TW200402678A - Electronic device, driving method of electronic device, optoelectronic device and electronic machine - Google Patents

Electronic device, driving method of electronic device, optoelectronic device and electronic machine Download PDF

Info

Publication number
TW200402678A
TW200402678A TW092107327A TW92107327A TW200402678A TW 200402678 A TW200402678 A TW 200402678A TW 092107327 A TW092107327 A TW 092107327A TW 92107327 A TW92107327 A TW 92107327A TW 200402678 A TW200402678 A TW 200402678A
Authority
TW
Taiwan
Prior art keywords
transistor
current
circuit
electronic device
aforementioned
Prior art date
Application number
TW092107327A
Other languages
Chinese (zh)
Other versions
TWI293748B (en
Inventor
Hiroaki Jo
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Publication of TW200402678A publication Critical patent/TW200402678A/en
Application granted granted Critical
Publication of TWI293748B publication Critical patent/TWI293748B/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/12Test circuits or failure detection circuits included in a display system, as permanent part thereof

Abstract

The invention relates to electronic device, driving method of electronic device, optoelectronic device and electronic machine. The resolution is that the pixel circuit 20 is installed in connection with the switching transistor Q13 between the driving transistor Q11 and organic EL component 21 and provides the driving current outputted from the driving transistor Q11 to the current detection circuit 19a of the detection transistor Q14. When the switching transistor Q13 is shut off, power on the switching transistor Q12 and let capacitor C1 provide testing data voltage Vdata. Subsequently, when the transistor Q13 with switching characteristics is shut off, the detection transistor Q14 is activated. Enable the driving circuit of the driving transistor to provide the current detection circuit 19a by means of the detection transistor Q14. The current detection circuit 19a detects the driving circuit with testing data voltage.

Description

200402678 ⑴ 备 玫、發明說明 4 【發明所屬之技術領域】 本發明乃有關電子電路、電子裝置、電子裝置之驅動 方法、光電裝置及電子機器者。 秦 【先前技術】 β 近年以來,做爲光電裝置之顯示裝置乃矚目於使用有 機電激發光元件的光電裝置。使用此種之有機電激發光元 ® 件之光電裝置中,做爲驅動方式之一,爲主動矩陣驅動方 式。 於主動矩陣驅動方式之光電裝置中,爲控制有機電激 發光元件之亮度,對於各有機電激發光元件,設置各畫素 - 電路。各畫素電路之有機電激發光元件之亮度色階之控制 . 乃對應於亮度色陌,經由將資料信號(電壓値或電流値)供 予畫素電路之保持電容加以進行。即,於保持電容中,充 電對應於設定之發光亮度色階的電荷。 鲁 然後,對應於保持於保持電容之電荷量,設定驅動用 TFT(薄膜電晶體)之導通狀態,對應於前述導通狀態則供 予有機EL元件(例如參照專利文獻1) 【專利文獻1】國際公開第W098/3 64〇6號 蠊 【發明內容】 [爲解決發明之課題] 然而,畫素電路乃至少由1個之電晶體等之主動元件 •5- (2) (2)200402678 所構成,但將所有主動元件之特性嚴密地加以均化是困難 的。尤其,構成顯示器等之畫素電路的薄膜電晶體(TFT) 爲特性之參差爲大。由此,於輸入特定之資料信號時,要 獲得期望之亮度爲困難的。 又,經由構成畫素電路之主動元件或光電元件之歷時 劣化,特性會有變化之問題。 本發明乃爲解決上述問題點,其目的乃在於可提供高 精度下,檢出電子電路之動作特性之電子電路、電子裝 置、電子裝置之驅動方法、光電裝置及電子機器者。 [爲解決課題之手段] 本發明之第1之電子裝置,屬於具備複數之單位電路 的電子裝置,其特徵係前述各複數之單位電路係包含 第1之電晶體、和將藉由前述第1之電晶體供給之電 氣信號,做爲電性量加以保持之保持元件、和根據保持於 前述保持元件之電性量,導通狀態被控制之第2之電晶 體、和供給相對於前述導通狀態之電流量的被驅動元件、 和與前述第2之電晶體直列連接之第3之電晶體;藉由前 述第3之電晶體,可連接於爲檢出電流量之檢查部。 根據此時,經由將第3之電晶體開啓,相對於欲供予 被驅動元件之第2之電晶體之電荷量的電流量,則藉由相 同第3之電晶體而得。因此,可檢出電子電路之動作特 性。然而,前述第3之電晶體乃可設於各單位電路內亦 可,對於前述複數之單位電路中之數個之單位電路,共通 -6- (3) (3)200402678 加以設置亦可。 本發明之桌2之電子裝置,屬於具備複數之單位電路 的電子裝置,其特徵係前述各複數之單位電路係包含 第1之電晶體、和將藉由前述第1之電晶體供給之電 氣信號,做爲電性量加以保持之保持元件、和根據保持於 前述保持元件之電性量,導通狀態被控制之第2之電晶 體、和供給相對於前述導通狀態之電流量的被驅動元件; 前述第2之電晶體係直列連接於第1之電晶體·,藉由前述 第1之電晶體,可連接於爲檢出電流量之檢查部。 做爲此第2之電子裝置所對應之實施形態,例如可列 舉做爲後述之第4之實施形態之電氣信號,供給電流信號 之電路構成的電子裝置。 於上述電子裝置中,於前述被驅動元件和前述第2之 電晶體間,連接第4之電晶體。 根據此時,令第4之電晶體成爲關閉狀態,於停止對 前述被驅動元件之電流供給的狀態,經由令前述第3之電 晶體或前述第1之電晶體成爲開啓狀態,藉由第3之電晶 體或前述第1之電晶體加以檢出。即,進行檢出前述檢查 部之期間,前述第4之電晶體乃至少爲關閉狀態爲佳。 於上述電子裝置,前述被驅動元件爲例如有機電激發 光元件等之電流驅動元件亦可。有機電激發光元件乃發光 層以有機材料所構成。_ 於上述電子裝置中,前述第3之電晶體乃設於各前述 複數之單位電路者爲佳。由此,可檢出前述複數之單位電 (4) (4)200402678 路之各電流特性之檢出。 於上述電子裝置中,前述保持元件乃例如將供予前述 複數之各單位電路的電氣信號,做爲電荷量加以保持的容 量元件即可。 於上述電子裝置,前述保持元件爲S R A Μ等之記憶元 件亦可。 於上述電子裝置中,具備記憶對於藉由前述檢查部所 求得之前述第1之電晶體所供給之電氣信號的補正値的記 憶電路。. 根據此時,可使用記憶於記憶電路的補正値,補正電 子裝置之動作特性,調整被驅動元件之動作。 本發明之電子裝置之驅動方法,屬於具備第1之電晶 體、和將藉由前述第1之電晶體供給之電氣信號,做爲電 性量加以保持之保持元件、和根據保持於前述保持元件之 電性量,設定導通狀態之第2之電晶體、和供給相對於前 述導通狀態之電流量的被驅動元件,和與前述第2之電晶 體直列連接之第3之電晶體的電子裝置之驅動方法,其特 徵係具備使前述第1之電晶體開啓,根據前述電氣信號, 將電氣量保持於前述保持元件之第1之步驟,和使前述第 3之電晶體爲開啓狀態,將前述第2之電晶體和爲檢出電 流量之檢查部,藉由前述第3之電晶體電氣性連接,檢出 通過包含前述第2之電晶體及前述第3之電晶體的電流路 徑之電流之電流量的第2之步驟。 根據此時,檢查部乃欲供予被驅動元件之電流量,以 -8- (5) (5)200402678 前述檢查部加以檢出。 於上述電子裝置之驅動方法,其中,前述電流路徑乃 不包含被驅動元件爲佳。 於上述電子裝置之驅動方法,其中,前述被驅動元件 爲有機EL兀件等之電流驅動元件亦可。 本發明之第1之光電裝置,屬於具備對應於複數之掃 猫線和複數之資料線的交叉部所配置之複數之畫素電路的 光電裝置,其特徵係前述各複數之畫素電路係包含經由藉 由前述複數之掃瞄線所對應之掃瞄線所供給之掃瞄信號, 控制導通之第1之電晶體、和將藉由前述複數之資料線所 對應之資料線及前述第1之電晶體所供給資料線,做爲電 性量加以保持之保持元件、和根據保持於前述保持元件之 電性量,導通狀態被控制之第2之電晶體、和供給相對於 前述導通狀態之電流量的光電元件、和與前述第2之電晶 體直列連接之第3之電晶體·,前述各複數之畫素電路係藉 由前述第3之電晶體,可連接於爲檢出電流量之檢查部。 於上述光電裝置中,前述第3之電晶體乃設於前述各 複數之畫素電路爲佳,於前述複數之畫素電路之任一之畫 素電路,共通加以設置爲佳。 於上述光電裝置中,前述第3之電晶體乃可藉由前述 複數之電晶體所對應之資料線’連接於前述檢查部亦可。 根據此時,即使不設置檢-查用配線’可將資料線做爲檢查 用配線加以利用。 本發明之第2之光電裝置’屬於具備對應於複數之掃 -9- (6) (6)200402678 瞄線和複數之資料線的交叉部所配置之複數之畫素電路的 光電裝置,其特徵係前述各複數之畫素電路係包含經由藉 由前述複數之掃瞄線所對應之掃瞄線所供給之掃瞄信號, 控制導通之第1之電晶體、和將藉由前述複數之資料線所 對應之資料線及前述第1之電晶體所供給資料線,做爲電 性量加以保持之保持元件、和根據保持於前述保持元件之 電性量,控制導通狀態,與前述第1之電晶體直列連接之 第2之電晶體、和供給相對於前述導通狀態之電流量的光 電元件;前述各複數之畫素電路係藉由前述第1之電晶 體,可連接於爲檢出電流量之檢查部。 上述光電裝置中,前述檢查部係包含檢出前述電流量 之電流檢出電路、和根據前述電流檢出電路所檢出之電流 量,求得對於前述電氣信號之補正値之補正値算出電路、 和記憶對於前述畫素電路之前述補正値的記憶電路; 將前述電氣信號以前述補正値補正者。 根據此時,經由補正値算出電路,求得爲調整畫素電 路之動作特性之參差之補正値,將對於該畫素電路之前述 補正値,記憶於記憶電路之電路。因此,使用記憶於記憶 電路的電子電路之補正値,令畫素電路補正動作特性,調 整被驅動元件之動作。 本發明之電子機器,係安裝上述之光電裝置。 【實施方式】 [發明之實施形態] -10- (7) (7)200402678 以下,將具體化本發明之第1實施形態,根據圖1〜 圖5加以說明。 圖1乃顯示做爲光電裝置之有機電激發光顯示器10 之電路構成的方塊電路圖。圖2乃顯示顯示面板部和資料 線驅動電路之內部電路構成的方塊電路圖。圖3乃顯示畫 素電路之內部電路構成之電路圖。 圖1中,有機電激發光顯示器1 〇乃具備顯示面板部 1 1、資料線驅動電路12、掃瞄線驅動電路1 3、記憶體 14、振盪電路15、選擇電路16及控制電路17。 有機電激發光顯示器1 〇之各要素1 1〜1 7係各別經由 獨立之電子零件加以構成亦可。例如各要素12〜17經由1 晶片之半導體積體電路裝置加以構成亦可。又,做爲各要 素11〜17之全部或一部分成爲一體的電子零件加以構成亦 可。例如,於顯示面板部1 1,一體形成資料線驅動電路 1 2和掃瞄線驅動電路1 3亦可。各構成要件1 2〜1 6之全部 或一部分則以可程式1C晶片加以構成,該機能經由寫入 1C晶片的程式’在軟體上加以實現亦可。 顯示面板部1 1乃如圖2所示,具有排列成矩陣之複 數之畫素電路20。即,各畫素電路20乃於沿該列方向延 伸之複數之資料線X1〜係整數)’和沿該行方向延伸 之複數之掃瞄線Y1〜Yn(n係整數)間,經由各別連接,各 畫素電路2 0乃排列成爲矩陣狀。於各畫素電路2 0,做爲 被驅動元件之發光層,具有以有機材料構成之有機EL元 件2 1。然而,形成於畫素電路20內之後述之電晶體乃可 -11 - (8) (8)200402678 爲矽基台之電晶體,但本實施形態中,以薄膜電晶體(TFT) 加以構成。 資料線驅動電路1 2乃對於前述各資料線X 1〜Xm ’各 設置資料電壓生成電路12a。各資料電壓生成電路12a乃 各藉由對應之資料線XI〜Xm,於畫素電路20,供給電氣 信號,即於本實施形態中,供給資料信號(資料電壓 Vdata)。畫素電路20乃對應於此資料電壓Vdata,設定同 畫素電路2 0之內部狀態時,對應於此,控制流入有機EL 元件2 1之電流値,控制同有機EL元件21之亮度。 掃瞄線驅動電路1 3係選擇驅動前述複數之掃瞄線Yn 中之一條,選擇1行分之畫素電路群。掃瞄線Υ1〜Υη乃 各由第1副掃猫線V a和第2副掃猫線V b構成。掃瞄線 驅動電路1 3乃於第1副掃瞄線V a,輸出第1選擇信號 SL1,於第2副掃瞄線Vb輸出第2選擇信號SL2。記憶 體1 4記憶由電腦1 8加以供給之顯示資料。又,記億體 1 4乃記憶由構成補正値算出電路之檢查裝置1 9供給之測 試用顯示資料。振盪電路1 5乃將基準動作信號,進行有 機電激發光顯示器1 0之其他之構成要素之供給。 選擇電路1 6乃設於顯示面板部1 1和資料線驅動電路 1 2間。選擇電路1 6乃於各資料線X 1〜Xm,具備切換電路 1 6a。各切換電路1 6a係如圖3所示,由第1閘極電晶體 Q1和第2.閘極電晶體Q2加以構成。然後,各選擇電路 1 6之第1閘極電晶體Q1乃各連接對應之資料線 X 1〜Xm,和對應之資料線驅動器3 0。各選擇電路1 6之第 -12- (9) (9)200402678 2閘極電晶體Q2乃各連接對應之資料線X 1〜xm,和各設 於設在做爲檢查部之檢查裝置1 9對應之資料線X〗〜Xm的 電流檢出電路1 9a。第1及第2閘極電晶體Q 1、q2乃根 據由控制電路1 7之第1及第2閘極信號G1、G 2,各別進 行開啓·關閉控制。 控制電路1 7乃統籌控制前述各要素1 1〜1 6。控制電 路1 7乃將由記憶於顯示顯示面板部1 1之顯示狀態之前述 記憶體1 4之電腦1 8的顯示資料(畫像資料),變換爲顯示 各有機EL元件2 1之發光亮度的矩陣資料。矩陣資料乃 包含爲順序選擇1行分之畫素電路群之掃瞄線信號,和決 定設定被選擇之畫素電路群之有機EL元件21之亮度的 資料電壓Vdata之位準的資料線驅動信號。然後,掃瞄線 驅動信號乃供予掃瞄線驅動電路1 3。又,資料線驅動信 號乃供予資料線驅動電路1 2。 又’控制電路1 7乃有機電激發光顯示器1 〇使用檢查 裝置19,進行對於顯示面板部1〗之各畫素電路20之檢 查時,成爲測試模式。成爲測試模式時,控制電路1 7係 將由記憶於前述記憶體1 4之檢查裝置1 9的測試用顯示資 料(畫像資料),變換成顯示各有機EL元件21之發光亮度 的矩陣資料(測試用矩陣資料)。 此測試用矩陣資料乃包含爲順序選擇1行分之畫素電 路群之測試用之掃瞄線驅動信號,和決定設定被選擇畫素 電路群之有機EL元件2 1之測試用亮度的測試用之資料 電壓V data之位準的測試用之資料線驅動信號。又,測試 -13- (10) (10)200402678 用之資料線驅動信號係供予資料線驅動電路1 2。又,於 測試模式,將控制信號G 1、G2供予前述選擇電路丨6。然 而,於非測試模式之通常模式時,控制電路1 7乃僅輸出 第1閘極信號G1,維持令第1閘極電晶體Q 1開啓,令第 2閘極電晶體Q2成爲關閉。 接著,對於畫素電路20之內部電路構成,根據圖3 加以說明。在說明的方便上,配置於第m之資料線Xm和 第η之掃瞄線Yn之交點,對於連接於兩資料線Xm和掃 瞄線Yn間的畫素電路2 0,加以說明。 畫素電路2 0乃本實施形態爲電壓驅動型之畫素電 路,具備做爲被驅動元件之有機EL元件2 1。具備做爲第 2之電晶體之驅動用電晶體Q 1 1,和做爲第1之電晶體之 開關用電晶體Q 1 2、做爲第4之電晶體之發光控制用電晶 體Q 1 3、做爲第3之電晶體之檢出用電晶體Q 1 4,做爲保 持元件之保持電容器C 1。 開關用電晶體Q 1 2及發光控制用電晶體Q 1 3乃經由 Ν通道TFT所構成。驅動用電晶體Qi 1及檢出用電晶體 Q14乃經由P通道TFT所構成。 驅動用電晶體 Q 1 1乃汲極藉由發光控制用電晶體 Q 1 3,連接於前述有機EL元件2 1之陽極,源極連接於電 源線L 1。於驅動用電晶體Q 1 1之閘極和電源線L 1間,連 接保持電容器C 1。又,驅動用電晶體Q〗!之閘極乃藉由 開關用電晶體Q 1 2,連接於前述資料線Xm。更且,驅動 用電晶體Q 1 1之汲極乃藉由前述檢出用電晶體Q ] 4,連2 -14- (11) (11)200402678 接於前述資料線Xm。 開關用電晶體Q 1 2之閘極乃連接第1副掃瞄線V a。 檢出用電晶體Q 1 4之源極乃連接於前述第1副掃瞄線 V a。又,發光控制用電晶體q 1 3及檢出用電晶體Q 1 4之 閘極’乃皆連接於第2副掃瞄線Vb。 接著,將如上述構成之有機電激發光顯示器1 〇之作 用,根據畫素電路20之動作加以競明。 (通常模式) 又,根據將通常模式示於圖4之各信號SL1、S2、 G 1、G 2之時間圖,加以說明。 現在,選擇第η之掃瞄線Yn,連接於掃瞄線Yn之各 畫素電路20進入發光動作時,由掃瞄線驅動電路1 3,藉 由掃瞄線Yn之第1副掃瞄線V a,輸出開關用電晶體Q 1 2 成爲開啓狀態之第1閘極信號G 1,開關用電晶體Q 1 2則 成爲開啓狀態。與此同時,由控制電路1 7,於選擇電路 1 6之各切換電路1 6a,輸出令第1閘極電晶體Q 1成爲開 啓狀態的第1閘極信號G1。第1閘極電晶體Q 1則成爲開 啓狀態。此時,根據開關用電晶體Q1 2及第1閘極電晶 體Q 1之開啓,由各資料電壓生成電路1 2 a向對應之各畫 素電路20之保持電容器C 1,各別供給資料電壓Vdata。 經過時間11之後,供給令開關用電晶體Q1 2及第1閘極 電晶體Q1成爲關閉狀態之第1選擇信號SL1及第1閘極 信號G1,終止資料寫入期間。 -15- i (12) i (12)200402678 ·· 藉由令資料電壓Vdata成爲開啓狀態之開關用電晶體 Q12,供予畫素電路20之期間,檢出用電晶體Q14及發 光控制用電晶體Q 1 3乃各別成爲開啓狀態。 時間11之中途或經過時間11後,開始對於驅動用電 晶體Q 1 1之導通狀態電流之有機EL元件的供給。 ’ 接著,令發光控制用電晶體Q 1 3成爲關閉狀態,停 _ 止對於電流之有機EL元件之供給,等待之後之資料寫入 期間之開始。 # 然而’將資料電壓Vdata藉由開關用電晶體Q12供予 畫素電路20之期間,檢出用電晶體Q 1 4爲開啓狀態或關 閉狀態之任一者皆可。 但是,藉由在於開啓狀態之檢出用電晶體Q 1 4,流入 _ 畫素電路2 0和資料線Xm間之微小電流會給予資料電壓 V d at a產生攝動的可能性之故,如本實施形態,將資料電 壓Vdata藉由開關用電晶體Q12供予畫素電路20之期 間,檢出用電晶體Q 1 4乃成爲關閉狀態爲佳。 φ 更且,於通常模式之全部期間, 使檢出用電晶體Q 1 4成爲關閉狀態亦無妨。 於本實施形態中,發光控制用電晶體Q 1 3和檢出用 電晶體Q 1 4則成爲相互互補動作之電路構成,當然,可 · 各別加以獨立控制。 , 經由重複此動'慟,在於各掃瞄線 γ 1〜Yn上之各畫素 電路20之有機EL元件21乃對應於資料電壓Vdata之亮 度,各別發光控制,有機電激發光顯示器1 〇乃根據由電 -16- (13) (13)200402678 腦1 8之顯示資料,顯示毚像。 (測試模式) 接著,對於驅動方法之一形態之測試模式,進行說 明。有機電激發光顯示器1 〇乃經由連接於檢查裝置1 9, 而成爲測試模式。由檢查裝置1 9向有機電激發光顯示器 1 0輸出測試用顯不資料時,控制電路1 7乃成爲測試模 式’將測試用顯示資料變換爲顯示有機EL元件2 1之發 光之亮度色階的矩陣資料(測試用矩陣資料)。然後,控制 電路1 7乃將測試用之掃瞄線驅動信號及測試用之資料驅 動信號,輸出至掃瞄線驅動電路1 3及資料線驅動電路 1 2 〇 圖5乃顯示測試模式之各信號SL1、SL2、Gl、G2之 時間圖。現在,例如由掃瞄線驅動電路1 3向掃瞄線Yn 之第1副掃瞄線V a,輸出令開關用電晶體Q 1 2成爲開啓 狀態之第1選擇信號S L1。與此同時,於由控制電路1 7 之選擇電路1 6之各切換電路1 6a,輸出令第1閘極電晶 體Q 1成爲開啓狀態之第1閘極信號G1,各切換電路1 6 a 之第1閘極電晶體Q 1則成爲開啓狀態。 由此,藉由在於開啓狀態之開關用電晶體Q 1 2及第1 閘極電晶體Q1,自資料電壓生成電路12a向保持電容器 C 1,供給資料電壓Vdata。另一方面,供給測試用資料電 壓Vdata之期間,乃供給令檢出用電晶體Q14成爲關閉狀 態之第2選擇信號SL2,使檢出用電晶體Q 1 4成爲關閉狀 -17- (14) (14)200402678 育、g ο 經過時間tl後,供給開關用電晶體Q12及第1閘極 電晶體Q1成爲關閉狀態之第1選擇信號SL1及第1閘極 信號G1,終止畫素電路2 0化寫入期間。此時,將檢出用 電晶體Q Μ及發光控制用電晶體Q 1 3,供給各成開啓狀態 及關閉狀態之第2選擇信號SL2。 接著,由控制電路17向選擇電路16之各切換電路 1 6a供給令第2閘極電晶體Q2成爲開啓狀態之第2閘極 信號G2,使第2閘極電晶體Q2成爲開啓狀態。於畫素電 路20中,根據此第2閘極電晶體Q2之開啓,流有相對 於根據驅動用電晶體Q 1 1之動作的測試用之資料電壓 V d at a的電流値的驅動電流。此時,由驅動用電晶體Q 1 1 之驅動電流乃藉由檢出用電晶體Q 1 4及第2閘極電晶體 Q2,各別輸出至在於檢查裝置1 9之掃瞄線Yn上之對於 各畫素電路20設置之各電流檢出電路19a。 然後,將此動作順序對於各掃瞄線 Y 1〜Yn之各畫素 電路20加以進行,向對於各掃瞄線Y1〜γη之各畫素電路 2 0設置之各電流檢出電路1 9 a,各別輸出。 於檢查裝置1 9中,對於各掃瞄線Y 1〜Yn之各畫素電 路20所設之電流檢出電路19a,數位變換輸入之輸出電 流,將輸出電流値做爲檢出電泡値,各別加以求得。然 後,檢查裝置1 9乃將以各電流檢出電路1 9a所求得之畫 素電路20之檢出電流値,各與對於測試用之資料電壓 Vdata設定之電流値加以比較。然後,檢查裝置19乃暫 -18- (15) (15)200402678 時記憶該比較結果。然而’設定電流量乃於測試用之資料 電壓Vdata,爲自畫素電路20規格上非輸出不可之電流 値,爲預先試驗或邏輯上所得之値。 暫時記憶此此較結果,新使用不同値之測試用資料電 壓 Vdata,將同樣之測試,對於有機電激發光顯示器10 加以進行。然後,檢查裝置1 9乃與前述同樣地,將1各 電流檢出電路19a所求得之畫素電路20之檢出電流値, 各與對於測試用之資料電壓Vdata的設定電流値比較,記 憶該比較結果。 檢查裝置1 9乃根據對於2種之不同測試用資料電壓 Vdata的比較結果,檢查對於各畫素電路20之資料電壓 Vdata之驅動用電晶體Ql 1之輸出電流特性。然後,檢查 裝置19乃各畫素電路20之特性成爲目標(規格)之特性 地,於每畫素電路2 0求得補正値。即,將對於設定亮度 之資料電壓Vdata之補正値AVd,求於每畫素電路20。 檢查裝置1 9乃將求得此求得之各畫素電路2 0之補正 値 AVd,輸出至有機電激發光顯示器10。於各畫素電路 20求得之補正値AVd乃記憶於內藏於控制電路1 7之非揮 發性記憶等所成記憶體1 7a,終止測試模式。然而,於本 實施形態中,雖記憶於記憶體1 7a,形成設定補正値之保 險,根據檢查裝置1 9之檢查結果,切斷該保險亦可。 然後,控制電路17係將自電腦18之顯示資料(畫像 資料),於變換成顯示各有機E L元件2 1之發光之色階的 矩陣資料時,使用補正値A V d。詳細說明時,控制電路 -19- (16) (16)200402678 1 7乃將設定根據顯示資料求得之各畫素電路2 0之有機 EL元件21之亮度的資料電壓Vdata,以各別對應之補正 値AVd ’將補正之値成爲新的資料電壓Vdata。控制電路 17乃將該各畫素電路20之新的資料電壓vdata,做爲資 料線驅動信號,輸出至資料線驅動電路1 2。 因此,可檢出製造參差所產生之各畫素電路(各電晶 體;尤其驅動用電晶體Q 1 1)之動作特性之參差。而且, 可將補正各畫素電路2 0之動作特性之參差對於各畫素電 路20之有機EL元件2 1之資料電壓Vdata的亮度成爲一 定。 又,檢查裝置1 9乃在檢出電流値不在基準範圍內 時,畫素電路2 0判定爲不能動作時,做爲製品進行可出 貨與否之判斷材料。 接著,將如上所述構成之有機電激發光顯示器10之 特徵記載於以下。 (1) 本實施形態中,於畫素電路2 0設置開關用電晶體 Q 1 3及檢出用電晶體Q 1 4。然後,於測試模式,藉由檢出 用電晶體Q 1 4,將由驅動用電晶體Q 1 1之對於測試用之資 料電壓Vdata的電流値之驅動電流,可供予檢查裝置19 之電流檢出電路1 9 a。 因此,可簡單檢出製造參差所造成畫素電路20之動 作特性。結果,:可於出貨湔檢查有機電激發光顯示器i 〇 之不良品。 (2) 本實施形態中,於內藏於17.之記憶體17a,檢查 -20- (17) 200402678 裝置1 9記憶畫素電路2G各別求得,根據製造之參差’補 正動作特性之誤差的補正値,即記憶對於設定亮度之資料 電壓Vdata之補正値△ Vd。然後,控制電路17係將設定 根據顯示資料所求得之各畫素電路20之有機EL元件21 之亮度的資料電壓Vdata,以各個對應之補正値△ Vd加以 補正。 因此,各畫素電路20乃可將根據顯示資料,對於資 料電壓Vdata —樣之電流値之驅動電流,供予有機EL元 件2 1,可將同樣有機電激發光元件,以同樣之亮度加以 發光。而且,可將各畫素電路20以補正値△ Vd可補正製 造參差所成之動作特性之故,爲改善以往將不良品而廢棄 之有機電激發光顯示器做爲製品,而提升有機電激發光顯 示器之製造良率。 (3 )本實施形態中,將爲檢出之驅動電流,利用已有 之貝料線X 1〜X m ’供給至電流檢出電路1 9 a。因此,可抑 制爲電流檢出之電路規模的增大。 然而,於本實施形態中,雖直列連接前述驅動用電晶 體(第2之電晶體)Q11和檢出用電晶體(第3之電晶)Qm, 於驅動用電晶體Ql 1和檢出用電晶體Ql4之間,插入其 他之元件亦可。此時,對於驅動用電晶體q〗丨而言,檢 出用電晶體Q 1 4爲直列連接。 (第2實施形態) 1實施 接著,對於第2實施形態加以說明。於前述第 -21 - (18) (18)200402678 形態時,檢查裝置1 9爲外部裝置時,於本實施形態中, 做爲與前述第1實施形態之有機電激發光顯示器10之各 要素11〜17之同樣要素,構成檢查裝置19。因此,檢查 裝置1 9乃伴隨有機電激發光顯示器1 〇的同時,內藏於安 裝同有機電激發光顯示器10之攜帶型電話、PDA、筆記 型電腦等之攜帶電子機器內。 然而,由於僅於內藏於攜帶電子機器內之部分有特徵 之故,爲說明之方便,與第1之實施例相同之部分則省 略,對於該特徵部分加以說明。 圖6乃顯示本實施形態之檢查裝置1 9之電氣電路。 於圖6,電流檢出電路部3 1乃由對應於資料線 X 1〜X m之數的電流檢出電路3 1 a所構成。各電流檢出電 路3 1 a乃藉由切換電路1 6 a,各類比檢出對於由資料線 X 1〜Xm供給之驅動用電晶體 Q 1 1之測試用之資料電壓 V d at a的驅動電流。然而,測試用之顯示資料乃預先記憶 於控制電路17之記憶體17a。 各電流檢出電路31a乃連接於AD變換電路部32所 對應之AD變換器32a。各AD變換器32a乃將由資料線 X 1〜Xm供給之驅動電流之電流値,變換成數位値,輸出 至控制電路1 7。 控制電路1 7乃各比較由各AD變換器3 2 a之資料線 X 1〜Xm供給之驅動電流之電.流値和對於測試用之資料電 壓Vdata之設定電流値。然後,控制電路17,乃暫時記 憶該比較結果。即,本實施形態中,於控制電路Γ7中, -22- (19) (19)200402678 與前述第1實施形態之檢查裝置1 9同樣地進行檢查處 理。然而,於本實施形態時,於連接於一個掃瞄線上之各 畫素電路2 0,進行檢查之後,進行下個掃瞄線上之各畫 素電路的檢查。 暫時記憶此比較結果之後,使用新的不同値之測試用 之資料電壓Vdata,將同樣之測試對於有機電激發光顯示 器1 〇加以進行。然後,控制電路1 7乃與前述同樣,將自 各AD變換器32a之資料線XI〜Xm供給之驅動電流之電 流値,各與測試用之資料電壓Vdata之設定電流値加以比 較,記憶該比較結果。 控制電路1 7乃根據對於種不同之測試用之資料電壓 Vdata之比較結果,檢查對於各畫素電路20之資料電壓 V d at a之驅動用電晶體Q 1 1之輸出電流特性。然後,控制 電路1 7乃爲使各畫素電路2 0之特性成爲目標(規格)之特 性地,於每畫素電路2 0求得補正値。即,將對於設定亮 度之資料電壓Vdata之補正値△ Vd,於每畫素電路20加 以求取。控制電路1 7乃將所求得之補正値△ V d,記憶於 做爲記憶電路之記憶體1 7 a,終止測試模式。然而,控制 電路1 7乃定期進彳了測試,或於電源投入之後馬上執行。 控制電路1 7乃使用此補正値△ Vd,與前述第1實施形態 同樣地,根據顯示資料驅動控制。 接著:將如上所述構成之有機電激發光顯示器.〗〇之 特徵記載於以下。 (1)本實施形態中,於畫素電路20設置開關用電晶體 -23- (20) (20)200402678 Q 1 3及檢出用電晶體Q丨4。然後,於測試模式,藉由檢出 用電晶體Q 1 4,將由驅動用電晶體q n之對於測試用之資 料電壓Vdata的電流値之驅動電流,供予控制電路〗7。 然後,於控制電路1 7,檢出各畫素電路2 0之動作特 性。因此’可不使用大費周章之檢查裝置,可簡單檢出製 造參差所造成畫素電路20之動作特性。而且,於控制電 路1 7中,定期地或於電源投入之後等,執行測試模式 時,可檢出經年性之變化、環境溫度之變化所造成之各畫 素電路20之動作特性。 (2) 本實施形態中,於內藏於17.之記憶體17a,控制 電路1 7則記憶於各畫素電路20所求得補正根據製造上之 參差、經年性之變化、環境溫度之變化所造成之動作特性 之誤差的補正値,即記憶對於設定亮度之資料電壓Vdata 之補正値△ Vd。然後,控制電路1 7係將設定根據顯示資 料所求得之各畫素電路2 0之有機EL元件2 1之亮度的資 料電壓Vdata,以各個對應之補正値△ Vd加以補正。 因此,各畫素電路20乃即使經年性變化、環境溫度 有所變化,對於根據顯示資料之資料電壓Vdata而言,可 將一樣之電流値之驅動電流供予有機EL元件2 1,可將同 樣有機電激發光元件,以同樣之亮度加以發光。 (3) 本實施形態中.,將爲檢出之驅動電流,利用已有 之資料線X 1〜Xm,供給至電流檢出電路1 9a。因此,可抑 制爲電流檢出之電路規模的增大。 -24 - (21) (21)200402678 (第3實施形態) 接著,對於做爲於第1及第2實施形態所說明之光電 裝置的有機電激發光顯示器1 0之電子機器的適用性,根 據圖7及圖8加以說明。有機電激發光顯示器1 〇乃可適 用於可攜型之個人電腦、攜帶型電話、;數位攝影機等種 種之電子機器。 圖7乃顯示可攜型之個人電腦之構成的斜視圖。圖7 中,個人電腦5 0乃備有具備鍵盤5 1之本體部5 2,和使 用前述有機電激發光顯示器1 0之顯示單元5 3。於此時, 使用有機電激發光顯示器10之顯示單元53乃可發揮與前 述實施形態同樣之效果。結果,個人電腦5 0可實現缺陷 少的畫像顯不。 圖8乃顯示攜帶型電話之構成的斜視圖。於圖8,攜 帶電話60乃具備複數之操作按鈕61、受話口 62、送話口 63、使用前述有機電激發光顯示器1〇之顯示單元64。此 時,使用有機電激發光顯示器10之顯示單元64乃可發揮 與前述實施形態同樣之效果。結果,攜帶電話6 0可實現 缺陷少的畫像顯示。 (第4實施形態) 於本實施形態中,對於兼顧開關用電晶體和桃出用電 晶體的實施形態,對於圖9所示之畫素電路加以說明。〜 於圖9中,各畫素電路20乃具有做爲第2之電晶體 之驅動用電晶體Q20、第1Q21及第2開關用電晶體 -25- (22) (22)200402678 Q 22、發光控制用電晶體Q23及做爲保持元件之保持電容 器C1。驅動用電晶體Q20乃經由P型通道TFT加以構 成。第1及第2開關用電晶體Q21、Q22及發光控制用電 晶體Q23乃經由N通道TFT加以構成。 驅動用電晶體Q20乃汲極藉由發光控制用電晶體 Q 23,連接於前述有機EL元件21之陽極,源極則連接於 電源線L 1。於電源線V L中,供給爲驅動前述有機E L元 件21之驅動電壓Vdd。於前述驅動用電晶體Q20和電源 線VL間,連接保持電容器C1。 又,驅動用電晶體Q20之閘極乃連接於前述第1通 道用電晶體Q21之汲極。第1通道用電晶體Q21之源極 乃與第2開關用電晶體Q22之汲極連接。又,第2開關 用電晶體Q22之汲極乃與前述驅動用電晶體Q20之汲極 連接。 更且,第2開關用電晶體Q22之源極乃藉由資料線 Xm,連接於資料線驅動電路1 2之單一線驅動電路3 0。此 單一線驅動電路3 0乃設置資料電流生成電路4 0 a。資料 電流生成電路40a乃對於畫素電路20輸出資料信號I。然 後,資料線Xm乃藉由第1開關Q11,連接於資料電流生 成電路4 0 a的同時,藉由第2開關Q i 2,連接於電流檢出 電路3 0 b。 於第1及第2開關用電晶體Q2i、Q22之閘極,各連 接第1副掃瞄線V a及第2副掃瞄線Vb。由第1副掃瞄線 Va及第2副掃瞄線Vb經由第1選擇信號SL1及第2選 -26 - (23) (23)200402678 擇信號SL2,第1及第2開關用電晶體Q21、q22成爲開 啓。更且,經由發光控制用電晶體Q 2 3之閘極經由發光 控制信號Gp加以控制。 第1開關Q Π、第1開關用電晶體Q21、及第2開關 用電晶體Q 2 2 3於開啓狀態期間,資料電流生成電路4 0 a 則將資料信號I,藉由資料線Xm輸出時,於畫素電路2 0 供給資料信號I,於保持電容器C1對應於資料信號I之 電荷量被蓄積,設定驅動電晶體之導通狀態。此爲寫入動 作。 接著,發光控制用電晶體Q23回應將發光控制用電 晶體Q23成爲開啓狀態的發光控制信號Gp,而成爲開啓 狀態時,對應驅動用電晶體Q20之導通狀態之電流量則 供予有機EL元件21。 對此,測試模式中,上述寫入動作基本上雖爲相同, 代替通常之測試資料信號,將對應於測試用之信號之電荷 量,保持於保持電容器。接著,令第1開關用電晶體 Q21、第1之開關Q11、及發光控制用電晶體Q23保持爲 關閉狀態,令第2開關用電晶體Q22及第2開關Q12成 爲開啓狀態,將通過驅動用電晶體Q20之電流量’以電 流檢出電路3 Ob加以檢出。 於第4之實施形態中,與第1之實施形態不同’代替 新設置檢出用電晶,體,將2個開關電晶體峙一(第2開關 '-用電晶體Q2 2)做爲檢出用電晶體加以兼用。 然而,發明之實施形態乃非限定於上述實施形態,如 -27- (24) (24)200402678 以下加以實施亦可。 前述第1實施形態中,使用檢查出貨前之有機電激發 光顯示器之檢查裝置1 9,檢查顯示器。將此對於攜帶型 電話、PDA、筆記型電腦等之攜帶型電子機器,令該攜帶 型電子機器之電池,以充電器加以充電時,於該充電中, 將搭載於攜帶型電子機器之有機電激發光顯示器,以檢查 裝置1 9加以檢查亦可。此時,於該充電器需內藏檢查裝 置。然後開始充電時,成爲測試模式,將各畫素電路20 進行,電流檢出之檢查。經由如此,對於搭載於.攜帶型電 子機器之有機電激發光顯示器,將各畫素電路20之經年 性變化所造成動作特性,於充電時加以修正。 於上述實施形態中,檢查裝置1 9乃雖設置對於顯示 面板部U之所有畫素電路20的電流檢出電路1 9a,第2 實施形態,與資料線X 1〜Xm之數同數地加以實施亦可。 此時,如第2實施形態,於連接於一個之掃瞄線上之各畫 素電路2 0,進行檢查後,進行下個掃瞄線上之各畫素電 路之檢查。 於前述第1實施形態,將求得檢查裝置1 9之補正値 △ Vd,使用記憶於內藏於控制電路1 7之記憶體1 7a的補 正値AVd,作成新的資料電壓Vdata。 於前述實施形態中,做爲電子電路,於畫素電路20 具體化可得適切之效果,於驅動有機EL元件2 1以外之 例如LED或FED等之發光元件之被驅動元件的電子電路 加以具體化亦可。又,做爲被驅動元件有磁性RAM。因 -28- (25) (25)200402678 此,可應於利用該磁性Ram之記憶裝置。 於前述實施形態中,求得補正値△ Vd時,使用2個 不同測試用之資料電壓Vdata,進行測試而求得。將此, 使用1個之測試用之資料電壓vdata,進行測試,或使用 3個以上之測試用之資料電壓Vdata進行測試而求得亦 可 ° 上述實施形態中,雖將電流藉由資料線X 1〜Xm,供 予電流檢出電路,將此於檢出用電晶體Q 1 3設置檢出專 用之配線,藉由此等配線,供予電流檢出電路1加以實施 亦可。 於上述實施形態中,雖做爲畫素電路之被驅動元件, 對於有機EL元件2 1加以具體化,但亦可具體化於無機 電激發光元件。即,亦可應用於由無機電激發光元件所成 無機電激發光顯示器亦可。 上述實施形態中,畫素電路20乃雖具體化於電壓驅 動型之畫素電路,應用於電流驅動型之畫素電路之有機電 激發光顯示器亦可。又,於分時、面積色階等之數位驅動 之畫素電路,應用於有機電激發光顯示器亦可。 【圖式簡單說明】 【圖1】顯示本實施形態之有機電激發光顯示器之電 路構成方塊電路圖。 【圖2】顯示顯示面板部和資料線驅動電路之內部電 路構成的方塊電路圖。 -29- (26) (26)200402678 【圖3】顯示畫素電路之內部電路構成之電路圖。 【圖4】通常模式之各信號之時間圖。 【圖5】測試模式之各信號之時間圖。 【圖6】爲說明第2實施形態之主要部分電氣方塊 圖。 【圖7】顯示爲說明第3實施形態之可攜型個人電腦 之構成之斜視圖。 【圖8】顯示爲說明第3實施形態之攜帶型電話之構 成之斜視圖。 【圖9】顯示有關第4實施形態之畫素電路構成之電 路圖。 [符號說明] C 1 做爲容量元件之保持電容器 Q 1 1做爲第2電晶體之驅動用電晶體 Q 1 2做爲第1電晶體之開關用電晶體 Q 1 3做爲第4電晶體之發光控制用電晶體 Q14做爲弟3電晶體之檢出用電晶體 Y 1〜Υ η 掃猫線 V a 第1副掃瞄線 Vb 第2副掃瞄線 XI〜Xm 資料線 10 做爲光電裝置之有機電激發光顯示器 11 顯示面板部 •30- (27) (27)200402678 17 構成補正値算出電路之控制電路 17a做爲記憶電路之記憶體 19 成補正値算出電路之檢查裝置 1 9 a電流檢出電路 20 做爲電子電路之畫素電路 * 21 做爲被驅動元件之有機EL元件 _ 3 1 a電流檢出電路 •200402678 ⑴ Preparation and description of the invention 4 [Technical field to which the invention belongs] The present invention relates to electronic circuits, electronic devices, driving methods of electronic devices, optoelectronic devices and electronic devices. Qin [Previous technology] β In recent years, as a display device for photovoltaic devices, attention has been focused on photovoltaic devices using electro-mechanical excitation light elements. An optoelectronic device using such an organic electro-excitation photon element is an active matrix driving method as one of the driving methods. In an active-matrix-driven photovoltaic device, in order to control the brightness of an organic electroluminescent light emitting device, each pixel-circuit is provided for each organic electroluminescent light emitting device. Control of brightness gradation of organic electro-optical light element of each pixel circuit.  Corresponding to the brightness and color, it is performed by supplying the data signal (voltage 値 or current 値) to the holding capacitor of the pixel circuit. That is, in the holding capacitor, a charge corresponding to a set light emission luminance gradation is charged. Then, the ON state of the driving TFT (thin-film transistor) is set in accordance with the amount of charge held in the holding capacitor, and the organic EL element is provided in accordance with the aforementioned ON state (for example, refer to Patent Document 1) [Patent Document 1] International Publication No. W098 / 3 64〇6 [Inventive Content] [To solve the problem of the invention] However, the pixel circuit is composed of at least one active element such as a transistor • 5- (2) (2) 200402678 However, it is difficult to strictly homogenize the characteristics of all active components. In particular, a thin film transistor (TFT) constituting a pixel circuit of a display or the like has large variations in characteristics. Therefore, it is difficult to obtain a desired brightness when a specific data signal is input. In addition, the characteristics of the active element or the photoelectric element constituting the pixel circuit are deteriorated over time, and the characteristics may be changed. The present invention is to solve the above-mentioned problems, and an object thereof is to provide an electronic circuit, an electronic device, a driving method of an electronic device, an optoelectronic device, and an electronic device that can detect the operating characteristics of the electronic circuit with high accuracy. [Means for solving problems] The first electronic device of the present invention belongs to an electronic device having a plurality of unit circuits, and is characterized in that each of the plurality of unit circuits includes a first transistor and the first electronic device The electric signal supplied by the transistor is used as a holding element for holding the electric quantity, and a second transistor whose conduction state is controlled based on the electric quantity held by the holding element, and the second transistor is supplied with respect to the conducting state The driven element of the current amount and the third transistor connected in series to the second transistor; the third transistor can be connected to an inspection unit for detecting the current amount. According to this case, by turning on the third transistor, the current amount with respect to the charge amount of the second transistor to be supplied to the driven element is obtained by the same third transistor. Therefore, the operation characteristics of the electronic circuit can be detected. However, the third transistor may be provided in each unit circuit. For a plurality of unit circuits among the plurality of unit circuits described above, a common setting of -6- (3) (3) 200402678 may be provided. The electronic device of table 2 of the present invention is an electronic device having a plurality of unit circuits, and is characterized in that each of the plurality of unit circuits includes a first transistor and an electrical signal to be supplied by the first transistor. As a holding element for holding the electric quantity, and a second transistor whose conduction state is controlled according to the electric quantity held by the aforementioned retaining element, and a driven element for supplying an amount of current relative to the aforementioned conducting state; The second transistor system is connected in series to the first transistor. The first transistor can be connected to an inspection unit that detects the amount of current. As an embodiment corresponding to this second electronic device, for example, an electronic device constituted by an electric signal and a current signal supply circuit of the fourth embodiment described later can be listed. In the above electronic device, a fourth transistor is connected between the driven element and the second transistor. According to this situation, the fourth transistor is turned off, and the current supply to the driven element is stopped, and the third transistor or the first transistor is turned on by the third transistor. The transistor or the first transistor described above is detected. That is, it is preferable that the fourth transistor is at least closed while the inspection unit is being detected. In the above electronic device, the driven element may be a current driving element such as an organic electro-optic element. The organic electroluminescent device is a light-emitting layer made of an organic material. _ In the above electronic device, it is preferable that the third transistor is provided in each of the plurality of unit circuits described above. Therefore, it is possible to detect the current characteristics of each of the plurality of unit currents (4) (4) 200402678. In the above-mentioned electronic device, the holding element may be, for example, a capacitance element that holds an electric signal supplied to each of the plurality of unit circuits as a charge amount. In the above electronic device, the holding element may be a memory element such as SR AM. The electronic device includes a memory circuit that memorizes a correction signal for an electric signal supplied from the first transistor obtained by the inspection unit. .  According to this situation, the correction device stored in the memory circuit can be used to correct the operation characteristics of the electronic device and adjust the operation of the driven component. A driving method of an electronic device according to the present invention includes a first transistor, a holding element that holds an electrical signal supplied by the first transistor as an electrical quantity, and a holding element held by the holding element. The electric quantity is the second transistor which sets the on-state, the driven element which supplies the current amount to the on-state, and the electronic device of the third transistor which is connected in series with the second transistor. The driving method is characterized by including the step of turning on the first transistor, holding the electric quantity in the first holding element based on the electric signal, and turning the third transistor on, and turning the first The transistor 2 and the inspection unit for detecting the amount of current detect the current through the current path including the transistor 2 and the transistor 3 through the electrical connection of the transistor 3 The second step of the amount. According to this time, the inspection unit is to detect the amount of current to be supplied to the driven element by -8- (5) (5) 200402678. In the driving method of the electronic device, it is preferable that the current path does not include a driven element. In the driving method of the electronic device, the driven element may be a current driving element such as an organic EL element. The first photoelectric device of the present invention belongs to a photoelectric device having a plurality of pixel circuits arranged corresponding to the intersection of a plurality of cat lines and a plurality of data lines, and is characterized in that each of the plurality of pixel circuits includes The first transistor which is turned on is controlled by the scanning signal provided by the scanning line corresponding to the aforementioned plurality of scanning lines, and the data line corresponding to the aforementioned plural data lines and the aforementioned first The data line provided by the transistor is a holding element for holding the electrical quantity, and a second transistor whose conduction state is controlled based on the electrical quantity held by the holding element, and supplies a current to the foregoing conduction state. And a third transistor connected in series to the second transistor, and each of the plurality of pixel circuits is connected to the inspection for detecting the amount of current through the third transistor. unit. In the above-mentioned optoelectronic device, the third transistor is preferably provided in each of the plurality of pixel circuits, and any one of the pixel circuits in the plurality of pixel circuits is commonly provided. In the optoelectronic device, the third transistor may be connected to the inspection unit through a data line corresponding to the plurality of transistors. According to this case, even if no inspection-inspection wiring is provided, the data line can be used as an inspection wiring. The second optoelectronic device of the present invention is a photoelectric device having a plurality of pixel circuits arranged at the intersection of a plurality of scanning lines and a plurality of data lines corresponding to a plurality of scan-9-9 Each of the plurality of pixel circuits includes a first transistor which is controlled to be turned on via a scanning signal supplied by a scanning line corresponding to the plurality of scanning lines, and a data line to be transmitted by the plurality The corresponding data line and the data line provided by the first transistor are used as a holding element for holding the electrical quantity, and the conduction state is controlled based on the electrical quantity held in the holding element, and the first electrical The second transistor connected in-line with the crystal, and the optoelectronic element that supplies the current amount with respect to the on-state; the pixel circuits of each of the plurality of pixels are connected by the first transistor to detect the amount of current. Inspection department. In the above-mentioned photoelectric device, the inspection unit includes a current detection circuit that detects the current amount, and a correction circuit that calculates a correction (correction) of the electrical signal based on the current amount detected by the current detection circuit. And a memory circuit for the correction pixel of the pixel circuit; and a correction circuit for correcting the electrical signal by the correction pixel. According to this time, the correction signal for adjusting the operation characteristics of the pixel circuit is obtained through the correction signal calculation circuit, and the aforementioned correction signal for the pixel circuit is stored in the circuit of the memory circuit. Therefore, the correction circuit of the electronic circuit stored in the memory circuit is used to make the pixel circuit correct the operation characteristics and adjust the operation of the driven element. The electronic device of the present invention is provided with the above-mentioned photoelectric device. [Embodiment] [Embodiment of the invention] -10- (7) (7) 200402678 Hereinafter, the first embodiment of the present invention will be embodied and described with reference to FIGS. 1 to 5. FIG. 1 is a block circuit diagram showing a circuit configuration of an organic electroluminescent display 10 as a photovoltaic device. Fig. 2 is a block circuit diagram showing the internal circuit configuration of the display panel section and the data line driving circuit. Fig. 3 is a circuit diagram showing the internal circuit configuration of the pixel circuit. In FIG. 1, the organic electroluminescent display 10 includes a display panel section 11, a data line driving circuit 12, a scanning line driving circuit 1 3, a memory 14, an oscillation circuit 15, a selection circuit 16, and a control circuit 17. Each of the elements 11 to 17 of the organic electroluminescence display 10 may be constituted by independent electronic components, respectively. For example, each of the elements 12 to 17 may be configured by a semiconductor integrated circuit device of one chip. Further, it may be configured as an electronic component in which all or a part of each of the elements 11 to 17 is integrated. For example, a data line driving circuit 12 and a scanning line driving circuit 13 may be integrally formed on the display panel portion 11. All or a part of each of the constituent elements 12 to 16 is constituted by a programmable 1C chip, and the machine can be implemented in software by writing a program 1C chip. The display panel section 11 has a plurality of pixel circuits 20 arranged in a matrix as shown in FIG. 2. In other words, each pixel circuit 20 passes between a plurality of data lines X1 to Y2 (integer) extending in the direction of the column and a plurality of scanning lines Y1 to Yn (n is an integer) extending in the row direction. The pixel circuits 20 are connected to form a matrix. Each pixel circuit 20 has an organic EL element 21 made of an organic material as a light-emitting layer of a driven element. However, the transistor described later formed in the pixel circuit 20 may be a transistor having a silicon base. However, in this embodiment, a thin film transistor (TFT) is used. The data line driving circuit 12 is provided with a data voltage generating circuit 12a for each of the aforementioned data lines X 1 to Xm '. Each data voltage generating circuit 12a supplies an electrical signal to the pixel circuit 20 through a corresponding data line XI to Xm, that is, in this embodiment, a data signal (data voltage Vdata) is supplied. The pixel circuit 20 corresponds to this data voltage Vdata. When the internal state of the pixel circuit 20 is set, corresponding to this, the current 値 flowing into the organic EL element 21 is controlled, and the brightness of the organic EL element 21 is controlled. The scanning line driving circuit 13 selects and drives one of the plurality of scanning lines Yn, and selects a pixel circuit group of one line. The scanning lines Υ1 to Υη are each composed of a first auxiliary scanning line V a and a second auxiliary scanning line V b. The scanning line driving circuit 13 outputs a first selection signal SL1 on the first sub-scanning line Va, and outputs a second selection signal SL2 on the second sub-scanning line Vb. The memory 14 stores the display data supplied by the computer 18. In addition, the recording of the body 14 is to memorize the test display data supplied by the inspection device 19 constituting the correction and calculation circuit. The oscillating circuit 15 supplies the reference operation signal to other components of the electro-mechanical excitation light display 10. The selection circuit 16 is provided between the display panel section 11 and the data line driving circuit 12. The selection circuit 16 is provided on each of the data lines X1 to Xm and includes a switching circuit 16a. Each switching circuit 16a is shown in FIG. 3, and is composed of a first gate transistor Q1 and a second. The gate transistor Q2 is configured. Then, the first gate transistor Q1 of each selection circuit 16 is connected to the corresponding data line X1 ~ Xm and the corresponding data line driver 30. -12- (9) (9) 200402678 2 of each selection circuit 16 The gate transistor Q2 is connected to the corresponding data line X 1 ~ xm, and each is installed in the inspection device provided as the inspection unit 1 9 Corresponding data lines X to Xm are current detection circuits 19a. The first and second gate transistors Q1, q2 are individually turned on and off based on the first and second gate signals G1, G2 of the control circuit 17. The control circuit 17 comprehensively controls the aforementioned elements 11 to 16. The control circuit 17 converts the display data (image data) of the aforementioned computer 14 to the memory 14 stored in the display state of the display panel section 11 into matrix data showing the luminous brightness of each organic EL element 21 . The matrix data includes a scanning line signal for sequentially selecting one-line pixel circuit group and a data line driving signal for determining the level of the data voltage Vdata for setting the brightness of the organic EL element 21 of the selected pixel circuit group. . Then, the scanning line driving signal is supplied to the scanning line driving circuit 13. The data line driving signal is supplied to the data line driving circuit 12. In addition, the control circuit 17 is an organic electroluminescent display 10. When the inspection device 19 is used to inspect each pixel circuit 20 of the display panel section 1, it becomes a test mode. When in the test mode, the control circuit 17 converts the test display data (image data) stored in the inspection device 19 of the memory 14 into the matrix data (for testing) Matrix data). The test matrix data includes a scanning line driving signal for testing a pixel circuit group of 1 line in order and a test for determining the brightness of the organic EL element 2 1 of the selected pixel circuit group. Data line drive signal for testing the level of data voltage V data. In addition, the data line drive signal for test -13- (10) (10) 200402678 was supplied to the data line drive circuit 12. In the test mode, the control signals G 1 and G 2 are supplied to the selection circuit 6. However, in the normal mode other than the test mode, the control circuit 17 only outputs the first gate signal G1, keeping the first gate transistor Q1 on and keeping the second gate transistor Q2 off. Next, the internal circuit configuration of the pixel circuit 20 will be described with reference to FIG. 3. For convenience of description, the intersection between the data line Xm of the m-th and the scanning line Yn of the η, and the pixel circuit 20 connected between the two data lines Xm and the scanning line Yn will be described. The pixel circuit 20 is a voltage-driven pixel circuit in this embodiment, and includes an organic EL element 21 as a driven element. Equipped with the driving transistor Q 1 1 as the second transistor and the switching transistor Q 1 as the first transistor 2. The light emitting control transistor Q 1 3 as the fourth transistor 3. The transistor Q 1 4 for detecting the third transistor is used as the holding capacitor C 1 for the holding element. The switching transistor Q 1 2 and the light emitting control transistor Q 1 3 are configured via an N-channel TFT. The driving transistor Qi 1 and the detecting transistor Q14 are constituted by a P-channel TFT. The driving transistor Q 1 1 is connected to the anode of the organic EL element 2 1 through the drain through the light-emitting control transistor Q 1 3, and the source is connected to the power line L 1. A holding capacitor C 1 is connected between the gate of the driving transistor Q 1 1 and the power supply line L 1. Also, the driving transistor Q! The gate is connected to the aforementioned data line Xm via a switching transistor Q 1 2. In addition, the drain of the driving transistor Q 1 1 is connected to the aforementioned data line Xm through the aforementioned detecting transistor Q] 4 and 2 -14- (11) (11) 200402678. The gate of the switching transistor Q 1 2 is connected to the first auxiliary scanning line V a. The source of the detection transistor Q 1 4 is connected to the first sub-scanning line V a. The gates' of the light-emitting control transistor q 1 3 and the detection transistor Q 1 4 are both connected to the second sub-scanning line Vb. Next, the function of the organic electroluminescent display 10 configured as described above will be explained based on the operation of the pixel circuit 20. (Normal mode) The timing of each signal SL1, S2, G1, and G2 in which the normal mode is shown in FIG. 4 will be described. Now, when the n-th scanning line Yn is selected, when each pixel circuit 20 connected to the scanning line Yn enters the light-emitting operation, the scanning line driving circuit 13 is used, and the first sub-scanning line of the scanning line Yn V a, the first gate signal G 1 that outputs the switching transistor Q 1 2 is turned on, and the switching transistor Q 1 2 is turned on. At the same time, the control circuit 17 outputs the first gate signal G1 that causes the first gate transistor Q1 to be turned on to each of the switching circuits 16a of the selection circuit 16. The first gate transistor Q1 is turned on. At this time, according to the turning on of the switching transistor Q1 2 and the first gate transistor Q 1, each data voltage generating circuit 1 2 a supplies corresponding data voltages to the holding capacitors C 1 of the respective pixel circuits 20. Vdata. After the time 11 has elapsed, the first selection signal SL1 and the first gate signal G1 that turn the switching transistor Q1 2 and the first gate transistor Q1 into the off state are supplied to terminate the data writing period. -15- i (12) i (12) 200402678 ··················································································· ··· The crystals Q 1 3 are each turned on. Halfway through time 11 or after time 11 has elapsed, the supply of the on-state current of the driving transistor Q 1 1 to the organic EL element is started. Next, the light-emitting control transistor Q 1 3 is turned off, and the supply of current to the organic EL element is stopped, and the subsequent data writing period is started. # However, while the data voltage Vdata is supplied to the pixel circuit 20 through the switching transistor Q12, it is possible to detect that the transistor Q1 4 is in an on state or an off state. However, with the detection transistor Q 1 4 in the on state, a small current flowing into the _ pixel circuit 20 and the data line Xm will give the data voltage V d at a the possibility of perturbation, such as In this embodiment, while the data voltage Vdata is supplied to the pixel circuit 20 through the switching transistor Q12, it is preferable that the detection transistor Q1 4 is turned off. φ It is also acceptable to turn the detection transistor Q 1 4 to the off state during all the periods of the normal mode. In this embodiment, the light-emitting control transistor Q 1 3 and the detection transistor Q 1 4 have a circuit configuration that operates complementary to each other. Of course, they can be controlled independently. By repeating this operation, the organic EL element 21 of each pixel circuit 20 on each scanning line γ 1 to Yn corresponds to the brightness of the data voltage Vdata, and each light is controlled. The artifacts are displayed based on the display data of Yuen 16- (13) (13) 200402678 Brain 18. (Test Mode) Next, a test mode which is one form of the driving method will be described. The organic electroluminescent display 10 is in a test mode by being connected to the inspection device 19. When the test device 19 outputs the test display data to the organic electroluminescent display 10, the control circuit 17 becomes a test mode. The test display data is converted to display the luminance level of the organic EL element 21 Matrix data (matrix data for testing). Then, the control circuit 17 outputs the scanning line driving signal for testing and the data driving signal for testing to the scanning line driving circuit 13 and the data line driving circuit 1 2. Figure 5 shows each signal of the test mode. Time chart of SL1, SL2, Gl, G2. Now, for example, the scan line drive circuit 13 outputs a first selection signal S L1 that causes the switching transistor Q 1 2 to be turned on to the first sub scan line V a of the scan line Yn. At the same time, each switching circuit 16a of the selection circuit 16 of the control circuit 17 outputs a first gate signal G1 that causes the first gate transistor Q1 to be turned on, and each of the switching circuits 16a The first gate transistor Q 1 is turned on. Accordingly, the data transistor V 1 and the first gate transistor Q 1 in the on state supply the data voltage Vdata from the data voltage generating circuit 12 a to the holding capacitor C 1. On the other hand, during the period when the test data voltage Vdata is supplied, the second selection signal SL2 that causes the detection transistor Q14 to be turned off is supplied, and the detection transistor Q1 4 is turned off. 17- (14) (14) 200402678 Education, g ο After the time t1 has elapsed, the switching transistor Q12 and the first gate transistor Q1 are turned off, and the first selection signal SL1 and the first gate signal G1 are turned off. During writing. At this time, the detection transistor QM and the light emission control transistor Q1 3 are supplied with a second selection signal SL2 in each of the on state and the off state. Next, the control circuit 17 supplies each switching circuit 16a of the selection circuit 16 with a second gate signal G2 that causes the second gate transistor Q2 to be turned on, so that the second gate transistor Q2 is turned on. In the pixel circuit 20, a driving current corresponding to a current 値 at a data voltage V d at a for a test according to the operation of the driving transistor Q 1 1 flows according to the turning on of the second gate transistor Q2. At this time, the driving current from the driving transistor Q 1 1 is detected by the detecting transistor Q 1 4 and the second gate transistor Q2 and output to the scanning line Yn on the inspection device 19 respectively. Each current detection circuit 19a is provided for each pixel circuit 20. Then, this operation sequence is performed for each pixel circuit 20 of each scan line Y 1 to Yn, and each current detection circuit 1 9 a provided to each pixel circuit 20 of each scan line Y1 to γη. , Output separately. In the inspection device 19, for the current detection circuit 19a provided in each pixel circuit 20 of each scanning line Y1 to Yn, the input output current is digitally converted, and the output current 値 is used as a detection cell 値. Find them individually. Then, the inspection device 19 compares the detected currents 値 of the pixel circuits 20 obtained by the respective current detection circuits 19a with the currents 设定 set for the data voltage Vdata for testing. Then, the inspection device 19 memorizes the comparison result at -18- (15) (15) 200402678. However, the set current amount is based on the data used for testing. The voltage Vdata is a current that must be outputted in accordance with the specifications of the pixel circuit 20, and is a value obtained in advance through experiments or logic. Temporarily memorize this comparison result, newly use a different data voltage Vdata for testing, and perform the same test on the organic electroluminescent display 10. Then, the inspection device 19 compares the detected currents 値 of the pixel circuit 20 obtained by each current detection circuit 19a with the set currents 对于 for the data voltage Vdata for testing in the same manner as described above, and memorizes them. The comparison results. The inspection device 19 checks the output current characteristics of the driving transistor Q11 for the data voltage Vdata of each pixel circuit 20 based on the comparison results of the two different test data voltages Vdata. Then, the inspection device 19 obtains a correction value for each pixel circuit 20 so that the characteristic of each pixel circuit 20 becomes a target (specification) characteristic. That is, the correction 値 AVd for the data voltage Vdata for setting the brightness is obtained for each pixel circuit 20. The inspection device 19 outputs the correction 値 AVd of each pixel circuit 20 obtained in this way, and outputs it to the organic electroluminescent display 10. The correction 値 AVd obtained in each pixel circuit 20 is stored in a nonvolatile memory 17a built in the control circuit 17, and the test mode is terminated. However, in this embodiment, although it is memorized in the memory 17a, an insurance for setting a correction threshold is formed, and the insurance may be cut off based on the inspection result of the inspection device 19. Then, the control circuit 17 converts the display data (image data) from the computer 18 into matrix data showing the color gradation of the light emission of each organic EL element 21, using the correction 値 A V d. In the detailed description, the control circuit-19- (16) (16) 200402678 1 7 is a data voltage Vdata that sets the brightness of the organic EL element 21 of each pixel circuit 20 that is obtained based on the display data. The correction "AVd '" will correct the correction to the new data voltage Vdata. The control circuit 17 outputs the new data voltage vdata of each pixel circuit 20 as a data line driving signal and outputs it to the data line driving circuit 12. Therefore, it is possible to detect variations in the operation characteristics of each pixel circuit (each transistor; in particular, the driving transistor Q 1 1) generated by manufacturing variations. Furthermore, the variation in the correction of the operating characteristics of each pixel circuit 20 can be fixed to the brightness of the data voltage Vdata of the organic EL element 21 of each pixel circuit 20. In addition, when the inspection device 19 detects that the current 値 is not within the reference range, the pixel circuit 20 determines that it cannot operate, and determines whether the product can be shipped or not. Next, features of the organic electroluminescent display 10 configured as described above will be described below. (1) In this embodiment, a switching transistor Q 1 3 and a detecting transistor Q 1 4 are provided in the pixel circuit 20. Then, in the test mode, by detecting the transistor Q 1 4, the driving current of the driving transistor Q 1 1 with respect to the current of the test data voltage Vdata can be used to detect the current of the inspection device 19. Circuit 1 9 a. Therefore, the operational characteristics of the pixel circuit 20 caused by manufacturing variations can be easily detected. As a result, a defective product of the organic electroluminescent display i 0 can be inspected at the shipment. (2) In this embodiment, it is built in 17. Memory 17a, check -20- (17) 200402678 Device 1 9 Memory pixel circuits 2G are obtained separately, according to the manufacturing variations' to correct the correction error of the operating characteristics, that is, the memory for the data voltage Vdata of the set brightness Correct 値 △ Vd. Then, the control circuit 17 corrects the data voltage Vdata that sets the brightness of the organic EL element 21 of each pixel circuit 20 obtained from the display data, and corrects it with each corresponding correction 値 ΔVd. Therefore, each pixel circuit 20 can supply the driving current for the data voltage Vdata-like current 値 according to the display data to the organic EL element 21, and can emit the same organic electro-optical light element with the same brightness. . In addition, each pixel circuit 20 can be corrected by 値 ΔVd to correct the operating characteristics caused by manufacturing variations. In order to improve the organic electroluminescent display discarded as defective products in the past, the organic electroluminescent light can be improved. The manufacturing yield of the display. (3) In the present embodiment, the drive current for detection is supplied to the current detection circuit 19a using the existing shell material lines X1 to Xm '. Therefore, an increase in the scale of the circuit for current detection can be suppressed. However, in this embodiment, the driving transistor (second transistor) Q11 and the detection transistor (third transistor) Qm are connected in series to the driving transistor Q11 and the detection transistor. Between the transistors Ql4, other components may be inserted. At this time, for the driving transistor q1, the detecting transistor Q1 4 is connected in-line. (Second Embodiment) 1 Implementation Next, a second embodiment will be described. In the aforementioned -21-(18) (18) 200402678 form, when the inspection device 19 is an external device, in this embodiment, each element 11 of the organic electroluminescent display 10 in the first embodiment is used. The same elements as 17 to 17 constitute the inspection device 19. Therefore, the inspection device 19 is provided with the organic electroluminescent display 10, and is incorporated in a portable electronic device such as a portable telephone, PDA, notebook computer, etc., which is installed with the organic electroluminescent display 10. However, since only the part contained in the portable electronic device has a feature, for convenience of explanation, the same part as the first embodiment is omitted, and the feature part will be described. Fig. 6 shows the electrical circuit of the inspection device 19 of this embodiment. As shown in FIG. 6, the current detection circuit section 31 is constituted by a current detection circuit 31a corresponding to the number of data lines X1 to Xm. Each of the current detection circuits 3 1 a detects the data voltage V d at a for the test of the driving transistor Q 1 1 supplied from the data lines X 1 to Xm through the switching circuit 16 a. Drive current. However, the display data for the test is stored in the memory 17a of the control circuit 17 in advance. Each current detection circuit 31a is connected to an AD converter 32a corresponding to the AD conversion circuit section 32. Each AD converter 32a converts the current 値 of the driving current supplied from the data lines X 1 to Xm into a digital 値 and outputs it to the control circuit 17. The control circuits 17 are electric power for comparing the driving currents supplied from the data lines X 1 to Xm of each AD converter 3 2 a. Current and set current to the data voltage Vdata for testing. Then, the control circuit 17 temporarily memorizes the comparison result. That is, in this embodiment, in the control circuit Γ7, -22- (19) (19) 200402678 performs the same inspection processing as the inspection device 19 of the first embodiment described above. However, in this embodiment, after each pixel circuit 20 connected to one scan line is inspected, the inspection of each pixel circuit on the next scan line is performed. After temporarily memorizing the result of the comparison, the same test was performed on the organic electroluminescent display 10 using a new data voltage Vdata for different tests. Then, the control circuit 17 compares the current 値 of the driving current supplied from the data lines XI to Xm of each AD converter 32a with the set current 资料 of the data voltage Vdata for testing in the same manner as described above, and memorizes the comparison result . The control circuit 17 checks the output current characteristics of the driving transistor Q 1 1 for the data voltage V d at a of each pixel circuit 20 based on the comparison results of the data voltages Vdata for different tests. Then, the control circuit 17 obtains a correction value for each pixel circuit 20 in order to make the characteristics of each pixel circuit 20 a target (specification) characteristic. That is, the correction 値 ΔVd for the data voltage Vdata of the set brightness is added to each pixel circuit 20 to obtain it. The control circuit 17 stores the obtained correction 値 Δ V d in the memory 17 a as the memory circuit, and terminates the test mode. However, the control circuit 17 is periodically tested or executed immediately after the power is turned on. The control circuit 17 uses this correction 値 ΔVd to drive control based on display data in the same manner as in the first embodiment. Next: the organic electro-optical display constructed as described above. The characteristics of 〖〇 are described below. (1) In the present embodiment, a switching transistor -23- (20) (20) 200402678 Q 1 3 and a detecting transistor Q 丨 4 are provided in the pixel circuit 20. Then, in the test mode, by detecting the transistor Q 1 4, the driving current from the driving transistor q n to the test data voltage Vdata is supplied to the control circuit 7. Then, the control circuit 17 detects the operation characteristics of each pixel circuit 20. Therefore, the operation characteristics of the pixel circuit 20 caused by manufacturing variations can be easily detected without using a complicated inspection device. Furthermore, in the control circuit 17, periodically or after the power is turned on, etc., when the test mode is executed, the operating characteristics of each pixel circuit 20 caused by chronological changes and environmental temperature changes can be detected. (2) In this embodiment, it is built in 17. The memory 17a and the control circuit 17 memorize the corrections for the errors in the operating characteristics caused by the manufacturing variations, chronological changes, and environmental temperature changes. Correction of data voltage Vdata for setting brightness 値 △ Vd. Then, the control circuit 17 adjusts the data voltage Vdata of the brightness of the organic EL element 21 of each pixel circuit 20 obtained based on the display data, and corrects it with each corresponding correction 値 ΔVd. Therefore, each pixel circuit 20 can supply the same current 値 to the organic EL element 21 even if it changes with the year and the ambient temperature. According to the data voltage Vdata of the display data, the organic EL element 21 can be driven. The same organic electro-optic light emitting element emits light with the same brightness. (3) In this embodiment. For the detected drive current, the existing data lines X 1 to Xm are used to supply the current detection circuit 19 a. Therefore, an increase in the scale of the circuit for current detection can be suppressed. -24-(21) (21) 200402678 (Third Embodiment) Next, the applicability of the electronic device to the organic electroluminescent display 10 of the photoelectric device described in the first and second embodiments is based on 7 and 8 are described. The organic electroluminescent display 10 is suitable for various electronic devices such as portable personal computers, mobile phones, and digital cameras. Fig. 7 is a perspective view showing the structure of a portable personal computer. In FIG. 7, a personal computer 50 is provided with a main body portion 52 including a keyboard 51 and a display unit 53 using the organic electroluminescent display 10 described above. At this time, the display unit 53 using the organic electroluminescent display 10 can exhibit the same effect as that of the aforementioned embodiment. As a result, a personal computer 50 can realize a portrait with few defects. Fig. 8 is a perspective view showing the structure of a portable telephone. In FIG. 8, the mobile phone 60 is provided with a plurality of operation buttons 61, a receiving port 62, a sending port 63, and a display unit 64 using the aforementioned organic electro-optical display 10. In this case, the display unit 64 using the organic electroluminescent display 10 can exhibit the same effects as those of the aforementioned embodiment. As a result, the mobile phone 60 can realize portrait display with few defects. (Fourth Embodiment) In this embodiment, an embodiment in which both a switching transistor and a peach transistor are used will be described with reference to a pixel circuit shown in Fig. 9. ~ In FIG. 9, each pixel circuit 20 has a driving transistor Q20, a first transistor Q21, and a second switching transistor which are second transistors -25- (22) (22) 200402678 Q 22. Control transistor Q23 and holding capacitor C1 as holding elements. The driving transistor Q20 is constituted by a P-channel TFT. The first and second switching transistors Q21 and Q22 and the light emission control transistor Q23 are configured via N-channel TFTs. The driving transistor Q20 is connected to the anode of the organic EL element 21 through the drain via the light-emitting control transistor Q23, and the source is connected to the power supply line L1. A driving voltage Vdd is supplied to the power line V L to drive the organic EL element 21. A holding capacitor C1 is connected between the driving transistor Q20 and the power supply line VL. The gate of the driving transistor Q20 is connected to the drain of the first channel transistor Q21. The source of the transistor Q21 for the first channel is connected to the drain of the transistor Q22 for the second switch. The drain of the second switching transistor Q22 is connected to the drain of the driving transistor Q20. Furthermore, the source of the second switching transistor Q22 is connected to the single line driving circuit 30 of the data line driving circuit 12 via the data line Xm. This single-line driving circuit 30 is provided with a data current generating circuit 40a. The data current generating circuit 40 a outputs a data signal I to the pixel circuit 20. Then, the data line Xm is connected to the data current generating circuit 40 a through the first switch Q11, and is connected to the current detection circuit 3 0 b through the second switch Q i 2. The gates of the first and second switching transistors Q2i and Q22 are each connected to a first sub-scan line V a and a second sub-scan line Vb. The first sub-scanning line Va and the second sub-scanning line Vb pass the first selection signal SL1 and the second selection -26-(23) (23) 200402678 selection signal SL2, and the first and second switching transistors Q21 , Q22 becomes open. The gate of the light-emitting control transistor Q 2 3 is controlled by a light-emitting control signal Gp. When the first switch Q Π, the first switch transistor Q21, and the second switch transistor Q 2 2 3 are in the on state, the data current generating circuit 4 0 a outputs the data signal I through the data line Xm The data signal I is supplied to the pixel circuit 20, and the amount of charge corresponding to the data signal I is stored in the holding capacitor C1, and the conduction state of the driving transistor is set. This is a write operation. Next, the light-emitting control transistor Q23 responds to the light-emitting control signal Gp that turns the light-emitting control transistor Q23 into an on state, and when it is turned on, the amount of current corresponding to the on-state of the driving transistor Q20 is supplied to the organic EL element 21 . In this regard, in the test mode, the above-mentioned write operation is basically the same, and instead of the normal test data signal, the amount of charge corresponding to the test signal is held in the holding capacitor. Next, the first switching transistor Q21, the first switch Q11, and the light emission control transistor Q23 are kept off, and the second switching transistor Q22 and the second switch Q12 are turned on. The current amount 'of the transistor Q20 is detected by the current detection circuit 3 Ob. In the fourth embodiment, it is different from the first embodiment in that instead of newly setting a detection transistor and a body, two switching transistors (the second switch'-the transistor Q2 2) are used as the detection unit. Use a transistor for both. However, the embodiments of the invention are not limited to the above-mentioned embodiments. For example, -27- (24) (24) 200402678 may be implemented below. In the aforementioned first embodiment, the display is inspected using an inspection device 19 for inspecting an organic electroluminescent display before shipment. For portable electronic devices such as portable telephones, PDAs, and notebook computers, when the battery of the portable electronic device is charged by a charger, the organic electric device mounted on the portable electronic device is charged during the charging. The excitation light display may be inspected by the inspection device 19. In this case, the charger must have a built-in inspection device. Then, when charging is started, it is in a test mode, and each pixel circuit 20 is checked for current detection. By doing so, for mounting on. The organic electroluminescent display of a portable electronic device corrects the operating characteristics caused by the chronological changes of each pixel circuit 20 during charging. In the above-mentioned embodiment, although the inspection device 19 is provided with the current detection circuits 19a for all the pixel circuits 20 of the display panel section U, the second embodiment has the same number as the number of the data lines X 1 to Xm Implementation is also possible. At this time, as in the second embodiment, each pixel circuit 20 connected to one scan line is checked, and then each pixel circuit of the next scan line is checked. In the first embodiment described above, the correction 値 Δ Vd of the inspection device 19 is obtained, and the correction 値 AVd stored in the memory 17 a built in the control circuit 17 is used to create a new data voltage Vdata. In the foregoing embodiment, as the electronic circuit, the pixel circuit 20 can be embodied to obtain an appropriate effect, and the electronic circuit for driving a driven element other than the organic EL element 21 such as an LED or a FED can be specified Also works. A magnetic RAM is used as a driven element. Because -28- (25) (25) 200402678 Therefore, it can be applied to the memory device using the magnetic Ram. In the foregoing embodiment, when the correction 値 ΔVd is obtained, the data voltage Vdata for two different tests is used to perform the test and obtained. This can be obtained by using one test data voltage vdata for testing, or using three or more test data voltages Vdata for testing. In the above embodiment, although the current is passed through the data line X 1 to Xm is supplied to the current detection circuit, and a detection-specific wiring is provided in the detection transistor Q 1 3, and the supply to the current detection circuit 1 may be implemented by such wiring. In the above embodiment, although the organic EL element 21 is embodied as a driven element of a pixel circuit, it may also be embodied in an inorganic electro-optical light-emitting element. That is, it can also be applied to a non-electromechanical excitation light display made of an inorganic electrical excitation light element. In the above embodiment, although the pixel circuit 20 is embodied in a voltage-driven pixel circuit, an organic electroluminescence display device applied to a current-driven pixel circuit may be used. In addition, digitally driven pixel circuits such as time-sharing and area gradation can also be applied to organic electroluminescent displays. [Brief description of the drawings] [Figure 1] A block circuit diagram showing the circuit configuration of the organic electroluminescent display of this embodiment. [Fig. 2] A block circuit diagram showing the internal circuit configuration of the display panel section and the data line driving circuit. -29- (26) (26) 200402678 [Figure 3] A circuit diagram showing the internal circuit configuration of the pixel circuit. [Figure 4] Time chart of each signal in normal mode. [Figure 5] Time chart of each signal in test mode. [Fig. 6] Fig. 6 is an electrical block diagram illustrating a main part of the second embodiment. [Fig. 7] A perspective view showing the structure of a portable personal computer according to a third embodiment. [Fig. 8] A perspective view showing the structure of a portable telephone according to a third embodiment. [Fig. 9] A circuit diagram showing a pixel circuit configuration according to the fourth embodiment. [Description of symbols] C 1 is used as a holding capacitor for the capacity element Q 1 1 is used as the driving transistor of the second transistor Q 1 2 is used as the switching transistor of the first transistor Q 1 3 is used as the fourth transistor The transistor Q14 for light emission control is used as the transistor for detection of the third transistor Y 1 ~ Υ η Sweep line V a First scan line Vb Second scan line XI ~ Xm Data line 10 as Organic electroluminescence display for optoelectronic devices 11 Display panel section • 30- (27) (27) 200 402 678 17 Control circuit constituting correction / calculation circuit 17a as memory of memory circuit 19 Inspection device for correction / calculation circuit 1 9 aCurrent detection circuit 20 as a pixel circuit of an electronic circuit * 21 Organic EL element as a driven element_ 3 1 a current detection circuit •

-31 --31-

Claims (1)

(1) (1)200402678 拾、申請專利範圍 1. 一種電子裝置,屬於具備複數之單位電路的電子 裝置,其特徵係 前述各複數之單位電路係包含 第1之電晶體、 和將藉由前述第1之電晶體供給之電氣信號,做爲電 性量加以保持之保持元件、 和根據保持於前述保持元件之電性量,導通狀態被控 制之第2之電晶體、 和供給相對於前述導通狀態之電流量的被驅動元件、 和與前述第2之電晶體直列連接之第3之電晶體; 藉由前述第3之電晶體,可連接於爲檢出電流量之檢 查部。 2. 一種電子裝置,屬於具備複數之單位電路的電子 裝置,其特徵係 前述各複數之單位電路係包含 第1之電晶體、 和將藉由前述第1之電晶體供給之電氣信號’做爲電 性量加以保持之保持元件、 和根據保持於前述保持元件之電性量’導通狀態被控 制之第2之電晶體、 和供給相對於前述導通狀態之電流量的被驅動元件; 前述第2之電晶體係直列連接於第1之電晶體; 藉由前述第1之電晶體,可連接於爲檢出電流量之檢 -32- (2) (2)200402678 查部。 3 ·如申請專利範圍第1項或第2項之電子裝置,其 中,於前述被驅動元件和前述第2之電晶體間,連接第4 之電晶體。 4. 如申請專利範圍第1項或第2項之電子裝置,其 中,前述被驅動元件爲電流驅動元件。 5. 如申請專利範圍第3項之電子裝置,其中,前述 檢查部進行檢出之期間,前述第4之電晶體至少爲關閉狀 能〇 6 ·如申請專利範圍第1項之電子裝置,其中,前述 第3之電晶體爲設於各前述複數之單位電路。 7.如申請專利範圍第1項或第2項之電子裝置,其 中,具備記憶對於藉由前述檢查部所求得之前述第1之電 晶體所供給之電氣信號的補正値的記憶電路。 8 ·如申請專利範圍第1項或第2項之電子裝置,其 中,前述檢查部係檢出通過包含前述第2之電晶體的電流 路徑之電流, 前述電流路徑係不包含前述被驅動元件。 9. 一種電子裝置之驅動方法,屬於具備第1之電晶 體、 和將藉由前述第1之電晶體供給之電氣信號,做爲電 性量加以保持之保持元件、和根據保持於前述保持元件之 電性量,設定導通狀態之第2之電晶體、和供給相對於前 述導通狀態之電流量的被驅動元件,和與前述第2之電晶 -33- (3) (3)200402678 體直列連接之第3之電晶體的電子裝置之驅動方法,其特 徵係具備 使前述第1之電晶體開啓’根據前述電氣信號,將電 氣量保持於前述保持元件之第1之步驟, 和使前述第3之電晶體爲開啓狀態,將前述第2之電 晶體和爲檢出電流量之檢查部,藉由前述第3之電晶體電 氣性連接,檢出通過包含前述第2之電晶體及前述第3之 電晶體的電流路徑之電流之電流量的第2之步驟。 1 0.如申請專利範圍第9項之電子裝置之驅動方法, 其中,前述電流路徑乃不包含被驅動元件。 11. 一種光電裝置,屬於具備對應於複數之掃瞄線和 複數之資料線的交叉部所配置之複數之畫素電路的光電裝 置,其特徵係 前述各複數之畫素電路係包含 經由藉由前述複數之掃瞄線所對應之掃瞄線所供給之 掃瞄信號,控制導通之第1之電晶體、 和將藉由前述複數之資料線所對應之資料線及前述第 1之電晶體所供給資料線,做爲電性量加以保持之保持元 件、 和根據保持於前述保持元件之電性量,導通狀態被控 制之第2之電晶體、 和供給相對於前述導通狀態之電流量的光電元件、 和與前述第2之電晶體直列連接之第3之電晶體; 前述各複數之畫素電路係藉由前述第3之電晶體,可 -34 - (4) (4)200402678 連接於爲檢出電流量之檢查部。 12· —種光電裝置,屬於具備對應於複數之掃瞄線和 複數之資料線的交叉部所配置之複數之畫素電路的光電裝 置,其特徵係 前述各複數之畫素電路係包含 經由藉由前述複數之掃瞄線所對應之掃瞄線所供給之 掃瞄信號,控制導通之第1之電晶體、 和將藉由前述複數之資料線所對應之資料線及前述第 1之電晶體所供給資料線,做爲電性量加以保持之保持元 件、 和根據保持於前述保持元件之電性量,控制導通狀 態’與前述第1之電晶體直列連接之第2之電晶體、 和供給相對於前述導通狀態之電流量的光電元件; 前述各複數之畫素電路係藉由前述第1之電晶體,可 連接於爲檢出電流量之檢查部。 13.如申請專利範圍第1 1項之光電裝置,其中,前 述第3之電晶體係藉由前述複數之資料線所對應之資料 線,可連接於前述檢查部。 14·如申請專利範圍第1 1項至第1 3項之任一項之光 電裝置’其中,前述檢查部係包含檢出前述電流量之電流 檢出電路、 和根據前述電流檢出電路所檢出之電流量,求得對於 前述電氣信號之補正値之補正値算出電路、 和記憶對於前述畫素電路之前述補正値的記憶電路; -35- (5)200402678 將前述電氣信號以前述補正値補正者。 15. —種電子機器,其特徵係安裝有如申請專利範圍 第1 1項至第1 4項之任一項之光電裝置。(1) (1) 200402678 Patent application scope 1. An electronic device, which belongs to an electronic device with a plurality of unit circuits, is characterized in that each of the plurality of unit circuits includes a first transistor, and The electric signal supplied by the first transistor is a holding element for holding the electric quantity, and the second transistor whose conduction state is controlled according to the electric quantity held by the holding element, and the second transistor is supplied with respect to the aforementioned conduction. The driven element in the current state and the third transistor connected in series to the second transistor; the third transistor can be connected to an inspection unit for detecting the current amount. 2. An electronic device, which belongs to an electronic device having a plurality of unit circuits, characterized in that each of the plurality of unit circuits includes a first transistor and an electric signal 'provided by the first transistor' A holding element holding an electrical quantity, a second transistor whose conduction state is controlled in accordance with the electrical quantity 'held in the holding element, and a driven element that supplies an amount of current to the conducting state; the second element The transistor system is connected in series to the first transistor; the first transistor can be connected to the inspection unit for detecting the amount of current -32- (2) (2) 200402678. 3. If the electronic device of item 1 or item 2 of the scope of patent application is applied, a fourth transistor is connected between the driven element and the second transistor. 4. For the electronic device in the first or second scope of the patent application, wherein the driven element is a current driven element. 5. As for the electronic device in the scope of patent application item 3, during the period of detection by the aforementioned inspection department, the above-mentioned transistor in the fourth category is at least in a closed state. The third transistor is a unit circuit provided in each of the plurality of units. 7. The electronic device according to item 1 or item 2 of the scope of patent application, which includes a memory circuit for storing corrections to the electrical signals supplied by the first transistor obtained by the inspection unit. 8) If the electronic device of the first or second scope of the patent application is applied, wherein the inspection unit detects a current passing through a current path including the second transistor, the current path does not include the driven element. 9. A driving method for an electronic device, comprising a first transistor and a holding element that holds an electrical signal supplied by the first transistor as an electrical quantity, and is held by the holding element. The electric quantity, the second transistor which sets the conducting state, the driven element which supplies the amount of current to the aforementioned conducting state, and the second transistor -33- (3) (3) 200402678 A method for driving an electronic device connected to a third transistor includes the step of turning on the first transistor, based on the electrical signal, to hold the electrical quantity to the first holding element, and to make the first The transistor 3 is in an on state, and the second transistor and the inspection unit for detecting the amount of current are electrically connected through the third transistor, and it is detected that the second transistor and the first transistor are included. The second step of the current amount of current of the transistor 3 current path. 10. The method for driving an electronic device according to item 9 of the scope of patent application, wherein the current path does not include a driven element. 11. A photoelectric device, which belongs to a photoelectric device having a plurality of pixel circuits arranged corresponding to the intersection of a plurality of scanning lines and a plurality of data lines, characterized in that each of the plurality of pixel circuits includes The scanning signals provided by the scanning lines corresponding to the aforementioned plurality of scanning lines control the first transistor which is turned on, and the data lines corresponding to the aforementioned plural data lines and the aforementioned first transistor. A data line is provided as a holding element for holding the electrical quantity, and a second transistor whose conduction state is controlled based on the electrical quantity held by the holding element, and a photoelectric device for supplying a current amount with respect to the foregoing conduction state Element, and the third transistor connected in series to the second transistor; each of the plurality of pixel circuits is connected through the third transistor, which may be -34-(4) (4) 200402678 connected to Inspection department that detects the amount of current. 12 · — A photoelectric device, which belongs to a photoelectric device having a plurality of pixel circuits arranged at the intersection of a plurality of scanning lines and a plurality of data lines, which is characterized in that each of the plurality of pixel circuits includes a The scanning signal provided by the scanning line corresponding to the aforementioned plurality of scanning lines controls the first transistor which is turned on, and the data line corresponding to the aforementioned plural data lines and the aforementioned first transistor. The supplied data line serves as a holding element for holding the electrical quantity, and controls the conduction state according to the electrical quantity held in the holding element, and a second transistor connected in series with the first transistor, and a supply. The photoelectric element with respect to the current amount in the on-state; each of the plurality of pixel circuits is connected to an inspection unit for detecting the current amount through the first transistor. 13. The photovoltaic device according to item 11 of the scope of patent application, in which the aforementioned transistor system No. 3 can be connected to the inspection section through the data line corresponding to the aforementioned plural data line. 14. The photovoltaic device according to any one of the claims 11 to 13 in the scope of the patent application, wherein the inspection unit includes a current detection circuit that detects the current amount, and a circuit that is detected by the current detection circuit. The amount of current generated is used to obtain a correction circuit for the correction of the electrical signal, and a memory circuit for storing the correction circuit for the pixel circuit. -35- (5) 200402678 Corrects the electrical signal with the correction. Corrector. 15. An electronic device characterized in that a photovoltaic device such as any one of items 11 to 14 of the scope of patent application is installed. -36--36-
TW092107327A 2002-03-29 2003-03-28 Electronic device, method for driving the electronic device, electro-optical device, and electronic equipment TWI293748B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002097290 2002-03-29
JP2003085842A JP4266682B2 (en) 2002-03-29 2003-03-26 Electronic device, driving method of electronic device, electro-optical device, and electronic apparatus

Publications (2)

Publication Number Publication Date
TW200402678A true TW200402678A (en) 2004-02-16
TWI293748B TWI293748B (en) 2008-02-21

Family

ID=28793514

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092107327A TWI293748B (en) 2002-03-29 2003-03-28 Electronic device, method for driving the electronic device, electro-optical device, and electronic equipment

Country Status (4)

Country Link
JP (1) JP4266682B2 (en)
KR (1) KR100490196B1 (en)
CN (1) CN1253842C (en)
TW (1) TWI293748B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI635474B (en) * 2018-02-09 2018-09-11 友達光電股份有限公司 Display apparatus and pixel detection method thereof

Families Citing this family (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2419704A1 (en) 2003-02-24 2004-08-24 Ignis Innovation Inc. Method of manufacturing a pixel with organic light-emitting diode
JP3950845B2 (en) 2003-03-07 2007-08-01 キヤノン株式会社 Driving circuit and evaluation method thereof
CA2443206A1 (en) 2003-09-23 2005-03-23 Ignis Innovation Inc. Amoled display backplanes - pixel driver circuits, array architecture, and external compensation
JP4026618B2 (en) * 2004-05-20 2007-12-26 セイコーエプソン株式会社 Electro-optical device, inspection method thereof, and electronic apparatus
CA2472671A1 (en) 2004-06-29 2005-12-29 Ignis Innovation Inc. Voltage-programming scheme for current-driven amoled displays
KR100592641B1 (en) 2004-07-28 2006-06-26 삼성에스디아이 주식회사 Pixel circuit and organic light emitting display using the same
US10012678B2 (en) 2004-12-15 2018-07-03 Ignis Innovation Inc. Method and system for programming, calibrating and/or compensating, and driving an LED display
US20140111567A1 (en) 2005-04-12 2014-04-24 Ignis Innovation Inc. System and method for compensation of non-uniformities in light emitting device displays
US8576217B2 (en) 2011-05-20 2013-11-05 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9799246B2 (en) 2011-05-20 2017-10-24 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
WO2006063448A1 (en) 2004-12-15 2006-06-22 Ignis Innovation Inc. Method and system for programming, calibrating and driving a light emitting device display
US9280933B2 (en) 2004-12-15 2016-03-08 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9275579B2 (en) 2004-12-15 2016-03-01 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9171500B2 (en) 2011-05-20 2015-10-27 Ignis Innovation Inc. System and methods for extraction of parasitic parameters in AMOLED displays
US10013907B2 (en) 2004-12-15 2018-07-03 Ignis Innovation Inc. Method and system for programming, calibrating and/or compensating, and driving an LED display
CA2504571A1 (en) * 2005-04-12 2006-10-12 Ignis Innovation Inc. A fast method for compensation of non-uniformities in oled displays
KR100613091B1 (en) * 2004-12-24 2006-08-16 삼성에스디아이 주식회사 Data Integrated Circuit and Driving Method of Light Emitting Display Using The Same
CA2495726A1 (en) 2005-01-28 2006-07-28 Ignis Innovation Inc. Locally referenced voltage programmed pixel for amoled displays
KR100748739B1 (en) * 2005-01-28 2007-08-13 도시바 마쯔시따 디스플레이 테크놀로지 컴퍼니, 리미티드 El display apparatus and method of driving the same
CA2496642A1 (en) 2005-02-10 2006-08-10 Ignis Innovation Inc. Fast settling time driving method for organic light-emitting diode (oled) displays based on current programming
US7907137B2 (en) 2005-03-31 2011-03-15 Casio Computer Co., Ltd. Display drive apparatus, display apparatus and drive control method thereof
CN102663977B (en) 2005-06-08 2015-11-18 伊格尼斯创新有限公司 For driving the method and system of light emitting device display
KR20070006331A (en) 2005-07-08 2007-01-11 삼성전자주식회사 Display device and control method thereof
CA2518276A1 (en) 2005-09-13 2007-03-13 Ignis Innovation Inc. Compensation technique for luminance degradation in electro-luminance devices
TW200746022A (en) 2006-04-19 2007-12-16 Ignis Innovation Inc Stable driving scheme for active matrix displays
TWI385621B (en) 2006-08-01 2013-02-11 Casio Computer Co Ltd Display drive apparatus and a drive method thereof, and display apparatus and the drive method thereof
JP4935979B2 (en) * 2006-08-10 2012-05-23 カシオ計算機株式会社 Display device and driving method thereof, display driving device and driving method thereof
CA2556961A1 (en) 2006-08-15 2008-02-15 Ignis Innovation Inc. Oled compensation technique based on oled capacitance
JP4470955B2 (en) 2007-03-26 2010-06-02 カシオ計算機株式会社 Display device and driving method thereof
JP2009025741A (en) * 2007-07-23 2009-02-05 Hitachi Displays Ltd Image display device and its pixel deterioration correction method
KR100893482B1 (en) 2007-08-23 2009-04-17 삼성모바일디스플레이주식회사 Organic Light Emitting Display and Driving Method Thereof
CN101903933B (en) 2008-01-07 2013-03-27 松下电器产业株式会社 Display device, electronic device, and driving method
KR100902238B1 (en) 2008-01-18 2009-06-11 삼성모바일디스플레이주식회사 Organic light emitting display and driving method thereof
JP2009192854A (en) * 2008-02-15 2009-08-27 Casio Comput Co Ltd Display drive device, display device, and drive control method thereof
KR101518324B1 (en) * 2008-09-24 2015-05-11 삼성디스플레이 주식회사 Display device and driving method thereof
JP5083245B2 (en) * 2008-09-30 2012-11-28 カシオ計算機株式会社 Pixel drive device, light emitting device, display device, and connection unit connection method for pixel drive device
JP5256973B2 (en) * 2008-09-30 2013-08-07 カシオ計算機株式会社 Pixel driving device, light emitting device, and display device
JP5012776B2 (en) * 2008-11-28 2012-08-29 カシオ計算機株式会社 Light emitting device and drive control method of light emitting device
JP5012775B2 (en) * 2008-11-28 2012-08-29 カシオ計算機株式会社 Pixel drive device, light emitting device, and parameter acquisition method
JP5012774B2 (en) * 2008-11-28 2012-08-29 カシオ計算機株式会社 Pixel drive device, light emitting device, and parameter acquisition method
JP5454884B2 (en) * 2009-02-17 2014-03-26 セイコーエプソン株式会社 Electrophoretic display unit driving apparatus, electrophoretic apparatus, electronic apparatus, and electrophoretic display unit driving method
JP5218222B2 (en) * 2009-03-31 2013-06-26 カシオ計算機株式会社 Pixel driving device, light emitting device, and driving control method of light emitting device
JP5540556B2 (en) * 2009-04-28 2014-07-02 カシオ計算機株式会社 Display device and driving method thereof
US9384698B2 (en) 2009-11-30 2016-07-05 Ignis Innovation Inc. System and methods for aging compensation in AMOLED displays
US10319307B2 (en) 2009-06-16 2019-06-11 Ignis Innovation Inc. Display system with compensation techniques and/or shared level resources
CA2669367A1 (en) 2009-06-16 2010-12-16 Ignis Innovation Inc Compensation technique for color shift in displays
CA2688870A1 (en) 2009-11-30 2011-05-30 Ignis Innovation Inc. Methode and techniques for improving display uniformity
US9311859B2 (en) 2009-11-30 2016-04-12 Ignis Innovation Inc. Resetting cycle for aging compensation in AMOLED displays
KR20110024099A (en) 2009-09-01 2011-03-09 삼성모바일디스플레이주식회사 Organic light emitting display and image compensating method thereof
KR101150163B1 (en) 2009-10-30 2012-05-25 주식회사 실리콘웍스 Circuit and method for driving organic light emitting diode display
US8633873B2 (en) 2009-11-12 2014-01-21 Ignis Innovation Inc. Stable fast programming scheme for displays
US10996258B2 (en) 2009-11-30 2021-05-04 Ignis Innovation Inc. Defect detection and correction of pixel circuits for AMOLED displays
US8803417B2 (en) 2009-12-01 2014-08-12 Ignis Innovation Inc. High resolution pixel architecture
CA2687631A1 (en) 2009-12-06 2011-06-06 Ignis Innovation Inc Low power driving scheme for display applications
CA2692097A1 (en) 2010-02-04 2011-08-04 Ignis Innovation Inc. Extracting correlation curves for light emitting device
US10089921B2 (en) 2010-02-04 2018-10-02 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US9881532B2 (en) 2010-02-04 2018-01-30 Ignis Innovation Inc. System and method for extracting correlation curves for an organic light emitting device
US10163401B2 (en) 2010-02-04 2018-12-25 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US20140313111A1 (en) 2010-02-04 2014-10-23 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10176736B2 (en) 2010-02-04 2019-01-08 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
CA2696778A1 (en) 2010-03-17 2011-09-17 Ignis Innovation Inc. Lifetime, uniformity, parameter extraction methods
KR20120024267A (en) * 2010-09-06 2012-03-14 삼성전기주식회사 Organic light emitting diode driver
US8907991B2 (en) 2010-12-02 2014-12-09 Ignis Innovation Inc. System and methods for thermal compensation in AMOLED displays
US9606607B2 (en) 2011-05-17 2017-03-28 Ignis Innovation Inc. Systems and methods for display systems with dynamic power control
US9530349B2 (en) 2011-05-20 2016-12-27 Ignis Innovations Inc. Charged-based compensation and parameter extraction in AMOLED displays
US9466240B2 (en) 2011-05-26 2016-10-11 Ignis Innovation Inc. Adaptive feedback system for compensating for aging pixel areas with enhanced estimation speed
WO2012164475A2 (en) 2011-05-27 2012-12-06 Ignis Innovation Inc. Systems and methods for aging compensation in amoled displays
US10089924B2 (en) 2011-11-29 2018-10-02 Ignis Innovation Inc. Structural and low-frequency non-uniformity compensation
US9324268B2 (en) 2013-03-15 2016-04-26 Ignis Innovation Inc. Amoled displays with multiple readout circuits
US9385169B2 (en) 2011-11-29 2016-07-05 Ignis Innovation Inc. Multi-functional active matrix organic light-emitting diode display
US8937632B2 (en) 2012-02-03 2015-01-20 Ignis Innovation Inc. Driving system for active-matrix displays
US9747834B2 (en) 2012-05-11 2017-08-29 Ignis Innovation Inc. Pixel circuits including feedback capacitors and reset capacitors, and display systems therefore
US8922544B2 (en) 2012-05-23 2014-12-30 Ignis Innovation Inc. Display systems with compensation for line propagation delay
US9786223B2 (en) 2012-12-11 2017-10-10 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9336717B2 (en) 2012-12-11 2016-05-10 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9830857B2 (en) 2013-01-14 2017-11-28 Ignis Innovation Inc. Cleaning common unwanted signals from pixel measurements in emissive displays
WO2014108879A1 (en) 2013-01-14 2014-07-17 Ignis Innovation Inc. Driving scheme for emissive displays providing compensation for driving transistor variations
US9721505B2 (en) 2013-03-08 2017-08-01 Ignis Innovation Inc. Pixel circuits for AMOLED displays
EP3043338A1 (en) 2013-03-14 2016-07-13 Ignis Innovation Inc. Re-interpolation with edge detection for extracting an aging pattern for amoled displays
WO2014140992A1 (en) 2013-03-15 2014-09-18 Ignis Innovation Inc. Dynamic adjustment of touch resolutions on an amoled display
WO2014174427A1 (en) 2013-04-22 2014-10-30 Ignis Innovation Inc. Inspection system for oled display panels
CN107452314B (en) 2013-08-12 2021-08-24 伊格尼斯创新公司 Method and apparatus for compensating image data for an image to be displayed by a display
US9741282B2 (en) 2013-12-06 2017-08-22 Ignis Innovation Inc. OLED display system and method
US9761170B2 (en) 2013-12-06 2017-09-12 Ignis Innovation Inc. Correction for localized phenomena in an image array
CN105830143B (en) * 2013-12-19 2018-11-23 夏普株式会社 Display device and its driving method
US9502653B2 (en) 2013-12-25 2016-11-22 Ignis Innovation Inc. Electrode contacts
US10997901B2 (en) 2014-02-28 2021-05-04 Ignis Innovation Inc. Display system
US10176752B2 (en) 2014-03-24 2019-01-08 Ignis Innovation Inc. Integrated gate driver
US10192479B2 (en) 2014-04-08 2019-01-29 Ignis Innovation Inc. Display system using system level resources to calculate compensation parameters for a display module in a portable device
CA2872563A1 (en) 2014-11-28 2016-05-28 Ignis Innovation Inc. High pixel density array architecture
CA2879462A1 (en) 2015-01-23 2016-07-23 Ignis Innovation Inc. Compensation for color variation in emissive devices
WO2016125641A1 (en) * 2015-02-03 2016-08-11 シャープ株式会社 Display device and drive method
CA2889870A1 (en) 2015-05-04 2016-11-04 Ignis Innovation Inc. Optical feedback system
CA2892714A1 (en) 2015-05-27 2016-11-27 Ignis Innovation Inc Memory bandwidth reduction in compensation system
US10657895B2 (en) 2015-07-24 2020-05-19 Ignis Innovation Inc. Pixels and reference circuits and timing techniques
US10373554B2 (en) 2015-07-24 2019-08-06 Ignis Innovation Inc. Pixels and reference circuits and timing techniques
CA2898282A1 (en) 2015-07-24 2017-01-24 Ignis Innovation Inc. Hybrid calibration of current sources for current biased voltage progra mmed (cbvp) displays
CA2900170A1 (en) 2015-08-07 2017-02-07 Gholamreza Chaji Calibration of pixel based on improved reference values
CA2909813A1 (en) 2015-10-26 2017-04-26 Ignis Innovation Inc High ppi pattern orientation
US20190012948A1 (en) * 2015-12-29 2019-01-10 Sharp Kabushiki Kaisha Pixel circuit, and display device and driving method therefor
US20180075798A1 (en) * 2016-09-14 2018-03-15 Apple Inc. External Compensation for Display on Mobile Device
DE102017222059A1 (en) 2016-12-06 2018-06-07 Ignis Innovation Inc. Pixel circuits for reducing hysteresis
US10714018B2 (en) 2017-05-17 2020-07-14 Ignis Innovation Inc. System and method for loading image correction data for displays
US11025899B2 (en) 2017-08-11 2021-06-01 Ignis Innovation Inc. Optical correction systems and methods for correcting non-uniformity of emissive display devices
US10971078B2 (en) 2018-02-12 2021-04-06 Ignis Innovation Inc. Pixel measurement through data line
KR102584639B1 (en) * 2018-11-21 2023-10-06 삼성디스플레이 주식회사 Pixel circuit for display apparatus
KR20230102109A (en) 2021-12-30 2023-07-07 엘지디스플레이 주식회사 Gate driver and display device using the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59181882A (en) * 1983-03-31 1984-10-16 Toshiba Electric Equip Corp Video display device
JPH10254410A (en) * 1997-03-12 1998-09-25 Pioneer Electron Corp Organic electroluminescent display device, and driving method therefor
US6229508B1 (en) * 1997-09-29 2001-05-08 Sarnoff Corporation Active matrix light emitting diode pixel structure and concomitant method
JP2000187467A (en) * 1998-12-24 2000-07-04 Stanley Electric Co Ltd Control device for lighting organic el element and its method
JP2003066865A (en) * 2001-08-24 2003-03-05 Matsushita Electric Ind Co Ltd Display substrate, and method and device for its inspection
JP2003216100A (en) * 2002-01-21 2003-07-30 Matsushita Electric Ind Co Ltd El (electroluminescent) display panel and el display device and its driving method and method for inspecting the same device and driver circuit for the same device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI635474B (en) * 2018-02-09 2018-09-11 友達光電股份有限公司 Display apparatus and pixel detection method thereof

Also Published As

Publication number Publication date
CN1253842C (en) 2006-04-26
KR20030078741A (en) 2003-10-08
JP4266682B2 (en) 2009-05-20
TWI293748B (en) 2008-02-21
KR100490196B1 (en) 2005-05-17
JP2004004673A (en) 2004-01-08
CN1448908A (en) 2003-10-15

Similar Documents

Publication Publication Date Title
TW200402678A (en) Electronic device, driving method of electronic device, optoelectronic device and electronic machine
US10417945B2 (en) Systems and methods for aging compensation in AMOLED displays
US6806497B2 (en) Electronic device, method for driving the electronic device, electro-optical device, and electronic equipment
CN110520922B (en) Display driving circuit, method and display device
CN101079234B (en) Pixel and display panel
US8089477B2 (en) Display device and method for controlling the same
JP4158570B2 (en) Display drive device, display device, and drive control method thereof
CN102057418B (en) System and driving method for light emitting device display
JP5010030B2 (en) Display device and control method thereof
JP5342111B2 (en) Organic EL display device
US20060082528A1 (en) Organic light emitting diode circuit having voltage compensation function and method for compensating
US20160035276A1 (en) Oled pixel circuit, driving method of the same, and display device
EP3279888A1 (en) Detection circuit, detection method and driving system
EP2033178B1 (en) Active matrix display compensating apparatus
US20080122760A1 (en) Active matrix display compensating method
US8212748B2 (en) Display panel module and electronic apparatus
US20230360570A1 (en) Pixel circuit, display, and method
KR20150079247A (en) Organic light emitting display device and method of driving the same
US20110141097A1 (en) Organic light emitting display device and driving voltage correction method thereof
KR20100109434A (en) Pixel driving device, light emitting device and light emitting device driving control method
US20230377494A1 (en) Display, pixel circuit, and method
JP2010113101A (en) Image display and light emission control method

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent