JP4467879B2 - Manufacturing method of dye-sensitized solar cell - Google Patents

Manufacturing method of dye-sensitized solar cell Download PDF

Info

Publication number
JP4467879B2
JP4467879B2 JP2002339190A JP2002339190A JP4467879B2 JP 4467879 B2 JP4467879 B2 JP 4467879B2 JP 2002339190 A JP2002339190 A JP 2002339190A JP 2002339190 A JP2002339190 A JP 2002339190A JP 4467879 B2 JP4467879 B2 JP 4467879B2
Authority
JP
Japan
Prior art keywords
substrate
glass frit
dye
sensitized solar
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002339190A
Other languages
Japanese (ja)
Other versions
JP2004172048A (en
Inventor
浩志 松井
信夫 田辺
顕一 岡田
卓也 川島
哲也 江連
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2002339190A priority Critical patent/JP4467879B2/en
Publication of JP2004172048A publication Critical patent/JP2004172048A/en
Application granted granted Critical
Publication of JP4467879B2 publication Critical patent/JP4467879B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、色素増感太陽電池を製造する方法、特に色素増感太陽電池を構成する2枚の基板を高い耐久性を持って接合、封止する方法に関する。
【0002】
【従来の技術】
色素増感太陽電池は、スイスのグレツェルらが開発したもので、光電変換効率が高く、製造コストが安く、環境に優しいなどの利点があり、新しいタイプの太陽電池として注目を浴びている(特許文献1参照)。
【0003】
図3は、この色素増感太陽電池の例を示すものである。図中符号1は、作用極をなす第1の基板を示す。この第1の基板1は、ガラス板、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネイト、ポリエーテルスルホンなどの透明樹脂などのシートからなるものである。
【0004】
この第1の基板1上には、スズドープ酸化インジウム(ITO)、フッ素ドープ酸化スズ(FTO)などの透明導電膜2が形成されいる。この透明導電膜2上には集電用の格子状の金属配線層3が光透過性を損ねないように形成されている。
【0005】
この金属配線層3上には、酸化チタン、酸化スズ、酸化タングステン、酸化亜鉛、酸化ネオジムなどの金属酸化物半導体からなる酸化物半導体多孔膜4が形成され、この酸化物半導体多孔膜4にはビピリジン系、ターピリジン系などの光増感用色素が担持されており、第1の基板1上に透明導電膜2、金属配線層3、酸化物半導体多孔膜4および光増感用色素が設けられて、作用極を構成している。
【0006】
また、図中符号5は、対極をなす第2の基板を示す。この第2の基板5は、ガラス板、樹脂シート、金属シートなどからなるもので、ガラス板、樹脂シートなどの絶縁性材料からなるものでは、この上に白金などの金属薄膜やFTO、ITOなどを単独あるいは複合して用いた導電膜6が形成されたものである。
【0007】
さらに、作用極を構成する第1の基板1と対極を構成する第2の基板5との間の隙間には、電解液7が充填されている。この電解液7には、溶媒としてアセトニトリル、プロピオニトリル、プロピレンカーボネイトなど揮発性溶媒や1−エチル−3−メチルイミダゾリウムカチオンとビス(トリフロロメチルスルホニル)イミドアニオンからなる塩などのイオン性液体等に、レドックス対としてヨウ素イオン/ヨウ素、臭素イオン/臭素などを溶解したもの、あるいはこれら電解液をゲル化した固体状の電解液などが用いられる。また、電解液7にかわりに、ヨウ化銅、チオシアン化銅などのp型半導体などを電荷移送層として用いることもできる。
【0008】
また、第1の基板1と第2の基板5とは、その周縁部において、エポキシ樹脂、紫外線硬化型樹脂、オレフィン系樹脂などの樹脂からなる封止材8で接合、封止されており、セル内部の電解液7の外部への漏洩や外部からの異物、水分の内部への侵入が防止されるように構成されている。
【0009】
このような構造の色素増感太陽電池にあっては、主に屋外で使用されることになるが、その場合には、その表面温度が80℃を越える高温に曝されることになる。また、長期間風雨にさらされることにもなる。このような使用条件下では、基板1、5の封止が樹脂からなる封止材8によってなされているので、耐久性や安全性などの不安が残る。
【0010】
このような問題点を解決するため、色素増感太陽電池を構成する基板を無機材料のガラスフリットを用い、これを溶融することで基板間を接合、封止する方法が提案されている(特許文献2参照)。
しかしながら、この方法は、ガラスフリットを溶融するため、セル全体を400℃程度に加熱する必要がある。基板をこのような高温に曝すと、酸化物半導体多孔膜に担持した光増感用色素が熱劣化することになる。このため、この方法では、基板を封止する際に、小穴を形成しておき、この小穴を利用して色素溶液をセル内部に導入、循環する操作がとられており、製造工程が複雑になり、コストが嵩む欠点があった。
【0011】
【特許文献1】
特許第2664194号公報
【特許文献2】
特開2001−185244号公報
【0012】
【発明が解決しようとする課題】
よって、この発明における課題は、色素増感太陽電池をなす基板を接合、封止する際に、簡単な操作により、耐久性、安全性等に優れた封止が行われるようにすることにある。
【0013】
【課題を解決するための手段】
かかる課題を解決するため、
請求項1にかかる発明は、透明導電膜および酸化物半導体多孔膜が形成された第1の基板に対して、その酸化物半導体多孔膜に光増感用色素を担持して作用極とし、
ついでこの第1の基板と、対極となる第2の基板とを重ね合わせ、その周縁部において封止する際に、
いずれか一方もしくは両方の基板の周縁部にガラスフリット層を配し、いずれかの基板を透過して該ガラスフリット層にレーザ光を照射し、ガラスフリット層を溶融して第1および第2の基板を接合、封止することを特徴とする色素増感太陽電池の製法である。
【0014】
請求項2にかかる発明は、ガラスフリットを含むペーストを塗布してガラスフリット層を形成することを特徴とする請求項1に記載の色素増感太陽電池の製法である。
請求項3にかかる発明は、レーザ光の波長が、いずれかの基板における透過率が50%以上となるような波長域にあることを特徴とする請求項1または2に記載の色素増感太陽電池の製法である。
【0016】
【発明の実施の形態】
以下、本発明を詳しく説明する。
図1および図2は、この発明の色素増感太陽電池の一例を模式的に示すものである。図1および図2において、符号1は、第1の基板を、符号5は第2の基板をそれぞれ示す。
【0017】
なお、図1および図2には、説明の簡略化のために、第1の基板1上の透明導電膜2、金属配線層3、光増感用色素担持酸化物半導体多孔膜4および第2の基板5上の導電膜6の図示を省略してあり、これらの各構成部材は、第1の基板1おとび第2の基板5を含めて先に説明した図3に示したものと同様のものでありその説明は省略する。
【0018】
これら第1の基板1および第2の基板5は、所定の間隔を配して重ね合わせられ、基板の周縁部にはガラスフリット層11が配されている。このガラスフリット層11は、図2に示すようにいずれか一方もしくは両方の基板1、5の周縁部に帯状に配置されている。このガラスフリット層11は、ガラスフリットを含むペーストを印刷などの塗布手段により基板に塗布し、加熱して、乾燥または仮焼成して形成されたものである。
【0019】
ここで使用されるガラスフリットとしては、酸化鉛、酸化ホウ素、酸化ナトリウム、酸化バリウム、酸化ケイ素、酸化アルミニウム、酸化鉄、酸化カルシウム、酸化マグネシウム、酸化チタンなどのガラスを1種以上混合して溶融し、冷却後、粉砕した粒径0.1〜10μmの粉末が用いられる。このガラスフリットは、またその溶融温度が600℃以下の低温溶融タイプのものが好ましい。
【0020】
この粉末状のガラスフリットに、バインダとなるアクリル樹脂などの樹脂分と、必要に応じて加えられる溶媒とを加えて混練りすることで、上記ペーストとされる。また、このペースト中に高融点の無機材料からなる粒径の大きな粒子を混入しておき、ガラスフリット層11が基板1、5を所定の間隔に保つスペーサとしても機能するようにすることもできる。
【0021】
ガラスフリット層11の幅、厚さは、特に限定されず、基板の寸法、使用環境等によって適宜選択されるが、幅は最小0.5mm、厚さは上記色素担持酸化物半導体多孔膜4と少なくとも同じ高さ以上となるように決められる。また、その基板上の形成位置も特に限定されず、仕様等に応じて適宜決めればよい。
【0022】
ついで、ガラスフリット層11を配して重ね合わされた第1および第2の基板1、5には、いずれかの基板1(5)を透過してガラスフリット層11を目標としてレーザ光12が照射される。
【0023】
ここで使用されるレーザ光12としては、いずれかの基板1(5)での透過率が50%以上となる波長域にある波長のレーザ光が用いられ、具体的には、ガリウムヒ素系半導体レーザ、ガリウムヒ素アルミニウム系半導体レーザ、YAGレーザなどからのレーザ光が用いられる。基板での透過率が50%未満ではガラスフリット層11に届くレーザ光が減少し、逆に基板1(5)が加熱されて不都合となる。
【0024】
レーザ光の強度は、ガラスフリット層11を溶融するに十分なものであればよく、レーザ光の照射スポットの大きさ、その移動速度などを適宜決めて行えばよい。レーザ光の照射軌跡としては、ガラスフリット層11が十分加熱されるものであれば良く、例えばワブリング方式あるいは塗りつぶし方式が好ましい。
【0025】
ワブリング方式とは、レーザ光の照射スポットの中心を旋回させながら、ガラスフリット層11の長手方向に沿って進行させてゆくものである。また、塗りつぶし方式とは、多数の平行線を描く軌跡により照射予定領域を埋め尽くすものである。
以上のようなレーザ光の照射は、市販の走査型レーザマーカ装置などを用いて実施できる。
【0026】
このレーザ光12のいずれかの基板1(5)を透過しての照射により、ガラスフリット層11が加熱され、その熱でガラスフリット層11が溶融し、この溶融されたガラスフリットにより2枚の基板1、5が接合、封止される。
【0027】
ついで、電解液を2枚の基板1、5間の間隙に充填、封入することで、色素増感太陽電池が完成する。この電解液の充填は、予めガラスフリット層11に細いパイプを通して、ガラスフリット層11を溶融し、2枚の基板を接合しておき、その後にこのパイプを介して電解液を注入する方法や対極となる第2の基板5に予め形成しておいた小穴を介して注入する方法などで行われる。電解液が高粘度であれば、セル内を減圧排気しておき、これによって形成される圧力差を利用してセル内部に注入することができる。
【0028】
このような製造方法によれば、基板1、5間の封止部分が無機材料のガラスフリットで構成されているので、その封止部分は強固に接合され、化学的、機械的、熱的に高い特性を有し、優れた耐久性、安全性を示すものとなり、この色素増感太陽電池を長期間屋外において過酷な使用条件の下で使用しても、その封止部分から電解液が漏洩したり、水分や異物が侵入したりすることがない。
【0029】
また、基板1、5の周縁部のみにレーザ光12を照射しているので、第1の基板1上に形成した酸化物半導体多孔膜4に担持されている光増感用色素が加熱されて劣化することがなく、該色素が担持された第1の基板1を接合、封止できることになり、製造操作が簡便となる。
【0030】
本発明の製法では、上述の封止方法と、従来の樹脂を用いる封止方法などの種々の封止方法とを併用することができる。
【0031】
以下、具体例を示す。
(例1)
市販のソーダガラス板の周縁部に、ガラスフリット層を形成した。このガラスフリット層は、溶融温度が500℃、粒子径5μm以下のガラスフリットとアクリル樹脂とα−ターピネルオールからなるペーストを印刷し、300℃で加熱焼成して得られた幅4mm、厚さ20μmのものである。
【0032】
ついで、このガラス板を2枚重ね合わせ、一方のガラス板を透過してレーザ光を照射した。レーザ光には、ガリウムヒ素系半導体レーザがらの波長840nmのレーザ光を使用し、走査しながら照射した。
これにより、2枚のガラス板は、強固に接合されていた。
【0033】
この接合されたガラス板を紫外線テスターにより連続300時間紫外線を照射した。照射後のガラス板の接合面の引き剥がし試験を行ったが、接着強度の大きな低下は認められなかった。
比較のため、接合材としてオレフィン系樹脂(「ハイミラン」三井化学社製)を使用して、接合、封止したガラス板では、紫外線照射後では接着強度が著しく低下した。
【0034】
(例2)
フッ素添加酸化スズからなる透明導電膜を有するガラス板上に、平均粒径25nmの酸化チタン分散液を塗布、乾燥し、450℃で1時間加熱焼結した。このれをルテニウムビピリジン錯体(N3色素)のエタノール溶液に8時間浸漬して、色素担持して、作用極とした。
【0035】
また、フッ素添加酸化スズからなる透明導電膜を有するガラス板上にスパッタ法により白金薄膜を形成して、対極とした。
これらガラス板を対向して貼り合わせた。ここでの貼り合わせは、例1に示したガラスフリットを用い、レーザ光を照射する方法と同様にして行った。
電解液として、0.5モル/リットルのヨウ化物塩と0.05モル/リットルのヨウ素を溶解したメトキシアセトニトリル溶液を用い、予め対極に形成した注入孔を介して、ガラス板間の間隙に注入して、サイズ10mm×10mmの試験セルを作製した。
【0036】
この試験セルに対して、サンシャインウェザオメータを用いた連続光照射試験(300時間)と高温保持試験(300時間)を行った。連続光照射試験および高温保持試験の前後での試験セルの光電変換効率の変化を見たところ、初期値の80%以上の値を保持していた。
【0037】
比較のため、同様の構成のセルであって、ガラス板の接合をオレフィン系樹脂(「ハイミラン」三井化学社製)を使用して、接合、封止した比較セルについて、同様の試験を施したところ、その光電変換効率は初期値の50%以下の値にまで低下していた。この比較セルを試験後に観察したところ、内部に多くの気泡が存在することが確認された。これは、封止材が劣化し、電解液が揮発し、これによりセル特性が大幅に低下してものと考えられる。
【0038】
【発明の効果】
以上説明したように、本発明によれば、基板間の接合、封止を無機材料のガラスフリットによって行うので、長期間にわたり高い耐久性、安全性を有する色素増感太陽電池を製造することができる。
【0039】
また、レーザ光を照射してガラスフリットを溶融し、接合するようにしているので、基板に形成された酸化物半導体多孔膜が加熱されないので、酸化物半導体多孔膜に光増感用色素が担持された基板を対象とすることができるので、製造操作が面倒になることもない。
【図面の簡単な説明】
【図1】本発明の製法の一例を示す概略構成図である。
【図2】本発明の製法の一例を示す概略構成図である。
【図3】本発明における光電変換素子としての色素増感太陽電池を示す概略断面図である。
【符号の説明】
1・・・第1の基板、5・・・第2の基板、11・・・ガラスフリット層、12・・・レーザ光。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a dye-sensitized solar cell , and more particularly to a method of bonding and sealing two substrates constituting the dye-sensitized solar cell with high durability.
[0002]
[Prior art]
Dye-sensitized solar cells were developed by Grezel in Switzerland and have the advantages of high photoelectric conversion efficiency, low manufacturing costs, and environmental friendliness. Reference 1).
[0003]
FIG. 3 shows an example of this dye-sensitized solar cell. Reference numeral 1 in the drawing denotes a first substrate that forms a working electrode. The first substrate 1 is made of a sheet made of a transparent resin such as a glass plate, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, or polyethersulfone.
[0004]
A transparent conductive film 2 such as tin-doped indium oxide (ITO) or fluorine-doped tin oxide (FTO) is formed on the first substrate 1. A grid-like metal wiring layer 3 for collecting current is formed on the transparent conductive film 2 so as not to impair the light transmittance.
[0005]
An oxide semiconductor porous film 4 made of a metal oxide semiconductor such as titanium oxide, tin oxide, tungsten oxide, zinc oxide, or neodymium oxide is formed on the metal wiring layer 3. A photosensitizing dye such as bipyridine or terpyridine is supported, and a transparent conductive film 2, a metal wiring layer 3, an oxide semiconductor porous film 4, and a photosensitizing dye are provided on the first substrate 1. And constitutes a working electrode.
[0006]
Moreover, the code | symbol 5 in a figure shows the 2nd board | substrate which makes a counter electrode. The second substrate 5 is made of a glass plate, a resin sheet, a metal sheet or the like, and is made of an insulating material such as a glass plate or a resin sheet. On the second substrate 5, a metal thin film such as platinum, FTO, ITO or the like is formed. The conductive film 6 is used, which is used alone or in combination.
[0007]
Further, an electrolytic solution 7 is filled in a gap between the first substrate 1 constituting the working electrode and the second substrate 5 constituting the counter electrode. The electrolytic solution 7 includes an ionic liquid such as a volatile solvent such as acetonitrile, propionitrile, or propylene carbonate as a solvent, or a salt formed of 1-ethyl-3-methylimidazolium cation and bis (trifluoromethylsulfonyl) imide anion. For example, a solution obtained by dissolving iodine ions / iodine, bromine ions / bromine, etc. as a redox pair, or a solid electrolyte solution obtained by gelling these electrolyte solutions is used. Further, in place of the electrolytic solution 7, a p-type semiconductor such as copper iodide or copper thiocyanide can be used as the charge transfer layer.
[0008]
Moreover, the 1st board | substrate 1 and the 2nd board | substrate 5 are joined and sealed by the sealing material 8 which consists of resin, such as an epoxy resin, an ultraviolet curable resin, and an olefin resin, in the peripheral part. It is configured to prevent leakage of the electrolyte 7 inside the cell to the outside and entry of foreign matter and moisture from the outside into the cell.
[0009]
The dye-sensitized solar cell having such a structure is mainly used outdoors. In that case, the surface temperature is exposed to a high temperature exceeding 80 ° C. Moreover, it will also be exposed to wind and rain for a long time. Under such conditions of use, the substrates 1 and 5 are sealed with the sealing material 8 made of resin, so that concerns such as durability and safety remain.
[0010]
In order to solve such problems, there has been proposed a method for joining and sealing the substrates by using an inorganic material glass frit for the substrate constituting the dye-sensitized solar cell and melting the substrate (patent) Reference 2).
However, since this method melts the glass frit, it is necessary to heat the entire cell to about 400 ° C. When the substrate is exposed to such a high temperature, the photosensitizing dye supported on the oxide semiconductor porous film is thermally deteriorated. For this reason, in this method, a small hole is formed when the substrate is sealed, and the dye solution is introduced and circulated inside the cell using this small hole, which complicates the manufacturing process. Therefore, there is a disadvantage that the cost increases.
[0011]
[Patent Document 1]
Japanese Patent No. 2664194 [Patent Document 2]
JP 2001-185244 A
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to perform sealing excellent in durability, safety, and the like by a simple operation when bonding and sealing a substrate constituting a dye-sensitized solar cell. .
[0013]
[Means for Solving the Problems]
To solve this problem,
The invention according to claim 1 is the first substrate on which the transparent conductive film and the oxide semiconductor porous film are formed, and the oxide semiconductor porous film carries a photosensitizing dye as a working electrode,
Then, when this first substrate and the second substrate as a counter electrode are overlapped and sealed at the peripheral edge,
A glass frit layer is disposed on the peripheral edge of one or both substrates, and the first and second glass frit layers are melted by irradiating the glass frit layer through one of the substrates and melting the glass frit layer. A method for producing a dye-sensitized solar cell , comprising bonding and sealing a substrate.
[0014]
The invention according to claim 2 is a method for producing a dye-sensitized solar cell according to claim 1, wherein a glass frit layer is formed by applying a paste containing glass frit.
The invention according to claim 3 is the dye-sensitized solar according to claim 1 or 2, wherein the wavelength of the laser light is in a wavelength region such that the transmittance of any of the substrates is 50% or more. It is a manufacturing method of a battery .
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below.
1 and 2 schematically show an example of the dye-sensitized solar cell of the present invention . 1 and 2, reference numeral 1 denotes a first substrate, and reference numeral 5 denotes a second substrate.
[0017]
In FIGS. 1 and 2, the transparent conductive film 2, the metal wiring layer 3, the photosensitizing dye-carrying oxide semiconductor porous film 4 on the first substrate 1, and the second are shown in FIG. The conductive film 6 on the substrate 5 is not shown, and these components are the same as those shown in FIG. 3 described above including the first substrate 1 and the second substrate 5. The description is omitted.
[0018]
The first substrate 1 and the second substrate 5 are overlaid at a predetermined interval, and a glass frit layer 11 is disposed on the peripheral edge of the substrate. As shown in FIG. 2, the glass frit layer 11 is arranged in a strip shape on the peripheral edge of one or both of the substrates 1 and 5. The glass frit layer 11 is formed by applying a paste containing glass frit to a substrate by an application means such as printing, heating, drying, or pre-baking.
[0019]
The glass frit used here is a mixture of one or more glasses of lead oxide, boron oxide, sodium oxide, barium oxide, silicon oxide, aluminum oxide, iron oxide, calcium oxide, magnesium oxide, titanium oxide, etc. Then, after cooling, a pulverized powder having a particle size of 0.1 to 10 μm is used. The glass frit is preferably a low-melting type whose melting temperature is 600 ° C. or lower.
[0020]
The powdery glass frit is kneaded by adding a resin component such as an acrylic resin serving as a binder and a solvent to be added as necessary to obtain the paste. Further, particles having a large particle diameter made of an inorganic material having a high melting point may be mixed in the paste so that the glass frit layer 11 functions as a spacer for keeping the substrates 1 and 5 at a predetermined interval. .
[0021]
The width and thickness of the glass frit layer 11 are not particularly limited and are appropriately selected depending on the dimensions of the substrate, the use environment, etc. The width is a minimum of 0.5 mm, and the thickness is the same as that of the dye-carrying oxide semiconductor porous film 4. It is determined to be at least the same height. Further, the formation position on the substrate is not particularly limited, and may be determined as appropriate according to the specifications.
[0022]
Next, the first and second substrates 1 and 5 that are overlapped with the glass frit layer 11 are irradiated with laser light 12 through the substrate 1 (5) and targeting the glass frit layer 11. Is done.
[0023]
As the laser beam 12 used here, a laser beam having a wavelength in a wavelength region in which the transmittance of one of the substrates 1 (5) is 50% or more is used. Specifically, a gallium arsenide semiconductor is used. Laser light from a laser, a gallium arsenide aluminum semiconductor laser, a YAG laser, or the like is used. If the transmittance at the substrate is less than 50%, the laser beam reaching the glass frit layer 11 decreases, and conversely, the substrate 1 (5) is heated and becomes inconvenient.
[0024]
The intensity of the laser beam only needs to be sufficient to melt the glass frit layer 11, and the size of the laser beam irradiation spot, the moving speed thereof, and the like may be appropriately determined. The laser beam irradiation trajectory is not particularly limited as long as the glass frit layer 11 is sufficiently heated. For example, a wobbling method or a painting method is preferable.
[0025]
In the wobbling method, the center of the irradiation spot of the laser beam is swung and the glass frit layer 11 is advanced along the longitudinal direction. In the painting method, the irradiation target region is filled with a trajectory that draws a large number of parallel lines.
The laser beam irradiation as described above can be performed using a commercially available scanning laser marker device or the like.
[0026]
The glass frit layer 11 is heated by irradiation of the laser beam 12 through one of the substrates 1 (5), and the glass frit layer 11 is melted by the heat. The substrates 1 and 5 are bonded and sealed.
[0027]
Next, a dye-sensitized solar cell is completed by filling and sealing the electrolyte between the two substrates 1 and 5. The electrolytic solution is filled by a method in which the glass frit layer 11 is previously passed through a thin pipe, the glass frit layer 11 is melted, two substrates are joined, and then the electrolytic solution is injected through the pipe. For example, a method of injecting through a small hole formed in advance in the second substrate 5 is performed. If the electrolytic solution has a high viscosity, the inside of the cell can be evacuated and injected into the cell using the pressure difference formed thereby.
[0028]
According to such a manufacturing method, since the sealing portion between the substrates 1 and 5 is composed of the glass frit of an inorganic material, the sealing portion is firmly bonded, and chemically, mechanically, and thermally. It has high characteristics and exhibits excellent durability and safety. Even if this dye-sensitized solar cell is used outdoors under severe conditions for a long time, the electrolyte leaks from the sealed part. And no intrusion of moisture or foreign matter.
[0029]
Further, since the laser beam 12 is irradiated only on the peripheral portions of the substrates 1 and 5, the photosensitizing dye carried on the oxide semiconductor porous film 4 formed on the first substrate 1 is heated. The first substrate 1 carrying the dye can be bonded and sealed without being deteriorated, and the manufacturing operation becomes simple.
[0030]
In the manufacturing method of this invention, the above-mentioned sealing method and various sealing methods, such as the sealing method using the conventional resin, can be used together.
[0031]
Specific examples are shown below.
(Example 1)
A glass frit layer was formed on the peripheral edge of a commercially available soda glass plate. This glass frit layer has a width of 4 mm and a thickness obtained by printing a glass frit having a melting temperature of 500 ° C. and a particle diameter of 5 μm or less, an acrylic resin and α-terpineol, and heating and baking at 300 ° C. 20 μm.
[0032]
Next, two glass plates were overlapped, and the laser beam was irradiated through one glass plate. As the laser light, laser light having a wavelength of 840 nm from a gallium arsenide semiconductor laser was used and irradiated while scanning.
Thereby, the two glass plates were firmly joined.
[0033]
This bonded glass plate was irradiated with ultraviolet rays for 300 hours continuously by an ultraviolet tester. A peeling test of the bonded surface of the glass plate after irradiation was conducted, but no significant decrease in adhesive strength was observed.
For comparison, a glass plate bonded and sealed using an olefin resin (“HIMILAN” manufactured by Mitsui Chemicals, Inc.) as a bonding material has a marked decrease in adhesive strength after ultraviolet irradiation.
[0034]
(Example 2)
On a glass plate having a transparent conductive film made of fluorine-added tin oxide, a titanium oxide dispersion having an average particle size of 25 nm was applied, dried, and heated and sintered at 450 ° C. for 1 hour. This was immersed in an ethanol solution of a ruthenium bipyridine complex (N3 dye) for 8 hours to carry the dye, thereby obtaining a working electrode.
[0035]
In addition, a platinum thin film was formed by sputtering on a glass plate having a transparent conductive film made of fluorine-added tin oxide, and used as a counter electrode.
These glass plates were bonded to face each other. The bonding here was performed in the same manner as in the laser irradiation method using the glass frit shown in Example 1.
As the electrolyte, a methoxyacetonitrile solution in which 0.5 mol / liter iodide salt and 0.05 mol / liter iodine are dissolved is injected into the gap between the glass plates through an injection hole formed in the counter electrode in advance. Thus, a test cell having a size of 10 mm × 10 mm was produced.
[0036]
The test cell was subjected to a continuous light irradiation test (300 hours) and a high temperature holding test (300 hours) using a sunshine weatherometer. When the change of the photoelectric conversion efficiency of the test cell before and after the continuous light irradiation test and the high temperature holding test was observed, the value of 80% or more of the initial value was held.
[0037]
For comparison, a similar test was performed on a comparative cell that had a similar structure and was bonded and sealed using an olefin resin ("Hi-Milan" manufactured by Mitsui Chemicals Co., Ltd.). However, the photoelectric conversion efficiency has decreased to a value of 50% or less of the initial value. When this comparative cell was observed after the test, it was confirmed that many bubbles were present inside. It is considered that this is because the sealing material is deteriorated and the electrolytic solution is volatilized, so that the cell characteristics are greatly deteriorated.
[0038]
【The invention's effect】
As described above, according to the present invention, since bonding and sealing between substrates are performed by glass frit of an inorganic material, it is possible to manufacture a dye-sensitized solar cell having high durability and safety over a long period of time. it can.
[0039]
In addition, since the glass frit is melted and bonded by irradiating laser light, the oxide semiconductor porous film formed on the substrate is not heated, so that the photosensitizing dye is supported on the oxide semiconductor porous film. Since the processed substrate can be targeted, the manufacturing operation is not troublesome.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an example of a production method of the present invention.
FIG. 2 is a schematic configuration diagram showing an example of the production method of the present invention.
FIG. 3 is a schematic cross-sectional view showing a dye-sensitized solar cell as a photoelectric conversion element in the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... 1st board | substrate, 5 ... 2nd board | substrate, 11 ... Glass frit layer, 12 ... Laser beam.

Claims (3)

透明導電膜および酸化物半導体多孔膜が形成された第1の基板に対して、その酸化物半導体多孔膜に光増感用色素を担持して作用極とし、
ついでこの第1の基板と、対極となる第2の基板とを重ね合わせ、その周縁部において封止する際に、
いずれか一方もしくは両方の基板の周縁部にガラスフリット層を配し、いずれかの基板を透過して該ガラスフリット層にレーザ光を照射し、ガラスフリット層を溶融して第1および第2の基板を接合、封止することを特徴とする色素増感太陽電池の製法。
For the first substrate on which the transparent conductive film and the oxide semiconductor porous film are formed, a photosensitizing dye is supported on the oxide semiconductor porous film as a working electrode,
Then, when this first substrate and the second substrate as a counter electrode are overlapped and sealed at the peripheral edge,
A glass frit layer is disposed on the peripheral edge of one or both substrates, and the first and second glass frit layers are melted by irradiating the glass frit layer through one of the substrates and melting the glass frit layer. A method for producing a dye-sensitized solar cell, comprising bonding and sealing a substrate.
ガラスフリットを含むペーストを塗布してガラスフリット層を形成することを特徴とする請求項1に記載の色素増感太陽電池の製法。The method for producing a dye-sensitized solar cell according to claim 1, wherein a glass frit layer is formed by applying a paste containing glass frit. レーザ光の波長が、いずれかの基板における透過率が50%以上となるような波長域にあることを特徴とする請求項1または2に記載の色素増感太陽電池の製法。The method for producing a dye-sensitized solar cell according to claim 1 or 2, wherein the wavelength of the laser light is in a wavelength region such that the transmittance of any of the substrates is 50% or more.
JP2002339190A 2002-11-22 2002-11-22 Manufacturing method of dye-sensitized solar cell Expired - Fee Related JP4467879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002339190A JP4467879B2 (en) 2002-11-22 2002-11-22 Manufacturing method of dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002339190A JP4467879B2 (en) 2002-11-22 2002-11-22 Manufacturing method of dye-sensitized solar cell

Publications (2)

Publication Number Publication Date
JP2004172048A JP2004172048A (en) 2004-06-17
JP4467879B2 true JP4467879B2 (en) 2010-05-26

Family

ID=32702203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002339190A Expired - Fee Related JP4467879B2 (en) 2002-11-22 2002-11-22 Manufacturing method of dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP4467879B2 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100882503B1 (en) * 2004-10-06 2009-02-06 한국과학기술연구원 Highly Efficient Counter Electrodes for Dye-sensitized Solar Cells and Method for Manufacturing Thereof
JP4636890B2 (en) * 2005-01-24 2011-02-23 積水樹脂株式会社 Dye-sensitized solar cell
KR100764570B1 (en) 2005-03-21 2007-10-08 주식회사 나래나노텍 Bonding structure of pattern electrodes formed by using laser and method for bonding the same
JP2007042460A (en) * 2005-08-03 2007-02-15 Ngk Spark Plug Co Ltd Dye-sensitized solar cell and its sealing method
JP2007048674A (en) * 2005-08-11 2007-02-22 Ngk Spark Plug Co Ltd Dye-sensitized solar cell and its sealing method
US8038495B2 (en) 2006-01-20 2011-10-18 Samsung Mobile Display Co., Ltd. Organic light-emitting display device and manufacturing method of the same
KR100673765B1 (en) 2006-01-20 2007-01-24 삼성에스디아이 주식회사 Organic light-emitting display device and the preparing method of the same
KR100635514B1 (en) 2006-01-23 2006-10-18 삼성에스디아이 주식회사 Organic electroluminescence display device and method for fabricating of the same
JP4633674B2 (en) * 2006-01-26 2011-02-16 三星モバイルディスプレイ株式會社 Organic electroluminescent display device and manufacturing method thereof
KR100671647B1 (en) 2006-01-26 2007-01-19 삼성에스디아이 주식회사 Organic light emitting display device
JP2007220648A (en) * 2006-02-14 2007-08-30 Samsung Sdi Co Ltd Flat plate display device, and its manufacturing device and manufacturing method
JP5349791B2 (en) * 2007-11-19 2013-11-20 旭硝子株式会社 Lead-free glass and glass-ceramic composition for manufacturing dye-sensitized solar cells
KR101491991B1 (en) * 2008-03-13 2015-02-23 주식회사 동진쎄미켐 Sealing method of electric device with transparent part and electric device with transparent part
KR101510658B1 (en) * 2008-03-20 2015-05-06 주식회사 동진쎄미켐 Dye-sensitized solar cell and method for manufacturing the same
KR101518871B1 (en) * 2008-03-20 2015-05-21 주식회사 동진쎄미켐 Method of preparing the dye-sensitized solar cell
JP2009245705A (en) * 2008-03-31 2009-10-22 Koito Mfg Co Ltd Dye-sensitized solar cell
WO2009128527A1 (en) * 2008-04-18 2009-10-22 日本電気硝子株式会社 Glass composition for dye-sensitized solar cell and material for dye-sensitized solar cell
JP2009272168A (en) 2008-05-08 2009-11-19 Nok Corp Dye-sensitized solar cell
PT104282A (en) 2008-12-05 2010-06-07 Univ Do Porto DSC SOLAR CELL GLASS SELECTION PROCESS
JP5306076B2 (en) * 2009-06-29 2013-10-02 京セラ株式会社 Junction structure, method for manufacturing junction structure, photoelectric conversion device, and method for manufacturing photoelectric conversion device
JP5455481B2 (en) * 2009-07-16 2014-03-26 京セラ株式会社 Photoelectric conversion device
CN102782871B (en) * 2010-11-30 2017-04-05 松下知识产权经营株式会社 Photoelectric conversion device and its manufacture method
CN102709062B (en) * 2012-06-05 2016-07-13 南昌航空大学 A kind of encapsulating method of dye-sensitized solar cells
US9257585B2 (en) 2013-08-21 2016-02-09 Siva Power, Inc. Methods of hermetically sealing photovoltaic modules using powder consisting essentially of glass
DE102013216848A1 (en) * 2013-08-23 2015-02-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Long-term stable photovoltaic elements that can be deposited from solutions and in-situ processes for their production

Also Published As

Publication number Publication date
JP2004172048A (en) 2004-06-17

Similar Documents

Publication Publication Date Title
JP4467879B2 (en) Manufacturing method of dye-sensitized solar cell
JP2004292247A (en) Joining method of glass substrate
JP4788761B2 (en) Functional device and manufacturing method thereof
WO2010041729A1 (en) Functional device and manufacturing method therefor
US8567110B2 (en) Process for glass sealing of dye-sensitized solar cells
US20110041909A1 (en) Dye-sensitized solar cell
JP5398256B2 (en) Photoelectric conversion device
JP4420645B2 (en) Low temperature organic molten salt, photoelectric conversion element and photovoltaic cell
JP5160045B2 (en) Photoelectric conversion element
JP5348475B2 (en) Solar cell module
JP5465446B2 (en) Photoelectric conversion element
JP2011228312A (en) Functional device
JP2015191986A (en) Dye-sensitized solar cell and method for manufacturing the same
JP5095148B2 (en) Working electrode substrate and photoelectric conversion element
JP5160051B2 (en) Photoelectric conversion element
KR20100106837A (en) Method for sealing dye sensitized solar cell and method for preparing comprising the sealing method
JP2008235104A (en) Photoelectric conversion element and manufacturing method thereof
JP5128076B2 (en) Dye-sensitized solar cell and method for producing the same
JP2009016174A (en) Photoelectric conversion element
JP5130775B2 (en) Photoelectrochemical cell
KR101187112B1 (en) Method of manufacturing dye-sensitized solar cell using laser and dye-sensitized solar cell
US20130340809A1 (en) Dye-sensitized photovoltaic device and fabrication method for the same
CN104576073B (en) DSSC hot melt fitting method for packing
JP2007287483A (en) Dye-sensitized solar cell
JP2021174929A (en) Photoelectric conversion element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091201

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100224

R151 Written notification of patent or utility model registration

Ref document number: 4467879

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees