TW200913501A - Minimizing offset error in analog to digital converter - Google Patents

Minimizing offset error in analog to digital converter Download PDF

Info

Publication number
TW200913501A
TW200913501A TW097108216A TW97108216A TW200913501A TW 200913501 A TW200913501 A TW 200913501A TW 097108216 A TW097108216 A TW 097108216A TW 97108216 A TW97108216 A TW 97108216A TW 200913501 A TW200913501 A TW 200913501A
Authority
TW
Taiwan
Prior art keywords
result
offset error
input signal
polarity
analog
Prior art date
Application number
TW097108216A
Other languages
English (en)
Inventor
Arne Aas
Gunnar Gangsto
Torgeir Fenheim
Original Assignee
Atmel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atmel Corp filed Critical Atmel Corp
Publication of TW200913501A publication Critical patent/TW200913501A/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2506Arrangements for conditioning or analysing measured signals, e.g. for indicating peak values ; Details concerning sampling, digitizing or waveform capturing
    • G01R19/2509Details concerning sampling, digitizing or waveform capturing
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/0602Continuously compensating for, or preventing, undesired influence of physical parameters of deviations from the desired transfer characteristic
    • H03M1/0604Continuously compensating for, or preventing, undesired influence of physical parameters of deviations from the desired transfer characteristic at one point, i.e. by adjusting a single reference value, e.g. bias or gain error
    • H03M1/0607Offset or drift compensation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/0617Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
    • H03M1/0634Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale
    • H03M1/0656Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale in the time domain, e.g. using intended jitter as a dither signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/322Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M3/324Continuously compensating for, or preventing, undesired influence of physical parameters characterised by means or methods for compensating or preventing more than one type of error at a time, e.g. by synchronisation or using a ratiometric arrangement
    • H03M3/326Continuously compensating for, or preventing, undesired influence of physical parameters characterised by means or methods for compensating or preventing more than one type of error at a time, e.g. by synchronisation or using a ratiometric arrangement by averaging out the errors
    • H03M3/338Continuously compensating for, or preventing, undesired influence of physical parameters characterised by means or methods for compensating or preventing more than one type of error at a time, e.g. by synchronisation or using a ratiometric arrangement by averaging out the errors by permutation in the time domain, e.g. dynamic element matching
    • H03M3/34Continuously compensating for, or preventing, undesired influence of physical parameters characterised by means or methods for compensating or preventing more than one type of error at a time, e.g. by synchronisation or using a ratiometric arrangement by averaging out the errors by permutation in the time domain, e.g. dynamic element matching by chopping
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/322Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M3/352Continuously compensating for, or preventing, undesired influence of physical parameters of deviations from the desired transfer characteristic
    • H03M3/354Continuously compensating for, or preventing, undesired influence of physical parameters of deviations from the desired transfer characteristic at one point, i.e. by adjusting a single reference value, e.g. bias or gain error
    • H03M3/356Offset or drift compensation

Description

200913501 九、發明說明: 【發明所屬之技術領域】 本發明大體上係關於積體電 热一 —#垃〜 及特疋g之本發明係關 【先前技術】 r止义〜流感應類比數位轉換器。 類比數位轉換器具有特定 _入F ”, β + 爲移决差。偏移誤差是類比 輪入上之測夏電愿與理想電壓間的差異, 上產生中間等級程式碼(midscaie c〇d 、 'J雨 稱的設計及佈局,及自動 )。見已知有諸如對 動偏移玦差補償技術之 田 小化偏移誤差。即使當使 ;取 -此偏… 法時,在設計上仍存在 差。-般地’-執行於CMOS之設計—盖㈣ 動類比數位轉換器可具有— ^ ° 偏移誤差。在…用中,=變的大約於1〇°_ 的辦加被累力;〜 "員比數位轉換器結果隨著時間 ^加被累加。在此情況中,將累加偏移誤差之量,在其 、、'°果内將產生一嚴重的誤差, 日 哭私 。、 特別疋如果到類比數位轉換 "的輸入位準在長時間處於低狀態時。 現有用於自動偽软q ¥ , 移,差,幻,差肖方法補償在每-樣本内的偏 移决差舉例而言,藉由首杏g 4从 。。β , 稍由先累加偏移誤差於一採樣電宏 -内’隨後以減去偏移誤差的方式在每 位準。然而吾人已4 L 仕U中採樣信號 誤差可進行累力 種偏移誤差取消之方法因為偏移 决圣可進仃累加而在 ^ ,類比數位轉換器長時間使用期間將會 產生錯获。此種情、、 π XT曰 匱况一般用於電池系統中 此所需要的是—個用於注" m里皿測。因 更有術、, 減少類比數位轉換器之偏移誤差之 尺有效的方法。該系 宁、··先應付合成本效益,易於實施且可調 I29627.doc 200913501 適用於現有系統。 本發明即因應此需求。 【發明内容】
本發明揭示一種利用相L 七、土 κ / 用頰比數位轉換器之方土 κ么 方法及糸統包括提佴 方法及系統。該 从η丄 仏於輪入信號上之第—轅格 ^ 轉換中,偏移誤差被相4 轉換。在該第— 士 + 破相加至輸入信號以提供笛—#审 方法及系統進一步& ,、弟一結果。該 π - 步包含提供於輸入信號上之 5亥弟一轉換中,偏 一轉換。在 果。隨後後結合第—Μ笛 紊以槌供弟二結 差。 第二結合果以實質地消除偏移誤 根據本發明之条έά η + 莩差,從而在;法在許多採樣上補償累加的偏移 從而在偏移誤差補償上達到更高的精確性。在 CMOS之某一執行中,相士 顶崠庄在 $有的用於自動偏移誤差取消之方 法月匕達到一近似為1〇〇 的偏移块差位準,同時根據本發 明之方法可減少累加偏移誤差至大約^。 【實施方式】 本毛明大體上係關於積體電路,及特定而言之於一該等 電路中利用之電流感應類比數位轉換器。以下所展現之描 述是為了使一般技術者能製作及使用本發明,且按照專利 申。月木及其要求之背景中提供該描述。對該等較佳實施例 之各種t改及在文中所描述之一般原理及要點將易於使熟 練此項技術者瞭解,本發明除符合與文中所述之原理及要 點之最寬範圍之外無意於限制該等所示之實施例。 概述電流感應類比數位轉換器 129627.doc 200913501 圖1展示一根據本發明之電流感應類比數位轉換器ι〇〇之 方塊圖。類比數位轉換器100具有多個描述於美國申請案 第11/467,502號之要點’該案標題為"電流感應類比數位轉 換器及使用方法,,,其已讓與本發明之受讓人並且其完全 地併入於此文中。
類比數位轉換器100係用於採樣流過一外部感測電阻器 RSENSE 102的充電電流或放電電流。該類比數位轉換器 可成為各種諸如微控制器、數位信號處理器(Dsp卜數位 相機、PDA或其類似物的裝置之部件。在某一實施例中, 類比數位轉換器100係為8位元微控制器之部件。藉由△ 2 調變器(sigma de丨ta m〇dulat〇r)104通過一極性切換器11〇處 理自RSENSE 102的樣本。改良於上述鑒定的專利申請案 :隨後於此申請案内做詳細描述),類比數位轉換器_同 時具有一耦合至調變器104之極性切換器110、整數倍降低 =率it波器(deeimatiGn filte⑽6a與祕、及控 態暫存器11 2。 的雜訊能 。自該信 波器106a 達到一高 曰調變器104產生—過度採樣的雜訊形式(大部分 ,都處於咼頻率)的信號(-般地’信號為1位元) 唬,CDAC濾波器丨〇6之兩個整數倍降低取樣率濾 及1〇6M除頻帶外雜訊之擴大及減少資料速率以 解析度信號。 個整數倍降低取樣率濾、波器⑽及祕分別產生兩 間,' 時電流及累加電流。瞬時電流具有短轉換時 係較低解析度。累加電流輸出提供—用於庫侖 129627.doc 200913501 2數的電流測定。累加電流之轉換時間可經 換時間來換取精確性。 〜、用以用轉 類比數位轉換器100亦提供正規電流制。 偵測比較來自轉換的資料與由使 = 限值位準。為節約電源,提供一特殊"广/放電臨 使用者經由控制和狀能•存。:式’在特殊模式中 p ^暫存心2組態正規電流採樣間 :± '施例内,類比數位轉換器100執行四個 瞬日可電机轉換(則三個轉換都為虛設轉換,以確保整數倍 降低取樣率遽波器咖及106b的正確安置)及經由電流^ 較器m比較最後轉換值與由使用者指定之臨限值位準。 如果該值高於臨限值,將給予_喚醒信號到一休眠控制器 (未顯示)並中斷瞬時及正規電流。如果該值沒有多於Μ 值,則調變HUM及整數倍降低取㈣據波器_將於下二 次啟動之前關閉一段時間。使用者指定關閉調變器104及 濾波器106的時間週期。當流動較小的充電電流或放電電 流時’此將允許省電模式於一極低功率内運作。在 電流及累加電流轉換完成及當偵測正規電流時,濾波器 106產生中斷。 、如上面已搖述,當使用類比數位轉換器時發生偏移誤 差,及為改良類比數位轉換器之精確性,需要最小化此偏 移誤差。根據本發明之系統及方法,藉由在許多採樣上補 償累加的偏移誤差來最小化偏移誤差,從而在偏移誤差補 償上達到更高的精確性。為更詳細地描述本發明之要點, 5月結合附圖參照下列描述。 129627.doc 200913501 圖2根據本發明係為說明在類比數位轉換器内降低累加 偏移誤差至一較低值之流程圖。 在第一狀態内,通過加入由該等轉換所產生之偏移誤差 至第一結果内之方法於一輸入信號上進行第一連續轉換 (經由步驟202)。在第二狀態内,通過有效地自第二結果減 去由該等轉換所產生之偏移誤差之方法於輸入信號上進行 第二連續轉換(經由步驟2〇4)。最終,結合第一和第二結果 之結果係為於類比數位轉換器内有效地消除偏移誤差(經 由步驟206)。 ^ 根據本發明之方法的實際執行,由於很難達到精確性, 因此沒有改變偏移誤差之極性。相反,在沒有改變偏移誤 1之極性情況下其改變輸入信號之極性。其後,將改變其 結果之極性,導致輸人信號具有正確的極性及偏移誤差具 有相反的極性。如上所示,由於偏移誤差於第一連續轉換 内加入it且在第二連續轉換内減去’最終結果為取消偏 移誤h此種方法特別適詩計算較長連續測量之總數的 應用私序中。此種方法之—範例可用於電池系統内之電量 監測(剩餘容量計算)。 W Mm比數位㈣㈣之此要點之執行’現請結合 附圖參照以下描述。請回到圖i ’根據本發明之於執行偏 移誤差補償之關鍵組件係、為調變器104及極性切換器110。 其運作及相互作用將詳細地描述於下文中。 △Σ調變器104 在此實施例中將描述ΛΣ調變器1〇4。然而,一般技術者 129627.doc -10- 200913501 中應明白其各種類型之諸如這些用於逐次近似法ADC、管 線ADC或等等之調變器都在本發明之精神和範圍之内。— 又地’ 5周交1G4係' 為—類比模組。調變器1()4對輸入信號 '亍夕人(例如,128次)採樣(,,過取樣")以造成某一單—轉 換。將每-轉換輪出作為一累加於整數倍降低取 器l〇6a及l〇6b之數目。 μ及 兩個正數倍降低取樣率濾波器106a及106b累加該等出白 調變器104之數目。甘R a 、目 , 八取、,冬結果得到一數目,該數目由相 當於一轉換之屮白,㈣ _ 一 出自5周交盗104内之所有數目之總和(舉例而 ° 1 8位兀)所組成。出自調變器1 〇4内之該等數目具有較少 的位::一般僅為1或2位元。其結果藉由多重取樣及累加 達到尚精確性。 丨 極性切換器110 圖3根據本發明表示一極性切換器。該極性切換哭 110基於自控制暫存器内之信號改變輸入信號之極性:: 斤見田線路202及204輕合於位置八時極性為正常 2路搬及2叫合於位置科極性為相反。在較佳實施 例中,極性切換器11〇執行於硬體内。 „。已知的類比數位轉換器内之最大的偏移誤差來源為調變 器1 04。其也有_ 4b 1 —,、他的偏移玦差來源,例如, 件及輸入腳。然而,女户 夕數偏移誤差係產生於調
1 〇4。因此根據本發明之糸結芬士、+ a D 之糸統及方法有效地消除由調變哭 1 04所產生的偏移誤差 °° 秒夫差因此,请回到圖2,在圖}之類 數位轉換器100上之於牛驟^ 顆比 於步驟202及204内之類比數位轉換器 129627.doc 200913501 測量結果顯示如下: 步驟202 :結果1 =輸入信號+外部偏移誤差+輸入腳偏移 誤差+於狀態1内之極性切換器偏移誤差+ΔΣ調變偏移誤 差。 步驟204 1果2 =輸入信號,部偏移誤差-輸入腳偏移 誤差+於狀態2内之極性切換器偏移誤差變偏㈣ 差。 f 當結果2之極性(即,藉由使輸入信號反相)及求得兩個 結果的平均值時,最終結果為如下: 平均數=((輸入信號+外部偏移誤差+輸入腳偏移誤差+於 狀態1内之極性切換器偏移誤差他調變偏移誤差)+(輸入 信:虎+外部偏移誤差+輪入腳偏移誤差-於狀態2内之極性切 換器偏移誤差-ΔΣ調變偏移毕罢— °' ))-輸入信號+外部偏移誤 差+輸入腳偏移誤差於妝能 〜 1於狀態1内之極性切換器偏移誤差_ 於狀恐2内之極性切換器偏移誤差)/2 =所:,作為此過程之結果將有效地消除調變器之偏 =及:部偏移誤差及輸入腳偏移誤差並未改變,但如 一般為兩個调偏Γ誤差相比此等偏移誤差為極小,其 最終結果。 3關於兩個數量級改良 上述偏移誤差補償要點可執行 對其中之兩者财,下面將 -的微控制:::述。"先’將描述利用根據本發明之 圖4係為—未丨丨田 根據本發明之類比數位轉換器之系統350 I29627.doc 200913501 之方塊圖。該系統包含_ 人 _ 轉5至員料匯流排35 1之CPU或 被控制益3 5 2。微控制q 6人 制态352包含儲存單元354-350,其用 於保持將藉由微控制哭3 $ ±ί_ 52執订的軟體程式。系統35〇進一 步包含根據本發明之翻t 冬+私d炙頰比數位轉換器1〇〇,。 實施例1 在第一實施例中: (υ極性切換器110係附加於硬體内;及 (2)軟體控制該極性切換器11〇(步驟2〇4,圖2)。 圖5係為一說明—提供極性切換器之控制的軟體程式流 程圖H當運行類比數位轉換時,於輸人信號處於怪 定輸入位準之時間週期内執行-搜尋(經由步驟4〇2)。之 後’在以輸入處之正極性運修欠轉換⑴,接著以輸入處 之負極性進行N次轉換(經由步驟4()4)。其次,決定η次 轉換的輸入位準仏號是否為恆定(經由步驟條)。最後,藉 由公式「偏移=(Ιι,+ ΐ2 + .·. + ΐ2η)/(2*Ν)」計算偏移量以得到 平均值(經由步驟彻)。在此種情況下,偏移量可於定期測 該流程圖描述-在無須中斷正在進行的adc轉換情況下 測量實際偏移量之有效方法。該方法有利於電池監控系 統’其中ADC連續地運行以累加流入及流出於電池内之電 荷。在閒置週期中,電流位準長期處於穩定狀態,且此等 週期可被用於測量及更新adc之實際偏移位準。 於類比數位轉換器内之最終結果未經反相。因此,當極 性切換器處於狀態2時軟體必須反相該等結果。 129627.doc -13· 200913501 其將在以下做更詳細的說明,於狀態1中必須運行數次 轉換(步驟204,圖2),並且隨後於狀態2中必須運行數次轉 換。藉由軟體執行該等轉換。於此特定實施方案中所推薦 之必須運行之轉換次數為丨6。 實施例2 在第二實施例中: (1) 極性切換态11 〇係附加於硬體内。 (2) 軟體控制該極性切換器11 〇。 然而,在此實施例中,調變器1〇4於遽波器1〇6前使輸出 信號反相。因此當極性切換器11〇處於狀態2時,軟體不再 需要反相該等結果。此第二實施例同樣具有下列附加優 點: 1. 當極性切換器U0變化時,遽波器106展現出—更穩定 值。 2. 使用累加值的任一硬體都必須在硬體内進行極性的校 正。在此點上改變極性將給予最低成本硬體解決方案,因 為數目典型係僅1位元。硬體使用累加值之-實例係”正規 電流侦測”特點,纟用以偵測累加值是否高於一定限制。 此例如可藉由電流比較器U4予以執行。 -不需要在軟體内執行極性切換器控制。於硬體内也可執 行極性切換器控制。然而,軟體控制更能提供靈活性。 如上所述’整數倍降低取樣率濾波器對該等採樣進 4亍後處理及求得稽分。各仏名 母田啟動類比數位轉換器時,嘴、、由 器1 06通常需要一此韓拖以A从, a ‘ 一轉換以在給予正確的輸出值前 129627.doc 14 200913501 應’’。這是因為在濾波器i 〇 6内的該等暫存器開始於預設定 值。又(通系為令)。在輪入值上進行較大改變後同樣需要— 些轉換。請注意每當切換極性時,看起來就像一發生於輪 入信號位準内之突然變化,及濾波器106需要一些時間以 適應此新數值。因此,不建議於每—轉換上進行切換極 性。以某-極性設定運行數次轉換’隨後以相反極性設定 運行-樣數目的轉換,即可得到最佳結果。轉換數目取決 Γ ㈣波_6之適應時間及其他因素。所選的解決 方案允許藉由軟體確定轉換數目。其他執行方案可選擇於 硬體内決定轉換數目。 在貫施例2内,漉波器1〇6之適應時間的問題可藉由反相 自凋夂叩1 04内的輸出(當以相反極性採樣輸入時)得到避 免’從而產生-料值域波器1G6。在實施例2中,如果 調變器⑽沒有類似的適應效應,將充許每個週期 性。 、 雖然本發明已根據該等所示之實施例進行描述,但—般 技術者都將易於認識到可對該等實施例進行變化,但此^ ^化將係為本發明之精神及料之内。根據本發明之類比 可被使用於各種諸如—微控制器、數位信號處 =其他種類的積體電路之裝置内。本發明之特點 =各種類比數位轉換器中,並未受限於本發明揭示之電 =類比數位轉換器,b,許多修改可在不 。月求項之精神剩之内由—般技術者完成。 【圖式簡單說明】 129627.doc 200913501 圖1表示一根據本發明之一電流感應類比數位轉換器的 方塊圖。 圖2是一根據本發明說明在一類比數位轉換器内把累加 的偏移誤差減少到極低值的流程圖。 圖3根據本發明表示一極性切換器。 圖4疋根據本發明利用類比數位轉換器之系統的方塊 圖。
圖5疋一忒明為極性切換器提供控制的軟體程式的流程 圖。 【主要元件符號說明】 100 類比數位轉換器 1〇〇' 類比數位轉換器 102 外部感測電阻器 104 Α Σ調變器 110 極性切換器 106 整數倍降低取樣率濾波器 106a 整數倍降低取樣率濾波器 l〇6b 整數倍降低取樣率濾波器 112 控制和狀態暫存器 114 電流比較器 118 正規電流IRQ位準 120 瞬時電流暫存器 122 累加電流暫存器 202 線路 I29627.doc 16 200913501 204 線路 350 利用類比數位轉換器之系統 351 資料匯流排 352 CPU/微控制器 354 儲存單元 355 儲存單元 356 儲存單元 ί 129627.doc

Claims (1)

  1. 200913501十、申請專利範圍: 1 · 一種利用一類比數位轉換器之方法,其包括: 提供對一輸入信號之一第—轉換 其中一偏移誤差相 加至該輸入信號以提供一第—結果 提供對該輸入信號之一第二韓換 二轉換,其中自該輸入信號 減去一偏移誤差以提供一第二結果;及 結合該第一結果及該第二結果以實質地移除該類比數 位轉換器之該偏移誤差。 據月长項1之方法,其中藉由該類比數位轉換器内之 一調變器提供該偏移誤差。 3. 根據叫求項2之方法,其中該輸入信號之該第—轉換之 極性係相反於該輸入信號之該第二轉換之極性。 4. 根據請求項3之方法’其中該結合步驟包括反相該第二 、’。果之極性及求得該第一結果及該第二結果的平均值, 其中该調變器偏移誤差被移除。
    6'根據請求項4之方法 7.根據請求項4之方法 第二結果。 其中該結合步驟係由軟體控制 其中軟體反相該第二結果。 其中於該調變器内之硬體 8.根據請求項1之方、丄 行一第一套轉換 套轉換。 其中該第一
    一調變器, 其經調適用以產生一過取樣信號· 129627.doc 200913501 處波裔,其耦合至該調變器用於 訊及用於減少次4^专 除頻唧外雜 夕貝枓速率,以達到一高解析度信號; -極性切換器,其耗合至該調變器,用於二 變器的-輪入信號之極性;及 、換至該調 一控制機件,用於控制該極性 於提供對一认 6亥控制機件用 入到外 號之H換,其中—偏移誤差加 入到邊輸入信號以提供一第一 入俨號之货 *,及用於提供對該輸 U虎之-4:轉換,其中自該輸人信號心—偏移, 是以棱供-第二結果;及用於結合該第'结果及該第二 結果以實質地移除該偏移誤差。 ίο. 11. 12. 13. 14. 根據請求項9之類比數位轉換器,其中該調變器包括一 Σ Δ調變器。 根據:求項9之類比數位轉換器,其中該數位遽波器包 括第一及第二整數倍降低取樣率濾波器,其中該第一整 數倍降低取樣率濾波器提供一瞬時電流輸出,且該第二 正數L卩牛低取樣率濾波器提供累加電流輸出。 根據明求項9之類比數位轉換器,其中該控制機件包括 軟體。 根據。月求j頁9之類比數位轉換器,其中該輸入信號之該 第一轉換之極性係相反於該輸入信號之該第二轉換之極 性。 根據請求項13之類比數位轉換器,纟中該結合步驟包括 反相4第二結果之極性及求得該第一結果及該第二結果 的平均值,其中該調變器偏移誤差被移除。 129627.doc 200913501 15. 16. 17. 18. 19. 20. 根據凊求項14之類比數位轉換器,其中該極性切換器係 由軟體控制。 根據請求項14之類比數位轉換器,其中該軟體反相該第 二結果 ° 根據4求項14之類比數位轉換器,其中於該調變器内之 硬體反相該第二結果。 根據請求項9之類比數位轉換器,其中該第一轉換提供 之步驟包括運行一第一套轉換,且該第二轉換提供之步 驟包括運行一第二套轉換。 一種系統,包括: 一微控制器;及 顯比數位轉換裔,其被整合到該微控制器中,該類 比數位轉換器包括:—調變器,其經調適用以產生一過 取樣乜號,一數位濾波器,其耦該, 除頻帶外雜訊及減少資料速,,以達到一高解= 號;一極性切換器’其搞合至該調變器,用於切換至該 調變器的-輸人信號之極性;及—控制機件,用於控制 該極性切換器’該控制機件提供對_輸人信號之—第一 其Γ偏移誤差加入至該輪入信號以提供-第-釔果,及提供對該輸入信號之—第二 二 入信號上減去-偏移誤差以提供 1 ”自。亥輸 該第-結果及該第二結果以實質地=:?結合該 -種包含與一類比數位轉換器併?差。 讀取媒體,該等程式指令用於:…曰令之電腦可 129627.doc 200913501 其中一偏移誤差相 , 其中自該輸入信號 及 提供對一輸入信號之一第一轉換, 加至該輪入信號内以提供—第一結果 提供對該輸入信號之一第二轉換, 減去一偏移誤差以提供一第二結果; 、、·α 〇 4第一結果及該第二結果以實質地移除該類比數 位轉換器之該偏移誤差。 21. 根據請求項20之電腦可讀取媒體’其中該偏移誤差係由 於该類比數位轉換器内之一調變器所提供。 22. 根據請求項21之電腦可讀取媒體’其中該輸入信號之該 第一轉換之極性係相反於該輸入信號之該第二轉換之極 性。 23.根據請求項22之電腦可讀取媒體,其中該結合步驟包括 反相該第二結果之極性及求得該第一結果及該第二結果 的平均值’其中該調變器偏移誤差被移除。
    24·根據請求項23之電腦可讀取媒體,其中該結合步驟係由 軟體控制。 25 .根據請求項23之電腦可讀取媒體,其中該軟體反相該第 二結果 0 26·根據請求項23之電腦可讀取媒體,其中於該調變器内之 硬體反相該第二結果。 27.根據請求項20之電腦可讀取媒體,其中該第一轉換提供 之步驟包括運行第一複數次轉換,且該第二轉換提供之 步驟包括運行第二複數次轉換。 2 8 · —種結合類比數位轉換器利用之方法,包括: 129627.doc 200913501 由-極性切換器提供對—輸入信號之—第1換, 偏移誤差加人至該輸人信號以提供-第—处果· 經由該極性切換器提供對該輸入信號之—第二::, 其令自該輸入信號減去—偏移誤差以提供—第、 其中該極性切換㈣由—軟體進行控制;及 - :合該第一結果及該第二結果以實質地移除讀類比數 n之該偏移誤差,其中在沒有中斷該輸八信號之 轉換的情況下測量該偏移誤差。 」 29. 種類比數位轉換器,包括·· -調變器’其經調適用以產生一過取樣信號; ㈣=遽波r㈣合至該調變器,用於移除頻帶外 雜況及減少貢料速率,以達到-高解析度俨號. 二ΓΓ器,其耗合至該調變器,用於二換至該調 交态的一輸入信號之極性;及 —軟體程式’用於控制該極性切換器,該軟體程式用 於提供對-輸入信號之-第-轉換,其中-偏移= …實質地移除該偏移誤差,其中在沒有進行:輪 入L说之轉換之情況下測量該偏移誤差。 一種系統’包括: 一微控制器;及 -類比數位轉換器’其被整合到該微控制器中,該類 二 =該輸=號以提供—第—結果;用於提供對該輸入 二之—第二轉換’其中自該輸入信號減去-偏移誤差 以提供-第二結果;進一步用於結合該第一結果及該第 30. 129627.doc 200913501 比數位轉換器包括經調適用以產生一過取樣信號之一 變器; °° -數位濾波器,其耦合至調變器用於移除頻帶雜訊及 減少資料速率,以達到一高解析度信號; %:極性切換器’其耦合至該調變器,用於切換至該調 變器的一輸入信號之極性;及 干入月豆狂八 - 吻取體程式提 供對-輸入信號之一第一轉換,其卜偏移誤差相加至 ^輸入信號以提供-第—結果;提供對該輸人信號之一 轉換’其中自該輸入信號減去一偏移誤差以提供一 弟一結果;及結合該第一結果及該第_ 除該偏移誤差,”在沒有進果以實f地移 況下測量該偏移誤h 轉換之^ 31 -種包含與-類比數位轉換器併用之程式指令 頃取儲存媒體,該等程式指令用於: 弘包了 經由-極性切換器提供對一輸入信號之 其中一偏移誤差相加至1 ^ 專換, 果. 々力主。玄輸入#唬内以提供—第一結 供„。促坍對§亥调八伯现艾— 其中自該輸人信號減去—偏移誤差以提供—專換’ 其中該極性切換㈣由軟體㈣;及 —結果, 結合該第-結果及該第二結果以實質地移 位轉換器之該偏移誤差,其 、”頰比畫 轉換之情況下測量該偏移誤差。 仃4輸人信號之 129627.doc
TW097108216A 2007-03-09 2008-03-07 Minimizing offset error in analog to digital converter TW200913501A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/684,572 US8059019B2 (en) 2005-01-25 2007-03-09 Method and system for minimizing the accumulated offset error for an analog to digital converter

Publications (1)

Publication Number Publication Date
TW200913501A true TW200913501A (en) 2009-03-16

Family

ID=39358047

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097108216A TW200913501A (en) 2007-03-09 2008-03-07 Minimizing offset error in analog to digital converter

Country Status (5)

Country Link
US (2) US8059019B2 (zh)
CN (1) CN101632228A (zh)
DE (1) DE112008000645T5 (zh)
TW (1) TW200913501A (zh)
WO (1) WO2008112070A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI403729B (zh) * 2010-06-07 2013-08-01 Brymen Technology Corp 可同時量測電壓與電流之勾表及其方法

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8059019B2 (en) 2005-01-25 2011-11-15 Atmel Corporation Method and system for minimizing the accumulated offset error for an analog to digital converter
US9614589B1 (en) 2015-12-01 2017-04-04 Lockheed Martin Corporation Communication via a magnio
US10088452B2 (en) 2016-01-12 2018-10-02 Lockheed Martin Corporation Method for detecting defects in conductive materials based on differences in magnetic field characteristics measured along the conductive materials
US10088336B2 (en) 2016-01-21 2018-10-02 Lockheed Martin Corporation Diamond nitrogen vacancy sensed ferro-fluid hydrophone
US10006973B2 (en) 2016-01-21 2018-06-26 Lockheed Martin Corporation Magnetometer with a light emitting diode
US9638821B2 (en) 2014-03-20 2017-05-02 Lockheed Martin Corporation Mapping and monitoring of hydraulic fractures using vector magnetometers
US10168393B2 (en) 2014-09-25 2019-01-01 Lockheed Martin Corporation Micro-vacancy center device
US10241158B2 (en) 2015-02-04 2019-03-26 Lockheed Martin Corporation Apparatus and method for estimating absolute axes' orientations for a magnetic detection system
US10520558B2 (en) 2016-01-21 2019-12-31 Lockheed Martin Corporation Diamond nitrogen vacancy sensor with nitrogen-vacancy center diamond located between dual RF sources
US9910105B2 (en) 2014-03-20 2018-03-06 Lockheed Martin Corporation DNV magnetic field detector
US9824597B2 (en) 2015-01-28 2017-11-21 Lockheed Martin Corporation Magnetic navigation methods and systems utilizing power grid and communication network
US10120039B2 (en) 2015-11-20 2018-11-06 Lockheed Martin Corporation Apparatus and method for closed loop processing for a magnetic detection system
US9853837B2 (en) 2014-04-07 2017-12-26 Lockheed Martin Corporation High bit-rate magnetic communication
US10338162B2 (en) 2016-01-21 2019-07-02 Lockheed Martin Corporation AC vector magnetic anomaly detection with diamond nitrogen vacancies
US9910104B2 (en) 2015-01-23 2018-03-06 Lockheed Martin Corporation DNV magnetic field detector
CA2945016A1 (en) 2014-04-07 2015-10-15 Lockheed Martin Corporation Energy efficient controlled magnetic field generator circuit
WO2016118756A1 (en) 2015-01-23 2016-07-28 Lockheed Martin Corporation Apparatus and method for high sensitivity magnetometry measurement and signal processing in a magnetic detection system
EP3251193A4 (en) 2015-01-28 2018-08-08 Lockheed Martin Corporation In-situ power charging
WO2016126436A1 (en) 2015-02-04 2016-08-11 Lockheed Martin Corporation Apparatus and method for recovery of three dimensional magnetic field from a magnetic detection system
WO2017078766A1 (en) 2015-11-04 2017-05-11 Lockheed Martin Corporation Magnetic band-pass filter
WO2017087014A1 (en) 2015-11-20 2017-05-26 Lockheed Martin Corporation Apparatus and method for hypersensitivity detection of magnetic field
WO2017127095A1 (en) 2016-01-21 2017-07-27 Lockheed Martin Corporation Diamond nitrogen vacancy sensor with common rf and magnetic fields generator
WO2017127090A1 (en) 2016-01-21 2017-07-27 Lockheed Martin Corporation Higher magnetic sensitivity through fluorescence manipulation by phonon spectrum control
GB2562957A (en) 2016-01-21 2018-11-28 Lockheed Corp Magnetometer with light pipe
WO2017127081A1 (en) 2016-01-21 2017-07-27 Lockheed Martin Corporation Diamond nitrogen vacancy sensor with circuitry on diamond
US10274550B2 (en) 2017-03-24 2019-04-30 Lockheed Martin Corporation High speed sequential cancellation for pulsed mode
US10345396B2 (en) 2016-05-31 2019-07-09 Lockheed Martin Corporation Selected volume continuous illumination magnetometer
US10408890B2 (en) 2017-03-24 2019-09-10 Lockheed Martin Corporation Pulsed RF methods for optimization of CW measurements
US10228429B2 (en) 2017-03-24 2019-03-12 Lockheed Martin Corporation Apparatus and method for resonance magneto-optical defect center material pulsed mode referencing
US10527746B2 (en) 2016-05-31 2020-01-07 Lockheed Martin Corporation Array of UAVS with magnetometers
US10330744B2 (en) 2017-03-24 2019-06-25 Lockheed Martin Corporation Magnetometer with a waveguide
US10371765B2 (en) 2016-07-11 2019-08-06 Lockheed Martin Corporation Geolocation of magnetic sources using vector magnetometer sensors
US20170343621A1 (en) 2016-05-31 2017-11-30 Lockheed Martin Corporation Magneto-optical defect center magnetometer
US10145910B2 (en) 2017-03-24 2018-12-04 Lockheed Martin Corporation Photodetector circuit saturation mitigation for magneto-optical high intensity pulses
US10281550B2 (en) 2016-11-14 2019-05-07 Lockheed Martin Corporation Spin relaxometry based molecular sequencing
US10338163B2 (en) 2016-07-11 2019-07-02 Lockheed Martin Corporation Multi-frequency excitation schemes for high sensitivity magnetometry measurement with drift error compensation
US10677953B2 (en) 2016-05-31 2020-06-09 Lockheed Martin Corporation Magneto-optical detecting apparatus and methods
US10317279B2 (en) 2016-05-31 2019-06-11 Lockheed Martin Corporation Optical filtration system for diamond material with nitrogen vacancy centers
US10571530B2 (en) 2016-05-31 2020-02-25 Lockheed Martin Corporation Buoy array of magnetometers
US10345395B2 (en) 2016-12-12 2019-07-09 Lockheed Martin Corporation Vector magnetometry localization of subsurface liquids
US10359479B2 (en) 2017-02-20 2019-07-23 Lockheed Martin Corporation Efficient thermal drift compensation in DNV vector magnetometry
CN107592205A (zh) * 2016-07-06 2018-01-16 中兴通讯股份有限公司 Wifi的供电切换方法、电路及装置
US10379174B2 (en) 2017-03-24 2019-08-13 Lockheed Martin Corporation Bias magnet array for magnetometer
US10371760B2 (en) 2017-03-24 2019-08-06 Lockheed Martin Corporation Standing-wave radio frequency exciter
US10459041B2 (en) 2017-03-24 2019-10-29 Lockheed Martin Corporation Magnetic detection system with highly integrated diamond nitrogen vacancy sensor
US10338164B2 (en) 2017-03-24 2019-07-02 Lockheed Martin Corporation Vacancy center material with highly efficient RF excitation
FR3090045B1 (fr) * 2018-12-15 2021-01-15 Flex Fuel Energy Dev Ffed boîtier de conversion au bioéthanol comprenant un dispositif d'inversion de polarité

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5429552A (en) 1977-08-09 1979-03-05 Masaoki Ishikawa Integral ad converter
US5278487A (en) 1988-03-15 1994-01-11 Norand Corporation Battery conditioning system having communication with battery parameter memory means in conjunction with battery conditioning
US5408235A (en) 1994-03-07 1995-04-18 Intel Corporation Second order Sigma-Delta based analog to digital converter having superior analog components and having a programmable comb filter coupled to the digital signal processor
US5561660A (en) * 1995-04-05 1996-10-01 Silicon Systems, Inc. Offset and phase correction for delta-sigma modulators
US5675334A (en) * 1996-02-12 1997-10-07 Analog Devices, Inc. Analog to digital conversion system
US5909188A (en) 1997-02-24 1999-06-01 Rosemont Inc. Process control transmitter with adaptive analog-to-digital converter
US6867720B1 (en) 1997-10-06 2005-03-15 The Regents Of The University Of Michigan Beamformed ultrasonic imager with delta-sigma feedback control
US6218809B1 (en) 1998-03-20 2001-04-17 Dallas Semiconductor Corporation Method for monitoring operating parameters of a rechargeable power supply
US6081216A (en) 1998-06-11 2000-06-27 Motorola, Inc. Low-power decimator for an oversampled analog-to-digital converter and method therefor
US6614374B1 (en) 1999-06-15 2003-09-02 Globespanvirata, Inc. High performance switched-capacitor filter for oversampling Sigma-Delta digital to analog converters
US6414619B1 (en) 1999-10-22 2002-07-02 Eric J. Swanson Autoranging analog to digital conversion circuitry
US6456219B1 (en) 2000-02-22 2002-09-24 Texas Instruments Incorporated Analog-to-digital converter including two-wire interface circuit
US6411242B1 (en) * 2000-06-13 2002-06-25 Linear Technology Corporation Oversampling analog-to-digital converter with improved DC offset performance
US6507171B2 (en) 2000-12-29 2003-01-14 Nokia Corporation Method and apparatus for measuring battery charge and discharge current using a direct analog-to-digital conversion of a charge/discharge replica current
JP2002271201A (ja) 2001-03-09 2002-09-20 Fujitsu Ltd A/d変換器
US6898534B2 (en) 2003-05-05 2005-05-24 Texas Instruments Incorporated DC measurement method and system using sigma-delta modulation pattern
US20050062457A1 (en) 2003-09-18 2005-03-24 Texas Instruments Incorporated Battery charger interface architecture suitable for digital process
US7450665B2 (en) 2003-12-09 2008-11-11 Freescale Semiconductor, Inc. Method and apparatus to implement DC offset correction in a sigma delta converter
US6927717B1 (en) * 2004-02-12 2005-08-09 Linear Technology Corporation Buffered oversampling analog-to-digital converter with improved DC offset performance
US8059019B2 (en) 2005-01-25 2011-11-15 Atmel Corporation Method and system for minimizing the accumulated offset error for an analog to digital converter
US7358876B1 (en) * 2006-02-02 2008-04-15 Marvell International Ltd. Mixed-mode analog offset cancellation for data conversion systems
US7362255B1 (en) * 2006-03-18 2008-04-22 Zilog, Inc. Chopping and oversampling ADC having reduced low frequency drift

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI403729B (zh) * 2010-06-07 2013-08-01 Brymen Technology Corp 可同時量測電壓與電流之勾表及其方法

Also Published As

Publication number Publication date
WO2008112070A1 (en) 2008-09-18
US20120046894A1 (en) 2012-02-23
US20090058697A1 (en) 2009-03-05
US8059019B2 (en) 2011-11-15
CN101632228A (zh) 2010-01-20
US8704690B2 (en) 2014-04-22
DE112008000645T5 (de) 2010-01-14

Similar Documents

Publication Publication Date Title
TW200913501A (en) Minimizing offset error in analog to digital converter
CN105322964B (zh) 用于噪声整形sar模数转换器的方法和电路
TWI336566B (en) Current sensing analog to digital converter and method of use
TW201106241A (en) Sensing method and driving circuit of capacitive touch screen
JP5341745B2 (ja) 磁気検出装置
TWI281322B (en) Digital analog converter apparatus and digital analog converter thereof
JP2001281307A (ja) 電池の容量検出方法
CN204374294U (zh) 轨道交通自动接地系统的时间交错采样电压检测电路
WO2015043020A1 (zh) 一种高精度电压检测电路及方法
US8358229B2 (en) Method for use in a sigma-delta analog to digital converter, sigma-delta analog to digital converters and systems comprising a sigma-delta analog to digital converter
TW201237429A (en) Measuring sum of squared current
CN109410884B (zh) 过流保护模组及显示装置
TW201220706A (en) Method and circuit for encoding and transmitting numerical values from an analog-to-digital conversion process
US20130176016A1 (en) Signal converting apparatus of power metering system, power metering system and method for signal-converting in power metering system
WO2010126490A1 (en) Performing multiplication using an analog-to-digital converter
JP4054652B2 (ja) 蓄電池の内部インピーダンス測定方法および蓄電池の内部インピーダンス測定装置
RU119960U1 (ru) Аналого-цифровой преобразователь
CN210720628U (zh) 一种直流绝缘监测电路
Rieger et al. A signal based clocking scheme for A/D converters in body sensor networks
CN217063704U (zh) 一种小型化低功耗c-r混合sar-adc电路
JP5494965B2 (ja) 信号処理装置
TW201236364A (en) System with variably combined common-mode and differential-mode digital output
JP6132095B2 (ja) 信号変換装置
JP2013187784A (ja) アナログ−ディジタル変換装置
US10476483B2 (en) Decimation filter