JP2007048674A - Dye-sensitized solar cell and its sealing method - Google Patents

Dye-sensitized solar cell and its sealing method Download PDF

Info

Publication number
JP2007048674A
JP2007048674A JP2005233701A JP2005233701A JP2007048674A JP 2007048674 A JP2007048674 A JP 2007048674A JP 2005233701 A JP2005233701 A JP 2005233701A JP 2005233701 A JP2005233701 A JP 2005233701A JP 2007048674 A JP2007048674 A JP 2007048674A
Authority
JP
Japan
Prior art keywords
substrate
electrode
counter electrode
dye
wall portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005233701A
Other languages
Japanese (ja)
Inventor
Ichiro Gonda
一郎 権田
Yasuo Okuyama
康生 奥山
Satoshi Ezaki
悟史 江▲崎▼
Atsuya Takashima
淳矢 高島
Keizo Furusaki
圭三 古崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2005233701A priority Critical patent/JP2007048674A/en
Publication of JP2007048674A publication Critical patent/JP2007048674A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dye-sensitized solar cell and a method of sealing it involving less deterioration of a sensitizing dye at the time of manufacture and capable of sealing electrodes and electrolytic solution. <P>SOLUTION: The dye-sensitized solar cell is equipped with a counter-electrode base board 11, a transparent base board 12 made of glass installed confronting one surface of the counter-electrode base board, a catalyst electrode 13 installed on the mentioned surface of the counter-electrode base board, a semiconductor electrode 14 having the sensitizing dye installed on the surface confronting the counter-electrode base board of the transparent base board, the electrolytic solution 17 contained at least in the semiconductor electrode and put fully between the catalyst electrode and the semiconductor electrode, and walls 18 provided between the counter-electrode base board and the transparent base board and around the catalyst electrode and the semiconductor electrode. Each wall is formed in the part where the wall part of a glass base board to become transparent base board is formed, from a substance generated by melting and solidifying the mentioned part of formation with a laser beam cast from the vertical direction on the transparent base board side. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、製造時の熱による増感色素の脱離等を抑制し電極及び電解液の封止を行うことができる色素増感型太陽電池及びその封止方法に関する。   The present invention relates to a dye-sensitized solar cell capable of sealing an electrode and an electrolyte while suppressing detachment of a sensitizing dye due to heat during production and a sealing method thereof.

現在、太陽光発電では、単結晶シリコン、多結晶シリコン、アモルファスシリコン及びこれらを組み合わせたHIT(Heterojunction with Intrinsic Thin-layer)等を用いた太陽電池が実用化され、主力技術となっている。これらの太陽電池では光電変換の効率も20%近くあり優れている。しかし、シリコン系太陽電池は素材製造にかかるエネルギーコストが高く、環境負荷などの面でも課題が多く、価格及び材料供給等における制限もある。一方、Gratzel等により提案された色素増感型太陽電池が安価な太陽電池として注目されている(例えば、非特許文献1及び特許文献1参照。)。この太陽電池は、増感色素を担持させた多孔質チタニアを用いた半導体電極と対極との間に電解液を介在させた構造を有し、現行のシリコン系太陽電池に比べて光電変換効率は低いものの、材料、製法等の面で大幅なコストダウンが可能である。   At present, in solar power generation, solar cells using single crystal silicon, polycrystalline silicon, amorphous silicon, a combination of these with HIT (Heterojunction with Intrinsic Thin-layer), etc. have been put into practical use and have become the main technology. These solar cells are excellent with photoelectric conversion efficiency of nearly 20%. However, silicon-based solar cells are expensive in terms of energy production, have many problems in terms of environmental impact, and have limitations in price and material supply. On the other hand, a dye-sensitized solar cell proposed by Gratzel et al. Has attracted attention as an inexpensive solar cell (see, for example, Non-Patent Document 1 and Patent Document 1). This solar cell has a structure in which an electrolytic solution is interposed between a semiconductor electrode using a porous titania carrying a sensitizing dye and a counter electrode, and the photoelectric conversion efficiency is higher than that of current silicon-based solar cells. Although it is low, the cost can be significantly reduced in terms of materials and manufacturing method.

また、多孔質電極、対極及び電解液は、透光性基板と対極基板との間であり、且つ周囲を壁部によって囲まれた空間内に収容されている。この壁部は透光性基板を加熱して融解させたり、接着性樹脂を用いて硬化を促進させるために加熱したりして、約100℃以上の高温に晒すと増感色素が半導体電極から脱離するため未加熱に比べて電池の性能が低くなっていた。
このように、増感色素の温度が上昇することなく壁部を形成するために、透光性基板及び対極基板の端面に向けてレーザ光を照射することにより必要な部分に限って加熱する方法が提案されている(例えば、特許文献2参照。)。
In addition, the porous electrode, the counter electrode, and the electrolytic solution are accommodated in a space between the translucent substrate and the counter electrode substrate and surrounded by a wall portion. When this wall is heated to melt the translucent substrate or heated to accelerate curing using an adhesive resin, the sensitizing dye is removed from the semiconductor electrode when exposed to a high temperature of about 100 ° C. or higher. Due to desorption, the performance of the battery was low compared to unheated.
As described above, in order to form the wall portion without increasing the temperature of the sensitizing dye, a method of heating only the necessary portion by irradiating the laser beam toward the end surfaces of the translucent substrate and the counter electrode substrate. Has been proposed (see, for example, Patent Document 2).

Nature誌(第353巻、pp.737−740、1991年)Nature (Vol. 353, pp. 737-740, 1991) 特開平1−220380号公報Japanese Patent Laid-Open No. 1-220380 特開2003−170290号公報JP 2003-170290 A

しかし、特許文献2のように側面方向から照射して加熱する場合、透光性基板及び対極基板の側面を揃えないと両基板の境界面にレーザ光が到達しにくくなり、十分な加熱がされない。また、端部以外の例えば基板中央部の壁部の形成は、側面からレーザ光を照射しても到達しにくく、加熱できなかった。
本発明は、上記の状況に鑑みてなされたものであり、製造時の熱による増感色素の脱離等を抑制し電極及び電解液の封止を行うことができる色素増感型太陽電池及びその封止方法を提供することを目的とする。
However, in the case of heating by irradiating from the side surface as in Patent Document 2, unless the side surfaces of the light-transmitting substrate and the counter electrode substrate are aligned, it becomes difficult for the laser light to reach the boundary surface between the two substrates and sufficient heating is not performed. . Further, the formation of the wall portion other than the end portion, for example, the central portion of the substrate was difficult to reach even when the laser beam was irradiated from the side surface and could not be heated.
The present invention has been made in view of the above situation, and a dye-sensitized solar cell capable of suppressing detachment of a sensitizing dye due to heat during production and sealing an electrode and an electrolytic solution, and It aims at providing the sealing method.

本発明の色素増感型太陽電池及びその封止方法は、以下の通りである。
1.対極基板11と、該対極基板11の一面側に対向して配置されたガラス製の透光性基板12と、該対極基板11の該一面側に配設された触媒電極13と、該透光性基板12の該対極基板11に対向する一面側に配設された増感色素を有する半導体電極14と、該半導体電極14の少なくとも一部に含有され、且つ該触媒電極13及び該半導体電極14の間に充填された電解液17と、該対極基板11及び該透光性基板12の間、且つ該触媒電極13及び該半導体電極14の周囲に設けられた壁部18と、を備え、
該壁部18は、該透光性基板12となるガラス基板の該壁部18が形成されることとなる形成部位に、該透光性基板12側の垂直方向から照射されたレーザ光によって該形成部位を融解、凝固させて得た融解凝固物によって形成されていることを特徴とする色素増感型太陽電池。
2.対極基板11と、該対極基板11の一面側に対向して配置された透光性基板12と、該対極基板11の該一面側に配設された触媒電極13と、該透光性基板12の該対極基板11に対向する一面側に配設された増感色素を有する半導体電極14と、該半導体電極14の少なくとも一部に含有され、且つ該触媒電極13及び該半導体電極14の間に充填された電解液17と、該対極基板11及び該透光性基板12の間、且つ該触媒電極13及び該半導体電極14の周囲に設けられた壁部18Aと、を備え、該壁部18Aは、該対極基板11となる基板の該壁部18Aが形成されることとなる形成部位に、該透光性基板12側の垂直方向から照射されたレーザ光によって該形成部位を融解、凝固させて得た融解凝固物によって形成されていることを特徴とする色素増感型太陽電池。
3.対極基板11と、該対極基板11の一面側に対向して配置された透光性基板12と、該対極基板11の該一面側に配設された触媒電極13と、該透光性基板12の該対極基板11に対向する一面側に配設された増感色素を有する半導体電極14と、該半導体電極14の少なくとも一部に含有され、且つ該触媒電極13及び該半導体電極14の間に充填された電解液17と、該対極基板11及び該透光性基板12の間、且つ該触媒電極13及び該半導体電極14の周囲に設けられた壁部18Bと、を備え、該壁部18Bは、該対極基板11の該壁部18Bと接合されることとなる被接合面と、該透光性基板12の該壁部18Bと接合されることとなる被接合面と、の間に充填された接着性樹脂が、該透光性基板12側の垂直方向から照射されたレーザ光によって硬化されて形成されていることを特徴とする色素増感型太陽電池。
4.上記透光性基板12の上記壁部18、18A、18Bとの接合面に上記半導体電極14と電気的に接続され、且つレーザ光を吸収する集電電極161を更に具備する上記1.乃至3.のいずれかに記載の色素増感型太陽電池。
5.上記対極基板11の上記壁部18、18Bとの接合面に上記触媒電極13と電気的に接続され、且つレーザ光を吸収する集電電極151を更に具備する上記1.又は3.記載の色素増感型太陽電池。
6.上記対極基板11はセラミックス製である上記1.乃至5.のいずれかに記載の色素増感型太陽電池。
The dye-sensitized solar cell and the sealing method thereof of the present invention are as follows.
1. A counter electrode substrate 11, a glass-made translucent substrate 12 disposed to face one surface of the counter electrode substrate 11, a catalyst electrode 13 disposed on the one surface side of the counter electrode substrate 11, and the light-transmitting substrate A semiconductor electrode 14 having a sensitizing dye disposed on one side of the conductive substrate 12 facing the counter electrode substrate 11, and contained in at least a part of the semiconductor electrode 14, and the catalyst electrode 13 and the semiconductor electrode 14 An electrolyte solution 17 filled between and a wall portion 18 provided between the counter electrode substrate 11 and the translucent substrate 12 and around the catalyst electrode 13 and the semiconductor electrode 14;
The wall portion 18 is formed by a laser beam irradiated from a vertical direction on the translucent substrate 12 side to a formation site where the wall portion 18 of the glass substrate to be the translucent substrate 12 is formed. A dye-sensitized solar cell, which is formed by a melted and solidified product obtained by melting and solidifying a formation site.
2. Counter electrode substrate 11, translucent substrate 12 disposed to face one surface of counter electrode substrate 11, catalyst electrode 13 disposed on the one surface side of counter electrode substrate 11, and translucent substrate 12 A semiconductor electrode 14 having a sensitizing dye disposed on one side facing the counter electrode substrate 11, and contained in at least a part of the semiconductor electrode 14, and between the catalyst electrode 13 and the semiconductor electrode 14. And a wall portion 18A provided between the counter electrode substrate 11 and the translucent substrate 12 and around the catalyst electrode 13 and the semiconductor electrode 14, and the wall portion 18A. Is a method of melting and solidifying the formation site by the laser beam irradiated from the vertical direction on the side of the light-transmitting substrate 12 to the formation site where the wall portion 18A of the substrate to be the counter electrode substrate 11 is formed. Formed by the molten coagulum obtained Dye-sensitized solar cells, characterized.
3. Counter electrode substrate 11, translucent substrate 12 disposed to face one surface of counter electrode substrate 11, catalyst electrode 13 disposed on the one surface side of counter electrode substrate 11, and translucent substrate 12 A semiconductor electrode 14 having a sensitizing dye disposed on one side facing the counter electrode substrate 11, and contained in at least a part of the semiconductor electrode 14, and between the catalyst electrode 13 and the semiconductor electrode 14. A wall portion 18B provided between the counter electrode substrate 11 and the translucent substrate 12 and around the catalyst electrode 13 and the semiconductor electrode 14; Is filled between the bonded surface to be bonded to the wall portion 18B of the counter electrode substrate 11 and the bonded surface to be bonded to the wall portion 18B of the translucent substrate 12. The applied adhesive resin was irradiated from the vertical direction on the translucent substrate 12 side. Dye-sensitized solar cell characterized by being formed by curing the laser light.
4). 1. The above-described 1., further comprising a current collecting electrode 161 that is electrically connected to the semiconductor electrode 14 and that absorbs laser light at a joint surface of the translucent substrate 12 with the wall portions 18, 18A, 18B. To 3. The dye-sensitized solar cell according to any one of the above.
5. 1. The above-mentioned 1., further comprising a current collecting electrode 151 that is electrically connected to the catalyst electrode 13 and absorbs laser light at a joint surface between the counter electrode substrate 11 and the wall portions 18, 18B. Or 3. The dye-sensitized solar cell described.
6). The counter substrate 11 is made of ceramics. To 5. The dye-sensitized solar cell according to any one of the above.

7.対極基板11と、該対極基板11の一面側に対向して配置されたガラス製の透光性基板12と、該対極基板11の該一面側に配設された触媒電極13と、該透光性基板12の該対極基板11に対向する一面側に配設された増感色素を有する半導体電極14と、該半導体電極14の少なくとも一部に含有され、且つ該触媒電極13及び該半導体電極14の間に充填された電解液17と、該対極基板11及び該透光性基板12の間、且つ該触媒電極13及び該半導体電極14の周囲に設けられた壁部18と、を備える色素増感型太陽電池の封止方法であって、該透光性基板12となるガラス基板の該壁部18が形成されることとなる形成部位に光吸収材及びガラスフラックスを付着させ、次いで、該光吸収材に該透光性基板12側の垂直方向からレーザ光を照射して該ガラス基板を融解させ、その後、該融解物を該対極基板11まで到達させた後、凝固させて該壁部18を形成して該対極基板11と該透光性基板12とを接合することを特徴とする色素増感型太陽電池の封止方法。
8.対極基板11と、該対極基板11の一面側に対向して配置された透光性基板12と、該対極基板11の該一面側に配設された触媒電極13と、該透光性基板12の該対極基板11に対向する一面側に配設された増感色素を有する半導体電極14と、該半導体電極14の少なくとも一部に含有され、且つ該触媒電極13及び該半導体電極14の間に充填された電解液17と、該対極基板11及び該透光性基板12の間、且つ該触媒電極13及び該半導体電極14の周囲に設けられた壁部18Aと、を備える色素増感型太陽電池の封止方法であって、該対極基板11となる基板の該壁部18Aが形成されることとなる形成部位に光吸収材及びガラスフラックスを付着させ、次いで、該光吸収材に該透光性基板12側の垂直方向からレーザ光を照射して該基板を融解させ、その後、該融解物を該透光性基板12まで到達させた後、凝固させて該壁部18Aを形成して該対極基板11と該透光性基板12とを接合することを特徴とする色素増感型太陽電池の封止方法。
9.上記光吸収材は、上記ガラスフラックスに含まれる上記7.又は8.記載の色素増感型太陽電池の封止方法。
10.対極基板11と、該対極基板11の一面側に対向して配置された透光性基板12と、該対極基板11の該一面側に配設された触媒電極13と、該透光性基板12の該対極基板11に対向する一面側に配設された増感色素を有する半導体電極14と、該半導体電極14の少なくとも一部に含有され、且つ該触媒電極13及び該半導体電極14の間に充填された電解液17と、該対極基板11及び該透光性基板12の間、且つ該触媒電極13及び該半導体電極14の周囲に設けられた壁部18Bと、を備える色素増感型太陽電池の封止方法であって、該透光性基板12及び/又は該対極基板11の該壁部18Bが形成されることとなる形成部位に光吸収材を付着させ、且つ該対極基板11及び該透光性基板12の該壁部18Bが形成されることとなる形成部位間に接着性樹脂を充填し、次いで、該光吸収材に該透光性基板12側の垂直方向からレーザ光を照射して該接着性樹脂を硬化させて該壁部18Bを形成し、該壁部18Bを介して該対極基板11と該透光性基板12とを接合することを特徴とする色素増感型太陽電池の封止方法。
11.上記光吸収材は、上記接着性樹脂に含まれる上記10.記載の色素増感型太陽電池の封止方法。
12.上記透光性基板12の上記形成部位に上記半導体電極14と電気的に接続され、且つ上記光吸収材として機能する集電電極161を更に具備する上記7.乃至11.のいずれかに記載の色素増感型太陽電池の封止方法。
13.上記対極基板11の上記形成部位に上記触媒電極13と電気的に接続され、且つ上記光吸収材として機能する集電電極151を更に具備する上記7.、10又は11.記載の色素増感型太陽電池の封止方法。
14.上記対極基板11はセラミックス製である上記7.乃至13.のいずれかに記載の色素増感型太陽電池の封止方法。
7). A counter electrode substrate 11, a glass-made translucent substrate 12 disposed to face one surface of the counter electrode substrate 11, a catalyst electrode 13 disposed on the one surface side of the counter electrode substrate 11, and the light-transmitting substrate A semiconductor electrode 14 having a sensitizing dye disposed on one side of the conductive substrate 12 facing the counter electrode substrate 11, and contained in at least a part of the semiconductor electrode 14, and the catalyst electrode 13 and the semiconductor electrode 14 And a wall portion 18 provided between the counter electrode substrate 11 and the translucent substrate 12 and around the catalyst electrode 13 and the semiconductor electrode 14. A method for sealing a photosensitive solar cell, wherein a light absorbing material and a glass flux are attached to a formation site where the wall portion 18 of the glass substrate to be the translucent substrate 12 is to be formed, From the vertical direction of the light transmissive substrate 12 side to the light absorbing material The glass substrate is melted by irradiating with the user's light, and then the melt is allowed to reach the counter electrode substrate 11 and then solidified to form the wall portion 18 to form the counter electrode substrate 11 and the light transmitting material. A method for sealing a dye-sensitized solar cell, comprising bonding a substrate 12.
8). Counter electrode substrate 11, translucent substrate 12 disposed to face one surface of counter electrode substrate 11, catalyst electrode 13 disposed on the one surface side of counter electrode substrate 11, and translucent substrate 12 A semiconductor electrode 14 having a sensitizing dye disposed on one side facing the counter electrode substrate 11, and contained in at least a part of the semiconductor electrode 14, and between the catalyst electrode 13 and the semiconductor electrode 14. A dye-sensitized solar comprising: a filled electrolyte solution 17; and a wall portion 18A provided between the counter electrode substrate 11 and the translucent substrate 12 and around the catalyst electrode 13 and the semiconductor electrode 14. In the battery sealing method, a light absorbing material and a glass flux are attached to a formation site where the wall portion 18A of the substrate to be the counter electrode substrate 11 is formed, and then the light absorbing material is subjected to the transparent material. Laser light irradiation from the vertical direction on the optical substrate 12 side The substrate is melted, and then the melt is allowed to reach the light transmitting substrate 12 and then solidified to form the wall portion 18A to join the counter electrode substrate 11 and the light transmitting substrate 12 together. A method for sealing a dye-sensitized solar cell, comprising:
9. The light absorbing material is contained in the glass flux. Or 8. A method for sealing a dye-sensitized solar cell as described.
10. Counter electrode substrate 11, translucent substrate 12 disposed to face one surface of counter electrode substrate 11, catalyst electrode 13 disposed on the one surface side of counter electrode substrate 11, and translucent substrate 12 A semiconductor electrode 14 having a sensitizing dye disposed on one side facing the counter electrode substrate 11, and contained in at least a part of the semiconductor electrode 14, and between the catalyst electrode 13 and the semiconductor electrode 14. A dye-sensitized solar comprising: a filled electrolyte solution 17; and a wall portion 18B provided between the counter electrode substrate 11 and the translucent substrate 12 and around the catalyst electrode 13 and the semiconductor electrode 14. In a method for sealing a battery, a light absorbing material is attached to a formation site where the translucent substrate 12 and / or the wall portion 18B of the counter electrode substrate 11 is formed, and the counter electrode substrate 11 and The wall 18B of the translucent substrate 12 is formed; Adhesive resin is filled between the forming portions to be formed, and then the light absorbing material is irradiated with laser light from the vertical direction on the light transmitting substrate 12 side to cure the adhesive resin to form the wall portion 18B. A method for sealing a dye-sensitized solar cell, comprising joining the counter electrode substrate 11 and the translucent substrate 12 through the wall portion 18B.
11. The light absorbing material is contained in the adhesive resin. A method for sealing a dye-sensitized solar cell as described.
12 6. The above described 7. further comprising a current collecting electrode 161 that is electrically connected to the semiconductor electrode 14 at the formation site of the translucent substrate 12 and functions as the light absorbing material. To 11. A method for sealing a dye-sensitized solar cell according to any one of the above.
13. 6. The collector electrode 151 further comprising a current collecting electrode 151 electrically connected to the catalyst electrode 13 at the formation site of the counter electrode substrate 11 and functioning as the light absorbing material. 10 or 11. A method for sealing a dye-sensitized solar cell as described.
14 6. The counter substrate 11 is made of ceramic. Thru 13. A method for sealing a dye-sensitized solar cell according to any one of the above.

本各発明の色素増感型太陽電池及びその封止方法によれば、透光性基板12と対極基板11とを接合する壁部18を、レーザ光によって透光性基板12となるガラス基板を加熱し、融解凝固させて形成することで、接合工程を短時間で容易に行うことができる。また、壁部18Aを、レーザ光によって対極基板11となる基板を加熱し、融解凝固させて形成しても、同様にして接合工程を短時間で容易に行うことができる。更に、壁部18Bを、レーザ光によって接着性樹脂を加熱して形成することで、接合工程を短時間で容易に行うことができる。
更に、接合が必要な部分に限定して加熱することができるため、色素増感型太陽電池の作製時に、熱に弱い半導体電極14及び電解液17等の温度が上昇して、増感色素が脱離したり、電解液が劣化したりすることを抑制することができる。また、図1に例示するように、対極基板11及び透光性基板12と、壁部18、18A、18Bとの位置関係によらず、周辺及び中央等の任意の部位を接合することができるため、色素増感型太陽電池を容易に作製することができる。
更に、透光性基板12の集電電極161を透光性基板12及び壁部18、18A、18Bの間にも設け、光吸収材として用いる場合は、他の光吸収材を用意することなくレーザを用いた透光性基板12及び壁部18、18A、18Bの接合を容易に行うことができる。また、対極基板11の集電電極151を対極基板11及び壁部18、18Bの間にも設け、光吸収材として用いる場合も、同様にレーザを用いた対極基板11及び壁部18、18Bの接合を容易に行うことができる。
更に、対極基板11をセラミックス製とする場合は、色素増感型太陽電池の構造を安定にすることができ、製造及び取付けを容易にすることができる。また、対極基板11上にタングステン等を焼結して集電電極15等を形成しても対極基板11の変形等がない。更に、レーザ光によって対極基板11が加熱されても対極基板11としての機能の劣化をすることがなく、電解液17等を容易に封止することができる。
光吸収材をガラスフラックス内に含有させる場合は、ガラスフラックスのレーザ光による加熱をより均一に行うことができ、接合を容易にすることができる。
光吸収材を接着性樹脂に含有させる場合は、接着性樹脂の加熱を短時間に行うことができ、レーザ光による加熱をより効率よくし、対極基板11及び透光性基板12を接合することができる。
According to the dye-sensitized solar cell and the sealing method thereof of each of the present invention, the glass substrate that becomes the translucent substrate 12 by the laser beam is used for the wall portion 18 that joins the translucent substrate 12 and the counter electrode substrate 11. By forming by heating and melting and solidifying, the joining process can be easily performed in a short time. Further, even when the wall portion 18A is formed by heating and melting and solidifying the substrate serving as the counter electrode substrate 11 with laser light, the joining process can be easily performed in a short time. Furthermore, the bonding step can be easily performed in a short time by forming the wall portion 18B by heating the adhesive resin with laser light.
Furthermore, since it can heat only in the part which needs joining, at the time of preparation of a dye-sensitized solar cell, the temperature of the semiconductor electrode 14 weak with heat, the electrolyte solution 17, etc. rises, and a sensitizing dye becomes Desorption or degradation of the electrolyte can be suppressed. Further, as illustrated in FIG. 1, arbitrary portions such as the periphery and the center can be joined regardless of the positional relationship between the counter electrode substrate 11 and the translucent substrate 12 and the walls 18, 18 </ b> A, and 18 </ b> B. Therefore, a dye-sensitized solar cell can be easily manufactured.
Further, when the current collecting electrode 161 of the translucent substrate 12 is also provided between the translucent substrate 12 and the wall portions 18, 18 </ b> A, 18 </ b> B and used as a light absorbing material, other light absorbing materials are not prepared. The translucent substrate 12 and the wall portions 18, 18A, 18B using a laser can be easily joined. Further, when the current collecting electrode 151 of the counter electrode substrate 11 is also provided between the counter electrode substrate 11 and the wall portions 18 and 18B and used as a light absorbing material, the counter electrode substrate 11 and the wall portions 18 and 18B using the laser are similarly used. Bonding can be performed easily.
Further, when the counter electrode substrate 11 is made of ceramics, the structure of the dye-sensitized solar cell can be stabilized, and manufacture and attachment can be facilitated. Further, even if tungsten or the like is sintered on the counter electrode substrate 11 to form the current collecting electrode 15 or the like, the counter electrode substrate 11 is not deformed. Furthermore, even if the counter electrode substrate 11 is heated by the laser beam, the function as the counter electrode substrate 11 is not deteriorated, and the electrolytic solution 17 and the like can be easily sealed.
When the light absorbing material is contained in the glass flux, the glass flux can be heated more uniformly by the laser beam, and the joining can be facilitated.
When the light-absorbing material is contained in the adhesive resin, the adhesive resin can be heated in a short time, the heating by the laser light is made more efficient, and the counter electrode substrate 11 and the translucent substrate 12 are bonded. Can do.

以下、例えば図1〜16を例にして本発明の色素増感型太陽電池及びその封止方法を詳細に説明する。
本色素増感型太陽電池1は図4に例示するように、対極基板11と、該対極基板11の一面側に対向して配置された透光性基板12と、該対極基板11の該一面側に配設された触媒電極13と、該透光性基板12の該対極基板11に対向する一面側に配設された増感色素を有する半導体電極14と、該半導体電極14の少なくとも一部に含有され、且つ該触媒電極13及び該半導体電極14の間に充填された電解液17と、該対極基板11及び該透光性基板12の間、且つ該触媒電極13及び該半導体電極14の周囲に設けられた壁部18と、を備える。
Hereinafter, the dye-sensitized solar cell and the sealing method thereof according to the present invention will be described in detail with reference to FIGS.
As illustrated in FIG. 4, the dye-sensitized solar cell 1 includes a counter electrode substrate 11, a translucent substrate 12 disposed to face one surface of the counter electrode substrate 11, and the one surface of the counter electrode substrate 11. Catalyst electrode 13 disposed on the side, semiconductor electrode 14 having a sensitizing dye disposed on one side of the translucent substrate 12 facing the counter electrode substrate 11, and at least a part of the semiconductor electrode 14 And the electrolyte solution 17 filled between the catalyst electrode 13 and the semiconductor electrode 14, the counter electrode substrate 11 and the translucent substrate 12, and the catalyst electrode 13 and the semiconductor electrode 14. And a wall portion 18 provided around.

上記「対極基板11」は、透光性基板12に対向して配置される。この対極基板11は、透光性を有していてもよいし、有していなくてもよい。透光性を有していない対極基板11は特に限定されないが、例えばセラミックスにより形成することができる。セラミック基板を用いた対極基板11は強度が大きく、支持基板となって優れた耐久性を有する色素増感型太陽電池とすることができる。また、触媒電極13及び対極側集電電極15を焼成することができる。更に、対極基板11、触媒電極13及び対極側集電電極15を同時焼成することができる。
セラミック基板の形成に用いられるセラミックスは特に限定されず、酸化物系セラミック、窒化物系セラミック及び炭化物系セラミック等の各種セラミックスを用いることができる。セラミックスとしては、アルミナ、窒化ケイ素及びジルコニア等が好ましく、アルミナが特に好ましい。アルミナは耐腐食性に優れ、強度が大きく、電気絶縁性にも優れ、アルミナからなる対極基板11とすることで、より優れた耐久性を有する色素増感型太陽電池とすることができる。
The “counter electrode substrate 11” is disposed to face the translucent substrate 12. The counter electrode substrate 11 may or may not have translucency. Although the counter electrode substrate 11 which does not have translucency is not specifically limited, For example, it can form with ceramics. The counter electrode substrate 11 using a ceramic substrate has a high strength and can be a support substrate to be a dye-sensitized solar cell having excellent durability. Further, the catalyst electrode 13 and the counter electrode side collecting electrode 15 can be fired. Furthermore, the counter electrode substrate 11, the catalyst electrode 13, and the counter electrode side collector electrode 15 can be fired simultaneously.
Ceramics used for forming the ceramic substrate are not particularly limited, and various ceramics such as oxide ceramics, nitride ceramics, and carbide ceramics can be used. As the ceramic, alumina, silicon nitride, zirconia and the like are preferable, and alumina is particularly preferable. Alumina is excellent in corrosion resistance, has high strength, is excellent in electrical insulation, and can be a dye-sensitized solar cell having superior durability by using the counter electrode substrate 11 made of alumina.

対極基板11がセラミックスからなる場合、その厚さは特に限定されないが、100μm〜5mm、特に500μm〜5mm、更に1〜5mmとすることができ、300μm〜3mmとすることが好ましい。対極基板11の厚さが100μm〜5mm、特に300μm〜3mmであれば、支持層として十分な強度を有し、優れた耐久性を有する色素増感型太陽電池とすることができる。   In the case where the counter electrode substrate 11 is made of ceramics, the thickness is not particularly limited, but may be 100 μm to 5 mm, particularly 500 μm to 5 mm, more preferably 1 to 5 mm, and preferably 300 μm to 3 mm. When the counter electrode substrate 11 has a thickness of 100 μm to 5 mm, particularly 300 μm to 3 mm, a dye-sensitized solar cell having sufficient strength as a support layer and excellent durability can be obtained.

透光性を有する対極基板11はガラス板及び樹脂シート等を用いて形成することができる。
対極基板11がガラス板からなるとき材質は特に限定されず、例えば、シリカガラス、ソーダ石灰ガラス、ホウケイ酸ガラス、アルミノケイ酸ガラス及びアルミノホウケイ酸ガラス等を用いることができる。また、対極基板11が樹脂シートからなるとき材質は特に限定されず、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリフェニレンスルフィド、ポリカーボネート、ポリスルフォン、ポリエチリデンノルボルネン等を用いて作製することができる。対極基板11の厚さは材質によっても異なり、特に限定されないが、透光性の指標である下記の透過率が60〜99%、特に85〜99%となる厚さであることが好ましい。
ここでいう透光性とは、波長400〜900nmの可視光の透過率が10%以上であることを意味する。この透過率は60%以上、特に85%以上であることが好ましい。以下、透光性の意味及び好ましい透過率はすべて同様である。
透過率(%)=(透過した光量/入射した光量)×100
The counter electrode substrate 11 having translucency can be formed using a glass plate, a resin sheet, or the like.
A material is not specifically limited when the counter electrode substrate 11 consists of a glass plate, For example, silica glass, soda-lime glass, borosilicate glass, aluminosilicate glass, aluminoborosilicate glass, etc. can be used. Further, when the counter electrode substrate 11 is made of a resin sheet, the material is not particularly limited, and it can be produced using polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyphenylene sulfide, polycarbonate, polysulfone, and polyethylidene norbornene. The thickness of the counter electrode substrate 11 varies depending on the material and is not particularly limited. However, the thickness is preferably 60 to 99%, more preferably 85 to 99%, as described below, which is a light transmission index.
The translucency here means that the transmittance of visible light having a wavelength of 400 to 900 nm is 10% or more. This transmittance is preferably 60% or more, particularly 85% or more. Hereinafter, the meaning of translucency and preferable transmittance are all the same.
Transmittance (%) = (transmitted light amount / incident light amount) × 100

上記「透光性基板12」は対極基板11に対向して配置される。この透光性基板12は、上記対極基板11が透光性を有する場合と同様に、融解凝固によって対極基板11と接合するときはガラス板、接着性樹脂を用いて接合するときはガラス板及び樹脂シート等を用いて形成することができる。ガラス板及び樹脂シートは特に限定されず、上記対極基板11と同様に、各種ガラス板及び各種樹脂からなるシートを挙げることができる。
透光性基板12の厚さは材質によっても異なり、特に限定されないが、上記の透過率が60〜99%、特に85〜99%となる厚さであることが好ましい。
The “translucent substrate 12” is disposed to face the counter electrode substrate 11. As in the case where the counter electrode substrate 11 has translucency, the light transmissive substrate 12 is a glass plate when bonded to the counter electrode substrate 11 by melting and solidification, and a glass plate when bonded using an adhesive resin. It can be formed using a resin sheet or the like. The glass plate and the resin sheet are not particularly limited, and similarly to the counter electrode substrate 11, examples include various glass plates and sheets made of various resins.
The thickness of the translucent substrate 12 varies depending on the material and is not particularly limited. However, the above-described transmittance is preferably 60 to 99%, particularly 85 to 99%.

上記「触媒電極13」は、対極基板11の一面側に配設される(例えば図4参照)。この触媒電極13は、触媒活性を有する物質により形成することができる。また、触媒活性を有さない、金属、後述の触媒電極13に使用される透光性導電膜の形成に用いられる導電性酸化物及びポリアニリン、ポリピロール等の導電性高分子などと、触媒活性を有する物質とを用いて形成することもできる。
触媒活性を有する物質としては、白金、ロジウム等の貴金属(但し、金及び銀は電解液等に対する耐腐食性が低いため好ましくない。以下、電解液等が接触し得る部分には同様に銀は好ましくない。)、カーボンブラック等が挙げられ、これらは併せて導電性を有する。触媒電極13は、触媒活性を有し、且つ電気化学的に安定な貴金属により形成することが好ましく、触媒活性が高く、電解液に対する耐腐食性が高い白金を用いることが特に好ましい。この触媒電極13の厚さは特に限定されないが、単層及び多層のいずれの場合も、3nm〜10μm、特に3nm〜2μmとすることができる。触媒電極13の厚さが3nm〜10μmであれば、十分に抵抗の低い触媒電極13とすることができる。
The “catalyst electrode 13” is disposed on one surface side of the counter electrode substrate 11 (see, for example, FIG. 4). The catalyst electrode 13 can be formed of a substance having catalytic activity. In addition, the catalyst has a catalytic activity such as a metal having no catalytic activity, a conductive oxide used for forming a translucent conductive film used for the catalyst electrode 13 described later, and a conductive polymer such as polyaniline and polypyrrole. It can also form using the substance which has.
Substances having catalytic activity include noble metals such as platinum and rhodium (however, gold and silver are not preferred because of their low corrosion resistance to electrolytes, etc. Hereinafter, silver is similarly applied to the parts that can be contacted with electrolytes, etc. Not preferable), carbon black and the like, and these have conductivity together. The catalyst electrode 13 is preferably formed of a noble metal that has catalytic activity and is electrochemically stable, and it is particularly preferable to use platinum that has high catalytic activity and high corrosion resistance to the electrolytic solution. Although the thickness of the catalyst electrode 13 is not particularly limited, it can be 3 nm to 10 μm, particularly 3 nm to 2 μm in both cases of a single layer and a multilayer. When the thickness of the catalyst electrode 13 is 3 nm to 10 μm, the catalyst electrode 13 having a sufficiently low resistance can be obtained.

触媒活性を有する物質からなる触媒電極13は、触媒活性を有する物質の微粒子を含有するペーストを、対極基板11等の表面にスクリーン印刷法、ドクターブレード法等の任意の塗布方法を用いて塗布形成することができる。また、触媒活性を有する物質を含有する金属、導電性酸化物からなる触媒電極13も、触媒活性を有する物質の場合と同様の方法により形成することができる。更に、これらの触媒電極13は、スパッタリング法、蒸着法、イオンプレーティング法等により、対極基板11等の表面に金属等を堆積させて形成することもできる。   The catalytic electrode 13 made of a substance having a catalytic activity is formed by applying a paste containing fine particles of a substance having a catalytic activity on the surface of the counter electrode substrate 11 or the like by using an arbitrary application method such as a screen printing method or a doctor blade method. can do. Further, the catalyst electrode 13 made of a metal containing a substance having catalytic activity or a conductive oxide can also be formed by the same method as that for the substance having catalytic activity. Furthermore, these catalyst electrodes 13 can also be formed by depositing metal or the like on the surface of the counter electrode substrate 11 or the like by sputtering, vapor deposition, ion plating or the like.

上記「半導体電極14」は、透光性基板12の一面側に配設される(例えば図4を参照)。この半導体電極14は、半導体電極基体と、この半導体電極基体に付着した増感色素とを有する。半導体電極基体は、チタニア、酸化スズ、酸化亜鉛等の金属酸化物、硫化亜鉛、硫化鉛等の金属硫化物等により形成することができる。
半導体電極基体の作製方法は特に限定されず、例えば、金属酸化物及び金属硫化物等の半導体微粒子を含有するペーストを、透光性基板12等の表面にスクリーン印刷法及びドクターブレード法等の任意の塗布方法を用いて塗布して未焼成半導体電極基体を形成し、その後、焼成することにより作製することができる。
焼成の条件は特に限定されないが、焼成温度は400〜600℃、特に450〜550℃とすることができ、焼成時間は10〜300分、特に20〜40分とすることができる。焼成雰囲気は、大気雰囲気等の酸化雰囲気又はアルゴン等の希ガス雰囲気及び窒素ガス雰囲気等の不活性雰囲気とすることができる。
The “semiconductor electrode 14” is disposed on one surface side of the translucent substrate 12 (see, for example, FIG. 4). The semiconductor electrode 14 has a semiconductor electrode base and a sensitizing dye attached to the semiconductor electrode base. The semiconductor electrode substrate can be formed of a metal oxide such as titania, tin oxide, or zinc oxide, or a metal sulfide such as zinc sulfide or lead sulfide.
The method for producing the semiconductor electrode substrate is not particularly limited. For example, a paste containing semiconductor fine particles such as a metal oxide and a metal sulfide may be applied to the surface of the light-transmitting substrate 12 or the like by a screen printing method or a doctor blade method. It can be produced by applying the above coating method to form an unsintered semiconductor electrode substrate and then firing.
Although the firing conditions are not particularly limited, the firing temperature can be 400 to 600 ° C., particularly 450 to 550 ° C., and the firing time can be 10 to 300 minutes, particularly 20 to 40 minutes. The firing atmosphere can be an oxidizing atmosphere such as an air atmosphere or an inert atmosphere such as a rare gas atmosphere such as argon and a nitrogen gas atmosphere.

上記「増感色素」としては、光電変換の作用を向上させる錯体色素及び有機色素を用いることができる。錯体色素としては金属錯体色素が挙げられ、有機色素としてはポリメチン色素、メロシアニン色素等が挙げられる。金属錯体色素としてはルテニウム錯体色素及びオスミウム錯体色素等が挙げられ、ルテニウム錯体色素が特に好ましい。更に、光電変換がなされる波長域を拡大し、光電変換効率を向上させるため、増感作用が発現される波長域の異なる2種以上の増感色素を併用することもできる。
半導体電極基体に増感色素を付着させる方法は特に限定されず、例えば、増感色素を有機溶媒に溶解させた溶液に半導体電極基体を浸漬し、溶液を含侵させ、その後、有機溶媒を除去することにより付着させることができる。また、この溶液を、半導体電極基体に塗布し、その後、有機溶媒を除去することにより付着させることもできる。
As the “sensitizing dye”, a complex dye and an organic dye that improve the photoelectric conversion effect can be used. Examples of complex dyes include metal complex dyes, and examples of organic dyes include polymethine dyes and merocyanine dyes. Examples of the metal complex dye include a ruthenium complex dye and an osmium complex dye, and a ruthenium complex dye is particularly preferable. Furthermore, in order to expand the wavelength range in which photoelectric conversion is performed and improve the photoelectric conversion efficiency, two or more sensitizing dyes having different wavelength ranges in which a sensitizing action is exhibited can be used in combination.
The method for attaching the sensitizing dye to the semiconductor electrode substrate is not particularly limited. For example, the semiconductor electrode substrate is immersed in a solution in which the sensitizing dye is dissolved in an organic solvent, the solution is impregnated, and then the organic solvent is removed. It can be made to adhere. Alternatively, this solution can be applied to a semiconductor electrode substrate and then adhered by removing the organic solvent.

上記「電解液17」は、半導体電極14及び触媒電極13の各々の少なくとも一部に含有され、且つ半導体電極14と触媒電極13との間に充填されている。電解液17は、通常、半導体電極14及び触媒電極13のそれぞれの全体に含有されており、これにより光電変換効率を向上させることができる。半導体電極14と触媒電極13との間隔は特に限定されないが、200μm以下、特に50μm以下(通常、1μm以上)とすることができる。この厚さが200μm以下であれば、十分な発電効率を有する色素増感型太陽電池とすることができる。
電解液17には、電解質の他、通常、エチレンカーボネート、プロピレンカーボネート等のカーボネート類等の溶媒及び各種の添加剤物等が含有される。この電解質は特に限定されず、各種の電解質を用いることができる。電解質としては、Iと、LiI及びピリジニウムヨーダイド、イミダゾリウムヨーダイド等の4級アンモニウム化合物のヨウ素塩とを組み合わせてなる電解質が特に好ましい。電解質は1種のみを用いてもよいし、2種以上を用いてもよい。
The “electrolytic solution 17” is contained in at least a part of each of the semiconductor electrode 14 and the catalyst electrode 13 and is filled between the semiconductor electrode 14 and the catalyst electrode 13. The electrolytic solution 17 is usually contained in the entirety of each of the semiconductor electrode 14 and the catalyst electrode 13, whereby the photoelectric conversion efficiency can be improved. The distance between the semiconductor electrode 14 and the catalyst electrode 13 is not particularly limited, but can be 200 μm or less, particularly 50 μm or less (usually 1 μm or more). When the thickness is 200 μm or less, a dye-sensitized solar cell having sufficient power generation efficiency can be obtained.
In addition to the electrolyte, the electrolytic solution 17 usually contains a solvent such as carbonates such as ethylene carbonate and propylene carbonate, various additives, and the like. This electrolyte is not particularly limited, and various electrolytes can be used. As the electrolyte, an electrolyte obtained by combining I 2 and an iodine salt of a quaternary ammonium compound such as LiI, pyridinium iodide, and imidazolium iodide is particularly preferable. Only one type of electrolyte may be used, or two or more types of electrolytes may be used.

電解液を用いる場合、この溶液は、対極基板11、透光性基板12及び壁部18、18A、18Bによって形成される空間に電解液を注入し、含有させ、充填させることができる。この空間への電解液の注入は、対極基板11の側からでも、透光性基板12の側からでもよく、穿孔し易い側に注入口を設け、この注入口から注入することが好ましい。尚、注入口は1個でよいが、空気抜きのため更に他の孔を設けることもできる。このように空気抜きのための孔を設けることで、電解液をより容易に注入することができる。   In the case of using an electrolytic solution, the electrolytic solution can be injected, contained, and filled into the space formed by the counter electrode substrate 11, the translucent substrate 12, and the walls 18, 18A, and 18B. The electrolytic solution may be injected into the space from the counter electrode substrate 11 side or the translucent substrate 12 side, and it is preferable to provide an injection port on the side where perforation is easy and to inject from this injection port. In addition, although one injection port is sufficient, another hole can also be provided for air venting. Thus, by providing the hole for air venting, the electrolyte can be injected more easily.

上記「壁部18、18A、18B」は、電解液17が区画外へ漏出しなければよく、任意の材質を選択することができる。この材質としては、接着性樹脂及びガラス等を例示することができる。また、壁部18、18Aとなる部材をレーザ光で融解凝固させる場合は、ガラス等を例示することができる。更に、ガラス成分を含有する「ガラス含有材」を用いることができる。尚、「ガラス成分」は、シリカガラス等の他、ガラス状態にあり、レーザ光で融解凝固可能な物質も含まれる。
また、上記「接着性樹脂」としては、対極基板11及び透光性基板12を接着可能な任意の樹脂を用いることができ、ポリオレフィン、ポリ塩化ビニル、ポリアミド及びポリアセタール等の熱可塑性樹脂、並びにエポキシ樹脂、ウレタン樹脂及び熱硬化性ポリエステル樹脂等の熱硬化性樹脂を例示することができる。更に、ガラスを用いる場合は、透光性基板12及び透光性を有する対極基板11と同種のガラスを用いることができる。特に長期の耐久性を必要とする太陽電池では、ガラスにより封着することが好ましい。
更に、壁部18、18Aは対極基板11又は透光性基板12と同一の材質を用いて一体に形成してもよい(例えば、図4、7を参照)。尚、セラミックからなる部材をレーザ光で融解凝固させて壁部18Aを形成する場合であっても、レーザ光によってセラミック自体、又はセラミックに含まれるガラス成分が融解凝固して、対極基板11及び透光性基板12を接合することができれば、その部材を壁部18Aとして本発明に用いることができる。
The “walls 18, 18 </ b> A, 18 </ b> B” may be any material as long as the electrolytic solution 17 does not leak out of the compartment. Examples of this material include an adhesive resin and glass. Moreover, when the member used as the wall parts 18 and 18A is melt-solidified with a laser beam, glass etc. can be illustrated. Furthermore, a “glass-containing material” containing a glass component can be used. The “glass component” includes, in addition to silica glass and the like, substances that are in a glass state and can be melted and solidified by laser light.
As the “adhesive resin”, any resin capable of adhering the counter electrode substrate 11 and the translucent substrate 12 can be used. Thermoplastic resins such as polyolefin, polyvinyl chloride, polyamide and polyacetal, and epoxy Examples thereof include thermosetting resins such as resins, urethane resins and thermosetting polyester resins. Further, when glass is used, the same type of glass as the light-transmitting substrate 12 and the light-transmitting counter electrode substrate 11 can be used. In particular, solar cells that require long-term durability are preferably sealed with glass.
Furthermore, the wall portions 18 and 18A may be integrally formed using the same material as the counter electrode substrate 11 or the translucent substrate 12 (see, for example, FIGS. 4 and 7). Even when the wall portion 18A is formed by melting and solidifying a member made of ceramic with a laser beam, the ceramic itself or a glass component contained in the ceramic is melted and solidified by the laser beam, and the counter electrode substrate 11 and the transparent substrate 11 are transparent. If the optical substrate 12 can be bonded, the member can be used as the wall portion 18A in the present invention.

更に、壁部18、18A、18Bの形成方法として、1.透光性基板12に用いるガラス基板の一部をレーザ光によって融解凝固させて形成する方法、2.対極基板11Aに用いる基板の一部をレーザ光によって融解凝固させて形成する方法、及び3.接着性樹脂をレーザ光によって硬化させる方法を挙げることができる。   Further, as a method of forming the wall portions 18, 18A, 18B, 1. 1. a method of forming a part of a glass substrate used for the translucent substrate 12 by melting and solidifying with a laser beam; 2. a method of forming a part of a substrate used for the counter electrode substrate 11A by melting and solidifying with a laser beam; A method of curing the adhesive resin with laser light can be given.

1.透光性基板12に用いるガラス基板の一部をレーザ光によって融解凝固させて壁部18を形成する方法とは、例えば、(1)ガラス基板12’の壁部18を形成することとなる面である、上記「形成部位」に光吸収材3及びガラスフラックス4を付着させ(例えば、図2を参照)、次いで、(2)該形成部位に付着した光吸収材3に該透光性基板12側の垂直方向からレーザ光を照射してガラスフラックス4を加熱し、ガラス基板12’を加熱して融解させ(例えば、図2を参照)、その後、(3)該融解物を該対極基板11まで到達させた後、凝固させることによって壁部18を形成する方法を挙げることができる(例えば、図3を参照)。   1. Examples of the method of forming a wall portion 18 by melting and solidifying a part of a glass substrate used for the translucent substrate 12 with a laser beam include (1) a surface on which the wall portion 18 of the glass substrate 12 ′ is formed. The light absorbing material 3 and the glass flux 4 are attached to the “formation site” (see, for example, FIG. 2), and then (2) the light-transmitting substrate 3 is attached to the light absorption material 3 attached to the formation site. The glass flux 4 is heated by irradiating the laser beam from the vertical direction on the 12 side, and the glass substrate 12 ′ is heated and melted (see, for example, FIG. 2), and then (3) the melt is added to the counter electrode substrate A method of forming the wall portion 18 by solidifying after reaching 11 can be exemplified (see, for example, FIG. 3).

2.対極基板11Aに用いる基板の一部をレーザ光によって融解凝固させて壁部18Aを形成する方法とは、例えば、(1)基板11A’の壁部18Aを形成することとなる面である形成部位に光吸収材3及びガラスフラックス4を付着させ(例えば、図5を参照)、次いで、(2)該形成部位に付着した光吸収材3に該透光性基板12側の垂直方向からレーザ光を照射してガラスフラックス4を加熱し、基板11A’を加熱して融解させ(例えば、図5を参照)、その後、(3)該融解物を該透光性基板12まで到達させた後、凝固させることによって壁部18Aを形成する方法を挙げることができる(例えば、図6を参照)。
また、対極基板11A及び透光性基板12に用いる基板の一部をそれぞれレーザ光によって融解させ、互いに接触させた後、凝固させて壁部を形成してもよい。
2. The method of forming a wall portion 18A by melting and solidifying a part of the substrate used as the counter electrode substrate 11A with a laser beam is, for example, (1) a formation site that is a surface that forms the wall portion 18A of the substrate 11A ′. The light absorbing material 3 and the glass flux 4 are attached to the substrate (see, for example, FIG. 5), and then (2) laser light is applied to the light absorbing material 3 attached to the formation site from the vertical direction on the translucent substrate 12 side. To heat the glass flux 4 to heat and melt the substrate 11A ′ (see, for example, FIG. 5), and then (3) after the melt reaches the light-transmitting substrate 12, A method of forming the wall portion 18A by solidifying can be mentioned (see, for example, FIG. 6).
Alternatively, a part of the substrate used for the counter electrode substrate 11A and the translucent substrate 12 may be melted by laser light, brought into contact with each other, and then solidified to form a wall portion.

3.接着性樹脂をレーザ光によって硬化させる方法とは、例えば、(1)該透光性基板12及び/又は該対極基板11の該壁部18Bが形成されることとなる形成部位に光吸収材3を付着させ(例えば、図8を参照)、且つ該対極基板11及び該透光性基板12の該壁部18Bが形成されることとなる形成部位間に接着性樹脂5を充填し、次いで、(2)該光吸収材3に該透光性基板12側の垂直方向からレーザ光を照射して該接着性樹脂5を硬化させて該壁部18Bを形成する方法を挙げることができる(例えば、図9を参照)。   3. The method of curing the adhesive resin with laser light is, for example, (1) the light absorbing material 3 at the formation site where the wall portion 18B of the translucent substrate 12 and / or the counter electrode substrate 11 is formed. (See, for example, FIG. 8), and the adhesive resin 5 is filled between formation sites where the counter electrode substrate 11 and the light transmitting substrate 12 are to be formed with the wall portions 18B. (2) A method of forming the wall portion 18B by irradiating the light absorbing material 3 with a laser beam from the vertical direction on the light transmitting substrate 12 side to cure the adhesive resin 5 (for example, , See FIG.

上記「付着」とは、形成部位に光吸収材3を任意の手段で設けることをいい、例えば、塗布、印刷、接着、粘着及び貼付等を挙げることができる。
尚、光吸収材3、ガラスフラックス4及び接着性樹脂5を付着する対象は上記説明に限られず、対極基板11、11A及び透光性基板12のいずれでもかまわないし、両方に付着させてもよい。また、ガラスフラックス4及び接着性樹脂5に光吸収材3を含有させてもよい。
The above “attachment” means that the light absorbing material 3 is provided at a formation site by any means, and examples thereof include application, printing, adhesion, adhesion, and sticking.
The object to which the light absorbing material 3, the glass flux 4 and the adhesive resin 5 are attached is not limited to the above description, and may be any of the counter substrate 11, 11A and the light transmitting substrate 12, or may be attached to both. . Further, the light absorbing material 3 may be contained in the glass flux 4 and the adhesive resin 5.

「対極基板11及び透光性基板12の融解」又は「接着性樹脂5の硬化」に用いるレーザは、通常の加熱用途に用いられるものであればよく、例えば、通常、YAGレーザ、炭酸ガスレーザ等を用いることができる。また、レーザ周波数、入力電流値等のレーザ光照射条件は、壁部18、18A、18Bの組成及び厚さ等により、効率よく硬化させることができるように適宜設定することができる。
また、レーザ光は、透光性基板12の垂直方向から照射するのが好ましい(例えば、図1、2、5、8、11、14を参照)。レーザ光を垂直方向から照射することで、透光性基板12の通過距離を最短として途中の損失を最小にすることができ、且つ対極基板11及び透光性基板12の周縁部及び中央部等の任意の位置の接合を行うことができるからである。更に、レーザ光は、光吸収材3に焦点が合うように照射するのが好ましい。
尚、上記「垂直方向」は、厳密な垂直に限られず、垂直から±15°、特に好ましくは±10°の傾きがあってもかまわない。このようなわずかな傾斜があっても実質垂直のときと同じ効果が得られるからである。また、照射対象は光吸収材3に限られずガラスフラックス4、接着性樹脂5、対極基板11及び透光性基板12等も照射の対象にすることができる。更に、対極基板11が透光性である場合は、対極基板11側から光吸収材3に照射してもよい。
The laser used for “melting the counter electrode substrate 11 and the translucent substrate 12” or “curing the adhesive resin 5” may be any laser that can be used for ordinary heating applications. For example, a YAG laser, a carbon dioxide laser, etc. Can be used. Further, the laser light irradiation conditions such as the laser frequency and the input current value can be appropriately set so as to be efficiently cured by the composition and thickness of the walls 18, 18A and 18B.
Moreover, it is preferable to irradiate a laser beam from the perpendicular direction of the translucent board | substrate 12 (for example, refer FIG.1,2,5,8,11,14). By irradiating the laser beam from the vertical direction, it is possible to minimize the passage loss of the translucent substrate 12 and minimize the intermediate loss, and the peripheral and central portions of the counter electrode substrate 11 and the translucent substrate 12, etc. This is because the bonding at any position can be performed. Furthermore, it is preferable to irradiate the laser beam so that the light absorbing material 3 is in focus.
The “vertical direction” is not limited to a strict vertical direction, and may have an inclination of ± 15 °, particularly preferably ± 10 ° from the vertical. This is because even if there is such a slight inclination, the same effect as in the case of being substantially vertical can be obtained. Further, the irradiation target is not limited to the light absorbing material 3, and the glass flux 4, the adhesive resin 5, the counter electrode substrate 11, the translucent substrate 12, and the like can also be the irradiation target. Further, when the counter electrode substrate 11 is translucent, the light absorbing material 3 may be irradiated from the counter electrode substrate 11 side.

上記「光吸収材3」は、レーザ光を吸収することができればよく、通常のレーザ光加工に用いられる光吸収材を用いることができる。この例として黒鉛、有機色素及び金属等を挙げることができる。集電電極16等の本色素増感型太陽電池の構成要素がレーザ光を吸収することができれば、それを光吸収材3として用いることができる(例えば、図11における集電電極161、及び図14における集電電極151を参照)。このようなレーザ光を吸収する構成要素は、使用するレーザ光の波長を吸収しやすい材質(例えば有色であること等)を用いたり、レーザ光が散乱しやすい構造(例えば多孔質構造等)を備えたものである。
上記「ガラスフラックス4」は、ガラスを用いた透光性基板12と、対極基板11とを接合するため、透光性基板12を融解しやすくするための融剤である。この融剤は、通常用いられるものを用いることができ、例えば硝酸ソーダ、硝酸カリ及び棚砂を挙げることができる。このガラスフラックス4は、透光性基板12の形成部位とともに融解し、凝固して壁部18、18Aを形成する。
The “light absorbing material 3” only needs to be able to absorb laser light, and a light absorbing material used in normal laser light processing can be used. Examples of this include graphite, organic dyes and metals. If the constituent elements of the present dye-sensitized solar cell such as the collecting electrode 16 can absorb the laser beam, it can be used as the light absorbing material 3 (for example, the collecting electrode 161 in FIG. 14 (see current collecting electrode 151). The component that absorbs the laser beam uses a material that easily absorbs the wavelength of the laser beam to be used (for example, a color) or a structure that easily scatters the laser beam (for example, a porous structure). It is provided.
The “glass flux 4” is a flux for facilitating melting of the translucent substrate 12 in order to join the translucent substrate 12 using glass and the counter electrode substrate 11. As the flux, commonly used ones can be used, and examples thereof include sodium nitrate, potassium nitrate and shelf sand. The glass flux 4 is melted together with the formation site of the translucent substrate 12 and solidified to form the walls 18 and 18A.

また、触媒電極13に隣接する集電電極15、及び/又は半導体電極14に隣接する集電電極16を設けることができる(例えば図4に示す集電電極15、16を参照。)。集電電極15、16を設けることで、触媒電極13及び半導体電極14の導電性を高めて、色素増感型太陽電池の内部抵抗を低くすることができる。この集電電極15、16は、格子状等の任意のパターンからなる金属及び炭素等の導電体、透光性導電膜、並びに導電体及び透光性導電膜の両方を用いたもの等を例示することができる。
このうち、金属においてはタングステン、チタン及びニッケル等の耐食性に優れたものが好ましい。また、透光性導電膜の材質は特に限定されず、導電性酸化物からなる薄膜、金属薄膜、炭素薄膜等が挙げられる。導電性酸化物としては、酸化スズ、フッ素ドープ酸化スズ、酸化インジウム、スズドープ酸化インジウム及び酸化亜鉛等が挙げられる。この透光性導電膜の厚さは材質によっても異なり、特に限定されないが、表面抵抗が100Ω・cm以下、特に1〜10Ω・cmとなる厚さであることが好ましい。
集電電極15、16の形成方法は特に限定されず、例えば金属、導電性酸化物等の微粒子を含有するペーストを、対極基板11及び/又は透光性基板12の表面にスクリーン印刷法、ドクターブレード法等の任意の塗布方法を用いて形成することができる。また、集電電極15、16は、金属、導電性酸化物等を用いたスパッタリング法、真空蒸着法及びイオンプレーティング法等により形成することもできる。
尚、対極基板11側の集電電極15を透光性にする場合は、透光性基板12側の集電電極16と同様の構成にすることができる。
Moreover, the current collection electrode 15 adjacent to the catalyst electrode 13 and / or the current collection electrode 16 adjacent to the semiconductor electrode 14 can be provided (for example, refer to the current collection electrodes 15 and 16 shown in FIG. 4). By providing the current collecting electrodes 15 and 16, the conductivity of the catalyst electrode 13 and the semiconductor electrode 14 can be increased, and the internal resistance of the dye-sensitized solar cell can be lowered. Examples of the current collecting electrodes 15 and 16 include a metal having an arbitrary pattern such as a lattice and a conductor such as carbon, a translucent conductive film, and a conductor using both the conductor and the translucent conductive film. can do.
Among these, metals having excellent corrosion resistance such as tungsten, titanium and nickel are preferable. Moreover, the material of the translucent conductive film is not particularly limited, and examples thereof include a thin film made of a conductive oxide, a metal thin film, and a carbon thin film. Examples of the conductive oxide include tin oxide, fluorine-doped tin oxide, indium oxide, tin-doped indium oxide, and zinc oxide. The thickness of the translucent conductive film is also different depending on the material, but are not limited to, surface resistance 100 [Omega · cm 2 or less, particularly preferably 1~10Ω · cm 2 become thick.
The method for forming the current collecting electrodes 15 and 16 is not particularly limited. For example, a paste containing fine particles of metal, conductive oxide or the like is applied to the surface of the counter electrode substrate 11 and / or the translucent substrate 12 by a screen printing method or a doctor. It can be formed using any coating method such as a blade method. The collecting electrodes 15 and 16 can also be formed by a sputtering method using a metal, a conductive oxide or the like, a vacuum deposition method, an ion plating method, or the like.
In addition, when making the current collection electrode 15 by the side of the counter-electrode board | substrate 11 translucent, it can be set as the structure similar to the current collection electrode 16 by the side of the translucent board | substrate 12.

本発明の色素増感型太陽電池の製造方法は特に限定されず、例えば、対極基板11及び透光性基板12に集電電極15、16を形成し、また、対極基板11の一面側に触媒電極13を形成し、透光性基板12の一面側に半導体電極14を形成し、その後、触媒電極13と半導体電極14とを対向させて対極基板11及び透光性基板12を接合し、次いで、半導体電極14の少なくとも一部等に電解液17を含有させる方法を挙げることができる。   The method for producing the dye-sensitized solar cell of the present invention is not particularly limited. For example, the collector electrodes 15 and 16 are formed on the counter electrode substrate 11 and the translucent substrate 12, and the catalyst is formed on one surface side of the counter electrode substrate 11. The electrode 13 is formed, the semiconductor electrode 14 is formed on one surface side of the translucent substrate 12, and then the counter electrode substrate 11 and the translucent substrate 12 are joined with the catalyst electrode 13 and the semiconductor electrode 14 facing each other, An example is a method in which the electrolytic solution 17 is contained in at least a part of the semiconductor electrode 14.

以下、実施例により本発明の色素増感型太陽電池及びその封止方法を具体的に説明する。
本実施例1は図4に示すように、透光性基板12となるガラス基板12’の一部を融解させて壁部18を形成した色素増感型太陽電池1である。この色素増感型太陽電池1は、以下の手順に従って作製した。
(1)対極基板11側の作製
アルミナ粉末を含有するスラリーをシートとし、その後、溶剤を揮発させ、セラミック対極基板11となるアルミナグリーンシートを得た。次いで、セラミック対極基板11となるアルミナグリーンシートに、集電電極15となるタングステンペーストをスクリーン印刷法によって塗布して、未焼成体を得た。その後、この未焼成体を焼成して、集電電極15を一体化した対極基板11を得た。次いで、集電電極15上に触媒電極13となる白金薄膜をスパッタリングで形成した。
Hereinafter, the dye-sensitized solar cell and the sealing method thereof according to the present invention will be described specifically by way of examples.
As shown in FIG. 4, Example 1 is a dye-sensitized solar cell 1 in which a wall portion 18 is formed by melting a part of a glass substrate 12 ′ that becomes a light-transmitting substrate 12. This dye-sensitized solar cell 1 was produced according to the following procedure.
(1) Production of Counter Electrode Substrate 11 Side A slurry containing alumina powder was used as a sheet, and then the solvent was volatilized to obtain an alumina green sheet to be the ceramic counter electrode substrate 11. Next, a tungsten paste to be the collector electrode 15 was applied to the alumina green sheet to be the ceramic counter electrode substrate 11 by a screen printing method to obtain an unfired body. Thereafter, the green body was fired to obtain a counter electrode substrate 11 in which the collecting electrode 15 was integrated. Next, a platinum thin film serving as the catalyst electrode 13 was formed on the collecting electrode 15 by sputtering.

(2)半導体電極14を設けた透光性基板12となるガラス基板12’の作製
ガラス基板の一面に集電電極16となるFTO製透明導電膜を、半導体電極14を接続できるパターンで形成した。次いで、粒径が5〜300nmのチタニア粒子を含有するペースト(Ti-Nanoxide D/SP 13um/300um)をスクリーン印刷法によって塗布し、120℃、30分乾燥して未焼成半導体電極基体を形成した。次いで、未焼成半導体電極基体を焼成した。
その後、ルテニウム有機錯体([Ru-2,2bipyridil-4,4-dicarboxylate(TBA)2(NCS)2])をアセトニトリル・t−ブタノール混合溶媒に溶解させ、5×10−4Mアセトニトリル・t−ブタノール溶液を調製した。この溶液に、半導体電極基体を18時間浸漬し、電極表面に増感色素となるルテニウム錯体を担持させ、半導体電極14を積層した透光性基板12となるガラス基板12’を作製した。
次いで、ガラス基板12’の壁部18が形成されることとなる形成部位に、光吸収材3及びガラスフラックス4をそれぞれスクリーン印刷によって塗布した。尚、光吸収材3は、黒色の油性塗料を用いた。また、ガラスフラックス4は、硝酸ソーダを用いた。
(2) Production of Glass Substrate 12 ′ that Becomes Translucent Substrate 12 Provided with Semiconductor Electrode 14 An FTO transparent conductive film that becomes current collecting electrode 16 was formed on one surface of the glass substrate in a pattern that allows semiconductor electrode 14 to be connected. . Next, a paste containing titania particles having a particle size of 5 to 300 nm (Ti-Nanoxide D / SP 13um / 300um) was applied by a screen printing method and dried at 120 ° C for 30 minutes to form an unsintered semiconductor electrode substrate. . Next, the unfired semiconductor electrode substrate was fired.
Thereafter, a ruthenium organic complex ([Ru-2,2bipyridil-4,4-dicarboxylate (TBA) 2 (NCS) 2 ]) is dissolved in an acetonitrile / t-butanol mixed solvent, and 5 × 10 −4 M acetonitrile / t- A butanol solution was prepared. A semiconductor electrode substrate was immersed in this solution for 18 hours, and a ruthenium complex serving as a sensitizing dye was supported on the electrode surface to produce a glass substrate 12 ′ serving as a translucent substrate 12 on which the semiconductor electrode 14 was laminated.
Next, the light absorbing material 3 and the glass flux 4 were respectively applied by screen printing to the formation site where the wall portion 18 of the glass substrate 12 ′ was to be formed. The light absorbing material 3 was a black oil paint. As the glass flux 4, sodium nitrate was used.

(3)対極基板11及び透光性基板12の接合
次いで、対極基板11及びガラス基板12’を、触媒電極13及び半導体電極14が対向した状態で厚さが150μmのスペーサ(図示せず)を介して配置した(図2を参照)。その後、YAGレーザ2をガラス基板12’側であり、且つガラス基板12’に対して垂直な方向から透光性基板12の壁部18形成部位に付着した光吸収材3に照射して(図1、2を参照)、ガラス基板12’の壁部18形成部位を加熱及び融解させ、その融解物を対極基板11の形成部位に接触させた後凝固させ、融解凝固物である壁部18とし、残部を透光性基板12とし、対極基板11及び透光性基板12を接合した(図3を参照)。次いで、これらによって形成される空間にヨウ素電解液を別途設けた注入口から注入した後、接着剤を充填して注入口を封止した(図4を参照)。
尚、ヨウ素電解液は、ブチロニトリルに、0.1モルのヨウ化リチウム、0.05モルのヨウ素、0.5モルの4−tert−ブチルピリジン及び0.6モルの1,2−ジメチル−3−プロピルイミダゾリウムヨーダイドを溶解させたものを用いた。
(3) Joining Counter Electrode Substrate 11 and Translucent Substrate 12 Next, a spacer (not shown) having a thickness of 150 μm is attached to the counter electrode substrate 11 and the glass substrate 12 ′ with the catalyst electrode 13 and the semiconductor electrode 14 facing each other. (See FIG. 2). Thereafter, the YAG laser 2 is applied to the light absorbing material 3 attached to the site of the wall portion 18 of the translucent substrate 12 from the direction perpendicular to the glass substrate 12 ′ and the glass substrate 12 ′ (see FIG. 1 and 2), the wall 18 forming part of the glass substrate 12 ′ is heated and melted, and the melt is brought into contact with the forming part of the counter electrode substrate 11 and then solidified to form a wall 18 that is a melted solidified product. The remaining part was a light-transmitting substrate 12, and the counter electrode substrate 11 and the light-transmitting substrate 12 were joined (see FIG. 3). Next, an iodine electrolyte was poured into the space formed by these from an inlet provided separately, and then the adhesive was filled to seal the inlet (see FIG. 4).
The iodine electrolyte was butyronitrile, 0.1 mol of lithium iodide, 0.05 mol of iodine, 0.5 mol of 4-tert-butylpyridine, and 0.6 mol of 1,2-dimethyl-3. A solution in which propylimidazolium iodide was dissolved was used.

このように作製した色素増感型太陽電池1は、図4に示すように、対極基板11と、対極基板11の一面側に対向して配置された透光性基板12と、対極基板11の一面側に配設された集電電極15及び触媒電極13と、透光性基板12の対極基板11に対向する一面側に配設された集電電極16及び増感色素を有する半導体電極14と、半導体電極14の少なくとも一部に含有され、且つ触媒電極13及び半導体電極14の間に充填された電解液17と、を備える。また、電解液17は、周囲に形成された壁部18によって色素増感型太陽電池1内に保持される。更に、透光性基板12及び壁部18は、一体に形成されている。
本色素増感型太陽電池1は、集電電極15、16を壁部18から延出して形成された接続端子(図示せず)によって外部回路に接続することができる。
As shown in FIG. 4, the dye-sensitized solar cell 1 manufactured in this way includes a counter electrode substrate 11, a translucent substrate 12 disposed to face one surface of the counter electrode substrate 11, and a counter electrode substrate 11. Current collecting electrode 15 and catalyst electrode 13 disposed on one surface side, current collecting electrode 16 disposed on one surface side of translucent substrate 12 facing counter electrode substrate 11 and semiconductor electrode 14 having a sensitizing dye, And an electrolytic solution 17 contained in at least a part of the semiconductor electrode 14 and filled between the catalyst electrode 13 and the semiconductor electrode 14. Further, the electrolytic solution 17 is held in the dye-sensitized solar cell 1 by the wall portion 18 formed in the periphery. Furthermore, the translucent substrate 12 and the wall portion 18 are integrally formed.
The dye-sensitized solar cell 1 can be connected to an external circuit by connection terminals (not shown) formed by extending the current collecting electrodes 15 and 16 from the wall portion 18.

本実施例2は図5に示すように、対極基板11Aとなるガラス基板11A’の一部を融解させて壁部18Aを形成した色素増感型太陽電池1Aである。この色素増感型太陽電池1Aは、以下の手順に従って作製した。
(1)対極基板11Aとなるガラス基板11A’側の作製
ガラス基板の一面に集電電極15AとなるFTO製透明導電膜を形成した。次いで、集電電極15A上に触媒電極13となる白金薄膜をスパッタリングで形成し、ガラス基板11A’を得た。その後、ガラス基板11A’の壁部18Aを形成することとなる面である形成部位に光吸収材3及びガラスフラックス4をそれぞれスクリーン印刷によって塗布した。尚、光吸収材3及びガラスフラックス4は、実施例1と同じ材質である。
(2)半導体電極14を設けた透光性基板12の作製
実施例1の(2)半導体電極14を設けた透光性基板12となるガラス基板12’の作製の作製と同様にして、半導体電極14を積層した透光性基板12を作製した。
As shown in FIG. 5, Example 2 is a dye-sensitized solar cell 1 </ b> A in which a wall portion 18 </ b> A is formed by melting a part of a glass substrate 11 </ b> A ′ serving as a counter electrode substrate 11 </ b> A. This dye-sensitized solar cell 1A was produced according to the following procedure.
(1) Production on the side of the glass substrate 11A ′ to be the counter electrode substrate 11A A transparent conductive film made of FTO to be the collecting electrode 15A was formed on one surface of the glass substrate. Next, a platinum thin film serving as the catalyst electrode 13 was formed on the current collecting electrode 15A by sputtering to obtain a glass substrate 11A ′. Then, the light absorption material 3 and the glass flux 4 were each apply | coated to the formation site | part which is a surface which will form wall part 18A of glass substrate 11A 'by screen printing. The light absorbing material 3 and the glass flux 4 are the same materials as in the first embodiment.
(2) Production of translucent substrate 12 provided with semiconductor electrode 14 In the same manner as in production of (2) glass substrate 12 ′ to be translucent substrate 12 provided with semiconductor electrode 14 in Example 1, a semiconductor was prepared. A translucent substrate 12 on which the electrode 14 was laminated was produced.

(3)対極基板11A及び透光性基板12の接合
次いで、ガラス基板11A’及び透光性基板12を、触媒電極13及び半導体電極14が対向した状態で厚さが150μmのスペーサ(図示せず)を介して配置した(図5を参照)。その後、YAGレーザ2を透光性基板12側であり、且つ透光性基板12に対して垂直な方向から、ガラス基板11A’の壁部18A形成部位に付着した光吸収材3に照射して(図1、5を参照)、壁部18A形成部位を加熱及び融解させ、その融解物を透光性基板12の壁部18A形成部位に接触させた後凝固させ、融解凝固物である壁部18Aとし、残部を対極基板11Aとし、対極基板11A及び透光性基板12を接合した(図6を参照)。次いで、これらによって形成される空間に実施例1と同じヨウ素電解液を別途設けた注入口から注入した後、接着剤を充填して注入口を封止した(図7を参照)。
(3) Joining of Counter Electrode Substrate 11A and Translucent Substrate 12 Next, the glass substrate 11A ′ and the translucent substrate 12 are joined to a spacer (not shown) having a thickness of 150 μm with the catalyst electrode 13 and the semiconductor electrode 14 facing each other. ) (See FIG. 5). After that, the YAG laser 2 is irradiated on the light absorbing material 3 attached to the wall portion 18A formation site of the glass substrate 11A ′ from the direction that is on the side of the transparent substrate 12 and perpendicular to the transparent substrate 12. (See FIGS. 1 and 5), the wall 18A formation site is heated and melted, and the melt is brought into contact with the wall 18A formation site of the translucent substrate 12 and then solidified to form a wall portion that is a melted solid product. 18A, the remainder being the counter electrode substrate 11A, and the counter electrode substrate 11A and the translucent substrate 12 were joined (see FIG. 6). Next, the same iodine electrolyte as in Example 1 was injected into the space formed by these from an inlet provided separately, and then the adhesive was filled to seal the inlet (see FIG. 7).

このように作製した色素増感型太陽電池1Aは、図7に示すように、対極基板11Aと、対極基板11Aの一面側に対向して配置された透光性基板12と、対極基板11Aの一面側に配設された集電電極15A及び触媒電極13と、透光性基板12の対極基板11Aに対向する一面側に配設された集電電極16及び増感色素を有する半導体電極14と、半導体電極14の少なくとも一部に含有され、且つ触媒電極13及び半導体電極14の間に充填された電解液17と、を備える。また、電解液17は、周囲に形成された壁部18Aによって色素増感型太陽電池1A内に保持される。更に、対極基板11A及び壁部18Aは、一体に形成されている。
本色素増感型太陽電池1Aは、集電電極15A、16を壁部18Aから延出して形成された接続端子(図示せず)によって外部回路に接続することができる。
As shown in FIG. 7, the dye-sensitized solar cell 1 </ b> A produced in this way includes a counter electrode substrate 11 </ b> A, a translucent substrate 12 arranged to face one surface of the counter electrode substrate 11 </ b> A, and a counter electrode substrate 11 </ b> A. Current collecting electrode 15A and catalyst electrode 13 disposed on one surface side, current collecting electrode 16 disposed on the one surface side of translucent substrate 12 opposite to counter electrode substrate 11A, and semiconductor electrode 14 having a sensitizing dye, And an electrolytic solution 17 contained in at least a part of the semiconductor electrode 14 and filled between the catalyst electrode 13 and the semiconductor electrode 14. Further, the electrolytic solution 17 is held in the dye-sensitized solar cell 1A by a wall portion 18A formed in the periphery. Furthermore, the counter electrode substrate 11A and the wall 18A are integrally formed.
The dye-sensitized solar cell 1A can be connected to an external circuit by connection terminals (not shown) formed by extending the collecting electrodes 15A and 16 from the wall portion 18A.

本実施例3は図10に示すように、接着性樹脂5を硬化させて壁部18Bを形成した色素増感型太陽電池1Bである。この色素増感型太陽電池1Bは、以下の手順に従って作製した。
(1)対極基板11側の作製
実施例1と同様に、集電電極15を形成し、触媒電極13となる白金薄膜を形成した対極基板11を得た。次いで、壁部18Bの形成部位に、熱可塑性の接着性樹脂として厚さが約50μmであるアイオノマー樹脂シート5を3枚積層した。
尚、接着性樹脂シート5は、透光性基板12の壁部18Bの形成部位に積層してもよい。
As shown in FIG. 10, Example 3 is a dye-sensitized solar cell 1B in which the adhesive resin 5 is cured to form a wall portion 18B. This dye-sensitized solar cell 1B was produced according to the following procedure.
(1) Production on the counter electrode substrate 11 side As in Example 1, the collector electrode 15 was formed, and the counter electrode substrate 11 on which the platinum thin film to be the catalyst electrode 13 was formed was obtained. Next, three ionomer resin sheets 5 having a thickness of about 50 μm were laminated as a thermoplastic adhesive resin at the site where the wall portion 18B was formed.
Note that the adhesive resin sheet 5 may be laminated on the site where the wall portion 18B of the translucent substrate 12 is formed.

(2)半導体電極14を設けた透光性基板12の作製
実施例1の(2)半導体電極14を設けた透光性基板12となるガラス基板12’の作製と同様にして、半導体電極14を積層した透光性基板12を作製した。次いで、透光性基板12の壁部18Bが形成されることとなる形成部位に、実施例1と同様にして光吸収材3を塗布した。尚、光吸収材3は、対極基板11の壁部18Bが形成されることとなる形成部位に塗布してもよい。
(2) Production of translucent substrate 12 provided with semiconductor electrode 14 In the same manner as in production of glass substrate 12 ′ to be translucent substrate 12 provided with semiconductor electrode 14 in Example 1, semiconductor electrode 14 is provided. A light-transmitting substrate 12 having a laminated structure was prepared. Next, the light absorbing material 3 was applied to the formation site where the wall portion 18B of the translucent substrate 12 was to be formed in the same manner as in Example 1. The light absorbing material 3 may be applied to a formation site where the wall portion 18B of the counter electrode substrate 11 is formed.

(3)対極基板11及び透光性基板12の接合
次いで、対極基板11及び透光性基板12を、接着性樹脂シート5を挟むように配置した。その後、YAGレーザを透光性基板12側であり、且つ図8に示すように透光性基板12に対して垂直な方向から光吸収材3に照射して接着性樹脂シート5を加熱硬化させて、図9に示すように硬化した接着性樹脂シートである壁部18Bを形成し、対極基板11と透光性基板12とを接合した。次いで、これらによって形成される空間に実施例1と同じ電解液を別途設けた注入口から注入した後、接着剤を充填して注入口を封止した(図10を参照。)。
(3) Joining of Counter Electrode Substrate 11 and Translucent Substrate 12 Next, the counter electrode substrate 11 and the translucent substrate 12 were arranged so as to sandwich the adhesive resin sheet 5 therebetween. Thereafter, the YAG laser is irradiated on the light absorbing material 3 from the direction perpendicular to the translucent substrate 12 on the translucent substrate 12 side and the adhesive resin sheet 5 is heated and cured as shown in FIG. Then, as shown in FIG. 9, a wall 18 </ b> B that is a cured adhesive resin sheet was formed, and the counter electrode substrate 11 and the translucent substrate 12 were joined. Next, the same electrolyte as in Example 1 was injected into the space formed by these from an injection port separately provided, and then the adhesive was filled to seal the injection port (see FIG. 10).

このように作製した色素増感型太陽電池1Bは、図10に示すように、対極基板11と、対極基板11の一面側に対向して配置された透光性基板12と、対極基板11の一面側に配設された集電電極15及び触媒電極13と、透光性基板12の対極基板11に対向する一面側に配設された集電電極16及び増感色素を有する半導体電極14と、半導体電極14の少なくとも一部に含有され、且つ触媒電極13及び半導体電極14の間に充填された電解液17と、を備える。また、電解液17は、周囲に形成された壁部18Bによって色素増感型太陽電池1B内に保持される。
このような本色素増感型太陽電池1Bは、集電電極15、16を壁部18Bから延出して形成された接続端子(図示せず)によって外部回路に接続することができる。
As shown in FIG. 10, the dye-sensitized solar cell 1 </ b> B manufactured in this way includes a counter electrode substrate 11, a translucent substrate 12 disposed to face one surface of the counter electrode substrate 11, and a counter electrode substrate 11. Current collecting electrode 15 and catalyst electrode 13 disposed on one surface side, current collecting electrode 16 disposed on one surface side of translucent substrate 12 facing counter electrode substrate 11 and semiconductor electrode 14 having a sensitizing dye, And an electrolytic solution 17 contained in at least a part of the semiconductor electrode 14 and filled between the catalyst electrode 13 and the semiconductor electrode 14. Further, the electrolytic solution 17 is held in the dye-sensitized solar cell 1B by the wall portion 18B formed in the periphery.
Such a dye-sensitized solar cell 1B can be connected to an external circuit by connection terminals (not shown) formed by extending the collecting electrodes 15 and 16 from the wall portion 18B.

本実施例4は図13に示すように、接着性樹脂5を硬化させて壁部18Bを形成した色素増感型太陽電池1Cである。また、本実施例4は集電電極161の一部を構成するタングステン線162を光吸収材3として用いた。この色素増感型太陽電池1Cは、以下の手順に従って作製した。
(1)対極基板11側の作製
実施例1と同様に、集電電極15を形成し、触媒電極13となる白金薄膜を形成した対極基板11を得た。次いで、壁部18Bの透光性基板12と接合されることとなる形成部位に、厚さが約50μmである実施例3と同じ接着性樹脂シート5を積層した。
As shown in FIG. 13, Example 4 is a dye-sensitized solar cell 1C in which the adhesive resin 5 is cured to form a wall portion 18B. In the fourth embodiment, the tungsten wire 162 constituting a part of the current collecting electrode 161 is used as the light absorbing material 3. This dye-sensitized solar cell 1C was produced according to the following procedure.
(1) Production on the counter electrode substrate 11 side As in Example 1, the collector electrode 15 was formed, and the counter electrode substrate 11 on which the platinum thin film to be the catalyst electrode 13 was formed was obtained. Next, the same adhesive resin sheet 5 as that of Example 3 having a thickness of about 50 μm was laminated on the formation portion to be bonded to the translucent substrate 12 of the wall portion 18B.

(2)半導体電極14を設けた透光性基板12の作製
実施例1と同様のガラス板製基板の一面に集電電極161の一部となるFTO製透明導電膜を、半導体電極14を接続できるパターンで形成した。次いで、集電電極161の他部となり、且つ光吸収材3として機能する直径10μmのタングステン線162を、パターンの長尺方向に30μm間隔で平行に配列した。その後、実施例1と同様にして半導体電極基体を形成して、透光性基板12を作製した。
このとき、集電電極161は、壁部18Bの形成部位上にも形成されており、タングステン線162が光吸収材3として機能する。
(2) Production of translucent substrate 12 provided with semiconductor electrode 14 FTO transparent conductive film, which is a part of current collecting electrode 161, is connected to semiconductor electrode 14 on one surface of a glass plate substrate similar to that in Example 1. The pattern was formed. Next, tungsten wires 162 having a diameter of 10 μm, which are the other part of the collecting electrode 161 and function as the light absorbing material 3, were arranged in parallel in the long direction of the pattern at intervals of 30 μm. Thereafter, a semiconductor electrode substrate was formed in the same manner as in Example 1 to fabricate a translucent substrate 12.
At this time, the current collecting electrode 161 is also formed on the site where the wall portion 18B is formed, and the tungsten wire 162 functions as the light absorbing material 3.

(3)対極基板11及び透光性基板12の接合
次いで、対極基板11及び透光性基板12を、壁部18Bとなる接着性樹脂シート5を挟むように配置した。その後、図11に示すように実施例3と同じ条件でYAGレーザを透光性基板12側であり、且つ透光性基板12に対して垂直な方向から形成部位に位置するタングステン線162に照射して接着性樹脂シート5を加熱硬化させて、図12に示すように硬化した接着性樹脂シートである壁部18Bを形成し、対極基板11と透光性基板12とを接合した。このとき、レーザ光を照射されて加熱した集電電極161のタングステン線162が光吸収材3として機能し、接着性樹脂シート5を加熱する。
その後、これらによって形成される空間に、実施例1と同じように電解液17を注入した(図13を参照。)。
(3) Joining of Counter Electrode Substrate 11 and Translucent Substrate 12 Next, the counter electrode substrate 11 and the translucent substrate 12 were disposed so as to sandwich the adhesive resin sheet 5 serving as the wall portion 18B. Thereafter, as shown in FIG. 11, the YAG laser is irradiated on the tungsten wire 162 located on the formation site from the direction perpendicular to the translucent substrate 12 and the YAG laser under the same conditions as in the third embodiment. Then, the adhesive resin sheet 5 was cured by heating to form a wall portion 18B, which is a cured adhesive resin sheet, as shown in FIG. 12, and the counter electrode substrate 11 and the translucent substrate 12 were joined. At this time, the tungsten wire 162 of the collecting electrode 161 heated by being irradiated with laser light functions as the light absorbing material 3 and heats the adhesive resin sheet 5.
Thereafter, an electrolytic solution 17 was injected into the space formed by these in the same manner as in Example 1 (see FIG. 13).

このように作製した色素増感型太陽電池1Cは、図13に示すように、対極基板11と、対極基板11の一面側に対向して配置された透光性基板12と、対極基板11の一面側に配設された集電電極15及び触媒電極13と、透光性基板12の対極基板11に対向する一面側に配設された集電電極161及び増感色素を有する半導体電極14と、半導体電極14の少なくとも一部に含有され、且つ触媒電極13及び半導体電極14の間に充填された電解液17と、を備える。また、電解液17は、周囲に形成された壁部18Bによって色素増感型太陽電池1B内に保持される。
本色素増感型太陽電池1Cは、集電電極15、161を壁部18Bから延出して形成された接続端子(図示せず)によって外部回路に接続することができる。
As shown in FIG. 13, the dye-sensitized solar cell 1 </ b> C manufactured in this way includes a counter electrode substrate 11, a translucent substrate 12 disposed to face one surface side of the counter electrode substrate 11, and a counter electrode substrate 11. Current collecting electrode 15 and catalyst electrode 13 disposed on one surface side, current collecting electrode 161 disposed on one surface side of translucent substrate 12 facing counter electrode substrate 11 and semiconductor electrode 14 having a sensitizing dye, And an electrolytic solution 17 contained in at least a part of the semiconductor electrode 14 and filled between the catalyst electrode 13 and the semiconductor electrode 14. Further, the electrolytic solution 17 is held in the dye-sensitized solar cell 1B by the wall portion 18B formed in the periphery.
The dye-sensitized solar cell 1C can be connected to an external circuit by connection terminals (not shown) formed by extending the collecting electrodes 15 and 161 from the wall portion 18B.

本実施例5は図16に示すように、透光性基板12となるガラス基板12’の一部を融解させて壁部18を形成した色素増感型太陽電池1Dである。また、本実施例5は集電電極151を光吸収材3として用いた。この色素増感型太陽電池1Dは、以下の手順に従って作製した。
(1)対極基板11側の作製
実施例1と同様に、集電電極151を一体に形成し、触媒電極13となる白金薄膜を形成した対極基板11を得た。この集電電極151は、実施例1との集電電極15と異なり、壁部18の透光性基板12と接合されることとなる形成部位上にも形成されており、光吸収材3として機能する。
次いで、壁部18の形成部位上の集電電極151に、ガラスフラックス4を塗布した。
(2)半導体電極14を設けた透光性基板12となるガラス基板12’の作製
実施例1の(2)半導体電極14を設けた透光性基板12の作製と同様にして、半導体電極14を積層したガラス基板12’を作製した。
Example 5 is a dye-sensitized solar cell 1 </ b> D in which a wall portion 18 is formed by melting a part of a glass substrate 12 ′ to be a light-transmitting substrate 12 as shown in FIG. 16. In Example 5, the current collecting electrode 151 was used as the light absorbing material 3. This dye-sensitized solar cell 1D was produced according to the following procedure.
(1) Production on the Counter Electrode Substrate 11 Side As in Example 1, the current collecting electrode 151 was integrally formed to obtain the counter electrode substrate 11 on which the platinum thin film to be the catalyst electrode 13 was formed. Unlike the current collecting electrode 15 in the first embodiment, the current collecting electrode 151 is also formed on a formation portion to be bonded to the light transmissive substrate 12 of the wall portion 18. Function.
Next, the glass flux 4 was applied to the current collecting electrode 151 on the site where the wall portion 18 was formed.
(2) Production of Glass Substrate 12 ′ as Translucent Substrate 12 Provided with Semiconductor Electrode 14 In the same manner as (2) Translucent substrate 12 provided with semiconductor electrode 14 in Example 1, semiconductor electrode 14 is produced. Was produced.

(3)対極基板11及び透光性基板12の接合
次いで、対極基板11及びガラス基板12’を、触媒電極13及び半導体電極14が対向した状態で厚さが150μmのスペーサ(図示せず)を介して配置した。このとき、対極基板11に塗布したガラスフラックス4は、ガラス基板12’側にも付着する(図14を参照)。その後、図14に示すように実施例1と同じ条件でYAGレーザをガラス基板12’側であり、且つガラス基板12’に対して垂直な方向から、対極基板11の壁部18の形成部位に位置する集電電極151に照射して、ガラスフラックス4及びそれに接するガラス基板12’を加熱した。これによって、ガラス基板12’の壁部18形成部位を加熱及び融解させ、その融解物を対極基板11の形成部位に接触させた後凝固させ、融解凝固物である壁部18とし、残部を透光性基板12とし、対極基板11及び透光性基板12を接合した(図15を参照)。
その後、これらによって形成される空間に、実施例1と同じように電解液17を注入した(図16を参照。)。
(3) Joining Counter Electrode Substrate 11 and Translucent Substrate 12 Next, a spacer (not shown) having a thickness of 150 μm is attached to the counter electrode substrate 11 and the glass substrate 12 ′ with the catalyst electrode 13 and the semiconductor electrode 14 facing each other. Arranged through. At this time, the glass flux 4 applied to the counter electrode substrate 11 also adheres to the glass substrate 12 ′ side (see FIG. 14). Thereafter, as shown in FIG. 14, the YAG laser is applied to the formation site of the wall portion 18 of the counter electrode substrate 11 from the direction perpendicular to the glass substrate 12 ′ and the glass substrate 12 ′ under the same conditions as in the first embodiment. The current collector electrode 151 was irradiated to heat the glass flux 4 and the glass substrate 12 ′ in contact therewith. As a result, the wall 18 forming part of the glass substrate 12 ′ is heated and melted, and the melt is brought into contact with the forming part of the counter electrode substrate 11 and then solidified to form a wall 18 that is a melted solid, and the remaining part is transparent. The counter substrate 11 and the translucent substrate 12 were joined as the optical substrate 12 (see FIG. 15).
Thereafter, an electrolytic solution 17 was injected into the space formed by them in the same manner as in Example 1 (see FIG. 16).

このように作製した色素増感型太陽電池1Dは、図16に示すように、対極基板11と、対極基板11の一面側に対向して配置された透光性基板12と、対極基板11の一面側に配設された集電電極151及び触媒電極13と、透光性基板12の対極基板11に対向する一面側に配設された集電電極16及び増感色素を有する半導体電極14と、半導体電極14の少なくとも一部に含有され、且つ触媒電極13及び半導体電極14の間に充填された電解液17と、を備える。また、電解液17は、周囲に形成された壁部18によって色素増感型太陽電池1D内に保持される。
本色素増感型太陽電池1Dは、集電電極151、16を壁部18から延出して形成された接続端子(図示せず)によって外部回路に接続することができる。
As shown in FIG. 16, the dye-sensitized solar cell 1 </ b> D manufactured in this way includes a counter electrode substrate 11, a translucent substrate 12 disposed to face one surface of the counter electrode substrate 11, and a counter electrode substrate 11. Current collecting electrode 151 and catalyst electrode 13 disposed on one side, current collecting electrode 16 disposed on one side of translucent substrate 12 facing counter electrode 11 and semiconductor electrode 14 having a sensitizing dye, and And an electrolytic solution 17 contained in at least a part of the semiconductor electrode 14 and filled between the catalyst electrode 13 and the semiconductor electrode 14. Moreover, the electrolyte solution 17 is hold | maintained in the dye-sensitized solar cell 1D by the wall part 18 formed in the circumference | surroundings.
This dye-sensitized solar cell 1D can be connected to an external circuit by connection terminals (not shown) formed by extending the collecting electrodes 151 and 16 from the wall portion 18.

尚、本発明では、上記の実施例の記載に限られず、目的、用途等によって、本発明の範囲内で種々変更した実施例とすることができる。例えば、電解液17としては、不揮発性のイミダゾリウム塩等のイオン性液体及びこのイオン性液体をゲル化させたものを用いることもできる。   The present invention is not limited to the description of the above-described embodiments, and various modifications can be made within the scope of the present invention depending on the purpose, application, and the like. For example, as the electrolytic solution 17, an ionic liquid such as a nonvolatile imidazolium salt or a gelled version of this ionic liquid can be used.

レーザ光を照射して壁部を形成する様子を説明するための模式斜視図である。It is a model perspective view for demonstrating a mode that a laser beam is irradiated and a wall part is formed. 光吸収材にレーザ光を照射する様子を説明するための模式断面図である。It is a schematic cross section for demonstrating a mode that a laser beam is irradiated to a light absorption material. レーザ光によって透光性基板の一部を溶解させたのち、凝固させて壁部を接合した様子を説明するための模式断面図である。It is a schematic cross section for demonstrating a mode that after melting a part of translucent board | substrate with the laser beam, it solidified and it joined the wall part. 本実施例の壁部が形成されている色素増感型太陽電池の構造を説明するための模式断面図である。It is a schematic cross section for demonstrating the structure of the dye-sensitized solar cell in which the wall part of a present Example is formed. 光吸収材にレーザ光を照射する様子を説明するための模式断面図である。It is a schematic cross section for demonstrating a mode that a laser beam is irradiated to a light absorption material. レーザ光によって対極基板の一部を溶解させたのち、凝固させて壁部を接合した様子を説明するための模式断面図である。It is a schematic cross section for demonstrating a mode that after melting a part of counter electrode board | substrate with the laser beam, it solidified and it joined the wall part. 本実施例の壁部が形成されている色素増感型太陽電池の構造を説明するための模式断面図である。It is a schematic cross section for demonstrating the structure of the dye-sensitized solar cell in which the wall part of a present Example is formed. 光吸収材にレーザ光を照射して接着性樹脂を硬化させる様子を説明するための模式断面図である。It is a schematic cross section for demonstrating a mode that an adhesive resin is hardened by irradiating a laser beam to a light absorption material. 硬化した接着性樹脂によって対極基板及び透光性基板が結合された様子を説明するための模式断面図である。It is a schematic cross section for demonstrating a mode that the counter electrode board | substrate and the translucent board | substrate were couple | bonded with the hardened | cured adhesive resin. 本実施例の壁部によって対極基板及び透光性基板が接着されている色素増感型太陽電池の構造を説明するための模式断面図である。It is a schematic cross section for demonstrating the structure of the dye-sensitized solar cell with which the counter electrode board | substrate and the translucent board | substrate were adhere | attached by the wall part of the present Example. 光吸収材として機能する集電電極にレーザ光を照射して接着性樹脂を硬化させる様子を説明するための模式断面図である。It is a schematic cross section for demonstrating a mode that a collecting electrode which functions as a light absorption material is irradiated with a laser beam, and adhesive resin is hardened. 硬化した接着性樹脂によって壁部が形成され、対極基板及び透光性基板が結合された様子を説明するための模式断面図である。It is a schematic cross section for demonstrating a mode that the wall part was formed with the hardened adhesive resin and the counter electrode board | substrate and the translucent board | substrate were couple | bonded. 本実施例の壁部によって対極基板及び透光性基板が接着されている色素増感型太陽電池の構造を説明するための模式断面図である。It is a schematic cross section for demonstrating the structure of the dye-sensitized solar cell with which the counter electrode board | substrate and the translucent board | substrate were adhere | attached by the wall part of the present Example. 光吸収材として機能する集電電極にレーザ光を照射してガラス基板を融解させる様子を説明するための模式断面図である。It is a schematic cross section for demonstrating a state which irradiates a laser beam to the current collection electrode which functions as a light absorption material, and fuse | melts a glass substrate. レーザ光によって透光性基板の一部を溶解させたのち、凝固させて壁部を接合した様子を説明するための模式断面図である。It is a schematic cross section for demonstrating a mode that after melting a part of translucent board | substrate with the laser beam, it solidified and it joined the wall part. 本実施例の壁部が透光性基板と接合されている色素増感型太陽電池の構造を説明するための模式断面図である。It is a schematic cross section for demonstrating the structure of the dye-sensitized solar cell by which the wall part of a present Example is joined with the translucent board | substrate.

符号の説明Explanation of symbols

1、1A、1B、1C、1D;色素増感型太陽電池、11、11A;対極基板、12;透光性基板、13;触媒電極、14;半導体電極、15、16、151、161;集電電極、17;電解液、18、18A、18B;壁部、2;レーザ光、3;光吸収材、4;ガラスフラックス、5;接着性樹脂。   1, 1A, 1B, 1C, 1D; Dye-sensitized solar cell, 11, 11A; Counter electrode substrate, 12; Translucent substrate, 13; Catalyst electrode, 14; Semiconductor electrode, 15, 16, 151, 161; Electrode, 17; electrolyte, 18, 18A, 18B; wall, 2; laser beam, 3; light absorber, 4; glass flux, 5;

Claims (14)

対極基板11と、該対極基板11の一面側に対向して配置されたガラス製の透光性基板12と、該対極基板11の該一面側に配設された触媒電極13と、該透光性基板12の該対極基板11に対向する一面側に配設された増感色素を有する半導体電極14と、該半導体電極14の少なくとも一部に含有され、且つ該触媒電極13及び該半導体電極14の間に充填された電解液17と、該対極基板11及び該透光性基板12の間、且つ該触媒電極13及び該半導体電極14の周囲に設けられた壁部18と、を備え、
該壁部18は、該透光性基板12となるガラス基板の該壁部18が形成されることとなる形成部位に、該透光性基板12側の垂直方向から照射されたレーザ光によって該形成部位を融解、凝固させて得た融解凝固物によって形成されていることを特徴とする色素増感型太陽電池。
A counter electrode substrate 11, a glass-made translucent substrate 12 disposed to face one surface of the counter electrode substrate 11, a catalyst electrode 13 disposed on the one surface side of the counter electrode substrate 11, and the light-transmitting substrate A semiconductor electrode 14 having a sensitizing dye disposed on one side of the conductive substrate 12 facing the counter electrode substrate 11, and contained in at least a part of the semiconductor electrode 14, and the catalyst electrode 13 and the semiconductor electrode 14 An electrolyte solution 17 filled between and a wall portion 18 provided between the counter electrode substrate 11 and the translucent substrate 12 and around the catalyst electrode 13 and the semiconductor electrode 14;
The wall portion 18 is formed by a laser beam irradiated from a vertical direction on the translucent substrate 12 side to a formation site where the wall portion 18 of the glass substrate to be the translucent substrate 12 is formed. A dye-sensitized solar cell, which is formed by a melted and solidified product obtained by melting and solidifying a formation site.
対極基板11と、該対極基板11の一面側に対向して配置された透光性基板12と、該対極基板11の該一面側に配設された触媒電極13と、該透光性基板12の該対極基板11に対向する一面側に配設された増感色素を有する半導体電極14と、該半導体電極14の少なくとも一部に含有され、且つ該触媒電極13及び該半導体電極14の間に充填された電解液17と、該対極基板11及び該透光性基板12の間、且つ該触媒電極13及び該半導体電極14の周囲に設けられた壁部18Aと、を備え、
該壁部18Aは、該対極基板11となる基板の該壁部18Aが形成されることとなる形成部位に、該透光性基板12側の垂直方向から照射されたレーザ光によって該形成部位を融解、凝固させて得た融解凝固物によって形成されていることを特徴とする色素増感型太陽電池。
Counter electrode substrate 11, translucent substrate 12 disposed to face one surface of counter electrode substrate 11, catalyst electrode 13 disposed on the one surface side of counter electrode substrate 11, and translucent substrate 12 A semiconductor electrode 14 having a sensitizing dye disposed on one side facing the counter electrode substrate 11, and contained in at least a part of the semiconductor electrode 14, and between the catalyst electrode 13 and the semiconductor electrode 14. An electrolyte solution 17 filled, and a wall portion 18A provided between the counter electrode substrate 11 and the translucent substrate 12 and around the catalyst electrode 13 and the semiconductor electrode 14,
The wall portion 18A is formed on the formation portion where the wall portion 18A of the substrate to be the counter electrode substrate 11 is formed by the laser beam irradiated from the vertical direction on the translucent substrate 12 side. A dye-sensitized solar cell, which is formed of a molten and solidified product obtained by melting and solidifying.
対極基板11と、該対極基板11の一面側に対向して配置された透光性基板12と、該対極基板11の該一面側に配設された触媒電極13と、該透光性基板12の該対極基板11に対向する一面側に配設された増感色素を有する半導体電極14と、該半導体電極14の少なくとも一部に含有され、且つ該触媒電極13及び該半導体電極14の間に充填された電解液17と、該対極基板11及び該透光性基板12の間、且つ該触媒電極13及び該半導体電極14の周囲に設けられた壁部18Bと、を備え、
該壁部18Bは、該対極基板11の該壁部18Bと接合されることとなる被接合面と、該透光性基板12の該壁部18Bと接合されることとなる被接合面と、の間に充填された接着性樹脂が、該透光性基板12側の垂直方向から照射されたレーザ光によって硬化されて形成されていることを特徴とする色素増感型太陽電池。
Counter electrode substrate 11, translucent substrate 12 disposed to face one surface of counter electrode substrate 11, catalyst electrode 13 disposed on the one surface side of counter electrode substrate 11, and translucent substrate 12 A semiconductor electrode 14 having a sensitizing dye disposed on one side facing the counter electrode substrate 11, and contained in at least a part of the semiconductor electrode 14, and between the catalyst electrode 13 and the semiconductor electrode 14. An electrolyte 17 filled, and a wall portion 18B provided between the counter electrode substrate 11 and the translucent substrate 12 and around the catalyst electrode 13 and the semiconductor electrode 14,
The wall portion 18B includes a bonded surface to be bonded to the wall portion 18B of the counter electrode substrate 11, a bonded surface to be bonded to the wall portion 18B of the translucent substrate 12, A dye-sensitized solar cell, wherein the adhesive resin filled in between is cured by laser light irradiated from the vertical direction on the side of the light-transmitting substrate 12.
上記透光性基板12の上記壁部18、18A、18Bとの接合面に上記半導体電極14と電気的に接続され、且つレーザ光を吸収する集電電極161を更に具備する請求項1乃至3のいずれか1項に記載の色素増感型太陽電池。   4. A current collecting electrode 161 which is electrically connected to the semiconductor electrode 14 and absorbs laser light is further provided on a joint surface of the translucent substrate 12 with the wall portions 18, 18A and 18B. The dye-sensitized solar cell according to any one of the above. 上記対極基板11の上記壁部18、18Bとの接合面に上記触媒電極13と電気的に接続され、且つレーザ光を吸収する集電電極151を更に具備する請求項1又は3記載の色素増感型太陽電池。   4. The dye sensitizing method according to claim 1, further comprising a current collecting electrode 151 that is electrically connected to the catalyst electrode 13 and absorbs laser light at a joint surface between the counter electrode substrate 11 and the wall portions 18, 18 </ b> B. Sensitive solar cell. 上記対極基板11はセラミックス製である請求項1乃至5のいずれか1項に記載の色素増感型太陽電池。   The dye-sensitized solar cell according to any one of claims 1 to 5, wherein the counter electrode substrate 11 is made of ceramics. 対極基板11と、該対極基板11の一面側に対向して配置されたガラス製の透光性基板12と、該対極基板11の該一面側に配設された触媒電極13と、該透光性基板12の該対極基板11に対向する一面側に配設された増感色素を有する半導体電極14と、該半導体電極14の少なくとも一部に含有され、且つ該触媒電極13及び該半導体電極14の間に充填された電解液17と、該対極基板11及び該透光性基板12の間、且つ該触媒電極13及び該半導体電極14の周囲に設けられた壁部18と、を備える色素増感型太陽電池の封止方法であって、
該透光性基板12となるガラス基板の該壁部18が形成されることとなる形成部位に光吸収材及びガラスフラックスを付着させ、次いで、該光吸収材に該透光性基板12側の垂直方向からレーザ光を照射して該ガラス基板を融解させ、その後、該融解物を該対極基板11まで到達させた後、凝固させて該壁部18を形成して該対極基板11と該透光性基板12とを接合することを特徴とする色素増感型太陽電池の封止方法。
A counter electrode substrate 11, a glass-made translucent substrate 12 disposed to face one surface of the counter electrode substrate 11, a catalyst electrode 13 disposed on the one surface side of the counter electrode substrate 11, and the light-transmitting substrate A semiconductor electrode 14 having a sensitizing dye disposed on one side of the conductive substrate 12 facing the counter electrode substrate 11, and contained in at least a part of the semiconductor electrode 14, and the catalyst electrode 13 and the semiconductor electrode 14 And a wall portion 18 provided between the counter electrode substrate 11 and the translucent substrate 12 and around the catalyst electrode 13 and the semiconductor electrode 14. A method of sealing a sensitive solar cell,
A light absorbing material and a glass flux are attached to a formation site where the wall portion 18 of the glass substrate to be the light transmitting substrate 12 is formed, and then the light absorbing material on the light transmitting substrate 12 side is attached. The glass substrate is melted by irradiating a laser beam from the vertical direction, and then the melt reaches the counter electrode substrate 11 and then solidified to form the wall portion 18 to form the counter electrode substrate 11 and the transparent substrate. A method for sealing a dye-sensitized solar cell, comprising bonding a light-emitting substrate 12.
対極基板11と、該対極基板11の一面側に対向して配置された透光性基板12と、該対極基板11の該一面側に配設された触媒電極13と、該透光性基板12の該対極基板11に対向する一面側に配設された増感色素を有する半導体電極14と、該半導体電極14の少なくとも一部に含有され、且つ該触媒電極13及び該半導体電極14の間に充填された電解液17と、該対極基板11及び該透光性基板12の間、且つ該触媒電極13及び該半導体電極14の周囲に設けられた壁部18Aと、を備える色素増感型太陽電池の封止方法であって、
該対極基板11となる基板の該壁部18Aが形成されることとなる形成部位に光吸収材及びガラスフラックスを付着させ、次いで、該光吸収材に該透光性基板12側の垂直方向からレーザ光を照射して該基板を融解させ、その後、該融解物を該透光性基板12まで到達させた後、凝固させて該壁部18Aを形成して該対極基板11と該透光性基板12とを接合することを特徴とする色素増感型太陽電池の封止方法。
Counter electrode substrate 11, translucent substrate 12 disposed to face one surface of counter electrode substrate 11, catalyst electrode 13 disposed on the one surface side of counter electrode substrate 11, and translucent substrate 12 A semiconductor electrode 14 having a sensitizing dye disposed on one side facing the counter electrode substrate 11, and contained in at least a part of the semiconductor electrode 14, and between the catalyst electrode 13 and the semiconductor electrode 14. A dye-sensitized solar comprising: a filled electrolyte solution 17; and a wall portion 18A provided between the counter electrode substrate 11 and the translucent substrate 12 and around the catalyst electrode 13 and the semiconductor electrode 14. A battery sealing method comprising:
A light absorbing material and a glass flux are attached to the formation site where the wall portion 18A of the substrate to be the counter electrode substrate 11 is to be formed, and then the light absorbing material is viewed from the vertical direction on the light transmitting substrate 12 side. The substrate is melted by irradiating a laser beam, and then the melt is allowed to reach the translucent substrate 12 and then solidified to form the wall portion 18A to form the counter electrode substrate 11 and the translucent substrate. A method for sealing a dye-sensitized solar cell, comprising bonding a substrate 12.
上記光吸収材は、上記ガラスフラックスに含まれる請求項7又は8記載の色素増感型太陽電池の封止方法。   The method for sealing a dye-sensitized solar cell according to claim 7 or 8, wherein the light absorbing material is contained in the glass flux. 対極基板11と、該対極基板11の一面側に対向して配置された透光性基板12と、該対極基板11の該一面側に配設された触媒電極13と、該透光性基板12の該対極基板11に対向する一面側に配設された増感色素を有する半導体電極14と、該半導体電極14の少なくとも一部に含有され、且つ該触媒電極13及び該半導体電極14の間に充填された電解液17と、該対極基板11及び該透光性基板12の間、且つ該触媒電極13及び該半導体電極14の周囲に設けられた壁部18Bと、を備える色素増感型太陽電池の封止方法であって、
該透光性基板12及び/又は該対極基板11の該壁部18Bが形成されることとなる形成部位に光吸収材を付着させ、且つ該対極基板11及び該透光性基板12の該壁部18Bが形成されることとなる形成部位間に接着性樹脂を充填し、次いで、該光吸収材に該透光性基板12側の垂直方向からレーザ光を照射して該接着性樹脂を硬化させて該壁部18Bを形成し、該壁部18Bを介して該対極基板11と該透光性基板12とを接合することを特徴とする色素増感型太陽電池の封止方法。
Counter electrode substrate 11, translucent substrate 12 disposed to face one surface of counter electrode substrate 11, catalyst electrode 13 disposed on the one surface side of counter electrode substrate 11, and translucent substrate 12 A semiconductor electrode 14 having a sensitizing dye disposed on one side facing the counter electrode substrate 11, and contained in at least a part of the semiconductor electrode 14, and between the catalyst electrode 13 and the semiconductor electrode 14. A dye-sensitized solar comprising: a filled electrolyte solution 17; and a wall portion 18B provided between the counter electrode substrate 11 and the translucent substrate 12 and around the catalyst electrode 13 and the semiconductor electrode 14. A battery sealing method comprising:
A light absorbing material is attached to a formation site where the light transmitting substrate 12 and / or the wall portion 18B of the counter electrode substrate 11 is formed, and the walls of the counter electrode substrate 11 and the light transmitting substrate 12 are formed. The adhesive resin is filled between the formation sites where the portion 18B is to be formed, and then the adhesive resin is cured by irradiating the light-absorbing material with a laser beam from the vertical direction on the light-transmitting substrate 12 side. And forming the wall portion 18B, and bonding the counter electrode substrate 11 and the translucent substrate 12 through the wall portion 18B, thereby sealing the dye-sensitized solar cell.
上記光吸収材は、上記接着性樹脂に含まれる請求項10記載の色素増感型太陽電池の封止方法。   The method for sealing a dye-sensitized solar cell according to claim 10, wherein the light absorbing material is contained in the adhesive resin. 上記透光性基板12の上記形成部位に上記半導体電極14と電気的に接続され、且つ上記光吸収材として機能する集電電極161を更に具備する請求項7乃至11のいずれか1項に記載の色素増感型太陽電池の封止方法。   12. The current collector electrode 161 according to claim 7, further comprising a current collecting electrode 161 that is electrically connected to the semiconductor electrode 14 at the formation site of the translucent substrate 12 and functions as the light absorbing material. Method for sealing a dye-sensitized solar cell. 上記対極基板11の上記形成部位に上記触媒電極13と電気的に接続され、且つ上記光吸収材として機能する集電電極151を更に具備する請求項7、10又は11記載の色素増感型太陽電池の封止方法。   The dye-sensitized solar according to claim 7, 10 or 11, further comprising a current collecting electrode 151 electrically connected to the catalyst electrode 13 at the formation site of the counter electrode substrate 11 and functioning as the light absorbing material. Battery sealing method. 上記対極基板11はセラミックス製である請求項7乃至13のいずれか1項に記載の色素増感型太陽電池の封止方法。   The method for sealing a dye-sensitized solar cell according to any one of claims 7 to 13, wherein the counter electrode substrate 11 is made of ceramics.
JP2005233701A 2005-08-11 2005-08-11 Dye-sensitized solar cell and its sealing method Pending JP2007048674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005233701A JP2007048674A (en) 2005-08-11 2005-08-11 Dye-sensitized solar cell and its sealing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005233701A JP2007048674A (en) 2005-08-11 2005-08-11 Dye-sensitized solar cell and its sealing method

Publications (1)

Publication Number Publication Date
JP2007048674A true JP2007048674A (en) 2007-02-22

Family

ID=37851324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005233701A Pending JP2007048674A (en) 2005-08-11 2005-08-11 Dye-sensitized solar cell and its sealing method

Country Status (1)

Country Link
JP (1) JP2007048674A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251242A (en) * 2007-03-29 2008-10-16 Fujifilm Corp Electronic device and its manufacturing method
JP2009110663A (en) * 2007-10-26 2009-05-21 Toyo Seikan Kaisha Ltd Joining method of plate material to glass substrate
JP2010021102A (en) * 2008-07-14 2010-01-28 Sharp Corp Dye-sensitized solar cell, manufacturing method therefor, and dye-sensitized solar cell module
WO2010064213A1 (en) 2008-12-05 2010-06-10 Efacec - Engenharia, S.A. Glass sealing of dye-sensitized solar cells
JP2010153073A (en) * 2008-12-24 2010-07-08 Kyocera Corp Photoelectric conversion device
US20110108106A1 (en) * 2009-11-12 2011-05-12 Nitto Denko Corporation Dye-sensitized solar cell electrode and dye-sensitized solar cell
CN102782871A (en) * 2010-11-30 2012-11-14 松下电器产业株式会社 Photoelectric conversion device and method for manufacturing same
WO2013080550A1 (en) * 2011-11-30 2013-06-06 三洋電機株式会社 Solar cell module
WO2014003196A1 (en) * 2012-06-29 2014-01-03 コニカミノルタ株式会社 Electronic device and method for manufacturing same
JP2014143076A (en) * 2013-01-24 2014-08-07 Rohm Co Ltd Dye-sensitized solar cell, method for manufacturing the same, and electronic device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004172048A (en) * 2002-11-22 2004-06-17 Fujikura Ltd Method of manufacturing photoelectric conversion element
JP2004292247A (en) * 2003-03-27 2004-10-21 Fujikura Ltd Joining method of glass substrate
JP2005190816A (en) * 2003-12-25 2005-07-14 Fujikura Ltd Photoelectric transducer and its manufacturing method
JP2006260899A (en) * 2005-03-16 2006-09-28 Aisin Seiki Co Ltd Dye-sensitized solar cell module and manufacturing method thereof
JP2007042460A (en) * 2005-08-03 2007-02-15 Ngk Spark Plug Co Ltd Dye-sensitized solar cell and its sealing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004172048A (en) * 2002-11-22 2004-06-17 Fujikura Ltd Method of manufacturing photoelectric conversion element
JP2004292247A (en) * 2003-03-27 2004-10-21 Fujikura Ltd Joining method of glass substrate
JP2005190816A (en) * 2003-12-25 2005-07-14 Fujikura Ltd Photoelectric transducer and its manufacturing method
JP2006260899A (en) * 2005-03-16 2006-09-28 Aisin Seiki Co Ltd Dye-sensitized solar cell module and manufacturing method thereof
JP2007042460A (en) * 2005-08-03 2007-02-15 Ngk Spark Plug Co Ltd Dye-sensitized solar cell and its sealing method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251242A (en) * 2007-03-29 2008-10-16 Fujifilm Corp Electronic device and its manufacturing method
JP2009110663A (en) * 2007-10-26 2009-05-21 Toyo Seikan Kaisha Ltd Joining method of plate material to glass substrate
JP2010021102A (en) * 2008-07-14 2010-01-28 Sharp Corp Dye-sensitized solar cell, manufacturing method therefor, and dye-sensitized solar cell module
WO2010064213A1 (en) 2008-12-05 2010-06-10 Efacec - Engenharia, S.A. Glass sealing of dye-sensitized solar cells
US8567110B2 (en) 2008-12-05 2013-10-29 Efacec Engenharia E Sistemas S.A. Process for glass sealing of dye-sensitized solar cells
JP2010153073A (en) * 2008-12-24 2010-07-08 Kyocera Corp Photoelectric conversion device
CN102064023A (en) * 2009-11-12 2011-05-18 日东电工株式会社 Dye-sensitized solar cell electrode and dye-sensitized solar cell
US20110108106A1 (en) * 2009-11-12 2011-05-12 Nitto Denko Corporation Dye-sensitized solar cell electrode and dye-sensitized solar cell
CN102782871A (en) * 2010-11-30 2012-11-14 松下电器产业株式会社 Photoelectric conversion device and method for manufacturing same
US20120325315A1 (en) * 2010-11-30 2012-12-27 Panasonic Corporation Photoelectric converter device and method for its manufacture
US9202957B2 (en) * 2010-11-30 2015-12-01 Panasonic Intellectual Property Management Co., Ltd. Photoelectric converter device and method for its manufacture
WO2013080550A1 (en) * 2011-11-30 2013-06-06 三洋電機株式会社 Solar cell module
JPWO2013080550A1 (en) * 2011-11-30 2015-04-27 パナソニックIpマネジメント株式会社 Solar cell module
WO2014003196A1 (en) * 2012-06-29 2014-01-03 コニカミノルタ株式会社 Electronic device and method for manufacturing same
JP2014143076A (en) * 2013-01-24 2014-08-07 Rohm Co Ltd Dye-sensitized solar cell, method for manufacturing the same, and electronic device

Similar Documents

Publication Publication Date Title
JP2007042460A (en) Dye-sensitized solar cell and its sealing method
JP2007048674A (en) Dye-sensitized solar cell and its sealing method
US8957307B2 (en) Photoelectric conversion element module and method for manufacturing photoelectric conversion element module
JP5080018B2 (en) Dye-sensitized solar cell
JP5678345B2 (en) Dye-sensitized solar cell and method for producing the same
WO2005034276A1 (en) Dye-sensitized solar cell
JP2004292247A (en) Joining method of glass substrate
JP2007066875A (en) Dye-sensitized solar cell
WO2008072568A1 (en) Photoelectric conversion element
TW201010110A (en) Manufacturing method for photoelectric transducer, photoelectric transducer manufactured thereby, manufacturing method for photoelectric transducer module, and photoelectric transducer module manufactured thereby
JP2004172048A (en) Method of manufacturing photoelectric conversion element
JP5225577B2 (en) Photoelectric conversion element and method for producing counter electrode for photoelectric conversion element
TW200840067A (en) Dye-sensitized solar cell and method of preparing the same
JP2005142090A (en) Dye-sensitized solar cell
JP4639657B2 (en) Photoelectric conversion element and manufacturing method thereof
JP4615878B2 (en) Dye-sensitized solar cell and solar cell unit panel using the same
JP5095226B2 (en) Dye-sensitized solar cell and method for producing the same
JP5081405B2 (en) Method for manufacturing photoelectric conversion element
JP2005302499A (en) Dye-sensitized solar cell
JP2008258028A (en) Dye-sensitized solar cell
JP5160045B2 (en) Photoelectric conversion element
JP2005317453A (en) Dye-sensitized solar cell and its manufacturing method
JP2005093252A (en) Photoelectric conversion element module
JP2005332782A (en) Dye-sensitized photoelectric conversion element and dye-sensitized solar cell
JP2009199782A (en) Dye-sensitized solar cell and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120522