RU2766540C1 - Способ производства оксидных композиций церия-циркония и редкоземельных элементов - Google Patents

Способ производства оксидных композиций церия-циркония и редкоземельных элементов Download PDF

Info

Publication number
RU2766540C1
RU2766540C1 RU2021115236A RU2021115236A RU2766540C1 RU 2766540 C1 RU2766540 C1 RU 2766540C1 RU 2021115236 A RU2021115236 A RU 2021115236A RU 2021115236 A RU2021115236 A RU 2021115236A RU 2766540 C1 RU2766540 C1 RU 2766540C1
Authority
RU
Russia
Prior art keywords
cerium
zirconium
reaction volume
terms
solution
Prior art date
Application number
RU2021115236A
Other languages
English (en)
Inventor
Евгений Олегович Бакшеев
Нина Валерьевна Жиренкина
Сергей Владимирович Буйначев
Максим Алексеевич Машковцев
Original Assignee
Евгений Олегович Бакшеев
Нина Валерьевна Жиренкина
Сергей Владимирович Буйначев
Максим Алексеевич Машковцев
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Евгений Олегович Бакшеев, Нина Валерьевна Жиренкина, Сергей Владимирович Буйначев, Максим Алексеевич Машковцев filed Critical Евгений Олегович Бакшеев
Priority to RU2021115236A priority Critical patent/RU2766540C1/ru
Application granted granted Critical
Publication of RU2766540C1 publication Critical patent/RU2766540C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/10Preparation or treatment, e.g. separation or purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • C01F17/32Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6 oxide or hydroxide being the only anion, e.g. NaCeO2 or MgxCayEuO
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/006Compounds containing, besides zirconium, two or more other elements, with the exception of oxygen or hydrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Analytical Chemistry (AREA)
  • Catalysts (AREA)

Abstract

Изобретение предназначено для использования в составе трехмаршрутных катализаторов очистки выхлопных газов автомобилей. Способ производства оксидных композиций церия-циркония включает приготовление общего раствора с концентрацией от 10 до 100 г/дм3 в пересчете на конечную композицию, содержащего растворимые соли циркония, церия, а также одного или нескольких редкоземельных элементов, выбранных из иттрия, лантана и неодима. Осаждение гидроксидов при контролируемом значении pH и температуре осуществляют путем одновременной подачи общего раствора и основного соединения в реакционный объем, который представляет из себя смесь дистиллированной воды и вспомогательного поверхностно-активного вещества, выбранного из карбоновых кислот, в количестве от 20 до 100% от массы финальной оксидной композиции. Значение pH в процессе осаждения поддерживается на уровне от 8 до 10 ед. Температура реакционного объема поддерживается от 40 до 80°С. После осаждения полученную суспензию фильтруют, сушат и обжигают при 500-900°С. Изобретение позволяет сократить количество стадий и увеличить удельную поверхность продукта и, таким образом, повысить устойчивость оксидной композиции к воздействию высоких температур. 1 ил., 5 пр.

Description

Изобретение относится к технологии производства материалов, обладающих устойчивостью к воздействию высоких температур, в частности к способу производства оксидных композиций церия-циркония с добавкой, по крайней мере, одного редкоземельного элемента (РЗЭ), обладающих высокой удельной поверхностью после воздействия температуры до1000°С и может применяться в трехмаршрутных катализаторах (TWC), функция которых заключается в конверсии токсичных компонентов выхлопных газов автомобилей с двигателями внутреннего сгорания в нетоксичные углекислый газ, азот и воду.
Применение оксидных композиций церия-циркония с добавкой, по крайней мере, одного редкоземельного элемента в составе TWC связано со способностью данных композиций накапливать и высвобождать кислород из кристаллической решетки. Это свойство позволяет компенсировать колебания концентрации кислорода в отработавших газах, связанных с особенностями работы двигателя и поддерживать содержание кислорода на поверхности катализатора близким к стехиометрии. Благодаря этому достигается одновременное протекание окислительных и восстановительных реакций. От стабильности данных материалов в области высоких температур напрямую зависит ресурс катализатора. Таким образом, разработка технологий синтеза оксидных композиций церия-циркония с добавкой, по крайней мере, одного редкоземельного элемента, обеспечивающих высокую устойчивость поверхности к воздействию высоких температур, которая проявляется в сохранении удельной поверхности не ниже 45 м2/г после обжига при температуре 1000°С в течение 4 часов, является актуальной.
Наиболее близким к данному изобретению является способ, который описан в патенте [RU2610080]. Согласно изобретению способ включает в себя приготовление раствора содержащий соединения церия, циркония и другого редкоземельного металла, непрерывного взаимодействия указанного выше раствора с основным соединением, нагревание полученного осадка в водной среде, добавление вспомогательного поверхностно-активного вещества, фильтрацию, сушку и обжиг полученного осадка.
Технической проблемой, на решение которой направленно данное изобретение является использование большого количества ПАВ, большое количество стадий, промывка осадка, низкое значение удельной поверхности.
Технический результат, достигаемый при реализации изобретения, заключается в преодолении вышеописанных недостатков за счет объединения стадий осаждения, нагрева и добавления вспомогательного поверхностного-активного вещества.
Заявленный способ производства оксидных композиций церия-циркония и РЗЭ обеспечивающий удельную поверхность после обжига при 1000°С 4 часа не менее 45 м2/г, включает в себя:
- приготовление общего раствора, содержащего растворимые соли циркония, церия, а также одного или нескольких редкоземельных элементов, выбранных из иттрия, лантана и неодима с концентрацией от 10 до 100 г/дм3 в пересчете на конечную композицию;
- приготовление реакционного объема, содержащего дистиллированную воду и поверхностно-активное вещество. Поверхностно-активное вещество может быть выбрано из группы анионных, неионогенных поверхностно-активных веществ, полиэтиленгликолей, предельных спиртов карбоновых кислот и их солей. В качестве примера, можно упомянуть лауриновую кислоту или лаурат аммония.
- нагрев полученного реакционного объема до температуры от 40 до 80°С, предпочтительно от 50 до 60°С;
- осаждение смешанного гидроксида церия, циркония и по крайней мере одного РЗЭ, выбранного из иттрия, лантана или неодима, путем дозирования указанного выше общего раствора в реакционный объем, в котором поддерживается заданная температура, а также постоянное значение pH на уровне от 8 до 10 включительно, предпочтительно от 8,5 до 9,5, за счет контролируемого введения реагента осадителя основного характера в реакционный объем.
- отделение осадка от жидкой части любым известным способом, предпочтительно методом фильтрации на нутч-фильтре;
- сушка и обжиг полученного осадка.
Соотношение церия, циркония и одного или нескольких редкоземельных элементов, выбранных из иттрия, лантана и неодима, выражается общей формулой: Ce1-n-mZrnLnmOx, где n - массовая доля оксида циркония, которая варьируется от 0,1 до 0,9, по предпочтительному способу получения n = 0,5; m - массовая доля оксида или оксидов редкоземельных элементов, выбранных из иттрия, лантана и неодима, которая варьируется от 0,1 до 0,2, предпочтительно m=0,1, Ln - оксид или оксиды редкоземельных элементов, выбранных из иттрия, лантана и неодима.
Авторы нашли, что ведение процесса осаждения гидроксидов церия, циркония и РЗЭ в нагретом реакционном объеме позволяет обеспечить одновременное протекание нескольких процессов: гидролиз и старение осадка с образованием гидратированных оксидов церия, циркония и РЗЭ. В тоже время, наличие добавки ПАВ в реакционном объеме обеспечивает максимально эффективный контакт, образующейся твердой фазы и поверхностно-активного вещества, что при дальнейшей дегидратации в процессе фильтрации, сушки и обжига предотвращает процессы коагуляции и коллапса пористой структуры. За счет этого удается достичь высокой удельной поверхности устойчивой к воздействию высоких температур. Кроме того, достигается снижение числа стадий, за счет объединения стадии гидролиза, нагрева и обработки ПАВ.
Сущность изобретения поясняется чертежом, где изображено:
- на фиг. 1 - таблица значений удельной поверхности образцов, полученных по различным примерам
На первой стадии получения оксидных композиций церия-циркония и РЗЭ, выбранных из иттрия, лантана и неодима, готовят общий раствор указанных выше элементов в жидкой среде с концентрацией от 10 до 100 г/дм3 в пересчете на конечную композицию. При концентрации общего раствора ниже 10 г/дм3 в пересчете на конечную композицию требуется использование аппаратов большого объема, что не целесообразно с технологической точки зрения, а использование раствора с концентрацией свыше 100 г/дм3 способствует повышению влияния образующегося в процессе гидролиза солевого фона, что в последствии не позволяет достигнуть заявленного технического результата. В качестве жидкой среды может выступать любая жидкость, по преимущественному способу реализации изобретения жидкой средой является вода. В качестве соединений могут быть использованы соли циркония и РЗЭ, в том числе нитраты, хлориды, сульфаты и ацетаты. Также возможно приготовление солей циркония и РЗЭ путем растворения карбонатов или оксидов в различных минеральных кислотах. По преимущественному способу реализации изобретения для приготовления раствора соли циркония и церия используются карбонаты заявленных металлов и концентрированная азотная кислота, для получения растворов других РЗЭ, выбранных из иттрия, лантана и неодима, используются оксиды соответствующих металлов и концентрированная азотная кислота.
На второй стадии готовят исходный реакционный объем, который представляет из себя дистиллированную воду с добавкой ПАВ из группы анионных ПАВ, неионных ПАВ, полиэтиленгликолей и карбоновых кислот и их солей, а также ПАВов типа этоксилатов жирных карбоксиметилированных спиртов и предельных спиртов. По преимущественному способу реализации изобретения в качестве ПАВ используется лауриновая кислота. Количество добавляемого ПАВ составляет от 20% до 100% от массы финальной оксидной композиции. При количестве добавленного ПАВ менее 20% от массы конечной оксидной композиции не наблюдается заявленный технический эффект, а добавление ПАВ в количестве более 100% от массы финальной оксидной композиции экономически не целесообразно и не приводит к значительному повышению удельной поверхности. По преимущественному способу получения количество добавленного ПАВ должно составлять от 40 до 60 % в пересчете на массу финальной оксидной композиции. Осаждение проводят путем одновременного дозирования общего раствора и основного соединения в указанный выше реакционный объем, при этом pH реакционной среды поддерживают на уровне от 8 до 10, предпочтительно от 8,5 ДО 9,5, за счет регулирования скоростей подачи общего раствора и основного соединения. Температура реакционной смеси поддерживается на уровне от до 40°С - 80°С, а еще лучше до 50°С - 60°С на протяжении всего процесса осаждения. В качестве основного соединения могут быть использованы раствор аммиака, гидроксида натрия или калия, тетраметиламина и других соединений, по предпочтительному способу реализации изобретения используется водный раствор аммиака.
На третей стадии проводят отделение осадка от жидкой части любым известным способом, предпочтительно использовать фильтрацию с помощью нутч-фильтра.
Завершающей стадией проводят сушку и обжиг полученного осадка. Режим сушки осадка не является критичным. Обычно сушку проводят при температуре от комнатной до 200°С до полного удаления влаги из осадка. Далее проводят обжиг полученного после сушки осадка. Температура обжига может варьироваться от 500°С до 900°С.
Пример 1
Этот пример относится к композиции из 50% массовых диоксида циркония, 40% диоксида церия, 5% оксида иттрия и 5% оксида лантана.
В химический стакан вводят107,7 см3 нитрата цирконила (232 г/дм3 в пересчете на ZrO2), 125 см3 нитрата церия (160 г/дм3 в пересчете на CeO2), 15,8 см3 нитрата лантана (158 г/дм3 в пересчете на La2O3), 17 см3 нитрата иттрия (147 г/дм3 в пересчете на Y2O3). Затем добавляют 359 г дистиллированной воды и перемешивают в течение 30 минут с получением 625 см3 общего азотнокислого раствора с концентрацией 80 г/дм3 в пересчете на Zr0.5Ce0.4Y0.05La0.05Ox.
Далее готовят реакционный объем путем введения 200 см3 дистиллированной воды в реактор с мешалкой, датчиком pH и термометром. В полученный реакционный объем добавляют 20 г лауриновой кислоты и нагревают до 60°С при непрерывном перемешивании. Далее проводят одновременное дозирование общего раствора и 10% -го водного раствора аммиака в реакционный объем, при этом значение pH в реакционной среде поддерживают на уровне 9. После осаждения нагрев выключают, а суспензию фильтруют на вакуумном нутч-фильтре. Полученный осадок сушат при 120°С в течение 2х часов и обжигают при температуре 700°С и 1000°С в течение 2х и 4х часов, соответственно.
Пример 2
Этот пример относится к композиции из 50% массовых диоксида циркония, 40% диоксида церия, 5% оксида иттрия и 5% оксида неодима.
В химический стакан вводят107,7 см3 нитрата цирконила (232 г/дм3 в пересчете на ZrO2), 125 см3 нитрата церия (160 г/дм3 в пересчете на CeO2), 13,4 см3 нитрата неодима (187 г/дм3 в пересчете на Nd2O3), 17 см3 нитрата иттрия (147 г/дм3 в пересчете на Y2O3). Затем добавляют 238 г дистиллированной воды и перемешивают в течение 30 минут с получением 500 см3 общего азотнокислого раствора с концентрацией 100 г/дм3 в пересчете на Zr0.5Ce0.4Y0.05Nd0.05Ox.
Далее готовят реакционный объем путем введения 200 см3 дистиллированной воды в реактор с мешалкой, датчиком pH и термометром. В полученный реакционный объем добавляют 50 г лауриновой кислоты и нагревают до 80°С при непрерывном перемешивании. Далее проводят одновременное дозирование общего раствора и 10% -го водного раствора аммиака в реакционный объем, при этом значение pH в реакционной среде поддерживают на уровне 10. После осаждения нагрев выключают, а суспензию фильтруют на вакуумном нутч-фильтре. Полученный осадок сушат при 180°С в течение 2х часов и обжигают при температуре 900°С и 1000°С в течение 2х и 4х часов, соответственно.
Пример 3
Этот пример относится к композиции из 50% массовых диоксида циркония, 40% диоксида церия, 7% оксида лантана и 3% оксида неодима.
В химический стакан вводят107,7 см3 нитрата цирконила (232 г/дм3 в пересчете на ZrO2), 125 см3 нитрата церия (160 г/дм3 в пересчете на CeO2), 22,2 см3 нитрата лантана (158 г/дм3 в пересчете на La2O3), 8,0 см3 нитрата неодима (187 г/дм3 в пересчете на Nd2O3). Затем добавляют 737 г дистиллированной воды и перемешивают в течение 30 минут с получением 1000 см3 общего азотнокислого раствора с концентрацией 10 г/дм3 в пересчете на Zr0.5Ce0.4La0.07Nd0.03Ox.
Далее готовят реакционный объем путем введения 200 см3 дистиллированной воды в реактор с мешалкой, датчиком pH и термометром. В полученный реакционный объем добавляют 2 г лауриновой кислоты и нагревают до 40°С при непрерывном перемешивании. Далее проводят одновременное дозирование общего раствора и 10% -го водного раствора аммиака в реакционный объем, при этом значение pH в реакционной среде поддерживают на уровне 8. После осаждения нагрев выключают, а суспензию фильтруют на вакуумном нутч-фильтре. Полученный осадок сушат при 80°С в течение 2х часов и обжигают при температуре 550°С и 1000°С в течение 2х и 4х часов, соответственно.
Пример 4 (сравнительный)
Состав такой же, как в примере 1
В химический стакан вводят107,7 см3 нитрата цирконила (232 г/дм3 в пересчете на ZrO2), 125 см3 нитрата церия (160 г/дм3 в пересчете на CeO2), 15,8 см3 нитрата лантана (158 г/дм3 в пересчете на La2O3), 17 см3 нитрата иттрия (147 г/дм3 в пересчете на Y2O3). Затем добавляют 151 г дистиллированной воды и перемешивают в течение 30 минут с получением 416 см3 общего азотнокислого раствора с концентрацией 120 г/дм3 в пересчете на Zr0.5Ce0.4Y0.05La0.05Ox.
Далее готовят реакционный объем путем введения 200 см3 дистиллированной воды в реактор с мешалкой, датчиком pH и термометром. В полученный реакционный объем добавляют 5 г лауриновой кислоты и нагревают до 90°С при непрерывном перемешивании. Далее проводят одновременное дозирование общего раствора и 10% -го водного раствора аммиака в реакционный объем, при этом значение pH в реакционной среде поддерживают на уровне 10,5. После осаждения нагрев выключают, а суспензию фильтруют на вакуумном нутч-фильтре. Полученный осадок сушат при 120°С в течение 2х часов и обжигают при температуре 700°С и 1000°С в течение 2х и 4х часов, соответственно.
Пример 5 (сравнительный)
Состав такой же, как в примере 1
В химический стакан вводят107,7 см3 нитрата цирконила (232 г/дм3 в пересчете на ZrO2), 125 см3 нитрата церия (160 г/дм3 в пересчете на CeO2), 15,8 см3 нитрата лантана (158 г/дм3 в пересчете на La2O3), 17 см3 нитрата иттрия (147 г/дм3 в пересчете на Y2O3). Затем добавляют 984 г дистиллированной воды и перемешивают в течение 30 минут с получением 1250 см3 общего азотнокислого раствора с концентрацией 8 г/дм3 в пересчете на Zr0.5Ce0.4Y0.05La0.05Ox.
Далее готовят реакционный объем путем введения 200 см3 дистиллированной воды в реактор с мешалкой, датчиком pH и термометром. Далее проводят одновременное дозирование общего раствора и 10% -го водного раствора аммиака в реакционный объем, при этом значение pH в реакционной среде поддерживают на уровне 7,5. Далее суспензию фильтруют на вакуумном нутч-фильтре. Полученный осадок сушат при 120°С в течение 2х часов и обжигают при температуре 700°С и 1000°С в течение 2х и 4х часов, соответственно.
Для определения устойчивости оксидных композиций к воздействию высоких температур все образцы подвергались обжигу при 1000°С в течение 4х часов. Результаты измерения удельной поверхности представлены на фиг. 1. Определение удельной поверхности оксидных композиций проводилось методом низкотемпературной адсорбции азота (-196°С) на приборе NOVA Quantachrome 1200E. Значения удельной поверхности были рассчитаны по первым четырем точкам изотермы адсорбции методом BET.
Показано, что ведение процесса осаждения в присутствии поверхностно-активного вещества в количестве от 20 до 100% от массы конечной оксидной композиции и при поддержании температуры реакционной среды от 40 до 80°С приводит к формированию оксидных композиций с высокой удельной поверхностью после термостарения при 1000°С в течение 4х часов, что определяет выгоду от использования предложенного способа.

Claims (1)

  1. Способ производства оксидных композиций церия-циркония, предназначенных для применения в составе трехмаршрутных катализаторов, включающий приготовление раствора с концентрацией от 10 до 100 г/дм3 в пересчете на конечную композицию, содержащего растворимые соли циркония, церия, а также одного или нескольких редкоземельных элементов, выбранных из иттрия, лантана и неодима, осаждение гидроксидов путем смешения указанного выше раствора и основного соединения при поддержании постоянного значения pH в реакционном объеме на уровне от 8 до 10 ед., фильтрацию суспензии, сушку при температуре от комнатной до 200°С и обжиг полученного осадка при 500-900°С, отличающийся тем, что перед осаждением в реакционный объем добавляется ПАВ, выбранное из карбоновых кислот, в количестве от 20 до 100% от массы финальной оксидной композиции, температура реакционного объема поддерживается от 40 до 80°С на протяжении всего процесса осаждения.
RU2021115236A 2021-05-27 2021-05-27 Способ производства оксидных композиций церия-циркония и редкоземельных элементов RU2766540C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2021115236A RU2766540C1 (ru) 2021-05-27 2021-05-27 Способ производства оксидных композиций церия-циркония и редкоземельных элементов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2021115236A RU2766540C1 (ru) 2021-05-27 2021-05-27 Способ производства оксидных композиций церия-циркония и редкоземельных элементов

Publications (1)

Publication Number Publication Date
RU2766540C1 true RU2766540C1 (ru) 2022-03-15

Family

ID=80736527

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2021115236A RU2766540C1 (ru) 2021-05-27 2021-05-27 Способ производства оксидных композиций церия-циркония и редкоземельных элементов

Country Status (1)

Country Link
RU (1) RU2766540C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2809704C1 (ru) * 2022-11-29 2023-12-14 Ооо "Лфм" Способ производства порошков смешанных оксидов циркония, церия и редкоземельных элементов

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998045212A1 (en) * 1997-04-04 1998-10-15 Rhodia Rare Earths Inc. CERIUM OXIDES, ZIRCONIUM OXIDES, Ce/Zr MIXED OXIDES AND Ce/Zr SOLID SOLUTIONS HAVING IMPROVED THERMAL STABILITY AND OXYGEN STORAGE CAPACITY
EP1035074B1 (en) * 1999-03-05 2007-02-14 Daiichi Kigenso Kagaku Co., Ltd. Zirconium- and cerium-based mixed oxide, method of production thereof, catalyst material comprising the mixed oxide and use of the catalyst in exhaust gas purification
RU2404855C2 (ru) * 2006-05-15 2010-11-27 Родиа Операсьон Композиция на основе оксидов циркония, церия, лантана и иттрия, гадолиния или самария, с высокой удельной поверхностью и способностью к восстановлению, способ получения и применение в качестве катализатора
RU2610080C2 (ru) * 2011-06-17 2017-02-07 Родиа Операсьон Композиция на основе оксидов церия, циркония и другого редкоземельного металла с высокой восстановительной способностью, способ получения и применение в области катализатора
RU2707888C1 (ru) * 2016-04-26 2019-12-02 Родиа Операсьон Смешанные оксиды на основе церия и циркония
RU2709862C1 (ru) * 2018-12-07 2019-12-23 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Способ получения композиций на основе оксидов циркония и церия

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998045212A1 (en) * 1997-04-04 1998-10-15 Rhodia Rare Earths Inc. CERIUM OXIDES, ZIRCONIUM OXIDES, Ce/Zr MIXED OXIDES AND Ce/Zr SOLID SOLUTIONS HAVING IMPROVED THERMAL STABILITY AND OXYGEN STORAGE CAPACITY
EP1035074B1 (en) * 1999-03-05 2007-02-14 Daiichi Kigenso Kagaku Co., Ltd. Zirconium- and cerium-based mixed oxide, method of production thereof, catalyst material comprising the mixed oxide and use of the catalyst in exhaust gas purification
RU2404855C2 (ru) * 2006-05-15 2010-11-27 Родиа Операсьон Композиция на основе оксидов циркония, церия, лантана и иттрия, гадолиния или самария, с высокой удельной поверхностью и способностью к восстановлению, способ получения и применение в качестве катализатора
RU2610080C2 (ru) * 2011-06-17 2017-02-07 Родиа Операсьон Композиция на основе оксидов церия, циркония и другого редкоземельного металла с высокой восстановительной способностью, способ получения и применение в области катализатора
RU2707888C1 (ru) * 2016-04-26 2019-12-02 Родиа Операсьон Смешанные оксиды на основе церия и циркония
RU2709862C1 (ru) * 2018-12-07 2019-12-23 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Способ получения композиций на основе оксидов циркония и церия

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Ещенко, Л. С. Технология катализаторов и адсорбентов: тексты лекций для студентов специальности 1-48 01 01 "Химическая технология неорганических веществ, материалов и изделий"; специализации 1-48 01 01 01 "Технология минеральных удобрений, солей и щелочей" / Л. С. Ещенко. - Минск: БГТУ, 2015. - 167 с. *
Машковцев Максим Алексеевич. Синтез, физико-химические свойства и применение твердых растворов Zr0,5Ce0,4Ln0,1Ox. Авто диссертации на соискание ученой степени кандидата химических наук, Екатеринбург, 2013. *
Машковцев Максим Алексеевич. Синтез, физико-химические свойства и применение твердых растворов Zr0,5Ce0,4Ln0,1Ox. Автореферат диссертации на соискание ученой степени кандидата химических наук, Екатеринбург, 2013. Ещенко, Л. С. Технология катализаторов и адсорбентов: тексты лекций для студентов специальности 1-48 01 01 "Химическая технология неорганических веществ, материалов и изделий"; специализации 1-48 01 01 01 "Технология минеральных удобрений, солей и щелочей" / Л. С. Ещенко. - Минск: БГТУ, 2015. - 167 с. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2809704C1 (ru) * 2022-11-29 2023-12-14 Ооо "Лфм" Способ производства порошков смешанных оксидов циркония, церия и редкоземельных элементов

Similar Documents

Publication Publication Date Title
RU2529866C2 (ru) Композиция на основе оксидов циркония, церия и по меньшей мере одного другого редкоземельного металла со специфической пористостью, способ получения и применение в катализе
JP6471240B2 (ja) セリウム・ジルコニウム複合酸化物及びその製造方法並びに触媒の使用
RU2707888C1 (ru) Смешанные оксиды на основе церия и циркония
CN1921935B (zh) 基于锆、镨、镧或钕的氧化物的组合物,其制备方法和其在催化体系中的用途
US6133194A (en) Cerium oxides, zirconium oxides, Ce/Zr mixed oxides and Ce/Zr solid solutions having improved thermal stability and oxygen storage capacity
RU2445268C2 (ru) Смешанный оксид церия и другого редкоземельного элемента с высокой удельной площадью поверхности, способ его получения и использование в катализе
RU2468855C2 (ru) Композиция на основе оксидов циркония, церия и иттрия с повышенной восстановительной способностью, способ получения и применение в катализе
RU2509725C2 (ru) Композиция на основе оксида церия и оксида циркония с особой пористостью, способ получения и применение в катализе
RU2551381C2 (ru) Состав на основе оксидов церия, ниобия и, возможно, циркония и его применение в катализе
US8629077B2 (en) Rare earth alumina particulate manufacturing method and application
US20090191108A1 (en) Zirconium/Praseodymium Oxide NOx Traps and Prufication of Gases Containing Nitrogen Oxides (NOx) Therewith
RU2753046C2 (ru) Смешанный оксид на основе церия и циркония
KR101793353B1 (ko) 특정 공극률을 가지며 지르코늄 산화물, 및 세륨 이외의 1종 이상 희토류의 산화물을 기재로 한 조성물, 상기 조성물의 제조 방법 및 촉매 작용에서의 그 용도
CN106824163B (zh) 复合氧化物及其制备方法
JP2012519060A (ja) 新規なジルコニアセリア組成物
CN1546228A (zh) 一种铈基稀土复合氧化物材料的制法及用途
RU2440299C1 (ru) Композиция на основе оксида циркония, оксида иттрия и оксида вольфрама, способ получения и применение в качестве катализатора или подложки катализатора
RU2766540C1 (ru) Способ производства оксидных композиций церия-циркония и редкоземельных элементов
JP4972868B2 (ja) 表面修飾されたセリア・ジルコニア系水和酸化物、その酸化物及びそれらの製造方法並びに用途
RU2709862C1 (ru) Способ получения композиций на основе оксидов циркония и церия
JPH11292539A (ja) ジルコニア−セリア組成物の製造方法
WO2020063510A1 (en) Mixed oxide with improved reducibility
CN1493519A (zh) 共沉淀-高压水热联合法制备铈锆复合氧化物
RU2809704C1 (ru) Способ производства порошков смешанных оксидов циркония, церия и редкоземельных элементов
CN1132678C (zh) 一种基于氧化铈和氧化锆的复合氧化物固溶体的制备工艺