RU2773131C2 - Способ получения бактериоцинсодержащей композиции - Google Patents

Способ получения бактериоцинсодержащей композиции Download PDF

Info

Publication number
RU2773131C2
RU2773131C2 RU2020109395A RU2020109395A RU2773131C2 RU 2773131 C2 RU2773131 C2 RU 2773131C2 RU 2020109395 A RU2020109395 A RU 2020109395A RU 2020109395 A RU2020109395 A RU 2020109395A RU 2773131 C2 RU2773131 C2 RU 2773131C2
Authority
RU
Russia
Prior art keywords
bacteriocins
bacteriocin
nutrient medium
composition
temperature
Prior art date
Application number
RU2020109395A
Other languages
English (en)
Other versions
RU2020109395A (ru
RU2020109395A3 (ru
Inventor
Александр Юрьевич Просеков
Любовь Сергеевна Дышлюк
Станислав Алексеевич Сухих
Ирина Сергеевна Милентьева
Светлана Юрьевна Носкова
Мария Игоревна Зимина
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Кемеровский государственный университет" (КемГУ)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Кемеровский государственный университет" (КемГУ) filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Кемеровский государственный университет" (КемГУ)
Priority to RU2020109395A priority Critical patent/RU2773131C2/ru
Publication of RU2020109395A publication Critical patent/RU2020109395A/ru
Publication of RU2020109395A3 publication Critical patent/RU2020109395A3/ru
Application granted granted Critical
Publication of RU2773131C2 publication Critical patent/RU2773131C2/ru

Links

Abstract

Изобретение относится к биотехнологии, а именно к способу получения бактериоцинсодержащей композиции, обладающей антимикробной активностью. Проводят культивирование бактерий, выделенных из почвы, при температуре 37°С на агаризованной питательной среде состава, г/л: бактопептон - 10, аммоний лимоннокислый - 2, мясной экстракт - 10, натрий уксуснокислый - 5, дрожжевой экстракт - 5, MgSO4⋅7H2O - 0,1, глюкоза - 20, MnSO4⋅5H2O - 0,05, твин 80 - 1, Na2HPO4 - 2, либо на агаризованной питательной среде состава, г/л: триптон - 10, дрожжевой экстракт - 5, NaCl – 10. Отделяют биомассу центрифугированием при 3900 об/мин. Проводят сублимационную сушку надосадочной жидкости при вакууме 0,05 мБар и температуре –20°С. Сухую массу надосадочной жидкости растворяют в 0,25 Μ фосфатном буфере. Осаждают сульфатом аммония общий белок. Разделяют белки на бактериоцины методом гель-проникающей ВЭЖХ. Очищают бактериоцины на смоле Amberlite XAD-2. Сушат сублимационным методом при вакууме 0,05 мБар и температуре –30°С. Смешивают бактериоцины в соответствии с рецептурами получения бактериоцинсодержащей композиции. Изобретение позволяет расширить ассортимент композиций, содержащих бактериоцины, с широким спектром антимикробного действия для лечения заболеваний, имеющих микробиологическую природу. 2 з.п. ф-лы, 8 табл., 2 пр.

Description

Изобретение относится к биотехнологии, фармацевтике и медицине, а именно к получению фармацевтической композиции для лечения заболеваний, имеющих микробиологическую природу.
По оценкам Всемирной организации здравоохранения, половина всех производимых в мире антибиотиков используется не только для лечения людей, но и животных и птиц, продукцию от которых человек употребляет в пишу. Неудивительно, что количество штаммов возбудителей, резистентных даже к резервной группе, неуклонно возрастает. Так, распространенность штаммов S. aureus, резистентных к оксациллину, к 2012 г.в США составляла 25-75%, штаммов Acinetobacter baumannii, устойчивых к карбапенемам, - до 80% в отдельных штатах. В Европе ситуация немногим лучше: распространенность возбудителей, резистентных к карбапенемам, в 2013 г.достигала 25%, а в Италии и Греции превышала 52%[1].
Неуклонный рост антибиотикорезистентности - одна из острейших глобальных медицинских и социальных проблем. Следствием этого является увеличение заболеваемости, сроков стационарного лечения и уровня смертности. Сегодня человечество вплотную подошло к тому рубежу, за которым устойчивость к антибиотикам станет серьезной угрозой для общественного здравоохранения. Разработка новых антибиотиков -сложный, длительный и крайне дорогостоящий процесс. Антибиотики теряют свою эффективность так быстро, что фармацевтические компании не успевают создавать новые [1].
В поисках решения этой задачи возрос интерес к разработке эффективных пробиотических препаратов на основе безопасных для человека бактерий-антагонистов; к изучению нового класса антимикробных пептидов, продуцируемых эукариотическими клетками, а также к исследованиям большого числа антимикробных субстанций бактериального происхождения. Среди последних особое место занимают бактериоцины - рибосомально синтезируемые клеткой низкомолекулярные (<10,0 кДа), термоустойчивые, чаще всего катионной природы гидрофобные пептиды [2-3].
В настоящее время в научной литературе имеется значительное количество публикаций, посвященных вопросам изучения и биотехнологического производства различных видов биологически активных веществ, продуцируемых преимущественно спорообразующими микроорганизмами вида Bacillussubtilis, а также рядом штаммов молочнокислых бактерий [4].
Из уровня техники известно средство, обладающее антибактериальной активностью (патент РФ №1779377, опубл. 07.12.1992), содержащее живую культуру ацидофильных лактобактерий в сочетании с комплексом сывороточных иммуноглобулинов, взятых в одинаковых весовых частях, при концентрации жизнеспособных микробных клеток 107-108 на массу 0,1 г и процентном соотношении компонентов в комплексе иммуноглобулина G:M:A, равном (55-60):(20-25):(15-20), для получения которого сухую микробную массу соединяют с сухой биомассой КИП в соотношении 1:1 и используют для приготовления оральной или ректальной формы.
В качестве недостатка известного изобретения следует признать низкую антибактериальную активность препарата.
Также известна фармацевтическая композиция антибиотиков и пребиотиков для профилактики и лечения дисбиозов в процессе антибактериальной терапии (патент РФ №2325187, опубл. 27.05.2008), содержащая (по первому варианту) антибиотик и пребиотик - олигосахарид, выбранный из группы: фруктоолигосахариды, галактоолигосахариды, ксилоолигосахариды, мальтоолигосахариды и изомальтоолигосахариды со степенью полимеризации от 2 до 10, с размером частиц до 0,3 мм и чистотой не менее 95%, а антибиотик - с размерами частиц от 20 до 200 мкм; антибиотик и олигосахарид включены в массовом соотношении от 1:1 до 1:100 соответственно; по второму варианту фармацевтическая композиция содержит антибиотик в виде порошка с размерами частиц от 20 до 200 мкм, выбранный из группы: бета-лактамы, включая комбинации бета-лактамов с ингибиторами бактериальных беталактамаз; азалиды, фторхинолоны, амфениколы, гликопептиды, ансамицины, нитрофураны, производные фосфоновой кислоты, циклосерин, триметоприм, а в качестве пребиотика - олигосахарид в виде порошка со степенью полимеризации от 2 до 10, с размером частиц до 0,3 мм, чистотой не менее 95%; при этом антибиотик и олигосахарид включены в состав композиции в массовом соотношении от 1:1 до 1:100, соответственно.
Недостатком известного способа получения фармацевтической композиции является отсутствие процесса помола действующих веществ с целью повышения ихантибактериальной активности после высушивания, так как процесс подсушки композиции до 2-3% влажности обязательно приведет к агрегации частиц антибиотика и олигосахарида с соответствующей потерей их дисперсности, а, следовательно, и активности.
Известен комплексный бактериальный препарат для лечения и профилактики желудочно-кишечных заболеваний животных энтерацид П, содержащий штаммы Lactobacillusacidophilus ВКПМ В-6535 и Enterococcusfaecium ВКПМ В-2990 (патент РФ №2091075, опубл. 27.09.1997), получение которого включает следующие этапы: приготовление питательной среды для раздельного выращивания составляющих его культур, получение инокулята, приготовление посевного материала, накопление бактериальной массы, отделение бактериальной массы от культуральной жидкости, приготовление защитной среды, смешиваниебактериальной массы с защитной средой, замораживание, сушка суспензии сублимацией, измельчение сухих порошков биомассы, смешивание культур-компонентов, стандартизация, упаковка, маркировка.
Основным недостатком данного способа является низкая антибактериальная активность.
Известна фармацевтическая бактериоциновая композиция, отличающаяся тем, что содержит эффективное количество лантионинсодержащего бактериоцина (выбранного из группы, состоящей из низина, субтилина, эпидермина, Пен 5, анковенина, таллидермина, дуромицина или циннамицина) и фармацевтически приемлемый носитель - цитрат, ЭДТК, кислотный носитель (заявка на изобретение №94037764, опубл. 27.07.1996).
Известная фармацевтическая бактериоциновая композиция характеризуется недостатком - недостаточно широкий спектр антимикробной активности (Escherichiacoli, Helicobacterpylori, Campylobacterjejuni).
В ходе патентного поиска не выявлено техническое решение, принятое в качестве ближайшего аналога.
Технической задачей предлагаемого изобретения является расширение ассортимента фармацевтических композиций для терапии заболеваний микробиологической природы.
Технический результат, достигаемый при реализации заявленного изобретения, состоит в разработке нового способа получения фармацевтической композиции с широким спектром антимикробного действия, содержащей бактериоцины, для лечения заболеваний, имеющих микробиологическую природу.
Для достижения указанного технического результата предложено использовать разработанный способ. Согласно разработанному способу получения бактериоцинсодержащей фармацевтической композиции осуществляют культивирование бактерий, выделенных из почвы, до достижения концентрации бактерий 2,0⋅106 КОЕ/мл, после чего биомассу отделяют от питательной среды центрифугированием, полученную надосадочную жидкость сублимационно высушивают. Из полученной сухой массы надосадочной жидкости, которую предварительно растворяют в 0,25 M фосфатном буфере, путем осаждения сульфатом аммония выделяют общий белок, который разделяют методом гель-проникающей ВЭЖХ. Полученные пептидные фракции (бактериоцины) подвергают хроматографической очистке и сублимационной сушке. Бактериоцинсодержащие фармацевтические композиции получают путем смешивания бактериоцинов в соответствии с рецептурами.
В предпочтительном варианте реализации способа отбирают образцы почвы. Для выделения колоний бактерий отобранные образцы почвы измельчают в стерильных условиях и небольшой кусочек растирают на поверхности чашки Петри с агаризованной питательной средой, либо 5 г образца вносят в 5 мл жидкой питательной среды. Инкубируют чашки Петри и пробирки при температуре 37°С стационарно в течение 3 суток.
Для первичного выделения бактерий используют жидкие питательные среды. Из пробирок с видимым ростом бактерий (помутнение) и с суммарных газонов на чашках проводят истощающие рассевы. Выделенные бактерии культивируют на агаризованных питательных средах.
Культуры бактерий, выделенных из почвы, хранят в сублимационно-высушенном состоянии в ампулах при температуре 4±2°С не более24 месяцев.
Согласно изобретению, бактериоцинсодержащие фармацевтические композиции получают следующим образом. Лиофилизированные культуры бактерий, выделенных из почвы, восстанавливают путем переноса содержимого ампул в пробирки с жидкой питательной средой. Далее осуществляют процесс ферментации при температуре 37°С в течение 16-24 ч до достижения концентрации бактерий 2,0⋅106 КОЕ/мл.
По окончании культивирования удаляют клеточный дебрис, после чего культуры центрифугируют при 3900 об/мин в течение 20 мин. Надосадочную жидкость переносят в сосуды для лиофилизации и упаривают досуха на сублимационной сушилке Labconco "Triad" при вакууме 0,05 мБар и температуре -20°С. Сухой остаток растворяют в 0,25 M фосфатном буфере, после чего осаждают общий белок добавлением концентрированного раствора сульфата аммония. Полученную взвесь белков отделяют от раствора центрифугированием при 8000 об/мин.
Далее общий белок разделяют на фракции методом гель-проникающей ВЭЖХ с использованием хроматографа Biorad (США). Отобранные фракции, содержащие индивидуальные белки, исследуют методом ПААГ-электрофореза и МАЛДИ-ТОФ спектрометрии с использованием стандартных протоколов производителя.
Дополнительно каждую фракцию очищают с использованием хроматографии на гидрофобных смолах Amberlite XAD Х-6.
Сублимационную сушку бактериоцинов осуществляют на сублимационной сушилке Labconco "Triad" при вакууме 0,05 мБар и температуре -30°С.
Готовят бактериоцинсодержащие фармацевтические композиции путем смешивания бактериоцинов в порционном смесителе при скорости вращения мешалки 50 об/мин в соответствии с рецептурами.
Изобретение иллюстрируется следующими примерами.
Пример 1
Отбирают образцы почвы. Пробы отбирают в шахматном порядке, по диагонали, методом конверта на определенной глубине или по горизонтам. Для отбора проб почвы используют лопату, совок, нож и почвенный бур. Каждый предмет перед взятием отдельной пробы тщательно очищают, протирают ватным тампоном со спиртом и обжигают. Образцы почвы отбирают в стерильную бумагу Крафта.
Для выделения колоний бактерий отобранные образцы почвы измельчают в стерильных условиях и небольшой кусочек (приблизительно 5 г) растирают на поверхности чашки Петри с агаризованной питательной средой состава (г/л): бактопептон - 10, аммоний лимоннокислый - 2, мясной экстракт - 10, натрий уксуснокислый - 5, дрожжевой экстракт - 5, MgSO4⋅7H2O - 0,1, глюкоза - 20, MnSO4⋅5H2O - 0,05, твин 80 - 1, Na2HP04 -2. pH готовой среды доводят до 6,5. Инкубируют чашки Петри и пробирки при температуре 37°С стационарно в течение 3 суток.
Для первичного выделения бактерий используют жидкую питательную среду аналогичного состава. Из пробирок с видимым ростом бактерий (помутнение) и с суммарных газонов на чашках проводят истощающие рассевы. Выделенные бактерии культивируют на агаризованной питательной среде. Культуры бактерий, выделенных из почвы, хранят в сублимационно-высушенном состоянии в ампулах при температуре 4±2°С не более 24 месяцев.
Лиофилизированные культуры бактерий, выделенных из почвы, восстанавливают путем переноса содержимого ампул в пробирки с жидкой питательной средой. Далее осуществляют процесс ферментации при температуре 37°С в течение 16-24 ч до достижения концентрации бактерий 2,0⋅106 КОЕ/мл.
По окончании культивирования удаляют клеточный дебрис, после чего культуры центрифугируют при 3900 об/мин в течение 20 мин. Надосадочную жидкость переносят в сосуды для лиофилизации и упаривают досуха на сублимационной сушилке Labconco "Triad" при вакууме 0,05 мБар и температуре -20°С. Сухой остаток растворяют в 0,25 M фосфатном буфере, после чего осаждают общий белок добавлением концентрированного раствора сульфата аммония. Полученную взвесь белков отделяют от раствора центрифугированием при 8000 об/мин.
Далее общий белок разделяют на фракции методом гель-проникающей ВЭЖХ с использованием хроматографа Biorad (США). Для этого осадок белка растворяют в 1 мл 0,025 M Трис буферного раствора с рН 4,5. Осадок наносят на колонку для гель-проникающей ВЭЖХ, используя систему прямого ввода. В качестве колонки для гель-проникающей хроматографии используют колонку Enrich 650 10 mm X 300 mm производства Biorad (США). Детектирование проводят при длине волны 280 нм.
Фракционирование осуществляют с использованием коллектора фракций NGC Biorad (США).
Отобранные фракции, содержащие индивидуальные белки, исследуют методом ПААГ-электрофореза и МАЛДИ-ТОФ спектрометрии с использованием стандартных протоколов производителя. Состав полученных пептидных фракций приведен в таблице 1.
Figure 00000001
Дополнительно каждую фракцию очищают с использованием хроматографии на гидрофобных смолах Amberlite XAD Х-6. Стеклянную колонку заполняют 10 г смолы Amberlite XAD-2, смолу уравновешивают 10 мл 20 мМ раствором трифторуксусной кислоты в воде. На колонку наносят подготовленный раствор белка в ацетатном буферном растворе и элюируют в градиенте метанола от 0% до 15%, подъем градиента 5% на каждые 10 фракций. Фракции, содержащие белки, определяют, отбирая от каждой фракции по 50 мкл, смешивают с раствором реактива Брэдфорда в соотношении 1:1. Полученный раствор измеряют на спектрофотометре BioradSmartSpecPlus Spectrophotometer (США). Фракции, имеющие оптическое поглощение 0,06 и более, отбирают для дальнейшей сушки.
Сублимационную сушку пептидов осуществляют на сублимационной сушилке Labconco "Triad" при вакууме 0,05 мБар и температуре -30°С.
Результаты определения антибактериальных свойств выделенных пептидов представлены в таблице 2, фунгицидных свойств - в таблице 3.
Figure 00000002
Figure 00000003
Figure 00000004
Согласно таблице 2, все три изученные пептидные фракции демонстрируют высокую антагонистическую активность по отношению к Е. coli и В. pumilus. Из таблицы 3 следует, что выделенные пептиды способны ингибировать рост и размножение микроскопических грибов Aspergillus niger и Aspergillus flavus. Наличие у пептидов, выделенных из биомассы бактерий, изолированных из почвы, антибактериальных и фунгицидных свойств позволяет отнести их к бактериоцинам.
Далее готовят бактериоцинсодержащую фармацевтическую композицию путем смешивания бактериоцинов в порционном смесителе при скорости вращения мешалки 50 об/мин при следующем массовом соотношении компонентов, масс. %:
П-1 (SEQ ID NO 1) - 30,0
П-2 (SEQ ID NO 2) - 35,0
П-3 (SEQ ID NO 3) - 35,0.
Результаты определения антибактериальных и фунгицидных свойств фармацевтической композиции представлены в таблицах 7 и 8, соответственно.
Пример 2
Отбирают образцы почвы согласно примеру 1.
Для выделения колоний бактерий отобранные образцы почвы измельчают в стерильных условиях и небольшой кусочек (приблизительно 5 г) растирают на поверхности чашки Петри с агаризованной питательной средой состава (г/л): триптон - 10, дрожжевой экстракт - 5, NaCl - 10. Инкубируют чашки Петри и пробирки при температуре 37°С стационарно в течение 3 суток.
Для первичного выделения бактерий используют жидкую питательную среду аналогичного состава. Из пробирок с видимым ростом бактерий (помутнение) и с суммарных газонов на чашках проводят истощающие рассевы. Выделенные бактерии культивируют на агаризованной питательной среде. Культуры бактерий, выделенных из почвы, хранят в сублимационно-высушенном состоянии в ампулах при температуре 4±2°С не более 24 месяцев.
Лиофилизированные культуры бактерий, выделенных из почвы, восстанавливают путем переноса содержимого ампул в пробирки с жидкой питательной средой. Далее осуществляют процесс ферментации при температуре 37°С в течение 16-24 ч до достижения концентрации бактерий 2,0⋅106 КОЕ/мл.
По окончании культивирования удаляют клеточный дебрис, после чего культуры центрифугируют при 3900 об/мин в течение 20 мин. Надосадочную жидкость переносят в сосуды для лиофилизации и упаривают досуха на сублимационной сушилке Labconco "Triad" при вакууме 0,05 мБар и температуре -20°С. Сухой остаток растворяют в 0,25 M фосфатном буфере, после чего осаждают общий белок добавлением концентрированного раствора сульфата аммония. Полученную взвесь белков отделяют от раствора центрифугированием при 8000 об/мин.
Далее общий белок разделяют на фракции методом гель-проникающей ВЭЖХ с использованием хроматографа Biorad (США). Для этого осадок белка растворяют в 1 мл 0,025 M Трис буферного раствора с рН 4,5. Осадок наносят на колонку для гель-проникающей ВЭЖХ, используя систему прямого ввода. В качестве колонки для гель-проникающей хроматографии используют колонку Enrich 650 10 mm X 300 mm производства Biorad (США). Детектирование проводят при длине волны 280 нм. Фракционирование осуществляют с использованием коллектора фракций NGC Biorad (США).Отобранные фракции, содержащие индивидуальные белки, исследуют методом ПААГ-электрофореза и МАЛДИ-ТОФ спектрометрии с использованием стандартных протоколов производителя. Состав полученных пептидных фракций приведен в таблице 4.
Figure 00000005
Дополнительно каждую фракцию очищают с использованием хроматографии на гидрофобных смолах Amberlite XAD Х-6. Стеклянную колонку заполняют 10 г смолы Amberlite XAD-2, смолу уравновешивают 10 мл 20 мМ раствором трифторуксусной кислоты в воде. На колонку наносят подготовленный раствор белка в ацетатном буферном растворе и элюируют в градиенте метанола от 0% до 15%, подъем градиента 5% на каждые 10 фракций. Фракции, содержащие белки, определяют, отбирая от каждой фракции по 50 мкл, смешивают с раствором реактива Брэдфорда в соотношении 1:1. Полученный раствор измеряют на спектрофотометре BioradSmartSpecPlus Spectrophotometer (США). Фракции, имеющие оптическое поглощение 0,06 и более, отбирают для дальнейшей сушки.
Сублимационную сушку пептидов осуществляют на сублимационной сушилке Labconco "Triad" при вакууме 0,05 мБар и температуре -30°С.
Результаты определения антибактериальных свойств выделенных пептидов представлены в таблице 5, фунгицидных свойств - в таблице 6.
Figure 00000006
Figure 00000007
Согласно таблице 5, все три изученные пептидные фракции демонстрируют высокую антагонистическую активность по отношению к Е. coli и В. pumilus. Из таблицы 6 следует, что выделенные пептиды способны ингибировать рост и размножение микроскопических грибов AspergillusnigervL Aspergillusflavus. Наличие у пептидов, выделенных из биомассы бактерий, изолированных из почвы, антибактериальных и фунгицидных свойств позволяет отнести их к бактериоцинам.
Далее готовят бактериоцинсодержащую фармацевтическую композицию путем смешивания бактериоцинов в порционном смесителе при скорости вращения мешалки 50 об/мин при следующем массовом соотношении компонентов, масс. %:
П-4 - 20,0
П-2 - 55,0
П-6 - 25,0.
Результаты определения антибактериальных и фунгицидных свойств фармацевтической композиции представлены в таблицах 7 и 8, соответственно.
Figure 00000008
Figure 00000009
Figure 00000010
Из таблиц 7-8 следует, что бактериоцинсодержащие фармацевтические композиции, полученные согласно двум примерам, проявляют высокую антимикробную активность по отношению к бактериям и микроскопическим грибам.
Таким образом, техническим результатом заявленного способа является разработка нового способа получения фармацевтической композиции с широким спектром антимикробного действия, содержащей бактериоцины, для лечения инфекционных заболеваний, имеющих микробиологическую природу.
Источники информации:
1. Мухина, Е.Г. Социальная проблема антибиотикорезистентности / Е.Г. Мухина, М.А. Артемьева, Л.А. Сакунц, Б.Т. Тожибоева // Universum: Медицина и фармакология: электрон, научн. журн. 2017. №6(40). URL: http://7universum.com/ru/meaVarchive/item/4898.
2. Ennahar, S. Class Ilabacteriocins: biosynthesis, structure and activity / S. Ennahar, T. Sashihara, K. Sonomoto, A. Ishizaki // FEMS Microbiology Reviews. 2000. Vol.24. Issue 1. P. 85-106.
3. Popaganni, M. Ribosomallysynthezed peptides with antimicrobial properties: biosynthesis, structure, function, and applications / M. Popaganni // Biotechnol. Adv. 2003. Vol.21. №6. P. 465-499.
4. Забокрицкий, Н.А. Биологически активные вещества, синтезируемые пробиотическими микроорганизмами родов Bacillus и Lactobacillus II Журнал научных статей «Здоровье и образование в XXI веке. 2015. Т. 17. №3.
СПОСОБ ПОЛУЧЕНИЯ БАКТЕРИОЦИНСОДЕРЖАЩЕЙ ФАРМАЦЕВТИЧЕСКОЙ КОМПОЗИЦИИ ДЛЯ ЛЕЧЕНИЯ ЗАБОЛЕВАНИЙ МИКРОБИОЛОГИЧЕСКОЙ ПРИРОДЫ
Перечень аминокислотных последовательностей
SEQ ID NO 1
Val Met Cys Leu Ala Arg Lys Cys Ser Gln Gly Leu Ile Val Lys Ala
Pro Leu Met
SEQ ID NO 2
Phe Leu Ala Phe Ala Tyr Leu Pro Ile Pro Gly Trp His Pro Asp Tyr
Asn Gly Arg Ala Met Lys Trp Ala Asn Arg Pro Phe Thr Tyr Ile Cys
His Gly Arg Asp Leu Lys Leu Arg Gln Met Leu Tyr Ser Gly Ala Thr
Ile Gly His Ala Glu Met Arg
SEQ ID NO 3
Ala Val Pro Ser Met Lys Leu Cys Ile Gln Trp Ser Pro Val Arg Ala
Ser Pro Cys Val Met Leu Gly Ile
SEQ ID NO 4
Pro His Gln Gly His Ala Phe Asn Phe Ser Cys Asp Met Glu Thr Ala
Gly Phe Lys Gly Thr Gln Phe Trp Thr Phe Lys Ser Val Ser Pro His
Leu Ala Thr Phe Lys Leu Gly His Met Ser Thr Tyr Ala Ile Leu Gly
Phe Ala Gly Cys His
SEQ ID NO 5
Phe Leu Ala Phe Ala Tyr Leu Pro Ile Pro Gly Trp His Pro Asp Tyr
Asn Gly Arg Ala Met Lys Trp Ala Asn Arg Pro Phe Thr Tyr Ile Cys
His Gly Arg Asp Leu Lys Leu Arg Gln Met Leu Tyr Ser Gly Ala Thr
Ile Gly His Ala Glu Met Arg
SEQ ID NO 6
Phe Val Lys Gly Phe His Pro Ser Met Thr Ala Arg Gly Val Val Ser
Asp Glu Ala Asp Gly Arg Cys Asp Arg Phe Val Lys Gly Phe His Pro
Ser Met Thr Ala Arg Gly Val Val Ser Asp Glu Ala Asp Gly Arg Cys
Asp Arg

Claims (14)

1. Способ получения бактериоцинсодержащей композиции, обладающей антимикробной активностью, включающий:
культивирование бактерий, выделенных из почвы, при температуре 37°С на агаризованной питательной среде состава, г/л: бактопептон - 10, аммоний лимоннокислый - 2, мясной экстракт - 10, натрий уксуснокислый - 5, дрожжевой экстракт - 5, MgSO4⋅7H2O - 0,1, глюкоза - 20, MnSO4⋅5H2O - 0,05, твин 80 - 1, Na2HPO4 - 2,
либо на агаризованной питательной среде состава, г/л: триптон - 10, дрожжевой экстракт - 5, NaCl - 10,
отделение биомассы от питательной среды центрифугированием при 3900 об/мин,
сублимационную сушку надосадочной жидкости при вакууме 0,05 мБар и температуре –20°С,
осаждение сульфатом аммония общего белка из сухой массы надосадочной жидкости, предварительно растворенной в 0,25 Μ фосфатном буфере,
разделение белка на бактериоцины методом гель-проникающей ВЭЖХ,
очистку бактериоцинов осуществляют хроматографически на гидрофобных смолах Amberlite XAD-2,
сушку полученных бактериоцинов сублимационным методом при вакууме 0,05 мБар и температуре –30°С и
смешивание бактериоцинов в соответствии с рецептурами получения бактериоцинсодержащей композиции, обладающей антимикробной активностью.
2. Способ по п. 1, отличающийся тем, что культивирование бактерий, выделенных из почвы, осуществляют на питательной среде состава, г/л: бактопептон - 10, аммоний лимоннокислый - 2, мясной экстракт - 10, натрий уксуснокислый - 5, дрожжевой экстракт - 5, MgSO4⋅7H2O - 0,1, глюкоза - 20, MnSO4⋅5H2O - 0,05, твин 80 - 1, Na2HPO4 - 2; получают бактериоцины, имеющие аминокислотные последовательности SEQ ID NO. 1 (П-1), SEQ ID NO. 2 (П-2) и SEQ ID NO. 3 (П-3), которые смешивают для приготовления бактериоцинсодержащей композиции при следующем соотношении компонентов, мас. %:
П-1 30,0 П-2 35,0 П-3 35,0.
3. Способ по п. 1, отличающийся тем, что культивирование бактерий, выделенных из почвы, осуществляют на питательной среде состава, г/л: триптон - 10, дрожжевой экстракт - 5, NaCl - 10; получают бактериоцины, имеющие аминокислотные последовательности SEQ ID NO. 4 (П-4), SEQ ID NO. 2 (П-2) и SEQ ID NO. 6 (П-6), которые смешивают для приготовления бактериоцинсодержащей композиции при следующем соотношении компонентов, мас. %:
П-4 20,0 П-2 55,0 П-6 25,0.
RU2020109395A 2020-03-03 Способ получения бактериоцинсодержащей композиции RU2773131C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020109395A RU2773131C2 (ru) 2020-03-03 Способ получения бактериоцинсодержащей композиции

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020109395A RU2773131C2 (ru) 2020-03-03 Способ получения бактериоцинсодержащей композиции

Publications (3)

Publication Number Publication Date
RU2020109395A RU2020109395A (ru) 2021-09-03
RU2020109395A3 RU2020109395A3 (ru) 2021-09-03
RU2773131C2 true RU2773131C2 (ru) 2022-05-30

Family

ID=

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2395204C2 (ru) * 2003-08-22 2010-07-27 Даниско А/С Микробицидная или микробиостатическая композиция, содержащая бактериоцин и экстракт растения семейства labiatae
RU2014150635A (ru) * 2014-12-15 2016-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кемеровский технологический институт пищевой промышленности" Способ получения биоконсерванта
RU2605626C2 (ru) * 2015-04-28 2016-12-27 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кемеровский технологический институт пищевой промышленности (университет)" Способ получения бактериального препарата с пробиотической активностью
RU2694590C2 (ru) * 2017-11-28 2019-07-16 федеральное государственное бюджетное образовательное учреждение высшего образования "Кемеровский государственный университет" (КемГУ) Штаммы bacillus safensis вкпм в-12180, bacillus licheniformis вкпм в-1224, bacillus pumilus вкпм в-12182, bacillus endophyticus вкпм в-12181 - продуценты бактериоцинов против бактериальных патогенов, способ получения низина

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2395204C2 (ru) * 2003-08-22 2010-07-27 Даниско А/С Микробицидная или микробиостатическая композиция, содержащая бактериоцин и экстракт растения семейства labiatae
RU2014150635A (ru) * 2014-12-15 2016-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кемеровский технологический институт пищевой промышленности" Способ получения биоконсерванта
RU2605626C2 (ru) * 2015-04-28 2016-12-27 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кемеровский технологический институт пищевой промышленности (университет)" Способ получения бактериального препарата с пробиотической активностью
RU2694590C2 (ru) * 2017-11-28 2019-07-16 федеральное государственное бюджетное образовательное учреждение высшего образования "Кемеровский государственный университет" (КемГУ) Штаммы bacillus safensis вкпм в-12180, bacillus licheniformis вкпм в-1224, bacillus pumilus вкпм в-12182, bacillus endophyticus вкпм в-12181 - продуценты бактериоцинов против бактериальных патогенов, способ получения низина

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CAROLISSEN-MACKAY V. et al. Purification of bacteriocins of lactic acid bacteria: problems and pointers. Int. J. Food Microbiol. 1997, v.34, p.1-16. *
ЗИМИНА М.И. и др. Определение оптимальных условий культивирования для синтеза бактериоцинов штаммами Bacillus endopheticus и Bacillus licheniformis и изучение их стабильности. Техника и технология пищевых производств. 2016, т. 43, No. 4, с.22-29. *

Similar Documents

Publication Publication Date Title
Gao et al. Identification and antimicrobial activity evaluation of three peptides from laba garlic and the related mechanism
CN107082798B (zh) 高纯度脂肽、脂肽胶束及其制备方法
Kim et al. Characterization and structure identification of an antimicrobial peptide, hominicin, produced by Staphylococcus hominis MBBL 2–9
Chan et al. Identification of lipopeptide antibiotics of a Bacillus subtilis isolate and their control of Fusarium graminearum diseases in maize and wheat
EP3434287B1 (en) Short and ultra-short antimicrobial lipopeptides and use thereof
WO2008091416A2 (en) Antibiotic antimicrobial agents and methods of their use
WO2021135544A1 (zh) 一种普洱茶树叶片内生芽孢杆菌及其应用
EP3795169B1 (en) Bacteriophage-derived recombinant protein having antimicrobial activity against pathogenic gram-negative bacteria
Tang et al. Discovery of a novel antimicrobial peptide using membrane binding-based approach
CN110577910B (zh) 一种侧孢短芽孢杆菌、抗菌脂肽及其在农业与食品上的应用
CN102206250B (zh) 低血球溶解性的抗微生物肽、药物组合物及其用途
KR102019178B1 (ko) 바실러스 배양액에서 추출한 항균활성을 가진 화장료 조성물
RU2773131C2 (ru) Способ получения бактериоцинсодержащей композиции
KR102422611B1 (ko) 신규한 바실러스 벨레젠시스 균주 또는 이로부터 분리된 화합물 및 이의 용도
WO2006080625A1 (en) Novel peptide isolated from aspergillus nidulans and pharmaceutical composition containing the same
US11452758B2 (en) Antimicrobial peptide derived from LL37 peptide and uses thereof
Baindara et al. Lipopeptides: Status and strategies to control fungal infection
Shirokov et al. Protein and peptide factors from Bacillus sp. 739 inhibit the growth of phytopathogenic fungi
KR101905016B1 (ko) 홍합에서 유래한 항균 펩타이드 및 이의 용도
WO2019235682A1 (ko) 신규한 테트라펩타이드와 이의 유도체 및 이를 포함하는 항적조 또는 항균용 조성물
KR20110092501A (ko) 하이브리드 항균 펩타이드 및 이의 용도
KR101847051B1 (ko) 병원균에 대한 항생활성을 갖는 펩타이드 및 이를 포함하는 항생 펩타이드 조성물
Babich et al. Structure and properties of antimicrobial peptides produced by antagonist microorganisms isolated from Siberian natural objects.
JP2006519217A (ja) 抗菌剤
KR101779262B1 (ko) 항생제 내성을 갖는 슈도모나스 균속을 용균하는 박테리오파지