JP2008235104A - Photoelectric conversion element and manufacturing method thereof - Google Patents

Photoelectric conversion element and manufacturing method thereof Download PDF

Info

Publication number
JP2008235104A
JP2008235104A JP2007075444A JP2007075444A JP2008235104A JP 2008235104 A JP2008235104 A JP 2008235104A JP 2007075444 A JP2007075444 A JP 2007075444A JP 2007075444 A JP2007075444 A JP 2007075444A JP 2008235104 A JP2008235104 A JP 2008235104A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
conversion element
electrode
substrate
charge transport
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007075444A
Other languages
Japanese (ja)
Inventor
Masahiro Nakamura
将啓 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2007075444A priority Critical patent/JP2008235104A/en
Publication of JP2008235104A publication Critical patent/JP2008235104A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photoelectric conversion element that can be manufactured by a simple manufacturing process and exhibits superior durability and reliability under a high-temperature condition, and to provide a manufacturing method for such a photoelectric conversion element. <P>SOLUTION: A photoelectric conversion element 1 has a structure of a charge transport layer 4 being held between a substrate 2 and a substrate 3, wherein the outer circumferential portion of the charge transport layer 4 is sealed with a sealing member 5. Further, on the photoelectric conversion element 1, a cladding part 6 is arranged to straddle between the substrate 2 and the substrate 3 at the outer circumferential portion of the sealing member 5. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、色素増感型太陽電池等の光電変換素子及びその製造方法に関する。   The present invention relates to a photoelectric conversion element such as a dye-sensitized solar cell and a method for producing the same.

太陽電池に代表される光電変換素子は、クリーンなエネルギー源として期待されており、シリコン系のpn接合型太陽電池が既に実用化されている。しかしながら、シリコン系の太陽電池は、高純度材料を原料としたり、製造の際に1000℃程度の高温プロセスや真空プロセス等の高エネルギープロセスを必要としたりすることから、製造コストを低減することが大きな課題となっている。   A photoelectric conversion element typified by a solar cell is expected as a clean energy source, and a silicon-based pn junction solar cell has already been put into practical use. However, since silicon-based solar cells use high-purity materials as raw materials or require high-energy processes such as a high-temperature process of about 1000 ° C. or a vacuum process at the time of manufacture, manufacturing costs can be reduced. It has become a big issue.

このような背景から、近年、高純度材料や高エネルギープロセスを必要としない、固液界面に生じる電位勾配を利用して電荷分離を行う湿式太陽電池が注目を集めている。特に、半導体電極の表面に光を吸収する増感色素を吸着させ、半導体電極のバンドギャップ幅よりも長波長の可視光を増感色素で吸収させることにより変換効率の向上を狙った、いわゆる色素増感型の光電変換素子に関する研究が盛んに行われている(特許文献1,2及び非特許文献1参照)。   Against this background, in recent years, wet solar cells, which do not require high-purity materials or high-energy processes and perform charge separation using a potential gradient generated at a solid-liquid interface, have attracted attention. In particular, a so-called dye that aims to improve conversion efficiency by adsorbing a sensitizing dye that absorbs light on the surface of the semiconductor electrode and absorbing visible light having a wavelength longer than the band gap width of the semiconductor electrode with the sensitizing dye. Research on sensitized photoelectric conversion elements has been actively conducted (see Patent Documents 1 and 2 and Non-Patent Document 1).

一般に、色素増感型の光電変換素子は、増感色素が担持された半導体を付着した第1の電極を有する第1のガラス基板と、半導体に対向配置された第2の電極を有する第2のガラス基板と、第1の電極と第2の電極間に配置された電荷輸送層とを有する。また電荷輸送層を構成する電解液が外部に漏洩したり、電解液内に異物が浸入することを防止するために、第1のガラス基板と第2のガラス基板はその周辺部においてエポキシ樹脂等の樹脂からなる封止材によって接合及び封止されている。
特許2664194号公報 特開2005−93313号公報 2002年電気化学学会秋期大会講演要旨集第141頁,2E27
In general, a dye-sensitized photoelectric conversion element includes a first glass substrate having a first electrode on which a semiconductor carrying a sensitizing dye is attached, and a second glass having a second electrode disposed opposite to the semiconductor. A glass substrate, and a charge transport layer disposed between the first electrode and the second electrode. In addition, in order to prevent the electrolyte solution constituting the charge transport layer from leaking to the outside or foreign substances from entering the electrolyte solution, the first glass substrate and the second glass substrate are epoxy resin or the like at the periphery thereof. It is joined and sealed with a sealing material made of a resin.
Japanese Patent No. 2664194 JP 2005-93313 A Abstracts of Annual Meeting of the Electrochemical Society of Japan 2002, 141, 2E27

しかしながら、従来の色素増感型の光電変換素子では、封止材は有機材料である樹脂により形成されているために、高温状態での耐久性や信頼性に問題がある。なおこのような問題を解決するために、有機材料を無機材料に置き換える方法が考えられる。ところがこの方法によれば、無機材料を溶融するために素子全体を400℃程度に加熱する必要があり、加熱した際に増感色素が熱劣化してしまう。従って、この方法を用いる場合には、増感色素の熱劣化を防ぐために、封止前に基板に孔を開けておき、封止後にこの孔を介して色素溶液を導入しなければならず、製造プロセスが複雑になる上に増感色素の担持量の不十分さによって光電変換素子の特性が低下する。   However, in the conventional dye-sensitized photoelectric conversion element, since the sealing material is formed of a resin that is an organic material, there is a problem in durability and reliability in a high temperature state. In order to solve such a problem, a method of replacing an organic material with an inorganic material can be considered. However, according to this method, it is necessary to heat the entire element to about 400 ° C. in order to melt the inorganic material, and the sensitizing dye is thermally deteriorated when heated. Therefore, when using this method, in order to prevent thermal deterioration of the sensitizing dye, a hole must be formed in the substrate before sealing, and the dye solution must be introduced through the hole after sealing, The manufacturing process is complicated, and the characteristics of the photoelectric conversion element are deteriorated due to insufficient loading of the sensitizing dye.

本発明は、上記課題を解決するためになされたものであり、その目的は、簡単な製造プロセスにより製造可能な、高温状態での耐久性及び信頼性に優れた光電変換素子及びその製造方法を提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a photoelectric conversion element that can be manufactured by a simple manufacturing process and has excellent durability and reliability in a high temperature state and a method for manufacturing the photoelectric conversion element. It is to provide.

本発明に係る光電変換素子は、増感色素が担持された半導体を付着した第1の電極を有する第1の基板と、半導体に対向配置された第2の電極を有する第2の基板と、第1の電極と第2の電極間に配置された電荷輸送層と、電荷輸送層の外周部に配置された封止部とを備える光電変換素子において、少なくとも封止部の外表面を被覆する、金属酸化物よりなる被覆部を備えることを特徴とする。   The photoelectric conversion element according to the present invention includes a first substrate having a first electrode to which a semiconductor carrying a sensitizing dye is attached, a second substrate having a second electrode disposed opposite to the semiconductor, In a photoelectric conversion element including a charge transport layer disposed between a first electrode and a second electrode and a sealing portion disposed on an outer peripheral portion of the charge transport layer, at least an outer surface of the sealing portion is covered. And a coating portion made of a metal oxide.

本発明に係る光電変換素子の製造方法は、増感色素が担持された半導体を付着した第1の電極を有する第1の基板と、半導体に対向配置された第2の電極を有する第2の基板と、第1の電極と第2の電極間に配置された電荷輸送層と、電荷輸送層の外周部に配置された封止部とを備える光電変換素子の製造方法において、電荷輸送層が形成される領域と連通する貫通孔部を残して封止部を形成する工程と、貫通孔部を介して第1の電極と第2の電極の間に電荷輸送層を形成する材料を供給する工程と、樹脂系の接着剤により貫通孔部を封止した後、少なくとも前記封止部の外表面を被覆する、金属酸化物よりなる被覆部を形成する工程とを有することを特徴とする。   A method for producing a photoelectric conversion element according to the present invention includes a first substrate having a first electrode on which a semiconductor carrying a sensitizing dye is attached, and a second substrate having a second electrode disposed opposite to the semiconductor. In a method for manufacturing a photoelectric conversion element comprising a substrate, a charge transport layer disposed between a first electrode and a second electrode, and a sealing portion disposed on an outer periphery of the charge transport layer, the charge transport layer includes: A step of forming a sealing portion leaving a through-hole portion communicating with a region to be formed, and a material for forming a charge transport layer between the first electrode and the second electrode are supplied through the through-hole portion. And a step of forming a covering portion made of a metal oxide that covers at least the outer surface of the sealing portion after sealing the through-hole portion with a resin-based adhesive.

本発明に係る光電変換素子及びその製造方法によれば、封止部の外周部が金属酸化物により被覆されているので、簡単な製造プロセスにより製造可能な、高温状態での耐久性及び信頼性に優れた光電変換素子を提供することができる。   According to the photoelectric conversion element and the manufacturing method thereof according to the present invention, since the outer peripheral portion of the sealing portion is covered with the metal oxide, it can be manufactured by a simple manufacturing process, and can be manufactured at a high temperature. It is possible to provide an excellent photoelectric conversion element.

以下、図面を参照して、本発明の実施形態となる光電変換素子の製造方法について説明する。   Hereinafter, with reference to drawings, the manufacturing method of the photoelectric conversion element used as embodiment of this invention is demonstrated.

本発明の実施形態となる光電変換素子1は、図1に示すように、基板2(第1の基板)と基板3(第2の基板)により電荷輸送層4を挟持した構成を有し、電荷輸送層4の外周部は封止材5により封止されている。またこの光電変換素子1では、封止材5の外周部に基板2と基板3間を跨るように被覆部6が配置されている。基板2は、基材7と、基材7の表面上に形成された電極層8(第1の電極)と、電極層8の表面上に形成された多孔質の半導体層9とを有し、半導体層9側において基板3と対向している。また基板3は、基材10と、基材10表面上に形成された電極層11(第2の電極,対電極)とを有し、電極層11側において基板2と対向している。なお、本実施形態では、被覆部6は封止材5の外周部のみを被覆するように配置されているが、図2に示すように基板2,3の外周部も被覆するように配置してもよい。   As shown in FIG. 1, a photoelectric conversion element 1 according to an embodiment of the present invention has a configuration in which a charge transport layer 4 is sandwiched between a substrate 2 (first substrate) and a substrate 3 (second substrate). The outer peripheral portion of the charge transport layer 4 is sealed with a sealing material 5. Further, in the photoelectric conversion element 1, the covering portion 6 is disposed on the outer peripheral portion of the sealing material 5 so as to straddle between the substrate 2 and the substrate 3. The substrate 2 includes a base material 7, an electrode layer 8 (first electrode) formed on the surface of the base material 7, and a porous semiconductor layer 9 formed on the surface of the electrode layer 8. The semiconductor layer 9 faces the substrate 3. The substrate 3 includes a base material 10 and an electrode layer 11 (second electrode, counter electrode) formed on the surface of the base material 10 and faces the substrate 2 on the electrode layer 11 side. In this embodiment, the covering portion 6 is arranged so as to cover only the outer peripheral portion of the sealing material 5, but as shown in FIG. 2, it is arranged so as to cover the outer peripheral portion of the substrates 2 and 3 as well. May be.

このような構成を有する光電変換素子1では以下に示す作用機構で光電変換が行われる。すなわち、入射光は基材7と電極層8を介して半導体層9に担持された増感色素に吸収される。光を吸収した増感色素では励起電子が発生し、励起電子は半導体層9に移動し、半導体粒子間を通って電極層8に達する。さらに電子は導線(図示せず)を通って電極層11へと移動する。励起電子を失った増感色素は、電荷輸送層4に含まれる還元体から電子を受け取り、基底状態の増感色素に戻る。酸化された還元体は電極層11から電子を受け取り、元の状態に戻る。半導体層9は、増感色素から放出された電子を電極層8まで輸送する。   In the photoelectric conversion element 1 having such a configuration, photoelectric conversion is performed by the following operation mechanism. That is, incident light is absorbed by the sensitizing dye carried on the semiconductor layer 9 via the base material 7 and the electrode layer 8. Excited electrons are generated in the sensitizing dye that has absorbed light, and the excited electrons move to the semiconductor layer 9 and pass between the semiconductor particles and reach the electrode layer 8. Further, the electrons move to the electrode layer 11 through a conducting wire (not shown). The sensitizing dye that has lost the excited electrons receives electrons from the reductant contained in the charge transport layer 4 and returns to the sensitizing dye in the ground state. The oxidized reductant receives electrons from the electrode layer 11 and returns to its original state. The semiconductor layer 9 transports electrons emitted from the sensitizing dye to the electrode layer 8.

電荷輸送層4の調製方法としては公知の方法を採用することができる。電荷輸送層4は、例えばヨウ化物及びヨウ素を下記の溶媒等に溶解することにより調製できる。ヨウ化物としては、テトラプロピルアンモニウムヨージド等に代表されるテトラアルキルアンモニウムヨージド,メチルトリプロピルアンモニウムヨージドやジエチルジブチルアンモニウムヨージド等の非対称なアルキルアンモニウムヨージド,ピリジニウムヨージド等のヨウ化4級アンモニウム塩化合物,ヨウ化リチウム,1,2−ジメチル−3−プロピル−イミダゾリウムヨージド等を例示することができる。   As a method for preparing the charge transport layer 4, a known method can be employed. The charge transport layer 4 can be prepared, for example, by dissolving iodide and iodine in the following solvent or the like. Examples of iodides include tetraalkylammonium iodides such as tetrapropylammonium iodide, asymmetric alkylammonium iodides such as methyltripropylammonium iodide and diethyldibutylammonium iodide, and pyridinium iodides. Examples include quaternary ammonium salt compounds, lithium iodide, 1,2-dimethyl-3-propyl-imidazolium iodide, and the like.

上記溶媒としては、ジメチルカーボネート,ジエチルカーボネート,メチルエチルカーボネート,エチレンカーボネート,プロピレンカーボネート等のカーボネート化合物、酢酸メチル,プロピオン酸メチル,γ−ブチロラクトン等のエステル化合物、ジエチルエーテル,1,2−ジメトキシエタン,1,3−ジオキソシラン,テトラヒドロフラン,2−メチル−テトラヒドロフラン等のエーテル化合物、3−メチル−2−オキサゾジリノン,2−メチルピロリドン等の複素環化合物、アセトニトリル,メトキシアセトニトリル,プロピオニトリル等のニトリル化合物、スルフォラン,ジジメチルスルフォキシド,ジメチルホルムアミド等の非プロトン性極性化合物等を例示することができる。またこれら有機溶媒に代えてイオン性液体(常温溶融塩)を用いてもよい。イオン性液体は不揮発性,難燃性等の観点から有効であり、イミダゾリウム塩,ピリジン塩、アンモニウム塩、脂環式アミン系,脂肪族アミン系,及びアゾニウムアミン系等を例示することができる。   Examples of the solvent include carbonate compounds such as dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, ethylene carbonate, and propylene carbonate, ester compounds such as methyl acetate, methyl propionate, and γ-butyrolactone, diethyl ether, 1,2-dimethoxyethane, Ether compounds such as 1,3-dioxosilane, tetrahydrofuran and 2-methyl-tetrahydrofuran, heterocyclic compounds such as 3-methyl-2-oxazodilinone and 2-methylpyrrolidone, nitrile compounds such as acetonitrile, methoxyacetonitrile and propionitrile, sulfolane And aprotic polar compounds such as didimethyl sulfoxide and dimethylformamide. Further, an ionic liquid (room temperature molten salt) may be used instead of these organic solvents. The ionic liquid is effective from the viewpoint of non-volatility, flame retardancy, and the like, and examples thereof include imidazolium salts, pyridine salts, ammonium salts, alicyclic amines, aliphatic amines, and azonium amines. it can.

封止材5としては、エポキシ系樹脂,オレフィン系樹脂,紫外線硬化樹脂等の有機材料や、低融点無機材料を用いることが好ましいが、これに限られるものではない。基材7又は基材10には、封止後内部に電荷輸送層4の注入を行うために、注入孔を設けておく必要がある。注入孔は、電荷輸送層4を注入後、紫外線硬化樹脂等で塞ぐ必要がある。また基材7又は基材10の代わりに封止材5に孔を形成してもよい。   As the sealing material 5, it is preferable to use an organic material such as an epoxy resin, an olefin resin, or an ultraviolet curable resin, or a low-melting-point inorganic material, but it is not limited thereto. In order to inject the charge transport layer 4 inside the base material 7 or the base material 10 after sealing, it is necessary to provide an injection hole. The injection hole needs to be closed with an ultraviolet curable resin after the charge transport layer 4 is injected. Further, a hole may be formed in the sealing material 5 instead of the base material 7 or the base material 10.

被覆部6としては、金属酸化物を用いることが重要であり、これにより簡単な製造プロセスにより製造可能で、かつ高温状態での耐久性及び信頼性に優れた光電変換素子を提供することができる。この金属酸化物としては、テトラエトキシシラン、テトラメトキシシラン、メチルトリエトキシシラン等のオルガノシロキサンや、これらの部分加水分解物を用いることができるが、水と有機溶媒からなる反応液中において、ホウ素イオンの存在下でハロゲン化イオンを触媒として、pH値を4.5〜5.0の範囲内に調整しながら、加水分解可能な有機金属化合物を加水分解、脱水縮合することにより得られた溶液を封止材5の外周部に塗布した後、200℃以下の温度でガラス化することにより得られる金属酸化物を用いることが好ましい。金属酸化物を形成する前駆体の塗布方法としてはディップ法等を例示することができる。   As the covering portion 6, it is important to use a metal oxide, thereby providing a photoelectric conversion element that can be manufactured by a simple manufacturing process and is excellent in durability and reliability in a high temperature state. . As this metal oxide, organosiloxanes such as tetraethoxysilane, tetramethoxysilane, and methyltriethoxysilane, and partial hydrolysates thereof can be used. In a reaction solution composed of water and an organic solvent, boron is used. Solution obtained by hydrolyzing and dehydrating and condensing hydrolyzable organometallic compounds while adjusting the pH value within the range of 4.5 to 5.0 using halide ions as catalysts in the presence of ions It is preferable to use a metal oxide obtained by applying vitrification to the outer peripheral portion of the sealing material 5 and then vitrifying it at a temperature of 200 ° C. or lower. Examples of the method for applying the precursor for forming the metal oxide include a dipping method.

基材7の材質としては、基材7側が光の入射側である場合、透光性,耐候性,及びガスバリア性に優れた材料であれば特に制限はない。具体的には、可視光(波長400〜800nm)に対して透明なガラス板又は樹脂フィルム等を例示することができる。また樹脂フィルムの材料としては、再生セルロース,ジアセテートセルロース,トリアセテートセルロース,テトラアセチルセルロース,ポリエチレン,ポリプロピレン,ポリ塩化ビニル,ポリ塩化ビニリデン,ポリビニルアルコール,ポリエチレンテレフタレート,ポリカーボネート,ポリエチレンナフタレート,ポリエーテルサルフォン,ポリエーテルケトン,ポリスルフォン,ポリエーテルイミド,ポリイミド,ポリアリレート,シクロオレフィンポリマー,ノルボルネン樹脂,ポリスチレン,塩酸ゴム,ナイロン,ポリアクリレート,ポリフッ化ビニル,及びポリ四フッ化エチレンフィルムからなる群の中から選ばれる1又は2種以上を用いることができる。   The material of the base material 7 is not particularly limited as long as the base material 7 side is the light incident side as long as it is a material excellent in translucency, weather resistance, and gas barrier properties. Specifically, a glass plate or a resin film transparent to visible light (wavelength 400 to 800 nm) can be exemplified. Resin film materials include regenerated cellulose, diacetate cellulose, triacetate cellulose, tetraacetyl cellulose, polyethylene, polypropylene, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polyethylene terephthalate, polycarbonate, polyethylene naphthalate, and polyethersulfone. , Polyetherketone, polysulfone, polyetherimide, polyimide, polyarylate, cycloolefin polymer, norbornene resin, polystyrene, hydrochloric acid rubber, nylon, polyacrylate, polyvinyl fluoride, and polytetrafluoroethylene film 1 or 2 or more types selected from can be used.

なお、基材10側が光の入射側である場合には、基材7はニッケル,亜鉛,チタン等の金属箔であってもよい。また基材7の厚さには特に制限はないが、基材7がガラス板である場合、その厚さは0.1〜5mmであることが適当であり、特には0.7〜2mm程度が好ましい。また基材7が樹脂フィルムである場合には、その厚さは0.01〜5mmであることが適当であり、特には0.07〜1mm程度が好ましい。   In addition, when the base material 10 side is a light incident side, the base material 7 may be a metal foil such as nickel, zinc, or titanium. Moreover, there is no restriction | limiting in particular in the thickness of the base material 7, but when the base material 7 is a glass plate, it is suitable that the thickness is 0.1-5 mm, especially about 0.7-2 mm. Is preferred. Moreover, when the base material 7 is a resin film, it is suitable that the thickness is 0.01-5 mm, and about 0.07-1 mm is especially preferable.

電極層8は、光電変換素子1の負極として機能する。電極層8の材料としては、導電性及び透光性が高いものが好ましく、酸化亜鉛,インジウム−スズ複合酸化物,インジウム−スズ複合酸化物層と銀層とからなる積層体,アンチモンがドープされた酸化スズ、フッ素がドープされた酸化スズ等を例示することができる。中でも、導電性及び透光性が特に高い、フッ素がドープされた酸化スズが好ましい。電極層8の厚さは、0.1〜10μmの範囲内にあることが好ましい。電極層8の厚さがこの範囲内にあれば厚さが均一な電極層8を作製できる。また電極層8の厚さがこの範囲内にあると、電極層8は十分な透光性を有し、光を十分に半導体層9に入射させることができる。電極層8の表面抵抗は、低い程よいが、好ましくは200Ω/□以下、より好ましくは50Ω/□以下である。下限は特に制限しないが通常0.1Ω/□である。   The electrode layer 8 functions as the negative electrode of the photoelectric conversion element 1. The electrode layer 8 is preferably made of a material having high conductivity and translucency, zinc oxide, indium-tin composite oxide, a laminate composed of an indium-tin composite oxide layer and a silver layer, and doped with antimony. Examples thereof include tin oxide, tin oxide doped with fluorine, and the like. Among these, tin oxide doped with fluorine and having particularly high conductivity and translucency is preferable. The thickness of the electrode layer 8 is preferably in the range of 0.1 to 10 μm. If the thickness of the electrode layer 8 is within this range, the electrode layer 8 having a uniform thickness can be produced. Further, when the thickness of the electrode layer 8 is within this range, the electrode layer 8 has a sufficient light-transmitting property, and light can be sufficiently incident on the semiconductor layer 9. The surface resistance of the electrode layer 8 is preferably as low as possible, but is preferably 200Ω / □ or less, more preferably 50Ω / □ or less. The lower limit is not particularly limited, but is usually 0.1Ω / □.

半導体層9の厚さは0.1〜100μmの範囲内にあることが好ましい。半導体層9の厚さがこの範囲内にあれば、十分な光電変換効果が得られ、また可視光及び近赤外光に対する透過性も十分に確保できる。半導体層9の厚さは、より好ましくは1〜50μm、特に好ましくは3〜20μmの範囲内にあることが望ましい。半導体層9は公知の方法により形成できる。半導体層9の多孔質の透明導電層は、例えば、半導体微粒子とバインダーとを含むペーストをドクターブレードやバーコータ等を用いて電極層8に塗布する塗布方法で形成できる。また上記ペーストをスプレー法,ディップコーティング法,スクリーン印刷法,スピンコート法、電着法等で電極層8表面に付着させてもよい。電極層8表面上のペーストは、基材6がガラス基板である場合、400℃前後で焼成されて多孔質透明導電層となる。さらに、上記多孔質を金属塩化物の溶液や金属アルコキシドの溶液等に浸漬して焼成することにより半導体層9を形成できる。多孔質の透明導電層に用いる材料としては、フッ素をドープした酸化スズ(FTO),スズをドープした酸化インジウム(ITO),アンチモンをドープした酸化スズ、アルミニウムをドープした酸化亜鉛等のナノ粒子を例示することができるが、耐熱性及び透光性の高さからFTOのナノ粒子を用いることが望ましい。   The thickness of the semiconductor layer 9 is preferably in the range of 0.1 to 100 μm. If the thickness of the semiconductor layer 9 is within this range, a sufficient photoelectric conversion effect can be obtained and sufficient transparency to visible light and near infrared light can be secured. The thickness of the semiconductor layer 9 is more preferably 1 to 50 μm, and particularly preferably 3 to 20 μm. The semiconductor layer 9 can be formed by a known method. The porous transparent conductive layer of the semiconductor layer 9 can be formed by, for example, a coating method in which a paste containing semiconductor fine particles and a binder is applied to the electrode layer 8 using a doctor blade, a bar coater, or the like. The paste may be attached to the surface of the electrode layer 8 by spraying, dip coating, screen printing, spin coating, electrodeposition, or the like. When the substrate 6 is a glass substrate, the paste on the surface of the electrode layer 8 is baked at around 400 ° C. to become a porous transparent conductive layer. Further, the semiconductor layer 9 can be formed by immersing the porous material in a metal chloride solution, a metal alkoxide solution, or the like and firing the same. Materials used for the porous transparent conductive layer include nanoparticles such as fluorine-doped tin oxide (FTO), tin-doped indium oxide (ITO), antimony-doped tin oxide, and aluminum-doped zinc oxide. As an example, it is desirable to use FTO nanoparticles because of their high heat resistance and translucency.

多孔質の透明導電層の表面上に形成する半導体層としては、Cd,Zn,In,Pb,Mo,W,Sb,Bi,Cu,Hg,Ti,Ag,Mn,Fe,V,Sn,Zr,Sr,Ga,Si,Cr等の金属の酸化物、SrTiO,CaTiO等のペロブスカイト型酸化物、CdS,ZnS,In,PbS,MoS,WS,Sb,Bi,ZnCdS,CuS等の硫化物、CdSe,InSe,WSe,HgS,PbSe,CdTe等の金属カルコゲナイド、GaAs、Si、Se、Cd、Zn、InP、AgBr、PbI、HgI、及びBiIをからなる群の中から選ばれる1又は2種以上を含む複合体を例示することができるが、電解液中へ光溶解しにくく、光電変換特性に優れたTiOを用いることが好ましい。なお、上記複合体としては、CdS/TiO,CdS/AgI,AgS/AgI,CdS/ZnO,CdS/HgS,CdS/PbS,ZnO/ZnS,ZnO/ZnSe,CdS/HgS,CdS/CdSe1−x,CdS/Te1−x,CdSe/Te1−x,ZnS/CdSe,ZnSe/CdSe,CdS/ZnS,TiO/Cd,CdS/CdSe/CdZn1−yS,CdS/HgS/Cds等を例示することができる。 As the semiconductor layer formed on the surface of the porous transparent conductive layer, Cd, Zn, In, Pb, Mo, W, Sb, Bi, Cu, Hg, Ti, Ag, Mn, Fe, V, Sn, Zr , Sr, Ga, Si, Cr and other metal oxides, SrTiO 3 , CaTiO 3 and other perovskite oxides, CdS, ZnS, In 2 S 3 , PbS, Mo 2 S, WS 2 , Sb 2 S 3 , Sulfides such as Bi 2 S 3 , ZnCdS 2 , Cu 2 S, metal chalcogenides such as CdSe, In 2 Se 3 , WSe 2 , HgS, PbSe, CdTe, GaAs, Si, Se, Cd 2 P 3 , Zn 2 P 3, InP, AgBr, PbI 2, HgI 2, and BiI but 3 may be exemplified complexes comprising one or more selected from the group consisting of a, the optically dissolved into the electrolyte solution Ku, it is preferable to use TiO 2 having excellent photoelectric conversion characteristics. As the above-mentioned complex, CdS / TiO 2, CdS / AgI, Ag 2 S / AgI, CdS / ZnO, CdS / HgS, CdS / PbS, ZnO / ZnS, ZnO / ZnSe, CdS / HgS, CdS x / CdSe 1-x , CdS x / Te 1-x , CdSe x / Te 1-x , ZnS / CdSe, ZnSe / CdSe, CdS / ZnS, TiO 2 / Cd 3 P 2 , CdS / CdSe / Cd y Zn 1- y S, CdS / HgS / Cds and the like can be exemplified.

半導体層9が担持する増感色素としては、従来の色素増感型光電変換素子において用いられているものと同様でよく、無機色素,有機色素のいずれであってもよい。無機色素としては、組成式RuL(HO)で表されるルテニウム−シス−ジアクア−ビピリジル錯体(Lは4,4’−ジカルボキシル−2,2’−ビピリジンを表す)、ルテニウム−トリス(RuL),ルテニウム−ビス(RuL),オスニウム−トリス(OsL),組成式オスニウム−ビス(OsL)で表される遷移金属錯体、亜鉛−テトラ(4−カルボキシフェニル)ポルフィリン、鉄−ヘキサシアニド錯体、フタロシアニン等を例示することができる。また、有機色素としては、9−フェニルキサンテン系色素,クマリン系色素,アクリジン系色素,トリフェニルメタン系色素,テトラフェニルメタン系色素,キノン系色素,アゾ系色素,インジゴ系色素,シアニン系色素,メロシアニン系色素,キサンテン色素等を例示することができる。中でも、可視光域に広い吸収スペクトルを有する、ルテニウム−ビス(RuL)誘導体を用いることが好ましい。 The sensitizing dye carried by the semiconductor layer 9 may be the same as that used in conventional dye-sensitized photoelectric conversion elements, and may be either an inorganic dye or an organic dye. Examples of inorganic dyes include ruthenium-cis-diaqua-bipyridyl complexes represented by the composition formula RuL 2 (H 2 O) 2 (L represents 4,4′-dicarboxyl-2,2′-bipyridine), ruthenium- Transition metal complex represented by tris (RuL 3 ), ruthenium-bis (RuL 2 ), osmium-tris (OsL 3 ), composition formula osnium-bis (OsL 2 ), zinc-tetra (4-carboxyphenyl) porphyrin, Illustrative examples include iron-hexocyanide complexes and phthalocyanines. Examples of organic dyes include 9-phenylxanthene dyes, coumarin dyes, acridine dyes, triphenylmethane dyes, tetraphenylmethane dyes, quinone dyes, azo dyes, indigo dyes, cyanine dyes, Examples include merocyanine dyes and xanthene dyes. Among these, it is preferable to use a ruthenium-bis (RuL 2 ) derivative having a wide absorption spectrum in the visible light region.

半導体層9に増感色素を担持させる方法としては、例えば増感色素を溶媒に溶かした溶液に半導体層9を侵漬して増感色素吸着させる方法等がある。この溶液の溶媒としては、水,アルコール,トルエン,ジメチルホルムアミド等、増感色素を溶解可能なものであれば全て使用することができる。また侵漬方法として、上記溶液に半導体層9を侵漬させている間、溶液を加熱環流したり、溶液に超音波を印加したりする等して、半導体層9への増感色素の吸着を促進させてもよい。また増感色素を半導体層9へ吸着させた後、吸着されずに半導体層9に残った増感色素は、アルコール洗浄又は加熱環流等にて半導体層9から取り除くとよい。半導体層9への増感色素の担持量は、1×10−8〜1×10−6mol/cmの範囲内にあることが望ましい。この範囲内であれば、経済的、且つ、十分な光電変換効率を実現できる。 Examples of the method for supporting the sensitizing dye on the semiconductor layer 9 include a method in which the semiconductor layer 9 is immersed in a solution in which the sensitizing dye is dissolved in a solvent to adsorb the sensitizing dye. As the solvent of this solution, any solvent that can dissolve the sensitizing dye, such as water, alcohol, toluene, dimethylformamide, and the like can be used. As the immersion method, while the semiconductor layer 9 is immersed in the solution, the solution is heated and refluxed, or ultrasonic waves are applied to the solution. May be promoted. Further, after the sensitizing dye is adsorbed to the semiconductor layer 9, the sensitizing dye that is not adsorbed and remains in the semiconductor layer 9 is preferably removed from the semiconductor layer 9 by alcohol washing or heating reflux. The amount of the sensitizing dye supported on the semiconductor layer 9 is desirably in the range of 1 × 10 −8 to 1 × 10 −6 mol / cm 2 . Within this range, economical and sufficient photoelectric conversion efficiency can be realized.

基材10は、基材7と同じ材料を使用することができる。基材7が透明である場合、基材10は必ずしも透明でなくてもよい。基材7,10が共に透明であれば、両基材側から光を入射させることができる点で好ましい。   The base material 10 can use the same material as the base material 7. When the base material 7 is transparent, the base material 10 does not necessarily need to be transparent. If both the base materials 7 and 10 are transparent, it is preferable at the point which can inject light from the both base material side.

電極層11は、光電変換素子1の正極として機能する。電極層11の材料としては、電極層8と同様のものを用いることができるが、還元体に電子を与える触媒作用を有する材料を含んでいると好ましい。触媒作用を有する材料としては、白金,金,銀,銅,アルミニウム,ロジウム,インジウム等の金属、グラファイト、白金を担持したカーボン、インジウム−スズ複合酸化物,アンチモンをドープした酸化スズ,フッ素をドープした酸化スズ等の導電性金属酸化物を例示することができる。中でも、白金,グラファイト等を用いることが好ましい。なお、基材10と電極層11の間に透明導電膜を設けてもよく、この透明導電膜は電極層8と同じ材料により形成できる。この場合、電極層11も透明であることが望ましく、電極層11が透明であれば、基材10側又は基材7と基材10側から受光できる。   The electrode layer 11 functions as the positive electrode of the photoelectric conversion element 1. As the material of the electrode layer 11, the same material as that of the electrode layer 8 can be used, but it is preferable that a material having a catalytic action to give electrons to the reductant is included. Materials having catalytic action include metals such as platinum, gold, silver, copper, aluminum, rhodium, and indium, graphite, carbon carrying platinum, indium-tin composite oxide, tin oxide doped with antimony, and fluorine. Examples thereof include conductive metal oxides such as tin oxide. Of these, platinum, graphite and the like are preferably used. A transparent conductive film may be provided between the base material 10 and the electrode layer 11, and this transparent conductive film can be formed of the same material as the electrode layer 8. In this case, it is desirable that the electrode layer 11 is also transparent. If the electrode layer 11 is transparent, light can be received from the substrate 10 side or the substrate 7 and the substrate 10 side.

次に、本発明に係る光電変換素子を実施例に基づき具体的に説明する。   Next, the photoelectric conversion element according to the present invention will be specifically described based on examples.

〔実施例1〕
実施例1では、始めに、平均1次粒子径が20nmのTiOナノ粒子をアルコール中に分散させ、スクリーン印刷用のペーストを作製した。次に、このペーストを厚さ1mmの導電性ガラス基板(旭硝子製,フッ素ドープされた酸化スズにより一方の表面がコーティングされたガラス基板,F−SnO,シート抵抗10Ω/□)上に塗布,乾燥した。得られた乾燥物をTiCl水溶液中に80℃で1時間浸漬後、純水で洗浄し風乾した。次に、これを電気炉を用いて500℃で30分間空気中で焼成することにより、基板上に厚さ10μmの半導体層を形成した。次に、エタノールに増感色素ビス−テトラブチルアンモニウム[Ru(4,4’−ジカルボキシル−2,2’−ピピリジン)−(NCS)]を加えた溶液に半導体層を浸漬した後、半導体層を上記溶液から取り出し、室温で24時間暗所下静置して増感色素を半導体層に吸着させた。一方で、導電性ガラス基板の一方の表面にスパッタ法にて白金層を形成した。続いて、導電性ガラス基板と白金層とを貫通するようにダイヤモンドドリルで孔をあけた。なお、導電性ガラス基板にコーティングされた酸化スズと白金層とが対電極である。次に、半導体層が形成された導電性ガラス基板と対電極との間に半導体層を囲うようにオレフィン樹脂系の熱溶融性封止材を配置し、これらを加熱しながら厚み方向に加圧して封止材を介してガラス基板と対電極とを接合した。続いて、上記孔から導電性ガラス基板と対電極との間に電解液を注入して電荷輸送層を形成した後、孔を塞いだ。次に、金属化合物ホウ素イオンの存在下で酸性フッ化アンモニウムを触媒として、pH値を4.5〜5.0の範囲内に調整しながら、水とエタノールからなる主剤中において、金属アルコキシドを加水分解、脱水縮合することにより得られた溶液(ミクロ技研社製、シラグシタールB4373)に、封止材の外周部を浸漬させた。そして、半導体層の外周部に48時間80℃の温度をかけることにより上記溶液をガラス化させ被覆部を形成した。これにより受光面積1cmの光電変換素子を得た。
[Example 1]
In Example 1, first, TiO 2 nanoparticles having an average primary particle size of 20 nm were dispersed in alcohol to prepare a screen printing paste. Next, this paste is applied onto a 1 mm thick conductive glass substrate (manufactured by Asahi Glass, one surface coated with fluorine-doped tin oxide, F-SnO 2 , sheet resistance 10 Ω / □). Dried. The obtained dried product was immersed in an aqueous TiCl 4 solution at 80 ° C. for 1 hour, washed with pure water and air-dried. Next, this was baked in air at 500 ° C. for 30 minutes using an electric furnace to form a semiconductor layer having a thickness of 10 μm on the substrate. Next, after immersing the semiconductor layer in a solution obtained by adding the sensitizing dye bis-tetrabutylammonium [Ru (4,4′-dicarboxyl-2,2′-pipyridine) 2- (NCS) 2 ] to ethanol, The semiconductor layer was taken out from the solution and allowed to stand in the dark at room temperature for 24 hours to adsorb the sensitizing dye to the semiconductor layer. On the other hand, a platinum layer was formed on one surface of the conductive glass substrate by sputtering. Subsequently, a hole was made with a diamond drill so as to penetrate the conductive glass substrate and the platinum layer. Note that the tin oxide and the platinum layer coated on the conductive glass substrate are the counter electrode. Next, an olefin resin-based hot-melt sealing material is placed between the conductive glass substrate on which the semiconductor layer is formed and the counter electrode so as to surround the semiconductor layer, and these are pressed in the thickness direction while heating them. Then, the glass substrate and the counter electrode were joined through the sealing material. Subsequently, an electrolyte was injected between the conductive glass substrate and the counter electrode from the hole to form a charge transport layer, and then the hole was closed. Next, the metal alkoxide is hydrolyzed in the main agent consisting of water and ethanol while adjusting the pH value within the range of 4.5 to 5.0 using ammonium acid fluoride as a catalyst in the presence of the metal compound boron ion. The outer periphery of the sealing material was immersed in a solution obtained by decomposition and dehydration condensation (manufactured by Micro Giken Co., Ltd., Siragusital B4373). And the said solution was vitrified by applying the temperature of 80 degreeC to the outer peripheral part of a semiconductor layer for 48 hours, and the coating | coated part was formed. Thus, a photoelectric conversion element having a light receiving area of 1 cm 2 was obtained.

〔実施例1〕
比較例1では、被覆部を形成しない以外は実施例1と同じ処理を行うことにより受光面積1cmの光電変換素子を得た。
[Example 1]
In Comparative Example 1, a photoelectric conversion element having a light receiving area of 1 cm 2 was obtained by performing the same process as in Example 1 except that the covering portion was not formed.

〔評価〕
実施例1及び比較例1の光電変換素子を300時間の高温(80℃)環境に保存した後、電池出力を測定した。測定結果を初期電池出力に対する相対値として以下の表1に示す。なお測定には、光電変換素子を電流計(KEYTHLEY236モデル)に接続し、100mW/cm2の強度のソーラーシミュレーター(山下電装製)を用いた。

Figure 2008235104
[Evaluation]
After the photoelectric conversion elements of Example 1 and Comparative Example 1 were stored in a high temperature (80 ° C.) environment for 300 hours, the battery output was measured. The measurement results are shown in Table 1 below as relative values to the initial battery output. For measurement, a photoelectric conversion element was connected to an ammeter (KEYTHLEY236 model), and a solar simulator (manufactured by Yamashita Denso) having an intensity of 100 mW / cm 2 was used.
Figure 2008235104

表1から明らかなように、実施例1の光電変換素子の相対値は比較例1の光電変換素子の相対値と比較して高く保持されている。このことから、被覆部を形成することにより、長時間にわたりより高い耐久性を有する光電変換素子が得られることが知見された。なお被覆部は比較的低い温度で形成できるので、被覆部を形成する際に増感色素が脱離,劣化することがほとんどなく、出力を下げることがない。   As is clear from Table 1, the relative value of the photoelectric conversion element of Example 1 is maintained higher than the relative value of the photoelectric conversion element of Comparative Example 1. From this, it was found that a photoelectric conversion element having higher durability over a long time can be obtained by forming the covering portion. Since the covering portion can be formed at a relatively low temperature, the sensitizing dye hardly desorbs or deteriorates when forming the covering portion, and the output is not lowered.

以上、本発明者によってなされた発明を適用した実施の形態について説明したが、この実施の形態による本発明の開示の一部をなす論述及び図面により本発明は限定されることはない。すなわち、上記実施の形態に基づいて当業者等によりなされる他の実施の形態、実施例及び運用技術等は全て本発明の範疇に含まれることは勿論であることを付け加えておく。   As mentioned above, although the embodiment to which the invention made by the present inventor is applied has been described, the present invention is not limited by the description and the drawings that form part of the disclosure of the present invention according to this embodiment. That is, it should be added that other embodiments, examples, operation techniques, and the like made by those skilled in the art based on the above embodiments are all included in the scope of the present invention.

本発明の実施形態となる光電変換素子の構成を示す断面図である。It is sectional drawing which shows the structure of the photoelectric conversion element used as embodiment of this invention. 本発明の実施形態となる光電変換素子の応用例の構成を示す断面図である。It is sectional drawing which shows the structure of the application example of the photoelectric conversion element used as embodiment of this invention.

符号の説明Explanation of symbols

1:光電変換素子
2,3:基板
4:電荷輸送層
5:封止材
6:被覆部
7,10:基材
8,11:電極層
9:半導体層
1: Photoelectric conversion element 2, 3: Substrate 4: Charge transport layer 5: Sealing material 6: Covering portion 7, 10: Base material 8, 11: Electrode layer 9: Semiconductor layer

Claims (4)

増感色素が担持された半導体を付着した第1の電極を有する第1の基板と、前記半導体に対向配置された第2の電極を有する第2の基板と、前記第1の電極と前記第2の電極間に配置された電荷輸送層と、前記電荷輸送層の外周部に配置された封止部とを備える光電変換素子において、少なくとも前記封止部の外表面を被覆する、金属酸化物よりなる被覆部を備えることを特徴とする光電変換素子。   A first substrate having a first electrode to which a semiconductor carrying a sensitizing dye is attached; a second substrate having a second electrode disposed opposite to the semiconductor; the first electrode; In a photoelectric conversion element comprising a charge transport layer disposed between two electrodes and a sealing portion disposed on an outer peripheral portion of the charge transport layer, a metal oxide covering at least the outer surface of the sealing portion A photoelectric conversion element comprising a covering portion. 請求項1に記載の光電変換素子において、前記被覆部は、水と有機溶媒からなる反応液中において、ホウ素イオンの存在下でハロゲン化イオンを触媒として、pH値を4.5以上5.0以下の範囲内に調整しながら、加水分解可能な有機金属化合物を加水分解、脱水縮合することにより得られた溶液を、200℃以下の温度でガラス化することにより得られたものであることを特徴とする光電変換素子。   2. The photoelectric conversion element according to claim 1, wherein the covering portion has a pH value of 4.5 or more and 5.0 in a reaction solution composed of water and an organic solvent using a halide ion in the presence of boron ions as a catalyst. A solution obtained by hydrolyzing and dehydrating and condensing a hydrolyzable organometallic compound while being adjusted within the following range is obtained by vitrifying at a temperature of 200 ° C. or lower. A characteristic photoelectric conversion element. 増感色素が担持された半導体を付着した第1の電極を有する第1の基板と、前記半導体に対向配置された第2の電極を有する第2の基板と、前記第1の電極と前記第2の電極間に配置された電荷輸送層と、前記電荷輸送層の外周部に配置された封止部とを備える光電変換素子の製造方法において、前記電荷輸送層が形成される領域と連通する貫通孔部を残して前記封止部を形成する工程と、前記貫通孔部を介して前記第1の電極と前記第2の電極の間に前記電荷輸送層を形成する材料を供給する工程と、樹脂系の接着剤により前記貫通孔部を封止した後、少なくとも前記封止部の外表面を被覆する、金属酸化物よりなる被覆部を形成する工程とを有することを特徴とする光電変換素子の製造方法。   A first substrate having a first electrode to which a semiconductor carrying a sensitizing dye is attached; a second substrate having a second electrode disposed opposite to the semiconductor; the first electrode; In a method for manufacturing a photoelectric conversion element comprising a charge transport layer disposed between two electrodes and a sealing portion disposed on an outer peripheral portion of the charge transport layer, the device communicates with a region where the charge transport layer is formed. Forming the sealing portion leaving a through-hole portion, supplying a material for forming the charge transport layer between the first electrode and the second electrode via the through-hole portion; And a step of forming a covering portion made of a metal oxide covering at least the outer surface of the sealing portion after sealing the through-hole portion with a resin-based adhesive. Device manufacturing method. 請求項3に記載の光電変換素子の製造方法において、前記被覆部は、水と有機溶媒からなる反応液中において、ホウ素イオンの存在下でハロゲン化イオンを触媒として、pH値を4.5以上5.0以下の範囲内に調整しながら、加水分解可能な有機金属化合物を加水分解、脱水縮合することにより得られた溶液を、200℃以下の温度でガラス化することにより得られたものであることを特徴とする光電変換素子の製造方法。   In the manufacturing method of the photoelectric conversion element of Claim 3, the said coating | coated part is pH 4.5 or more in the reaction liquid which consists of water and an organic solvent by making a halide ion into a catalyst in presence of a boron ion. It was obtained by vitrifying a solution obtained by hydrolyzing and dehydrating and condensing a hydrolyzable organometallic compound while adjusting it within a range of 5.0 or less. A method for producing a photoelectric conversion element, comprising:
JP2007075444A 2007-03-22 2007-03-22 Photoelectric conversion element and manufacturing method thereof Pending JP2008235104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007075444A JP2008235104A (en) 2007-03-22 2007-03-22 Photoelectric conversion element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007075444A JP2008235104A (en) 2007-03-22 2007-03-22 Photoelectric conversion element and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2008235104A true JP2008235104A (en) 2008-10-02

Family

ID=39907663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007075444A Pending JP2008235104A (en) 2007-03-22 2007-03-22 Photoelectric conversion element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2008235104A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098311A1 (en) * 2009-02-24 2010-09-02 株式会社フジクラ Photoelectric conversion element
JP2011029131A (en) * 2009-06-29 2011-02-10 Kyocera Corp Photoelectric conversion device
JP2013243144A (en) * 2008-10-30 2013-12-05 Fujikura Ltd Photoelectric conversion device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004119149A (en) * 2002-09-25 2004-04-15 Hitachi Maxell Ltd Photoelectric conversion element
JP2006100068A (en) * 2004-09-29 2006-04-13 Kyocera Corp Photoelectric conversion device and photovoltaic power generator using the same
WO2007046499A1 (en) * 2005-10-21 2007-04-26 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric conversion device and method for manufacturing same
JP2008226782A (en) * 2007-03-15 2008-09-25 Fujikura Ltd Photoelectric conversion element and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004119149A (en) * 2002-09-25 2004-04-15 Hitachi Maxell Ltd Photoelectric conversion element
JP2006100068A (en) * 2004-09-29 2006-04-13 Kyocera Corp Photoelectric conversion device and photovoltaic power generator using the same
WO2007046499A1 (en) * 2005-10-21 2007-04-26 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric conversion device and method for manufacturing same
JP2008226782A (en) * 2007-03-15 2008-09-25 Fujikura Ltd Photoelectric conversion element and its manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013243144A (en) * 2008-10-30 2013-12-05 Fujikura Ltd Photoelectric conversion device
WO2010098311A1 (en) * 2009-02-24 2010-09-02 株式会社フジクラ Photoelectric conversion element
JP2010198836A (en) * 2009-02-24 2010-09-09 Fujikura Ltd Photoelectric conversion element
US9153387B2 (en) 2009-02-24 2015-10-06 Fujikura Ltd. Photoelectric conversion element
JP2011029131A (en) * 2009-06-29 2011-02-10 Kyocera Corp Photoelectric conversion device

Similar Documents

Publication Publication Date Title
TWI381535B (en) Pigment Sensitive Photoelectric Conversion Device and Manufacturing Method thereof
US9406446B2 (en) Dye-sensitized solar cell, method of producing the same, and dye-sensitized solar cell module
JP5237664B2 (en) Photoelectric conversion element
JP2005251736A (en) Photoelectric conversion element, photocell using it and case of electronic equipment
JP2001076775A (en) Photoelectric transfer element and photocell
JP5118233B2 (en) Photoelectric conversion element and photoelectric conversion element module
JP2004119306A (en) Photoelectric conversion element and its manufacturing method
JP2010009786A (en) Dye sensitized solar cell, and dye sensitized solar cell module
JP4843899B2 (en) Photoelectric conversion element and manufacturing method thereof
JP2008027860A (en) Photoelectric conversion element
JP2004241378A (en) Dye sensitized solar cell
JP2003257506A (en) Electrolyte composition, photoelectric transducer and photoelectric cell
JP4678125B2 (en) PHOTOELECTRIC CONVERSION ELEMENT AND ITS MANUFACTURING METHOD, ELECTRONIC DEVICE AND ITS MANUFACTURING METHOD
JP5081405B2 (en) Method for manufacturing photoelectric conversion element
JP4892186B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP5536015B2 (en) Photoelectric conversion element and photoelectric conversion element module
JP2003187883A (en) Photoelectric conversion element
JP2009080988A (en) Photoelectric conversion element
JP2008235104A (en) Photoelectric conversion element and manufacturing method thereof
JP6050247B2 (en) Wet solar cell and wet solar cell module
JP2009187844A (en) Method of manufacturing photoelectric conversion element
JP2008235103A (en) Photoelectric conversion element, and its manufacturing method
JP2009032502A (en) Photoelectric conversion element
JP5181507B2 (en) Method for manufacturing photoelectric conversion element
JP5191631B2 (en) Method for manufacturing counter electrode and method for manufacturing photoelectric conversion element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091023

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130108