26 2009-06-03 南京大学 Anti-ageing packaging method for dye sensing sun cell
CN100511723C (en) * 2007-05-29 2009-07-08 中国科学院等离子体物理研究所 Packaging structure for dye sensitized solar cell plate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256058A (en) * 2001-03-01 2002-09-11 Ricoh Co Ltd Photocuring type epoxy resin composition and photocuring type sealant for display element
JP2004172048A (en) * 2002-11-22 2004-06-17 Fujikura Ltd Method of manufacturing photoelectric conversion element
JP2004319197A (en) * 2003-04-15 2004-11-11 Fujikura Ltd Photoelectric conversion element and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011086869A (en) * 2009-10-19 2011-04-28 Samsung Sdi Co Ltd Glass paste composition, electrode substrate and manufacturing method of the same, and dye-sensitized solar cell
KR20160052462A (en) * 2013-08-30 2016-05-12 세키스이가가쿠 고교가부시키가이샤 Method for reactivating counter electrode active material for dye-sensitive solar cell, method for regenerating dye-sensitive solar cell in which said method is used, catalyst layer for dye-sensitive solar cell, counter electrode, electrolyte, and dye-sensitive solar cell
KR102286239B1 (en) * 2013-08-30 2021-08-06 세키스이가가쿠 고교가부시키가이샤 Method for reactivating counter electrode active material for dye-sensitive solar cell, method for regenerating dye-sensitive solar cell in which said method is used, catalyst layer for dye-sensitive solar cell, counter electrode, electrolyte, and dye-sensitive solar cell

Also Published As

Publication number Publication date
CN101540234A (en) 2009-09-23
CN101540234B (en) 2012-07-04
JP5492433B2 (en) 2014-05-14
KR101518871B1 (en) 2015-05-21
DE102009012545A1 (en) 2009-10-22
TWI469381B (en) 2015-01-11
KR20090100651A (en) 2009-09-24
TW200950123A (en) 2009-12-01

Similar Documents

Publication Publication Date Title
JP5492433B2 (en) Method for producing dye-sensitized solar cell
JP5091681B2 (en) Dye-sensitized photoelectric conversion element and method for producing the same
JP5481081B2 (en) Dye-sensitized solar cell and manufacturing method thereof
JP4783147B2 (en) Sealing agent for photoelectric conversion element and photoelectric conversion element using the same
TWI486091B (en) A sealing method for display element
JP5007227B2 (en) Sealant for photoelectric conversion element and photoelectric conversion element using the same
JP5098186B2 (en) Method for producing dye-sensitized solar cell and dye-sensitized solar cell
WO2008004556A1 (en) Dye-sensitized solar cell module and method for fabricating same
JP5649648B2 (en) Photoelectric conversion element using sealant for thermosetting photoelectric conversion element
JP2000348783A (en) Manufacture of pigment-sensitized type solar cell
TW201340431A (en) Organic thin-film solar cell device
KR20080072425A (en) Dye-sensitized solar cell and method for preparing the same
JP2004172048A (en) Method of manufacturing photoelectric conversion element
KR20120114888A (en) Sealing material for dye sensitized solar cell and method for sealing dye sensitized solar cell using the same
KR20190040964A (en) Solar cell module
Cao et al. Recent Advances in UV-Cured Encapsulation for Stable and Durable Perovskite Solar Cell Devices
US20110277807A1 (en) Photoelectric conversion module
CN114730846A (en) Photoelectric conversion element, photoelectric conversion module, electronic device, and power supply module
WO2017082319A1 (en) Sealing agent
US20130340809A1 (en) Dye-sensitized photovoltaic device and fabrication method for the same
JP2011159514A (en) Sealing structure of dye-sensitized solar cell, and dye-sensitized solar cell
JP2014120431A (en) Sealant for dye-sensitized solar cell and dye-sensitized solar cell using the same
JP2023042617A (en) perovskite solar cell
WO2013115287A1 (en) Method for aging dye-sensitized solar cells
TW201607110A (en) Electrochemical cell and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20131205

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20131210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140303

R150 Certificate of patent or registration of utility model

Ref document number: 5492433

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees