TW200803484A - Stack-type semiconductor device with integrated sensors - Google Patents

Stack-type semiconductor device with integrated sensors Download PDF

Info

Publication number
TW200803484A
TW200803484A TW096106597A TW96106597A TW200803484A TW 200803484 A TW200803484 A TW 200803484A TW 096106597 A TW096106597 A TW 096106597A TW 96106597 A TW96106597 A TW 96106597A TW 200803484 A TW200803484 A TW 200803484A
Authority
TW
Taiwan
Prior art keywords
pixel
transistor
output
gate
pixels
Prior art date
Application number
TW096106597A
Other languages
Chinese (zh)
Other versions
TWI416948B (en
Inventor
Mitsumasa Koyanagi
Original Assignee
Mitsumasa Koyanagi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsumasa Koyanagi filed Critical Mitsumasa Koyanagi
Publication of TW200803484A publication Critical patent/TW200803484A/en
Application granted granted Critical
Publication of TWI416948B publication Critical patent/TWI416948B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14641Electronic components shared by two or more pixel-elements, e.g. one amplifier shared by two pixel elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/53Control of the integration time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/778Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising amplifiers shared between a plurality of pixels, i.e. at least one part of the amplifier must be on the sensor array itself
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/79Arrangements of circuitry being divided between different or multiple substrates, chips or circuit boards, e.g. stacked image sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14634Assemblies, i.e. Hybrid structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures

Abstract

Provided is a sensor circuit and an address specification type image sensor capable of accumulating signal charges of all the pixels substantially simultaneously and realizing a high pixel numerical aperture. A plurality of pixels (11) arranged in a matrix are divided into groups of n pixels, which are connected in parallel to a common node (13) so as to constitute a plurality of pixel blocks (12). Each of the pixel blocks (12) includes: n photoelectric conversion elements (PD1 to PDn) connected in parallel to the common node (13); and n transfer gates (TG1 to TGn) for opening and closing channels connecting the photoelectric conversion elements (PD1 to PDn) and the common node (13). Outside of each of the pixel blocks (12), a common reset transistor (TrRST) for resetting all the pixels (11) and a common amplification transistor (TrAMP) for amplifying the signal read from the n pixels (11).

Description

200803484 九、發明說明: 【發明所屬之技術領域】200803484 IX. Description of the invention: [Technical field to which the invention belongs]

裝 重置電晶體、及放大電晶體之感測器電路 測器電路而能以簡早構成使所有像素能 shutter)之位址指定型影像感測器。 本發明,係有關一種裝載有積體感測器之積層型半導 置’更詳細而言係有關包含光電轉換元件、傳送間極、 ’以及使用該感 同時曝光(global 【先前技術】The address sensor type image sensor can be configured to reset the transistor and amplify the sensor circuit of the transistor to form an address-capable image sensor that enables all pixels to be shuttered. The present invention relates to a laminated type semi-conductor loaded with an integrated body sensor' more specifically related to the inclusion of a photoelectric conversion element, a transfer interpole, and the use of the sense of simultaneous exposure (global [previous technique]

高級單眼數位相機乃至行動電話,已在使用之I其被重 ,的原因在於,與CCD影像感測器相較,cm〇s影像感測 态有如下優點:只需要一個電源而能節省消耗電力、能以 以往’就固態攝影裝置而言,使用CCD(Charge_cQupied Device :電荷耦合元件)來傳送配置成陣列狀之所有像素的 訊號電荷之CCD影像感測器(電荷傳送型影像感測器),乃 是常被利。然而,近年來,#由水平方向及垂直方向的掃 描而從配置成陣列狀之所有像素中選擇各像素之cm〇s影 像感測ΙΙ(Χ·Υ位址指定型影像感測器)’已漸漸增加,從 標準的 CMOS(Complementary Metal-Oxide-Semiconductor : ^補式金屬氧化物半導體)製帛來製&、以及易於實現系統 晶片(system on chip)。 …、、而,在習知的一般CM〇S(位址指定型)影像感測器 中’存在著下述二個問題。 第1問題點在於’無法使所有像素之訊號電荷同時貯 存(換言之,同時曝光化)。 5 200803484 、/在CCD影像感測器中,對所有像素係在同一時 刻開始λ破電何的貯存,所貯存的訊號電荷,係從各像素 一起被讀取然後傳送’因此’所有像素的訊號電荷之貯存 期間(此係相等於曝光期間)相同。相對於此,在習知的 CMOS影像感測器中,係針對像素陣列的各列或各個像素 開2號電荷的貯存,貯存於各像素之訊號電荷,藉由位 ^疋而從各像素中依時序被依序讀取,在各像素的訊號 電:之貯存期間有時間誤差(時點之誤差)。因此,無法如 LCD影像感測器般同车 力又U時財存汛唬電荷。以下使用圖33盥 圖30來說明其理由。 /、 •圖33(a),係CCD影像感測器的—般電路構成之概念 圖,圖33(b),係該CCD影像感測器的訊號電荷之貯存期 ^的概心圖。圖3〇⑷,係習知的復⑽影像感測器的一 =路構成+之概念圖;目3〇(b),係該cM〇s影像感測器 /遽電荷之貯存期間的概念圖。[參照米本和也著 CCD/CMOS影像感測器的基礎與應用」⑼出版社,谓3 年發行)之175頁及179頁] "像感測器’如目33⑷所示般,配置成陣列狀 之複數個像素,分別包含作為光電轉換元件之光電二極 體’在其等光電二極體中’分別貯存有數量與照射強度對 應之Λ就電何。貯存於各像素之訊號電荷,透過各像素用 而設置的傳送間極(未圖示),—起由沿著像素陣列的各行 而配置之垂直CCD所讀取。該垂直ccd的讀取,一般係 在垂直遮沒期間的最後-起進行。由各垂直ccd所讀取之 6 200803484 訊號電荷,藉由該垂直CCD的垂直傳送作用,被依序傳送 到沿像素陣列之列而配置之共通的水平CCD。如此,被傳 迗至水平CCD之訊號電荷,進一步藉由水平CCD而依序 在其輸出端被水平傳送,經由設置在該輸出端的 FD(Fl〇ating Diffusi〇n :浮置擴散)放大器的放大而成為訊 號輸出。Advanced single-eye digital cameras and even mobile phones, which have been used, are because they have the following advantages: compared to CCD image sensors, the cm〇s image sensing state has the following advantages: only one power supply is needed to save power consumption. A CCD image sensor (charge transfer type image sensor) that transmits a signal charge of all pixels arranged in an array using a CCD (Charge_cQupied Device) in the conventional solid-state imaging device. It is often profitable. However, in recent years, #〇 影像 影像 影像 影像 选择 选择 选择 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由Increasingly, it is made from standard CMOS (Complementary Metal-Oxide-Semiconductor: ^Complementary Metal Oxide Semiconductor) and easy to implement system on chip. ..., and, in the conventional general CM〇S (address-specific type) image sensor, the following two problems exist. The first problem is that the signal charges of all the pixels cannot be simultaneously stored (in other words, simultaneously exposed). 5 200803484, / In the CCD image sensor, all the pixels are stored at the same time, and the stored signal charge is read from each pixel and then transmits the signal of 'so' all pixels. The storage period of the charge (this is equivalent to the exposure period) is the same. In contrast, in a conventional CMOS image sensor, the storage of the No. 2 charge is performed for each column or each pixel of the pixel array, and the signal charge stored in each pixel is received from each pixel by the bit. According to the sequential reading, there is a time error (time point error) during the storage of the signal of each pixel: Therefore, it is impossible to use the same power as the LCD image sensor. The reason will be described below using Fig. 33A and Fig. 30. /, Fig. 33(a) is a conceptual diagram of the general circuit configuration of the CCD image sensor, and Fig. 33(b) is a schematic diagram of the storage period of the signal charge of the CCD image sensor. Figure 3 (4), is a conceptual diagram of a conventional (10) image sensor with a = path composition +; the target 3 (b) is a conceptual diagram of the storage period of the cM〇s image sensor / 遽 charge . [Refer to Mi Ben and also the basis and application of CCD/CMOS image sensor" (9) Press, which is issued on the 175 pages and 179 pages of the 3rd year] "sensors like the one shown in Figure 33(4), configuration A plurality of pixels in an array form, respectively, include a photodiode as a photoelectric conversion element, and in the photodiode of the same, respectively, the amount corresponding to the irradiation intensity is stored. The signal charge stored in each pixel is transmitted through a vertical CCD arranged along each row of the pixel array through a transfer interpole (not shown) provided for each pixel. The reading of the vertical ccd is generally performed at the end of the vertical blanking period. The 6 200803484 signal charge read by each vertical ccd is sequentially transmitted to the common horizontal CCD arranged along the array of pixels by the vertical transfer of the vertical CCD. In this way, the signal charge that is transmitted to the horizontal CCD is further horizontally transmitted at the output end thereof by the horizontal CCD, and amplified by the FD (Fl〇ating Diffusi〇n: Floating Diffusion) amplifier disposed at the output end. And become the signal output.

CCD影像感測器的訊號電荷之貯存期間,可輕易由圖 33(b)而理解,與構成!訊框汾_)之N條掃描線 別對應之像素,各有相同的貯存期間,換言之,貯存期間 係被設定於同一時點。只要考慮到貯存於各像素之訊號^ 荷係一起被垂直CCD所讀取之動作,應能明瞭此種現象。 相對於此,在習知的CM0S影像感測器中,如圖3〇(勾 所示般,配置成陣列狀之複數個像素,分別包含作為光電 轉換元件之光電二極體,以及用來放大該光電二極體所貯 存之訊號電荷之放大器。像素陣列中的各像素之選擇,係 由垂直掃描電路依序選擇列選擇線,並由水平掃描電路依 序選擇行訊號線(亦即依序指定m址)而進行。在圖 中,係以設置在各像素中的開關與設置在各行訊號線的開 關來表示其狀態。設置在各個行訊號線之CDS(CGrrelatedThe storage of the signal charge of the CCD image sensor can be easily understood and constructed by Figure 33(b)! The N corresponding scan lines of the frame 汾_) have the same storage period, in other words, the storage period is set at the same time. This phenomenon should be clarified by taking into account the action of the signal stored in each pixel being read by the vertical CCD. On the other hand, in the conventional CMOS image sensor, as shown in FIG. 3A (checked, a plurality of pixels arranged in an array, respectively containing photodiodes as photoelectric conversion elements, and for amplifying An amplifier for signal charge stored in the photodiode. The selection of each pixel in the pixel array is performed by a vertical scanning circuit to sequentially select column selection lines, and the horizontal scanning circuit sequentially selects the signal lines (ie, sequentially In the figure, the switch is set in each pixel and the switch provided in each row of signal lines is used to indicate its state. CDS (CGrrelated) is set in each line of signal lines.

Double Sampling:相關性雙取樣)電路,係用來從流經各 打訊號線之訊號電荷中去除雜訊。經上述方式而從各像素 中被選出之訊號電荷,依序被送至共通的水平訊號線,經 過連接於該水平訊I㈣—端之輸出f路後成為訊號輸 出。 7 200803484 習知的CMOS影像感測器的訊號電荷之貯存期間,由 圖30(b)所示可以了解,與構成1個訊框之n條掃描線(i〜n) 分別對應之像素,其貯存期間,係隨著各掃描線的掃描時 點而依序產生時間差。其原因在於,CM〇s影像感測器中, 不像CCD影像感測器中存在有垂直暫存器(垂直ccD),因 此,若是各像素的訊號電荷之重置時點有改變,將訊號電 荷傳送至對應的行訊號線之時點就有差別。 如此,在習知的CM0S影像感測器中,訊號電荷的貯 f期間隨掃描線別而有不同,而有無法進行訊號電荷的同 時貯存(換言之,同時曝光化)之難點,因此,若欲對高速 移動之待攝物體進行攝影,會有使所取得之影像發生失真 之問題點。例如,若欲對高速旋轉之扇葉進行攝影,會造 成圖34(b)般的失真影像。相對於此,若以能同時貯存訊 ^電荷(同時曝光化)之CCD影像感測器來攝影,在此情形 日守之影像’會如圖34(a)所示般,所得到的影像不會發生失 真(圖34,係根據上述rCCD/CM〇s影像感測器的基礎與 應用」中第180頁)。 驾去的CMOS w像感》則器所具有的第2個問題點在 於,相較於像素面積實效的受光區域較窄,換言之,存在 有像素的開口率⑽factor)低之問題點。以下參照圖31及 圖32來說明其原因。® 31 ’係習知的CMOS影像感測器 的概略電路圖’圖32係表示概略裝置構造之要部截面圖。 圖3 1所不之電路構成,係具有4電晶體型之像素之 CM〇S影像感測器,在1個像素中除了光電二極體之外, 8 200803484 尚包含4個電晶體(傳送閘極、重置電晶體、放大電晶體、 及選擇閘極用之4個MOS電晶體)。其等之電晶體’如圖 32的裝置構造所示般,係形成、配置於p型矽(s〇基板上。 再者,Vcc係電源電壓,Vrst係重置電壓。 以圖31的第i列第j行之像素(i,j}(其中卜』為正整 數)來說明,傳送閘極,係透過第i列的讀取控制線而施加 電壓脈衝pTi ^吏&為導通狀態,纟將貯存於光電二極體之 訊號電荷’在既定時點傳送至將傳送閘極、重置電晶體及 放大電晶體彼此連接之節點。重置電晶體,透過第丨列的 重置線而施加電壓脈衝―使成為導通狀態,並透過已成 為導通狀態之傳送閑極,在既定時點重置貯存在光電二極 體之訊號電荷(將既定之重置電I u加於光電二極 體)。與該節點連接之放大電晶體,係構成為源極隨輕器 (so肌e脇。體),具有將送至該節點之訊號電荷予以放大 之作用。選擇閘極,係透過第· ^弟1列之列選擇線(未圖示)來 施加電壓脈衝使成、為道s SEU成為V通狀態,並在既定時點將放 大後之訊號電荷傳送至相對岸的 丁應的弟J行之行訊號線。再者, 與4郎點連接之CSN,表示該節# Z即黑占所產生的寄生電容。 CMOS影像感測器之像紊 ^ 像素的電路構成,亦有3個電晶 體型。在3個電晶體型中 個像素理除了光電二極體之 外,尚包含3個電晶體(番娶+ „ 電日日體、放大電晶體、選擇閘 極用之MOS電晶體)。亦即, ,, 八係攸4個電晶體型的構成 中省略傳送閘極而構成者。 圖31的電路構成,可呈每 '、具現圖3 2所示之構造。亦 200803484 即在P型石夕(si)基板的表面區域,於藉由元件分離絕緣膜 區分成複數個元件區域内,分別形成光電二極體、傳送間 極、重置電晶體、放大電晶體、及選擇閉極而構成4個娜 電晶體。 在習知的CMOS影像感測器之裝置構造中,由圖 的要部截面圖可以明瞭,無論是4電晶體型或3電晶體型, 4個或3個MOS電晶體皆佔有像素面積的大半部分,在像 素面積中的光電二極體(之開口部)所佔有的面積比例(亦即 「開口率」)相當的小。習知的CM〇s影像感測器之開口 率,一般係低到3〇%左右。因此,會有感度低下的問題, 若欲解除該感度低下問題’則必_大像素面積(像素的尺 寸),但這又與微細化的需求相違背,而非理想作法。 在專利文獻ι(日本特開·4_266957號公報)中揭示之 ⑽0S影像感測器,係供解決第1問題之CMOS感測器的 二之^能達成所有像素之同時曝光化。冑cm〇S影像感 光:特徵在於,於像素内具備:受光元件;用以將該受 兀所產生之訊號電荷傳送至下一段之第i傳送機構; 時儲存該第1傳送機構的輸出之儲存部;用以進行 二Π:第該Π部的電荷初始化之初始化機構;連接 之雷m 傳达機構;以及將來自該第2傳送機構 \ :、、、電壓而於外部讀取之電荷檢測部;其對於所有Double Sampling: A circuit that is used to remove noise from the signal charge flowing through each signal line. The signal charges selected from the respective pixels in the above manner are sequentially sent to the common horizontal signal line, and are connected to the output f path of the horizontal signal I (four)-end to become a signal output. 7 200803484 During the storage period of the signal charge of the conventional CMOS image sensor, as shown in FIG. 30(b), it is understood that the pixel corresponding to the n scan lines (i~n) constituting one frame respectively During storage, the time difference is sequentially generated along with the scanning time points of the respective scanning lines. The reason is that in the CM〇s image sensor, unlike the CCD image sensor, there is a vertical register (vertical ccD). Therefore, if the signal charge of each pixel is reset, the signal charge will be changed. There is a difference in the timing at which it is transmitted to the corresponding line signal line. Thus, in the conventional CMOS image sensor, the storage period of the signal charge varies with the scan line, and there is a difficulty in the simultaneous storage of the signal charge (in other words, simultaneous exposure). Photographing a subject to be moved at a high speed has a problem of distorting the acquired image. For example, if you want to shoot a blade that rotates at a high speed, it will produce a distorted image like Figure 34(b). In contrast, if a CCD image sensor capable of simultaneously storing the charge (simultaneous exposure) is used for photography, in this case, the image of the day will be as shown in FIG. 34(a), and the obtained image will not be obtained. Distortion occurs (Fig. 34, based on the basis and application of the above rCCD/CM〇s image sensor) (page 180). The second problem with the CMOS w-like sensor that is driven is that the light-receiving area that is effective compared to the pixel area is narrower, in other words, there is a problem that the aperture ratio (10) factor of the pixel is low. The reason will be described below with reference to Figs. 31 and 32. A schematic circuit diagram of a conventional CMOS image sensor is shown in Fig. 32. Fig. 32 is a cross-sectional view showing the main part of the schematic device structure. The circuit configuration of Figure 3 is a CM〇S image sensor with a 4-crystal type pixel. In addition to the photodiode in one pixel, 8 200803484 still contains 4 transistors (transfer gate). The pole, the reset transistor, the amplifying transistor, and the four MOS transistors used to select the gate). The transistor ' is formed and placed on the p-type substrate as shown in the device configuration of Fig. 32. Further, the Vcc-based power supply voltage and the Vrst-based reset voltage are shown in Fig. 31. The pixel of the jth row (i, j} (where Bu is a positive integer) is used to illustrate that the transmission gate is applied with a voltage pulse pTi ^ 吏 & through the read control line of the i-th column, 纟The signal charge stored in the photodiode is transmitted to the node connecting the transfer gate, the reset transistor, and the amplifying transistor at a predetermined timing. The transistor is reset, and a voltage is applied through the reset line of the first column. The pulse is turned into a conducting state, and passes through the transmitting idle electrode that has become the conductive state, and resets the signal charge stored in the photodiode at a predetermined timing (adding a predetermined resetting voltage Iu to the photodiode). The amplifying transistor connected to the node is configured as a source follower (so muscle), and has a function of amplifying the signal charge sent to the node. The gate is selected by the first brother. Column selection line (not shown) to apply a voltage pulse For the s SEU to become the V-pass state, and at the same time point, the amplified signal charge is transmitted to the opposite line of Ding Ying's line of the J line. Further, the CSN connected with the 4 lang point indicates the section# Z is the parasitic capacitance generated by black. The CMOS image sensor has a circuit structure of pixels, and there are also three transistor types. In the three transistor types, the pixels are excluded from the photodiode. It also contains three transistors (Panyu + „ electric Japanese body, amplifying transistor, MOS transistor for gate selection). That is, , , , , , , , , , , , , , , , , , , , , , The circuit configuration of Fig. 31 can be in the form shown in Fig. 32. Also, in the surface area of the P-type Si (si) substrate, it is divided into plural numbers by the element isolation insulating film. In the device region, a photodiode, a transfer interpole, a reset transistor, an amplifying transistor, and a closed cell are respectively formed to form four nanocrystals. In a device configuration of a conventional CMOS image sensor It can be understood from the main section of the figure, whether it is 4 transistor type or 3 In the crystal type, four or three MOS transistors occupy most of the pixel area, and the area ratio (i.e., "opening ratio") occupied by the photodiode (the opening portion) in the pixel area is relatively small. The aperture ratio of the conventional CM〇s image sensor is generally as low as about 3〇%. Therefore, there is a problem of low sensitivity. If the problem of low sensitivity is to be removed, then the large pixel area (pixel size) must be However, this is inconsistent with the need for miniaturization, and is not an ideal practice. The CMOS sensor for solving the first problem is disclosed in the patent document ι (Japanese Patent Laid-Open Publication No. Hei. No. 4-266957). The second of the device can achieve simultaneous exposure of all the pixels. 胄cm〇S image sensing: characterized by: having a light-receiving element in the pixel; for transmitting the signal charge generated by the buffer to the i-th segment of the next segment a storage unit; a storage unit that stores an output of the first transport mechanism; an initialization mechanism for performing charge initialization of the first portion; a connected lightning communication mechanism; and a second transfer mechanism from the second transport mechanism :,,,Voltage a charge detection unit that reads externally; it is for all

1冢常,係一起葬I 的讀取Y 第1傳送機構的動作來進行貯存電荷 爽m〜且對所有像素係一起藉由該初始化機構的動作 末進仃訊號電荷的初始化(參照申請專利範圍第1項)。此 200803484 α 發明的效果在於,「在CM0S影像感測器中,能使所有像 素同時進行初始化之電子曝光動作,1,像素電路亦能以 簡單之製程而單純化。又,可藉由在像素内放大來謀求低 雜音化」(參照段落0036)。 另方面,近年來,亦提案有一種積層複數個半導體 晶片而成為三維構造之半導體裝置。例如,在栗野氏等人 於1999年所發行的「1999 IEDM技術文摘 鲁digest)」中’提案有—種「具有三維構造之智慧型影像感 測器晶片」(參照非專利文獻1 )。 该影像感測器晶片具有4層構造,在第i半導體電路 層配置有處理器陣列與輸出電路;在第2半導體電路層配 置有資料閃鎖電路與屏蔽電路m μ體電路層配置 有放大器與類比/數位轉換器;在第4半導體電路層配置 有影像感測器陣列。在影像感測器陣列的最上面,係以包 含微透鏡陣列的石英玻璃層覆蓋,微透鏡陣列係形成於^ 馨石英玻璃層的表面。在影像感測器陣列中的各影像感測器 中,形成有作為半導體受光元件之光電二極體。在構成4 層構造的各半導體電路層之間,係使用黏著劑以形成機械 連接,並且以使用導電性插塞之埋設配線與接觸於其等埋 δ又配線之微凸塊電極,使彼此形成電氣連接。 又,李氏等人在2000年4月發行的「日本應用物理學 會誌」中,以「高度平行之影像處理晶片用之三維積層技 術的開發」為題,提案有一種影像處理晶片,其包含與栗 野氏等人提案之上述固態影像感測器相同之影像感測器(參 11 200803484 照非專利文獻2)。 李氏等人之影像處理晶片,與栗野氏等人在上述論文 所提案之固態影像感測器具有大致相同的構造。 在非專利文獻1及2所揭示之習知的影像感測器晶片 與影像處理晶片,均是將内設有所要的半導體電路之複數 個半導體晶圓(以下亦有僅稱為晶圓者)予以積層並使彼此 固著後,將所得到之晶圓積層體予以切斷(dicing)而分割成 Φ 複數個晶片群而製造。亦即,將内部形成有半導體電路之 半導體晶圓以晶圓級(wafer level)方式而予積層、一體化 後,使其成為二維積層構造,然後對其執行分割以取得影 像感測益晶片或影像處理晶片。 再者,在其等習知的影像感測器晶片與影像處理晶片 中’在該晶片的内部所積層之複數個半導體電路,分別構 成「半導體電路層」。 [非專利文獻1] 栗野氏等人,「具備三維構造之智 _ 慧型影像感測器晶片」’ 1999年IEDM技術文摘第 36.4.1 〜36·4·4(Η· Kurino et al·,"Intelligent Image Sensor Chip With Three Dimensional Structure,,, 1999 IEDM Technical Digest, pp. 36.4.1-36.4.4, 1999) [非專利文獻2] 李氏等人,「高度並聯影像處理晶 片用之三維積體技術的開發」「日本應用物理學會誌」第 39 卷 p.2473〜2477、第 1 部 4B、2004 年 4 月(K. Lee et al·, ’’Development of Three-Dimensional Integration Technology for Highly Parallel Image-Processing Chip’’,Jpn. J. Appl. 12 200803484 phys. Vol.39, pp.2474-2477, April 2000) [專利文獻1]日本特開2004-266597號公報(圖卜圖 2、圖 8、圖 12、圖 15) 【發明内容】 一、一〜m〜王)彭像感測器 ,存在有無法進行對所有像素訊號電荷同時貯存(換言 之,同時曝光化)、及像素的開口率低之二個問題。1 冢 , , 一起 一起 一起 一起 一起 一起 一起 一起 一起 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第Item 1). The effect of the invention of the 200303484 α is that "in the CMOS image sensor, an electronic exposure operation that enables all pixels to be simultaneously initialized, 1. The pixel circuit can also be simplistic in a simple process. Also, in the pixel Zoom in to achieve low noise (see paragraph 0036). On the other hand, in recent years, a semiconductor device in which a plurality of semiconductor wafers are laminated to form a three-dimensional structure has been proposed. For example, in the "1999 IEDM Technical Digest" published by Kino et al. in 1999, "a smart image sensor chip having a three-dimensional structure" has been proposed (see Non-Patent Document 1). The image sensor wafer has a four-layer structure, a processor array and an output circuit are disposed on the i-th semiconductor circuit layer, and a data flash lock circuit and a shield circuit are disposed on the second semiconductor circuit layer. An analog/digital converter; an image sensor array is disposed on the fourth semiconductor circuit layer. At the top of the image sensor array is covered with a layer of quartz glass containing a microlens array formed on the surface of the quartz glass layer. In each of the image sensors in the image sensor array, a photodiode as a semiconductor light receiving element is formed. Between the semiconductor circuit layers constituting the four-layer structure, an adhesive is used to form a mechanical connection, and the buried wirings using the conductive plugs and the microbump electrodes that are in contact with the buried δ and the wiring are formed to form each other. Electrical connections. In addition, in "The Japanese Society of Applied Physics" issued by Lee et al. in April 2000, the "Development of 3D Layering Technology for Highly Parallel Image Processing Wafers" is proposed. An image processing wafer is proposed, which includes The image sensor is the same as the solid-state image sensor proposed by Kino et al. (Ref. 11 200803484, Non-Patent Document 2). The image processing wafer of Lee et al. has substantially the same structure as the solid-state image sensor proposed by Kino et al. in the above paper. The conventional image sensor wafer and image processing wafer disclosed in Non-Patent Documents 1 and 2 are a plurality of semiconductor wafers (hereinafter also referred to as wafers) having a desired semiconductor circuit therein. After laminating and fixing each other, the obtained wafer laminate is diced and divided into Φ plural wafer groups to be manufactured. In other words, the semiconductor wafer in which the semiconductor circuit is formed is stacked and integrated at a wafer level, and then formed into a two-dimensional laminated structure, and then divided to obtain an image sensing wafer. Or image processing wafers. Further, in the conventional image sensor wafer and image processing wafer, a plurality of semiconductor circuits stacked inside the wafer constitute a "semiconductor circuit layer". [Non-Patent Document 1] Kurino et al., "Intelligent Image Sensors with Three-Dimensional Structures", 1999 IEDM Technical Abstracts 36.4.1 ~ 36·4·4 (Η· Kurino et al·, "Intelligent Image Sensor Chip With Three Dimensional Structure,,, 1999 IEDM Technical Digest, pp. 36.4.1-36.4.4, 1999) [Non-Patent Document 2] Li et al., "Three-dimensional for highly parallel image processing wafers" Development of Integrated Technology", Journal of the Applied Physics Society of Japan, Vol. 39, p. 2473~2477, Part 1 4B, April 2004 (K. Lee et al., ''Development of Three-Dimensional Integration Technology for Highly 12 Parallel Image-Processing Chip'', Jpn. J. Appl. 12 200803484 phys. Vol. 39, pp. 2474-2477, April 2000) [Patent Document 1] JP-A-2004-266597 (Fig. 2) Figure 8, Figure 12, Figure 15) [Summary of the Invention] One, one ~ m ~ Wang) Peng image sensor, there is the possibility of simultaneous storage of all pixel signal charges (in other words, simultaneous exposure), and pixel openings Two problems with low rates.

在專利文獻1所揭示的習知之CM0S影像感測器中, :達成所有像素之同時曝光化。然、而,在各像素内:除了 文光π件之外,尚須設有:用來將該受光元件所產生之笊 =荷傳送至下—段之帛1傳送機構m時儲存該第 傳达機構的輸出之儲存部、用以進行該受光元件及該儲 存料電荷之初始化之初始化機構、以及連接於該儲存部 之弟2傳送機構,因此,其係於3電晶體型之CMOS影像 感測益追加儲存部而構成。因 此口茨LM〇s影像感測器中, 歹欠邊有像素之開口率低之問題。 =利文獻1及2所分別揭示之影像感測器晶片與 於像處理晶片中,僅揭示了 f牛¥體日日囡或半導體晶片予 以積層、固著藉以達成三維積層構造之内容 = CMOS(位址指定型 丨、S知的 提及。 所存在的上述二個問題並未 係考慮上述各點而提出者 Λα ^ ^ ^ 井y的在於,接 i、一種感測器電路及位址指 ^ ^ ^ &像感測器,對於所有像 常之桌唬電何能夠實質上同新 存(貝貝上同時曝光化), 13 200803484 且,相較於習知的位址指定型影像感測器,能達成較高的 像素開口率。 本發明之另一目的在於,提供一種感測器電路及位址 指j型影像感測器,能避免發生習知的位址指定型影像感 /則為中所見之影像失真,可對高速移動之待攝物體進行攝 本赉明之另一目的在於,提供一種位址指定型影像感 測為,可使受光區域的總面積相對於攝影區域的總面積達 到高比例。 此處所未明示之本發明之其他目的,可由以下說明及 附圖而明瞭。 (1)本發明之第1觀點之感測器電路,具有配置成陣列 狀之複數個像素,且用於藉位址指定來選擇各該畫素之位 址指定型影像感測器,其特徵在於,具備: 複數個像素區塊,係將複數個該像素以既定數量並聯 於共,節點而構成;重置電晶體,連接於各該像素區塊之 共通節點,用卩重置該像素區塊内之複數個像素;以及 放大電晶體,連接於複數個該像素區塊的各共通節點, 用以放大由該像素區塊内的複數個像素所送出之訊號; 在該該像素區塊中,各像素包含:光電轉換元件,對 應照射光來產生訊號電荷;以及帛!閘極元件,設置在該 光電轉換元件與像素區塊的共通節點間之路秤。 ⑺本發明之第i觀點之感測器電路中,具有複數個像 素區塊,該複數個像素區塊,係將複數個像素以既定數量(例 200803484 ’ η為2以上之整數)並聯於共通節點而構成。在各 塊中,各像素分別包含:光電轉換元件,對應照 t 訊號電荷;以及帛1閑極元件,設置在該光電 轉換疋件與該像素區塊的共通節點間之路徑。X,在該像 ΓΓ各個共通節點’連接有重置電晶體及放大電晶 …此’在各該像素區塊’可共用該重置電晶體與放大 其係指在該像素的内部,並不設有重置電晶體與 放大琶晶體。 在該感測器電路中,係以如下方式來進行訊號電荷的 產生、貯存乃至訊號輸出的動作。 百先,使用在各該像素區塊所設置之重置電晶體,以 對於所有該像素整體進行重置(初始化)(整體重置),以於所 :該像素區塊將該共通節點設定成既定之重置電壓。此 時,於該光電轉換元件所設置之該第丨閘極元 通狀態。 Χ ^In the conventional CMOS image sensor disclosed in Patent Document 1, simultaneous exposure of all pixels is achieved. However, in each pixel, in addition to the RGB member, it is necessary to provide the first transmission when the 笊=load generated by the light-receiving element is transmitted to the —1 transmission mechanism m of the lower segment. a storage unit for outputting the mechanism, an initialization mechanism for initializing the light receiving element and the charge of the stored material, and a transfer mechanism connected to the storage unit. Therefore, the CMOS image is connected to the 3-transistor type. The risk is added to the storage unit. Therefore, in the LM〇s image sensor, there is a problem that the aperture ratio of the pixel is low. In the image sensor wafer and the image processing wafer disclosed in the documents 1 and 2, only the contents of the three-dimensional laminated structure are laminated and fixed by the semiconductor wafer or the semiconductor wafer. The address designation type 丨, S knows the reference. The above two problems are not considered in the above points and the Λα ^ ^ ^ well y lies in, i, a sensor circuit and address finger ^ ^ ^ & like a sensor, for all the usual desks, how can it be essentially the same as the new ones (beautiful exposure on the babe), 13 200803484 and, compared to the conventional address-specific image sense The detector can achieve a higher pixel aperture ratio. Another object of the present invention is to provide a sensor circuit and an address finger j-type image sensor, which can avoid the occurrence of a conventional address-specific image sense/ Another object of the image distortion that can be seen in the high-speed moving object is to provide an address-specific image sensing so that the total area of the light-receiving area can be relative to the total area of the photographing area. The area is up to a high ratio. The other objects of the present invention will be apparent from the following description and the accompanying drawings. (1) The sensor circuit of the first aspect of the present invention has a plurality of pixels arranged in an array and is used for address designation. The address-specific image sensor of each of the pixels is characterized in that: a plurality of pixel blocks are formed by paralleling a plurality of the pixels in a predetermined number in total and nodes; resetting the transistor, connecting And the common node of each of the pixel blocks is configured to reset a plurality of pixels in the pixel block; and the amplifying transistor is connected to each of the plurality of common nodes of the pixel block for amplifying the pixel block a signal sent by a plurality of pixels in the pixel block; in the pixel block, each pixel includes: a photoelectric conversion element that generates a signal charge corresponding to the illumination light; and a gate element that is disposed in the photoelectric conversion element and the pixel area A sensor scale circuit between the common nodes of the block. (7) The sensor circuit of the first aspect of the present invention has a plurality of pixel blocks, and the plurality of pixel blocks are a plurality of pixels in a predetermined number. In the example, each of the pixels includes: a photoelectric conversion element corresponding to a t-signal charge; and a 帛1 idler element, which is disposed in the photoelectric conversion 疋 200 803 803 803 803 803 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 a path between the device and the common node of the pixel block. X, in which the common node of the image is connected with a reset transistor and an amplifying transistor... This 'shares the reset transistor in each pixel block' And the amplification means that the reset transistor and the amplification 琶 crystal are not provided inside the pixel. In the sensor circuit, the signal charge generation, storage, and even signal output operation are performed as follows. First, the reset transistor provided in each of the pixel blocks is used to reset (initialize) (total reset) all of the pixels, so that the common block is set to be: The established reset voltage. At this time, the first gate state of the photoelectric conversion element is set. Χ ^

接著,使該第1閘極元件成斷開狀,態,然後將光昭射 ,所有該像素(光電轉換元件),以對該等像素整體性的執 行汛號電荷的產生、貯存。 之後,在各該像素區塊中,使該第丨閘極元件依時序 成為導通狀態,藉此,將與該像素區塊中的該像素所貯存 之訊號電荷對應之訊號,依時序於對應之該共通節點讀 取。此動作,在複數個該區塊中係同時進行。此時,從‘ 像素區塊中的一個像素之訊號讀取開始算起,直到另一個 像素之sfl號被讀取為止,在這期間必須使用該重置電晶體 15 200803484 來重置該共通節點。其原因在於,若未重置該共通節點, 恐怕會受先行讀取之訊號的殘留所影響,而造成之後的气 號發生變動。 在各該像素區塊以上述方式讀取之訊號,藉由相對靡、 的該放大電晶體而依序或同時放大,然後由其輸出端輸 出。亦即,當該放大電晶體的輸出端係一個時,從該像素 區塊中之複數個像素中被依序送出的訊號,在以該放大電 _ 晶體放大之後,從該輸出端子成時序方式輸出。另一方面, 若是該放大電晶體的輸出端子的總數,與該像素區塊中該 像素的總數相等,則由該放大電晶體之複數個輸出端子以 並聯方式輸出。 現在貝務上隶快曝光速度(亦即最短的訊號電荷貯存期 間)係(1/8000)秒(=125// sec),因此,只要以下述方式來設 疋η值對於所有忒像素之訊號電荷的貯存(曝光)就能實 質上同時進行,亦即藉該重置電晶體進行之該共通節點的 _ 重置動作達到必要次數[例如(η-1)次]時所需時間(總計重置 時間),與各該像素區塊中該像素的訊號電荷以相對應的該 放大電晶體放大時所需時間(總計放大時間)之和,必須遠 t於最短之訊號電荷貯存期間(=125//感測器)。換言之, 藉由使用該感測為電路,所有該像素的訊號電荷能實質上 同時貯存(實質上同時曝光化)。 〃又由於可藉由上述方式而使同時曝光化,不會發生 習知的位址指定型影像感測器之影像失真情形,能對高速 移動之待攝物體進行攝影。 16 200803484 再者’在本發明之第1觀點之感測器電路中,對於各 該像素區塊,係在該像素區塊的外側設置該重置電晶體與 放大電晶體,因此,該像素僅包含一個光電轉換元件與一 個第1閘極元件(通常為M0S電晶體)即可。因此,若使用 該感測器電路,相較於在像素中除光電轉換元件外尚包含 二或四個MOS電晶體之習知的位址指定型影像感測器, 可實現較高的像素開口率。 (3)本發明之第丨觀點之感測器電路的較佳例,係使該 放大電晶體具有單一之輸出端。此情形的優點在於,與該 放大電晶體的輸出端連接之下一段配線會趨於簡單。 在此例中較佳係進一步具備:與該放大電晶體的輸出 端連接之儲存用電容元件、以及用以控制該電容元件所儲 存訊號之輸出之輸出電晶體。此情形的優點在於,藉由使 用該輸出電曰曰體,儲存在該電容元件之訊號,能以異於該 第1閘極元件的開閉之時點輸出。 本發明之第1觀點之感測器電路之另一較佳例,係該 放大電晶體具有與該放大電晶體對應之該像素區塊中之像 素總數相等數量之輸出端,且在其等輸出端分別連接第2 閘極元件。在此情形,能使各該第2閘極元件,與對應之 該第1閘極元件成為同步開閉,藉此,來自該像素區塊中 之複數個像素之訊號,能藉由複數個該輸出端而並聯輸 出其結果,具有能迅速進行下一段之訊號處理之優點。 在此例中較佳係進一步具備:分別與該放大電晶體之 複數個輸出端連接之複數個儲存用電容元件、以及用以控 17 200803484 制其等電容元件所儲存訊號之輸出之複數個輸出電晶體。 此丨月形的優點在於,藉由使用複數個該輸出電晶體,儲存 在複數個該電容元件之訊號,能以異於該第丨閘極元件的 開閉之時點輸出。 本發明之第1觀點之感測器電路之另一較佳例,係在 使所有該像素整體產生、貯存訊號電荷之前,使用所有該 重置電晶體對所有該像素整體進行重置,在各該像素區 塊,與該像素所貯存之訊號電荷對應之訊號,係透過對應 之該共通節點依時序被讀取後,傳送至對應之該放大電晶 體。此情形的優點在於,易於實現實質上同時曝光化。 (4)本發明之第2觀點之感測器電路,具有配置成陣列 狀之複數個像素,且用於藉位址指定來選擇各該像素之位 址指定型影像感測器,其特徵在於,具備: 複數個像素區塊,係將複數個該像素以各既定數量並 聯於共通節點而構成;以及 放大電晶體,連接於複數個該像素區塊的各共通節點, 用以放大由該像素區塊内的複數個該像素所送出之訊號; 在各邊像素區塊十,各該像素包含:光電轉換元件, 對應照射光而產生訊號電荷;第丨閘極元件,設置在該光 電轉換元件與像素區塊的共通節點間之路徑;以及重置電 晶體’連#於該光電轉換元件肖帛丨μ極元件之連接點, 以執行該像素之重置。 ⑺本發明之第2觀點之感測器電路,具有複數個像素 區塊’該複數個像素區塊’係將複數個像素以既錢量(例 18 200803484 =η個,η為2以上的整數)並聯於共通節點而構成。各該 等像素區塊中的各像素,除了包含對應照射光來產生訊號 電荷之光電轉換元妹、— 疋件及汉置在該光電轉換元件與像素區 ,之共通節點間之路徑之第丨閘極元件外,尚包含重置電 晶體,其係連接於該光電轉換元件與㈣1閘極元件之連 接點’用以將該像素重置。χ,在各該像素區塊的共通節 、連接有放大電晶體。因此,在各該像素區塊,該放大 包Β曰體可共用。其係指在該像素的内部並未設有放大電晶 本土月之第2觀點之感測器電路中,有關重置 電晶體的構成,與本發明之帛1觀點之感測器電路不同。 :ρ π在本υ之帛i觀點之感測器電路中,該重置電晶 體係設置在各該像素區塊(亦 你主 Ρ邊重置電晶體係設置在各 ^ 丨)_於此,本發明之第2觀點之感測器 :=杳該重置電晶體,係對於各該像素區塊所屬之複數 =像素逐:設置(亦即,該重置電晶體係設置於各該像 素)。因此,係以如下方式爽隹 万式來進仃從訊號電荷的產生、貯存 乃至訊號輸出之動作。 首先,使用於各該像辛所μ 太#“ I所°又置之該重置電晶體,對所 有该像素區塊整體進行重w f (始化)(整體重置),以對於所 有该像素區塊將共通節點設 认—τ 又风既疋之重置電壓。此時, 於该光電轉換元件所設置之兮 態。 〜弟1閘極元件全部成導通狀 其次’將該第1閘極元 件維持在斷開狀 態下 由於該 19 200803484 第1閘極元件成為斷開狀態,將光照射在所有該像素(光電 轉換元件),可使其等像素整體產生、貯存訊號電荷。Then, the first gate element is turned off, and then the light is emitted, and all of the pixels (photoelectric conversion elements) are generated and stored in the entirety of the pixels. Then, in each of the pixel blocks, the first gate element is turned on in time, thereby, the signal corresponding to the signal charge stored in the pixel in the pixel block is timed. The common node reads. This action is performed simultaneously in a plurality of blocks. At this time, from the beginning of the signal reading of one pixel in the pixel block until the sfl number of the other pixel is read, the reset transistor 15 200803484 must be used to reset the common node during this period. . The reason is that if the common node is not reset, it may be affected by the residual signal that is read first, and the subsequent air number changes. The signals read in the above manner in each of the pixel blocks are sequentially or simultaneously amplified by the amplified transistor, and then outputted from the output terminals thereof. That is, when the output end of the amplifying transistor is one, the signals sequentially sent from the plurality of pixels in the pixel block are sequentially outputted from the output terminal after being amplified by the amplifying electric crystal. Output. On the other hand, if the total number of output terminals of the amplifying transistor is equal to the total number of pixels in the pixel block, a plurality of output terminals of the amplifying transistor are output in parallel. At present, the fast exposure speed (that is, the shortest signal charge storage period) is (1/8000) seconds (=125//sec), so the signal of 疋η for all the pixels is set as follows. The storage (exposure) of the charge can be performed substantially simultaneously, that is, the time required for the _ reset operation of the common node by the reset transistor to reach the necessary number of times [for example, (η-1) times (total weight) Set the time), and the sum of the time required for the signal charge of the pixel in each pixel block to be amplified by the corresponding amplifying transistor (total amplification time) must be far from the shortest signal charge storage period (=125) //sensor). In other words, by using the sense as a circuit, the signal charge of all of the pixels can be stored substantially simultaneously (substantially simultaneously exposed). Further, since the image can be simultaneously exposed by the above-described method, the image distortion of the conventional address-based image sensor does not occur, and the object to be moved at a high speed can be photographed. 16 200803484 In the sensor circuit of the first aspect of the present invention, for each of the pixel blocks, the reset transistor and the amplifying transistor are disposed outside the pixel block, and therefore, the pixel is only It suffices to include one photoelectric conversion element and one first gate element (usually a MOS transistor). Therefore, if the sensor circuit is used, a higher pixel opening can be realized compared to a conventional address-specific image sensor that includes two or four MOS transistors in addition to the photoelectric conversion elements in the pixel. rate. (3) A preferred embodiment of the sensor circuit of the third aspect of the present invention is such that the amplifying transistor has a single output terminal. The advantage of this situation is that a section of wiring that is connected to the output of the amplifying transistor tends to be simple. Preferably, in this embodiment, the storage capacitor element connected to the output end of the amplifying transistor and the output transistor for controlling the output of the signal stored in the capacitor element are further provided. This is advantageous in that the signal stored in the capacitive element can be output at a different timing from the opening and closing of the first gate element by using the output electrode. In another preferred embodiment of the sensor circuit of the first aspect of the present invention, the amplifying transistor has an output of an equal number of pixels in the pixel block corresponding to the amplifying transistor, and is outputted at the same The second gate element is connected to the terminal. In this case, each of the second gate elements can be opened and closed in synchronization with the corresponding first gate element, whereby signals from a plurality of pixels in the pixel block can be outputted by the plurality of outputs. The result is output in parallel and in parallel, and has the advantage that the signal processing of the next segment can be performed quickly. In this example, it is preferable to further comprise: a plurality of storage capacitor elements respectively connected to the plurality of output ends of the amplifying transistor; and a plurality of outputs for controlling the output of the signals stored by the capacitors of the 200803484 system Transistor. The advantage of this moon shape is that by using a plurality of the output transistors, the signals stored in the plurality of capacitor elements can be output at a different timing than the opening and closing of the second gate elements. Another preferred embodiment of the sensor circuit of the first aspect of the present invention is to reset all of the pixels using all of the reset transistors before all of the pixels are generated and stored as signal charges. The pixel block, the signal corresponding to the signal charge stored by the pixel, is read by the corresponding common node in time series, and then transmitted to the corresponding amplifying transistor. The advantage of this situation is that it is easy to achieve substantially simultaneous exposure. (4) A sensor circuit according to a second aspect of the present invention, comprising: a plurality of pixels arranged in an array, and an address specifying image sensor for selecting each of the pixels by address designation, wherein And having: a plurality of pixel blocks, wherein the plurality of pixels are connected in parallel to each common node by a predetermined number; and an amplifying transistor connected to each of the plurality of common nodes of the pixel block for amplifying the pixel a plurality of signals sent by the pixel in the block; in each pixel block ten, each of the pixels includes: a photoelectric conversion element that generates a signal charge corresponding to the illumination light; and a second gate element disposed on the photoelectric conversion element And a path between the common node of the pixel block; and resetting a connection point of the transistor to the photoelectric conversion element to perform resetting of the pixel. (7) A sensor circuit according to a second aspect of the present invention, comprising a plurality of pixel blocks 'the plurality of pixel blocks' is a plurality of pixels in an amount of money (Example 18 200803484 = n, η is an integer of 2 or more ) is constructed in parallel with a common node. Each pixel in each of the pixel blocks includes, in addition to a photoelectric conversion element, which is corresponding to the illumination light to generate a signal charge, and a path between the common node of the photoelectric conversion element and the pixel region. In addition to the gate element, a reset transistor is further included, which is connected to the connection point of the photoelectric conversion element and the (4) 1 gate element to reset the pixel. χ, a common transistor is connected to each of the pixel blocks, and an amplifying transistor is connected. Therefore, in each of the pixel blocks, the enlarged packets can be shared. In the sensor circuit in which the second aspect of the pixel is not provided in the inside of the pixel, the configuration of the reset transistor is different from the sensor circuit of the first aspect of the present invention. :ρ π In the sensor circuit of the viewpoint of the 帛 υ i, the reset electro-crystal system is disposed in each of the pixel blocks (also resetting the electro-crystal system in each of the main sides) The sensor of the second aspect of the present invention: = 杳 the reset transistor, for each pixel block to which the plural = pixel is set: (that is, the reset transistor system is disposed in each pixel ). Therefore, the following methods are used to carry out the action of generating, storing, and even outputting signal charges. First, for each of the pixel blocks, the reset transistor is placed, and all of the pixel blocks are heavily wf (initialized) (overall reset) for all the pixels. The block will recognize the common node - τ and the wind resets the voltage. At this time, the photoelectric conversion element is set to the state. The first gate element is turned on. Next, the first gate is used. When the element is kept in the off state, the first gate element of the 19 200803484 is turned off, and light is applied to all of the pixels (photoelectric conversion elements), so that the signal charges can be generated and stored as a whole.

之後,在各該像素區塊中,使該第丨閘極元件依時序 而依序成導通狀態,藉此,與該像素區塊中的像素所貯存 之Λ唬電荷對應之訊號,依時序而依序於對應之該共通節 點讀取。此動作,在複數個該區塊中係同時進行。此時, 從該像素區塊中的一個像素讀取訊號開始算起,直到從另 —個像素讀取訊號為止’這段期間需使該第丨閘極元件暫 時成導通狀態,以使用該重置電晶體來重置該共通節點。 其原因在於’若未重置該共通節點,恐怕先行讀出之訊號 的殘留影響會造成其後訊號的變動。 在各該像素區塊中,經上述方式而讀取的訊號,係藉 由相對應㈣放大電晶體而予以依序或同時放大,缺後從 其輸出端輸出。亦_,當該放大電晶體有一個輸出端時, ^亥歸區塊巾的複數個像純序送出之㈣,係在該放 電日曰^,大後’由其輸出端子依時序而依序輸出。另一 H德t是該放大電晶體的輸出端子總數,與該像素區塊 子以並數相等,則是由該放大電晶體的複數個輸出端 =式輪出。此點與本發明…觀點之感測器電 ,在實務上最快曝光速度(亦即最短之 因此,只要以下述方法來設 質上使所有該像素的訊號電荷之貯存(曝光)係實 、守進行,亦即以該重置電晶體來重置該共通節點達 20 200803484 2要次數[例如㈣次]時所需時間(總重置, :素區塊的各者中該像素的訊號電荷被相對應的放大電: 體放大時所需時間(總放大時間)之和,必須遠小於最短:Then, in each of the pixel blocks, the third gate element is sequentially turned on according to the timing, whereby the signal corresponding to the chirp charge stored by the pixel in the pixel block is time-dependent. The corresponding common node is read sequentially. This action is performed simultaneously in a plurality of blocks. At this time, from the beginning of reading a signal in the pixel block, until the signal is read from another pixel, the first gate element needs to be temporarily turned on to use the weight. A transistor is placed to reset the common node. The reason is that if the common node is not reset, it is feared that the residual influence of the signal read first will cause the subsequent signal to change. In each of the pixel blocks, the signals read in the above manner are sequentially or simultaneously amplified by corresponding (4) amplifying the transistors, and are outputted from the output terminals thereof after the absence. Also _, when the amplifying transistor has an output terminal, the plurality of images of the huigui block are sent in pure order (4), and the output is terminated by the output terminal in the time of the discharge. Output. The other Hd is the total number of output terminals of the amplifying transistor, and is equal to the sum of the pixel blocks, and is rotated by a plurality of output terminals of the amplifying transistor. This point and the sensor of the present invention, the fastest exposure speed in practice (that is, the shortest, therefore, the quality of the signal charge storage (exposure) of all the pixels is solidified by the following method, Keeping, that is, resetting the transistor to reset the common node up to 20 200803484 2 times (for example, (four times) times) (total reset, the signal charge of the pixel in each of the prime blocks Corresponding amplification: The sum of the time required for volume amplification (total amplification time) must be much less than the shortest:

荷貯存期間(=12w換言之,藉由使用該感測 益電路,對所有該像素的訊號電荷能實f上同時 J 上同時曝光化)。 貝 不會發生習知 可對高速移動During the storage period (=12w, in other words, by using the sensation benefit circuit, the signal charge of all the pixels can be simultaneously simultaneously exposed on J). Shell does not happen to be known to move at high speed

又,由於能以上述方式而同時曝光化, 的位址指定型影像感測器之影像失真情形, 的待攝物體進行攝影。 再者,在本發明之第2觀點之感測器電路中,對於各 該像素區塊,係將該放大電晶體設置在該像素區塊的外 側二因此,在該像素中,只需包含一個光電轉換元件、一 個弟1閘極元件(通常為Mos電晶體)、與一個重置電晶體 (通4為MOS電晶體)。因此,藉由使用該感測器電路,相 車:於在像素中除光電轉換元件外尚包含三或四㈣购§電 體之t知的位址&定型影像感測器,可實現較高的像素 開口率。 (6)本發明之第2觀點之感測器電路之較佳例,係使該 放大電曰曰體具有單一之輪出#。此情形的優點在於,與該 放大電日日體的輸出端連接之下—段的配線會趨於簡單。 在此例之較佳作法,係進一步具備:與該放大電晶體 的輸出端連接之儲存用電容元件、以及用以控制該電容元 :所儲存说之輸出之輪出電晶體。此情形的優點在於, 藉由使用4輸出電晶體’儲存在該電容元件之訊號,能以 21 200803484 異於該第1閘極元件的開閉之時點輸出。 本發明之第2觀點之感測器電路之另一較佳例,係該 放大電晶體具有與該放大電晶體對應之像素區塊中之像素 總數相等數量之輪出端,且在該等輸出端分別連接第2閘 極元件。在此情形,各該帛2閘極元件能與對應之該第! 間極兀件同步開閉’藉此,纟自該像素區塊中之複數個像 素之訊號,可藉由複數個該輸出端而以並聯方式輸出。其 結果’具有能迅速進行下—段之訊號處理之優點。 此例中#乂‘係進一步具備:分別與該放大電晶體之複 數個輸出端連接之複數個儲存用電容元件、以及用以控制 "等電谷元件所儲存訊號之輸出之複數個輸出電晶體。此 情形的優點在於,藉由使用複數個該輸出電晶體,複數個 該電容元件所儲存之訊號,能以異於該第1閘極元件的開 閉之時點輸出。 本發明之第2觀點之感測器電路之另一較佳例,係在 肇使所有該像素整體產生、貯存訊號電荷之前,使用所有該 重置電晶體對所有該像素整體進行重置,在各該像素區 塊,與該像素所貯存之訊號電荷對應之訊號,係透過對應 之該共通節點依時序被讀取後,傳送至相對應的該放大電 晶體。此情形之優點在於,易於實現實質上同時曝光化。 (7)本發明之第3觀點之位址指定型影像感測器,具有 配置成陣列狀之複數個像素,且藉位址指定而進行ς 素的選擇,其特徵在於,具備: Μ象 複數個像素區塊,係將複數個該像素以既定數量並聯 22 200803484 於共通節點; 重置電晶體,連接於各該像素區塊的共通節點,用以 重置該像素區塊内之複數個該像素;以及 放大電晶體,連接於複數個該像素區塊的各共通節點,Further, since the image of the address-specified image sensor can be simultaneously exposed in the above manner, the object to be photographed is photographed. Furthermore, in the sensor circuit of the second aspect of the present invention, for each of the pixel blocks, the amplifying transistor is disposed outside the pixel block. Therefore, in the pixel, only one pixel is included. A photoelectric conversion element, a first gate element (usually a Mos transistor), and a reset transistor (pass 4 is a MOS transistor). Therefore, by using the sensor circuit, the phase car: in addition to the photoelectric conversion element in the pixel, there are three or four (four) purchases of the electric body of the known address & stereo image sensor, can be achieved High pixel aperture ratio. (6) A preferred embodiment of the sensor circuit of the second aspect of the present invention is such that the amplifying electrode body has a single wheel #. The advantage of this situation is that the wiring of the section below the output of the amplifying electric day body tends to be simple. In a preferred embodiment of the present invention, the storage capacitor element connected to the output end of the amplifying transistor and the wheel-out transistor for controlling the output of the capacitor are stored. The advantage of this case is that the signal stored in the capacitive element by the use of the 4-output transistor can be output at a point when the 21 200803484 is different from the opening and closing of the first gate element. Another preferred embodiment of the sensor circuit of the second aspect of the present invention is that the amplifying transistor has an equal number of rounds of the total number of pixels in the pixel block corresponding to the amplifying transistor, and the output is at the outputs The second gate element is connected to the terminal. In this case, each of the 帛2 gate elements can correspond to the first! The inter-pole element is synchronously opened and closed. Thereby, the signals from the plurality of pixels in the pixel block can be output in parallel by a plurality of the output terminals. The result 'has the advantage of being able to perform the signal processing of the next-stage quickly. In this example, the #乂' system further includes: a plurality of storage capacitor elements respectively connected to the plurality of output ends of the amplifying transistor; and a plurality of output electrodes for controlling the output of the signals stored by the "etc. Crystal. An advantage of this is that by using a plurality of the output transistors, the signals stored in the plurality of capacitive elements can be output at a different timing than when the first gate elements are opened and closed. Another preferred embodiment of the sensor circuit of the second aspect of the present invention is to reset all of the pixels as a whole by using all of the reset transistors before all of the pixels are generated and stored. Each of the pixel blocks, the signal corresponding to the signal charge stored in the pixel is read by the corresponding common node in time series, and then transmitted to the corresponding amplifying transistor. The advantage of this situation is that it is easy to achieve substantially simultaneous exposure. (7) The address specifying image sensor of the third aspect of the present invention has a plurality of pixels arranged in an array, and selects a pixel by address designation, and is characterized in that: a pixel block, wherein a plurality of the pixels are connected in parallel with a predetermined number 22 200803484 to a common node; a reset transistor is connected to a common node of each pixel block for resetting a plurality of pixels in the pixel block a pixel; and an amplifying transistor connected to a plurality of common nodes of the pixel block,

用以放大由該像素區塊内的複數個該像素所送出之訊號; 在各該像素區塊中’各像素包含:光電轉換元件,對 應照射光來產生訊號電荷;以及第1閘極元件,設置在該 光電轉換元件與像素區塊的共通節點間之路徑; 至少將该光電轉換元件形成於構成該三維積層構造之 第1半導體電路層中,而將該第1閘極元件、該重置電晶 體及》亥放大電明體,形成於構成該三維積層構造之第2 或弟3以後之半導體電路層中。 (8)本發明之第3 _點夕> ^ t 蜆J之位址指定型影像感測器係相當 於,使用上述本發明之帛1觀點之感測器電路,至少將複 數個該光電轉換元件形成於構成該三維制構造 導體電路層中,而將該箆 卞 弟閘極元件、該重置電晶體、及 忒放大電晶體,形成於 之後之半導體電路層中維積層構造之帛2或第3 因此’基於與本發 同之理由,對所有像點之錢11電路所述者相 上同時曝光化),且,相私就電何可實質上同時貯存(實質 可達到較高的像素開::習知的位址指定型影像感測器, 型影像感測器中之爹^又不會發生習知的位址指定 體進行攝影。 失真凊形’可對兩速移動之待攝物 23 200803484 再者,由於具有較習知的位址指定型影像感測器為高 之像素開口率,因此,可提高受光區域的總面積相對於攝 影區域的總面積之比例。Amplifying a signal sent by a plurality of the pixels in the pixel block; in each of the pixel blocks, each pixel includes: a photoelectric conversion element that generates a signal charge corresponding to the illumination light; and a first gate element, a path between the photoelectric conversion element and a common node of the pixel block; at least the photoelectric conversion element is formed in the first semiconductor circuit layer constituting the three-dimensional laminated structure, and the first gate element is reset The transistor and the amplifying electric body are formed in the semiconductor circuit layer constituting the second or third of the three-dimensional laminated structure. (8) The third embodiment of the present invention is characterized in that the address sensor type image sensor of the present invention is equivalent to the sensor circuit of the above aspect of the present invention, and at least a plurality of the photoelectric devices are used. The conversion element is formed in the three-dimensional structure conductor circuit layer, and the gate electrode element, the reset transistor, and the germanium-magnification transistor are formed in the subsequent memory layer structure in the semiconductor circuit layer. Or the third reason therefore, based on the same reason as the present hair, the simultaneous exposure of all the pixels of the pixel 11 circuit, and the relative private storage of the electricity can be substantially simultaneously stored (substantially higher) Pixel On:: A well-known address-specific image sensor, in which the image sensor does not have a known address specification for photography. The distortion shape can be used for two-speed movement. The subject 23 200803484 Furthermore, since the conventional address-specified image sensor has a high pixel aperture ratio, the ratio of the total area of the light-receiving area to the total area of the photographing area can be increased.

(9)本發明之第3觀點之位址指定型影像感測器的較佳 例,係除了複數個該光電轉換元件外,亦將複數個該第! 閘極元件形成於第丨半導體電路層中,而將複數個該放大 電晶體與複數個該重置電晶體形成於第2或第3以後之半 導體電路層中。在此情形,於該第〗半導體電路層之中, 雖然除複數個該光電轉換元件外亦存有複數個該第丨閘極 70件,然而,在各像素中,除該光電轉換元件外,只需包 含構成該第1閘極元件的一個電晶體,因此,相較於在各 像素中除光電轉換元件尚包含4個電晶體或3個電晶體之 習知的位址指定型影像感測器,可提高像素開口率。 本發明之第3觀點之位址指定型影像感測器之另一較 佳例,係除了複數個該光電轉換元件外,亦將複數個該第 1閘極元件及複數個重置電晶體形成於第丨半導體電路層 中,而將複數個該放大電晶體形成於第2或第3以後之^ 導體電路層中。在此情形’於該帛!半導體電路層中,雖 然除複數個該光電轉換元件外,尚包含複數個該第1間極 元件與複數個重置電晶體’然而,在各像素中,除該光電 轉換元件外只包含構成該第1閘極元件之一個電晶體,又, 數的(1/n)即可。因此, 個電晶體或3個電晶體 可提高各像素的像素開 該重置電晶體的總數只要有像素總 相較於除光電轉換元件外尚包含4 之習知的位址指定型影像感測器, 24 200803484 口率ο 本發明之第3觀點之位址指定型影像感測器之另一較 佳例’係該放大電晶體具有與該放大電晶體對應之該像素 區塊中之像素總數相等數量之輸出端,且在該等輸出端分 別連接第2閘極元件(選擇電晶體)。又,除了複數個該光 電轉換元件外,亦將複數個該第丨閘極元件、複數個該重 置電晶體、及複數個該放大電晶體形成於該第丨半導體電(9) In a preferred embodiment of the address specifying image sensor of the third aspect of the present invention, in addition to the plurality of the photoelectric conversion elements, a plurality of the first plurality are also provided! The gate element is formed in the second semiconductor circuit layer, and a plurality of the amplifying transistors and a plurality of the resetting transistors are formed in the second or third semiconductor circuit layer. In this case, among the plurality of semiconductor circuit layers, a plurality of the third gate electrodes 70 are stored in addition to the plurality of the photoelectric conversion elements. However, in each pixel, in addition to the photoelectric conversion elements, It is only necessary to include one transistor constituting the first gate element, and therefore, conventional address-based image sensing is performed in comparison with the photoelectric conversion element including four transistors or three transistors in each pixel. The pixel aperture ratio can be increased. According to another preferred embodiment of the address specifying image sensor of the third aspect of the present invention, in addition to the plurality of the photoelectric conversion elements, the plurality of the first gate elements and the plurality of reset transistors are formed. In the second semiconductor circuit layer, a plurality of the amplifying transistors are formed in the second or third conductor circuit layer. In this case, 'This is the case! In the semiconductor circuit layer, a plurality of the first interpole elements and a plurality of reset transistors are included in addition to the plurality of the photoelectric conversion elements. However, in each of the pixels, only the photoelectric conversion elements are included. One transistor of the first gate element, again, the number (1/n). Therefore, one transistor or three transistors can increase the number of pixels of each pixel to open the total number of reset transistors as long as the total pixel is compared with the conventional address-specific image sensing including 4 in addition to the photoelectric conversion element. , a further preferred example of the address specifying image sensor of the third aspect of the present invention, wherein the amplifying transistor has a total number of pixels in the pixel block corresponding to the amplifying transistor An equal number of outputs are connected to the second gate elements (selective transistors) at the outputs. Further, in addition to the plurality of the photoelectric conversion elements, a plurality of the second gate elements, a plurality of the reset transistors, and a plurality of the amplifying transistors are formed on the second semiconductor

路層中,而將複數個該第2閘極元件(選擇電晶體)形成於 第2或第3以後之半導體電路層中。在此情形,在該第工 半導體電路層中,雖然除複數個該光電轉換元件外尚存在 著複數個該第1閘極元件、複數個該重置電晶體、及複數 個該放大電晶體,然而,在各像素中除該光電轉換元件外, 只包含構成該第1閘極元件的一個電晶體,且,該重置電 晶體與放大電晶體的總數’皆只f要像素總數的⑽)即 可。因此,相較於除光電轉換元件外尚包含4個電晶體或 3個電晶體之習知的位址指$型影像感測器,可提高各像 素的像素開口率。 不發明之弟3觀點之位址指定型影像感測器之另一較 佳例,係僅有複數個該光電轉換元件形成於第〗半導體電 路層中,複數個該f i閘極元件、複數個該重置電晶體、 及複數個該放大電晶體,係形成於該第2或第3以後之半 導體電路層中。在此情形,在該第1 ^ A千導體電路層中,僅 形成有複數個該光電轉換元件,各 界Ιτ完全不含電晶 體。因此,相較於除光電轉換元件外片 问包含4個電晶體或 25 200803484 3個電晶體之習知的位址指定型影像感測器,可提高各像 素的像素開口率。特別是,像素開口率有最大程度之提高。 本發明之第3觀點之位址指定型影像感測器之較佳 例’係使各該放大電晶體分別具有單一之輸出端。此情形 的優點在於’與該放大電晶體的輸出端連接之下一段的配 線會趨於簡單。 在此例較佳係,在該第2或第3以後之半導體電路層 中進一步具備:與該放大電晶體的輸出端連接之儲存用電 容元件、以及用以控制該電容元件所儲存訊號之輸出之輸 出電晶體。此情形的優點在於,藉由使用該輸出電晶體, 儲存在該電容元件之訊號,能以異於該第丨閘極元件的開 閉之時點輸出。 本發明之第3觀點之位址指定型影像感測器之另一較 佳例,係各該放大電晶體具有與該放大電晶體對應之該像 素區塊中之像素總數相等數量之輸出端,且在該等輸出端 藝分別與第2閘極元件連接。在此情形,各該第2閘極元件 能與對應之該第1閘極元件同步開閉,藉此,來自該像素 區塊中之複數個像素之訊號,可藉由複數個該輸出端而以 二p方式輸出。其結果,具有能迅速進行下一段之訊號處 理之優點。In the circuit layer, a plurality of the second gate elements (selective transistors) are formed in the second or third semiconductor circuit layer. In this case, in the semiconductor circuit layer, a plurality of the first gate elements, a plurality of the reset transistors, and a plurality of the amplifying transistors are present in addition to the plurality of the photoelectric conversion elements. However, in addition to the photoelectric conversion element, each pixel includes only one transistor constituting the first gate element, and the total number of the reset transistor and the amplifying transistor is only (10) of the total number of pixels. Just fine. Therefore, the conventional address of four transistors or three transistors other than the photoelectric conversion element means that the image sensor can increase the pixel aperture ratio of each pixel. Another preferred example of the address-specific image sensor of the non-inventive 3 view is that only a plurality of the photoelectric conversion elements are formed in the semiconductor circuit layer, and the plurality of the fi gate elements and the plurality of The reset transistor and a plurality of the amplifying transistors are formed in the second or third semiconductor circuit layer. In this case, in the first ^ A thousand conductor circuit layer, only a plurality of the photoelectric conversion elements are formed, and the respective boundaries Ιτ are completely free of the electric crystal. Therefore, the pixel aperture ratio of each pixel can be improved as compared with the conventional address-based image sensor including four transistors or 25 200803484 three transistors in addition to the photoelectric conversion element. In particular, the pixel aperture ratio is maximized. A preferred embodiment of the address specifying image sensor of the third aspect of the present invention is such that each of the amplifying transistors has a single output terminal. The advantage of this situation is that the wiring of the section below the output of the amplifying transistor tends to be simple. Preferably, in the second or third semiconductor circuit layer, the storage capacitor element connected to the output end of the amplifying transistor and the output of the signal stored by the capacitor element are further provided. The output transistor. The advantage of this case is that by using the output transistor, the signal stored in the capacitive element can be output at a different timing than the opening and closing of the first gate element. Another preferred embodiment of the address specifying image sensor of the third aspect of the present invention is that each of the amplifying transistors has an output of an equal number of pixels in the pixel block corresponding to the amplifying transistor. And connected to the second gate element at the output terminals. In this case, each of the second gate elements can be opened and closed in synchronization with the corresponding first gate element, whereby signals from a plurality of pixels in the pixel block can be used by a plurality of the output terminals. Two p mode output. As a result, there is an advantage that the signal processing of the next segment can be performed quickly.

2或第3以後之半導體電路層 分別與該放大電晶體之複數個輸出端連接 電容元件、以及用以控制其等電容元件所 之複數個輸出電晶體。此情形的優點在 26 200803484 儲\ *用複數個该輪出電晶體,複數個該電容元件所 子之心虎,能以異於該第1閘極元件的開閉之時點輸出。 本&月之第3觀點之位址指定型影像感測器之另-較 係在使所有該像素整體產生、貯存訊號電荷之前, +用所有該重置電晶體對所有該像素整體進行重置,在各 =像素區塊中’與該像素所貯存之訊號電荷相對應之訊 〜’係透過對應之該共通節點依時序被讀取後,傳送至相 _ …的該放大電晶體。此情形之優點在於,易於實現實質 上同時曝光化。 、、 ⑽本發明之第4觀點之位址指定型影像感測器,且 有配置成陣列狀之複數個像素,且藉位址指定而進行各該 像素的選擇,其特徵在於,具備: 稷數個j象素區&,係將複數個該像素以既定數量並聯 於共通節點而構成;以及 放大電晶體,連接於複數個該像素區塊的各共通節點, 鲁用以放大由該像素區塊内的複數個該像素所送出之訊號; 在各该像素區塊中,各該像素包含:光電轉換元件, 對應照射光來產生訊號電荷;第1閘極元件,設置在該光 電轉換元件與像素區塊的共通節點間之路徑;以及重置電 晶體,連接於該光電轉換元件與第丨閘極元件之連接點, 以執行該像素之重置; 至少將该光電轉換元件形成於構成該三維積層構造之 第i半導體電路層中,而將該第i閘極元件、該重置電晶 體、及該放大電晶體,形成於構成該三維積層構造之第2 27 200803484 或第3以後之半導體電路層中。 (11) 本發明之第 當於,使用上述本發之觀第點:位址指定型影像 複數個該光電轉換元:牛=、2觀點之感測器電路,至少將 半導體電路層中,而將將, 預曰構、之弟i 及該放大電晶體1成於:弟1間極元件、該重置電晶體、 3之後之半導體電路層中。 ^ 2戍弟 同之於與本發明第1觀點之感測器電路所述者相 〇 ,、所有像素之訊號電荷可實質上同時貯存(實質 上同時曝光化)’且相較於習知的位址指定型影"貝 二達到較高的像素開口率。χ,不會發生習知的位址指 型影像感測器中之旦以务生古& ^ 疋 〜像失真情形,可對高速移動之待攝物 體進行攝影。 了僻物 再者,由於具有較習知的位址指定型影像感測器為高 之像素開口率’因* ’可提高受光區域的總面積相對於攝 影區域的總面積之比例。 、 (12) 本發明之第4觀點之位址指定型影像感測器之較 :例:係與上述本發明之第3觀點之位址指定型影像感測 器所述者相同。兩者僅有的相異點在於,在本發明之第3 觀點之位址指定型影像感測器中,重置電晶體係設於各該 區鬼(亦即,重置電晶體係設置在各區塊的外部),相對於 此,在本發明之第4觀點之位址指定型影像感测器中,重 置電晶體係設於各該區塊中所屬之複數個光電轉換元件。 亦即,本發明之第4觀點之位址指定型影像感测器的 28 200803484 較佳例,係除了複數個該光電轉換元件外,亦將複數個該 第1閘極元件形成於第丨半導體電路層中,而將複數個該 放大電晶體與複數個重置電晶體形成於第2或第3以後之 半導體電路層中。在此情形,於該第1半導體電路層之中, 雖然除複數個該光電轉換元件外亦存有複數個該第丨閘極 兀件,然而,在各像素中,除該光電轉換元件外,只需包 含構成該第1閘極元件的一個電晶體,因此,相較於在各 φ 像素中除光電轉換元件尚包含4個電晶體或3個電晶體之 習知的位址指定型影像感測器,可提高像素開口率。 本發明之第4觀點之位址指定型影像感測器之另一較 佳例,係除了複數個讀光電轉換元件外,亦將複數個該第 1閘極兀件及複數個重置電晶體形成於第i半導體電路層 中,而將複數個該放大電晶體形成於第2或第3以後之^ 導體電路層中。在此情形,於該帛Μ導體電路層中,雖 然除了複數個該光電轉換元件外,尚包含複數個該第丨閘 • 極元件與複數個重置電晶體,然而,在各像素中,除了該 光電轉換70件外,只包含構成該第丨閘極元件之電晶體與 该重置電晶體兩個,因此,相較於除了光電轉換元件外尚 包含4個電晶體或3個電晶體之習知的位址指定型影像感 測裔’可提高各像素的像素開口率。 本發明之第4觀點之位址指定型影像感測器之另一較 佳例,係該放大電晶體具有與該放大電晶體對應之該像素 區塊中之像素總數相等數量之輸出端,且在該等輸出端分 別連接第2閘極元件(選擇電晶體)。χ,除了複數個該光 29 200803484 私轉換元件外,亦將複數個該第1閘極元件、複數個該重 置屯晶體、及複數個該放大電晶體形成於該第1半導體電 路層中,而將複數個該第2閘極元件(選擇電晶體)形成於 第2或第3以後之半導體電路層中。在此情形,在該第1 半¥體包路層中,雖然除了複數個該光電轉換元件外,亦 存在著複數個該第〗閘極元件、複數個該重置電晶體、及 複數個忒放大電晶體,然而,在各像素中除呵該光電轉換 鲁 元件外/、包含構成該第1閘極元件的電晶體與該重置電 晶體兩個,且該放大電晶體的總數只需要像素總數的(l/n) 口此相較於除光電轉換元件外尚包含4個電晶體 或3個電晶體之習知的位址指定型影像感測器,可提高各 像素的像素開口率。 導體電路層中。在此愔形,在該篦1」 形成有複| 電晶體。H 晶體或3 而各像素白 之提高。 本發明之第4觀點之位址指定型影像感測器之另一較 佳例,係僅將複數個該光電轉換元件形成於第丨半導體電 路層中,複數個該第1閘極元件、複數個該重置電晶體、 • 及複數個該放大電晶體,係形成於該第2或第3以後之丰 1半導體電路層中The semiconductor circuit layers of 2 or 3 are respectively connected to the plurality of output terminals of the amplifying transistor, and a plurality of output transistors for controlling the capacitive elements thereof. The advantage of this case is that in 26 200803484, a plurality of the round-out transistors are used, and a plurality of the capacitor elements can be output at a different timing from the opening and closing of the first gate element. In the third aspect of the present & month, the address-specific image sensor is further characterized in that all of the pixels are collectively weighted with all of the reset transistors before all of the pixels are generated and stored. The signal corresponding to the signal charge stored in the pixel in each of the pixel blocks is read by the corresponding common node in time series, and then transmitted to the amplifying transistor of the phase. The advantage of this situation is that it is easy to achieve substantial simultaneous exposure. (10) The address specifying image sensor of the fourth aspect of the present invention, comprising: a plurality of pixels arranged in an array, and selecting each of the pixels by address designation, wherein: ??? a plurality of j pixel regions &, wherein a plurality of the pixels are connected in parallel to the common node by a predetermined number; and an amplifying transistor connected to the plurality of common nodes of the pixel block for amplifying the pixel a plurality of signals sent by the pixel in the block; in each of the pixel blocks, each of the pixels includes: a photoelectric conversion element that generates a signal charge corresponding to the illumination light; and a first gate element disposed on the photoelectric conversion element a path between the common node of the pixel block; and a reset transistor connected to the connection point of the photoelectric conversion element and the second gate element to perform resetting of the pixel; at least forming the photoelectric conversion element in the composition In the i-th semiconductor circuit layer of the three-dimensional laminated structure, the i-th gate element, the reset transistor, and the amplifying transistor are formed in the second constituting the three-dimensional laminated structure. 00803484 or in the semiconductor circuit layer after the third. (11) The first aspect of the present invention is to use the above-mentioned point of view of the present invention: the address specifying image is a plurality of the photoelectric conversion elements: the sensor circuit of the cow=, 2 viewpoint, at least in the semiconductor circuit layer, and The pre-fabricated structure, the younger brother i, and the amplifying transistor 1 are formed in the first interpole element, the reset transistor, and the semiconductor circuit layer after 3. ^ 戍 同 同 与 与 与 与 所述 所述 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感The address specifies the type of shadow "Bei II achieves a higher pixel aperture ratio. χ, the well-known address finger image sensor does not occur in the image of the living object of the high-speed moving object in the case of the sci-fi ancient & ^ 像 ~ image distortion. In addition, the higher the pixel aperture ratio 'by*', which has a higher pixel aperture ratio than the known address, can increase the ratio of the total area of the light-receiving area to the total area of the image-receiving area. (12) The address specifying image sensor of the fourth aspect of the present invention is the same as the above-described address specifying image sensor of the third aspect of the present invention. The only difference between the two is that in the address-specific image sensor of the third aspect of the present invention, the reset electro-crystal system is disposed in each of the regions (ie, the reset electro-crystal system is disposed at On the other hand, in the address specifying image sensor of the fourth aspect of the present invention, the reset crystal system is provided in a plurality of photoelectric conversion elements to which each of the blocks belongs. In other words, in the preferred embodiment of the address specifying image sensor of the fourth aspect of the present invention, in addition to the plurality of the photoelectric conversion elements, a plurality of the first gate elements are formed on the second semiconductor. In the circuit layer, a plurality of the amplifying transistors and a plurality of reset transistors are formed in the second or third semiconductor circuit layer. In this case, in the first semiconductor circuit layer, a plurality of the third gate elements are stored in addition to the plurality of the photoelectric conversion elements. However, in addition to the photoelectric conversion elements, It is only necessary to include one transistor constituting the first gate element, and therefore, compared with the conventional address-specific image sense in which the photoelectric conversion element includes four transistors or three transistors in each φ pixel The detector can increase the pixel aperture ratio. Another preferred example of the address specifying image sensor of the fourth aspect of the present invention is that, in addition to the plurality of read photoelectric conversion elements, the plurality of the first gate elements and the plurality of reset transistors are also Formed in the ith semiconductor circuit layer, a plurality of the amplifying transistors are formed in the second or third conductor circuit layer. In this case, in the germanium conductor circuit layer, except for a plurality of the photoelectric conversion elements, a plurality of the third gate elements and a plurality of reset transistors are included, but in each pixel, In addition to the photoelectric conversion 70, only the transistor constituting the first gate element and the reset transistor are included, and therefore, four transistors or three transistors are included in addition to the photoelectric conversion element. The conventional address-specific image sensing type of image can increase the pixel aperture ratio of each pixel. In another preferred embodiment of the address specifying image sensor of the fourth aspect of the present invention, the amplifying transistor has an output of an equal number of pixels in the pixel block corresponding to the amplifying transistor, and A second gate element (selective transistor) is connected to each of the output terminals. In addition to the plurality of light 29 200803484 private conversion elements, a plurality of the first gate elements, a plurality of the reset germanium crystals, and a plurality of the amplifying transistors are formed in the first semiconductor circuit layer. Further, a plurality of the second gate elements (selective transistors) are formed in the second or third semiconductor circuit layer. In this case, in the first half body wrap layer, in addition to the plurality of the photoelectric conversion elements, there are a plurality of the first gate elements, a plurality of the reset transistors, and a plurality of turns Amplifying the transistor, however, except for the photoelectric conversion element in each pixel, including the transistor constituting the first gate element and the reset transistor, and the total number of the amplified transistors only needs pixels The total number of (l/n) ports is a conventional address-based image sensor that includes four transistors or three transistors in addition to the photoelectric conversion elements, thereby increasing the pixel aperture ratio of each pixel. In the conductor circuit layer. In this shape, a || transistor is formed in the 篦1". H crystal or 3 and each pixel is whitened. Another preferred example of the address specifying image sensor of the fourth aspect of the present invention is that only a plurality of the photoelectric conversion elements are formed in the second semiconductor circuit layer, and the plurality of the first gate elements and the plurality of the first gate elements The reset transistor, and a plurality of the amplifying transistors are formed in the second or third semiconductor circuit layer

30 200803484 的優點在於’與該放大電晶體的輸出端連接之下一段的配 線會趨於簡單。 在此例中較佳係,在該第2或第3以後之半導體電路 層中進一步具備:與該放大電晶體的輸出端連接之儲存用 電容元件、以及用以控制該電容元件所儲存訊號之輸出之 輸出電晶體。此情形的優點在於,藉由使用該輸出電晶體, 儲存在該電容元件之訊號,能以異於該第丨閘極元件的開 閉之時點輸出。 本發明之第4觀點之位址指定型影像感測器之另一較 么例,係使各該放大電晶體具有與該放大電晶體對應之該 像素區塊中之像素總數相等數量之輸出端,且在該等輸出 端分別與第2閘極元件連接。在此情形,各該第2閘極元 件能與對應之該第丨閘極元件同步開閉,藉此,來自該像 素區塊中之複數個像素之訊號,可藉由複數個該輸出端而 以並聯方式輸出。其結果,具有能迅速進行下一段之訊號 處理之優點。 ° 此例中較佳係’在該第2或第3以後之半導體電路層 中進-步具備別與該放大電晶體之複數個冑出端連接 之複數個儲存用電容元件、以及用以控制其等電容元件所 儲存訊號之輸出之複數個輸出電晶體。此情形的優點在 於,藉由使用複數個該輸出電晶體,複數個該電容元件所 儲存之訊號,能以異於該第i閘極㈣的開閉之時點輸出。 本心月之第4觀點之位址指定型影像感測器之另—較 佳例’係在使所㈣像素整體產生、貯存訊號電荷之前, 31 200803484 使用所有该重置電晶體對所有該像素整體進行重置,在各 口亥像素區塊’與该像素所貯存之訊號電荷相對應之訊號, 係透過對應之該共通節點依時序被讀取後,傳送至相對應 的-亥放大電曰曰體。此情形之優點在於,胃於實^ t胃i ^ 時曝光化。 (13)在本發明之第1及第2觀點之感測器電路、與本 I明第3及第4觀點之位址指定型影像感測器中,「光電 _ 軺換元件」係礼,能對應照射光而產生電荷之元件。作為 「光電轉換元件」,雖較佳係本身為半導體元件之光電二 極體,然而,只要元件具有可對應照射光來產生電荷之功 旎即可,本發明並不侷限於此,可使用任意型式。 「第1間極兀件」係指具有閘極功能之元件,可供開 閉複數個該光電轉換元件與對應於此之共通節點之連結路 徑。較佳係可使用MOS電晶體,但本發明並不侷限於此。 「重置電晶體」,只要電晶體中具有之功能可供重置 φ 该區塊所屬之複數個像素(該光電轉換元件)所產生之訊號 電荷即可,可使用任意之電晶體。M〇s電晶體即相當適合 作為「重置電晶體」來使用,但本發明並不侷限於此。 「放大電晶體」’只要電晶體中具有之功能,可將該 像素區塊所屬之複數個像素(該光電轉換元件)所產生之訊 號電荷的對應5fL號,依時序放大進而產生輸出訊號即可, 能使用任意之電晶體。MOS電晶體即相當適合作為「放大 電晶體」來使用,但本發明並不侷限於此。 「第1半導體電路層」及「第2或第3以後之半導體 32 200803484 電路層 為層狀之半導體電路 ’分別表示半導體電路之層,換言之,係指形成 般而言,其包含「半導體基板 姐霉不反J ^ 舁形成於該半導體基板的内部或表面之「元件」及「配線」, 但並不揭限於此。「半導體基板」的材質並無偈限,、、只」要 可供形成所要的半導體元件或電路即可,可為石夕材料、亦 可為化合物半導體、其他半導體亦佳。「半導體基板」的 構造並無侷限,可為半導體製之單基板,亦可為所謂的 φ S〇I(silicon On lnsuiat0r :絕緣體上有矽)基板。 +「第1半導體電路層」及「第2或第3以後之半導體 $路層」’可視需要(例如’僅憑靠^半導體電路層與第 2或第3以後之半導體電路層並無法取得所要之剛性時), 固定在所㈣性足以讀其等之任意的「支撐基板」。’「支 撐基板」的材質並無侷限。亦即,可為半導體、亦可為玻 璃、其他材質亦可。亦可為内部形成有電路之半導體基板, 亦即是所謂的LSI晶圓或LSI晶片。 土 _ 「―「埋設配線」係指’埋設在「第丨半導體電路層」或 〃第2或第3以後之半導體電路層」内部之積層方向之電 氣連接用的配線或導體。一般而言,「埋設配線」係由覆 蓋在形成於半導體基板之「溝渠」或「透孔」之内壁面全 體之「絕緣膜」、及充填至(埋設於)該絕緣膜的内側空間 之「導電性材料」構成。然而,其構成並不侷限於此。 此處之,冓渠」或「透孔」,只要具有所要深度、可 供收置作為埋設配線之導電性材料即可,構成方式並無偈 限。「溝渠」或「透孔」的深度、開口形狀、開口尺寸、 33 200803484 截面形狀等,可視需要而妥為設定。「溝渠」或「透孔」 之形成方法,只要可從半導體基板的表面側經選擇性去除 而形成者即可,可使用任意方法。例如,使用遮罩之異向 性蝕刻法,即相當適用。 覆蓋在「溝渠」或「透孔」的内壁面之「絕緣膜」, 只要其能與半導體基板及充填至「溝渠」或「透孔」内部 之「導電性材料」具有電氣絕緣者即可,可使用任意之絕 _ 緣膜。例如,二氧化矽(SiOJ、氮化矽(SiNx)等即相當適用。 「絕緣膜」的形成方法並無侷限。 充填至「溝渠」或「透孔」内部之「導電性材料」, 要此作為埋没配線(例如導電性插塞)來使用即可,可使 用任意的材料。例如,聚矽等半導體、鎢(w)、銅(Cu)、鋁 (A1)等金屬即相當適用。「導電性材料」的充填方法,只 要可彳之半導體基板的一面將「導電性材料」充填至「溝渠」 或「透孔」内部即可,可使用任意方法。 • 依本發明之感測器電路,可獲得下述效果:(a)對於所 有像素之訊號電荷能實質上同時貯存(實質上同時曝光 化)’且相較於習知的位址指定型影像感測器具有較高的像 素開口率,(b)不會發生習知的位址指定型影像感測器中 之影像失真情形,可對高速移動之待攝物體進行攝影。 依本發明之位址指定型影像感測器,可獲得下述效果: (a)對於所有像素之訊號電荷能實質上同時 時曝朵各、 丁、貝貝上同 ^ 匕),且相較於習知的位址指定型影像感测器具有較 高的像素開口率;(b)不會發生習知的位址指定型影像^ 34 200803484 測器中之影像失真情形 影;(C)受光區域的總面 高0 ,可對高速移動之待攝物體進行攝 積相對於攝影區域的總面積之比例 【實施方式】 以下茶照附®,以詳述本發明之較佳實施形態。 (弟1實施形態) 圖2所示,係本發明之第i實施形態之感測器電路^ 馨❾!4包路構成圖。圖!之功能方塊圖’係表示使用該感 測杰電路1之位址指定型影像感測器(以下亦稱為…⑽ 影像感測器)之全體構成。該感測器電路i,與本發明第1 觀點之感測器電路相對應。 圖1的影像感測器之全體構成,與圖3〇(a)所示之習知 的CMOS(位址指定型)影像感測器大致相同,具有以(kM) 列m仃(k、n、m均為2以上之整數)之陣列形狀而配置化父 n「)xm個像素u(以下,亦將其等像素n所形成之陣列稱為 瞻 「像素陣列」)。其中,與習知的CM〇s影像感測器之不 同在於其荨之像素11被區塊化而分成(kxm)個像素區 塊12;以及在各像素u中並未包含重置電晶體及放大電 晶體。亦即,在各像素區塊12中,係將屬於同一行之像 素11以每η個為單位而並聯於共通節點(在圖1並未圖示。 在圖2係與共通節點13相對應),以構成像素區塊(參 …、0 2)像素區塊12亦配置成陣列形狀。重置電晶體TrRsT 及放大電晶體TrAMp,係設置在像素區塊12的外部,並與 各像素區塊12相對應。換言之,重置電晶體TrRST及放大 35 200803484 電晶體Τγαμρ ’分別被各像素區塊12中的η個像素1 1所 共用。因此,重置電晶體TrRST的總數為(kxm)個,放大電 晶體TrAMP的總數亦為(kxm)個。 在各像素£塊12的附近’分別有形成m條之重置線 3 1 ’其係分別沿著像素陣列之對應行而延伸。由於對於各 像素區塊12設有一個重置電晶體TrRsT,因此,在各重置 線31,連接有k個重置電晶體TrRsT。在其等重置電晶體 TrRST的各輸出端,連接有一個放大電晶體TrAMp。各重置 線31,係用以重置貯存於像素n(即,對應行所屬之k個 像素區塊12中之像素11)之訊號電荷。對於其等像素i i 之重置用電壓之施加,係使用對應的重置電晶體TrRsT來 控制。(在重置像素1 1之訊號電荷時,放大電晶體Tr30 200803484 has the advantage that the wiring of the section below the output of the amplifying transistor tends to be simple. Preferably, in the second or third semiconductor circuit layer, the storage capacitor element connected to the output end of the amplifying transistor and the signal for storing the capacitor element are preferably provided. Output output transistor. The advantage of this case is that by using the output transistor, the signal stored in the capacitive element can be output at a different timing than the opening and closing of the first gate element. Another example of the address specifying image sensor of the fourth aspect of the present invention is that each of the amplifying transistors has an output of an equal number of pixels in the pixel block corresponding to the amplifying transistor. And connected to the second gate element at the output terminals. In this case, each of the second gate elements can be opened and closed synchronously with the corresponding first gate element, whereby signals from a plurality of pixels in the pixel block can be multiplied by the plurality of outputs Parallel output. As a result, there is an advantage that the signal processing of the next segment can be performed quickly. In this example, it is preferable that the plurality of storage capacitor elements connected to the plurality of output terminals of the amplifying transistor are further advanced in the second or third semiconductor circuit layer, and are used for controlling A plurality of output transistors of the output of the signals stored by the capacitive elements. The advantage of this case is that by using a plurality of the output transistors, the signals stored in the plurality of capacitor elements can be output at a different timing than the opening and closing of the ith gate (4). Another preferred example of the address-based image sensor of the fourth aspect of the present invention is that before the (four) pixel is generated and stored as a signal charge, 31 200803484 all of the reset transistors are used for all of the pixels. The reset is performed as a whole, and the signal corresponding to the signal charge stored in the pixel block is read by the corresponding common node according to the timing, and then transmitted to the corresponding-high-amplifier Carcass. The advantage of this situation is that the stomach is exposed to the stomach. (13) In the sensor circuit according to the first and second aspects of the present invention, and the address-based image sensor of the third and fourth aspects of the present invention, the "photoelectric_switching element" is performed. An element capable of generating electric charges corresponding to the irradiation of light. The "photoelectric conversion element" is preferably a photodiode of a semiconductor element. However, the present invention is not limited thereto as long as the element has a function of generating electric charges corresponding to irradiation light, and any of the inventions can be used. Type. The "first pole member" refers to a member having a gate function for opening and closing a plurality of connection paths of the photoelectric conversion element and a common node corresponding thereto. It is preferable to use a MOS transistor, but the present invention is not limited thereto. "Reset the transistor", as long as the function in the transistor can be used to reset the signal charge generated by the plurality of pixels (the photoelectric conversion element) to which the block belongs, any transistor can be used. The M〇s transistor is suitably used as a "reset transistor", but the present invention is not limited thereto. "Amplifying the transistor" as long as the function of the transistor has a function, the corresponding 5fL number of the signal charge generated by the plurality of pixels (the photoelectric conversion element) to which the pixel block belongs can be amplified according to the timing to generate an output signal. , can use any transistor. The MOS transistor is suitably used as an "amplifying transistor", but the present invention is not limited thereto. The "first semiconductor circuit layer" and the "second or third semiconductor 32 200803484 circuit layer layered semiconductor circuit" respectively represent a layer of a semiconductor circuit, in other words, in the form of a semiconductor substrate, The mold is not formed by "components" and "wiring" formed on the inside or the surface of the semiconductor substrate, but is not limited thereto. The material of the "semiconductor substrate" is not limited, and it is only required to form a desired semiconductor element or circuit, and may be a compound of Si Shi, a compound semiconductor or another semiconductor. The structure of the "semiconductor substrate" is not limited, and may be a single substrate made of a semiconductor, or may be a so-called φ S〇I (silicon On lnsuiat0r) substrate. + "First semiconductor circuit layer" and "Second or third semiconductor layer" can be used as needed (for example, 'The semiconductor circuit layer and the second or third semiconductor circuit layer cannot be obtained. When it is rigid, it is fixed to the "support substrate" which is sufficient to read it. The material of the "support substrate" is not limited. That is, it may be a semiconductor, a glass, or another material. It may also be a semiconductor substrate in which a circuit is formed, that is, a so-called LSI wafer or LSI wafer. _ ""Embedded wiring" means a wiring or conductor for electrical connection in the direction of lamination in the "the second semiconductor circuit layer" or the semiconductor circuit layer of the second or third semiconductor. In general, the "embedded wiring" is an "insulating film" that covers the entire inner wall surface of a "ditch" or a "through hole" formed in a semiconductor substrate, and is filled in (embedded in) the inner space of the insulating film. Conductive material". However, the constitution thereof is not limited to this. Here, the channel or the through hole is not limited as long as it has a desired depth and can be used as a conductive material for embedding wiring. The depth, opening shape, opening size of the "ditch" or "through hole", 33 200803484 cross-sectional shape, etc., can be set as needed. The method of forming the "ditch" or the "through hole" may be formed by selectively removing it from the surface side of the semiconductor substrate, and any method may be used. For example, an anisotropic etching method using a mask is quite suitable. The "insulating film" covering the inner wall surface of the "ditch" or "through hole" may be electrically insulated from the semiconductor substrate and the "conductive material" filled in the "ditch" or "through hole". Any absolute film can be used. For example, cerium oxide (SiOJ, lanthanum nitride (SiNx), etc. is quite suitable. The method of forming the "insulating film" is not limited. The "conductive material" filled in the "ditch" or "through hole" is required. Any material may be used as the buried wiring (for example, a conductive plug). For example, a semiconductor such as polyfluorene, a metal such as tungsten (w), copper (Cu), or aluminum (A1) is suitable. Any method can be used as long as the "conductive material" is filled into the "ditch" or the "through hole" on one side of the semiconductor substrate which can be used. The sensor circuit according to the present invention, The following effects can be obtained: (a) the signal charge for all pixels can be stored substantially simultaneously (substantially simultaneously exposed) and has a higher pixel aperture ratio than conventional address-specific image sensors. (b) The image distortion in the conventional address-based image sensor does not occur, and the object to be photographed at high speed can be photographed. According to the address-specific image sensor of the present invention, The following effects: (a) The signal charge for all pixels can be exposed at the same time at substantially the same time, and the image sensor has a higher pixel aperture ratio than the conventional address-based image sensor. (b) The conventional address-specific image does not occur ^ 34 200803484 Image distortion in the detector; (C) The total height of the light-receiving area is 0, which can accumulate the object to be moved at high speed. Ratio of total area in the photographic area [Embodiment] The following Illustrated® is used to describe the preferred embodiment of the present invention. (Embodiment 1 embodiment) Fig. 2 is a view showing a configuration of a sensor circuit of the i-th embodiment of the present invention. Figure! The functional block diagram ' indicates the overall configuration of the address specifying image sensor (hereinafter also referred to as (10) image sensor) using the sensing circuit 1. The sensor circuit i corresponds to the sensor circuit of the first aspect of the present invention. The overall configuration of the image sensor of FIG. 1 is substantially the same as the conventional CMOS (address-specified type) image sensor shown in FIG. 3(a), and has a (kM) column m仃(k, n). And m is an array shape of 2 or more integers, and the parent n") xm pixels u are arranged (hereinafter, the array formed by the pixels n is also referred to as a "pixel array"). The difference between the conventional CM〇s image sensor is that the pixel 11 of the pixel is divided into (kxm) pixel blocks 12; and the reset transistor is not included in each pixel u. Amplify the transistor. That is, in each of the pixel blocks 12, the pixels 11 belonging to the same row are connected in parallel to the common node in units of n (not shown in FIG. 1. Corresponding to the common node 13 in FIG. 2) The pixel blocks 12 constituting the pixel blocks (parameters, 0 2) are also arranged in an array shape. The reset transistor TrRsT and the amplifying transistor TrAMp are disposed outside the pixel block 12 and correspond to the respective pixel blocks 12. In other words, the reset transistor TrRST and the amplification 35 200803484 transistor Τγαμρ ' are shared by the n pixels 11 in each pixel block 12, respectively. Therefore, the total number of reset transistors TrRST is (kxm), and the total number of amplified transistors TrAMP is also (kxm). In the vicinity of each pixel block 12, there are respectively m reset lines 3 1 ' extending along respective rows of the pixel array. Since one reset transistor TrRsT is provided for each pixel block 12, k reset transistors TrRsT are connected to the respective reset lines 31. At each of the output terminals of the reset transistor TrRST, an amplifying transistor TrAMp is connected. Each reset line 31 is used to reset the signal charge stored in the pixel n (i.e., the pixel 11 in the k pixel blocks 12 to which the row belongs). The application of the reset voltage for its pixel i i is controlled using the corresponding reset transistor TrRsT. (Amplifying the transistor Tr when resetting the signal charge of the pixel 1 1

AMP 的閘極亦被重置。)各放大電晶體TrAMp,係用以放大由相 對應的像素區塊12中之各像素11所讀出之訊號。經由各 放大電晶體TrAMP放大後之訊號,透過該放大電晶體丁 肌 A1amp 的輸出端,依序被送至相對應的行訊號線3 7。 在各像素區塊12的附近,進一步形成有(kxn)條之讀 取控制線3 2,其係分別沿著像素陣列的對應列而延伸。其 專之頃取控制線3 2之設置’係對同一列所屬之m個像素 區塊12各設置η條,用以從各像素區塊12中的η個像素 11中分別讀取訊號。在圖1中,對於同一列所屬之m個像 素區塊12所設置之η條讀取控制線3 2,經整合而以—條 線段來圖示。 在像素陣列左端的附近,設有沿像素陣列的行而延伸 36 200803484 的-個垂直掃描料34。該垂直掃描電路34,係依序掃 描(kxn)條讀取控制線32且依序列來選擇其等。在此時, 於各讀取控制、線32中,有依時序送出對應列所屬的^個 像素陣列12中分別包含之n個像素u之選擇訊號(與圖2 的傳送閘極控制訊號$ T1〜P τη相對應)。 在像素陣列的下端附近,設有沿像素陣列的列而延伸 的一個水平訊號線33及一個水平掃描電路35、與用來去 除雜讯之m個CDS電路36。水平掃描電路35,係藉由斑 個行選擇訊號38依時序來選擇其等CDS電路36。 在m個CDS電路36,分別與k條之行訊號線37並聯, 該k條之行訊號線37,又分別與該行所屬的k個放大電晶 體TrAMP之輸出端連接。因此,同一列所屬之k個放大電 晶體TrAMP,其中的k個輸出訊號係並聯輸入相對應的CDS 電路36。m個CDS電路36之輸出端子,由於分別連接於 水平訊號線33,而使各CDS電路36的輸出訊號透過水平 訊號線33而依序輸出至該影像感測器的外部。 接著’針對第1實施形態之感測器電路1、亦即用於 具備上述構成之位址指定型影像感測器之感測器電路1, 邊參照圖2而作如下說明。 圖2所示,係屬於像素陣列的第j行(其中,j$m) 的二個像素區塊12的電路構成。上方之像素區塊12,係 位在由上方算起的第i項(其中,在下方的像素 區塊12 ’係位在由上方算起的第(i+丨)項。因此視需要,將 上方之像素區塊12以12(i,j)來表示;將下方的像素區塊 37 200803484 12以12(i+l,j)來表示。 在上方的像素區塊12(i,j)所包含之像素1 1,係位在第 j行的第[ηχ(Μ)+1]列〜第(nxi)列。在下方的像素區塊I2(i+1, j)所包含之像素11,則是位在第j行的第[nxi+l]列〜第[nx (i+1)]列。由於上述二個像素區塊12(i,j)與12(i+l,j)具有 相同構成,在以下的說明中,主要係以上方之像素區塊12(i.j) 來說明。 _ 在像素區塊12(i.j)中,包含η個像素11,各像素1 1 包含一個光電二極體與一個傳送閘極。因此,各像素i工 包含η個光電二極體PD^PDn、及η個傳送閘極TG^TGn。 各傳送閘極TGi〜TGn,係由MOS電晶體所構成。光電二 極體PD^PDn的各陽極,係與傳送閘極TG^TGn中相對應 者之一源極、汲極區域連接。陰極則是共同連接於既定電 位(通常為接地電位)之端子或區域。各個傳送閘極TG^TGn 中另一源極、汲極區域,係共同連接於像素區塊12(丨,』)中 _ 的共通節點13。亦即,像素區塊12(i,j)中的n個像素n, 係並聯於共通節點i 3。 像素區塊12(i,j)之共通節點13,係藉由節點14而連 接於,與該像素區塊12(i, j)成對應關係而設置之共通的重 置電晶體TrRST之一源極、汲極區域,以及與該像素區塊12… D成對應關係而設置之共通的放大電晶冑AMP之閘極。其 等之重置電晶體TrRST與放大電晶體TrAMp,均是設置在像 素區塊叫,j)的外側。重置電晶體TrRST的另一源極、汲 極區域,與重置用之電壓源(重置電壓=、τ)連接。放大電 38 200803484 ^TrAMP的一源極、汲極區域,與直流電源(電源電壓=㈣ 料,另-源極、㈣區域(輸出側),係與該像素區塊卻, ^的輸出端子(亦即是相對應的行訊號線37)連接。放大電 日日體TrAMp的輪出端(輸出側之源極、没極區域),透過電阻 器'而與既定電位(通常為接地電位)的端子或區域連接, 而構成源極隨耗器形式之放大器。與節點Μ連接之電容 csn,係該節點14所產生之寄生電容。節點14係透過寄生 :容Csn而與既定電位(通常為接地電位)之端子或區域連 接。 放大電晶體TrAMP的輸出端子(輸出侧之源極、没極區 域如圖1所示般,由於有與對應之行訊號線37連接, 而月b使放大電晶體TrAMp的輸出訊號、亦即是〇個光電二 極體PD广PDn之時序⑽叫式的輸出訊號,透過相對應的 行訊號線37而傳送至對應之CDS電路36。χ,從⑽電 路36被送往水平訊號線33日夺,係藉由水平掃描電路% 的掃描而透過m個行選擇訊號38來選擇上述行訊號線3卜 Z此而將該時序輸出訊號傳送至水平訊號線^。之後,往 _在欠平況號線33的一端(在圖1之右端)之該影像感測 裔的輸出端子(未圖示)傳送。 像素區塊12(1,j)以外的所有像素區塊12,皆與像素區 A (’ J) ^有相同構成,因此,係以相同於上述之方式, 將^光電二極體叫〜叫之時序輸出訊號傳送至該影像 感测裔之輪出總; , 。如此’能進行待攝物體的攝影。 接著㈣’具備感測器電路1(亦即具備上述構成之感 39 200803484 测為電路)之位址指定型影像感測器的動作(從訊號電荷的 產生、貯存,直到訊號輸出為止)。The gate of the AMP is also reset. Each of the amplifying transistors TrAMp is for amplifying signals read by the pixels 11 in the corresponding pixel block 12. The signal amplified by each of the amplifying transistors TrAMP is sequentially sent to the corresponding line signal line 37 through the output terminal of the amplifying transistor A1amp. In the vicinity of each pixel block 12, (kxn) read control lines 32 are further formed, which respectively extend along corresponding columns of the pixel array. Specifically, the setting of the control line 32 is set to n for each of the m pixel blocks 12 to which the same column belongs, for reading signals from the n pixels 11 in each of the pixel blocks 12. In Fig. 1, the n read control lines 3 2 provided for the m pixel blocks 12 to which the same column belongs are integrated and illustrated by a line segment. In the vicinity of the left end of the pixel array, there are provided a vertical scanning material 34 extending along the row of the pixel array 36 200803484. The vertical scanning circuit 34 sequentially scans the (kxn) strips to read the control lines 32 and selects them according to the sequence. At this time, in each of the read control lines 32, the selection signals of the n pixels u respectively included in the pixel arrays 12 to which the corresponding columns belong are sequentially outputted (with the transfer gate control signal $T1 of FIG. 2). ~P τη corresponds). In the vicinity of the lower end of the pixel array, a horizontal signal line 33 extending along the column of the pixel array, a horizontal scanning circuit 35, and m CDS circuits 36 for removing noise are provided. The horizontal scanning circuit 35 selects the CDS circuit 36 by timing according to the timing selection signal 38. The m CDS circuits 36 are respectively connected in parallel with the k line signal lines 37, and the k line signal lines 37 are respectively connected to the output terminals of the k magnifying electric crystals TrAMP to which the row belongs. Therefore, the k amplification transistors TrAMP to which the same column belongs, the k output signals are input in parallel to the corresponding CDS circuit 36. The output terminals of the m CDS circuits 36 are respectively connected to the horizontal signal lines 33, so that the output signals of the CDS circuits 36 are sequentially output to the outside of the image sensor through the horizontal signal lines 33. Next, the sensor circuit 1 for the first embodiment, that is, the sensor circuit 1 for the address specifying image sensor having the above configuration, will be described below with reference to Fig. 2 . 2 is a circuit configuration of two pixel blocks 12 belonging to the jth row (where j$m) of the pixel array. The upper pixel block 12 is tethered to the i-th item from the top (wherein the lower pixel block 12' is tied to the (i+丨) item from the top. Therefore, as needed, above The pixel block 12 is represented by 12 (i, j); the lower pixel block 37 200803484 12 is represented by 12 (i + l, j). The upper pixel block 12 (i, j) is included The pixel 1 1 is located in the [nχ(Μ)+1] column to the (nxi)th column of the jth row. The pixel 11 included in the lower pixel block I2(i+1, j) is Is the [nxi+l] column to the [nx (i+1)] column in the jth row. Since the above two pixel blocks 12(i,j) have the same as 12(i+l,j) In the following description, the pixel block 12 (ij) is mainly described above. _ In the pixel block 12 (ij), n pixels 11 are included, and each pixel 1 1 includes a photodiode And a transfer gate. Therefore, each pixel includes n photodiodes PD^PDn and n transfer gates TG^TGn. Each of the transfer gates TGi to TGn is composed of a MOS transistor. The anodes of the diode PD^PDn are connected to the transfer gate TG^TGn One of the source is connected to the source and the drain region, and the cathode is a terminal or region that is commonly connected to a predetermined potential (usually a ground potential). The other source and drain regions of each of the transfer gates TG^TGn are common. Connected to the common node 13 of _ in the pixel block 12 (ie, 』), that is, n pixels n in the pixel block 12 (i, j) are connected in parallel to the common node i 3. Pixel block 12 ( The common node 13 of i, j) is connected to the source and the drain region of the common reset transistor TrRST provided in correspondence with the pixel block 12 (i, j) by the node 14. And a gate of the common amplifying transistor AMP disposed in correspondence with the pixel block 12...D. The reset transistor TrRST and the amplifying transistor TrAMp are both disposed in the pixel block, The outer side of j). The other source and the drain region of the transistor TrRST are reset and connected to the reset voltage source (reset voltage =, τ). Amplifying power 38 200803484 ^One source and drain region of TrAMP, and DC power supply (supply voltage=(four) material, another-source, (four) region (output side), and the output block of this pixel block, ^ That is, the corresponding line signal line 37) is connected. The wheel end of the electric field TrAMp (the source side and the non-polar area of the output side) is amplified, and the predetermined potential (usually the ground potential) is transmitted through the resistor ' The terminal or region is connected to form an amplifier in the form of a source follower. The capacitor csn connected to the node 系 is the parasitic capacitance generated by the node 14. The node 14 transmits a parasitic capacitance Csn with a predetermined potential (usually grounded) The terminal or region of the potential is connected. The output terminal of the transistor TrAMP is amplified (the source and the non-polar region on the output side are connected to the corresponding signal line 37 as shown in Fig. 1, and the moon b is used to amplify the transistor. The output signal of TrAMp, that is, the timing of the photodiode PD wide PDn (10), is transmitted to the corresponding CDS circuit 36 through the corresponding line signal line 37. From, (10) circuit 36 is Sent to the horizontal signal line for 33 days, The line signal line 3 is selected by the m row selection signal 38 by the scanning of the horizontal scanning circuit %, and the timing output signal is transmitted to the horizontal signal line ^. Thereafter, the _ is in the undone condition line 33. One end of the image sensing source (not shown) is transmitted at one end (at the right end of Fig. 1). All pixel blocks 12 other than the pixel block 12 (1, j) are associated with the pixel area A (' J ^) has the same composition, therefore, in the same way as above, the photo-diode called ~ timing output signal is transmitted to the image sensing person's round of the total;, so 'can do the object to be taken Next, (4) 'The operation of the address-specific image sensor with the sensor circuit 1 (that is, the circuit with the above-mentioned configuration 39 200803484) (from the generation and storage of the signal charge until the signal output) ).

ι所有像素(所有光電二極體)之整體重置 首先,使各個施加於MOS電晶體的閘極之脈衝訊號(傳 达閘極控制訊號)p T1〜p Τη的邏輯狀態成為High(高),使 所有傳送閘極TGl〜TGn成為導通狀態,該M〇s電晶體, 係用以構成δ又置在所有像素丨〗的光電二極體PA〜PR之 各傳送閘極TG广TGn、即第i閘極元件之電晶體)。 接著,將所有像素u的傳送閘極TGi〜TGn保持在開 的狀態下’使施加於重置電晶體TrRsT的閘極t脈衝訊號(重 置脈衝訊號)—的邏輯狀態成為H,使所有重置電晶體ι All pixels (all photodiodes) are reset as a whole. First, the logic state of each pulse signal (transmitting the gate control signal) p T1~p Τη applied to the gate of the MOS transistor becomes High. And all the transfer gates TG1 to TGn are turned on, and the M〇s transistors are used to form the transfer gates TG TGn of the photodiodes PA to PR which are δ and are placed in all the pixels, that is, The transistor of the ith gate element). Next, the transfer gates TGi to TGn of all the pixels u are kept in the on state, and the logic state of the gate t pulse signal (reset pulse signal) applied to the reset transistor TrRsT is made H, so that all the weights are made Placement transistor

TrRST整體成為導通狀態,該重 ^ ^ 茨里罝電日日體TrRST,係設置在 所有像素區塊㈠各電晶體。其結果,既定的重置電壓 …,士透過節點14、共通節黑“3、及傳送問極叫〜叫’ 而同時施加於所有像素丨丨 <元冤一極體pD PD。苴姓 果,被施加於所有像素U η t J尤逼—極體PD广PD之雷壓, 與重置電壓VRST大致相等 η t 換a之,所有像辛11夕氺Φ 二極體PD^PDn被重置。如此, ’、 被重置,亦即進行「整體重置”斤有像素11係整體同時 2 ·曝光(電荷貯存) 其次,使施加於所有像素u之 傳送閘極控制訊號φ k閘極TG广丁Gn之 w Τ1 Ρ τη的邏輯妝能士、& τ 所有傳送閘極TG^TG A & 〜、成為Low(L),使 重置控制訊號^的邏輯狀態;又,在此同時,使 4 L,所有重置電晶體 40 200803484TrRST is turned on as a whole, and the TrRST is set in all the pixel blocks (1) of each transistor. As a result, the predetermined reset voltage..., through the node 14, the common blackout "3, and the transmission call is called ~ call" and simultaneously applied to all the pixels 丨丨 < 冤 冤 极 p p p 苴. , applied to all the pixels U η t J, especially the voltage of the PD of the polar body PD, which is approximately equal to the reset voltage VRST, η t is replaced by a, and all the images like the Xin 11 氺 Φ diode PD ^ PDn are heavy Thus, ', is reset, that is, the "overall reset" is performed. The pixel 11 is integrated as a whole while 2 · exposure (charge storage). Next, the transfer gate control signal φ k gate applied to all the pixels u is applied. TG Guang Ding Gn w Τ 1 Ρ τ η logical makeup energy, & τ τ all transmission gate TG ^ TG A & ~, become Low (L), so that the logic state of the reset control signal ^; At the same time, make 4 L, all reset transistors 40 200803484

TrRST亦整體成為斷開狀態。 之後,在該狀態下將光照射在所有像素u的光電二極 體PDl〜PDn,使所有光電二極體PDi〜pDn整體產生、貯存 訊號電荷。照射時間-般達到數百㈣c乃至數麵c,非 常的長。 在結束訊號電荷的產生、貯存之同時,再度使重置控 制訊號p RST的邏輯狀態成為Η而使所有重置電晶體 ^ .R. S ΤΓ 整體成為導通狀態,待經過既定時間(例如i # s叫,使重 置控制訊號P RST的邏輯狀態再次成為L而使所有重置電晶 體TrRST整體成為斷開狀態。如此,可將重置電壓^ 時施加於所有節點i 4 (亦即所有放大電晶體T r a⑽的閘), 以將所有放大電晶體TrAMp的閘極電壓設定成既定之基準 電壓。 3 · sfl號之f買取及其放大 以上述方式而在所有光電二極體pDi〜pDn產生、貯存 之電荷畺係經下述方式而以電壓的形式將等比於其之訊號 由像素11中讀取,進而放大。 亦即,首先藉垂直知描電路34與水平掃描電路35來 廷擇一個像素區塊12後,使該像素區塊12中的n個傳送 閘極控制訊號ρ Τ1〜ρ Τη之邏輯狀態依序由L變成Η,而使 傳运閘極TG广TGn依序成為導通狀態。又,在將其等之導 通狀恶保持既定時間(例如〇1//sec)後,又依序使其等之 避輯狀態回到L。如此,來自該像素區塊12中的所有光電 一極體PDcPDn之訊號,遂依時序而於節點14讀取。在 41 200803484 此期間,所有重置電晶體Tr ϋ ^ ^ Μ里罝弘日日股lfRST被保持在斷開狀態。 以源極隨柄|§形式而盘節毀 、即點丨4連接之放大電晶體TrRST has also become disconnected as a whole. Thereafter, in this state, light is applied to the photodiodes PD1 to PDn of all the pixels u, and all of the photodiodes PDi to pDn are generated and stored as a signal charge. The irradiation time generally reaches hundreds (four) c or even several faces c, which is very long. At the same time as the generation and storage of the signal charge, the logic state of the reset control signal p RST is again turned on, and all the reset transistors ^.R. S ΤΓ are turned on as a whole, and the predetermined time (for example, i # s, so that the logic state of the reset control signal P RST becomes L again and all the reset transistors TrRST are turned off. Thus, the reset voltage can be applied to all nodes i 4 (ie, all amplifications) The gate of the transistor T r a (10) is set to set the gate voltage of all the amplifying transistors TrAMp to a predetermined reference voltage. 3 · The f f f f buy and its amplification in the above manner in all photodiodes pDi~pDn The charge and charge generated and stored are read by the pixel 11 in the form of a voltage by the following method, and then amplified. That is, first, the vertical scanning circuit 34 and the horizontal scanning circuit 35 are used. After the pixel block 12 is selected, the logic states of the n transfer gate control signals ρ Τ1 ρ Τ η in the pixel block 12 are sequentially changed from L to Η, and the transfer gate TG TGn is sequentially changed. Turn-on state. Again, at After the conduction state is maintained for a predetermined time (for example, 〇1//sec), the evasive state is sequentially returned to L. Thus, all the photodiodes PDcPDn from the pixel block 12 are obtained. The signal is read at node 14 according to the timing. During the period of 2008 2008484, all reset transistors Tr ϋ ^ ^ Μ里罝弘日日股lfRST is kept in the off state. Form and the board is destroyed, that is, the connection transistor is connected by 4

TrAMP’由於其閘極與節點14連接,因此,於節點14讀取 之電壓訊號乃立刻由該放大電晶冑I放大。又,經放 大後之訊號,從該放大雷晶_ Tr ,, amp的輸出端子側之源極、 没極區域往行訊號線37輸出。Since the gate of the TrAMP' is connected to the node 14, the voltage signal read at the node 14 is immediately amplified by the amplifying transistor I. Further, after the amplified signal, the source and the non-polar region on the output terminal side of the amplified thunder crystal _Tr, amp are outputted to the signal line 37.

在從該像素區塊12中的n個像素u(亦即光電二極體 PD^PDn)讀取訊號而予放大時,從讀取_個像f…例如 光包一極體PD1)之訊號並將其放大的這個動作結束開始算 起’直到開始下一像f n(例如光電二極體p⑹之訊號讀 取的這段期間,必須使該像素區塊12用之重置電晶體TrRST 成為導通狀態,以將重置電壓VRST暫時施加至節點14, 將所有該節點14(放大電晶體TrAMP的閘極)設定在基準電 位(重置)。原因在於,若不如此,恐怕之前的像素11(例如 光電二極體PDi)之訊號的殘留影響會造成隨後像素(例如 光電二極體pD2)發生訊號誤差情形。 由於在該像素區塊12中具有η個光電二極體 PD] PDn,因此,以傳送閘極控制訊號ρ η〜p h進行之讀 取動作,次數共有η次;由放大電晶體TrAMP進行之放大 動作’次數共有n次;放大電晶體TrAMp之重置動作,次 數共有(η-I)次。 具體而&,例如,在最初先使該像素區塊12之第1傳 适閑極TGi暫時成導通狀態,與訊號電荷(即貯存於第i光 书一極體PDi之訊號電荷)成比例之電壓訊號遂於節點14 42 200803484 讀取。該電壓訊號立即被放大電晶體TrAMp所放大,然後 將取得之放大訊號往行訊號線37傳送。接著,使重置電 曰曰體TrRST暫時成導通狀態,而將放大電晶體的閘極 (節點14)重置成基準電位。之後,等比於第2光電二極體 PD2所貯存訊號電荷之電壓訊號,遂於節點14讀取。該電 壓訊號立即被放大電晶冑TrAMP所放大,然後將得到之放 :訊號往行訊號線37傳送。其次,使重置電晶體暫When the signal is read from the n pixels u (ie, the photodiode PD^PDn) in the pixel block 12, the signal from the read image _..., for example, the optical package PD1) The end of the operation of the amplification is started until the next image fn is started (for example, during the period of reading the signal of the photodiode p(6), the pixel block 12 must be reset to the transistor TrRST. The state is to temporarily apply the reset voltage VRST to the node 14, and set all of the nodes 14 (the gate of the amplifying transistor TrAMP) to the reference potential (reset). The reason is that if this is not the case, the previous pixel 11 is feared ( For example, the residual influence of the signal of the photodiode PDi) causes a signal error condition in subsequent pixels (for example, the photodiode pD2). Since there are n photodiodes PD] PDn in the pixel block 12, The reading operation is performed by transmitting the gate control signals ρ η to ph, the number of times is n times; the amplification operation by the amplifying transistor TrAMP is performed n times; the resetting action of the amplifying transistor TrAMp is common (η- I) times. Specific and &, for example First, the first transmission idle pole TGI of the pixel block 12 is initially turned into a conducting state, and the voltage signal proportional to the signal charge (that is, the signal charge stored in the i-th optical book PDI) is at a node. 14 42 200803484 Read. The voltage signal is immediately amplified by the amplified transistor TrAMp, and then the obtained amplified signal is transmitted to the signal line 37. Then, the reset electric body TrRST is temporarily turned on, and the amplified power is amplified. The gate of the crystal (node 14) is reset to the reference potential. Thereafter, the voltage signal equal to the signal charge stored by the second photodiode PD2 is read by the node 14. The voltage signal is immediately amplified by the transistor. The TrAMP is amplified, and then it will be received: the signal is transmitted to the signal line 37. Secondly, the reset transistor is temporarily suspended.

寸成V通狀心而將放大電晶體TrAMP的閘極(節點j 4)重 置成基準電壓。接著,依序對第3光電二極體Pd3、第4 光電一極冑pd4等’重複與上述相同之動作。最後,針對 第光電極體PDn實施讀取動作與放大動作,然後結束 该像素區塊1 2的處理。 在圖1的影像感測器中,與該像素區塊12對應之放大 電晶體TrAMP的輸出端子為1個,因此,由該像素區塊12 中的所有光電二極體ΡΓ| ^ _ to PD^PDn取得之η個訊號,係從該放 大電晶體TrAMP之輪屮# 2 A·心铷出鳊子側的源極、汲極區域依時序輪 出至行訊號線3 7。亦gp,山— P由该像素區塊12所輸出之訊號, 成為一條以隔著既定間p ]丨同方式來連結n個脈衝波形,以供 反映光電二極體PD ρ 1 的訊號電荷量(照射光之量)之時 序訊號。 上述影像感測器,合舛 w ^ ^ σ叶有(kxm)個像素區塊12,因此, 在掃描所有像素Π的期 4間,上述動作係重複(kxm)次。 由該像素區塊12所私山 ^輪出之訊號,亦即是將^個訊號脈 衝以隔著既定間隔之方令&、土 八而連結成的一條時序訊號,被送 43 200803484 至周知的取樣及保持(Sample and Hold)電路或類比、數位 (A/D)轉換電路,以進行既定之訊號處理。 現在實務上最快曝光速度(亦即最短的訊號電荷貯存期 間)為(1/8000)秒(=125// sec)。因此,對於(kxm)個像素區 塊12,若能以下述方式來設定n值(各像素區塊12中的像 素11的總數),就能使所有像素區塊12所屬之像素丨丨(光 電極體PDi〜PDn)的訊號電荷貯存(曝光)能實質上同時進 行,亦即求出由重置電晶體TrRsT對節點14(放大電晶體 TrAMP的閘極)的重置動作達既定次數[亦即(η·〗)次]時所需 時間(總重置時間),與該像素區塊12中的所有像素η⑽ 有光電_極體PD广PDj送出之訊號被相對應的放大電晶體 TW所放大時所需時間(總放大時間)之和,然後使該和之 (kxm)倍之時間遠小於最短之訊號電荷貯存期間㈠ 言士之,所有像素11之訊號電荷能實質上同時貯存 (貝貝上同日才曝光化)〇 別獨=(rm)個輸出時序訊號,係從所有像素區塊12分 另J獨立輸出,因此,對於1 式來進杆1 I ,、、輸出日守序訊號,能以並聯方 大來進㈣比、數位(A/D)轉換等處 的CMOS影像感測器 減相車乂於習知 益於實質上同時曝光化的^ 4的資料處理。此點亦有 由上述動作可以了解,若以 素區塊12所輸出之時序輸出㈣訊框内來觀察’由各像 的結束,相較於在該掃插期fa1_a^是越接近掃描時間 電荷貯存期間越長(儘管相 〗斤產生、輸出者,其 相田械罝)。因此,若為了取得準 44 200803484 確性更佳之影像資料、或為 没有周知的電路,以供按照 號修正。藉此,能抑制或避 影響。 了具有大的11值,亦可在後段 電荷貯存期間的變化來進行訊 免受到電荷貯存期間的變動所 ’不會發生習知 對南速移動之待 由於可藉上述方式而實質同時曝光化 的CMOS影像感測器之影像失真情形,可 攝物體進行攝影。The gate of the amplifying transistor TrAMP (node j 4) is reset to the reference voltage by the V-shaped center. Then, the same operation as described above is repeated for the third photodiode Pd3, the fourth photo-electrode 胄pd4, and the like. Finally, the reading operation and the amplification operation are performed on the photoelectrode body PDn, and then the processing of the pixel block 12 is ended. In the image sensor of FIG. 1, the output terminal of the amplifying transistor TrAMP corresponding to the pixel block 12 is one, and therefore, all photodiodes ΡΓ| ^ _ to PD in the pixel block 12 The n signals obtained by the PDn are from the rim # 2 A of the amplifying transistor TrAMP, and the source and drain regions on the side of the dice are rotated to the signal line 3 7 in time series. Also, gp, mountain-P is a signal outputted by the pixel block 12, and is connected to n pulse waveforms in a manner corresponding to a predetermined interval, for reflecting the signal charge amount of the photodiode PD ρ 1 . Timing signal (the amount of illumination). In the above image sensor, the combined w ^ ^ σ leaves have (kxm) pixel blocks 12, and therefore, the above-mentioned actions are repeated (kxm) times during the period 4 of scanning all the pixels. The signal that is rotated by the pixel block 12 is a time-series signal that connects the signal pulses with a predetermined interval, and is sent to 43 200803484. Sample and Hold circuits or analog, digital (A/D) conversion circuits for scheduled signal processing. The fastest exposure speed (ie, the shortest signal charge storage period) is now (1/8000) seconds (=125//sec). Therefore, for (kxm) pixel blocks 12, if the n value (the total number of pixels 11 in each pixel block 12) can be set in the following manner, the pixels to which all the pixel blocks 12 belong can be made (light) The signal charge storage (exposure) of the electrode bodies PDi PDD) can be performed substantially simultaneously, that is, the reset operation of the node 14 (the gate of the amplifying transistor TrAMP) by the reset transistor TrRsT is determined to be a predetermined number of times [also That is, the time required for (n··) times (total reset time) is the same as that of all the pixels η(10) in the pixel block 12, which are corresponding to the signal sent by the photo-polar body PD wide PDj. The sum of the time required for amplification (total amplification time), and then the (kxm) times of the sum is much less than the shortest signal charge storage period (1). The signal charge of all pixels 11 can be stored substantially simultaneously. On the same day, it was exposed.) 独 独 = = (rm) output timing signals, from the other pixel block 12 separate J independent output, therefore, for the 1 type to enter the rod 1 I,, output the day-to-day signal CM that can enter (four) ratio, digital (A/D) conversion, etc. in parallel OS Image Sensors Phase-reduction vehicles are known to benefit from the data processing of ^ 4 that is simultaneously exposed. This point can also be understood by the above action. If the timing output from the prime block 12 is output (4) in the frame to observe 'the end of each image, the closer to the scan time charge is compared to the fa1_a^ in the sweeping period. The longer the storage period (although the phase is produced, the output is the same, the phase of the field is 罝). Therefore, if you want to obtain more accurate image data, or a well-known circuit, you can correct it according to the number. Thereby, it is possible to suppress or avoid the influence. With a large 11 value, it can also be changed during the storage of the latter stage of charge to avoid the change during charge storage. 'There is no known that the south speed movement is due to the fact that it can be simultaneously exposed simultaneously in the above manner. The image distortion of the CMOS image sensor allows the subject to take pictures.

再者,共通的重置電晶體TrRST與共通的放大電晶體 TrAMP,係以與各像素區塊12對應之方式而設置在該像素 區塊12的外側,因此,在該像素區塊12中的各像素u, ^、而包含一個光電二極體與一個閘極元件(MOS電晶體)。 因此,相較於在一個像素中除光電二極體尚包含三個或四 個MOS f晶體之習知的CM〇s影像感測器,可實現較高 的像素開口率(例如60%左右)。 再者,在習知的CMOS影像感測器中,訊號處理係按 照掃描線的數量而依時序進行,而必需有高速的a/d轉換 電路,但在使用該第〗實施形態之感測器電路丨之影像感 測器中,係將η值設定的較掃描線數量為小而能提高並聯 程度,因❿能容許各放Α電晶體心續#較慢的時序輸出 訊號之處理速度。因此,能使用構成方式更為簡單之a/d 轉換電路,此亦為其效果所在。 又’來自n個光電二極體PD广PDn之n個輸出訊號, 係以串聯之形態而由各放大電晶體Tq·輸出,因此,與 各放大電晶體TrAMp的輸出端子連接之下一段的配線會趨 45 200803484 於簡單,此亦為其效果所在。 (第2實施形態) 圖3係本發明之第2實施形態之感測器電路1 a的電 路構成圖。使用該感測器電路丨A之位址指定型影像感測 器,其全體構成與圖丨所示者相同,因而省略其說明。該 感測器電路1A,係與本發明之第i觀點之感測器電路相對 應。Furthermore, the common reset transistor TrRST and the common amplifying transistor TrAMP are disposed outside the pixel block 12 in a manner corresponding to each pixel block 12, and therefore, in the pixel block 12 Each pixel u, ^, includes a photodiode and a gate element (MOS transistor). Therefore, a higher pixel aperture ratio (for example, about 60%) can be achieved compared to a conventional CM〇s image sensor in which one photodiode still contains three or four MOS f crystals in one pixel. . Furthermore, in the conventional CMOS image sensor, the signal processing is performed in time series according to the number of scanning lines, and a high-speed a/d conversion circuit is required, but the sensor of the first embodiment is used. In the image sensor of the circuit, the η value is set to be smaller than the number of scanning lines, and the parallel connection degree can be improved, because the processing speed of the slower timing output signals can be allowed. Therefore, it is possible to use an a/d conversion circuit which is simpler in construction, and this is also an effect. Further, n output signals from the n photodiodes PD wide PDn are outputted in series by the respective amplifying transistors Tq·, and therefore, wirings of a section below the output terminals of the respective amplifying transistors TrAMp are connected. The trend of 45 200803484 is simple, and this is also the effect. (Second Embodiment) Fig. 3 is a circuit configuration diagram of a sensor circuit 1a according to a second embodiment of the present invention. The address specifying image sensor using the sensor circuit 丨A has the same overall configuration as that shown in the figure, and therefore its description will be omitted. The sensor circuit 1A corresponds to the sensor circuit of the first aspect of the present invention.

圖3所示之感測器電路1A的電路構成,與第丨實施 形態之感測器電路i(參照圖2)的電路構成大致相同,僅有 的相^點在^ ’在與各像素區塊12《對應設置關係之放 大電晶體TrAMp之輸出侧’又追加有儲存用電容元件c 與輸出電晶體Tr〇UT。因此’對於與目2之感測器電路: 相同之要件,係賦予相同符號並省略其說明。 柯仔用冤容元件 對應的放大電晶體Tr 气u 士 AMP放大後之訊號,其中一端子,盥 该放大電晶體+Λ , 4 ^ 另-端子,列—Γ^ 的源極、㈣區域連接,而 連接。!與既疋電位(通常為接地電幻之端子或區域 用電容元# CST之訊號,㈣㈣、/暫時儲存於該儲存 37’其輸出側之源極、沒極區域,、:至相對應的行訊號線 出端子(行訊號線37)連接 ” 5亥像素區塊12的輸 其間極之輸出控制訊號〜二、羅:晶:Tr,,若施加於 態,若為Γ 〇UT 、t輯狀態為Ή則成導诵你 …J斷開狀態。因此,在使暫時儲存在儲存用 46 200803484 電谷元件cST之訊號輸出至行訊號線37時,輸出電晶體The circuit configuration of the sensor circuit 1A shown in FIG. 3 is substantially the same as that of the sensor circuit i (see FIG. 2) of the second embodiment, and only the phase is in the respective pixel regions. In addition, the storage capacitive element c and the output transistor Tr〇UT are added to the output side of the amplifying transistor TrAMp corresponding to the set relationship. Therefore, the same reference numerals are given to the same components as those of the sensor circuit of the second embodiment, and the description thereof is omitted. Kezi uses the amplified cell Tr gas 对应 AMP amplified signal corresponding to the capacitive element, one of the terminals, the amplified transistor + Λ, 4 ^ other - terminal, column - Γ ^ source, (four) area connection And connected. ! And the 疋 potential (usually the grounding phantom terminal or area capacitor #CST signal, (4) (four), / temporarily stored in the storage 37' its output side of the source, no pole area,:: to the corresponding line The signal line output terminal (line signal line 37) is connected. The output control signal of the 5th pixel block 12 is connected to the middle. The second: Luo: Crystal: Tr, if applied to the state, if Γ 〇 UT, t state In other words, the J is turned off. Therefore, when the signal temporarily stored in the memory 46 200803484 battery element cST is output to the line signal line 37, the output transistor is output.

Tr0UT之開閉時間,能異於像素區塊12中的傳送閘極 TG^TGn之開閉時間。 在使用上述第1實施形態之感測器電路1之影像感測 杰中,來自相對應的像素區塊12中n個光電二極體PD1〜pDn 之時序輸出訊號,在放大電晶體TrAMP的放大後,立即往 订訊號線37輸出。相對於此,在使用第2實施形態之感 φ 測為電路1A之影像感測器中,來自像素方塊12中的n個 光電一極體PDcPDn之時序輸出訊號,在經過放大電晶體 丁^⑽的放大後,係暫時儲存於儲存用電容元件Cst,因此, 可藉由輸出控制訊號ρ 〇υτ,使得往向行訊號線37輸出之 時點,與傳送閑才亟TGl〜TGn之開閉時的時點(即用以由該 光電二極體PR〜PD。讀取訊號之時點)彼此錯開。 在具備上述構成之第2實施形態之感測器電路ία之 景“象感測器中,基於與第!實施形態之情形相同的理由, φ 對所有像素11的訊號電荷能實質上同時貯存(實質上同時 曝光化)。又,由於能以上述方式而實質使同時曝光化,不 會發生習知的CMOS影像感測器之影像失真情形,可對高 速移動之待攝物體進行攝影。 又,共通的重置電晶體TrRST與共通的放大電晶體 T^MP,係以與各像素區塊12對應之方式而設在該像素區 鬼12的外側,因此,該像素區塊12的各像素11,只需具 備一個光電二極體與一個閘極元件(M〇s電晶體)。因此, 相較於在一個像素中除光電二極體外尚包含三個或四個 47 200803484 MOS電晶體之習知的cM〇s影像感測器,可實現較高的像 素開口率。 再者’藉由輸出控制訊號p 〇υτ,將訊號往行訊號線37 輸出之日守點’能與像素區塊中傳送閘極TG广TGn的開閉之 日守點彼此錯開,因此,相較於使用第1實施形態之感測器 黾路1之障形,更能貫施高速攝影,此亦是其效果所在。 (第3實施形態) _ 圖4係本發明之第3實施形態之感測器電路的電 路構成圖。使用該感測器電路1B之位址指定型影像感測 3 ’、王體構成與圖1所示者相同,因而省略其說明。該 感測器電路1B,係與本發明之第i觀點之感測器電路相對 應。 圖4所示之感測器電路丨b的電路構成,與第工實施 形態之感測器電路1(參照圖2)的電路構成大致相同,僅有 的不同點在於,與各像素區塊12成為對應設置關係之放 _ 大電晶體TrAMP,於其輸出侧之源極、汲極區域,又設有 與其並聯之η個選擇電晶體TrsELi〜TrsELn(第2閘極元件), 來自已放大之η個光電二極體PDi〜PDa n個輸出訊號, 係透過選擇電晶體TrSEL1〜TrsELn而並聯輸出至行訊號線 37。選擇電晶體TrSEL1〜TrsELn,若施加至其閘極之輸出選 擇訊號P SEL广P SELn的邏輯狀態為Η則各成導通狀態,若 為L則呈斷開狀態。因此,對於與圖2之感測器電路^相 同之要件,係賦予相同符號並省略其說明。 在讀取訊號電荷(即n個光電二極體pDi〜pDn所產生 48 200803484 貝丁存之汛號電荷)之對應訊號而予放大時,n個選擇電晶體 TrSEL1〜TrSELn,與相對應的像素區塊12中的傳送閘極 TG广TGn係以大致同步之方式而開閉。亦即,舉例而言, 在由光電一極體PD!讀取訊號而予放大時,傳送閘極TGi 被打開(成為導通狀態)的大致同時,選擇電晶體亦 被打開(成為導通狀態),因此,被讀取之該訊號電荷,在 經過放大電晶體TrAMP的放大之後,立即透過選擇電晶體 0 TrSELi而往著行訊號線37輸出。 在具備上述構成之第3實施形態之感測器電路1 b之 影像感測器中,基於與第1實施形態之情形相同的理由, 對所有像素11的訊號電荷能實質上同時貯存(實質上同時 曝光化)。又,由於能以上述方式而實質使同時曝光化,不 會發生習知的CMOS影像感測器之影像失真情形,可對高 速移動之待攝物體進行攝影。 又’共通的重置黾曰曰體TrRST與共通的放大電晶體 • TrAMP,係以與各像素區塊12對應之方式而設在該像素區 塊12的外側,因此,該像素區塊12的各像素丨丨,只需具 備一個光電二極體與一個閘極元件(M〇s電晶體)。因此, 相較於在一個像素中除光電二極體外尚包含三個或四個 MOS電晶體之習知的CMOS影像感測器,可實現較高的像 素開口率。 再者,來自放大後之η個光電二極體pDi至pD之^ 個輸出訊號,係透過相對應的η個選擇電晶髒 ^sELi-TrSELn 而亚聯的往行訊號線37輸出,因此,亦具有能迅逮進行 49 200803484 下一段之訊號處理之效果。 (第4實施形態) 圖5係本發明之第4實施形態之感測器電路⑴的電 =構成圖。使用該感測器電4 1C之位址指定型影像感測 為’其全體構成與目1所示者相同,因而省略其說明。該 感測器電路1C,係與本發明之第!觀點之感測器電路相;; Λ …包吩偁成,與第3實施 形態之感測器電路1Β(參照_ 4)的電路構成大致相同 有的相異點在於,在與各像素區# 12成為對應設置關係 之放大電晶體TW之輸出侧’追加有與其並聯之η個要 擇電晶體TrSEL1〜ΤΓςρτ (繁? ^ —〜TrSELn的輸出側’又追加# n個儲存用電容 CST1〜CSTn、與η個輸出電晶體〜。因此 與圖4之感測器電路lc相 卞於 且省略其說明。 4门之要件,係賦予相同符號, 儲存用電容元件C 〜Γ λα 士被㈠ ST1 STn的目的在於,可供暫時儲存 由放大電晶體TrAMP放大後^個光電二極體叫〜心 汛唬,其等之—端子,分別與相 ηThe opening and closing time of the Tr0UT can be different from the opening and closing time of the transmission gate TG^TGn in the pixel block 12. In the image sensing sensor using the sensor circuit 1 of the first embodiment, the timing output signals from the n photodiodes PD1 to pDn in the corresponding pixel block 12 are amplified in the amplifying transistor TrAMP. Immediately, it is output to the order line 37. On the other hand, in the image sensor using the sense φ measured as the circuit 1A of the second embodiment, the timing output signals from the n photodiodes PDcPDn in the pixel block 12 are passed through the amplified transistor D(10). After being amplified, it is temporarily stored in the storage capacitive element Cst. Therefore, by outputting the control signal ρ 〇υτ, the timing of outputting the forward signal line 37 and the time of opening and closing of the transmission idle 亟 TG1 TG TGn can be performed. (ie, used to read the signals from the photodiodes PR to PD) are staggered from each other. In the image sensor of the sensor circuit ία of the second embodiment having the above-described configuration, φ can store the signal charges of all the pixels 11 substantially simultaneously for the same reason as in the case of the third embodiment ( In fact, since the exposure can be simultaneously performed in the above manner, the image distortion of the conventional CMOS image sensor does not occur, and the object to be moved at a high speed can be photographed. The common reset transistor TrRST and the common amplifying transistor T^MP are disposed outside the pixel region 12 in a manner corresponding to each pixel block 12, and therefore, each pixel 11 of the pixel block 12 It only needs to have one photodiode and one gate element (M〇s transistor). Therefore, compared with the photoelectric diode in one pixel, there are three or four 47.03484 MOS transistor The known cM〇s image sensor can achieve a higher pixel aperture rate. In addition, by outputting the control signal p 〇υτ, the signal is sent to the line of signal line 37 and the target point can be matched with the pixel block. Transfer gate TG wide TGn Since the guard points on the opening and closing day are shifted from each other, it is possible to perform high-speed photography more easily than the obstacle shape using the sensor circuit 1 of the first embodiment. (Embodiment 3) 4 is a circuit configuration diagram of a sensor circuit according to a third embodiment of the present invention. The address specifying image sensing 3' using the sensor circuit 1B is the same as that shown in FIG. Therefore, the description of the sensor circuit 1B corresponds to the sensor circuit of the first aspect of the present invention. The circuit configuration of the sensor circuit 丨b shown in FIG. 4 and the sense of the first embodiment The circuit configuration of the detector circuit 1 (see FIG. 2) is substantially the same, and the only difference is that the large-transistor TrAMP is disposed in correspondence with each pixel block 12, and the source and drain electrodes on the output side thereof. The region is further provided with n selection transistors TrsELi~TrsELn (second gate elements) connected in parallel thereto, and the output signals from the amplified n photodiodes PDi to PDa are transmitted through the selection transistors TrSEL1 to TrsELn. Parallel output to line signal line 37. Select transistor TrSEL1~T rsELn, if the logic state of the output selection signal P SEL wide P SELn applied to its gate is Η, each is turned on, and if it is L, it is turned off. Therefore, it is the same as the sensor circuit of FIG. The same reference numerals are given to the same elements, and the description thereof is omitted. When reading the corresponding signals of the signal charge (i.e., the number of charges generated by n photodiodes pDi~pDn 48 200803484), n are amplified. The transistors TrSEL1 to TrSELn are selected to be turned on and off in a substantially synchronized manner with the transfer gate TG TGn in the corresponding pixel block 12. That is, for example, the signal is read by the photodiode PD! In the case of amplification, the transfer gate TGi is turned on (becomes in an on state), and the selected transistor is also turned on (becomes in an on state). Therefore, the signal charge to be read is amplified by the amplified transistor TrAMP. Immediately thereafter, it is output to the signal line 37 by selecting the transistor 0 TrSELi. In the image sensor including the sensor circuit 1b of the third embodiment having the above-described configuration, the signal charges of all the pixels 11 can be substantially simultaneously stored for the same reason as in the case of the first embodiment (essentially Exposure at the same time). Further, since the simultaneous exposure can be substantially performed in the above manner, the image distortion of the conventional CMOS image sensor does not occur, and the object to be moved at a high speed can be photographed. Further, a common reset body TrRST and a common amplifying transistor TrAMP are disposed outside the pixel block 12 in a manner corresponding to each pixel block 12, and therefore, the pixel block 12 For each pixel, it is only necessary to have one photodiode and one gate element (M〇s transistor). Therefore, a higher pixel aperture ratio can be achieved than a conventional CMOS image sensor in which one or four MOS transistors are included in the photodiode in one pixel. Furthermore, the output signals from the amplified n photodiodes pDi to pD are outputted through the corresponding n-selected electro-optical cells ^sELi-TrSELn and are connected to the adjacent signal line 37. It also has the effect of being able to quickly perform the signal processing of the next paragraph of 2008 2008484. (Fourth Embodiment) Fig. 5 is an electric diagram of a sensor circuit (1) according to a fourth embodiment of the present invention. The address designation type image sensing using the sensor circuit 4 1C is the same as that shown in the first embodiment, and thus the description thereof will be omitted. The sensor circuit 1C is the same as the present invention! The sensor circuit phase of the present invention is substantially the same as the circuit configuration of the sensor circuit 1 (refer to _ 4) of the third embodiment, and is different from each pixel region. 12 is added to the output side of the amplifying transistor TW corresponding to the setting relationship η in addition to the n-th selectable transistors TrSEL1 to ΤΓςρτ (the output side of the ^^~TrSELn) is added, and #n storage capacitors CST1 to CSTn are added. And n output transistors ~. Therefore, the sensor circuit lc of FIG. 4 is omitted and the description thereof is omitted. The four-gate element is given the same symbol, and the storage capacitive element C ~ Γ λα is (1) ST1 STn The purpose is to temporarily store the amplified photodiode TrAMP after amplification of a photodiode called ~ heart, which is the terminal, respectively, and phase η

TrSEL1〜TrSELn之輸出側的源極、汲極區域連接,一:;體 則與既定電位(通f為接地電位)之端子或區域連接。 輸出電晶體Tr〇UT1〜T、的目的在 在該儲存用電容元件之訊“ 存 對應的行訊號線37,豆等之飞万式傳迗至相 輪出側之源極、汲極區域,與 50 200803484 該像素區塊12的給φ # 7。 _ 輸出碥子(行訊號線37)連接。輸出電晶 體τΓ〇υτι〜τΓ〇υΤη,若施加至其等之閘極之輸出控制訊心 〇UT11〇UTJ邏輯狀態為Η,則成導通狀態,若為L則呈 辦開狀態。在將暫時儲在於妙六 _ 二 节才储存於儲存用電容兀件CST1〜cSTn之放 大δίΐ號以並聯方式給山石/一 式輸出至仃汛谠線37時,輸出電晶體The source and drain regions of the output side of TrSEL1 to TrSELn are connected to each other, and the body is connected to a terminal or region of a predetermined potential (through f is a ground potential). The purpose of outputting the transistors Tr〇UT1 to T is to store the corresponding capacitive signal line 37 in the storage capacitive element, and to transmit the source and the drain of the bean to the source and drain regions of the phase wheel side. 50 200803484 The pixel block 12 is given φ # 7. _ output dice (line signal line 37) is connected. The output transistor τΓ〇υτι~τΓ〇υΤη, if applied to its gate, the output control signal 〇 UT11〇UTJ logic state is Η, then it is in conduction state, if it is L, it is open state. In the temporary storage, it is stored in the storage capacitors CST1~cSTn, and the amplification δίΐ is stored in parallel. When the rock/one type is output to the squall line 37, the output transistor

Tr〇uT广Tr0UTn的開閉時點,與像素區塊12中之傳送閘極 TGcTGn的開閉之時點能彼此錯開。The opening and closing timing of the Tr〇uT wide Tr0UTn can be shifted from each other at the time of opening and closing of the transfer gate TGcTGn in the pixel block 12.

在上述第3實施形態之使用感測器電路1B之影像感 測為中,來自相對應的像素區塊12中之n個光電二極體 PDcPDn之n個輸出訊號,在經過放大電晶體丁、·的放 大後’係立即以並聯方式往著行訊號線37輸出。相對於 此,在第4實施形態之使用感測器電路丨c之影像感測器 中’來自像素區塊12中之n個光電二極體PDcPDn之輸 出訊號,在經過放大電晶體ΤΓαμρ的放大後,係分別暫時 諸存於儲存用電各元件CST1〜CSTn,因此,藉助於輸出控制 几號φ 0UT1〜p 〇UTn,以並聯方式輸出至行訊號線37之時 點,能與傳送閘極TG广TGn的開閉之時點(即用以從該光 電二極體PD广PDn中讀取訊號之時點)彼此錯開。 在具備上述構成之第4實施形態之感測器電路1C之 影像感測器中,基於與第1實施形態之情形相同的理由, 對所有像素11的訊號電荷能實質上同時貯存(實質上同時 曝光化)。又,由於能以上述方式使同時曝光化,不會發生 習知的CMOS影像感測器之影像失真情形,可對高速移動 之待攝物體進行攝影。 51 200803484 又’共通的重置電晶體TrRST與共通的放大電晶體 TrAMP ’係以與各像素區塊12對應之方式而設在該像素區 塊12的外側,因此,該像素區塊12的各像素11,只需具 備一個光電二極體與一個閘極元件(M〇s電晶體)。因此, 相較於在一個像素中除光電二極體外尚包含三個或四個 MOS電晶體之習知的CM〇s影像感測器,可實現較高的像 素開口率。 φ 再者藉由輸出控制訊號P OUT1〜P OUTn,訊號往行訊 號線3 7輸出之時點’能與像素區塊1 2中之傳送閘極 TG^TGn之開閉之時點彼此錯開,因此,相較於第3實施 形態之使用感測器電路1B之情形,能有更高速的攝影, 亦是其效果所在。 (第5實施形態) 圖6係本發明第5實施形態之位址指定型影像感測器 2的要部電路構成之電路圖;圖8係該影像感測器2的實 籲際構造之要部截面圖。該影像感測器2,係使用上述第3 實施形態之感測器電路1B(參照W 4)者,其係將上位半導 體電路層21與下位半導體電路層22積層後成為二段之三 維積層構造。該影像感測器2,與本發明之第3觀點的影 像感測器相對應。 、影像感測器2的全體構成及動作,與圖i所示者相同, 而省略有關於其等之說明。又’ w 6之電路構成,與圖4 所示之第3實施形態之感測器電路1B(在各放大電晶體 TrAMP的輸出端連接有n個選擇電晶體Trs以丨〜且未 52 200803484 設有儲存用電容元件與輸出電晶體者)相同,因㈣相同要 件賦予相同符號並省略其說明。但在影像感測器2中,如 =述,有使用周知的埋設配、線23 ’以使形成於上位半導體 電路層21中的各像素區塊12之共通節點13,與節點μ(形 成於下位半導體電路層22中的重置電晶體TrRST及放大電 晶體TrAMp的連接點)形成電氣連接’因此,在圖6中,追 加了埋設配線23、由該配設配線23所產生之寄生電阻 與寄生電容u (:。2。埋設配線23,係對各像素區塊i2(亦 即n個像素11)設置有1個。 接著邊參恥圖8來說明影像感測器2之實際構造。 ❿由圖8可以了解,影像感測器2係使用埋設配線”與 微細之凸塊電極(例如,錮(In)與金(Au)的積層體或是鎢㈤ 等)90及電氣絕緣之黏著劑(例如聚醯亞胺1,使上位半導 體電路層21與下位半導體電路層22形成機械及電氣之連 接。 再者,用以形成埋設配線23及凸塊電極9〇之方法, 以及使用黏著劑91而將上位半導體電路層21與下位半導 體電路層22冑械連接之方法,係使用業界所咸知者,因 而省略有關其等之說明。 在上位半V體迅路層21中,形成有(kxm)個像素區塊 Η ’亦即形成有(kxn)xm個像素n。因此,上位半導體電 路層2!包含(kxn)xm個光電二極體(亦即,有㈣組之光 电一極體群PD广PDn);以及(kxn)xm個傳送閘極(亦即,有 ㈣組之傳送閑極群TGi〜TGJ。在上位半導體電路層η 53 200803484 中’進一步形成有(kxm)個埋設配線23。 在下位半導體電路層22中,形成有:(kxm)個重置電 晶體TrRST ; (kxm)個放大電晶體TrAMP ;及(kxn)xm個選擇 電晶體(亦即,有(kxm)組之選擇電晶體群TrsELi〜TrsELn)。In the image sensing of the sensor circuit 1B using the third embodiment, the n output signals from the n photodiodes PDcPDn in the corresponding pixel block 12 are amplified by a transistor, The "amplified" is immediately output in parallel to the signal line 37. On the other hand, in the image sensor using the sensor circuit 丨c of the fourth embodiment, the output signals from the n photodiodes PDcPDn in the pixel block 12 are amplified by the amplified transistor ΤΓαμρ. After that, they are temporarily stored in the storage power components CST1 to CSTn, and therefore, by the output control number φ 0UT1 〜 p 〇 UTn, the timing is output to the line signal line 37 in parallel, and the transmission gate TG can be transmitted. The point at which the wide TGn is opened and closed (i.e., the point at which the signal is read from the photodiode PD wide PDn) is staggered from each other. In the image sensor including the sensor circuit 1C of the fourth embodiment configured as described above, the signal charges of all the pixels 11 can be substantially simultaneously stored (substantially simultaneously) for the same reason as in the case of the first embodiment. Exposure). Further, since the simultaneous exposure can be performed in the above manner, the image distortion of the conventional CMOS image sensor does not occur, and the object to be moved at a high speed can be photographed. 51 200803484 Further, the 'common reset transistor TrRST and the common amplifying transistor TrAMP' are disposed outside the pixel block 12 so as to correspond to the respective pixel blocks 12, and therefore, each of the pixel blocks 12 The pixel 11 only needs to have one photodiode and one gate element (M〇s transistor). Therefore, a higher pixel aperture ratio can be achieved than a conventional CM〇s image sensor in which one pixel or three MOS transistors are included in a single pixel. φ By outputting the control signals P OUT1 P POUTn, the time point when the signal is outputted to the signal line 3 7 can be shifted from the opening and closing of the transfer gate TG^TGn in the pixel block 12, and therefore, the phase is shifted. Compared with the case where the sensor circuit 1B is used in the third embodiment, it is possible to have a higher speed of photographing, and the effect is also obtained. (Fifth Embodiment) Fig. 6 is a circuit diagram showing a circuit configuration of a main part of the address specifying image sensor 2 according to the fifth embodiment of the present invention; and Fig. 8 is a main part of the actual call structure of the image sensor 2. Sectional view. In the image sensor 2, the sensor circuit 1B (refer to W 4) of the third embodiment is used, and the upper semiconductor circuit layer 21 and the lower semiconductor circuit layer 22 are laminated to form a two-dimensional three-layer laminated structure. . This image sensor 2 corresponds to the image sensor of the third aspect of the present invention. The overall configuration and operation of the image sensor 2 are the same as those shown in FIG. 1, and the description thereof will be omitted. Further, the circuit configuration of 'w 6' is the same as that of the sensor circuit 1B of the third embodiment shown in FIG. 4 (the n selection transistors Trs are connected to the output ends of the respective amplification transistor TrAMPs, and are not 52 200803484) The storage capacitor element is the same as the output transistor, and the same reference numerals are given to the same elements, and the description thereof is omitted. However, in the image sensor 2, as described above, a well-known buried wiring line 23' is used to make the common node 13 of each pixel block 12 formed in the upper semiconductor circuit layer 21, and the node μ (formed on The connection point between the reset transistor TrRST and the amplifying transistor TrAMp in the lower semiconductor circuit layer 22 is electrically connected. Therefore, in FIG. 6, the buried wiring 23 and the parasitic resistance generated by the disposed wiring 23 are added. The parasitic capacitance u (: 2. The buried wiring 23 is provided for each pixel block i2 (that is, n pixels 11). Next, the actual configuration of the image sensor 2 will be described with reference to Fig. 8. As can be seen from FIG. 8, the image sensor 2 uses a buried wiring" and a fine bump electrode (for example, a laminate of germanium (In) and gold (Au) or tungsten (f), etc.) 90 and an electrically insulating adhesive. (For example, polyimine 1 forms a mechanical and electrical connection between the upper semiconductor circuit layer 21 and the lower semiconductor circuit layer 22. Further, a method for forming the buried wiring 23 and the bump electrode 9A, and an adhesive 91 are used. And the upper semiconductor circuit layer 21 and the lower semiconductor are electrically The method of mechanically connecting the layers 22 is known to those skilled in the art, and the description thereof is omitted. In the upper half V body fast layer 21, (kxm) pixel blocks Η are formed, that is, (kxn) xm pixels n. Therefore, the upper semiconductor circuit layer 2! includes (kxn) xm photodiodes (that is, the photodiode group PD wide PDn of the (four) group); and (kxn) xm The transfer gates (that is, the transfer dummy groups TGi to TGJ of the (four) group are formed. Further, (kxm) buried wirings 23 are formed in the upper semiconductor circuit layer η 53 200803484. In the lower semiconductor circuit layer 22, : (kxm) reset transistors TrRST; (kxm) amplifying transistors TrAMP; and (kxn) xm selecting transistors (that is, having (kxm) groups of selected transistor groups TrsELi to TrsELn).

在上位半導體電路層21,係在p型的單晶矽(si)基板 4〇的表面區域,以既定圖案形成元件分離絕緣膜4 1,藉 此而將(kxn)xm個像素11用的元件區域以陣列狀並聯,如 同圖1之布局方式所示。其等之元件區域分別與一個像素 11相對應。像素區塊12的構成皆為相同,因而在此係以 一個像素區塊12(i,j)來說明。 在與像素區塊12(i,j)相對應的元件區域之内部,形成 η個光電二極體PDi〜PDn與n個傳送閘極TGi〜例如, 如圖8所示,光電二極體pDi係由形成於p型基板⑽之^ 型區域42所構成(亦即,光電二極體ρ〇ι係p_n接合式光 電一極體)。傳送閘極TGi係由M〇s電晶體所形成,其包 含··閘極44、及隔著該閘極44於其間而 為對向W3。傳送閘極TGi,因為光電二二叩成 的η型區域42為共用之故,而使傳送閘極TGi的一源極、 沒極區域’與光電二㈣PDi的陽極形成電氣連接。存在 於間極44與基板40的表面之間之間極絕緣膜,在圖8中 予省略(在閘極44與基板40的表面間有閘極絕緣膜的 存在,係相#清楚之事,因m下說明中亦省略有關 閉極絕緣膜之說明)。閘極44,係透過形成於基板4〇的表 面之配線構:d 47中的配線,而與相對應的讀取控制線u 54 200803484 形成電氣連接。此處之配線構造47中具備,形成於基板4〇 的表面之配線用導電體與包含其之絕緣體,並不包含存在 於基板40的表面之閘極絕緣膜與閘極。(此點在以下實施 形悲亦是相同。)至於其他的光電二極體ρΓ^〜ρΕ)η與傳送閘 極TG2〜TGn,分別與光電二極體pDi及傳送閘極T(Ji有相 同的構成。In the upper semiconductor circuit layer 21, in the surface region of the p-type single crystal germanium (si) substrate 4, the element isolation insulating film 4 is formed in a predetermined pattern, thereby (kxn) xm pixels 11 The regions are connected in parallel in an array, as shown in the layout of Figure 1. The component areas thereof are corresponding to one pixel 11, respectively. The configuration of the pixel block 12 is the same, and thus is described here by one pixel block 12 (i, j). Inside the element region corresponding to the pixel block 12 (i, j), n photodiodes PDi to PDn and n transfer gates TGi are formed, for example, as shown in FIG. 8, the photodiode pDi It is composed of a ^-type region 42 formed on the p-type substrate (10) (that is, a photodiode ρ〇ι-based p_n junction type photodiode). The transfer gate TGi is formed by an M〇s transistor, and includes a gate 44 and a gate W3 interposed therebetween. The gate TGi is transferred, and since the n-type region 42 of the photodiode is shared, a source and a non-polar region ' of the transfer gate TGi are electrically connected to the anode of the photodiode (4) PDi. An extremely insulating film exists between the interpole 44 and the surface of the substrate 40, which is omitted in FIG. 8 (the presence of a gate insulating film between the gate 44 and the surface of the substrate 40, the phase # is clear, The description of the closing of the insulating film is omitted in the description of m. The gate 44 is electrically connected to the corresponding read control line u 54 200803484 through the wiring formed in the wiring structure of the substrate 4: d 47 . Here, the wiring structure 47 includes a wiring conductor formed on the surface of the substrate 4A and an insulator including the same, and does not include a gate insulating film and a gate existing on the surface of the substrate 40. (This point is the same in the following embodiment.) As for the other photodiodes ρΓ^~ρΕ)η and the transfer gates TG2 to TGn, they are the same as the photodiode pDi and the transfer gate T (Ji). Composition.

在配線構造47的内部,形成有配線膜46,其係以既 定圖案而形成;及n個導電性接觸插塞45,用以使傳送閉 極TG〗〜TGn之η個η+型區域43與該配線膜46形成電氣連 接。像素區塊12(i,j)中的η個傳送閘極TGi〜TG,n,各藉 由其等接觸插塞45而與配線膜46形成電氣連接,因而使 傳送閘極TGcTGn並聯於共通節點13。 在基板4〇中,形成了使元件分離絕緣膜41與基板40 在上下方向(與基板4〇的主面正交之方向)貫穿之(kx⑷個 透孔,其形成位置係位於,與傳送閘極TG广TGn之n+型區 域(源極、汲極區域)43相鄰之元件分離絕緣膜41之重疊 位置在該透孔中,其接觸於基板40的矽部分之内壁, 被絕緣膜24覆蓋於全面。在該透孔的内部(絕緣膜24的内 側與元件分離絕緣膜41的内部),充填著聚碎等導電性材 ;斗由.亥$包f生材料形成埋設配線23。該埋設配線^的 上端’係由基板4〇(元件分離絕緣膜41)的表面外露,與形 成於配線構造47内部之導電性接職塞…的下端連接。 X導電|±接觸插基23a的上端,與形成於配線構造Ο内部 …良膜46連接。因此,埋設配線23係透過導電性接觸 55 200803484 插塞23a而與相對應的配線膜46形成電氣連接。其結果, 像素區塊12(i,j)之n個傳送閘極TG^TGni n+型區域(源 極、汲極區域)43,係如圖6之電路構成所示般,與相對應 的埋设配線23成為共通的電氣連接。各埋設配線23的下 鈿,係由基板40的内面外露,與位在其下端之相對應的 凸塊電極9 0形成機械及電氣連接。 在下位半導體電路層22中,係在p型單晶矽基板60 _ 的表面區域以既定圖案形成元件分離絕緣膜61,藉此而形 成既定數量的重置電晶體TrRST用之元件區域、既定數量 之放大電晶體TrAMP用之元件區域、及既定數量之選擇電 晶體TrSEL1〜TrSELn用之元件區域。此處,係以一個像素區 塊12(i,j)之對應構成方式來說明。 如圖8所示,重置電晶體TrRsT係由M〇s電晶體所構 成’其包含閘極63、及隔著該閘極63於其間而形成於兩 側之一對n+型區域(源極、汲極區域)62。閘極63,係透過 _ 形成於基板6〇的表面之配線構造74中的配線,與相對應 的重置線31形成電氣連接。此處之配線構造74具備,形 成於基板60的表面之配線用導電體及包含其之絕緣體, 存在於基板60表面之閘極絕緣膜與閘極則並未包含(此點 在以下貫施形態亦是相同)。一 n+型區域62(源極、汲極區 域)’透過形成於配線構造74内部之導電性接觸插塞68、 配線膜72、導電性接觸插塞74a、及配線膜75,與相對應 的凸塊電極90形成電氣連接。其結果,重置電晶體TrRsT 的一源極、汲極區域,透過相對應的埋設配線23,與上位 56 200803484 半導體電路層21中相對應的共通節點13(像素區塊丨叩,川 形成電氣連接(參照圖6)。另一 n+型區域62(源極、沒極區 域),則是透過未圖示之配線而有重置電壓的施加。Inside the wiring structure 47, a wiring film 46 is formed which is formed in a predetermined pattern; and n conductive contact plugs 45 are provided for n-type n +-type regions 43 of the transfer closed electrodes TG 〜 TGn This wiring film 46 forms an electrical connection. The n transfer gates TGi TG TG, n in the pixel block 12 (i, j) are electrically connected to the wiring film 46 by their contact plugs 45, thereby making the transfer gate TGcTGn parallel to the common node 13. In the substrate 4, the element isolation insulating film 41 and the substrate 40 are formed to penetrate in the vertical direction (the direction orthogonal to the main surface of the substrate 4A) (kx (4) through holes, and the formation positions thereof are located, and the transfer gates are formed. The overlapping position of the element isolation insulating film 41 adjacent to the n + -type region (source, drain region) 43 of the TG TG TGn is in the through hole, which is in contact with the inner wall of the dam portion of the substrate 40, and is covered by the insulating film 24. In the inside of the through hole (the inside of the insulating film 24 and the inside of the element isolation insulating film 41), a conductive material such as a pulverized material is filled, and the embedded wiring 23 is formed by the hopper. The upper end of the wiring ^ is exposed by the surface of the substrate 4 (the element isolation insulating film 41), and is connected to the lower end of the conductive contact plug formed inside the wiring structure 47. X conductive|± the upper end of the contact interposer 23a, The wiring layer 23 is electrically connected to the corresponding wiring film 46 through the conductive contact 55 200803484 plug 23a. As a result, the pixel block 12 (i, j) n transfer gate TG^TGni n+ type area (Source, drain region) 43 is electrically connected to the corresponding buried wiring 23 as shown in the circuit configuration of Fig. 6. The lower surface of each buried wiring 23 is exposed from the inner surface of the substrate 40. Mechanically and electrically connected to the bump electrode 90 corresponding to the lower end thereof. In the lower semiconductor circuit layer 22, the element isolation insulating film 61 is formed in a predetermined pattern in the surface region of the p-type single crystal germanium substrate 60_. Thereby, a predetermined number of element regions for resetting the transistor TrRST, a predetermined number of element regions for the amplifying transistor TrAMP, and a component region for a predetermined number of the selection transistors TrSEL1 to TrSELn are formed. A corresponding configuration of a pixel block 12 (i, j) is illustrated. As shown in FIG. 8, the reset transistor TrRsT is composed of an M〇s transistor, which includes a gate 63 and is interposed between the gates. 63 is formed on one side of the pair of n + -type regions (source, drain region) 62. The gate 63 is a wiring that is transmitted through the wiring structure 74 formed on the surface of the substrate 6A, and corresponds to The reset line 31 forms an electrical connection. The wiring structure 74 includes a wiring conductor formed on the surface of the substrate 60 and an insulator including the same, and the gate insulating film and the gate which are present on the surface of the substrate 60 are not included (this point is also in the following embodiment) The same is true. An n + -type region 62 (source, drain region) passes through the conductive contact plugs 68 formed in the wiring structure 74, the wiring film 72, the conductive contact plugs 74a, and the wiring film 75, and The corresponding bump electrodes 90 form an electrical connection. As a result, a source and a drain region of the reset transistor TrRsT are transmitted through the corresponding buried wiring 23, and a common node corresponding to the upper portion 56 200803484 semiconductor circuit layer 21 13 (Pixel block 丨叩, Sichuan forms an electrical connection (refer to Figure 6). The other n + type region 62 (source, no-pole region) is applied with a reset voltage through a wiring (not shown).

放大電晶體TrAMp係由MOS電晶體所構成,其包含閘 極65、及隔著該閘極65於其間而在兩侧形成之一對n+型 區域(源極、汲極區域)64。閘極65係透過形成於配線構造 74内部之導電性接觸插塞7 i、配線膜u、導電性接觸插 塞^a、及配線膜75,與對應之凸塊電極卯形成電氣連接。 …果放大電a曰體ΤΓαμρ的閘極,透過相對應的埋設配 線Μ,與上位半導體電路層21中相對應的共通節點13(像 素區塊12(i,j))形成電氣連接(參照圖6)。又,另一 γ型區 域64(源極、汲極區域),透過形成於配線構造74内部之 導電性接觸插塞69,而與形成於配線構造Μ内部之配線 膜73形成電氣連接。在另一 n+型區域64(源極、汲極區域), 係透過未圖示之配線而有電源電壓Vcc之施加。 η個選擇電晶體TrSEL1〜TrSELn,各是由M0S電晶體所 構成,其中包含閘極67、及隔著該閘極67於其間而在兩 侧形成之一對n+型區域(源極、汲極區域)66。一 n+型區域(源 極、汲極區域)66,係透過形成於配線構造74内部之導電 性接觸插塞70、配線膜73、及導電性接觸插塞69,與相 對應的放大電晶體TrAMP之一 型區域(源極、汲極區域)64 形成书氣連接。另一 n+型區域(源極、没極區域)6 6,則與 該影像感測器2之對應的輸出端子連接。閘極67,係透過 形成於配線構造74内部之配線,而與輸出選擇線39形成 57 200803484 電氣連接。在各個選擇電晶體ΤΓ_〜τ、的閘極π中, 係透過㈣應的輪线擇線39 #各有既定之㈣選擇訊 號9 SEL1〜9 SELn的施加。 測裔2中,如圖8所示般, TrSEL1及TrSEL2,係形成於 儘可能縮小佔有面積之故。 在第5貫施形態之影像感 鄰接的二個選擇電晶體,例如 相同的元件區域中。此係為了The amplifying transistor TrAMp is composed of a MOS transistor, and includes a gate 65 and a pair of n + -type regions (source, drain regions) 64 formed on both sides with the gate 65 interposed therebetween. The gate 65 is electrically connected to the corresponding bump electrode 透过 through the conductive contact plug 7 i formed in the wiring structure 74, the wiring film u, the conductive contact plug ^a, and the wiring film 75. The gate of the amplifying electrode ΤΓαμρ is electrically connected to the common node 13 (pixel block 12(i, j)) corresponding to the upper semiconductor circuit layer 21 through the corresponding buried wiring ( (refer to the figure). 6). Further, the other γ-type region 64 (source and drain region) is electrically connected to the wiring film 73 formed inside the wiring structure 透过 through the conductive contact plug 69 formed inside the wiring structure 74. In the other n + -type region 64 (source, drain region), the supply voltage Vcc is applied through a wiring (not shown). η selected transistors TrSEL1 Tr TrSELn, each consisting of a MOS transistor, including a gate 67, and a pair of n+-type regions (source, drain) formed on both sides with the gate 67 interposed therebetween Area) 66. An n + -type region (source, drain region) 66 passes through the conductive contact plug 70 formed in the wiring structure 74, the wiring film 73, and the conductive contact plug 69, and the corresponding amplifying transistor TrAMP One type of region (source, drain region) 64 forms a book gas connection. The other n+ type region (source, no-pole region) 66 is connected to the corresponding output terminal of the image sensor 2. The gate 67 is electrically connected to the output selection line 39 via the wiring formed in the wiring structure 74, 57 200803484. In each of the gates π of the selected transistors ΤΓ_~τ, the application of the predetermined (four) selection signals 9 SEL1 ~ 9 SELn is transmitted through the (four) appropriate wheel line selection 39 #. In the survey 2, as shown in Fig. 8, TrSEL1 and TrSEL2 are formed to minimize the occupied area. In the fifth embodiment, the two selected transistors are adjacent to each other, for example, in the same element region. This is for

在該元件區域<中,《隔著既定距離之方式而並排形成三 個型區域(源極、汲極區域)66,中央的n+型區域μ,係 由二個選擇電晶體TrsELi及Thu所共用。又,共用的^ 型區域66,係與相對應的放大電晶體TrAMp之一 γ型區域 64形成電氣連接。非共用之n+型區域66,係分別連接於 相對應的輸出端子。 上位半導體電路層21内的型區域43與下位半導體 電路層22内的n+型區域62(其等係透過埋設配線23而使 彼此電氣連接),具有FD(浮置擴散)區域之功能,換言之, 所具有的功此係,藉由光電轉換作用而將貯存於光電二極 體PD^PDn之訊號電荷量轉換成電壓訊號。 再者’上位半導體電路層21與下位半導體電路層22 之内部構造之形成方法,係業界所咸知者,因而省略有關 其等之說明。 如上述,在圖6及圖8所示第5實施形態之影像感測 器2,係運用圖4所示之第3實施形態之感測器電路ιΒ, 其係將(kxm)個像素區塊12(區塊12分別包含n個像素j j) 與(kxm)個埋設配線23,形成於上位半導體電路層21中, 58 200803484 且係將(kxm)個重置電晶體TrRsT與(kxm)個放大電晶體 TrAMP及(kxm)組之選擇電晶體群Τγ^广TrsELn,形成於下 位半導體電路層22中,並且進一步透過埋設配線23及凸 塊電極90,使上位半導體電路層21中的像素區塊12、與 下位半導體電路層22中對應之重置電晶體TrRsT及放大電 晶體TrAMP彼此形成電氣連接。 又,在下位半導體電路層22的上方之主面(配線構造 74的表面)’係藉由凸塊電極9〇與黏著劑9丨,而與上位半 導體電路f 21的下方之主面(基板4〇的内面)形成電氣及 機械連接,因此,兩電路層21與22構成二段之半導體積 層構造(三維構造)。 、 因此,基於與上述第3實施形態之感測器電路1B之 情形相同的理由,對所古你| Η > 對所有像素1 1的訊號電荷能實質上同 日“丁存(貫質上同時曝光化),且不會發生習知的CMOS影 像感測器之影像失真情形’可對高速移動之待攝物體進行In the element region <, "three types of regions (source, drain region) 66 are formed side by side with a predetermined distance, and the central n + type region μ is composed of two selection transistors TrsELi and Thu Share. Further, the common ^-type region 66 is electrically connected to one of the corresponding Δ-type regions 64 of the amplifying transistor TrAMp. The unshared n+ type regions 66 are respectively connected to corresponding output terminals. The type region 43 in the upper semiconductor circuit layer 21 and the n + type region 62 in the lower semiconductor circuit layer 22 (which are electrically connected to each other through the buried wiring 23) have a function of an FD (floating diffusion) region, in other words, The function is to convert the signal charge amount stored in the photodiode PD^PDn into a voltage signal by photoelectric conversion. Further, the method of forming the internal structure of the upper semiconductor circuit layer 21 and the lower semiconductor circuit layer 22 is well known to those skilled in the art, and the description thereof will be omitted. As described above, in the image sensor 2 of the fifth embodiment shown in FIGS. 6 and 8, the sensor circuit ι of the third embodiment shown in FIG. 4 is used, which is (kxm) pixel blocks. 12 (block 12 includes n pixels jj respectively) and (kxm) buried wirings 23 are formed in the upper semiconductor circuit layer 21, 58 200803484 and (kxm) reset transistors TrRsT and (kxm) are enlarged The transistor TrAMP and the (kxm) group of selected transistors are formed in the lower semiconductor circuit layer 22, and further penetrate the buried wiring 23 and the bump electrode 90 to make the pixel block in the upper semiconductor circuit layer 21. 12. The reset transistor TrRsT and the amplifying transistor TrAMP corresponding to the lower semiconductor circuit layer 22 are electrically connected to each other. Further, the main surface (surface of the wiring structure 74) above the lower semiconductor circuit layer 22 is formed by the bump electrode 9 and the adhesive 9 丨, and the lower surface of the upper semiconductor circuit f 21 (substrate 4) Since the inner surface of the crucible is electrically and mechanically connected, the two circuit layers 21 and 22 constitute a two-stage semiconductor laminate structure (three-dimensional structure). Therefore, based on the same reason as in the case of the sensor circuit 1B of the third embodiment described above, the signal charge for all the pixels 1 1 can be substantially the same on the same day. Exposure), and the image distortion of a conventional CMOS image sensor does not occur 'can be performed on a moving object to be moved at a high speed

X Α ,八而丹爾一個光 極體與一個間極元件(聰電晶體),因此,相較於在 像素中除光電—極體外尚包含三個或四個M〇s 影像感測器’能實現較高的像· 左右),且像素本身尺寸亦能縮小。 的德:者’由於相較於習知的CM0S影像感測器具有4 的像素開口率,因屮如 身 口此,在上位半導體21表面之受 光電二極體的開口八 ° 口 P刀)的、,、心面積相對於攝影區域的總这 59 200803484 之比例’能因而提高。 (第6實施形態) 圖7係本發明第6實施形態之位址指定型影像感測器 2 A的要部電路構成之電路圖;圖9係該影像感測器2a的 貫際構造之要部截面圖。該影像感測器2 A,係使用上述第 4貝^ I恶之感測為電路1 c (參照圖5)者,其係將上位半 導體電路層21與下位半導體電路層22,積層後成為二段之X Α , Eight and Dale an optical pole and an interpole component (Cong transistor), therefore, compared to the photoelectric in the pixel, there are three or four M 〇 image sensors in the body. It can achieve a higher image, and the size of the pixel itself can be reduced. The German: 'Because of the pixel aperture ratio of 4 compared to the conventional CMOS image sensor, because of the body, the surface of the upper semiconductor 21 is exposed by the photodiode. The ratio of the total area of the heart area to the photographic area of this 59 200803484 can be improved. (Embodiment 6) FIG. 7 is a circuit diagram showing a configuration of a main part circuit of an address specifying type image sensor 2A according to a sixth embodiment of the present invention; and FIG. 9 is a main part of the internal structure of the image sensor 2a. Sectional view. The image sensor 2 A is a circuit 1 c (see FIG. 5) that senses the fourth semiconductor device, and the upper semiconductor circuit layer 21 and the lower semiconductor circuit layer 22 are laminated. Duan Zhi

二維積層構造。該影像感測器2 A,與本發明之第3觀點的 影像感測器相對應。 影像感測裔2 A的全體構成及動作,與圖丨所示者相 同。因而省略有關於其等之說明。又,圖7之電路構成, 與圖5所示之第4實施形態之感測器電路lc(在各放大電 晶體TrAMP的輸出端連接有^個選擇電晶體τ 〜 SELl A ISELn 5 在二等返擇毛日日體TrSEL1〜TrSELn的各輸出側,連接有儲存 用電容元件Cst广CSTn及輸出電晶體Tr〇im〜Tr〇uTn之)相 同,因而對相同要件賦予相同符號並省略其說明。但在影 像感測器2A中,如後述,有使用周知的埋設配線23,以 使形成於上位半導體電路層21中的各像素區塊12之共通 節點13,與節點14(該節點14,係形成於下位半導體電= 層22巾的重置電晶體η·及放大電晶體丁〜的連接 點所在)形成電氣連接,因此,在圖7中,追加了埋設配線 23、由該配設配線23所產生之寄生電阻r❹與寄生電容Ci 及c。2。埋設配線23,係對各像素區塊12(亦即n個像。1 設置有1個。 ’、 ) 200803484 接著,邊參照圖9來說明影像感測器2A之實際構造。 由圖9可以了解,影像感測器2A係使用埋設配線23 與微細之凸塊電極90及電氣絕緣之黏著劑(例如聚醯亞 胺)91,使上位半導體電路層21與下位半導體電路層22, 形成機械及電氣連接。Two-dimensional laminated structure. The image sensor 2 A corresponds to the image sensor of the third aspect of the present invention. The overall composition and operation of the image sensing type 2 A are the same as those shown in the figure. Therefore, the description about them and the like is omitted. Further, the circuit configuration of Fig. 7 is the same as that of the sensor circuit lc of the fourth embodiment shown in Fig. 5 (the selection transistors τ SEL SEL A ISELn 5 are connected to the output terminals of the respective amplification transistors TrAMP. The output side of the return-to-be-original body TrSEL1 to TrSELn is the same as the storage capacitor element Cst wide CSTn and the output transistor Tr〇im to Tr〇uTn. Therefore, the same reference numerals will be given to the same elements, and the description thereof will be omitted. However, in the image sensor 2A, as will be described later, the well-known buried wiring 23 is used so that the common node 13 of each pixel block 12 formed in the upper semiconductor circuit layer 21 and the node 14 (the node 14 The electrical connection is formed between the reset transistor η of the lower semiconductor electric layer 22 and the connection point of the amplifying transistor D. Therefore, in FIG. 7, the buried wiring 23 is added, and the wiring 23 is provided. The resulting parasitic resistance r❹ and parasitic capacitances Ci and c. 2. The buried wiring 23 is provided for each pixel block 12 (i.e., n images 1 is provided.) 200803484 Next, the actual structure of the image sensor 2A will be described with reference to FIG. As can be understood from FIG. 9, the image sensor 2A uses the buried wiring 23 and the fine bump electrode 90 and an electrically insulating adhesive (for example, polyimide) 91 to make the upper semiconductor circuit layer 21 and the lower semiconductor circuit layer 22 , forming mechanical and electrical connections.

上位半導體電路層21,與上述第5實施形態之影像感 測器2(參照圖8)所示者具有相同構成,形成有(kxm)個像 素區塊12、亦即有(kxn)xm個像素11,以及(kxm)個埋設 配線23。上位半導體電路層21的内部構成,與上述第5 實施形態之影像感測器2所述者相同,因此,係賦予相同 於第5實施形態時之符號且省略其詳細說明。 下位半導體電路層22,,與上述第5實施形態之影像感 測器2(參照圖8)的下位半導體電路層22有大致相同的構 成,但其中差異之處在於,追加了儲存用電容元件cst广CsTn 及輸出電晶體Tr〇UT1〜丁 r〇UTn。亦即,在下位半導體電路層 22’中,除了有(kxm)個重置電曰曰曰體Τ^τ、(kxm)個放大電 晶體TrAMp、及(kxm)組之選擇電晶體群犯〜外, 尚追加形成有(kxm)組之儲存用電容元件群Cst广CsTn、與以 xni)組之輸出電晶體群Tr〇UT1〜Tr〇uTn。 在下位半導體電路層22,中,係在P型單晶砍基板60 的表面區域以既定圖案形成元件分離絕㈣61,藉此而形 成既定數量的重置電晶豸TrRST用之元件區域、既定數量 之放大電晶體TrAMP用之元件區域、既定數量之選擇電晶 體TrSEL1〜TrsELn、儲存用電容元件⑴、及輸出電晶 61 200803484 體Tr0UT1 Tr〇UTn用之元件區域。此處,係以一個像素區塊 12(1,j)之對應構成方式來說明。 重置電曰a體TrRST之構成,與上述第5實施形態之影 像感測器2(參照圖8)之情形相同,係由M〇s電晶體所構 成,其包含閘極63、及隔著該閘極63於其間而形成於兩The upper semiconductor circuit layer 21 has the same configuration as that of the image sensor 2 (see FIG. 8) of the fifth embodiment, and has (kxm) pixel blocks 12, that is, (kxn) x m pixels. 11, and (kxm) embedded wirings 23. The internal structure of the upper semiconductor circuit layer 21 is the same as that of the image sensor 2 of the fifth embodiment. Therefore, the same reference numerals are given to the fifth embodiment, and the detailed description thereof will be omitted. The lower semiconductor circuit layer 22 has substantially the same configuration as the lower semiconductor circuit layer 22 of the image sensor 2 (see FIG. 8) of the fifth embodiment, but the difference is that the storage capacitive element cst is added. Wide CsTn and output transistor Tr〇UT1~丁r〇UTn. That is, in the lower semiconductor circuit layer 22', in addition to the (kxm) reset electrical body Τ^τ, (kxm) amplification transistors TrAMp, and (kxm) group of selected transistor groups commits ~ Further, the storage capacitor element group Cst wide CsTn of the (kxm) group and the output transistor group Tr〇UT1 to Tr〇uTn of the group of xni) are additionally formed. In the lower semiconductor circuit layer 22, the element isolation is formed in a predetermined pattern in the surface region of the P-type single crystal chopped substrate 60, thereby forming a predetermined number of element regions, a predetermined number for the reset transistor TrRST. The component region for amplifying the transistor TrAMP, the predetermined number of selected transistors TrSEL1 to TTrSELn, the storage capacitor element (1), and the output region of the output transistor 61 200803484 body TrOUT1 Tr〇UTn. Here, the description will be made by the corresponding configuration of one pixel block 12 (1, j). The configuration of the reset 曰a body TrRST is the same as that of the image sensor 2 (see FIG. 8) of the fifth embodiment described above, and is composed of an M 〇s transistor, which includes a gate 63 and is interposed therebetween. The gate 63 is formed between the two

側之對11型區域(源極、及極區域)62。重置電晶體TrRsT 的電氣連接,亦與第5實施形態之影像感測器2(參照圖8) 之情形相同。 放大電晶體TrAMP的構成,亦與上述第5實施形態之 影像感測杰、2(參照圖8)之情形相同,係由MOS電晶體所 構成,其包含閘極65、及隔著該閘極65於其間而形成於 兩側之一對n+型區域(源極、汲極區域)64。放大電晶體τ'· 的電氣連接,亦與第5實施形態之影像感測器2(參照圖8) 相同。 η個選擇電晶體TrsELi〜TrsELn的構成,分別與上述第$ 貝施形恶之影像感測器2(參照圖8)之情形相同,係由m〇S 電晶體所構成,其包含閘極67、及隔著該閘極67於其間 而形成於兩侧之一對n+型區域(源極、汲極區域。又, 儲存用電容元件與輸出電晶體,係以圖7所示之電路構成 方式而連接於該MOS電晶體。 例如’以選擇電晶體TrsELl而言,一 n+型區域(源極、 汲極區域)66,係透過形成於配線構造74内部之導電性接 觸插塞70及69和配線膜73,與相對應的放大電晶體ΤΓαμρ 的一 η+型區域(源極、汲極區域)64形成電氣連接。閘極67, 62 200803484 係透過形成於配線構造74内部之配線而與輸出選擇線Μ 形成電氣連接,而有輸出選擇訊號之施加。選擇電 晶體丁rSEL1的另一 n+型區域(源極、汲極區域)66,連同以 閘極67a為軸係位在其反側之n+型區域66&,構成了具有 儲存用電容元件CST1功能之MOS電容器。該n+型區域66a, 連同閘極67b、以及以該閘極67b為軸係位在該n+型區域 66a的反側之n+型區域66a,構成了具有輸出電晶體h⑽η φ 功能之M〇S電晶體。閘極67a,連接於既定電位(通常為 電源電壓Vcc)的端子或區域。閘極67b,係透過未圖示之 配線而與輸出控制線39a形成電氣連接,而有輸出控制訊 號Ρ ο υ T 1之施加。 如所示,在一個元件區域内,形成有選擇電晶體τ IS IIL 1 與儲存用電容元件cST1及輸出電晶體Tr〇uTi。此點在其他 运擇電晶體TrSEL2〜TrSELn亦是相同。 如上述,在圖7及圖9所示之第6實施形態之影像感 _ 測器2 ’係運用圖5所示之感測器電路1 c,其係將(kxm) 個像素區塊12(分別包含n個像素11)、(kxm)組之傳送閘 極群TG广TGn、及(kxm)個埋設配線23,形成於上位半導 體電路層21中,且係將(kxm)個重置電晶體TrRST、(kXm) 個放大電晶體Tr*AMP、(k X m)組之選擇電晶體群 TrsEL广TrSELn、(kxm)組之儲存用電容元件群cST1〜CSTn、及 (kxm)組之輸出電晶體群Tr〇UT1〜TrOUTn,形成於下位半導體 電路層22’中,並且進一步的透過埋設配線23及凸塊電極 90,使上位半導體電路層21中之像素區塊12,與下位半 63 200803484 ^體電路層22’中之重置雷曰獅 置包日日體TrRsT和放大電晶體 彼此形成電氣連接。 $ Uamp n &於與上述帛4實施形態之感測器電路表 照圖5)之情形相同的理由, 多 — 對所有像素11的訊號電荷能 貫貝上同時貯存(實皙卜 、、 守4、光化),且不會發生習知的 CMOS影像感測器之影像 &像失真情形,可對高速移動之待摄 物體進行攝影。 τ攝The pair of 11-type regions (source, and pole regions) 62. The electrical connection of the reset transistor TrRsT is also the same as in the case of the image sensor 2 (see Fig. 8) of the fifth embodiment. The configuration of the amplifying transistor TrAMP is also composed of an MOS transistor, which includes a gate 65 and a gate interposed therebetween, as in the case of the image sensing J and 2 (see FIG. 8) of the fifth embodiment. 65 is formed between the pair of n + type regions (source, drain region) 64 on both sides. The electrical connection of the amplifying transistor τ'· is also the same as that of the image sensor 2 (see Fig. 8) of the fifth embodiment. The configuration of the n selection transistors TrsELi to TrsELn is the same as that of the above-described image sensor 2 (see FIG. 8), and is composed of a m〇S transistor including a gate 67. And a pair of n + type regions (source and drain regions) formed on both sides of the gate 67 via the gate 67. Further, the storage capacitor element and the output transistor are formed by the circuit configuration shown in FIG. And connected to the MOS transistor. For example, in the case of the selective transistor TrsEL1, an n+ type region (source, drain region) 66 is transmitted through the conductive contact plugs 70 and 69 formed inside the wiring structure 74 and The wiring film 73 is electrically connected to an n + type region (source, drain region) 64 of the corresponding amplifying transistor ΤΓαμρ. The gate 67, 62 200803484 is transmitted through the wiring formed inside the wiring structure 74 and output. The line Μ is selected to form an electrical connection, and the output selection signal is applied. Another n+ type region (source, drain region) 66 of the transistor butyl rSEL1 is selected, along with the gate 67a as the axis on its opposite side. n+ type area 66&, constitutes storage The MOS capacitor functioning as the capacitive element CST1, the n+ type region 66a, together with the gate 67b, and the n+ type region 66a having the gate 67b as the axis on the opposite side of the n+ type region 66a, constitutes an output power The crystal H(10)η φ functions the M〇S transistor. The gate 67a is connected to a terminal or region of a predetermined potential (usually the power supply voltage Vcc). The gate 67b is electrically connected to the output control line 39a through a wiring (not shown). Connected, and there is an output control signal ο ο 施加 T 1 application. As shown, in one element region, a selective transistor τ IS IIL 1 and a storage capacitive element cST1 and an output transistor Tr〇uTi are formed. The same applies to the other transistors TrSEL2 to TrSELn. As described above, the image sensor 2' of the sixth embodiment shown in Figs. 7 and 9 uses the sensor circuit 1c shown in Fig. 5. The (kxm) pixel blocks 12 (including n pixels 11 respectively), the (kxm) group of transfer gate groups TG wide TGn, and (kxm) buried wirings 23 are formed on the upper semiconductor circuit layer 21 Medium, and will be (kxm) reset transistors TrRST, (kXm) amplification Crystal Tr*AMP, (k X m) group, selected transistor group TrsEL wide TrSELn, (kxm) group of storage capacitive element groups cST1 to CSTn, and (kxm) group of output transistor groups Tr〇UT1 to TrOUTn, Formed in the lower semiconductor circuit layer 22', and further transmitted through the buried wiring 23 and the bump electrode 90, the pixel block 12 in the upper semiconductor circuit layer 21 and the lower half 63 200803484 body circuit layer 22' The Thunder lion packs the day-to-day TrRsT and the magnifying transistor to form an electrical connection with each other. $ Uamp n &; for the same reason as in the case of the sensor circuit of the above-described 帛4 embodiment, as shown in Fig. 5), more than - the signal charge of all the pixels 11 can be simultaneously stored on the same (real, 皙, 守4, actinic), and the image of the CMOS image sensor and the image distortion phenomenon do not occur, and the object to be photographed at high speed can be photographed. τ photo

又,像素區塊12的各像素11,只需具備-個光電二 極體與-個閘極元件_s電晶體),因此,相較於在_個 像素中除光電—極體外尚包含三個或四個mqs電晶體之 白知的CMOS影像感測器,能實現較高的像素開口率(例 士達60 /〇左右),且像素"本身尺寸亦能縮小。 再者,由於相較於習知的CM〇s影像感測器具有較高 的像素開口率,因此,在上位半導體21表面之受光區域(各 光電一極體的開口部分)的總面積相對於攝影區域的總面積 之比例,能因而提高。 再者藉由以輸出控制訊號p 0UT1〜¢) 0UTn來控制輪出 電晶體Tr0UT1〜Tr0UTn之方式,將訊號往行訊號線37輸出 時之時點,與像素區塊12中傳送閘極TGi〜TGn及選擇電 晶體群TirSEL广TrSELn的開閉之時點能彼此錯開,因此,相 較於第5實施形態之影像感測器2,能進行更高速之攝影, 亦是其效果所在。 (第7實施形態) 圖10係本發明第7實施形態之位址指定型影像感測器 64 200803484 2B的要部電路構成之電路圖;圖u係該影像感測器π 的實際構造之要部截面圖。該影像感測器2B,係使用上述 第4實施形態之感測器電路lc(參照圖5)者,其係將上位 半導體電路層21A與下位半導體電路層22,積層後成為二 段之三維積層構造。影像感測器2B,與本發 的影像感測器相對應。 硯 1所示者相 所示之電路Moreover, each pixel 11 of the pixel block 12 only needs to have one photodiode and one gate element _s transistor, and therefore, in addition to the photo-polar body, there are three in the _ pixels. The CMOS image sensor of the white or four mqs transistors can achieve a higher pixel aperture ratio (about 60 / 例), and the size of the pixel can be reduced. Furthermore, since the CM 〇 image sensor has a higher pixel aperture ratio than the conventional CM 〇 image sensor, the total area of the light receiving region (the opening portion of each photodiode) on the surface of the upper semiconductor 21 is relatively The proportion of the total area of the photographing area can be increased. Further, by controlling the output transistors Tr0UT1 to Tr0UTn by outputting the control signals p 0UT1 to ¢) 0UTn, the signal is outputted to the signal line 37, and the gates TGi to TGn are transmitted in the pixel block 12. Further, when the opening and closing of the transistor group TirSEL wide TrSELn is selected, the positions can be shifted from each other. Therefore, compared with the image sensor 2 of the fifth embodiment, higher speed imaging can be performed, and the effect is also obtained. (Embodiment 7) FIG. 10 is a circuit diagram showing a configuration of a main circuit of an address specifying image sensor 64 200803484 2B according to a seventh embodiment of the present invention; and FIG. 9 is a main part of the actual structure of the image sensor π. Sectional view. In the image sensor 2B, the sensor circuit lc (see FIG. 5) of the fourth embodiment is used, and the upper semiconductor circuit layer 21A and the lower semiconductor circuit layer 22 are laminated to form a three-dimensional three-layer laminate. structure. The image sensor 2B corresponds to the image sensor of the present invention. Circuit shown in 砚1

衫像感測Is 2B的全體構成及動作,與圖 同。因此,省略有關其等之說明,又,圖i 〇 其他則與圖5之第4 而對相同要件賦予相 構成,除了追加有埋設配線23之外, 實施形態的感測器電路1C相同,因 同符號並省略其說明。 由圖1 0及圖11可以了解,影像感測器2β的構成中, 係使用埋設配線23、微細的凸塊電極9〇、及電氣絕緣性 之黏著劑91,使上位半導體電路層21A與下位半導體電路 層22A’彼此形成機械及電氣連接。該構成係相當於,將第 6實施形態之影像感測器2A(參照圖7及圖9)中形成於下 位半導體電路層22’之(kxm)個重置電晶體TrRST,移轉至 位半導體電路層21中。亦即,在上位半導體電路層2以 中形成有:(kxn)xm個光電二極體(亦即,(kx 組 ’光電 二極體群PD广PDn) ; (kxn)xm個傳送閘極(亦即,(k灿)組 之傳送閘極群TG^TGJ ; (kxm)個之重置電晶體 · 1 rRST ;及 (kxm)個埋設配線23。光電二極體pDi〜PDn與傳送門極 TG〗〜TGn之構成,與第6實施形態之影像感測器2a的情 形相同,因而省略有關其等之說明。 月 65 200803484 重置電βθ體TrRST如圖11所示般,係由M〇s電晶體 所構成,其包含閘極49、及隔著該閘極49於其間而形成 於兩侧之一對η型區域(源極、沒極區域)48。閘極係透 過形成於基板40表面之配線構造47中的配線,而與相對 應的重置線3 1形成電氣連接。一 η+型區域48(源極、汲極 區域),係透過形成於配線構造47内部之導電性接觸插塞 5〇、配線膜46、導電性接觸插塞23a、及埋設配線23,與 相對應的凸塊電極90形成電氣連接。其結果,重置電晶 體TrRST之該源極、汲極區域,與下位半導體電路層22A, 中相對應的放大電晶體TrAMP之閘極65形成電氣連接。重 置電晶體TrRST中另一 n+型區域48(源極、汲極區域),則 透過未圖示之配線而有重置電壓vRST之施加。 在下位半導體電路層22A,中形成有:(kxm)個放大電 晶體TrAMP; (kxm)組之選擇電晶體群TrSEL1〜TrsELn; (kxm) 組之儲存用電容元件群CST1〜CSTn ;及(kxm)組之輸出電晶 體群Tr0UT1〜Tr0UTn。該構成方式係相當於,從第6實施形 態(參照圖7及圖9)之下位半導體電路層22,中,去除(kxm) 個重置電晶體TrRST。放大電晶體TrAMP與選擇電晶體 TrSEL1〜TrSELn之構成,與第6實施形態之情形相同,因而 省略有關其等之說明。 如上述,在圖1 0及圖11所示之第7實施形態之影像 感測器2B,係運用第4實施形態之感測器電路1 c(參照圖 5),其係將(kxm)個像素區塊12(各像素區塊12中包含n個 像素11)、(kxm)組之傳送閘極群TG^TGn、(kxm)個重置 66 200803484 包曰日體TrRST、及(kxm)個埋設配線23,形成於上位半導體 電路層21A中,且係將(kxm)個放大電晶體TrAMp、(kxm) 、、且之遥擇電晶體群Tr肌i〜Trs^、(kxm)組之健存用電容元 件群cST1〜cSTn、及(kxm)組之輸出電晶體群Tr〇uTi〜Tr〇uTn, 形成於下位半導體電路層22,中,並且進一步的透過埋設 配線23及凸塊電極90,使上位半導體電路層2 1中之重置 電晶體TFrst,與下位半導體電路層22A,之放大電晶體TrAMP _ 彼此形成電氣連接。 又’在下位半導體電路層22A,的上方之主面(配線構 造74的表面),係藉由凸塊電極90與黏著劑91,而與上 位半導體電路層21A的下方之主面(基板40的内面)成電氣 及機械連接,因此,兩電路層21A與22 A’構成二段之半導 體積層構造(三維構造)。 因此’基於與第4實施形態之感測器電路1 C之情形 相同的理由,對所有像素Π的訊號電荷能實質上同時貯 _ 存(貝貝上同時曝光化),且不會發生習知的CMOS影像感 測器之影像失真情形,可對高速移動之待攝物體進行攝 影。 又,像素區塊12的各像素11,只需具備一個光電二 極體與一個閘極元件(M〇s電晶體),因此,相較於在一個 像素中除光電二極體外尚包含三個或四個電晶體之 習知的CMOS影像感測器,能實現較高的像素開口率⑼ 如達60%左右),且像素丨丨本身尺寸亦能縮小。 再者,由於相較於習知的CMOS影像感測器具有較高 67 200803484 的像素開口率,因此,在上位半導體21…之受光區域 (各光電二極體的開π部分)的總面積相對於攝影區域的總 面積之比例,能因而提高。 *再者藉由以輸出控制訊號P 〇爪1 〇心來控制輪出 :晶體Tr0UT广Tr0UTn之方式,將訊號往行訊號線η輸出 日寸之4點,與像素區塊12中傳送閘 TG广凡及選擇電 曰曰體群TrSEL广TrSELn的開閉之時點能彼此錯開,因此,相The overall configuration and operation of the shirt image sensing Is 2B are the same as those in the figure. Therefore, the description of the same is omitted, and the other components are the same as those of the fourth embodiment of FIG. 5, and the sensor circuit 1C of the embodiment is the same except that the buried wiring 23 is added. The same symbols are used and the description thereof is omitted. As can be seen from FIG. 10 and FIG. 11, in the configuration of the image sensor 2β, the buried wiring 23, the fine bump electrode 9A, and the electrically insulating adhesive 91 are used to make the upper semiconductor circuit layer 21A and the lower position. The semiconductor circuit layers 22A' form a mechanical and electrical connection with each other. This configuration corresponds to shifting the (kxm) reset transistors TrRST formed in the lower semiconductor circuit layer 22' to the bit semiconductor in the image sensor 2A (see FIGS. 7 and 9) of the sixth embodiment. In the circuit layer 21. That is, (kxn) xm photodiodes are formed in the upper semiconductor circuit layer 2 (that is, (kx group 'photodiode group PD wide PDn); (kxn) xm transfer gates ( That is, the transfer gate group TG^TGJ of the (kcan) group; (kxm) reset transistor · 1 rRST; and (kxm) buried wiring 23. Photodiode pDi~PDn and transfer gate The configuration of TG to TGn is the same as that of the image sensor 2a of the sixth embodiment, and therefore the description thereof will be omitted. Month 65 200803484 The reset electric βθ body TrRST is as shown in FIG. The s transistor is configured to include a gate electrode 49 and an n-type region (source, no-pole region) 48 formed on one of the two sides via the gate electrode 49. The gate is transparently formed on the substrate 40. The wiring in the surface wiring structure 47 is electrically connected to the corresponding reset line 31. An n+ type region 48 (source, drain region) is transmitted through the conductive contact formed inside the wiring structure 47. The plug 5 〇, the wiring film 46, the conductive contact plug 23a, and the buried wiring 23 are electrically connected to the corresponding bump electrode 90. As a result, the source and drain regions of the reset transistor TrRST are electrically connected to the gate 65 of the corresponding amplifying transistor TrAMP of the lower semiconductor circuit layer 22A. Another n+ type of the reset transistor TrRST In the region 48 (source, drain region), the reset voltage vRST is applied through a wiring (not shown). In the lower semiconductor circuit layer 22A, (kxm) amplification transistors TrAMP are formed; (kxm) The group selects the transistor groups TrSEL1 to TrsELn; the (kxm) group of storage capacitor elements CST1 to CSTn; and the (kxm) group of output transistor groups Tr0UT1 to Tr0UTn. This configuration corresponds to the sixth embodiment. (Refer to Fig. 7 and Fig. 9) The lower semiconductor circuit layer 22 removes (kxm) reset transistors TrRST. The configuration of the amplified transistor TrAMP and the selection transistors TrSEL1 to TrSELn is the same as in the sixth embodiment. Therefore, the description will be omitted. As described above, in the image sensor 2B of the seventh embodiment shown in FIGS. 10 and 11, the sensor circuit 1c of the fourth embodiment is applied (see FIG. 5). ), which will be (kxm) pixel blocks 12 (each image) The block 12 includes n pixels 11), a (kxm) group of transfer gate groups TG^TGn, (kxm) resets 66 200803484, a packaged body TrRST, and (kxm) buried wirings 23, which are formed in the upper position. In the semiconductor circuit layer 21A, the (kxm) amplification transistor TrAMp, (kxm), and the remote selection transistor group Tr muscles i to Trs^, (kxm) are used for the storage capacitive element group cST1 to The output transistor groups Tr〇uTi to Tr〇uTn of the cSTn and (kxm) groups are formed in the lower semiconductor circuit layer 22, and further penetrate the buried wiring 23 and the bump electrode 90 to make the upper semiconductor circuit layer 2 1 The reset transistor TFrst is electrically connected to the lower semiconductor circuit layer 22A and the amplifying transistor TrAMP_. Further, the upper main surface (the surface of the wiring structure 74) of the lower semiconductor circuit layer 22A is formed by the bump electrode 90 and the adhesive 91, and the lower surface of the upper semiconductor circuit layer 21A (the substrate 40) Since the inner surface is electrically and mechanically connected, the two circuit layers 21A and 22 A' constitute a two-stage semiconductor laminated structure (three-dimensional structure). Therefore, based on the same reason as in the case of the sensor circuit 1 C of the fourth embodiment, the signal charge of all the pixels can be stored substantially simultaneously (the simultaneous exposure on the babe), and the conventional knowledge does not occur. The image distortion of the CMOS image sensor enables photography of objects to be moved at high speed. Moreover, each pixel 11 of the pixel block 12 only needs to have one photodiode and one gate element (M〇s transistor), and therefore, there are three in addition to the photodiode in one pixel. Or a conventional CMOS image sensor of four transistors, which can achieve a higher pixel aperture ratio (9) of about 60%, and the size of the pixel itself can be reduced. Furthermore, since the CMOS image sensor has a higher pixel aperture ratio of 67 200803484 than the conventional CMOS image sensor, the total area of the light receiving region of the upper semiconductor 21 (the π portion of each photodiode) is relatively The ratio of the total area of the photographing area can be increased. * In addition, by controlling the turn-out by outputting the control signal P 〇 claw 1 : the crystal Tr0UT is wide Tr0UTn, the signal is outputted to the signal line η by 4 points, and the pixel block 12 is transferred to the gate TG. Guangfan and the selection of the electric corpuscle group TrSEL wide TrSELn can be opened and closed at the same time, so the phase

車乂於不具有儲存用電容元件〜c⑴與輸出電晶體The rut does not have a storage capacitor element ~c(1) and an output transistor

Tr〇uT1〜Tr0UTn之情形,更能實施高速攝影,此亦為效果所 在。 (第8實施形態) 圖12,係本發明之第8實施形態之位址指定型影像感 測為2C的實際構造之要部截面圖。該影像感測器2C係相 田於’在上述第7實施形態之影像感測器2B(參照圖1 〇及 圖U)中去除儲存用電容元件CST1〜CSTn與輸出電晶體 ThUT1〜Tr0UTn後而取得者。該影像感測器2C,與本發明第 3觀點之位址指定型影像感測器相對應。 由圖12可以了解,第8實施形態之影像感測器2C的 構成中’係使用埋設配線23、微細之凸塊電極9〇、及電 耽絕緣性之黏著劑91,使上位半導體電路層21A與下位半 導體電路層22A形成機械及電氣連接。上位半導體電路層 21A的構成’相同於第7實施形態之影像感測器2B所示 者。下位半導體電路層22A的構成,相當於從第7實施形 態之影像感測器2B的下位半導體電路層22A,中去除儲存 68 200803484 ΤΓουτι〜Tr0UTn而構成 用電各兀件C ς〜C 飯a jr ST1 LSTn興输出電晶體 者0 〜如上述’第8實施形態之感測器電路2C,基於與第7 :施形態之影像感測器、2B 4 t形相同的理由,對所有像 ,、11的訊號電荷能實質上同時貯存(實質上同時曝光化), 且不會發生習知的CMOS旦:W务Γ?、B『 一 W 衫像感測器之影像失真情形,可 對高速移動之待攝物體進行攝影。In the case of Tr〇uT1 to Tr0UTn, high-speed photography can be performed, which is also an effect. (Embodiment 8) FIG. 12 is a cross-sectional view of an essential part of an actual structure in which address-address-receiving type image sensing according to an eighth embodiment of the present invention is 2C. The image sensor 2C is obtained by removing the storage capacitive elements CST1 to CSTn and the output transistors ThUT1 to Tr0UTn in the image sensor 2B (see FIGS. 1A and 9) of the seventh embodiment. By. The image sensor 2C corresponds to the address specifying type image sensor of the third aspect of the present invention. As can be seen from Fig. 12, in the configuration of the image sensor 2C of the eighth embodiment, the embedded semiconductor wiring layer 23, the fine bump electrode 9A, and the electrically insulating adhesive 91 are used to make the upper semiconductor circuit layer 21A. Mechanical and electrical connection is made to the lower semiconductor circuit layer 22A. The configuration of the upper semiconductor circuit layer 21A is the same as that of the image sensor 2B of the seventh embodiment. The configuration of the lower semiconductor circuit layer 22A corresponds to the removal of the memory 68 200803484 ΤΓουτι to Tr0UTn from the lower semiconductor circuit layer 22A of the image sensor 2B of the seventh embodiment, and constitutes the power supply components C ς 〜 C rice a jr ST1 LSTn output transistor 0 to the sensor circuit 2C of the eighth embodiment, based on the same reason as the image sensor and 2B 4 t of the seventh embodiment, for all images, 11 The signal charge can be stored substantially simultaneously (substantially simultaneously exposed), and there is no known CMOS dan: W Γ 、 、 、 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一The subject to be photographed.

又,像素區士免12的各像素U,只需具備—個光電二 極體與-個閑極元件(M〇s電晶體),因此,相較於在一個 像素中除光電二極體外尚包含三個或四個m〇s電曰體之 習知的CMOS影像感測器,能實現較高的像素開口曰曰率⑼ 如達60%左右),且像素u本身尺寸亦能縮小。 再者,由於相較於習知的CMOS影像感測器具有較高 的像素開口率,因此,在上位半導體21A表面之受光區= (各光電二極體的開口部分)的總面積相對於攝影區域的總 面積之比例,能因而提高。 “ (第9實施形態) 圖13,係本發明第9實施形態之位址指定型影像感測 器2D的要部電路構成之電路圖;圖14,係表示影像感測 為2D的實際構造之要部截面圖。該影像感測器2d,係使 用上述第4實施形態之感測器電路1 c(參照圖1 J ’具係積 層上位半導體電路層21B與下位半導體電路層22B,之二段 的三維積層構造。影像感測器2B,與本發明之第3觀點之 影像感測器相對應。 69 200803484 影像感測器2D的全體構成及動作,與圖1所示者相 同,又,圖13所示之電路構成,除了追加有埋設配線23 之外,其他則與圖5的第4實施形態之感測器電路} c相 同。 由圖13及圖14可以了解,影像感測器2D的構成中, 係使用埋设配線23、微細的凸塊電極90、及電氣絕緣性 之黏著劑91,使上位半導體電路層21B與下位半導體電路 _ 層’彼此形成機械及電氣連接。該構成係相當於,將第 7實施形態之影像感測器2B(參照圖10及圖U)中形成於 下位半導體電路層22A’之(kxm)個放大電晶體TrAMP,移轉 至該上位半導體電路層21B中。 亦即,在上位半導體電路層21B中形成有:(kxn)xm 個光電二極體(亦即,有(k X m)組之光電二極體群 PDi〜PDn) ; (kxn)xm個傳送閘極(亦即,有(kxm)組之傳送 閘極群TG^TGJ ; (kxm)個之重置電晶體TrRST ; (kxm)個 φ 之放大電晶體Τγαμρ、及(kxm)個埋設配線23。光電二極體 PD^PDn與傳送閘極TG广TGn及重置電晶體TrRST之構成, 與第7實施形態之影像感測器2B的情形相同,因而省略 有關其等之說明。 如圖14所示,放大電晶體丁“⑽係由M〇s電晶體所 構成,其包含閘極53、及隔著該閘極53於其間而形成於 兩側之一對n+型區域(源極、汲極區域)52。閘極53係透過 形成於配線構造47内部之導電性接觸插塞54及配線膜 46,而與重置電晶體TrRST及傳送閘極TGi〜TGn形成電氣 70 200803484 逑接。一 n+型區域52(源極、汲極區域),係透過形成於配 線構造47内部之導電性接觸插塞55、配線膜56、導電性 接觸插塞23a、及埋設配線23,而與相對應的凸塊電極9〇 形成電氣連接。其結果,放大電晶體LA·的該源極、沒 極區域,與下位半導體電路層22B,中相對應的選擇電晶體 ThEL广TrSELn的一 n+型區域66(源極、汲極區域)形成電氣 連接。放大電晶體TrAMp的另一 n+型區域52(源極、汲極區 域),則透過未圖示之配線而有電源電壓Vcc的施加。 在下位半導體電路層22B,中形成有:(kxm)組之選擇 電晶體群TrSEL1〜TrSELn ; (kxm)組之儲存用電容元件群 cST广cSTn;及(kxm)組之輸出電晶體群Tr〇uT广Tr〇m。該構 成方式係相當於,從第7實施形態(參照圖及圖1〇之 下位半導體電路層22A,中,去除(kxm)個放大電晶體TrAMp。 述擇電晶體TrSEL1〜TrSELn與儲存用電容元件cST1〜CSTn及輸 出電晶體Tr0UT广Tr0UTn之構成,與第7實施形態之情形相 同,因而省略有關其等之說明。 如上述,在圖13及圖14所示之第9實施形態之影像 感測器2D ’係運用第4實施形態之感測器電路1 c(參照圖 5) ’其係將(kxm)個像素區塊12(各像素區塊12中包含η個 像素Π)、(kxm)組之傳送閘極群TGl〜TGn、(kxm)個重置 電晶體TrRST、(kxm)個放大電晶體TrAMP、及(kxm)個埋設 配線23 ’形成於上位半導體電路層21B中,且係將(kxm) 組之每擇電晶體群TrSELi〜TrsE“、(kxm)組之儲存用電容元 件群CST1〜CSTn、及(kxm)組之輸出電晶體群Tr0UT1〜Tr0UTn, 71 200803484 形成於下位半導體電路層22B,中,並且進一步的透過埋設 配線23及凸塊電極9〇,使上位半導體電路層21b中之放 大電晶體TrAMp’與下位半導體電路層22B,之選擇電晶體 TrSELi〜TrSELn彼此形成電氣連接。 又’在下位半導體電路層22B,的上方之主面(配線構造 74的表面)’係藉由凸塊電極90與黏著劑91,而與上位半 導體電路層21B的下方之主面(基板4〇的内面)成電氣及機 械連接’因此’兩電路層21B與22B,構成二段之半導體積 層構造(三維構造)。 因此’基於與第4實施形態之感測器電路1C之情形 相同的理由,對所有像素11的訊號電荷能實質上同時貯 存(貝貝上同日守曝光化),且不會發生習知的CM〇s影像感 測杰之影像失真情形,可對高速移動之待攝物體進行攝 影0 又像素區塊12的各像素11,只需具備一個光電二 極體與-個閘極元件(刪電晶體),因此,相較於在—個 象素中除光電一極體外尚包含三個或四個電晶體之 習知的CMOS影像感測器,能實現較高的像素開口 如達60%左右),且像素11本身尺寸亦能縮小。 再者,由於相較於習知的CMOS影像感測器具 的夂像素開口率’因此,在上位半導冑21…之受光二 電一極體的開口部分)的總面積相對於攝影區域的-面積之比例,能因而提高。 叼〜 再者,藉由以輸出控制訊號%υτιι〇υτη來控制輪出 72 200803484 =曰日體Tr0UT广Tr0UTn之方式,將訊號往行訊號線37輪出 %之牯點,與像素區塊12中傳送閘極TGi〜及選擇電Moreover, each pixel U of the pixel area 12 is only required to have one photodiode and one idler element (M〇s transistor), and therefore, in addition to the photodiode in one pixel, A conventional CMOS image sensor including three or four m〇s electric cells can achieve a high pixel opening ratio (9) of about 60%, and the size of the pixel u itself can be reduced. Furthermore, since the CMOS image sensor has a higher pixel aperture ratio than the conventional CMOS image sensor, the total area of the light receiving area on the surface of the upper semiconductor 21A = (the opening portion of each photodiode) is relative to photography. The proportion of the total area of the area can be increased. (Embodiment 9) FIG. 13 is a circuit diagram showing a circuit configuration of a main part of an address specifying image sensor 2D according to a ninth embodiment of the present invention; and FIG. 14 is a view showing an actual structure in which image sensing is 2D. The image sensor 2d uses the sensor circuit 1c of the fourth embodiment (see FIG. 1 J' with the integrated layer upper semiconductor circuit layer 21B and the lower semiconductor circuit layer 22B, the second stage The three-dimensional laminated structure. The image sensor 2B corresponds to the image sensor of the third aspect of the present invention. 69 200803484 The overall configuration and operation of the image sensor 2D are the same as those shown in Fig. 1, and Fig. 13 The circuit configuration shown is the same as that of the sensor circuit c of the fourth embodiment of Fig. 5 except that the buried wiring 23 is added. The configuration of the image sensor 2D can be understood from Figs. 13 and 14 In the middle, the buried wiring 23, the fine bump electrode 90, and the electrically insulating adhesive 91 are used to mechanically and electrically connect the upper semiconductor circuit layer 21B and the lower semiconductor circuit layer '. Seventh embodiment The (kxm) amplifying transistors TrAMP formed in the lower semiconductor circuit layer 22A' in the image sensor 2B (refer to FIGS. 10 and 9) are transferred to the upper semiconductor circuit layer 21B. That is, in the upper semiconductor circuit The layer 21B is formed with: (kxn) xm photodiodes (that is, photodiode groups PDi to PDn of the (k X m) group); (kxn) xm transfer gates (ie, there are (kxm) group of transfer gate groups TG^TGJ; (kxm) reset transistors TrRST; (kxm) φ of amplified transistors Τγαμρ, and (kxm) buried wirings 23. Photodiodes PD^ The configuration of the PDn and the transfer gate TG wide TGn and the reset transistor TrRST is the same as that of the image sensor 2B of the seventh embodiment, and therefore the description thereof will be omitted. As shown in Fig. 14, the magnifying transistor is shown in Fig. 14. "(10) is composed of an M?s transistor, and includes a gate 53 and a pair of n + type regions (source, drain region) 52 formed on both sides with the gate 53 interposed therebetween. 53 is transmitted through the conductive contact plug 54 and the wiring film 46 formed inside the wiring structure 47, and the reset transistor TrRST and the transfer gate TGi to TG n forming electric 70 200803484 。. An n + type region 52 (source, drain region) passes through the conductive contact plug 55 formed in the wiring structure 47, the wiring film 56, the conductive contact plug 23a, and The wiring 23 is buried and electrically connected to the corresponding bump electrode 9A. As a result, the source and the gate region of the transistor LA· are amplified, and the selected transistor ThEL corresponding to the lower semiconductor circuit layer 22B is formed. An n+ type region 66 (source, drain region) of the wide TrSELn forms an electrical connection. When the other n + -type region 52 (source, drain region) of the transistor TrAMp is amplified, the supply voltage Vcc is applied through a wiring (not shown). In the lower semiconductor circuit layer 22B, a selection transistor group TrSEL1 to TrSELn of the (kxm) group; a storage capacitor element group cST wide cSTn of the (kxm) group; and an output transistor group Tr of the (kxm) group are formed. uT wide Tr〇m. This configuration corresponds to the removal of (kxm) amplification transistors TrAMp from the seventh embodiment (see FIG. 1 and the lower semiconductor circuit layer 22A). The transistors TrSEL1 to TrSELn and the storage capacitor elements are described. The configuration of cST1 to CSTn and the output transistor Tr0UT wide TrOUT is the same as that of the seventh embodiment, and thus the description thereof will be omitted. As described above, the image sensing of the ninth embodiment shown in Figs. 13 and 14 is performed. The sensor 2D' uses the sensor circuit 1c (see FIG. 5) of the fourth embodiment, which is (kxm) pixel blocks 12 (n pixels 各 in each pixel block 12), (kxm) The transfer gate groups TG1 to TGn, (kxm) reset transistors TrRST, (kxm) amplifier transistors TrAMP, and (kxm) buried wirings 23' are formed in the upper semiconductor circuit layer 21B, and (kxm) each of the selected transistor groups TrSELi to TrsE", the (kxm) group of storage capacitive element groups CST1 to CSTn, and the (kxm) group of output transistor groups Tr0UT1 to Tr0UTn, 71 200803484 are formed in the lower semiconductor circuit Layer 22B, medium, and further through buried wiring 23 The bump electrode 9A electrically connects the amplifying transistor TrAMp' in the upper semiconductor circuit layer 21b with the lower semiconductor circuit layer 22B, and the selection transistors TrSELi to TrSELn are electrically connected to each other. Further, 'on the lower semiconductor circuit layer 22B, The main surface (the surface of the wiring structure 74) is electrically and mechanically connected to the main surface (the inner surface of the substrate 4A) of the upper semiconductor circuit layer 21B by the bump electrode 90 and the adhesive 91. The circuit layers 21B and 22B constitute a two-stage semiconductor laminated structure (three-dimensional structure). Therefore, the signal charge for all the pixels 11 can be substantially simultaneously stored for the same reason as in the case of the sensor circuit 1C of the fourth embodiment. (Bebe on the same day, the exposure is exposed), and the conventional CM〇s image sensing Jay image distortion situation does not occur, and the high-speed moving object to be photographed can be photographed 0 and each pixel 11 of the pixel block 12, It only needs to have one photodiode and one gate element (de-embedded crystal), so it contains three or four transistors in addition to the photo-electrode in one pixel. The known CMOS image sensor can achieve a high pixel opening of about 60%, and the size of the pixel 11 itself can be reduced. Moreover, due to the pixel opening of the conventional CMOS image sensing device Therefore, the ratio of the total area of the opening portion of the upper semi-conducting electrode 21 to the area of the photographing area can be increased. 叼~ Furthermore, by outputting the control signal %υτιι〇υτη to control the round out 72 200803484 = 曰 Tr0UT wide Tr0UTn way, the signal to the line of signal line 37 rounded out of the point, and the pixel block 12 in the transmission gate TGi ~ and select electricity

晶體群 TrecT^Tr ΛΑ pa BB SEL1 SELn的開閉之時點能彼此錯開,因此,相 較於不具有儲存用電容元件CST广CSTn與輸出電晶體The crystal group TrecT^Tr ΛΑ pa BB SEL1 SELn can be shifted from each other at the time of opening and closing, and therefore, compared with the CSTn and the output transistor which do not have the storage capacitive element CST

Tr〇UTi〜TrOUTn之情形,更能實施高速攝影,此亦為效果所 在° (第10實施形態) 圖15,係本發明之第10實施形態之位址指定型影像 感測為2E的實際構造之要部截面圖。該影像感測器係 相田於’在上述第9實施形態之影像感測器2C(參照圖^ 3 及圖14)中去除儲存用f容元件Cst广與輸出電晶體 Tr0UT1〜Tr0UTn後而取得者。該影像感測器2E,與本發明第 3觀點之位址指定型影像感測器相對應。 由圖15可以了解’第10實施形態之影像感測器2E 的構成中’係使用埋設配線23、微細之凸塊轉9〇、及 電氣絕緣性之黏著劑91,使上位半導體電路層則與下位 半導體電路層22B形成機械及電氣連接。上位半導體電路 層21B的構成,相同於第9實施形態之影像感測器2D所 示者。下位半導體電路層22B的構成,相當於從第9實施 形態之影像感測器2D的下位半導體電路^ 22B,中去除儲 存用電容元件CsT1〜U輸出電晶體TWl〜TrGUTn而構 成者。 如上述,第10實施形態之感測器電路2E,基於與第 9實施形態之影像感測器2D之情形相同的理由,對所:像 73 200803484 素11的訊號電荷能實質上同時貯存(實質上同時曝光化广 且=會發生習知的CMOS影像感測器之影像失真情形,可 對南速移動之待攝物體進行攝影。 又,像素區塊12的各像素11,只需具備一個光電二 極體與一個閘極元件(M0S電晶體),因此,相較於在一個 像素中除光電二極體外尚包含三個或四個M〇s電晶體之 習知的CMOS影像感測器,能實現較高的像素開口率(例 如達60%左右)’且像素u本身尺寸亦能縮小。 再者,由於相較於習知的CM〇s影像感測器具有較高 的像素開口率’因此’在上位半導體21B纟面之受光區域 (各光電二極體的肖口部分)的總面積_於攝影區域的總 面積之比例,能因而提高。 (弟1 1實施形態) 圖16係本發明弟11實施形態之位址指定型影像感 測器2F的要部電路構成之電路圖;目17,係表示影像感 測器2F的實際構造之要部截面圖。該影像感測器2f,係 使用上述第4實施形態之感測器電路i c(參照圖5),其係 積層上位半導體電路層21C與下位半導體電路層22c,之二 段的三維積層構造。影像感測器2F,與本發明之第3觀點 之影像感測器相對應。 影像感測器2F的全體構成及動作,與圖丨所示者相 同,圖16所示之電路構成,除了追加有埋設配線以之外, 其他則與圖5的第4實施形態之感測器電路〗c相同。 由圖1 6及圖! 7可以了解,影像感測器2ρ的構成中, 74 200803484In the case of Tr〇UTi to TrOUTn, it is possible to perform high-speed photography, and this is also the effect. (10th embodiment) FIG. 15 is an actual structure in which the address specifying image sensing of the 10th embodiment of the present invention is 2E. A cross-sectional view of the main part. In the image sensor 2C (see FIGS. 3 and 14) of the ninth embodiment, the image sensor is removed from the storage f-capacity element Cst and the output transistors Tr0UT1 to Tr0UTn. . The image sensor 2E corresponds to the address specifying image sensor of the third aspect of the present invention. As can be seen from Fig. 15, in the configuration of the image sensor 2E of the tenth embodiment, the buried wiring 23, the fine bumps 9 and the electrically insulating adhesive 91 are used, and the upper semiconductor circuit layer is The lower semiconductor circuit layer 22B forms a mechanical and electrical connection. The configuration of the upper semiconductor circuit layer 21B is the same as that of the image sensor 2D of the ninth embodiment. The configuration of the lower semiconductor circuit layer 22B corresponds to the lower semiconductor circuit 22B of the image sensor 2D of the ninth embodiment, and the memory capacitors CsT1 to U are outputted to output the transistors TW1 to TrGUTn. As described above, in the sensor circuit 2E of the tenth embodiment, based on the same reason as in the case of the image sensor 2D of the ninth embodiment, the signal charge of the image 73 200803484 can be substantially simultaneously stored (substantially At the same time, the exposure is wide and the image distortion of the conventional CMOS image sensor occurs, and the object to be photographed in the south speed can be photographed. Moreover, each pixel 11 of the pixel block 12 only needs to have one photoelectric a diode and a gate element (M0S transistor), therefore, compared to a conventional CMOS image sensor that includes three or four M〇s transistors in addition to a photodiode in one pixel, It can achieve a higher pixel aperture ratio (for example, up to about 60%)' and the size of the pixel u itself can be reduced. Moreover, since the CM〇s image sensor has a higher pixel aperture ratio than the conventional one. Therefore, the ratio of the total area of the light-receiving area (the oblique portion of each photodiode) of the upper semiconductor 21B to the total area of the photographing area can be improved. (Department 1 embodiment) FIG. Address of the embodiment of the invention 11 A circuit diagram of a main circuit configuration of the fixed image sensor 2F; and a cross-sectional view showing an essential part of the actual structure of the image sensor 2F. The image sensor 2f is sensed using the fourth embodiment. The circuit ic (see FIG. 5) is a three-dimensional laminated structure of the two layers of the upper semiconductor circuit layer 21C and the lower semiconductor circuit layer 22c. The image sensor 2F and the image sensor of the third aspect of the present invention The overall configuration and operation of the image sensor 2F are the same as those shown in Fig. 16, and the circuit configuration shown in Fig. 16 is the same as that of the fourth embodiment of Fig. 5 except that the buried wiring is added. The sensor circuit 〖c is the same. It can be understood from Fig. 16 and Fig. 7 that the composition of the image sensor 2ρ, 74 200803484

係使用埋設配線2 3、微細的凸塊電極9 0、及電氣絕緣性 之黏著劑91,使上位半導體電路層21C與下位半導體電路 層22C’彼此形成機械及電氣連接。此構成方式係相當於, 將第6實施形態之影像感測器2A(參照圖7及圖9)中形成 於上位半導體電路層21之(kxm)組傳送閘極群TG^TG, 移到該下位半導體電路層221中。因此,在上位半導體電 路層21C,僅形成(kxn)xm個光電二極體(亦即有(kxm)組之 光電二極體群PD^PDn)、及(kxm)個埋設配線23。 光電二極體PD^PDn的構成,與第6實施形態之影像 感測器2 A(參照圖7及圖9)時大致相同,但其相異點在於, 在基板40的各元件區域中係形成一個光電二極體。例如, 以光電二極體PD!而言,如圖17所示般,係在以元件分 離絕緣膜41而於p型基板40的表面區域形成之複數個元 件區域中的一個,以跨於全面之方式而形成n+區域Ο,以 該n+區域42形成光電二極體PDi。基板4〇中,在與元件 分離絕緣膜41重疊之適當位置,形成有用來在上下方向(與 基板40的主面正交之方向)貫穿元件分離絕緣臈41與基板 4〇之射匕’在該透孔中與基才反4〇接觸之部分有絕緣膜 24覆盍在其内壁的全面。在該透孔的内部(絕緣膜24之内 側與元件分離絕緣膜41的内部)充填著導電性材料,以該 導電性材料來形成埋設配線23。該埋設配線Μ的上端, 係由基板40(元件分離絕緣膜41)的表面 配線構造47内邱报孑+ # & 2 接觸於在The upper semiconductor circuit layer 21C and the lower semiconductor circuit layer 22C' are mechanically and electrically connected to each other by using the buried wiring 23, the fine bump electrode 90, and the electrically insulating adhesive 91. This configuration is equivalent to moving the (kxm) group transfer gate group TG^TG formed in the upper semiconductor circuit layer 21 in the image sensor 2A (see FIGS. 7 and 9) of the sixth embodiment. In the lower semiconductor circuit layer 221. Therefore, in the upper semiconductor circuit layer 21C, only (kxn) xm photodiodes (i.e., photodiode groups PD^PDn of the (kxm) group) and (kxm) buried wirings 23 are formed. The configuration of the photodiode PD^PDn is substantially the same as that of the image sensor 2A (see FIGS. 7 and 9) of the sixth embodiment, but differs in the respective element regions of the substrate 40. Form a photodiode. For example, in the case of the photodiode PD!, as shown in FIG. 17, one of a plurality of element regions formed in the surface region of the p-type substrate 40 by the element isolation insulating film 41 is used to span the entire surface. The n+ region Ο is formed in such a manner that the photodiode PDi is formed by the n+ region 42. In the substrate 4, an appropriate position for overlapping the element isolation insulating film 41 is formed in the vertical direction (the direction orthogonal to the main surface of the substrate 40) through the element isolation insulating layer 41 and the substrate 4" The portion of the through hole that is in contact with the base is covered with an insulating film 24 covering the entire surface of the inner wall. A conductive material is filled in the inside of the through hole (inside of the insulating film 24 and inside the element isolation insulating film 41), and the buried wiring 23 is formed of the conductive material. The upper end of the buried wiring is formed by the surface wiring structure 47 of the substrate 40 (element separation insulating film 41).

Trg7 μ内。卩形成之配線膜57的下面。配線膜57的 下面,亦與相對應的„+區域42的表面連接,因而使η.區 75 200803484 域42與埋設配線23形成電氣連接。埋設配線23的下端, 係由基板40(元件分離絕緣膜41)的内面外露,並與相對應 的凸塊電極90形成機械及電氣連接。 在下位半導體電路層22C,中,形成有:(kxm)組之傳 送閘極群TGi〜TGn ; (kxm)個重置電晶體TrRST ; (kxm)個放 大電晶體TrAMP ; (kxm)組之儲存用電容元件群Csti〜CsTn ; 及(kxm)組之輸出電晶體群ΤΓ〇υτι〜ΤΓ〇υτη。重置電晶體Within Trg7 μ. The underside of the wiring film 57 formed of ruthenium. The lower surface of the wiring film 57 is also connected to the surface of the corresponding „+ region 42 so that the η. region 75 200803484 field 42 is electrically connected to the buried wiring 23. The lower end of the buried wiring 23 is separated by the substrate 40 (component separation and insulation) The inner surface of the film 41) is exposed and mechanically and electrically connected to the corresponding bump electrode 90. In the lower semiconductor circuit layer 22C, the transfer gate groups TGi to TGn of the (kxm) group are formed; (kxm) Reset transistor TrRST; (kxm) amplification transistor TrAMP; (kxm) group of storage capacitor elements Csti~CsTn; and (kxm) group output transistor group ΤΓ〇υτι~ΤΓ〇υτη. Reset Transistor

TrRST、放大電晶體TrAMP、儲存用電容元件CST1〜csTn、及 輸出電晶體Tr0UT1〜Tr〇UTn,具有與第6實施形態之影像感 測器2A時(參照圖7及圖9)相同之構成,因此,對相同要 件係賦予相同符號並省略其說明。再者,在圖17中,儲 存用電容兀件cST1〜cSTn與輸出電晶體Tr〇uTi〜Tr〇uTn已被 省略。 。傳送閘極TG^TGn,具有如下之構成。例如以傳送閘 木TGl而ΰ,如圖17所示般,係由M〇s電晶體所構成, 2包含閘極77、及隔著該閘極77於其間而在兩側形成之 一對η+型區域(源極、汲極區域)76。閘極77,係透過未圖 示之配線而有傳送閘極控制訊號〜的施加。—η +型區域 6(源極、汲極區域),透過形成於配線構造74内部之導電 性接觸插塞78、80、82,及配線膜79、81和83,與相對 應的凸塊電極90形成電氣連接。其結果,傳送閑極叫 中的該源極、汲極區域,透過埋設配線23而與上位半導 體電路層21C中相對應的光電二極體pDi形成電氣連接。 该MOS電晶體的另一 n+型區域%源極、汲極區域),透 76 200803484 過形成於配線構造74内部之導電性接觸插塞78及未圖示 之配線膜,而與相對應的重置電晶體ΤΓμτ及放大電晶體 TrAMP形成電氣連接。傳送閘極Τ(Ϊ2〜丁叱,與傳送閘極 具有相同構造。如所示,下位半導體電路層22C,内之傳送 閘極TG广TGn,係透過埋設配線23,而分別與上位半導體 電路層21C内之光電二極體PDi〜pDn形成電氣連接。 如上述,在圖丨6及圖丨7所示之第丨丨實施形態之影像 感測為2F,係運用第4實施形態之感測器電路!c(參照圖 5),其係將(kxm)個像素區塊12(各像素區塊12包含^個像 素11)及(kxm)個埋設配線23,形成於上位半導體電路層21C 中,且係將(kxm)組之傳送閘極群TGi〜TGn、(kxm)個重置 電晶體TrRST、(kxm)個放大電晶體TrAMP、(kxm)組之選擇 電晶體群TrSELi〜TrSELn、(kxm)組之儲存用電容元件群 CST1〜CSTn、及(kxm)組之輸出電晶體群Tr〇UT1〜Tr0UTn,形成 於下位半導體電路層22C,中,並且進一步的透過埋設配線 23及凸塊電極90,使上位半導體電路層2 1 c中之像素區 塊12,與下位半導體電路層22C,中之傳送閘極tGi〜TGnrAMp 彼此形成電氣連接。 又’在下位半導體電路層22C,的上方之主面(配線構造 74的表面),係藉由凸塊電極90與黏著劑91,而與上位半 導體電路層21C的下方之主面(基板40的内面)成電氣及機 械連接,因此,兩電路層21C與22C,構成二段之半導體積 層構造(三維構造)。 因此,基於與上述第4實施形態之感測器電路1(:之 77 200803484 情形相同的理由,對 u 有像素11的訊號電荷能實質上同 時財存(貫質上同時曝 少 、匕),且不會發生習知的CMOS影 像感測斋之影像失直愔 一 彡 〜 ^ ’可對高速移動之待攝物體進行 又 ’像素區塊12的久務| t. 的各像素11,只包含一個光電二極 體,口此,相較於在一個 、 牡個像素中除光電二極體外尚包含三 個或四個]VfOS電 仏一 日日體之習知的CMOS影像感測器,能實 現較局的像素開口率(彳丨The TrRST, the amplifying transistor TrAMP, the storage capacitive elements CST1 to csTn, and the output transistors TrOUT1 to Tr〇UTn have the same configuration as that of the image sensor 2A of the sixth embodiment (see FIGS. 7 and 9). Therefore, the same elements are denoted by the same reference numerals and their description will be omitted. Further, in Fig. 17, the storage capacitors cST1 to cSTn and the output transistors Tr〇uTi to Tr〇uTn have been omitted. . The transfer gate TG^TGn has the following configuration. For example, in the case of the transfer gate TG1, as shown in FIG. 17, it is composed of an M〇s transistor, 2 includes a gate 77, and a pair of η is formed on both sides with the gate 77 interposed therebetween. +-type region (source, drain region) 76. The gate 77 is provided with a transfer gate control signal through a wiring not shown. —n + type region 6 (source, drain region), through conductive contact plugs 78, 80, 82 formed inside wiring structure 74, and wiring films 79, 81 and 83, and corresponding bump electrodes 90 forms an electrical connection. As a result, the source and drain regions of the idle electrode are transferred, and the buried wiring 23 is electrically connected to the photodiode pDi corresponding to the upper semiconductor circuit layer 21C. The other n+ type region of the MOS transistor, the source and the drain region, penetrates through the conductive contact plug 78 formed in the wiring structure 74 and the wiring film (not shown), and corresponds to the weight. The transistor ΤΓμτ and the amplifying transistor TrAMP form an electrical connection. The transfer gate Τ (Ϊ2 to 叱2) has the same structure as the transfer gate. As shown, the lower semiconductor circuit layer 22C has a transfer gate TG TGn which is transmitted through the buried wiring 23 and is respectively connected to the upper semiconductor circuit layer. The photodiodes PDi to PDn in the 21C are electrically connected. As described above, the image sensing of the second embodiment shown in FIGS. 6 and 7 is 2F, and the sensor of the fourth embodiment is used. a circuit !c (refer to FIG. 5) in which (kxm) pixel blocks 12 (each pixel block 12 includes pixels 11) and (kxm) buried wirings 23 are formed in the upper semiconductor circuit layer 21C, Further, the transfer gate groups TGi to TGn, (kxm) reset transistors TrRST, (kxm) amplification transistors TrAMP, (kxm) group of selected transistor groups TrSELi to TrSELn, (kxm) The storage capacitor element groups CST1 to CSTn and the (kxm) group of output transistor groups Tr〇UT1 to Tr0UTn are formed in the lower semiconductor circuit layer 22C, and further through the buried wiring 23 and the bump electrode 90. , the pixel block 12 in the upper semiconductor circuit layer 2 1 c, and the lower semiconductor In the channel layer 22C, the transfer gates tGi to TGnrAMp are electrically connected to each other. Further, the upper main surface (the surface of the wiring structure 74) on the lower semiconductor circuit layer 22C is formed by the bump electrode 90 and the adhesive 91. Further, since the main surface (the inner surface of the substrate 40) below the upper semiconductor circuit layer 21C is electrically and mechanically connected, the two circuit layers 21C and 22C constitute a two-stage semiconductor laminated structure (three-dimensional structure). In the case of the sensor circuit 1 of the fourth embodiment (the same as the case of 77 200803484), the signal charge of the pixel 11 can be substantially simultaneously stored at the same time (the quality is simultaneously exposed and less, and does not occur). The conventional CMOS image sensing the image of Zhai is out of sight~ ^ 'The pixel 11 can be subjected to the high-speed moving object to be processed again. t. Each pixel 11 contains only one photodiode. Body, mouth, compared to a conventional CMOS image sensor that contains three or four VfOS devices in a single pixel, in addition to the photodiode, can achieve a better Pixel aperture ratio (彳丨

羊(例如達60%左右),且像素U本身尺 寸亦能縮小。特別是’能較上述第5實施形態〜第 形態時要小。 、 再者’由於相較於f知的CMOS影像感測器具有較高 的像素開口率,因此,在 ^ ^ _ 你上位牛V體21C表面之受光區域 (^電_極體的開口部分)的總面積相對於攝影區域的總 =^之比例’能因而提高。特別是,能較上述第$實施形 恶〜第10實施形態時要高。 再者’藉由以輸出控制訊號p⑽Τη來控制輸出 電晶體 Τ 曰_ ir0UT1〜Tr0UTn之方式,將訊號往行訊號線37輸出 日守之4點’與像素區塊12中傳送閘極TG^TGn及選擇電 曰曰體群TrSEL1〜TrSELn的開閉之時點能彼此錯開,因此,相 較於不具有儲存用電容元件Cst广與輸出電晶體Sheep (for example, up to 60%), and the size of the pixel U itself can be reduced. In particular, it can be smaller than in the fifth embodiment to the first embodiment. Furthermore, since the CMOS image sensor has a higher pixel aperture ratio than that of the CMOS image sensor, the light-receiving area of the surface of the upper surface of the bovine V body 21C (the opening portion of the electro-polar body) The ratio of the total area to the total area of the photographing area can be increased. In particular, it can be higher than the above-described first embodiment to the tenth embodiment. Furthermore, by controlling the output transistors Τ ir ir0 UT1 to Tr0UTn by outputting the control signal p(10) Τη, the signal is outputted to the line signal line 37 at 4 o'clock and the transmission gate TG^TGn in the pixel block 12 and When the opening and closing of the electret groups TrSEL1 to TrSELn are selected, the points can be shifted from each other, and therefore, compared with the non-storage capacitive element Cst and the output transistor

Tr0UTl〜Tr〇UTn之情形,更能實施高速攝影,此亦為效果所 在。 (弟12實施形態) 圖1 8,係本發明第12實施形態之位址指定型影像感 78 200803484 測器2G的實際構成之要部截面圖。該影像感測器2G係相 當於,在上述第11實施形態之影像感測器2F(參照圖16 及圖17)將下位半導體電路層22C,保持原狀,並將上位半 導體電路層21C中的基板40予以上下逆向者。該影像感 測器2G,與本發明第3觀點之位址指定型影像感測器相對 應。 第12實施形態之影像感測器2 G,由圖18可以了解, 係使用微細的凸塊電極90與電氣絕緣性之黏著劑91,使 上位半導體電路層21D與下位半導體電路層22D,成電氣及 機械連接。下位半導體電路層21D,的構成,與第U實施 形態之影像感測器2F的下位半導體電路層2 1C,相同。在 該影像感測器2G,與上述第5〜11實施形態不同而並未使 用埋設配線23。 在上位半導體電路層21D中的基板40,與第11實施 形態之影像感測器2F的上位半導體電路層2 1C上下逆向, 配線構造47位在下側,基板40位在上侧。外部光係貫穿 基板40而照射在光電二極體PDi〜PDn,因此,基板4〇的 厚度較第11實施形態之影像感測器2F時要薄。 在配線構造47的内部,形成有導電性接觸插塞5 8, 其係分別與複數個n+型區域42(用以構成光電二極體 PD^PDJ的各個表面形成電氣及機械連接;及複數個配線 膜59 ’其係分別與其等導電性接觸插塞58形成電氣及機 械連接。其等配線膜59係配置在配線構造47的表面附近, 與對應的凸塊電極90形成電氣及機械連接。如所示,光 79 200803484 電二極體PD广PDn係透過相對應的凸塊電極90,而與下位 半導體電路層22D’中相對應的傳送閘極TGl〜TGn各形成電 氣連接。 圖18所示之第12實施形態的影像感測器2G,因具有 以上的構成,顯而易見,具有與第11實施形態之影像感 測器2F所述者相同的效果。 (第13實施形態) 圖20,係本發明第13實施形態之感測器電路3的要 部電路構成之電路圖。圖19,係使用該感測器電路3之位 址指定型影像感測器的全體構成之功能方塊圖。該感測器 電路3,與本發明第2觀點之感測器電路相對應。 圖19的影像感測器的全體構成,與圖1所示之位址指 定型影像感測器僅有的相異點在於,設置有能貫穿同一行 所屬之k個像素區塊12a之各重置線3 1。亦即,具備配置 成(kxn)列m行之陣列狀之(kxn)xm個像素Ua。在各像素 區塊12a中’係將屬於同一行的η個像素11 a彙整而以並 聯方式連接於共通節點19(在圖19中並未表示。在圖2〇 中與共通節點13 a相對應)。 在各像素區塊12a中,形成有m條之重置線31,其係 分別沿著像素陣列之對應行而延伸,並且貫穿該行所屬之 像素區塊12a。在各重置線31中的各像素Ua,分別與一 個重置電晶體連接。換言之,對於像素區塊12a所屬之n $像素Ua,分別設有重置電晶體TrRST1〜TrRSTn。放大電 曰曰體TrAMp,係對每一像素區塊12a設置一個。n個重置電 200803484 曰曰 fRSTl〜TrRSTn,係分別配置在相對應的像素區塊i2a 内的η個像素1 la之内部,放大電晶體TrAMP則是配置在 相對應的像素區塊12a的外部。 各重置線3 1,係用以重置對應行所屬之k個像素區塊 i2a中的像素lla之訊號電荷。對於其等像素11a之重置 用电壓Vrst的施加,係使用相對應的重置電晶體 TrRST1〜TrRSTn來進行。各放大電晶體TrAMP,係對於讀取自 φ 對應之像素區塊12a中的像素11a之訊號予以放大,然後 送至相對應的行訊號線37。經各放大電晶體TrAMp放大後 之訊號’依序被送至相對應的行訊號線3 7。 除了像素11 a及像素區塊12a的構成和重置線3 !的配 置,其他則與圖1之構成相同,因而省略有關其等之說明。 以下,邊參照圖20,邊說明第13實施形態之感測器 私路3、亦即用於構成方式如圖1 9所示之影像感測器之感 測器電路。圖20,係第j行所屬的二個像素區塊12a(i,j) _ 與12a(i+l,j)的電路構成。 位於上方之像素區塊12(i,j),包含屬於第j行之第[ηχ (i-l)+l]列〜第(nxi)列之像素11。位於下方的像素區塊n(i+1, j),包含屬於第j行之第[nxi+l]列〜第[nxG+l)]列之像素n。 上述二個像素區塊12(i,j)與12(i+l,j),具有相同的構成, 因此,在以下的說明中主要以上方的像素區塊12(i,j)來說 明。 在像素區塊12a(i,j)中,包含|1個像素14。換言之, 其包含:η個光電二極體PD广PDn、n個傳送閘極TG^TGn、 81 200803484 及η個重置電晶體TrRST广TrRSTn。各像素&,包含一個 光電-極體、-個傳送閉極、及—個重置電晶體。傳送問 極TG广TGn,係分別由M〇s電日舻 电日日體所構成。重置電晶體In the case of Tr0UT1 to Tr〇UTn, high-speed photography can be performed, which is also an effect. (Embodiment of the Twelfth Embodiment) Fig. 1 is an image of a specific configuration of the sensor 2G according to the address specification of the twelfth embodiment of the present invention. In the image sensor 2G (see FIGS. 16 and 17), the image sensor 2F (see FIGS. 16 and 17) of the eleventh embodiment holds the lower semiconductor circuit layer 22C as it is, and the substrate in the upper semiconductor circuit layer 21C is replaced. 40 will be up and down. The image sensor 2G corresponds to the address specifying image sensor of the third aspect of the present invention. According to the image sensor 2G of the twelfth embodiment, as shown in Fig. 18, the fine bump electrode 90 and the electrically insulating adhesive 91 are used to electrically connect the upper semiconductor circuit layer 21D and the lower semiconductor circuit layer 22D. And mechanical connection. The configuration of the lower semiconductor circuit layer 21D is the same as that of the lower semiconductor circuit layer 2 1C of the image sensor 2F of the U-th embodiment. The image sensor 2G is different from the above-described fifth to eleventh embodiments in that the buried wiring 23 is not used. The substrate 40 in the upper semiconductor circuit layer 21D is reversed from the upper semiconductor circuit layer 2 1C of the image sensor 2F of the eleventh embodiment, and the wiring structure 47 is positioned on the lower side, and the substrate 40 is positioned on the upper side. Since the external light passes through the substrate 40 and is irradiated to the photodiodes PDi to PDn, the thickness of the substrate 4 is thinner than that of the image sensor 2F of the eleventh embodiment. Inside the wiring structure 47, conductive contact plugs 5 8 are formed, which are respectively electrically and mechanically connected to a plurality of n + -type regions 42 (each of which forms a photodiode PD ^ PDJ); and a plurality of The wiring film 59' is electrically and mechanically connected to the conductive contact plugs 58. The wiring film 59 is disposed in the vicinity of the surface of the wiring structure 47, and is electrically and mechanically connected to the corresponding bump electrode 90. As shown, the light 79 200803484 electric diode PD wide PDn is electrically connected to the corresponding transfer gates TG1 to TGn in the lower semiconductor circuit layer 22D' through the corresponding bump electrodes 90. The image sensor 2G of the twelfth embodiment has the same configuration as described above, and has the same effects as those described in the image sensor 2F of the eleventh embodiment. (Thirteenth embodiment) FIG. A circuit diagram of a main circuit configuration of the sensor circuit 3 according to the thirteenth embodiment of the present invention is shown in Fig. 19. Fig. 19 is a functional block diagram showing the overall configuration of an address specifying image sensor of the sensor circuit 3. Electric 3. Corresponding to the sensor circuit of the second aspect of the present invention. The overall configuration of the image sensor of Fig. 19 differs from the address-specific image sensor shown in Fig. 1 in that the setting is There is a reset line 31 that can penetrate through the k pixel blocks 12a to which the same row belongs. That is, there are (kxn) xm pixels Ua arranged in an array of (kxn) columns m rows. In Fig. 12a, the n pixels 11a belonging to the same row are merged and connected in parallel to the common node 19 (not shown in Fig. 19. Corresponding to the common node 13a in Fig. 2A). In the block 12a, m reset lines 31 are formed which extend along corresponding rows of the pixel array and penetrate the pixel block 12a to which the row belongs. Each pixel Ua in each reset line 31 And respectively connected to a reset transistor. In other words, for the n $pixel Ua to which the pixel block 12a belongs, reset transistors TrRST1 TrTrRSTn are respectively provided. The amplified NMOS body TrAMp is for each pixel block 12a. Set one. n reset powers 200803484 曰曰fRSTl~TrRSTn, respectively configured in the corresponding The inside of the n pixels 1 la in the pixel block i2a, and the amplifying transistor TrAMP are disposed outside the corresponding pixel block 12a. Each reset line 3 1 is used to reset the k corresponding to the corresponding row. The signal charge of the pixel 11a in the pixel block i2a is applied to the reset voltage Vrst of the pixel 11a, and the corresponding reset transistors TrRST1 to TrRSTn are used. The signal read from the pixel 11a in the pixel block 12a corresponding to φ is amplified and then sent to the corresponding line signal line 37. The signal ' amplified by each of the amplifying transistors TrAMp is sequentially sent to the corresponding line signal line 37. The configuration of the pixel 11a and the pixel block 12a and the configuration of the reset line 3! are the same as those of Fig. 1, and the description thereof will be omitted. Hereinafter, a sensor private circuit 3 of the thirteenth embodiment, that is, a sensor circuit for configuring an image sensor as shown in Fig. 19 will be described with reference to Fig. 20 . Figure 20 is a circuit configuration of two pixel blocks 12a(i,j)_ and 12a(i+l,j) to which the jth row belongs. The pixel block 12 (i, j) located above includes pixels 11 belonging to the [nχ(i-1)+l] column to the (nxi)th column of the jth row. The pixel block n(i+1, j) located below includes the pixel n belonging to the [nxi+l]th column to the [nxG+l)th column of the jth row. The above two pixel blocks 12 (i, j) have the same configuration as 12 (i + 1, j), and therefore, in the following description, mainly the upper pixel block 12 (i, j) will be explained. In the pixel block 12a(i, j), |1 pixels 14 are included. In other words, it includes: n photodiodes PD wide PDn, n transfer gates TG^TGn, 81 200803484 and n reset transistors TrRST wide TrRSTn. Each pixel & includes a photo-polar body, a transfer closed-pole, and a reset transistor. The transmission TG TG TGn is composed of M〇s electric eclipse and electric Japanese body respectively. Reset transistor

TrRST1〜TrRSTn’ Μ分別纟M〇s電晶體所構成。光電二極 體PDl〜PDn的各陽極,連接於節‘點15(節‘點15,係傳送閘 極TG广TGn中相對應者之其中一源極、沒極區域,與重置 電晶體TrRST1〜TrRSTn中相對應者之其中一源極、汲極區域 的連接點所在),陰極則共同連接於既定電位(通常為接地 電位)的端子或區域。重置電晶冑丁一〜丁、的另一源 極、汲極區域,連接於重置用電壓源(重置電壓=Vrst)。傳 达閘極TG广TGn各自之另一源極、汲極區域,共同連接於 共通節點13a。如所示,像素區塊12a(i,j}中之n個像素na, 係並聯於該像素11 a内之共通節點1 3 a。 像素區塊12a(i,j)之共通節點i3a,連接於相對應的放 大電晶體TrAMP之閘極。放大電晶體TrAMp,係設置在像素 區塊12a(i,j)的外側。放大電晶體ΤΓαμρ的一源極、汲極區 域,與直流電源(電源電壓=Vcc)連接,另一源極、汲極區 域(輸出側),則與該像素區塊12(i,j)的輸出端子(亦即相對 應的行訊號線37)連接。放大電晶體TrAMp的輸出端子(輸 出側之源極、沒極區域),透過電阻R而與既定電位(通常 為接地電位)的端子連接,構成了源極隨麵器形式之放大 器。在節點1 5中有產生寄生電容,但在圖20中予以省略。 放大電晶體TrAMP之輸出側的源極、沒極區域,與相 對應的行訊號線37連接。因此,放大電晶體TrAMp的輸出 82 200803484 訊號,亦即η個光電二極體PDi〜PDn的時序(serial)輸出訊 號’依序被送至相對應的CDS電路36。又,由CDS電路 36被送往水平訊號線33時,係藉由水平掃描電路%的掃 描而透過m個行選擇訊號38來選擇該行訊號線37,藉此 而將該時序輸出訊號傳送至水平訊號線33。之後,被傳送 至β又在水平戒號線33的一端(在圖丨9係位於右端)之該影 像感測器的輸出端子(未圖示)。 像素區塊12a(i,j)以外的所有像素區塊12a,與像素區 塊12a(i,j)具有相同構成,因此,與上述相同,n個光電二 極體PDl〜PDn之時序輸出訊號被傳送至該影像感測器的輪 出端子。可藉此而進行待攝物體的攝影。 其次,針對於具備上述構成之感測器電路3之影像感 測器的動作(從訊號電荷的產生、貯存,直到訊號的輸出為 止)提出如下說明。 I所有像素(所有光電二極體)之整體重置 首先’使各個施加於MOS電晶體的閘極之傳送閘極 控制訊號ρτ1〜Φτη的邏輯狀態成為H(高),使所有傳送閘 極TGfTGn成為導通狀態(該M〇s電晶體具有n個,其係 #曰用以構成设置在所有像素i 的光電二極體PDl〜之 各傳送閘極TGi〜TGn、即第1閘極元件之電晶體)。 接著’在該狀態下,使共同施加於重置電晶體 TrMT1〜TrRSTn的閘極之重置控制訊號p 的邏輯狀態成為 “使所有重置電晶體TrRsTi〜TrRsTn成為導通狀態(該重置 兒晶體TrRST1〜TrRSTn係指,設置在各像素區塊12a内的像 83 200803484TrRST1~TrRSTn' 构成M纟s transistors are respectively formed. The anodes of the photodiodes PD1 to PDn are connected to the node 'point 15 (node '15), which is one of the source and the gateless region of the corresponding one of the transfer gates TG TGn, and the reset transistor TrRST1 The connection point of one of the source and the drain region of the corresponding one of the TrRSTn is located, and the cathode is connected to the terminal or region of the predetermined potential (usually the ground potential). The other source and drain regions of the reset transistor are connected to the reset voltage source (reset voltage = Vrst). The other source and drain regions of the respective gates TG TGn are connected to the common node 13a. As shown, the n pixels na in the pixel block 12a (i, j} are connected in parallel to the common node 1 3 a in the pixel 11 a. The common node i3a of the pixel block 12a (i, j) is connected a gate of the corresponding amplifying transistor TrAMP. The amplifying transistor TrAMp is disposed outside the pixel block 12a(i, j), a source, a drain region of the transistor ΤΓαμρ, and a DC power source (power source) Voltage=Vcc) is connected, and the other source and drain regions (output side) are connected to the output terminal of the pixel block 12(i,j) (that is, the corresponding line signal line 37). The output terminal of the TrAMp (source and gate region on the output side) is connected to a terminal of a predetermined potential (usually a ground potential) through a resistor R, and constitutes an amplifier in the form of a source follower. The parasitic capacitance is generated, but is omitted in Fig. 20. The source and the non-polar region on the output side of the amplifying transistor TrAMP are connected to the corresponding line signal line 37. Therefore, the output of the transistor TrAMp is amplified 82 200803484, That is, the serial output of η photodiodes PDi~PDn The signal 'sequence is sent to the corresponding CDS circuit 36. When the CDS circuit 36 is sent to the horizontal signal line 33, the row is selected by the m row selection signal 38 by scanning the horizontal scanning circuit %. The signal line 37, thereby transmitting the timing output signal to the horizontal signal line 33. Thereafter, it is transmitted to the image sensor of β and at one end of the horizontal ring line 33 (located at the right end of FIG. 9) Output terminal (not shown). All of the pixel blocks 12a other than the pixel block 12a (i, j) have the same configuration as the pixel block 12a (i, j), and therefore, the same as the above, n photodiodes The timing output signals of the bodies PD1 to PDn are transmitted to the wheel terminal of the image sensor, whereby the image of the object to be photographed can be taken. Secondly, the image sensor for the sensor circuit 3 having the above configuration is provided. The action (from the generation and storage of the signal charge until the output of the signal) is as follows: I reset the overall reset of all the pixels (all photodiodes) firstly 'make each transfer gate applied to the gate of the MOS transistor Pole control signal ρτ1 ΦΦτ The logic state of η becomes H (high), and all the transfer gates TGfTGn are turned on (the M〇s transistors have n, and the system #曰 is used to constitute the photodiode PD1~ disposed in all the pixels i Each of the transfer gates TGi to TGn, that is, the transistor of the first gate element. Next, in this state, the logic state of the reset control signal p applied to the gates of the reset transistors TrMT1 to TrRSTn becomes "Making all of the reset transistors TrRsTi to TrRsTn into an on state (the reset crystals TrRST1 to TrRSTn refer to an image 83 in the respective pixel block 12a).

RST 素11a的各重置電晶體)。其結果,既定的重置電壓、 ΓΑΜΡ的閘極 透過節點15,而整體同時施加於所有像素山之光電二極 體PD广PDn。如所示,所有像素na係整體被重置,亦即 進行整體重置」。此時,所有放大電晶體Tr 之電壓亦被重置。 2.曝光(電荷貯存)Each reset transistor of RST element 11a). As a result, a predetermined reset voltage, the gate of the gate passes through the node 15, and is applied to all of the pixel photodiodes PD wide PDn of the whole pixel simultaneously. As shown, all pixels na are reset as a whole, that is, an overall reset. At this time, the voltages of all the amplifying transistors Tr are also reset. 2. Exposure (charge storage)

其次’使施加於傳送閘極TG1〜TGn之傳送閘極控制訊 號pT1〜pTn的邏輯狀態成為LOW(L),使所有傳送閘極 TGi〜TGn成為斷開狀態。又,在此同時,使重置控制訊號 hST的邏輯狀態成為L,所有重置電晶體ΤΓ_〜υ 成為斷開狀態。 Π 之後 極體PD1 存訊號電 非常的長 ,在該狀態下將光照射在所有像素lla的光電二 〜PDn,使所有光電二極體ΡΕ>1〜p〇n整體產生、貯 荷。照射時間一般達到數百# sec乃至數msec, 。在結束訊號電荷的產生、貯存之同時,使重置控制訊 號p RST的邏輯狀態成為Η而使所有重置電晶體 TrRST广TrRSTn整體成為導通狀態,且使傳送閘極控制訊號 Ρ τι φ Tn的邏輯狀悲成為η而使所有傳送閘極TG广 成為導通狀態。待經過既定時間(例如^㈣後,使重置 控制Λ唬p RST的邏輯狀態再度成為L而使所有重置電晶體 TrRST1〜TrRSTn整體成為斷開狀態,並且在此同時,使所有 傳送閘極控制訊號广φτη的邏輯狀態再度成為L而使所 有傳送閘極TGi〜TGn成為斷開狀態。如此,將重置電壓 84 200803484 暫時施加〜所有共通節點13a(亦即所有放大電晶體TrAMp的 閘極)’以將所有放大電晶體TrAMp的閘極電壓設定(重置) 成既定之基準電壓。 3·訊號之讀取及其放大 以上述方式而在所有光電二極體PD广PDn產生、貯存 之電荷量,經下述方式而以電壓形式將等比於其之訊號由 像素11a中讀取,進而放大。Next, the logic states of the transfer gate control signals pT1 to pTn applied to the transfer gates TG1 to TGn are LOW (L), and all of the transfer gates TGi to TGn are turned off. At the same time, the logic state of the reset control signal hST is set to L, and all the reset transistors ΤΓ_~υ are turned off. Π After that, the polar body PD1 is very long, and in this state, light is applied to the photodiodes PDDN of all the pixels 11a, and all the photodiodes ΡΕ>1 to p〇n are generated and stored as a whole. The irradiation time generally reaches several hundred sec or even several msec. At the same time as the generation and storage of the signal charge, the logic state of the reset control signal p RST is made Η so that all the reset transistors TrRST TrRSTn are turned on as a whole, and the transfer gate control signal Ρ τ ι φ Tn is made. The logic sorrow becomes η and all the transmission gates TG are widely turned on. After a predetermined time (for example, ^(4)), the logic state of the reset control Λ唬p RST is again L, so that all the reset transistors TrRST1 to TrRSTn are turned off as a whole, and at the same time, all the transfer gates are made. The logic state of the control signal width φτη is again L and all the transfer gates TGi to TGn are turned off. Thus, the reset voltage 84 200803484 is temporarily applied to all the common nodes 13a (that is, the gates of all the amplifying transistors TrAMp). 'To set (reset) the gate voltage of all the amplifying transistors TrAMp to a predetermined reference voltage. 3. The reading of the signal and its amplification are generated and stored in all the photodiode PDs in the above manner. The amount of charge is read by the pixel 11a in the form of a voltage in the following manner, and is amplified.

亦即’首先藉垂直掃描電路34與水平掃描電路35來 選擇一個像素區塊12a後,使該像素區塊12a中的η個傳 送閘極控制訊號ρ Τ1〜0 Τη之邏輯狀態依序由L變成Η,而 使傳送閘極TG广TGn依序成為導通狀態。又,在將其等之 v通狀怨保持既定時間(例如01 # sec)後,又依序使其等 之邏輯狀態回到L。如此,來自該像素區塊Ua中的所有 光電二極體PDi〜PDn之訊號,遂依時序而於節點Μ讀取。 在此期間,所有重置電晶體TrRsTi〜被保持在斷開狀That is, after first selecting a pixel block 12a by the vertical scanning circuit 34 and the horizontal scanning circuit 35, the logical states of the n transfer gate control signals ρ Τ 1 〜 0 Τ n in the pixel block 12a are sequentially ordered by L. It becomes Η, and the transmission gate TG TGn is sequentially turned on. Further, after keeping the v-like grievance for a predetermined time (for example, 01 # sec), the logical state of the continuation is returned to L in order. Thus, the signals from all of the photodiodes PDi to PDn in the pixel block Ua are read at the node 遂 according to the timing. During this time, all reset transistors TrRsTi~ are kept in a disconnected state

以源極隨耦器形式而與節點13a連接之放大電晶體 TrAMP,由於其閘極與節點…連接,因此,被讀取至㈣ ⑴之電壓訊號乃立刻由該放大電晶體TrAMp放大。又,經 :大後之訊號’從該放大電晶體I的輸出端子侧之源 極、沒極區域往行訊號線37輸出。 體:=二素區塊12a中的n個像素lla(亦即光電二極 =1;取訊號而予放大時’從讀取-個像素聞 如先電-極M PD1)之訊號並將其放大的這個 85 200803484 异起,直到開始下一像素lla(例如光電二極體pE>2)之訊號 項取的延段期間,如上述,必須使用於該像素1 i a之重置 電晶體TrRSTl成為導通狀態,以將重置電壓vRST暫時施加 〜節點13a,將所有該節點13a(放大電晶體TrAMp的閘極)設 疋(重置)在基準電位。原因在於,若不如此,恐怕之前的 像素lla(例如光電二極體pDi)之訊號的殘留影響會造成隨 後像素lla(例如光電二極體Pd2)發生訊號誤差情形。 瞻由於在該像素區塊12a中具有n個像素na(n個光電 二極體PDl〜PDn),因此,以傳送閘極控制訊號ρ Τ1〜φ τη進 仃之讀取動作,次數共有η次;由放大電晶體TrAMp進行 之放大動作,次數共有n次;放大電晶體㈣之重置動 作’次數共有(η-1)次。 具體而言,例如,在最初先使該像素區塊12a之第工 傳送閘極TG!暫時成導通狀態,與訊號電荷(即貯存於第^ 光電二極體PDi之訊號電荷)成比例之訊號遂於節點丨讀 ,取。該訊號立即被放大電晶體TrAMp所放大,然後將取得 之放大訊號往行訊號線37傳送。接著,使得與該光電二 極體PD,連接的重置電晶體TrRsTi暫時成導通狀態,將重 置電壓VRST暫時施加在節點13a,而將所有放大電晶體 TrAMp的閘極(節點14)重置於基準電位。 之後,使該像素區塊12a中第2傳送閘極tG2暫時成 導通狀態,由節點13a來讀取與訊號電荷(即貯存於第2光 電二極體PD2之訊號電荷)成比例之訊號。該訊號立即被放 大電晶體TrAMP所放大,然後將得到的放大訊號往行訊號 86 200803484 線3 7傳送。並a ^ _人’使侍與該光電二極體ρε>2連接之重置 晶 丁 … RST2暫時成導通狀態,將放大電晶體TrAMP的閘 極(卽點14)重署n 一 ;基準%位。接著,依序對第;3光電二極 Μ ΡΕ>Ί 4光電二極體叩4等重複上述之相同動作。最 " 、十對第η光電二極體pDn實施讀取動作與放大動作 後,乃結束該像素區塊12a的處理。 ^圖1的影像感測器、中,與該像素區塊12a對應之放 大包日日體TrAMp的輸出端子為i個,因此,由該像素區塊 ^ =斤有光電一極體PD1〜PDn取得之η個訊號,係從 大電β曰體TrAMp之輸出端子側的源極、汲極區域依時 1出至行桌號線37。亦即,由該像素區塊1所輸出之 '成為條以隔著既定間隔方式來連結n個脈衝波形 以供反映光電二極體PDi〜pDn的訊號電荷量(照射光之量) 之時序訊號。 上述影像感測器(參照圖19),合計有(kxm)個像素區塊 12a,因此,在掃描所有像素Ua的期間,上述動作係重複 (kxm)次 〇 由該像素區塊12a所輸出之訊號,亦即是將n個脈衝 以隔著既定間隔之方式而連結成的一條時序訊號,被送至 周知的取樣及保持電路或A/D轉換電路,以進行既定之訊 號處理。 現在實務上最快曝光速度(亦即最短的訊號電荷貯存期 間)為(1/8000)秒卜125#sec)。因此,對於(kxm)個像素區 塊12a,若能以下述方式來設定n值(各像素區塊12&中的 87 200803484 像素11 a的總數),就能使所有像素區塊12a所屬之像素 11 a(光電二極體PDcPDn)的訊號電荷貯存(曝光)能實質上 同時進行,亦即求出由重置電晶體TrRST1〜TrRSTn對節點 1 3 a(放大電晶體TrAMP的閘極)的重置動作達到必要次數(亦 即η次)時所需k間(總重置時間),與該像素區塊12 a中的 所有像素11a(光電二極體PD^PDJ送出之訊號被相對應的 放大電晶體TrAMP所放大時所需時間(總放大時間)之和,然 籲後使該和之(kxm)倍之時間遠遠小於最短之訊號電荷貯存期 間(=125# sec)。換言之,所有像素山之訊號電荷能實質 上同時貯存(實質上同時曝光化)。 〜 η ·〜I匪現分 別獨立輸出,因此,對於其等輸出時序訊號,能以並聯方 式來進行類比、數位(A/D)轉換等處理。藉此,相較於習知 的⑽S影像感測器,能有更高速的資料處理。此點亦有 盈於實質上同時曝光化的實現。 + F播上述動作可以了解,若以1訊框内來觀察,由各像 素區塊12a所輸出之時序輸 的結束,相較於在# 是越接近掃描時間 相叙於在該知描期間初始 電荷貯存期間越長(儘管相當微量)。因此生=者,其 確性更佳之影像資料、或為了且有)大的口此/為了取得準 設有周知的電路,以徂4 /、 的η值’亦可在後段 电路以供按照電荷貯存期門沾结,/ 號修正。藉此 子』間的受化來進行訊 影響。 料避免μ電荷貯存_的變動所 由於可藉上 述方式而實質同時曝光化 不會發生習知 88 200803484 的CMOS影像感測器之影像失真情形,可對高速移動之待 攝物體進行攝影。The amplifying transistor TrAMP connected to the node 13a in the form of a source follower is connected to the node by its gate, so that the voltage signal read to (4) (1) is immediately amplified by the amplifying transistor TrAMp. Further, the signal "after the big" is outputted from the source and the non-polar region of the amplifier transistor I to the line signal line 37. Body: = n pixels 11a in the block 12a (that is, the photodiode = 1; when the signal is amplified, the signal is read from the - pixel, the first electrode - the current M PD1) and The amplified 85 200803484 is different until the start of the signal period of the next pixel 11a (for example, photodiode pE > 2), as described above, the reset transistor TrRST1 must be used for the pixel 1 ia In the on state, the reset voltage vRST is temporarily applied to the node 13a, and all of the nodes 13a (the gate of the amplifying transistor TrAMp) are set (reset) at the reference potential. The reason is that if this is not the case, it is feared that the residual influence of the signal of the previous pixel 11a (e.g., photodiode pDi) causes a signal error condition with the subsequent pixel 11a (e.g., photodiode Pd2). Since there are n pixels na (n photodiodes PD1 to PDn) in the pixel block 12a, the read operation of the transfer gate control signals ρ Τ1 to φ τη is performed n times. The amplification operation by the amplifying transistor TrAMp has a total of n times; the resetting operation of the amplifying transistor (4) has a total of (n-1) times. Specifically, for example, the signal transfer gate TG! of the pixel block 12a is initially turned into a conduction state, and the signal charge (that is, the signal charge stored in the second photodiode PDi) is proportional to the signal. Read on the node, take. The signal is immediately amplified by the amplifying transistor TrAMp, and the amplified signal is then transmitted to the signal line 37. Next, the reset transistor TrRsTi connected to the photodiode PD is temporarily turned on, the reset voltage VRST is temporarily applied to the node 13a, and the gates (nodes 14) of all the amplifying transistors TrAMp are reset. At the reference potential. Thereafter, the second transfer gate tG2 in the pixel block 12a is temporarily turned on, and the node 13a reads a signal proportional to the signal charge (i.e., the signal charge stored in the second photodiode PD2). The signal is immediately amplified by the amplification transistor TrAMP, and the resulting amplified signal is transmitted to the line 86 200803484 line 3 7 . And a ^ _ person's the waiter and the photodiode ρε> 2 connected to reset the crystal... RST2 is temporarily turned on, and the gate of the amplified transistor TrAMP (卽 14) is re-signed n; Bit. Next, the same operation as described above is repeated for the third photodiode ΡΕ ΡΕ > Ί 4 photodiode 叩 4 and the like. The most " ten pairs of n-th photodiodes pDn perform the reading operation and the amplifying operation, and the processing of the pixel block 12a is ended. In the image sensor of FIG. 1, the output terminal of the magnifying package TrAMp corresponding to the pixel block 12a is i, and therefore, the pixel block has a photo-electrode PD1~PDn. The obtained n signals are outputted from the source and drain regions on the output terminal side of the large electric beta body TrAMp to the row number line 37. That is, the timing signal that the n-pulse waveforms are connected by the pixel block 1 to reflect the signal charge amount (the amount of the illumination light) of the photodiodes PDi to pDn are separated by a predetermined interval. . The image sensor (see FIG. 19) has a total of (kxm) pixel blocks 12a. Therefore, during the scanning of all the pixels Ua, the above-mentioned operation is repeated (kxm) times and outputted by the pixel block 12a. The signal, that is, a timing signal in which n pulses are connected at a predetermined interval, is sent to a well-known sample and hold circuit or A/D conversion circuit for predetermined signal processing. The fastest exposure speed in practice (ie, the shortest signal charge storage period) is (1/8000) seconds, 125#sec). Therefore, for (kxm) pixel blocks 12a, if the n value (the total number of 87 200803484 pixels 11a in each pixel block 12&) can be set in the following manner, the pixels to which all the pixel blocks 12a belong can be made. The signal charge storage (exposure) of 11 a (photodiode PDcPDn) can be performed substantially simultaneously, that is, the weight of the node 13 3 a (the gate of the amplifying transistor TrAMP) by the reset transistors TrRST1 to TrRSTn is obtained. Between k (total reset time) required for the required number of times (ie, n times), all the pixels 11a in the pixel block 12a (the signals sent by the photodiode PD^PDJ are corresponding) The sum of the time (total amplification time) required to amplify the transistor TrAMP is amplified, and then the (kxm) times of the sum is much less than the shortest signal charge storage period (=125# sec). In other words, all The signal charge of Pixel Mountain can be stored substantially simultaneously (substantially simultaneously exposed). ~ η ·~I匪 are respectively output separately, so for their output timing signals, analogy and digits can be performed in parallel (A/ D) conversion and other processing. Compared with the conventional (10)S image sensor, it can have higher speed data processing. This point also has the effect of substantially simultaneous exposure. + F broadcast the above actions can be understood, if viewed in a frame, The end of the timing output output by each pixel block 12a is longer (although quite a slight amount) compared to when the # is closer to the scan time than during the initial charge storage period during the learning period. More accurate image data, or for the purpose of having a large mouth/in order to obtain a well-known circuit, the η value of 徂4 /, can also be used in the back-end circuit for the gate according to the charge storage period, / No. Correction. In this way, the influence of the child is affected. It is expected that the variation of the μ charge storage _ can be substantially simultaneously exposed by the above-mentioned method. The conventional image distortion of the CMOS image sensor of 200803484 can be used to photograph a high-speed moving object.

再者,共通的放大電晶體Τγαμρ,係以與各像素區塊12a 對應之方式而設置在該像素區塊丨2a的外側,因此,在該 像素區塊12a中的各像素lla,只需包含一個光電二極體 與一個閘極元件(MOS電晶體)及一個重置電晶體(M〇s電 晶體)。因此,相較於在一個像素中除光電二極體尚包含三 個或四個MOS電晶體之習知的CM〇s影像感測器,可實 現較高的像素開口率(例如6〇%左右)。其像素開口率,與 使用第1實施形態之感測器電路丨(亦即僅包含一個光電二 極體與-個閘極元件者)之影像感測器(參照圖丨及圖幻相 較,因為有重置電晶體,而呈對應之降低。 再者,在習知的CMOS影像感測器中,訊號處理係按 照掃描線的數量而依時序進行,而必需有高速的a/d轉換 電路,但在使用該第13實施形態之感測器電路3之影像 感測器中U η值設定的較掃描線數量為小而能提高並 聯程度,因而能容許各放大電晶Μ 1有較慢的時序輸 出訊號之處理速度。因此,能使用構成方式更為簡單之A/D 轉換電路,此亦為其效果所在。 又’來自η個光電二極體pD广%之η個輸出訊號, 係以串聯之形態而由各放大電晶體TrAMp輸出,因此,與 各:二電B曰體TrAMp的輸出端子連接之下一段的配線會趨 於簡單,此亦為其效果所在。 (第Μ實施形態) 89 200803484Further, the common amplifying transistor Τγαμρ is disposed outside the pixel block 丨2a so as to correspond to each pixel block 12a. Therefore, each pixel 11a in the pixel block 12a need only include A photodiode with a gate element (MOS transistor) and a reset transistor (M〇s transistor). Therefore, a higher pixel aperture ratio (for example, about 6〇%) can be achieved compared to a conventional CM〇s image sensor in which one photodiode still includes three or four MOS transistors in one pixel. ). The pixel aperture ratio is compared with the image sensor using the sensor circuit 第 of the first embodiment (that is, the one including only one photodiode and one gate element) (refer to the figure and the image illusion, Because there is a reset transistor, it is correspondingly reduced. Furthermore, in the conventional CMOS image sensor, the signal processing is performed in accordance with the number of scanning lines, and a high-speed a/d conversion circuit is necessary. However, the number of scanning lines set by the U η value in the image sensor using the sensor circuit 3 of the thirteenth embodiment is small, and the degree of parallel connection can be increased, thereby allowing each of the amplifying transistors 1 to be slow. The processing speed of the timing output signal. Therefore, it is possible to use an A/D conversion circuit which is simpler in construction, and this is also the effect. Also, 'n output signals from n photodiodes pD are wide. In the form of a series connection, the output transistors TrAMp are outputted. Therefore, the wiring of the next section connected to the output terminal of each of the two electric B bodies TrAMp tends to be simple, which is also the effect thereof. ) 89 200803484

圖21,係本發明第14實施形態之位址指定型影像感 測器4的要部電路構成之電路圖;圖23,係表示該影像感 測器4的實際構造之要部截面圖。該影像感測器4所使用 之感測益電路’係在上述第13實施形態之感測器電路3 (參 照圖20)之放大電晶體TrAMP(該放大電晶體TrAMp係以與各 像素區塊12a成對應之方式而設置)的輸出側之源極、汲極 區域,連接η個選擇電晶體TrsELi〜TrsELn(第2閘極元件), 使得放大後之η個光電二極體PDi〜PDni n個輸出訊號, 透過選擇電晶體TrSEL1〜TrsELn而以並聯方式輸出,係積層 上位半導體電路層21E與下位半導體電路層22E而成二段 之三維積層構造。該影像感測器4,與本發明第4觀點之 影像感測器相對應,在其中所使用之感測器電路,與本發 明第2觀點之感測器電路相對應。 影像感測器4的全體構成及動作,與圖19所示者相同, 因而省略有關其等之說明。又,w 21之電路構成,係在 圖20的第13實施形態之感測器電路3又追加n個選擇電 晶體TrSEL广TrSELn(第2閘極元件)者(其中並無儲存用電容 元件與輸出電晶體),因此’對於相同於圖2Q之要件係賦 予相同符號並省略其說明。其中,在該影像感測器4中, 在上位半導體電路層21E中所形忐夕々你主 丁 W々或之各像素區塊i 2a的共 通郎點13 a、與在下位丰導轉雷@ 、佑r诅千¥體電路層22E中所形成之放大 電日日體Τ Γ a μ P的間極間,得栋用田a ,, 少 J你便用周知的埋設配線23以達成 彼此電氣連接’因此,在圖21 φ 上 π w zi干,追加了埋設配線23、 该埋設配線2 3所產生之窬决帝^ 之哥生电阻、及寄生電容(:01和C〇2 ο 90 200803484 埋設配線23,對各像素區塊12a(亦即n個像素Ua)設置有 一個0 接著說明影像感測器4的實際構造。 由圖23可以了解,影像感測器4係使用埋設配線23、 微細之凸塊電極90、及電氣絕緣性之黏著劑91,使上位 半導體電路層21E與下位半導體電路層22E形成為機械及 電氣連接。Fig. 21 is a circuit diagram showing the configuration of the main circuit of the address specifying image sensor 4 according to the fourteenth embodiment of the present invention. Fig. 23 is a cross-sectional view showing the essential part of the actual structure of the image sensor 4. The sensing circuit used in the image sensor 4 is an amplifying transistor TrAMP of the sensor circuit 3 (see FIG. 20) of the thirteenth embodiment (the amplifying transistor TrAMp is associated with each pixel block). The source and drain regions on the output side of 12a are provided in a corresponding manner, and n selection transistors TrsELi to TrsELn (second gate elements) are connected so that the amplified photodiodes PDi to PDni n are amplified. The output signals are output in parallel by selecting the transistors TrSEL1 to TrrELn, and the upper semiconductor circuit layer 21E and the lower semiconductor circuit layer 22E are laminated to form a three-dimensional laminated structure. The image sensor 4 corresponds to the image sensor of the fourth aspect of the present invention, and the sensor circuit used therein corresponds to the sensor circuit of the second aspect of the present invention. The overall configuration and operation of the image sensor 4 are the same as those shown in Fig. 19, and the description thereof will be omitted. Further, in the circuit configuration of w 21, in the sensor circuit 3 of the thirteenth embodiment of FIG. 20, n selection transistors TrSEL wide TrSELn (second gate elements) are added (there are no storage capacitor elements and The transistor is output, and therefore the same reference numerals are given to the same components as those of FIG. 2Q, and the description thereof is omitted. Wherein, in the image sensor 4, in the upper semiconductor circuit layer 21E, the common ray point 13 a of each of the pixel blocks i 2a or the pixel block i 2a is formed. @ , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , "Electrical connection" Therefore, π w zi is dried on φ in Fig. 21, and the buried wiring 23, the buried wiring generated by the buried wiring 23, and the parasitic capacitance (: 01 and C〇2 ο 90) are added. 200803484 The wiring 23 is embedded, and a pixel is provided for each pixel block 12a (that is, n pixels Ua). Next, the actual configuration of the image sensor 4 will be described. As can be seen from FIG. 23, the image sensor 4 uses the buried wiring 23 The fine bump electrode 90 and the electrically insulating adhesive 91 form the upper semiconductor circuit layer 21E and the lower semiconductor circuit layer 22E in mechanical and electrical connection.

在上位半$體電路層21E中,形成有(kxm)個像素區 塊12a,亦即有(kxn)xm個像素1 ia。因此,在上位半導體 電路層21E中包含··(kxn)xm個光電二極體(亦即有化咖) 組之光電二極體群PD广PDn) ; (kxn)xm個傳送閘極(亦即有 (kxm)組之傳送閘極群TG广TGJ;及(kXn)Xm個重置電晶 體(亦即有(kxm)組之重置電晶體群TrRsTi〜TrRsTj。在上位 半導體電路層21E中,進一步形成有(kxm)個埋設配線23。 在下位半導體電路層22E中,形成有(kxm)個放大電 晶體TrAMP;及(kxn)xm個選擇電晶體(亦即有(kxm)組之選 擇電晶體群TrSEL1〜TrSELn)。 在上位半導體電路層21E,係在p a 一 _ , 口口巫攸刊 的表面區域,以既定圖案而形成元件分離絕緣膜41,藉此 而將(kxn)xm個之元件區域形成並排之陣列狀,如同圖a 之布局方式所示般。其等元件區域,分別與一個像素Ha 相對應。 ' 在與像素區塊 有η個光電二極體 12a(i’ j)對應之元件區域的内部,形成 PD广PDn ; n個傳送閘極TGi〜TGn ;及e 91 200803484In the upper half of the body circuit layer 21E, (kxm) pixel blocks 12a are formed, that is, there are (kxn) xm pixels 1 ia. Therefore, in the upper semiconductor circuit layer 21E, the photodiode group PD of the group of (kxn) xm photodiodes (that is, the singularity) is included; (kxn) xm transfer gates (also That is, there are (kxm) groups of transmission gate groups TG TGJ; and (kXn) Xm reset transistors (that is, there are (kxm) groups of reset transistor groups TrRsTi~TrRsTj. In the upper semiconductor circuit layer 21E Further, (kxm) buried wirings 23 are formed. In the lower semiconductor circuit layer 22E, (kxm) amplification transistors TrAMP are formed; and (kxn) xm selection transistors (that is, there are (kxm) groups selected The transistor group TrSEL1 to TrSELn). In the upper semiconductor circuit layer 21E, the element isolation insulating film 41 is formed in a predetermined pattern in the surface area of the 一 _ 口 , , , , , , , , , , , , , , , , , , , , , , , , , , , The element regions are formed in an array of side by side, as shown in the layout of Fig. a. The element regions are respectively corresponding to one pixel Ha. 'There are n photodiodes 12a (i' j in the pixel block) ) corresponding to the inside of the component region, forming PD wide PDn; n transfer gates TGi to TGn; and e 91 20080348 4

重置電b曰體TrRST广TrRSTn。以光電二極體pDi為例如 圖23所示般,係由形成^ p型基板4() @ n+型區域^所 構成(亦即p-n接合之光電二極體)。傳送閘極TG!,係由 M〇S電晶體所形成,其包含閘極44、及隔著該閘極44於 其間並與a區域42成為對向m區域43。傳送閉極 TG】’因為光電二極體PDi的n+型區域42共用之故,傳送 閘極tGi的-源極、汲極區域,與光電二極體ρ〇ι的陽極 形成電氣連接。存在於閘極44與基板4()的表面之間之問 極絕緣膜,在圖23已予省略。閘極44,係透過在基板4〇 表面形成之配線構造47巾ίΛ阳硷,二β、 ^再仏^γ的配線,而與相對應的讀取控 制線3 2形成電氣連接。 重置電晶體TrRST1,係由MOS電晶體所形成,其包含: 閘極49;及’隔著該閘極49於其間並與〆型區域42成為 對向之型區域43a。重置電晶體,由於光電二極 體PD丨的n+型區域42係為共用’重置電晶體Tr則的一 源極、沒極區域,與光電二極體PDi的陽極形成電氣連接。 η型區域43a(源極、汲極區域)中,係透過未圖示之配線而 有重置電壓VRST之施加。 其他的光電二極體PR〜PDn、傳送閘極tg广丁叱、及 重置電晶體TrRST广TrRSTn,分別與光電二極體pDi、傳送 閘極TG!、及重置電晶體TrRsTi具有同樣的構成。 在配線構造47的内部,形成有:以既定圖案而形成之 配線膜46;及’用以使傳送閘極叫〜%之η個n+型區 域43與該配線膜46形成電氣連接之n個導電性接觸插塞 92 200803484 在像素區塊12a(i,j}中的n個傳送閘極tg广瓜,係 藉由其等接觸插塞45而分別與配線膜46形成電氣連接, 因此,傳送閘極TG广TGn係並聯於共通節點⑴。 在上位半導體電路層21E内的n+型區域Ο,具有FD(浮 置擴散)區域的功能’亦即,所具有之功能係,藉由光電轉Reset the electric b body TrRST wide TrRSTn. The photodiode pDi is formed, for example, as shown in Fig. 23, by forming a p-type substrate 4 () @ n + type region ^ (i.e., a p-n junction photodiode). The transfer gate TG! is formed by an M?S transistor, and includes a gate 44 and a m region 43 interposed therebetween with the gate region 44 interposed therebetween. Since the n + -type region 42 of the photodiode PDi is shared, the source and drain regions of the gate tGi are transferred to form an electrical connection with the anode of the photodiode ρ〇. The electrode insulating film existing between the gate 44 and the surface of the substrate 4 () is omitted in Fig. 23. The gate 44 is electrically connected to the corresponding read control line 32 by wiring of the wiring structure 47 formed on the surface of the substrate 4, and the wiring of the second and second γ. The reset transistor TrRST1 is formed of a MOS transistor and includes: a gate 49; and a region 43a between which the gate 49 is opposed to the meander region 42. The transistor is reset, and the n + -type region 42 of the photodiode PD is electrically connected to the anode of the photodiode PDi by a source and a non-polar region of the common 'reset transistor Tr'. In the n-type region 43a (source, drain region), the reset voltage VRST is applied through a wiring (not shown). The other photodiodes PR to PDn, the transfer gate tg, and the reset transistor TrRST TrRSTn have the same characteristics as the photodiode pDi, the transfer gate TG!, and the reset transistor TrRsTi, respectively. Composition. Inside the wiring structure 47, a wiring film 46 formed in a predetermined pattern; and n conductive layers for electrically connecting the n + -type regions 43 of the transfer gates to the wiring film 46 are formed. Contact plug 92 200803484 The n transfer gates tg in the pixel block 12a (i, j} are electrically connected to the wiring film 46 by the contact plugs 45, respectively. The pole TG wide TGn is connected in parallel to the common node (1). The n+ type region Ο in the upper semiconductor circuit layer 21E has a function of an FD (floating diffusion) region, that is, a function system, by photoelectric conversion

換而將貯存於光電二極轉P 壓訊號。 "體一之訊號電荷量轉換成電In other words, it will be stored in the photoelectric diode to P pressure signal. " body one signal charge amount converted into electricity

在基板4〇中’形成有用以使元件分離絕緣膜41盥基 板:在上下方向(與基板4〇的主面正交之方向)貫穿之㈣ m)個透孔’其形成位置位於’鄰接傳送閑極tGi〜tg的n+ ,區域(源極、汲極區域)43之元件分離絕緣膜Μ :重疊 孔中與基板4G接觸之部分,被絕緣膜Μ而覆蓋 ==全面。在該透孔的内部(絕緣膜24的内側與元 性::‘緣膜41的内部)’充填著導電性材料,由該導電 基板40=^埋設Γ線Μ。該埋設配線23的上端,係由 ^造47二分,Γ絕緣^ 41)的表面外露’並與形成於配線 接^插*敎導電性接觸插塞…的下端連接。該導電性 从連接因3了上端’與形成於配線構造47内部之配線膜 盘相對庫的1" ’埋設配線23透過導電性接觸插塞23a而 j對應的配線臈46形成電氣連接。其結果,像素區塊 之n個傳送間極$ ,、及極 區域)4;3,如圄土匕巧(源極、汲極 線23有妓通的1之電路構成所示般,與相對應的埋設配 板的内、=二埋設配線23的下端,係由基 °在/、下鈿與相對應的凸塊電極90形成 93 200803484 機械及電氣連接。 在下位半導體電路層22E中,係在p型單晶矽基板6〇 的表面區域,以既定圖案而形成元件分離絕緣膜6丨,藉此In the substrate 4A, a substrate is formed so that the element is separated from the insulating film 41. The substrate: (iv) m through holes penetrated in the up and down direction (the direction orthogonal to the main surface of the substrate 4A). The n+ of the idle electrode tGi to tg, the element isolation insulating film of the region (source, drain region) 43: the portion of the overlapping hole that is in contact with the substrate 4G is covered by the insulating film = == comprehensive. A conductive material is filled in the inside of the through hole (the inside of the insulating film 24 and the element: "the inside of the edge film 41"), and the conductive substrate 40 is embedded in the conductive substrate 40. The upper end of the buried wiring 23 is exposed to the lower end of the wiring contact plug. This conductivity is electrically connected from the wiring port 46 corresponding to the conductive contact plug 23a via the 1" embedded wiring 23 which is connected to the wiring film disk formed in the wiring structure 47 by the upper end. As a result, the n transfer terminals of the pixel block are extremely large, and the polar regions are 4; 3, as shown by the circuit configuration of the source 1 and the drain line 23 having the pass-through. The lower end of the inner and second buried wirings 23 of the corresponding embedded board is formed by the base/in, the lower jaw and the corresponding bump electrode 90. The mechanical and electrical connection is made in the lower semiconductor circuit layer 22E. The element isolation insulating film 6 is formed in a predetermined pattern on the surface region of the p-type single crystal germanium substrate 6?

TrAMP用的元件區域、及既 SELn用之兀件區域。此處’ 而形成既定數量之放大電晶體 定數量之選擇電晶體TrSEL1〜Tr 以對應於一個像素區塊i2a(i,j)之構成來說明。 放大電晶體TrAMP,係由MOS電晶體所構成,其包含The component area for TrAMP and the component area for SELn. Here, a predetermined number of the selection transistors TrSEL1 to Tr are formed to correspond to the configuration of one pixel block i2a(i, j). The amplifying transistor TrAMP is composed of a MOS transistor and includes

閘極65、及隔著該閘極65於其間而在兩側形成之一對γ 型區域(源極、汲極區域)64。閘極65係透過在配線構造74 的内邛开> 成之導電性接觸插塞71、配線膜72、導電性接 觸插塞}4a、及配線膜75,而與相對應的凸塊電極9〇形成 电氣連接。其結果,放大電晶體TrAMp的閘極,係透過對 應的埋設配線23,而與上位半導體電路層2丨中相對應的 共通節點13a(像素區塊i2a(i,j))形成電氣連接(參照圖 21)又,一 n型區域64(源極、汲極區域),係透過形成 於配線構造74内部之導電性接觸插塞69,而與形成於配 線構造74内部之配線膜73形成電氣連接。另一 η+型區域 64(源極、汲極區域),係透過未圖示之配線而有電源電壓 Vcc的施加。 η個遠擇電晶體TrSEL1〜TrSELn,各由MOS電晶體所構 成’其包含閘極67、及隔著該閘極67於其中而在兩側形 成的一對n+型區域(源極、汲極區域)66。一 n+型區域(源極、 汲極區域)66,係透過在配線構造74的内部形成之導電性 接觸插基70及配線膜73,而與相對應的放大電晶體Tr 94 200803484 的一 n+型區域(源極、汲極區域)64形成電氣連接。閘極67 係透過在配線構造74的内部形成之配線,而與輸出選擇 線39形成電氣連接。在選擇電晶體TrSEL1〜TrSELn的閘極 67 ’係透過相對應的輸出選擇線39而分別有既定的輸出 送擇訊號φ SEL1〜φ SELn的施加。 如上述,在圖23所示之第14實施形態之影像感測器 4 ’係運用圖21所示之感測器電路,其將(kxm)組之光電二 極體群PD广PDn、(kxm)組之傳送閘極群tg广TGn、(kxm) 組之重置電晶體群丁rRST1〜TrRSTn、及(kxm)個埋設配線23, 形成於上位半導體電路層21E中,且將(kxm)個放大電晶 體TrAMP與(kxm)組之選擇電晶體群TrSEL1〜TrSELn形成於下 位半導體電路層22E中,並且透過埋設配線23及凸塊電 極90,使上位半導體電路層21E中之像素區塊傳送閘 極群TGl〜TGn)與下位半導體電路層22E中的放大電晶體 TrAMP彼此形成電氣連接。 又’在下位半導體電路層22E的上方之主面(配線構造 74的表面)係藉由凸塊電極90與黏著劑91,而與上位半 導體電路層21E的下方之主面(基板40的内面)成電氣及機 械連接,因此,兩電路層21E與22E構成二段之半導體積 層構造(三維構造)。 口此基於與上述第13實施形態之感測器電路3之情 φ相同的理由’對所有像素丨丨a的訊號電荷能實質上同時 貯存(貝貝上同日守曝光化),且不會發生習知的影像 感測器之影像失直愔形一 〃 It $ 可對同速移動之待攝物體進行攝 95 200803484 影0 又,像素區塊12a的各像素Ua,只包含一個光電二 極體、與-個間極元件_s電晶體)及一個重置電晶體 (MOS電晶體)’因此’相較於在一個像素中除光電二極體 外尚包3二個或四個M〇s電晶體之習知的cm〇s影像感 測器,能實現較高的像素開口率(例如達6〇%左右),且像 素11 a本身尺寸亦能縮小。 _ 再者,由於相較於習知的CMOS影像感測器具有較高 的像素開口率’因此,在上位半導體21e表面之受光區域(各 光包一極體的開口部分)的總面積相對於攝影區域的總面積 之比例,能因而提高。 (弟15實施形態) 、抑圖22,係本發明第15實施形態之位址指定型影像感 測益4A的要部電路構成之電路圖;圖24,係表示該影像 感測器4A的實際構造之要部截面圖。該影像感測器4A, φ 係在上述第14實施形態之影像感測器電路4所使用的感 測态電路(參照圖21)中,於n個選擇電晶體τ A A S E L η 的各輸出側,追加形成有儲存用電容元件CST1〜C^n、及輸 出私晶體Tr0UT1〜Tr〇UTn,其係積層上位半導體電路層21e 與下位半導體電路層22E,而成二段之三維積層構造。該影 像感測器4A,與本發明第4觀點之影像感測器相對應。 由圖24可以了解,影像感測器4A係使用埋設配線23、 微細之凸塊電極9〇、及電氣絕緣性之黏著劑91,使上位 半導體電路層21E與下位半導體電路層22E,形成機械及電 96 200803484 氣連接。 上位半導體電路層21E,與上述第14實施形態之影像 感測器4(參照圖23)所述者具有相同構成,因此,係賦予 相同於第14實施形態時之符號並省略其詳細說明。 下位半導體電路層22E,,與上述第14實施形態之影 像感測器4的下位半導體電路層22E具有大致相同的構 成,但僅有的相異點在於,追加形成有儲存用電容元件 CST丨〜CSTn、及輸出電晶體Tr〇UT丨〜Tr〇UTn。亦即,在下位半 導體電路層22E,,除了有(kxm)個放大電晶體TrAMp、及(卜 m)組之選擇電晶體群丁〜如〜η·,亦形成有^㈣組之儲 存用電容元件群cST1〜cSTn、及(kxm)組之輸出電晶體群 ΤΓουτι〜Tr0UTn。 如圖24所示般,在下位半導體電路層22£,中,在基 板60的表面區域以既定圖案而形成元件分離絕緣膜61, 藉此而形成既定數量之放大電晶體TrAMp用之元件區域、 既疋數里之砥擇電晶體丁“叫〜丁。—、儲存用電容元件 cST1〜cSTn、及輸出電晶體ΤΓ〇υτι〜Tr〇uTn用之元件區域。 放大電晶體TrAMp的構成,與上述第14實施形態之影 像感測器4(參照圖23)之情形相同,係由m〇s電晶體所 構成,其包含閘極65、及隔著該閘極65於其間而在兩側The gate 65 and a pair of γ-type regions (source, drain regions) 64 are formed on both sides with the gate 65 interposed therebetween. The gate electrode 65 is formed by the conductive contact plug 71, the wiring film 72, the conductive contact plug 4a, and the wiring film 75 which are opened in the wiring structure 74, and the corresponding bump electrode 9 is provided. 〇 form an electrical connection. As a result, the gate of the amplifying transistor TrAMp is electrically connected to the common node 13a (pixel block i2a(i, j)) corresponding to the upper semiconductor circuit layer 2 through the corresponding buried wiring 23 (refer to 21) Further, an n-type region 64 (source, drain region) is electrically connected to the wiring film 73 formed inside the wiring structure 74 through the conductive contact plug 69 formed inside the wiring structure 74. . The other n + -type region 64 (source, drain region) is supplied with a power supply voltage Vcc through a wiring (not shown). Each of the n far-selective transistors TrSEL1 to TrSELn, which is constituted by a MOS transistor, includes a gate 67 and a pair of n+-type regions (sources, drains) formed on the sides thereof via the gate 67 Area) 66. An n + -type region (source, drain region) 66 is formed by transmitting a conductive contact interposer 70 and a wiring film 73 formed inside the wiring structure 74 to an n + type of a corresponding amplifying transistor Tr 94 200803484 The regions (source, drain regions) 64 form an electrical connection. The gate 67 is electrically connected to the output selection line 39 through the wiring formed inside the wiring structure 74. The gates 67' of the selection transistors TrSEL1 to TrSELn are transmitted through the corresponding output selection lines 39, respectively, with the application of the predetermined output enable signals φSEL1 to φSELn. As described above, in the image sensor 4' of the fourteenth embodiment shown in Fig. 23, the sensor circuit shown in Fig. 21 is used, which is a group of photodiodes PD of (kxm) group, PDn, (kxm) The transfer gate group tg wide TGn, the reset transistor group dRST1 to TrRSTn of the (kxm) group, and the (kxm) buried wiring 23 are formed in the upper semiconductor circuit layer 21E, and (kxm) The selection transistor groups TrAMP1 and TrSELn of the amplification transistor TrAMP and the (kxm) group are formed in the lower semiconductor circuit layer 22E, and pass through the buried wiring 23 and the bump electrode 90 to cause the pixel block transfer gate in the upper semiconductor circuit layer 21E. The pole groups TG1 to TGn) and the amplifying transistors TrAMP in the lower semiconductor circuit layer 22E are electrically connected to each other. Further, the main surface (the surface of the wiring structure 74) above the lower semiconductor circuit layer 22E is mainly the lower surface of the upper semiconductor circuit layer 21E (the inner surface of the substrate 40) by the bump electrode 90 and the adhesive 91. Since the electrical and mechanical connections are made, the two circuit layers 21E and 22E constitute a two-stage semiconductor laminated structure (three-dimensional structure). Based on the same reason as the sensor circuit 3 of the thirteenth embodiment described above, the signal charge of all the pixels 能a can be stored substantially simultaneously (the same as the exposure on the same day), and does not occur. The image of the conventional image sensor is out of shape. It can take a picture of the object to be moved at the same speed. 95 200803484 Shadow 0 In addition, each pixel Ua of the pixel block 12a contains only one photodiode. , with an inter-pole device _s transistor) and a reset transistor (MOS transistor) 'so' compared to two or four M〇s in addition to the photodiode in one pixel The conventional cm〇s image sensor of the crystal can achieve a higher pixel aperture ratio (for example, up to about 6〇%), and the size of the pixel 11a itself can also be reduced. _ Furthermore, since the CMOS image sensor has a higher pixel aperture ratio than the conventional CMOS image sensor, the total area of the light receiving region (the opening portion of each light pack body) of the surface of the upper semiconductor 21e is relatively The proportion of the total area of the photographing area can be increased. (Embodiment 15) FIG. 22 is a circuit diagram showing the configuration of the main circuit of the address specifying type image sensing benefit 4A according to the fifteenth embodiment of the present invention; and FIG. 24 is a view showing the actual configuration of the image sensor 4A. A cross-sectional view of the main part. The image sensors 4A and φ are connected to the respective output sides of the n selection transistors τ AASEL η in the sensing state circuit (see FIG. 21) used in the image sensor circuit 4 of the above-described fourteenth embodiment. Further, the storage capacitive elements CST1 to C^n and the output private crystals TrOUT1 to Tr〇UTn are formed, and the upper semiconductor circuit layer 21e and the lower semiconductor circuit layer 22E are stacked to form a two-dimensional three-layer laminated structure. This image sensor 4A corresponds to the image sensor of the fourth aspect of the present invention. As can be seen from FIG. 24, the image sensor 4A uses the buried wiring 23, the fine bump electrode 9A, and the electrically insulating adhesive 91 to form the upper semiconductor circuit layer 21E and the lower semiconductor circuit layer 22E. Electricity 96 200803484 gas connection. The upper semiconductor circuit layer 21E has the same configuration as that of the video sensor 4 (see Fig. 23) of the above-described fourteenth embodiment. Therefore, the same reference numerals are given to the fourteenth embodiment, and the detailed description thereof will be omitted. The lower semiconductor circuit layer 22E has substantially the same configuration as the lower semiconductor circuit layer 22E of the image sensor 4 of the above-described fourteenth embodiment, but the only difference is that the storage capacitive element CST丨 is additionally formed. CSTn, and output transistor Tr〇UT丨~Tr〇UTn. That is, in the lower semiconductor circuit layer 22E, in addition to (kxm) amplifying transistors TrAMp, and (b) groups of selected transistors, such as ~η·, a storage capacitor of the group (4) is also formed. The output transistor groups ΤΓουτι to Tr0UTn of the element groups cST1 to cSTn and (kxm). As shown in FIG. 24, in the lower semiconductor circuit layer 22, the element isolation insulating film 61 is formed in a predetermined pattern on the surface region of the substrate 60, thereby forming an element region for a predetermined number of the amplification transistor TrAMp, In the case of a plurality of transistors, the structure of the transistor θ 〜 丁 — 、 、 、 、 、 储存 储存 储存 储存 储存 储存 储存 储存 储存 储存 储存 储存 储存 储存 储存 储存 储存 储存 储存 储存 储存 储存 储存 储存 储存 储存 储存 储存 储存 储存 储存 储存 储存 储存 储存 储存 储存 储存 。 。 。 。 。 。 The image sensor 4 (see FIG. 23) of the fourteenth embodiment is the same as that of the m〇s transistor, and includes a gate 65 and a gate 65 interposed therebetween.

形成之對11型區域(源極、汲極區域)64。放大電晶體TrAMP 的電氣連接,亦與第14實施形態之影像感測器4(參照圖21) 之情形相同。 η個透擇電晶體TrsEL1〜TrSELn,分別與上述第14實施 97 200803484 ’係由MOS電晶 形態之影像感測器4時具有相同的構成A pair of 11-type regions (source, drain regions) 64 are formed. The electrical connection of the amplifying transistor TrAMP is also the same as that of the image sensor 4 (see Fig. 21) of the fourteenth embodiment. The n selective transistor transistors TrsEL1 to TrSELn have the same composition as the above-described 14th embodiment 97 200803484' by the image sensor 4 of the MOS transistor form.

體所樣成,其包含 而在兩側形成之一 儲存用電容元件C :閘極67 ;及,隔著該閘極67於其間 對n+型區域(源極、汲極區域)66。又, st广CSTn及輸出電晶體ΤΓ〇υτι〜Tr〇uTn,係 以圖24所示之電路構成方式而與該MOS電晶體連接The body includes a storage capacitor element C: a gate 67 formed on both sides, and an n+-type region (source, drain region) 66 interposed therebetween via the gate 67. Further, st wide CSTn and output transistors ΤΓ〇υτι to Tr〇uTn are connected to the MOS transistor in the circuit configuration shown in FIG.

例如以選擇電晶體而言,一型區域(源極、 汲極區域)66,係透過在配線構造74的内部形成之導電性 接觸插塞70、69、及配線M 73,而與相對應的放大電晶 體TrAMP的一 n+型區域(源極、汲極區域)64形成電氣連接。 閘極67係透過在配線構造74的内部形成之配線,而與輸 出選擇線39形成電氣連接,而有輸出選擇訊號^⑴的施 加。選擇電晶體TrSEL1的另一 n+型區域(源極、汲極區域)66, 連同以閘極67a為準時係位於其反側之n+型區域66&,構 成了具有儲存用電容元件Csti功能之M〇s電容器。該 型區域66a,連同閘極67b,以及以該閘極^几為準時係位 在該n+型區域66a的反側之n+型區域66a,構成了作為輸 & f日日體Tr〇UTl 功能之Μ Ο S電晶體。閘極6 7 a與既定電 位(通$為接地電位)的端子連接。閘極67b係透過未圖示 之配線而與輸出控制線39a形成電氣連接,而有輸出控制 δ孔號之W OUT1之施加。 如所示,在一個元件區域内,形成有選擇電晶體 TrSEL1、儲存用電容元件Csti、及輸出電晶體Tr〇un。此點 對於其他選擇電晶體Tqel2〜TrsELn亦是相同。 如上述,在圖24所示之第1 5實施形態之影像感測器 98 200803484For example, in the case of selecting a transistor, a type region (source, drain region) 66 is transmitted through the conductive contact plugs 70, 69 and the wiring M 73 formed inside the wiring structure 74, and corresponding thereto. An n+ type region (source, drain region) 64 of the amplifying transistor TrAMP forms an electrical connection. The gate 67 is electrically connected to the output selection line 39 through the wiring formed inside the wiring structure 74, and the output selection signal ^(1) is applied. Another n+-type region (source, drain region) 66 of the transistor TrSEL1 is selected, together with the n+-type region 66& on the opposite side of the gate 67a, constituting the M having the function of the storage capacitive element Csti 〇s capacitor. The type region 66a, together with the gate 67b, and the n+ type region 66a which is located on the opposite side of the n+ type region 66a when the gate electrode is used, constitutes a function of the Tr〇UT1 function as the input & f day Then Ο S transistor. The gate 6 7 a is connected to a terminal of a predetermined potential (passing $ is the ground potential). The gate 67b is electrically connected to the output control line 39a via a wiring (not shown), and has an output control of the application of the WL hole number W OUT1. As shown, in one element region, a selection transistor TrSEL1, a storage capacitance element Csti, and an output transistor Tr〇un are formed. This point is also the same for other selection transistors Tqel2~TrsELn. As described above, the image sensor of the fifteenth embodiment shown in FIG. 24 is 200803484

4,係運用圖22所示之感測器電路,其將(kxm)組之光電二 極體群PD广PDn、(kxm)組之傳送閘極群TGi〜TGn、(kxm) 組之重置電晶體群TrRST1〜TrRSTn、及(kxm)個埋設配線23, 形成於上位半導體電路層21E中,且將(kxm)個放大電晶 體TrAMP、(kxm)組之選擇電晶體群丁^⑴〜丁^心、(kxm)組 之儲存用私谷元件群CST1〜cSTn、及(kxm)組之輸出電晶體 群Tr0UT1〜Tr0UTl^成於下位半導體電路層22E,中,並且透 過埋叹配線23及凸塊電極9〇,使上位半導體電路層2 i E 中之傳送閘極群TG^TGn與下位半導體電路層22Ε,中的放 大電晶體TrAMP彼此形成電氣連接。 又,在下位半導體電路層22E,的上方之主面(配線構造 Μ的表面),係藉由凸塊電極%與黏著劑91,而與上位半 導體電路層21E的下方之主面(基板4〇的内面)成電氣及機 械連接’因此,雨雷软 兩電路層21E與22E,構成二段之半導體積 層構造(三維構造)。 y 口此基於與上述第13實施形態之感測器電路3之情 同〜的理由肖所有像素山的訊號電荷能實質上同時 貝:子(貫質上同時曝光化),且不會發生習知的CMOS影像 =測器之影像失真情形,可對高速移動之待攝物體進行攝 托触 t 〜廿丨豕系Ha,只包含一個光電二 β _、/、一個閘極元件(]^〇 , # ^ 電曰曰體)及一個重置電晶體 外尚包含H 在一個像素中除光電二極體 個或四個_電晶體之習知的CMOS影像威 99 200803484 測為,能貫現較高的像素開口率(例如達60%左右),且像 素11 a本身尺寸亦能縮小。 再者,由於相較於習知的CM0S影像感測器具有較高 的像素開口率,因此,在上位半導體2ie表面之受光區域(各 光電—極體的開口部分)的總面積相對於攝影區域的總面積 之比例,能因而提高。 ,"再者’藉由以輸出控制訊號φ〇υτι〜φ·η來控制輸出 =曰日體Tr0UT广Tr0UTn之方式,將訊號往行訊號線37輸出 =之時點,與像素區塊12a中傳送閘極tg广ΤΙ及選擇電 曰曰體群丁rSELi〜TrsELn的開閉之時點能彼此錯開,因此,相 幸乂於第14實施形態之影像感測器,更能實施高速攝影, 此亦為效果所在。 (苐1 6實施形態) 上述第5〜第12實施形態之位址指定型影像感測器 2〜2〇與第14及第15實施形態之位址指定型影像感測器44. Using the sensor circuit shown in FIG. 22, the phototransistor group PD wide PDn of the (kxm) group, and the transfer gate groups TGI TG TGn and (kxm) of the (kxm) group are reset. The transistor groups TrRST1 to TrRSTn and (kxm) buried wirings 23 are formed in the upper semiconductor circuit layer 21E, and the (kxm) amplification transistors TrAMP and (kxm) groups are selected from the group of transistors. ^, the (kxm) group of the storage trough component groups CST1 to cSTn, and the (kxm) group of output transistor groups Tr0UT1 to Tr0UT1 are formed in the lower semiconductor circuit layer 22E, and through the sigh wiring 23 and the convex The bulk electrode 9A electrically connects the transfer gate group TG^TGn in the upper semiconductor circuit layer 2iE and the lower semiconductor circuit layer 22A to the amplifying transistors TrAMP. Further, the upper main surface (the surface of the wiring structure 在) of the lower semiconductor circuit layer 22E is mainly the lower surface of the upper semiconductor circuit layer 21E by the bump electrode % and the adhesive 91 (substrate 4 〇 The inner surface is electrically and mechanically connected. Therefore, the rain and thunder soft circuit layers 21E and 22E constitute a two-stage semiconductor laminate structure (three-dimensional structure). The y port is based on the same reason as the sensor circuit 3 of the thirteenth embodiment described above. The signal charge of all the pixel mountains can be substantially simultaneous: the sub-mass is simultaneously exposed, and the habit does not occur. Known CMOS image = image distortion of the detector, which can be used to take a high-speed moving object to be touched t ~ 廿丨豕 Ha, containing only one photodiode β _, /, a gate element (] ^ 〇 , # ^电曰曰体) and a reset transistor outside the H-containing photodiode or _ transistor in a pixel of the conventional CMOS image Wei 99 200803484 measured, can be compared The pixel opening ratio is high (for example, up to about 60%), and the size of the pixel 11a itself can be reduced. Furthermore, since the CMOS image sensor has a higher pixel aperture ratio than the conventional CMOS image sensor, the total area of the light receiving region (the opening portion of each photo-electrode body) on the surface of the upper semiconductor 2ie is relative to the photographing region. The ratio of the total area can be increased. , " again, by controlling the output = 曰 Tr0UT Width Tr0UTn by outputting the control signal φ 〇υ τ ι φ η η, the signal is outputted to the signal line 37 = time point, and the pixel block 12a When the transmission gate tg is wide and the selection of the electric body groups dSELi to Trseln can be shifted from each other, the image sensor of the fourteenth embodiment is more capable of performing high-speed photography. The effect is. (Embodiment 1) The address specifying image sensors 2 to 2A of the fifth to twelfth embodiments and the address specifying type image sensor 4 of the fourteenth and fifteenth embodiments

/V ,均是將上位及下位的二個半導體電路層予以積層而 成為一層構造’然而,本發明之影像感測器並不侷限為二 运構迨。亦可以是將三層或四層以上之半導體電路層予以 矛貝層而構成者。以下提出一說明例,該例係由上位、中位、 下位之二層的半導體電路層所構成。 圖28’係本發明之第16實施形態之位址指定型影像 感測為2H的要部電路構成圖;圖29,係同一影像感測器 2H的實際構造之要部截面圖。該影像感測器2h,係使用 上述第3實施形態之感測器電路1B(參照圖4)者,其與使 100 200803484 用该感/則器電路1B的弟5實施形態之二段的三維積層構 造之影像感測器2(參照圖6及圖8)間,雖然具有大致相同 的構成,但不同之處在於,其係將上位半導體電路層2lF、 中位半導體電路層22Fa、及下位半導體電路層22Fb予以 積層而構成之三段的三維積層構造。該影像感測器2H,與 本發明第2觀點之影像感測器相對應。 上位半導體電路層2 1F的構成,與上述第5實施形態 之影像感測器2的上位半導體電路層21(參照圖8)所述者 相同。 在影像感測器2中於下位半導體電路層22形成的(kx m)組之重置電晶體TrRsTi〜TrRsTn、及(kxm)個放大電晶體 TrAMP ’被形成於中位半導體電路層22Fa。上位半導體電 路層21F中的各像素區塊12,與中位半導體電路層22Fa 中相對應的重置電晶體Τγ_〜TrRsTn及放大電晶體TrA·, 係透過在上位半導體電路層2 1F中所形成之相對應的埋設 配線23,而使彼此形成電氣連接。 在影像感測器2中於下位半導體電路層22形成的(Κχ 之遥擇電晶體〜ΤΓ^η,係形成於下位半導體電 路層22Fb中。中位半導體電路層22Fa中的各放大電晶體 TrAMp ’與下位半導體電路層22Fb中相對應的選擇電晶體 TrSEL1〜TrSELn間,係透過在中位半導體電路層22Fa中所形 成之相對應的埋設配線23,而使彼此形成電氣連接。 接著,邊芩照圖29邊說明影像感測器2H的實際構造。 上位半導體電路層21F的構成,與上述第5實施形態 101 200803484 之影像感測器2的上位半導體電路層21(參照圖8)所述者 相同’因而對於相對應的要件乃賦予相同符號並省略其說 明。/V is a layered structure in which two semiconductor circuit layers of the upper and lower layers are laminated. However, the image sensor of the present invention is not limited to the second embodiment. It is also possible to form a semiconductor circuit layer of three or more layers by using a spear layer. An illustrative example is given below, which is composed of a semiconductor circuit layer of two layers of upper, middle, and lower layers. Fig. 28 is a schematic diagram showing the configuration of a main part circuit in which the address specifying image of the sixteenth embodiment of the present invention is sensed as 2H, and Fig. 29 is a cross-sectional view of the essential part of the actual structure of the same image sensor 2H. In the image sensor 2h, the sensor circuit 1B (see FIG. 4) of the third embodiment is used, and the three-dimensional three-dimensional embodiment of the embodiment of the sensor/program circuit 1B is used for 100 200803484. The image sensor 2 (see FIGS. 6 and 8 ) having a laminated structure has substantially the same configuration, but differs in that the upper semiconductor circuit layer 21F, the intermediate semiconductor circuit layer 22Fa, and the lower semiconductor are provided. The circuit layer 22Fb is laminated to form a three-dimensional three-layer laminated structure. The image sensor 2H corresponds to the image sensor of the second aspect of the present invention. The configuration of the upper semiconductor circuit layer 2 1F is the same as that of the upper semiconductor circuit layer 21 (see Fig. 8) of the image sensor 2 of the fifth embodiment. The (kx m) group of reset transistors TrRsTi to TrRsTn and (kxm) amplification transistors TrAMP' formed in the lower semiconductor circuit layer 22 in the image sensor 2 are formed in the intermediate semiconductor circuit layer 22Fa. Each of the pixel blocks 12 in the upper semiconductor circuit layer 21F and the reset transistors Τγ_TrTrsTn and the amplifying transistor TrA· corresponding to the intermediate semiconductor circuit layer 22Fa are formed in the upper semiconductor circuit layer 2 1F. The corresponding buried wirings 23 are electrically connected to each other. The 遥 遥 遥 电 于 于 于 于 下 下 下 下 下 下 下 下 下 下 下 下 下 下 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 Tr 。 。 。 The selected interconnect transistors TrSEL1 to TrSELn corresponding to the lower semiconductor circuit layer 22Fb are electrically connected to each other through the corresponding buried wirings 23 formed in the intermediate semiconductor circuit layer 22Fa. The actual structure of the image sensor 2H will be described with reference to Fig. 29. The configuration of the upper semiconductor circuit layer 21F is the same as that of the upper semiconductor circuit layer 21 (see Fig. 8) of the image sensor 2 of the fifth embodiment 101200803484. The same is given to the corresponding elements and the description thereof is omitted.

中位半導體電路層22Fa,與影像感測器2的下位半導 體包路層22的構造(參照圖8)相似,係在P型單晶矽基板 6〇的表面區域以既定圖案而形成元件分離絕緣膜61,藉 此而形成既定數量之重置電晶體TrRST用之元件區域、及 既疋數置之放大電晶體TrAMP用的元件區域。 4置電ag體TrRST如圖29所示般,係由MOS電晶體 所構成’其包含閘極63、及隔著該閘極63於其間而形成 於兩側之一對n+型區域(源極、汲極區域)62。閘極63係透 過幵y成於基板60表面之配線構造74中的配線,而與相對 應的重置線31形成電氣連接。-n+型區域62(源極、汲極 區域),係透過形成於配線構造74内部之導電性接觸插塞 68、配線膜72、導電性接觸插塞74a、及配線膜75,與相 對應的凸塊電極90形成電氣連接。其結果,重置電晶體The intermediate semiconductor circuit layer 22Fa is similar to the structure of the lower semiconductor package layer 22 of the image sensor 2 (refer to FIG. 8), and is formed in a predetermined pattern in the surface region of the P-type single crystal germanium substrate 6A. The film 61 thereby forms an element region for a predetermined number of reset transistors TrRST and an element region for amplifying the transistor TrAMP. As shown in FIG. 29, the IGBT is formed of a MOS transistor, which includes a gate 63 and a pair of n+-type regions (sources) formed on both sides with the gate 63 interposed therebetween. , bungee area) 62. The gate 63 is electrically connected to the corresponding reset line 31 by passing through the wiring formed in the wiring structure 74 on the surface of the substrate 60. The -n+ type region 62 (source, drain region) is transmitted through the conductive contact plug 68 formed in the wiring structure 74, the wiring film 72, the conductive contact plug 74a, and the wiring film 75. The bump electrodes 90 form an electrical connection. As a result, resetting the transistor

TrRST之一源極、汲極區域,係透過相對應的埋設配線23, 而與上位半導體電路層21F中相對應的共通節點13(像素 區塊12(i,j))形成電氣連接(參照圖6)。另一 γ型區域62(源 極、汲極區域),則透過未圖示之配線而有重置電壓'π 之施加。 放大電晶體TrAMP係由MOS電晶體所構成,其包含: 閘極65,及,隔著该閘極65於其間而形成於兩側之一對 η型區域(源極、汲極區域)64。閘極65係透過形成於配線 102 200803484 構造74内部之導電性接觸插塞7丨、配線膜72、導電性接 觸插塞74a、及配線膜75,而與相對應的凸塊電極9〇形成 電氣連接。其結果,放大電晶體TrAMp的閘極,係透過相 對應的埋設配線23,而與上位半導體電路層21中相對應 的共通節點13(像素區塊12(ί,υ)形成電氣連接(參照圖6)。 又 11型區域64(源極、汲極區域),係透過形成於配線 構造74内部之導電性接觸插塞69、配線膜73、及導電性 • 接觸插基23a,而與形成於下位半導體電路層22fb之導電 眭插基23形成電氣連接。另一 n+型區域64(源極、汲極區 域),則透過未圖示之配線而有電源電壓Vcc的施加。 下位半導體電路層22Fb,係在p型單晶矽基板60,的 表面區域以既定圖案形成元件分離絕緣膜61,,藉此而形 成既疋數$之選擇電晶體TrsEu〜TrsEh用的元件區域。選 擇電晶體TrSEL1〜TrSELn各由M〇s電晶體所構成,其包含閘 極67、及隔著該閘極67於其間而在兩側形成的一對一型 _ 區域(源極、汲極區域)66。一 型區域(源極、汲極區域)66, 係透過在配線構造74,的内部形成之導電性接觸插塞7〇、 配線膜72a、V電性接觸插塞74ai、及配線膜75,,而與相 對應的凸塊電極90,形成電氣連接。因此,該n+型區域(源 極、汲極區域)66,係透過凸塊電極9〇,與中位半導體電路 層22Fa内的導電性插塞23,,而與相對應的放大電晶體 TrAMP的一 n+型區域(源極、汲極區域)64形成電氣連接。 另一 η型區域(源極、汲極區域)66,連接於該影像感測器 2Η中相對應的輸出端子。閘極67係透過在配線構造74,的 103 200803484 内部形成之配線’而與輸出選擇線39形成電氣連接。在 k擇电曰曰體TrSEL1〜TrsELn的閘極67,各透過相對應的輸出 選料39而有既定的輸出選擇訊號^ 的施加。 第16貫施形態之影像感測器2H,雖具有上述所示之 實際構造,但其動作及效果與上述第5 #施形態之影像感 測益2(麥照圖6及_ 8)之情形相同。因此而省略有關直等 之說明。 α ❿ (儲存用電容元件的構成例) 圖25〜圖27,係在上述實施形態所使用之儲存用電容 元件的構成例。在其等之圖中所示者,係設置在選擇電晶 體TrSELl與輸出電晶體Tr ^ , 餸ΓΓουτι之間的儲存用電容元件csT1。 圖25⑷的儲存用電容元件CST,,係在p型石夕基板6〇 的内部,具有以連結電容元件Cs”侧的n+區域 以形成選擇電晶體Tr 、 ^ ^ ^ ^ SEL1)、及電容元件CST1側的n+區域 66a(其係用以形成輸出電晶體Tr_)之方式而形成之〆區 域66b。右將延向偏壓施加至基板6〇與n+區域&补之間, 可產生p-n接合電容,因而,能以其作為儲存用電容元件 CST1來使用。 圖5(=的儲存用電容元件CST1,係在形成選擇電晶體 區或66與形成輸出電晶體Tr〇UTi的n+區域66a …有透過閘極絶緣膜(未圖示)而在p型矽基板6〇的 可::成之閘極67'。若將電源電壓Vcc施加於閘極67a, 可在基板60的表面ρ 立& a 或產生n型或n+型的反轉層L,因而 其作為儲存用電容MCST1來使用。此為典型的刪 104 200803484 “器係在上述各實施形態所使用者。 、开> 成k擇电晶體Ti>seli之閘極67的電容元件丨側 的端部,係透過絕緣膜(未圖示)而被載置於閘極67&的上 方。同樣的,用以形成輸出電晶體Tr〇Un的閘極6%之 谷π件CST1側的端部,係由閘極67的相反側透過絕緣膜(未 圖不)而被載置於閘極67a之上方。 圖26⑷的儲存用電容元件% ’係在形成選擇電晶體 ku的區域66與形成輸出電晶體丁一的n+區域心 之間具有透過閑極絕緣膜(未圖示)而在p型石夕基板6〇的 ^方形成之閘極67a。在基板6G的内部,已去除用以形成 選擇電晶體TrSEL1的電容元件Csti侧之n+區域66、及用以 形成輸出電晶體丨的電容元件CST1側之n+區域66a。One of the source and drain regions of TrRST is electrically connected to the common node 13 (pixel block 12(i, j)) corresponding to the upper semiconductor circuit layer 21F through the corresponding buried wiring 23 (refer to the figure). 6). The other γ-type region 62 (source, drain region) is applied with a reset voltage 'π through a wiring (not shown). The amplifying transistor TrAMP is composed of a MOS transistor and includes a gate 65 and a pair of n-type regions (source, drain regions) 64 formed on both sides with the gate 65 interposed therebetween. The gate 65 is electrically connected to the corresponding bump electrode 9 through the conductive contact plug 7A, the wiring film 72, the conductive contact plug 74a, and the wiring film 75 formed inside the wiring 102 200803484 structure 74. connection. As a result, the gate of the amplifying transistor TrAMp is electrically connected to the common node 13 (pixel block 12) corresponding to the upper semiconductor circuit layer 21 through the corresponding buried wiring 23 (refer to the figure). 6) The 11-type region 64 (source, drain region) is formed by the conductive contact plug 69 formed in the wiring structure 74, the wiring film 73, and the conductive contact plug base 23a. The conductive interposer 23 of the lower semiconductor circuit layer 22fb is electrically connected, and the other n+ type region 64 (source, drain region) is applied with a power supply voltage Vcc through a wiring (not shown). Lower semiconductor circuit layer 22Fb The element isolation insulating film 61 is formed in a predetermined pattern on the surface region of the p-type single crystal germanium substrate 60, thereby forming an element region for the selection transistors TrsEu to TrsEh of the number of cells. The transistor TrSEL1 is selected. Each of TrSELn is composed of a M 〇s transistor, and includes a gate 67 and a pair of _ regions (source, drain regions) 66 formed on both sides with the gate 67 interposed therebetween. Area (source, bungee area) 66, The conductive contact plugs 7A, the wiring film 72a, the V electrical contact plugs 74ai, and the wiring film 75 formed inside the wiring structure 74 are electrically connected to the corresponding bump electrodes 90. Therefore, the n + -type region (source, drain region) 66 passes through the bump electrode 9 〇, and the conductive plug 23 in the intermediate semiconductor circuit layer 22Fa, and the corresponding amplifying transistor TrAMP An n+ type region (source, drain region) 64 forms an electrical connection. Another n-type region (source, drain region) 66 is connected to a corresponding output terminal of the image sensor 2A. Gate 67 The electrical connection is made to the output selection line 39 through the wiring ' formed inside the wiring structure 74, 103200803484. The gates 67 of the k-selective bodies TrSEL1 to TrsELn are respectively transmitted through the corresponding output materials 39. There is a predetermined output selection signal ^. The image sensor 2H of the 16th embodiment has the actual structure described above, but the operation and effect thereof are the same as the image sensing benefit 2 of the fifth embodiment. Mai Zhao is the same as in Figure 6 and _ 8). For example, the configuration of the storage capacitor element is shown in Fig. 25 to Fig. 27, and is a configuration example of the storage capacitor element used in the above embodiment. The storage capacitor element csT1 is provided between the selection transistor TrSEL1 and the output transistor Tr^, 餸ΓΓουτι. The storage capacitor element CST of Fig. 25(4) is internally connected to the p-type shi 基板 substrate 6 , The n+ region on the side of the element Cs" forms the germanium region 66b formed to form the selective transistor Tr, ^^^^SEL1, and the n+ region 66a on the side of the capacitive element CST1 (which is used to form the output transistor Tr_). The right bias is applied between the substrate 6 〇 and the n + region & complement to generate a p-n junction capacitance, and thus can be used as the storage capacitor element CST1. The storage capacitor element CST1 of Fig. 5 (= is formed in the selective transistor region 66 and the n+ region 66a forming the output transistor Tr〇UTi ... has a transmission gate insulating film (not shown) on the p-type germanium substrate 6〇 can be:: the gate 67'. If the power supply voltage Vcc is applied to the gate 67a, the surface of the substrate 60 can be erected & a or an inverted layer L of the n-type or n+ type can be generated, so that This is used as the storage capacitor MCST1. This is a typical deletion 104 200803484. "The user is in the above-described embodiments. The opening is the side of the capacitive element of the gate 67 of the gate electrode. The portion is placed above the gate 67 & through an insulating film (not shown). Similarly, the end portion of the gate 6% of the CST1 side of the gate 6% of the output transistor Tr〇Un is formed. The opposite side of the gate 67 is placed above the gate 67a through an insulating film (not shown). The storage capacitive element %' of Fig. 26(4) is formed in the region 66 where the selective transistor ku is formed and forms an output. The n+ region of the crystal has a transparent insulating film (not shown) and is formed on the p-type substrate. The square-formed gate 67a. Inside the substrate 6G, the n+ region 66 of the capacitive element Csti side for forming the selection transistor TrSEL1 and the n+ region 66a of the capacitive element CST1 side for forming the output transistor 已 have been removed. .

一若將電源電壓Vcc施加於閘極67a,與圖25(b)的情形 相同,係在基板60的表面區域產生n型或n+型之反轉層, 口而此將其作為儲存用電容元件Cm來使用。此時,該反 轉層在閑極67側之端部,係作為選擇電晶體TrSEL1用的η ,區域或η型區域之功能。又,該反轉層在閘極67b側之 端部’係作為輸出電晶體ΤΓ〇υτι用的η型區域或n+型區域 之功能。此為MOS電容器的變形例。 圖26(b)的儲存用電容元件Csn,在選擇電晶體 的閘極67與輸出電晶體Troim的閘極67b之間,具有透 過閑極 '纟巴緣膜(未圖示)而在p型矽基板6〇的上方形成之閘 極67a。在基板6〇的内部,已經去除用以形成選擇電晶體 TrsEL1之電容元件Csti側的n+區域66、及用以形成輸出電 105 200803484 晶體Tr〇UT1的電容元件cST1側之n+區域66a。閘極67a的 ' ^ ^部,係透過絕緣腔;,土 、繁膜(未圖示)而被載於用以形成選擇電 晶體TrSEL1的問極67之上;另一端部,係透過絕緣膜(未 圖不)而被載於用以形成輪出電晶體的閘極67b之 上。 右將電源電壓Vce施加於閘極67a,與圖25(b)的情形 相同,係在基板60的表面區域產生η型或n+型之反轉層, 因而能將其作為儲存用電容元件來使用。此時,該反 轉層在閘極67側之端部,係作為選擇電晶體Tr肌1用的n 型區域或η型區域之功能。X,該反轉層在閘極67b侧之 鈿邓係作為輸出電晶體Tr0UT1用的n型區域或n+型區域 之功能。此亦為MOS電容器的變形例。 圖27的儲存用電容元件,係在基板6〇的内部, 去除了用以形成選擇電晶體的電容元件^側之n+ 區域66、及用以形成輸出電晶體Tr⑽η的電容元件in侧 之n+區域66a。取而代之的是,在選擇電晶體TrsEu的閘 極67與輸出電晶體ΤΓ〇υτι的閘極6几之間,有形成一型 區域66b。選擇電晶體TrsELi的閘極67,被配置在γ型區 域66與n+型區域66b之間;輸出電晶體的閘極6几, 被配置在n+型區域66a與n+型區域66b之間。 在閘極67與67b之上,透過閘極絕緣膜(未圖示)而形 成具有τ型截面構造之電容元件67心。該電容元件67心, 具有電容元件的CST1功能,其構成中包含:截面呈大略丁 型之下位電極67aal;在下位電極67aai的上方形成之絕 106 200803484 緣膜67aa2 ;及,在絕緣膜67aa2的上方形成之上位電極 67aa3。下位電極67aal的下端,通過閘極67及67b之間 往下方延伸而與n+型區域66b的表面接觸。上位電極 67aa3,有適當的閘極電壓vc(0〜Vc勹之施加。 如所示’儲存用電容元件Csti可具有各種方式之構成。 (變形例) 上述第1〜第16之實施形態,係本發明之具體化示例, φ 因此,本發明並不侷限於其等實施形態,在不脫離本發明 要旨的情況下當然能有各種變形。例如,上述實施形態的 1巴大部分’係分別使用凸塊電極與埋設配線而使上位半導 體電路層與下位半導體電路層彼此形成電氣連接、或是使 上位半導體電路層與中位半導體電路層、中位半導體電路 層與下位半導體電路層彼此形成電氣連接,但本發明並不 偈限於此。亦可如上述第12實施形態所示般,使用凸塊 電極與配線膜而使上位半導體電路層與下位半導體電路層 φ 彼此形成電氣連接。要點在於,只要是使用能使上位半導 體電路層與下位半導體電路層彼此形成電氣連接之構造, 則可使用任意形式。 再者’在上述實施形態的絕大部分,係由上位半導體 電路層與下位半導體電路層構成的二層之積層構造,其係 將像素陣列的周邊電路(垂直掃描電路34、水平掃描電路35 等)形成於上位半導體電路層或下位半導體電路層,但本發 明並不侷限於此。亦可將像素陣列的周邊電路形成於其他 半導體電路層内部,然後將該半導體電路層連接於下位半 107 200803484 導體電路層的内面。此點對於由上位半導體電路層、中位 半導體電路層、及下位半導體電路層所構成之三層的積層 構造或四層以上的積層構造,亦同樣適用。 上述實施形態中,對於有複數個像素之像素區塊,係 分別設有一個埋設配線,但本發明並不侷限於此。當然亦 可對於1個像素即設有i個埋設配線。例如,若使各埋設 配線的直後(或一邊)為左右,即可實現此點。 上位半導體電路層與下位半導體電路層,亦可各由單 之半導體晶圓來形成,亦可由複數個半導體晶片來形 成換言之,亦可將擬於該半導體電路層中形成的電路元 牛整體形成於單一半導體晶圓的内部,亦可分割的形成 於複數個半導體晶片的内部。 【圖式簡單說明】 圖1係使用本發明之第i實施形態之感測器電路的位 曰疋型影像感測器全體構成之功能方塊圖。 圖2係本發明之第1實施形態之感測器電路的要部電 籌成圖’表示第j行所屬的二個像素區塊之電路構成。 圖3係本發明之第2實施形態之感測器電路的要部電 路構成圖(與圖2同樣之圖)。 圖4係本發明之第3實施形態之感測器電路的要部 路構成圖(與圖2同樣之圖)。 — 圖5係本發明之第4實施形態之感測器電路的 路構成圖(與圖2同樣之圖)。 1 圖6係本發明之第5實施形態之位址指定型影像感測 108 200803484 口口的要口P電路構成之電路圖。 圖7係本發明之第6實施形態之位址指定型影像感測 器的要部電路構成之電路圖。 圖8係本發明之第5實施形態之位址指定型影像感測 裔的實際構造之要部截面圖。 圖9係本發明之第6實施形態之位址指定型影像感測 為的貫際構造之要部截面圖。 圖1 〇係本發明之第7實施形態之位址指定型影像感測 口口的要口P電路構成之電路圖。 圖11係本發明之第7實施形態之位址指定型影像感測 為的實際構造之要部截面圖。 圖1 2係本發明之第8實施形態之位址指定型影像感測 為的貫際構造之要部截面圖。 圖1 3係本發明之第9實施形態之位址指定型影像感 測器的要部電路構成之電路圖。 圖14係本發明之第9實施形態之位址指定型影像感測 為的貫際構造之要部截面圖。 圖1 5係本發明之第丨〇實施形態之位址指定型影像感 測器的實際構造之要部截面圖。 圖16係本發明之第u實施形態之位址指定型影像感 測器的要部電路構成之電路圖。 圖17係本發明之第11實施形態之位址指定型影像感 測器的實際構造之要部截面圖。 圖18係本發明之第12實施形態之位址指定型影像感 109 200803484 測器的實際構造之要部截面圖。 圖19係使用本發明之第13實施形態之感測器電路的 位址指定型影像感測器全體構成之功能方塊圖。 圖2 0係本叙明之第1 3實施形態之感測器電路的要部 電路構成圖,表示第j行所屬的二個像素區塊之電路構成。 圖21係本發明之第14實施形態之位址指定型影像感 測為的要部電路構成之電路圖。 圖22係本發明之第15實施形態之位址指定型影像感 測為的要部電路構成之電路圖。 圖23係本發明之第丨4實施形態之位址指定型影像感 測器的實際構造之要部截面圖。 圖24係本發明之第ι5實施形態之位址指定型影像感 測器的實際構造之要部截面圖。 圖25(a)、(b)係用於本發明之位址指定型影像感測器 之儲存用電容元件的構成例之要部截面圖。 圖26(a)、(b)係用於本發明之位址指定型影像感測器 之儲存用電容元件的另一構成例之要部截面圖。 圖27係用於本發明之位址指定型影像感測器之儲存用 電谷το件的另一構成例之要部截面圖。 圖28係本發明之第16實施形態之位址指定型影像感 測器的要部電路構成之電路圖。 圖29係本發明之第16實施形態之位址指定型影像感 ’則器的實際構造之要部截面圖。 圖30(a)係習知的CMOS(位址指定型)影像感測器的一 110 200803484 &電路構成之概念圖;(b)係該影像感測器的訊號電荷之貯 存期間之概念圖。 圖31係習知的CMOS(位址指定型)影像感測器的要部 電路構成之電路圖。 圖32係習知的CMOS(位址指定型)影像感測器的實際 構造之要部截面圖。 圖33(a)係習知的CCD(電荷傳送型)影像感測器的一般 弘路構成之概念圖;(b)係該影像感測器的訊號電荷之貯存 期間之概念圖。 圖34⑷係以CCD(電荷傳送型)影像感測器來攝影高速 疑轉的扇葉時所得到的影像之概念圖;(b)係以習知的 CMOS(位址指定型)影像感測器來攝影同一扇葉時所得到的 影像之概念圖。 【主要元件符號說明】 1、 1A、IB、ic :感測器電路 2、 2A、2B、2C、2D、2E、2F、2G、2H :位址指定型影像感測器 3 :感測器電路 4、4A :位址指定型影像感測器 11、 11 a :像素 12、 12a :像素區塊 13、 13a :共通節點 14、 15 :節點 21、21A、21B、21C、21D、21E、21F ··上位半導體電路層 22Fa :中位半導體電路層 111 200803484 22、 22,、22A、22A,、22B、22B,、22C、22C,、22D1、 22E、22E’、22Fb :下位半導體電路層 23、 23’ ··埋設配線 23a、23a’ :導電性接觸插塞 24、 24’ :絕緣膜 31 :重置線 32 :讀取控制線 3 3 :水平訊號線 34 :垂直掃描電路 3 5 :水平掃描電路 36 : CDS電路 37 :行訊號線 3 8 :行選擇訊號 39 :輸出選擇線 39a :輸出控制線 39a :輸出控制線 40 : p型矽基板 41 :元件分離絕緣膜 42、43 : n+型區域 44 :閘極 45 ··導電性接觸插塞 46 :配線膜 47 :配線構件 48 : n+型區域 112 200803484 49 ·•閘極 50 :導電性接觸插塞 52 : n+型區域 53 :閘極 54、55 :導電性接觸插塞 56、57 :配線膜 58 :導電性接觸插塞 59 :配線膜When the power supply voltage Vcc is applied to the gate electrode 67a, an inversion layer of an n-type or an n+ type is formed in the surface region of the substrate 60 as in the case of FIG. 25(b), and this is used as a storage capacitor element. Cm to use. At this time, the end portion of the reverse layer on the side of the idle electrode 67 functions as an η, region or n-type region for selecting the transistor TrSEL1. Further, the end portion of the inversion layer on the gate 67b side functions as an n-type region or an n+-type region for outputting the transistor ΤΓ〇υτι. This is a modification of the MOS capacitor. The storage capacitor element Csn of FIG. 26(b) has a pass-through 纟 缘 缘 ( (not shown) between the gate 67 of the transistor and the gate 67b of the output transistor Troim. A gate 67a is formed above the substrate 6A. Inside the substrate 6A, the n+ region 66 for forming the capacitance element Csti side of the selection transistor TrsEL1 and the n+ region 66a for forming the output element 105 200803484 crystal Tr〇UT1 on the capacitive element cST1 side have been removed. The '^ portion of the gate 67a passes through the insulating cavity; the soil, the film (not shown) is placed over the gate 67 for forming the selective transistor TrSEL1; the other end is transmitted through the insulating film. (not shown) is carried over the gate 67b for forming the wheel-out transistor. The power supply voltage Vce is applied to the gate 67a to the right. As in the case of FIG. 25(b), an inversion layer of an n-type or an n+ type is formed in the surface region of the substrate 60, so that it can be used as a storage capacitor element. . At this time, the end portion of the reverse layer on the gate 67 side functions as an n-type region or an n-type region for selecting the transistor Tr muscle 1. X, the inversion layer is on the side of the gate 67b and functions as an n-type region or an n+-type region for the output transistor TrOUT1. This is also a modification of the MOS capacitor. The storage capacitor element of Fig. 27 is inside the substrate 6A, the n+ region 66 for forming the capacitor element side of the selective transistor, and the n+ region of the capacitor element in side for forming the output transistor Tr(10)n are removed. 66a. Instead, a type region 66b is formed between the gate 67 of the transistor TrsEu and the gate 6 of the output transistor ΤΓ〇υτι. The gate 67 of the transistor TrsELi is selected to be disposed between the γ-type region 66 and the n+-type region 66b; and the gate 6 of the output transistor is disposed between the n+-type region 66a and the n+-type region 66b. On the gate electrodes 67 and 67b, a capacitor element 67 having a τ-type cross-sectional structure is formed through a gate insulating film (not shown). The core of the capacitor element 67 has a CST1 function of the capacitor element, and includes a lower electrode-shaped lower electrode 67aal in cross section, a 10610603484 edge film 67aa2 formed above the lower electrode 67aai, and an insulating film 67aa2. The upper electrode 67aa3 is formed above. The lower end of the lower electrode 67aal is in contact with the surface of the n + -type region 66b by extending downward between the gates 67 and 67b. The upper electrode 67aa3 has an appropriate gate voltage vc (0 to Vc). As shown, the storage capacitor element Csti can have various configurations. (Modification) The first to the sixteenth embodiments are The present invention is not limited to the embodiments, and various modifications can of course be made without departing from the gist of the invention. For example, most of the 1 bar of the above embodiment are used separately. The bump electrode and the buried wiring form an electrical connection between the upper semiconductor circuit layer and the lower semiconductor circuit layer, or electrically connect the upper semiconductor circuit layer and the intermediate semiconductor circuit layer, the intermediate semiconductor circuit layer and the lower semiconductor circuit layer to each other However, the present invention is not limited thereto. The bump electrode and the wiring film are used to electrically connect the upper semiconductor circuit layer and the lower semiconductor circuit layer φ to each other as described in the twelfth embodiment. It is a structure in which an upper semiconductor circuit layer and a lower semiconductor circuit layer can be electrically connected to each other, and can be used. Any of the above embodiments is a two-layer laminated structure composed of a higher semiconductor circuit layer and a lower semiconductor circuit layer, which is a peripheral circuit of a pixel array (vertical scanning circuit 34, horizontal scanning). The circuit 35 or the like is formed on the upper semiconductor circuit layer or the lower semiconductor circuit layer, but the present invention is not limited thereto. The peripheral circuit of the pixel array may be formed inside other semiconductor circuit layers, and then the semiconductor circuit layer is connected to the lower layer. Half 107 200803484 The inner surface of the conductor circuit layer. This point is also applicable to a three-layer laminated structure composed of an upper semiconductor circuit layer, a neutral semiconductor circuit layer, and a lower semiconductor circuit layer, or a laminated structure of four or more layers. In the embodiment, each of the pixel blocks having a plurality of pixels is provided with one buried wiring. However, the present invention is not limited thereto. Of course, one buried wiring may be provided for one pixel. For example, if This can be achieved by the right rear side (or one side) of each buried wiring. The upper semiconductor circuit layer And the lower semiconductor circuit layer may also be formed by a single semiconductor wafer, or may be formed by a plurality of semiconductor wafers, in other words, the circuit element formed in the semiconductor circuit layer may be integrally formed on a single semiconductor wafer. The inside of the semiconductor wafer can be divided and formed in a plurality of semiconductor wafers. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic diagram of a pixel type image sensor using a sensor circuit according to an i-th embodiment of the present invention. Fig. 2 is a circuit diagram showing the principal part of the sensor circuit of the first embodiment of the present invention, which shows the circuit configuration of the two pixel blocks to which the jth row belongs. Fig. 3 is the second embodiment of the present invention. FIG. 4 is a view showing the configuration of the main part of the sensor circuit according to the third embodiment of the present invention (the same as FIG. 2). Fig. 5 is a road configuration diagram of the sensor circuit according to the fourth embodiment of the present invention (the same diagram as Fig. 2). 1 is a circuit diagram showing a configuration of an address P-type circuit of a port according to a fifth embodiment of the present invention. Fig. 7 is a circuit diagram showing a circuit configuration of a main part of an address specifying type image sensor according to a sixth embodiment of the present invention. Fig. 8 is a cross-sectional view of an essential part of an actual structure of an address-based image sensor of the fifth embodiment of the present invention. Fig. 9 is a cross-sectional view of the essential part of the internal structure in which the address specifying image is sensed in the sixth embodiment of the present invention. Fig. 1 is a circuit diagram showing a configuration of a main port P circuit of an address specifying type image sensing port according to a seventh embodiment of the present invention. Figure 11 is a cross-sectional view of an essential part of an actual structure in which an address specifying image is sensed in a seventh embodiment of the present invention. Fig. 1 is a cross-sectional view of an essential part of a cross structure in which an address specifying image of the eighth embodiment of the present invention is sensed. Fig. 13 is a circuit diagram showing a circuit configuration of a main part of an address specifying image sensor according to a ninth embodiment of the present invention. Figure 14 is a cross-sectional view of an essential part of a cross-sectional structure in which an address specifying image is detected in a ninth embodiment of the present invention. Fig. 15 is a cross-sectional view of an essential part of an actual configuration of an address specifying type image sensor according to a third embodiment of the present invention. Fig. 16 is a circuit diagram showing the configuration of the main circuit of the address specifying image sensor of the uth embodiment of the present invention. Figure 17 is a cross-sectional view of an essential part of an actual structure of an address specifying image sensor according to an eleventh embodiment of the present invention. Fig. 18 is a cross-sectional view of an essential part of the actual structure of the sensor according to the address specification type image sensor of the twelfth embodiment of the present invention. Fig. 19 is a functional block diagram showing the overall configuration of an address specifying image sensor using a sensor circuit according to a thirteenth embodiment of the present invention. Fig. 20 is a circuit diagram showing the main part of the sensor circuit of the thirteenth embodiment of the present invention, showing the circuit configuration of two pixel blocks to which the jth row belongs. Fig. 21 is a circuit diagram showing the configuration of the main circuit of the address specifying type image sensing according to the fourteenth embodiment of the present invention. Fig. 22 is a circuit diagram showing the configuration of the main circuit of the address specifying type image sensing according to the fifteenth embodiment of the present invention. Figure 23 is a cross-sectional view of an essential part of an actual structure of an address specifying type image sensor according to a fourth embodiment of the present invention. Fig. 24 is a cross-sectional view of an essential part of an actual configuration of an address specifying type image sensor according to a fifth embodiment of the present invention. 25(a) and (b) are cross-sectional views of essential parts of a configuration of a storage capacitor element used in the address specifying image sensor of the present invention. 26 (a) and (b) are cross-sectional views of essential parts of another configuration example of the storage capacitor element used in the address specifying image sensor of the present invention. Fig. 27 is a cross-sectional view of an essential part of another configuration example of the storage grid τ of the address specifying image sensor of the present invention. Figure 28 is a circuit diagram showing the configuration of a main circuit of an address specifying image sensor of a sixteenth embodiment of the present invention. Fig. 29 is a cross-sectional view of the principal part of the actual structure of the address specifying type image sensor of the sixteenth embodiment of the present invention. Figure 30 (a) is a conceptual diagram of a circuit configuration of a conventional CMOS (address-specific) image sensor, and a circuit diagram of the signal charge of the image sensor; . Fig. 31 is a circuit diagram showing a circuit configuration of a main part of a conventional CMOS (address-designated) image sensor. Figure 32 is a cross-sectional view of an essential part of a practical configuration of a conventional CMOS (address-specified type) image sensor. Fig. 33(a) is a conceptual diagram showing a general configuration of a conventional CCD (charge transfer type) image sensor; (b) is a conceptual diagram of a storage period of a signal charge of the image sensor. Figure 34 (4) is a conceptual diagram of an image obtained by photographing a blade of a high-speed suspected blade with a CCD (charge-transfer type) image sensor; (b) a conventional CMOS (address-specific) image sensor A conceptual diagram of the image obtained when photographing the same leaf. [Main component symbol description] 1, 1A, IB, ic: sensor circuit 2, 2A, 2B, 2C, 2D, 2E, 2F, 2G, 2H: address specifying type image sensor 3: sensor circuit 4, 4A: address-specific image sensor 11, 11 a : pixel 12, 12a: pixel block 13, 13a: common node 14, 15: node 21, 21A, 21B, 21C, 21D, 21E, 21F Upper semiconductor circuit layer 22Fa: Intermediate semiconductor circuit layer 111 200803484 22, 22, 22A, 22A, 22B, 22B, 22C, 22C, 22D1, 22E, 22E', 22Fb: Lower semiconductor circuit layers 23, 23 '··embedded wirings 23a, 23a': conductive contact plugs 24, 24': insulating film 31: reset line 32: read control line 3 3: horizontal signal line 34: vertical scanning circuit 3 5: horizontal scanning circuit 36: CDS circuit 37: line signal line 3 8: line selection signal 39: output selection line 39a: output control line 39a: output control line 40: p-type 矽 substrate 41: element isolation insulating film 42, 43: n+ type region 44 : gate 45 · conductive contact plug 46 : wiring film 47 : wiring member 48 : n + type region 112 200803484 49 · • gate 50 : Conductive contact plug 52 : n + type region 53 : gate 54 , 55 : conductive contact plug 56 , 57 : wiring film 58 : conductive contact plug 59 : wiring film

60、 60’ : p型矽基板 61、 61’ :元件分離絕緣膜 62、 64、66、66a、66b ·· n+型區域 63、 65、67、67a、67b :閘極 67aa :電容元件 68、69、70、71 :導電性接觸插塞 72、72a、73 :配線膜 74、 74’ ··配線構造 74a、74af :導電性接觸插塞 75、 75’ :配線膜 76 : n+區域 77 :閘極 78、 80、82 ··導電性接觸插塞 79、 81、83 :配線膜 90、 90f :凸塊電極 91、 91’ :電氣絕緣性黏著劑 113 200803484 PD^PDn :光電二極體 TG广TGn :傳送閘極60, 60': p-type germanium substrate 61, 61': element isolation insulating film 62, 64, 66, 66a, 66b · n + type region 63, 65, 67, 67a, 67b: gate 67aa: capacitive element 68, 69, 70, 71: conductive contact plugs 72, 72a, 73: wiring films 74, 74' · wiring structures 74a, 74af: conductive contact plugs 75, 75': wiring film 76: n + region 77: gate Pole 78, 80, 82 · Conductive contact plugs 79, 81, 83: wiring film 90, 90f: bump electrodes 91, 91': electrically insulating adhesive 113 200803484 PD^PDn: photodiode TG TGn: transmission gate

TrRST、TrRST1〜TrRSTn ·重置電晶體 T r A Μ P ·放大電晶體TrRST, TrRST1~TrRSTn · Reset transistor T r A Μ P · Amplify the transistor

TrSELl〜TrSELn ·選擇電晶體 R :電阻器TrSEL1~TrSELn ·Select transistor R:Resistor

Cst、CsTl〜CsTn ·儲存用電容元件 R。:寄生電阻Cst, CsTl~CsTn · Storage capacitive element R. : parasitic resistance

Csn、Cd、cq2 :寄生電容Csn, Cd, cq2: parasitic capacitance

114114

Claims (1)

200803484 十、申請專利範圍: 1 · 一種感測器電路,具有u n 配置成陣列狀之複數個像素, 且用於猎位址指定來選擇各贫德参 俘合逆像素之位址指定型影像感測 器,其特徵在於,具備: 複數個像素區塊,係將複數個該像素以既定數量並聯 於共通節點而構成; 重置電晶體,連接於各該像素之共通節點,用以重置 該像素區塊内之複數個該像素;以及 放大電晶體’連接於複數個該像素區塊之各共通節點, 用以放大由該像素區塊内之複數個該像素所送出之訊號; 在各該像素區塊中,各該像素包含:光電轉換元件, 對應照射光來產生訊號電荷;以及第1閘極元件,設置在 該光電轉換元件與像素區塊之共通節點間之路徑。 2·如申請專利範圍第i項之感測器電路,其中,該放 大電晶體具有單一之輸出端。 3·如申請專利範圍第1項之感測器電路,其進一步具 備·連接於該放大電晶體之輸出端之儲存用電容元件、以 及用以控制該電容元件所儲存訊號之輸出之輸出電晶體。 4·如申請專利範圍第1項之感測器電路,其中,該放 大電晶體具有與該放大電晶體對應之該像素區塊中之像素 總數相等數量之輸出端,且在該等輸出端分別連接第2閘 極元件。 5.如申請專利範圍第4項之感測器電路,其進一步具 備分別與該放大電晶體之複數個輸出端連接之複數個儲存 115 200803484 ==:、以及用以控制在該等電容元件所儲存訊號之 J出之硬數個輸出電晶體。 以1如巾請專利範圍第1至5項中任—項之感測器電路, ^所有該像素整體產生、貯存訊號電荷之前,使用所 /亥重置電晶體對所有該像素整體進行重置,在各該像素 2塊’與該像素所貯存之訊號電荷對應之訊號,係透過對 應之該共”點料序㈣取後,料至對應200803484 X. Patent application scope: 1 · A sensor circuit with a plurality of pixels unconfigured in an array, and used for hunting address designation to select the address sense of each pixel of the poor pixel a detector, comprising: a plurality of pixel blocks, wherein a plurality of the pixels are connected in parallel to a common node by a predetermined number; and a reset transistor is connected to a common node of each pixel to reset the a plurality of the pixels in the pixel block; and the amplifying transistor 'connected to each of the plurality of common nodes of the pixel block for amplifying the signal sent by the plurality of pixels in the pixel block; In the pixel block, each of the pixels includes: a photoelectric conversion element that generates a signal charge corresponding to the illumination light; and a first gate element that is disposed between the photoelectric conversion element and a common node of the pixel block. 2. The sensor circuit of claim i, wherein the amplification transistor has a single output. 3. The sensor circuit of claim 1, further comprising: a storage capacitor element connected to an output end of the amplifying transistor; and an output transistor for controlling an output of the signal stored by the capacitor element . 4. The sensor circuit of claim 1, wherein the amplifying transistor has an output of an equal number of pixels in the pixel block corresponding to the amplifying transistor, and respectively at the output terminals Connect the second gate element. 5. The sensor circuit of claim 4, further comprising a plurality of storages 115 200803484 ==: respectively connected to the plurality of output ends of the amplifying transistor, and for controlling the capacitive elements A hard number of output transistors from which the signal is stored. The sensor circuit of any of the first to fifth patent ranges, such as the towel, ^ before all the pixels generate and store the signal charge, use the reset circuit to reset all of the pixels as a whole. In each pixel 2 blocks, the signal corresponding to the signal charge stored in the pixel is taken through the corresponding common "point" sequence (four), and then corresponding to the corresponding 晶體。 八电 7.-種感測器電S,具有配置成陣列狀之複數個像素, 且用於藉位址指定來選擇各該像素之位址指定型影像感測 器,其特徵在於,具備·· 複數個像素區塊,係將複數個該像素以各既定數量並 聯於共通節點而構成;以及 放大電晶體,連接於複數個該像素區塊之各共通節點, 用以放大由該像素區塊内之複數個該像素送出之訊號; 在各該像素區塊中,各該像素包含:光電轉換元件, 對應照射光而產生訊號電荷;第丨閘極元件,設置在該光 電轉換元件與像素區塊之共通節點間之路徑;以及重置電 晶體,連接於該光電轉換元件與第丨閘極元件之連接點, 以執行該像素之重置。 8·如申請專利範圍第7項之感測器電路,其中,該放 大電晶體具有單一之輸出端。 9_如申請專利範圍第7項之感測器電路,其進一步具 備連接於該放大電晶體之輸出端之儲存用電容元件、以及 116 200803484 用以控制該電容元件所儲存訊號之.輸出之輸出電晶體。 10·如申請專利範圍第7項之感測器電路,其中該放大 電晶體具有與該放大電晶體對應之該像素區塊中之像素總 數相等數量之輸出端,且在該等輸出端分別連接第2閘極 元件。 11·如申請專利範圍第10項之感測器電路,其進一步 具備分別與該放大電晶體之複數個輸出端連接之複數個儲 存用電容元件、以及用以控制在該等電容元件所儲存訊號 之輸出之複數個輸出電晶體。 12·如申請專利範圍第7至U項中任一項之感測器電 路,其在使所有該像素整體產生、貯存訊號電荷之前,使 用所有該重置電晶體對所有該像素整體進行重置,在各該 像素區塊,與該像素所貯存之訊號電荷對應之訊號,係透 過對應之該共通節點依時序被讀取後,傳送至對應之該放 大電晶體。 13 · —種具有三維積層構造之位址指定型影像感測器, 具有配置成陣列狀之複數個像素,且藉位址指定來選擇各 該像素,其特徵在於,具備·· 複數個像素區塊,係將複數個該像素以既定數量並聯 於共通節點; 重置電晶體,連接於各該像素區塊之共通節點,用以 重置該像素區塊内之複數個該像素;以及 放大電晶體’連接於複數個該像素區塊之各共通節點, 用以放大由該像素區塊内之複數個該像素所送出之訊號; 117 200803484 在各該像素區塊中,各像素包含:光電轉換元件,對 應妝射光來產生汛號電荷;以及帛!閘極元件,設置在該 光電轉換兀件與像素區塊之共通節點間之路徑; 至少將該光電轉換元件形成於構成該三維積層構造之 第1半導體電路層中,而將該第1閘極元件、該重置電晶 體、及該放大電晶體’形成於構成該三維積層構造之第2 或第3以後之半導體電路層中。 14·如申請專利範圍第13項之位址指定型影像感測 器,其中,除了複數個該光電轉換元件外,亦將複數個該 第1閘極件形成於該第i半導體電路層中,而將複數個 該放大電晶體與複數個重置電晶體形成於該第2或第3以 後之半導體電路層中。 1 5 ·如申請專利範圍第13項之位址指定型影像感測 益’其中’除了複數個該光電轉換元件外,亦將複數個該 第1閘極元件及複數個重置電晶體形成於該第丨半導體電 路層中’而將複數個該放大電晶體形成於該第2或第3以 後之半導體電路層中。 16.如申請專利範圍第13項之位址指定型影像感測 器’其中’該放大電晶體具有與該放大電晶體對應之該像 素區塊中之像素總數相等數量之輸出端,且在該等輸出端 分別連接第2閘極元件(選擇電晶體); 除了複數個該光電轉換元件外,亦將複數個該第1閘 極元件、複數個該重置電晶體、及複數個該放大電晶體形 成於該第1半導體電路層中,而將複數個該第2閘極元件(選 118 200803484 擇電晶體)形成於該第2或第3以後之半導體電路層中。 !7·如申請專利範圍第13項之位址指定型^像感測 器,其中,僅將複數個該光電轉換元件係形成於該第1半 導體電路層中,複數個該第1閘極元件、複數個該重置電 晶體、及複數個該放大電晶體,係形成於該第2或第3以 後之半導體電路層中。 18·如申請專利範圍第13項之位址指定型影像感測 器’其中’该放大電晶體具有單一之輸出端。 • 19·如申請專利範圍帛18工員之位址指定型影像感測 器,其中,在該第2或第3以後之半導體電路層中進一步 具備·與该放大電晶體之輸出端連接之儲存用電容元件、 以及用以控制在該電容元件所儲存訊號之輸出之輸出電晶 體。 20.如申請專利範圍第丨8項之位址指定型影像感測 器,其中,各該放大電晶體具有與該放大電晶體對應之該 像素區塊中之像素總數相等數量之輸出端,且在該等輸出 _ 端分別連接第2閘極元件。 21 ·如申請專利範圍第2〇項之位址指定型影像感測 器’其中’在該第2或第3以後之半導體電路層中進一步 具備·分別與該放大電晶體之複數個輸出端連接之複數個 儲存用電容元件、以及用以控制在該等電容元件所儲存訊 號之輸出之輸出電晶體。 22·如申請專利範圍第13至21項中任一項之位址指定 塑影像感测器,其在使所有該像素整體產生、貯存訊號電 119 200803484 荷之前,使用所有該重置電晶體對所有該像素整體進行重 置在各5亥像素區塊,與該像素所貯存之訊號電荷對應之 汛唬係透過對應之該共通節點依時序被讀取後,傳送至 相對應之該放大電晶體。 23· —種具有三維積層構造之位址指定型影像感測器, 具有配置成陣列狀之複數個像素,且藉位址指定來選擇各 该像素’其特徵在於,具備:Crystal. The electric sensor S has a plurality of pixels arranged in an array, and is used for selecting an address-specific image sensor of each pixel by address designation, and is characterized in that a plurality of pixel blocks, wherein the plurality of pixels are connected in parallel to the common node by a predetermined number; and the amplifying transistor is connected to each of the plurality of common nodes of the pixel block for amplifying the pixel block a plurality of signals sent by the pixel; in each of the pixel blocks, each of the pixels includes: a photoelectric conversion element that generates a signal charge corresponding to the illumination light; and a second gate element disposed in the photoelectric conversion element and the pixel area a path between the common nodes of the block; and a reset transistor connected to a connection point of the photoelectric conversion element and the second gate element to perform resetting of the pixel. 8. The sensor circuit of claim 7, wherein the amplification transistor has a single output. 9_ The sensor circuit of claim 7, further comprising a storage capacitor element connected to the output end of the amplifying transistor, and 116 200803484 for controlling the output of the signal stored by the capacitor element. Transistor. 10. The sensor circuit of claim 7, wherein the amplifying transistor has an output of an equal number of pixels in the pixel block corresponding to the amplifying transistor, and is respectively connected at the output terminals The second gate element. 11. The sensor circuit of claim 10, further comprising a plurality of storage capacitor elements respectively connected to the plurality of output ends of the amplifying transistor, and for controlling signals stored in the capacitor elements The output of a plurality of output transistors. 12. The sensor circuit of any one of claims 7 to 5, wherein all of the pixels are reset using all of the reset transistors before all of the pixels are generated and stored in signal charge. In each of the pixel blocks, a signal corresponding to the signal charge stored in the pixel is read by the corresponding common node in time series, and then transmitted to the corresponding amplifying transistor. 13 - an address-specific image sensor having a three-dimensional layered structure, having a plurality of pixels arranged in an array, and selecting each of the pixels by address designation, characterized in that: a plurality of pixel regions are provided Block, the plurality of pixels are connected in parallel to the common node by a predetermined number; a reset transistor is connected to a common node of each pixel block for resetting a plurality of the pixels in the pixel block; and amplifying the electricity The crystal is connected to a plurality of common nodes of the pixel block for amplifying signals sent by a plurality of the pixels in the pixel block; 117 200803484 In each of the pixel blocks, each pixel includes: photoelectric conversion Components, corresponding to the makeup light to produce the nickname charge; and 帛! a gate element disposed between the photoelectric conversion element and a common node of the pixel block; at least the photoelectric conversion element is formed in the first semiconductor circuit layer constituting the three-dimensional laminated structure, and the first gate is formed The element, the reset transistor, and the amplifying transistor 'are formed in the second or third semiconductor circuit layer constituting the three-dimensional laminated structure. 14. The address-specific image sensor of claim 13, wherein, in addition to the plurality of the photoelectric conversion elements, a plurality of the first gate members are formed in the ith semiconductor circuit layer. A plurality of the amplifying transistors and a plurality of reset transistors are formed in the second or third semiconductor circuit layer. 1 5 · The address-specific image sensing benefit of the thirteenth application of the patent scope is in which, in addition to the plurality of the photoelectric conversion elements, a plurality of the first gate elements and a plurality of reset transistors are formed In the second semiconductor circuit layer, a plurality of the amplifying transistors are formed in the second or third semiconductor circuit layer. 16. The address specifying image sensor of claim 13, wherein the amplifying transistor has an output of an equal number of pixels in the pixel block corresponding to the amplifying transistor, and The output terminals are respectively connected to the second gate element (selecting the transistor); in addition to the plurality of the photoelectric conversion elements, the plurality of the first gate elements, the plurality of the reset transistors, and the plurality of the amplifying electrodes are also A crystal is formed in the first semiconductor circuit layer, and a plurality of the second gate elements (selection 118 200803484 electrification crystal) are formed in the second or third semiconductor circuit layer. [7] The address specifying type image sensor of claim 13, wherein only a plurality of the photoelectric conversion elements are formed in the first semiconductor circuit layer, and the plurality of the first gate elements A plurality of the reset transistors and a plurality of the amplifying transistors are formed in the second or third semiconductor circuit layer. 18. The address-specific image sensor of claim 13 wherein the amplifying transistor has a single output. 19. The address specification type image sensor of the invention, wherein the second or third semiconductor circuit layer further includes a storage device connected to the output end of the amplifying transistor. a capacitive element and an output transistor for controlling an output of the signal stored by the capacitive element. 20. The address specifying image sensor of claim 8, wherein each of the amplifying transistors has an output of an equal number of pixels in the pixel block corresponding to the amplifying transistor, and The second gate elements are connected to the output_ terminals, respectively. 21. The address specifying image sensor of the second aspect of the patent application, wherein the 'in the second or third semiconductor circuit layer is further provided and connected to the plurality of output terminals of the amplifying transistor respectively a plurality of storage capacitor elements and an output transistor for controlling the output of the signals stored in the capacitor elements. 22. The address-specified plastic image sensor of any one of claims 13 to 21, wherein all of the reset transistor pairs are used before all of the pixels are generated and stored with signal 119 200803484. All of the pixels are collectively reset in each of the 5 megapixel blocks, and the lanthanum corresponding to the signal charge stored in the pixel is read by the corresponding common node in time series, and then transmitted to the corresponding amplifying transistor. . An address-specified image sensor having a three-dimensional layered structure, having a plurality of pixels arranged in an array, and selecting each pixel by address designation is characterized by: 複數個像素區塊,係將複數個該像素以既定數量並聯 於共通節點而構成;以及 放大電晶體’連接於複數個該像素區塊之各共通節點, 用以放大由該像素區塊内之複數個該像素所送出之訊號; 在各該像素區塊中’各該像素包含:光電轉換元件, 對應照射光來產生訊號電荷;第1閘極元件,設置在該光 電轉換7G件與像素區塊之共通節點間之路徑;以及重置電 晶體’連接於該光電轉換元件與帛i閘極元件之連接點, 以執行該像素之重置; 該三維積層構造之 元件、該重置電晶 三維積層構造之第 至少將該光電轉換元件形成於構成 第1半導體電路層中,而將該第1閘極 體、及該放大電晶體,係形成於構成該 2或第3以後之半導體電路層中。 24·如申請專利範圍第23頂 項之位址指定型影像感測 器,其中,除了複數個該光雷鏟施 一 尤兔轉換70件外,亦將複數個該 第1閘極兀件形成於該第1半導 卞令篮冤路層中,而將複數個 该放大電日日體與複數個重置電晶辦报占 电日日體形成於該第2或第3以 120 200803484 後之半導體電路層中。 即25·如申請專利範圍第2;3項之位址指定型影像感測 :其中’除了複數個該光電轉換元件外,亦將複數個該 第1間拖疋件及複數個重置電晶體形成於該第1半導體電 路厚Φ , 、 曰 而將複數個該放大電晶體形成於該第2或第3以 後之半導體電路層中。 26·如申請專利範圍第23項之位址指定型影像感測 , 甘 | ^八’該放大電晶體具與該放大電晶體對應之該像素 區塊中之像素總數相等數量之輸出端,且在該等輸出端分 別連接第2閘極元件(選擇電晶體); 除了複數個該光電轉換元件外,亦將複數個該第1閘 極元件、複數個該重置電晶體、及複數個該放大電晶體形 成於該第1半導體電路層中,而將複數個該第2閘極元件(選 擇電晶體)形成於該第2或第3以後之半導體電路層中。 27·如申請專利範圍第23項之位址指定型影像感測 器,其中,僅將複數個該光電轉換元件係形成於該第〗半 體黾路層中,複數個該第1閘極元件、複數個該重置電 晶體、及複數個該放大電晶體,係形成於該第2或第3以 後之半導體電路層中。 28.如申請專利範圍第23項之位址指定型影像感測 器,其中’各該放大電晶體分別具有單一之輸出端。 29·如申請專利範圍第28項之位址指定型影像感測 為’其中’在該第2或第3以後之半導體電路層中進一步 具備:與該放大電晶體之輸出端連接之儲存用電容元件、 121 200803484 以及用以控制在該電容元件所儲存訊號之輸出之輸出電晶 體0 30·如申請專利範圍第23項之位址指定型影像感測 器’其中’各該放大電晶體具有與該放大電晶體對應之該 像素區塊中之像素總數相等數量之輸出端,且在該等輸出 端分別連接第2閘極元件。 31·如申請專利範圍第30項之位址指定型影像感測 _ 裔,其中,在該第2或第3以後之半導體電路層中進一步 具備:分別與該放大電晶體之複數個輸出端連接之複數個 儲存用t容元<牛、以及用以控制在該等電容元件所儲存訊 號之輸出之輸出電晶體。 ,•士申明專利範圍第23至3 1項中任一項之位址指定 ㈣:感測器,其在使所有該像素整體產生、貯存訊號電 7引使用所有该重置電晶體對所有該像素整體進行重 置在各錢素區塊,與該像素所貯存之訊號電荷對應之 籲 ^係透過對應之該共通節點依時序被讀取後,傳送至 相對應之該放大電晶體。 Η * —、圓式: 如次頁 122The plurality of pixel blocks are formed by paralleling a plurality of the pixels in a predetermined number in parallel with the common node; and the amplifying transistor is connected to each of the plurality of common nodes of the pixel block for amplifying by the pixel block a plurality of signals sent by the pixel; each of the pixels in the pixel block includes: a photoelectric conversion element that generates a signal charge corresponding to the illumination light; and a first gate element disposed in the photoelectric conversion 7G device and the pixel region a path between the common nodes of the block; and a reset transistor connected to the connection point of the photoelectric conversion element and the 闸i gate element to perform resetting of the pixel; the three-dimensional laminated structure element, the reset electro-crystal In the three-dimensional laminated structure, at least the photoelectric conversion element is formed in the first semiconductor circuit layer, and the first gate body and the amplifying transistor are formed in the second or third semiconductor circuit layer. in. 24. The address-specific image sensor of the 23rd item of the patent application scope, wherein, in addition to the plurality of light shovel shovel-transfer 70 pieces, a plurality of the first gate elements are also formed. In the first semi-guided basket, the plurality of the magnifying electric Japanese body and the plurality of reset electro-technics are formed in the second or third after 120 200803484. In the semiconductor circuit layer. That is, 25. The address-specific image sensing of the second and third items of the patent application scope: wherein, in addition to the plurality of the photoelectric conversion elements, the first one of the first dragging members and the plurality of resetting transistors are also The first semiconductor circuit is formed to have a thickness Φ, and a plurality of the amplifying transistors are formed in the second or third semiconductor circuit layer. 26. If the address-specified image sensing of claim 23 of the patent application scope, the magnifying transistor has an output of an equal number of the total number of pixels in the pixel block corresponding to the amplifying transistor, and Connecting a second gate element (selecting a transistor) to the output terminals; and in addition to the plurality of the photoelectric conversion elements, a plurality of the first gate elements, a plurality of the reset transistors, and the plurality of The amplifying transistor is formed in the first semiconductor circuit layer, and a plurality of the second gate elements (selective transistors) are formed in the second or third semiconductor circuit layer. 27. The address-specified image sensor of claim 23, wherein only a plurality of the photoelectric conversion elements are formed in the first half of the circuit layer, and the plurality of the first gate elements A plurality of the reset transistors and a plurality of the amplifying transistors are formed in the second or third semiconductor circuit layer. 28. The address-specific image sensor of claim 23, wherein each of the amplifying transistors has a single output. 29. The address-specific image sensing of claim 28 is 'where' is further provided in the second or third semiconductor circuit layer: a storage capacitor connected to an output end of the amplifying transistor Component, 121 200803484, and an output transistor for controlling the output of the signal stored in the capacitive element. 30. The address-specific image sensor of claim 23, wherein each of the amplifying transistors has The amplifying transistor corresponds to an equal number of outputs of the total number of pixels in the pixel block, and the second gate elements are respectively connected to the output terminals. 31. The address-specific image sensing method of claim 30, wherein the second or third semiconductor circuit layer further comprises: respectively connected to a plurality of output terminals of the amplifying transistor The plurality of storage t-capacitors < cattle, and an output transistor for controlling the output of the signals stored in the capacitive elements. Address specification (4) of any of the patent scopes 23 to 31: a sensor that uses all of the reset transistors for all of the pixels to generate and store signals. The pixel is entirely reset in each of the money blocks, and the call corresponding to the signal charge stored in the pixel is read by the corresponding common node in time series, and then transmitted to the corresponding amplifying transistor. Η * —, round: as the next page 122
TW096106597A 2006-02-27 2007-02-27 Stack-type semiconductor device with integrated sensors TWI416948B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006049605A JP2007228460A (en) 2006-02-27 2006-02-27 Stacked semiconductor device with integrated sensor mounted thereon

Publications (2)

Publication Number Publication Date
TW200803484A true TW200803484A (en) 2008-01-01
TWI416948B TWI416948B (en) 2013-11-21

Family

ID=38509314

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096106597A TWI416948B (en) 2006-02-27 2007-02-27 Stack-type semiconductor device with integrated sensors

Country Status (3)

Country Link
JP (1) JP2007228460A (en)
TW (1) TWI416948B (en)
WO (1) WO2007105478A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102959706A (en) * 2010-06-30 2013-03-06 佳能株式会社 Solid-state imaging device
CN103730455A (en) * 2012-10-16 2014-04-16 全视科技有限公司 Stacked chip image sensor with light-sensitive circuit elements on the bottom chip
CN104718622A (en) * 2012-10-18 2015-06-17 索尼公司 Semiconductor device, solid-state imaging device and electronic apparatus
US9478579B2 (en) 2012-10-16 2016-10-25 Omnivision Technologies, Inc. Stacked chip image sensor with light-sensitive circuit elements on the bottom chip

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4058459B1 (en) * 2007-03-02 2008-03-12 キヤノン株式会社 Imaging apparatus and imaging system
US7781716B2 (en) * 2008-03-17 2010-08-24 Eastman Kodak Company Stacked image sensor with shared diffusion regions in respective dropped pixel positions of a pixel array
US7858915B2 (en) * 2008-03-31 2010-12-28 Eastman Kodak Company Active pixel sensor having two wafers
WO2009136342A1 (en) * 2008-05-08 2009-11-12 Koninklijke Philips Electronics N.V. A microelectronic device with wafer trenches
US8471939B2 (en) 2008-08-01 2013-06-25 Omnivision Technologies, Inc. Image sensor having multiple sensing layers
US20100149379A1 (en) * 2008-12-16 2010-06-17 Summa Joseph R Image sensor with three-dimensional interconnect and ccd
US9543356B2 (en) * 2009-03-10 2017-01-10 Globalfoundries Inc. Pixel sensor cell including light shield
JP4835710B2 (en) * 2009-03-17 2011-12-14 ソニー株式会社 Solid-state imaging device, method for manufacturing solid-state imaging device, driving method for solid-state imaging device, and electronic apparatus
US8970721B2 (en) * 2009-10-07 2015-03-03 Panasonic Intellectual Property Corporation Of America Imaging device, solid-state imaging element, image generation method, and program
JP2011119837A (en) * 2009-12-01 2011-06-16 Hirotsu Kazuko Solid-state imaging element
KR101411800B1 (en) 2009-12-26 2014-06-24 캐논 가부시끼가이샤 Solid-state imaging device and imaging system
JP5904259B2 (en) * 2010-01-08 2016-04-13 ソニー株式会社 Semiconductor device, solid-state imaging device, and camera system
JP5685898B2 (en) 2010-01-08 2015-03-18 ソニー株式会社 Semiconductor device, solid-state imaging device, and camera system
EP2579580B1 (en) * 2010-05-28 2021-01-06 Hamamatsu Photonics K.K. Solid-state imaging device
JP5433500B2 (en) * 2010-05-28 2014-03-05 浜松ホトニクス株式会社 Solid-state imaging device
JP5433499B2 (en) * 2010-05-28 2014-03-05 浜松ホトニクス株式会社 Solid-state imaging device
JP2012015274A (en) 2010-06-30 2012-01-19 Canon Inc Solid-state imaging apparatus, and method of manufacturing the same
JP5810493B2 (en) * 2010-09-03 2015-11-11 ソニー株式会社 Semiconductor integrated circuit, electronic equipment, solid-state imaging device, imaging device
US8952312B2 (en) 2011-05-12 2015-02-10 Olive Medical Corporation Image sensor for endoscopic use
JP5959186B2 (en) * 2011-05-25 2016-08-02 オリンパス株式会社 Solid-state imaging device, imaging device, and signal readout method
JP6045156B2 (en) * 2011-05-25 2016-12-14 オリンパス株式会社 Solid-state imaging device
US9257468B2 (en) 2012-11-21 2016-02-09 Olympus Corporation Solid-state imaging device, imaging device, and signal reading medium that accumulates an amplified signal without digitization
JP5881324B2 (en) * 2011-07-01 2016-03-09 オリンパス株式会社 Solid-state imaging device, control method for solid-state imaging device, and imaging device
DE102011081100A1 (en) * 2011-08-17 2013-02-21 Siemens Aktiengesellschaft Arrangement with photocells
JP2013084744A (en) 2011-10-07 2013-05-09 Sony Corp Solid-state imaging element and electronic equipment
JP2013090127A (en) * 2011-10-18 2013-05-13 Olympus Corp Solid-state imaging apparatus and imaging apparatus
JP2013110539A (en) * 2011-11-18 2013-06-06 Nippon Hoso Kyokai <Nhk> Image pickup device
JP5926034B2 (en) * 2011-11-18 2016-05-25 日本放送協会 Image sensor
JP6053321B2 (en) * 2012-05-16 2016-12-27 オリンパス株式会社 Solid-state imaging device
JP6128776B2 (en) * 2011-12-01 2017-05-17 オリンパス株式会社 Solid-state imaging device, imaging device, and signal readout method
JP5959187B2 (en) * 2011-12-02 2016-08-02 オリンパス株式会社 Solid-state imaging device, imaging device, and signal readout method
JP5893372B2 (en) * 2011-12-07 2016-03-23 オリンパス株式会社 Solid-state imaging device, imaging device, and signal readout method
US9349761B2 (en) 2011-12-07 2016-05-24 Olympus Corporation Solid-state image pickup device and color signal reading method including a plurality of electrically-coupled substrates
JP5945463B2 (en) * 2012-06-28 2016-07-05 オリンパス株式会社 Solid-state imaging device
JP6016378B2 (en) 2012-02-29 2016-10-26 キヤノン株式会社 Photoelectric conversion device and imaging system using photoelectric conversion device
JP5965674B2 (en) 2012-03-05 2016-08-10 オリンパス株式会社 Solid-state imaging device and imaging device
JP5973758B2 (en) * 2012-03-22 2016-08-23 オリンパス株式会社 Solid-state imaging device
CN110265415A (en) 2012-03-30 2019-09-20 株式会社尼康 Shooting unit, filming apparatus and shooting control program
US8629524B2 (en) 2012-04-27 2014-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Apparatus for vertically integrated backside illuminated image sensors
US10090349B2 (en) 2012-08-09 2018-10-02 Taiwan Semiconductor Manufacturing Company, Ltd. CMOS image sensor chips with stacked scheme and methods for forming the same
US9153565B2 (en) 2012-06-01 2015-10-06 Taiwan Semiconductor Manufacturing Company, Ltd. Image sensors with a high fill-factor
JP5978777B2 (en) * 2012-06-04 2016-08-24 富士通株式会社 Imaging device
KR102143807B1 (en) 2012-07-26 2020-08-31 디퍼이 신테스 프로덕츠, 인코포레이티드 Camera system with minimal area monolithic cmos image sensor
JP6071315B2 (en) * 2012-08-08 2017-02-01 オリンパス株式会社 Solid-state imaging device and imaging device
JP6376245B2 (en) * 2012-10-18 2018-08-22 ソニー株式会社 Solid-state imaging device and electronic device
JP2014107448A (en) * 2012-11-28 2014-06-09 Nikon Corp Laminated semiconductor device manufacturing method and laminated semiconductor manufacturing apparatus
JP6099373B2 (en) * 2012-11-29 2017-03-22 オリンパス株式会社 Solid-state imaging device and electronic camera
US9153616B2 (en) 2012-12-26 2015-10-06 Olympus Corporation Solid-state imaging device and imaging device with circuit elements distributed on multiple substrates, method of controlling solid-state imaging device, and imaging device with circuit elements distributed on multiple substrates
US8773562B1 (en) * 2013-01-31 2014-07-08 Apple Inc. Vertically stacked image sensor
JP5984018B2 (en) * 2013-02-21 2016-09-06 ソニー株式会社 Solid-state imaging device and imaging apparatus
JP6419774B2 (en) 2013-03-15 2018-11-07 デピュイ・シンセス・プロダクツ・インコーポレイテッド Minimization of image sensor I / O and number of conductors for endoscopic applications
US10517469B2 (en) 2013-03-15 2019-12-31 DePuy Synthes Products, Inc. Image sensor synchronization without input clock and data transmission clock
KR102065633B1 (en) 2013-08-12 2020-01-13 삼성전자 주식회사 Image sensor, method thereof, and system including the same
JP2015060909A (en) * 2013-09-18 2015-03-30 オリンパス株式会社 Semiconductor device
JP6247918B2 (en) 2013-12-09 2017-12-13 浜松ホトニクス株式会社 Radiation image sensor
JP6177117B2 (en) * 2013-12-10 2017-08-09 オリンパス株式会社 Solid-state imaging device, imaging device, and manufacturing method of solid-state imaging device
JP5784167B2 (en) * 2014-03-14 2015-09-24 キヤノン株式会社 Method for manufacturing solid-state imaging device
JP6319426B2 (en) 2014-03-31 2018-05-09 株式会社ニコン DETECTING DEVICE, ELECTRONIC DEVICE, AND MANUFACTURING METHOD
JP6457738B2 (en) * 2014-05-02 2019-01-23 オリンパス株式会社 Solid-state imaging device and imaging device
WO2016035184A1 (en) * 2014-09-04 2016-03-10 オリンパス株式会社 Solid-state image pickup device
JP6048482B2 (en) * 2014-11-28 2016-12-21 株式会社ニコン Image sensor
KR102113836B1 (en) * 2015-09-30 2020-05-21 가부시키가이샤 니콘 Imaging element and imaging device
JP6361633B2 (en) * 2015-11-02 2018-07-25 株式会社ニコン Image sensor
KR102521342B1 (en) * 2016-05-31 2023-04-14 에스케이하이닉스 주식회사 3 Layered Stacked Image Sensor
JP7038494B2 (en) * 2017-06-15 2022-03-18 ルネサスエレクトロニクス株式会社 Solid-state image sensor
JP2017216480A (en) * 2017-09-01 2017-12-07 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method of the same
JP6610642B2 (en) * 2017-11-10 2019-11-27 株式会社ニコン Imaging apparatus and camera
WO2019130702A1 (en) * 2017-12-27 2019-07-04 ソニーセミコンダクタソリューションズ株式会社 Image pickup device
JP7329318B2 (en) * 2018-10-25 2023-08-18 ソニーグループ株式会社 Solid-state imaging device and imaging device
CN112970115A (en) * 2018-11-13 2021-06-15 索尼半导体解决方案公司 Solid-state image pickup device and electronic apparatus
WO2020137334A1 (en) * 2018-12-26 2020-07-02 ソニーセミコンダクタソリューションズ株式会社 Photoelectric conversion element, solid-state imaging device and electronic device
TW202109862A (en) * 2019-06-26 2021-03-01 日商索尼半導體解決方案公司 Image pickup device
TW202107722A (en) * 2019-06-26 2021-02-16 日商索尼半導體解決方案公司 Imaging device
JPWO2021161134A1 (en) * 2020-02-14 2021-08-19
WO2023223743A1 (en) * 2022-05-17 2023-11-23 ソニーセミコンダクタソリューションズ株式会社 Photodetector element

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63193678A (en) * 1987-02-05 1988-08-10 Fujitsu Ltd Solid-state area image pickup device
JPH07192663A (en) * 1993-12-27 1995-07-28 Hitachi Ltd Image pickup device
GB2289983B (en) * 1994-06-01 1996-10-16 Simage Oy Imaging devices,systems and methods
GB2319394B (en) * 1996-12-27 1998-10-28 Simage Oy Bump-bonded semiconductor imaging device
KR100278285B1 (en) * 1998-02-28 2001-01-15 김영환 Cmos image sensor and method for fabricating the same
JP3697073B2 (en) * 1998-08-05 2005-09-21 キヤノン株式会社 Imaging apparatus and imaging system using the same
IT1313260B1 (en) * 1999-07-28 2002-07-17 St Microelectronics Srl INTEGRATED PHOTOSENSOR DEVICE ON SEMICONDUCTOR AND RELATIVE MANUFACTURING PROCESS.
JP3658278B2 (en) * 2000-05-16 2005-06-08 キヤノン株式会社 Solid-state imaging device and solid-state imaging system using the same
JP3713418B2 (en) * 2000-05-30 2005-11-09 光正 小柳 Manufacturing method of three-dimensional image processing apparatus
US6809769B1 (en) * 2000-06-22 2004-10-26 Pixim, Inc. Designs of digital pixel sensors
JP3984814B2 (en) * 2001-10-29 2007-10-03 キヤノン株式会社 Imaging device, radiation imaging apparatus using the imaging device, and radiation imaging system using the imaging device
JP4117540B2 (en) * 2002-10-17 2008-07-16 ソニー株式会社 Control method of solid-state image sensor
US6894265B2 (en) * 2003-01-31 2005-05-17 Foveon, Inc. Vertical color filter sensor group and semiconductor integrated circuit fabrication method for fabricating same
JP4120453B2 (en) * 2003-04-18 2008-07-16 ソニー株式会社 Solid-state imaging device and drive control method thereof
JP4323883B2 (en) * 2003-06-30 2009-09-02 キヤノン株式会社 Image processing apparatus and control method thereof
JP4349232B2 (en) * 2004-07-30 2009-10-21 ソニー株式会社 Semiconductor module and MOS solid-state imaging device
TWI429066B (en) * 2005-06-02 2014-03-01 Sony Corp Semiconductor image sensor module and manufacturing method thereof
EP1791345B1 (en) * 2005-11-24 2012-01-11 Stmicroelectronics Sa Image sensor pixel with multiple outputs

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102959706A (en) * 2010-06-30 2013-03-06 佳能株式会社 Solid-state imaging device
CN102959706B (en) * 2010-06-30 2015-08-05 佳能株式会社 Solid state image pickup device
US9196643B2 (en) 2010-06-30 2015-11-24 Canon Kabushiki Kaisha Solid-state imaging device having photoelectric conversion units on a first substrate and a plurality of circuits on a second substrate
CN103730455A (en) * 2012-10-16 2014-04-16 全视科技有限公司 Stacked chip image sensor with light-sensitive circuit elements on the bottom chip
US9478579B2 (en) 2012-10-16 2016-10-25 Omnivision Technologies, Inc. Stacked chip image sensor with light-sensitive circuit elements on the bottom chip
CN103730455B (en) * 2012-10-16 2017-04-12 豪威科技股份有限公司 Stacked chip image sensor with light-sensitive circuit elements on the bottom chip
CN104718622A (en) * 2012-10-18 2015-06-17 索尼公司 Semiconductor device, solid-state imaging device and electronic apparatus
CN107425021A (en) * 2012-10-18 2017-12-01 索尼公司 Semiconductor device, solid camera head and electronic equipment
US9917131B2 (en) 2012-10-18 2018-03-13 Sony Corporation Semiconductor device, solid-state imaging device and electronic apparatus
CN107425021B (en) * 2012-10-18 2019-01-29 索尼公司 Semiconductor device, solid-state imaging apparatus and electronic equipment
CN104718622B (en) * 2012-10-18 2019-04-05 索尼公司 Semiconductor device, solid-state imaging apparatus and electronic equipment
US11875989B2 (en) 2012-10-18 2024-01-16 Sony Group Corporation Semiconductor device, solid-state imaging device and electronic apparatus

Also Published As

Publication number Publication date
WO2007105478A1 (en) 2007-09-20
JP2007228460A (en) 2007-09-06
TWI416948B (en) 2013-11-21

Similar Documents

Publication Publication Date Title
TW200803484A (en) Stack-type semiconductor device with integrated sensors
US11722800B2 (en) Semiconductor image sensor module and method of manufacturing the same
CN107205129B (en) Image sensor with rolling shutter scan mode and high dynamic range
US7465602B2 (en) Anti-blooming storage pixel
US7547871B2 (en) Photoelectric conversion device
TWI412273B (en) Solid-state imaging device, driving method thereof, and electronic apparatus
US8816266B2 (en) Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus
TWI430660B (en) Backside illuminated image sensor with global shutter and storage capacitor
US10536658B2 (en) Image sensor having stacked imaging and digital wafers where the digital wafer has stacked capacitors and logic circuitry
TWI310986B (en) Split trunk pixel layout for imager and processing system, and method of forming an imager having same
CN101271911B (en) Solid videotaping element, single-plate color solid videotaping element and electronic apparatus
TW201126702A (en) Solid-state imaging device, method of manufacturing the same, method of driving the same, and electronic apparatus
TW200950076A (en) Circuit and photo sensor overlap for backside illumination image sensor
JP2009506541A (en) Solid-state imaging device having a capacitor on a red pixel
US20140226047A1 (en) Shared Readout Low Noise Global Shutter Image Sensor Method
TW201011904A (en) Globally reset image sensor pixels
KR102268707B1 (en) Image sensor
TWI514873B (en) Image sensor having reduced well bounce
TW498681B (en) A layout for smaller active pixel
CN110300272B (en) Stacked-chip image sensor and method of operating an image sensor capable of accumulating electrons and holes simultaneously
KR100755674B1 (en) Image sensor and method for fabricating the same
JPH02208974A (en) Solid-state image sensing device
CN215680692U (en) Pixel circuit and sensor
CN206332027U (en) Imaging sensor
JP2002033965A (en) Drive circuit for solid-state image pickup element, and solid-state image sensing element having drive circuit