SG11201404024YA - Circuits with linear finfet structures - Google Patents

Circuits with linear finfet structures

Info

Publication number
SG11201404024YA
SG11201404024YA SG11201404024YA SG11201404024YA SG11201404024YA SG 11201404024Y A SG11201404024Y A SG 11201404024YA SG 11201404024Y A SG11201404024Y A SG 11201404024YA SG 11201404024Y A SG11201404024Y A SG 11201404024YA SG 11201404024Y A SG11201404024Y A SG 11201404024YA
Authority
SG
Singapore
Prior art keywords
circuits
finfet structures
linear
linear finfet
structures
Prior art date
Application number
SG11201404024YA
Inventor
Scott T Becker
Michael C Smayling
Dhrumil Gandhi
Jim Mali
Carole Lambert
Jonathan R Quandt
Daryl Fox
Original Assignee
Tela Innovations Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tela Innovations Inc filed Critical Tela Innovations Inc
Publication of SG11201404024YA publication Critical patent/SG11201404024YA/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823821Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28123Lithography-related aspects, e.g. sub-lithography lengths; Isolation-related aspects, e.g. to solve problems arising at the crossing with the side of the device isolation; Planarisation aspects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0207Geometrical layout of the components, e.g. computer aided design; custom LSI, semi-custom LSI, standard cell technique
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0924Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors including transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits
    • H01L27/11803Masterslice integrated circuits using field effect technology
    • H01L27/11807CMOS gate arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • H01L29/6681Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET using dummy structures having essentially the same shape as the semiconductor body, e.g. to provide stability
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7809Vertical DMOS transistors, i.e. VDMOS transistors having both source and drain contacts on the same surface, i.e. Up-Drain VDMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Electrodes Of Semiconductors (AREA)
SG11201404024YA 2012-01-13 2013-01-13 Circuits with linear finfet structures SG11201404024YA (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261586387P 2012-01-13 2012-01-13
US201261589224P 2012-01-20 2012-01-20
PCT/US2013/021345 WO2013106799A1 (en) 2012-01-13 2013-01-13 Circuits with linear finfet structures

Publications (1)

Publication Number Publication Date
SG11201404024YA true SG11201404024YA (en) 2014-08-28

Family

ID=48781972

Family Applications (2)

Application Number Title Priority Date Filing Date
SG10201605564WA SG10201605564WA (en) 2012-01-13 2013-01-13 Circuits with linear finfet structures
SG11201404024YA SG11201404024YA (en) 2012-01-13 2013-01-13 Circuits with linear finfet structures

Family Applications Before (1)

Application Number Title Priority Date Filing Date
SG10201605564WA SG10201605564WA (en) 2012-01-13 2013-01-13 Circuits with linear finfet structures

Country Status (8)

Country Link
EP (1) EP2803077A4 (en)
JP (3) JP2015506589A (en)
KR (1) KR101913457B1 (en)
CN (2) CN104303263B (en)
AU (4) AU2013207719B2 (en)
SG (2) SG10201605564WA (en)
TW (4) TWI608593B (en)
WO (1) WO2013106799A1 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6281570B2 (en) 2013-08-23 2018-02-21 株式会社ソシオネクスト Semiconductor integrated circuit device
CN108922887B (en) * 2013-09-04 2022-12-09 株式会社索思未来 Semiconductor device with a plurality of semiconductor chips
JP6640965B2 (en) * 2014-08-18 2020-02-05 ルネサスエレクトロニクス株式会社 Semiconductor device
JP6449082B2 (en) 2014-08-18 2019-01-09 ルネサスエレクトロニクス株式会社 Semiconductor device
US9478541B2 (en) * 2014-09-08 2016-10-25 Qualcomm Incorporated Half node scaling for vertical structures
US9607988B2 (en) * 2015-01-30 2017-03-28 Qualcomm Incorporated Off-center gate cut
US9640480B2 (en) * 2015-05-27 2017-05-02 Qualcomm Incorporated Cross-couple in multi-height sequential cells for uni-directional M1
US10177127B2 (en) * 2015-09-04 2019-01-08 Hong Kong Beida Jade Bird Display Limited Semiconductor apparatus and method of manufacturing the same
US10541243B2 (en) 2015-11-19 2020-01-21 Samsung Electronics Co., Ltd. Semiconductor device including a gate electrode and a conductive structure
US9748389B1 (en) 2016-03-25 2017-08-29 Taiwan Semiconductor Manufacturing Co., Ltd. Method for semiconductor device fabrication with improved source drain epitaxy
US10262981B2 (en) * 2016-04-29 2019-04-16 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuit, system for and method of forming an integrated circuit
US10236302B2 (en) * 2016-06-22 2019-03-19 Qualcomm Incorporated Standard cell architecture for diffusion based on fin count
US9972571B1 (en) * 2016-12-15 2018-05-15 Taiwan Semiconductor Manufacturing Co., Ltd. Logic cell structure and method
US10186510B2 (en) * 2017-05-01 2019-01-22 Advanced Micro Devices, Inc. Vertical gate all around library architecture
KR102336784B1 (en) 2017-06-09 2021-12-07 삼성전자주식회사 Semiconductor device
WO2019003840A1 (en) * 2017-06-27 2019-01-03 株式会社ソシオネクスト Semiconductor integrated circuit device
US10503863B2 (en) 2017-08-30 2019-12-10 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuit and method of manufacturing same
US11271010B2 (en) * 2017-09-20 2022-03-08 Intel Corporation Multi version library cell handling and integrated circuit structures fabricated therefrom
US10468428B1 (en) * 2018-04-19 2019-11-05 Silicon Storage Technology, Inc. Split gate non-volatile memory cells and logic devices with FinFET structure, and method of making same
US10818762B2 (en) * 2018-05-25 2020-10-27 Advanced Micro Devices, Inc. Gate contact over active region in cell
US10878165B2 (en) * 2018-07-16 2020-12-29 Taiwan Semiconductor Manufacturing Company, Ltd. Method for generating layout diagram including protruding pin cell regions and semiconductor device based on same
US11017146B2 (en) * 2018-07-16 2021-05-25 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuit and method of forming the same
US11093684B2 (en) * 2018-10-31 2021-08-17 Taiwan Semiconductor Manufacturing Company, Ltd. Power rail with non-linear edge
US11030372B2 (en) * 2018-10-31 2021-06-08 Taiwan Semiconductor Manufacturing Company Ltd. Method for generating layout diagram including cell having pin patterns and semiconductor device based on same
US10796061B1 (en) * 2019-08-29 2020-10-06 Advanced Micro Devices, Inc. Standard cell and power grid architectures with EUV lithography
US11735525B2 (en) 2019-10-21 2023-08-22 Tokyo Electron Limited Power delivery network for CFET with buried power rails
US11862620B2 (en) 2020-09-15 2024-01-02 Taiwan Semiconductor Manufacturing Company, Ltd. Power gating cell structure

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2720783B2 (en) * 1993-12-29 1998-03-04 日本電気株式会社 Semiconductor integrated circuit
JP4437565B2 (en) * 1998-11-26 2010-03-24 富士通マイクロエレクトロニクス株式会社 Semiconductor integrated circuit device, semiconductor integrated circuit device design method, and recording medium
JP2001306641A (en) * 2000-04-27 2001-11-02 Victor Co Of Japan Ltd Automatic arranging and wiring method for semiconductor integrated circuit
US6662350B2 (en) * 2002-01-28 2003-12-09 International Business Machines Corporation FinFET layout generation
US6842048B2 (en) * 2002-11-22 2005-01-11 Advanced Micro Devices, Inc. Two transistor NOR device
US6921982B2 (en) * 2003-07-21 2005-07-26 International Business Machines Corporation FET channel having a strained lattice structure along multiple surfaces
US6924560B2 (en) * 2003-08-08 2005-08-02 Taiwan Semiconductor Manufacturing Co., Ltd. Compact SRAM cell with FinFET
JP2005116969A (en) * 2003-10-10 2005-04-28 Toshiba Corp Semiconductor device and its manufacturing method
KR100702552B1 (en) * 2003-12-22 2007-04-04 인터내셔널 비지네스 머신즈 코포레이션 METHOD AND DEVICE FOR AUTOMATED LAYER GENERATION FOR DOUBLE-GATE FinFET DESIGNS
JP4997969B2 (en) * 2004-06-04 2012-08-15 日本電気株式会社 Semiconductor device and manufacturing method thereof
WO2006090445A1 (en) * 2005-02-23 2006-08-31 Fujitsu Limited Semiconductor circuit device, and method for manufacturing the semiconductor circuit device
JP2007018588A (en) * 2005-07-06 2007-01-25 Toshiba Corp Semiconductor storage device and method of driving the semiconductor storage device
DE102006027178A1 (en) * 2005-11-21 2007-07-05 Infineon Technologies Ag A multi-fin device array and method of fabricating a multi-fin device array
WO2007063990A1 (en) * 2005-12-02 2007-06-07 Nec Corporation Semiconductor device and method for manufacturing same
US9563733B2 (en) * 2009-05-06 2017-02-07 Tela Innovations, Inc. Cell circuit and layout with linear finfet structures
US7763932B2 (en) * 2006-06-29 2010-07-27 International Business Machines Corporation Multi-bit high-density memory device and architecture and method of fabricating multi-bit high-density memory devices
CN101542390A (en) * 2006-11-14 2009-09-23 Nxp股份有限公司 Double patterning for lithography to increase feature spatial density
US7723786B2 (en) * 2007-04-11 2010-05-25 Ronald Kakoschke Apparatus of memory array using FinFETs
US7453125B1 (en) * 2007-04-24 2008-11-18 Infineon Technologies Ag Double mesh finfet
JP4461154B2 (en) * 2007-05-15 2010-05-12 株式会社東芝 Semiconductor device
JP4445521B2 (en) * 2007-06-15 2010-04-07 株式会社東芝 Semiconductor device
US7625790B2 (en) * 2007-07-26 2009-12-01 International Business Machines Corporation FinFET with sublithographic fin width
US20090057780A1 (en) * 2007-08-27 2009-03-05 International Business Machines Corporation Finfet structure including multiple semiconductor fin channel heights
US8866254B2 (en) * 2008-02-19 2014-10-21 Micron Technology, Inc. Devices including fin transistors robust to gate shorts and methods of making the same
JP5638760B2 (en) * 2008-08-19 2014-12-10 ルネサスエレクトロニクス株式会社 Semiconductor device
JP2010141047A (en) * 2008-12-10 2010-06-24 Renesas Technology Corp Semiconductor integrated circuit device and method of manufacturing the same
US8116121B2 (en) * 2009-03-06 2012-02-14 Kabushiki Kaisha Toshiba Semiconductor device and manufacturing methods with using non-planar type of transistors
JP2010225768A (en) * 2009-03-23 2010-10-07 Toshiba Corp Semiconductor device
US8053299B2 (en) * 2009-04-17 2011-11-08 Taiwan Semiconductor Manufacturing Company, Ltd. Method of fabrication of a FinFET element
JP4751463B2 (en) * 2009-05-25 2011-08-17 本田技研工業株式会社 Fuel cell system
US8076236B2 (en) * 2009-06-01 2011-12-13 Globalfoundries Inc. SRAM bit cell with self-aligned bidirectional local interconnects
US8637135B2 (en) * 2009-11-18 2014-01-28 Taiwan Semiconductor Manufacturing Company, Ltd. Non-uniform semiconductor device active area pattern formation
CN102074582B (en) * 2009-11-20 2013-06-12 台湾积体电路制造股份有限公司 Integrated circuit structure and formation method thereof
US8675397B2 (en) * 2010-06-25 2014-03-18 Taiwan Semiconductor Manufacturing Company, Ltd. Cell structure for dual-port SRAM
US8860107B2 (en) * 2010-06-03 2014-10-14 International Business Machines Corporation FinFET-compatible metal-insulator-metal capacitor

Also Published As

Publication number Publication date
TWI581403B (en) 2017-05-01
TW201717355A (en) 2017-05-16
TWI552307B (en) 2016-10-01
SG10201605564WA (en) 2016-09-29
JP2015506589A (en) 2015-03-02
CN107424999A (en) 2017-12-01
EP2803077A1 (en) 2014-11-19
AU2013207719B2 (en) 2016-02-25
AU2018200549B2 (en) 2019-12-05
TWI608593B (en) 2017-12-11
JP2019054297A (en) 2019-04-04
EP2803077A4 (en) 2015-11-04
JP2017224858A (en) 2017-12-21
WO2013106799A1 (en) 2013-07-18
TW201349451A (en) 2013-12-01
AU2016202229B2 (en) 2018-02-15
KR101913457B1 (en) 2018-10-30
TW201803084A (en) 2018-01-16
AU2018200549A1 (en) 2018-02-15
AU2020201521A1 (en) 2020-03-19
KR20140114424A (en) 2014-09-26
TW201642440A (en) 2016-12-01
CN104303263B (en) 2016-12-14
AU2013207719A1 (en) 2014-07-31
AU2016202229A1 (en) 2016-05-05
JP6467476B2 (en) 2019-02-13
CN104303263A (en) 2015-01-21

Similar Documents

Publication Publication Date Title
SG11201404024YA (en) Circuits with linear finfet structures
ZA201503358B (en) Structure
GB201319035D0 (en) Spolier structure
PL2971414T3 (en) Structures with interlocking components
PL3044389T3 (en) Mullion-transom structure
SG11201506993TA (en) Tube-fastening structure
GB201903206D0 (en) n
EP2979746A4 (en) Structure
HUP1300640A2 (en) Belt-mounting structure
EP2871919A4 (en) Structure
GB201306870D0 (en) Restricted linear push-pulls
GB201312788D0 (en) Linear fastener
GB201315225D0 (en) Cool Displacement
ZA201301469B (en) Top structure
GB201222334D0 (en) Tolerance strips
AU346810S (en) Swimwear
AU346808S (en) Swimwear
AU346813S (en) Swimwear
AU346812S (en) Swimwear
AU346811S (en) Swimwear
AU346819S (en) Swimwear
AU346809S (en) Swimwear
AU346821S (en) Swimwear
AU346807S (en) Swimwear
AU346803S (en) Swimwear