RU2765943C1 - Способ получения керамических высокопористых блочно-ячеистых регенеративных материалов - Google Patents

Способ получения керамических высокопористых блочно-ячеистых регенеративных материалов Download PDF

Info

Publication number
RU2765943C1
RU2765943C1 RU2021133371A RU2021133371A RU2765943C1 RU 2765943 C1 RU2765943 C1 RU 2765943C1 RU 2021133371 A RU2021133371 A RU 2021133371A RU 2021133371 A RU2021133371 A RU 2021133371A RU 2765943 C1 RU2765943 C1 RU 2765943C1
Authority
RU
Russia
Prior art keywords
highly porous
cellular
matrix
hydrogen peroxide
porous block
Prior art date
Application number
RU2021133371A
Other languages
English (en)
Inventor
Владимир Николаевич Грунский
Микаэл Давидович Гаспарян
Инокентий Викторович Захаров
Юрий Анатольевич Ферапонтов
Роман Викторович Дорохов
Алла Дмитриевна Комарова
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д. И. Менделеева" (РХТУ им. Д. И. Менделеева)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д. И. Менделеева" (РХТУ им. Д. И. Менделеева) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д. И. Менделеева" (РХТУ им. Д. И. Менделеева)
Priority to RU2021133371A priority Critical patent/RU2765943C1/ru
Application granted granted Critical
Publication of RU2765943C1 publication Critical patent/RU2765943C1/ru

Links

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D9/00Composition of chemical substances for use in breathing apparatus
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

Изобретение относится к области химической технологии керамических высокопористых ячеистых материалов и может быть использовано для химической регенерации воздуха в системах жизнеобеспечения пилотируемых летательных аппаратов и других замкнутых объектов министерства обороны, МЧС России и Госкорпорации «Росатом». Способ получения керамических высокопористых блочно-ячеистых регенеративных материалов включает смешение стабилизированного сульфатом магния раствора пероксида водорода с гидроксидами натрия и калия с последующим нанесением щелочного раствора пероксида водорода на пористую матрицу и дегидратацией жидкой фазы на матрице, в качестве матрицы используют керамический высокопористый блочно-ячеистый материал на основе электрокорунда и полуфарфоровой литейной массы ПФЛ-1, который предварительно выдерживают в растворе щелочи с рН 12-13 в течение не менее 1 часа и промывают дистиллированной водой до нейтрального значения рН. Технический результат – разработка способа получения керамических высокопористых блочно-ячеистых регенеративных материалов, обладающих повышенной механической прочностью и степенью отработки по диоксиду углерода при эксплуатации в системах жизнеобеспечения замкнутых объектов, повышение экологичности процесса регенерации воздуха. 1 табл., 4 пр.

Description

Изобретение относится к области химической технологии керамических высокопористых ячеистых материалов и может быть использовано для химической регенерации воздуха в системах жизнеобеспечения (СЖО) пилотируемых летательных аппаратов и других замкнутых объектов министерства обороны, МЧС России и Госкорпорации «Росатом».
Традиционные регенеративные материалы, применяемые в системах жизнеобеспечения для поддержания необходимого содержания углекислого газа и кислорода в воздухе замкнутых объектов путем хемосорбции CO2 и выделению свободного O2, изготавливаются формованием порошков активных компонентов (как правило, супероксидов натрия – NaO2 и калия – КО2) с добавками гидроксидов, оксидов, силикатов или хлоридов металлов в виде гранул, таблеток, пластин или блоков.
Известен способ получения гранулированного регенеративного продукта (патент РФ № 2362601, МПК А62D 9/00) путем смешения исходных компонентов, вес.%: надпероксида натрия (NaO2) 55-80, надпероксида калия (КO2) 10-25 и структурообразующей добавки, в качестве которой используют гидроксид кальция (Са(ОН)2) 5-20 и силикат кальция в виде волластонита (CaSiO2) 1-5, формования полученной смеси и термической обработки формованного продукта при температуре 500-700°С. Общими недостатками гранулированных регенеративных материалов являются недостаточная внешняя доступная поверхность, высокое газодинамическое сопротивление и повышенное истирание и пылеунос в процессе эксплуатации.
Известен способ получения продукта для химической регенерации воздуха (патент РФ № 2456046, МПК А62D 9/00), заключающийся во взаимодействии раствора пероксида водорода с гидроксидами натрия и калия с последующим нанесением полученного щелочного раствора пероксида водорода на пористую волокнистую матрицу (например, стекломаты, стеклобумагу и т.д.) и дегидратации жидкой фазы на матрице. В исходный раствор пероксида водорода перед добавлением гидроксида калия последовательно вводят необходимое количество сульфата магния с мольным соотношением Н2О2/MgSO4 = 492 – 650 и гидроксида натрия с мольным соотношением Н2О2/NaOH = 8,0 – 58,0. Сульфат магния служит стабилизатором, замедляющим процесс распада пероксидных продуктов полученного щелочного раствора пероксида водорода. Гидроксид калия с мольным соотношением Н2О2/КOH = 1,60 – 1,88 вводят в раствор через 30 минут после введения гидроксида натрия. Дегидратацию пропитанной исходным щелочным раствором пероксида водорода пористой волокнистой матрицы осуществляют либо сушкой в вакууме при 30 – 150оС либо в потоке осушенного декарбонизированного воздуха или инертного газа при атмосферном давлении и температуре 60 – 220оС. Однако, данный продукт для химической регенерации воздуха при длительной эксплуатации в индивидуальных и коллективных средствах защиты дыхания систем жизнеобеспечения (СЖО), особенно в нештатных ситуациях, характеризуется недостаточно эффективным использованием ресурса с понижением до 50% степени отработки по диоксиду углерода. Вследствие его механического разрушения, вызванного вибрацией, возможно образование большого количества мелкодисперсной фракции (пыли), что приведет к высокому содержанию щелочных аэрозолей в регенерируемом воздухе и возможному поражению верхних дыхательных путей человека. Кроме того, физико-химические процессы регенерации воздуха, в том числе экзотермические, приводят к изменению объема и частичному спеканию матрицы продукта, в результате чего возрастает его газодинамическое сопротивление, затрудняется диффузия и массопередача при хемосорбции CO2. Отработанные продукты не подлежат регенерации для повторного использования и создают существенные экологические проблемы при их утилизации.
Известен способ получения керамических высокопористых блочно-ячеистых материалов (патент РФ № 2580959; МПК: C04B 38/06, C04B 41/87), заключающийся в нанесении активной композиции из смеси каолина и цеолитов марки НЦВМ или NH4ЦВМ на керамическую матрицу ячеистой структуры, полученную методом воспроизведения структуры вспененного ретикулированного пенополиуретана (ППУ) путем пропитки водным шликером, содержащим инертный наполнитель – электроплавленный корунд, дисперсный порошок высокоглиноземистого фарфора и упрочняющую добавку MgО + SiC, с дальнейшей сушкой и высокотемпературным обжигом. Полученные керамические блочные высокопористые ячеистые материалы (ВПЯМ) имеют высокую механическую прочность (выше 2,0 МПа), развитую внешнюю удельную поверхность (до 5000 м23), высокую открытую пористость (до 90%) и низкое газодинамическое сопротивление. Технология формования позволяет изготовлять пластины и блоки из керамических ВПЯМ заданных типоразмеров и сложного фасона. Применение их в качестве матриц для регенеративных материалов позволяет практически полностью устранить перечисленные выше недостатки гранулированных и нанесенных на стекловолокнистые матрицы регенеративных материалов.
Технической задачей предлагаемого изобретения является разработка способа получения керамических высокопористых блочно-ячеистых регенеративных материалов, имеющих повышенную механическую прочность и степень отработки по диоксиду углерода при эксплуатации в СЖО замкнутых объектов и обеспечивающих повышение экологичности процесса регенерации воздуха.
Поставленная задача решается путем разработки способа получения керамических высокопористых блочно-ячеистых регенеративных материалов, включающего смешение стабилизированного сульфатом магния раствора пероксида водорода с гидроксидами натрия и калия с последующим нанесением щелочного раствора пероксида водорода на пористую матрицу и дегидратацией жидкой фазы на матрице. В качестве матрицы используют керамический высокопористый блочно-ячеистый материал на основе электрокорунда и полуфарфоровой литейной массы ПФЛ-1, который предварительно выдерживают в растворе щелочи с рН не менее 11 в течение не менее 1 часа и промывают дистиллированной водой до нейтрального значения.
Уникальная сетчато-ячеистая структура керамических ВПЯМ за счет турбулизации газового потока и постоянного обновления пограничного слоя обеспечивает высокую интенсивность массопередачи при протекании процесса хемосорбции диоксида углерода во внешнедиффузионной области. Высокая кислото- и щелочестойкость, механическая прочность и адгезионное сродство к хемосорбенту минимизируют образование щелочных аэрозолей и позволяют проводить многократную регенерацию матриц химическими методами для повторного нанесения активной композиции.
Во всех приведенных ниже примерах, подтверждающих достигнутый результат, образцы керамических матриц для нанесения активного компонента изготавливают из высокопористого ячеистого материала в виде блоков заданных размеров с плотностью пор 45 ppi (количество пор на линейный дюйм). В процессе их синтеза для пропитки исходного ППУ используют керамический шликер следующего состава:
- наполнитель – электроплавленый корунд (ЭПК) марки F 360, 50% масс.;
- основное связующее – полуфарфоровая литейная масса ПФЛ-1, 50% масс.;
- временная технологическая связка (ВТС) – 5 %-ный водный раствор пластификатора поливинилового спирта (ПВС) с содержанием жидкой фазы 28 %.
Последующую термообработку проводят в 2 стадии:
1) Сушат в сушильном шкафу при температуре 100°C в течение 2 часов.
2) Обжигают с выдержкой при максимальной температуре 1450°C в течение 3 часов.
Необходимо отметить, что при нанесении на поверхность керамической матрицы щелочного раствора Н2О2 возможна интенсификация гетерогенного каталитического разложения пероксидных продуктов, сопровождающегося выделением атомарного кислорода. Это не только приводит к снижению содержания пероксидных соединений в продукте синтеза, но и создает дополнительную угрозу возникновения «кислородного» пожара, локализовать который практически невозможно. Поэтому для нивелирования этого эффекта перед нанесением щелочного раствора пероксида водорода керамическую матрицу выдерживают в растворе щелочи с рН не менее 11 в течение не менее 1 часа, а затем промывают дистиллированной водой до нейтрального значения рН. Это позволяет удалить с ее поверхности значительное количество веществ, способных выступать катализаторами разложения перекисных продуктов.
Пример 1.
К 47,73 л водного 50%-ного раствора пероксида водорода при непрерывном перемешивании добавляют 201 г сульфата магния (мольное соотношение Н2О2/MgSO4 = 525), затем 1,78 кг 90%-ного гидроксида натрия (мольное соотношение Н2О2/NaOH = 21). Через 30 минут после равномерного распределения всех введенных компонентов по объему жидкой фазы добавляют 31,1 кг твердого 90%-ного гидроксида калия (мольное соотношение Н2О2/КОН = 1,68). Далее полученный щелочной раствор пероксида водорода аэрозольным напылением равномерно наносят на керамическую матрицу на основе электрокорунда и полуфарфоровой литейной массы ПФЛ-1 заданного типоразмера, которую предварительно в течение 70 минут выдерживают в растворе КОН с рН 12,5, промывают дистиллированной водой до нейтрального значения и сушат образец в вакууме при 30 – 90оС и остаточном давлении 0,95 атм. Получают 39,2 кг продукта, содержащего 65,3% КО2, 16,9% КОН, 2,8% Na2O2, 0,6% NaОН, 4,0% Н2О, 0,4% MgSO4 и 10,0% матрицы.
Пример 2.
К 48,86 л водного 50%-ного раствора пероксида водорода при непрерывном перемешивании добавляют 188 г сульфата магния (мольное соотношение Н2О2/MgSO4 = 551), затем 2,67 кг 90%-ного гидроксида натрия (мольное соотношение Н2О2/NaOH = 14,3). Через 30 минут добавляют 31,1 кг твердого 90%-ного гидроксида калия (мольное соотношение Н2О2/КОН = 1,72). Далее полученный щелочной раствор пероксида водорода аэрозольным напылением равномерно наносят на керамическую матрицу заданного типоразмера, которую предварительно в течение 80 минут выдерживают в растворе КОН с рН 12,0, промывают дистиллированной водой до нейтрального значения и сушат образец в потоке осушенного и декарбонизованного воздуха при температуре 200оС. Получают 40,1 кг продукта, содержащего 64,1% КО2, 16,5% КОН, 4,0% Na2O2, 1,6% NaОН, 4,1% Н2О, 0,4% MgSO4 и 9,3% матрицы.
Пример 3.
К 45,45 л водного 50%-ного раствора пероксида водорода при непрерывном перемешивании добавляют 148 г сульфата магния (мольное соотношение Н2О2/MgSO4 = 650), затем 4,45 кг 90%-ного гидроксида натрия (мольное соотношение Н2О2/NaOH = 8,0). Через 30 минут добавляют 31,1 кг твердого 90%-ного гидроксида калия (мольное соотношение Н2О2/КОН = 1,60). Далее полученный щелочной раствор пероксида водорода аэрозольным напылением равномерно наносят на керамическую матрицу заданного типоразмера, которую предварительно в течение 75 минут выдерживают в растворе КОН с рН 13,0, промывают дистиллированной водой до нейтрального значения и сушат образец в вакууме при 30 – 50оС и остаточном давлении 0,95 атм. Получают 41,1 кг продукта, содержащего 56,1% КО2, 20,3% КОН, 6,4% Na2O2, 3,3% NaОН, 4,0% Н2О, 0,3% MgSO4 и 9,6% матрицы.
Пример 4.
К 53,41 л водного 50%-ного раствора пероксида водорода при непрерывном перемешивании добавляют 188 г сульфата магния (мольное соотношение Н2О2/MgSO4 = 600), затем 5,56 кг 90%-ного гидроксида натрия (мольное соотношение Н2О2/NaOH = 15,0). Через 30 минут добавляют 31,1 кг твердого 90% гидроксида калия (мольное соотношение Н2О2/КОН = 1,88). Далее полученный щелочной раствор пероксида водорода аэрозольным напылением равномерно наносят на керамическую матрицу заданного типоразмера, которую предварительно в течение 70 минут выдерживают в растворе КОН с рН 12,5, промывают дистиллированной водой до нейтрального значения и сушат в потоке осушенного и декарбонизованного воздуха при температуре 220оС. Получают 42,9 кг продукта, содержащего 59,3% КО2, 15,9% КОН, 9,5% Na2O2, 2,2% NaОН, 3,2% Н2О, 0,3% MgSO4 и 9,6% матрицы.
Керамические высокопористые блочно-ячеистые регенеративные материалы, полученные по заявляемому способу, испытаны в патроне дымозащитного капюшона (ДЗК) членов экипажа воздушных судов гражданской авиации по программе, полностью воспроизводящей условия его эксплуатации в штатной кислородной системе (КС) авиалайнеров МС 21 и SSJNEW.
Вначале ДЗК подвергают вибрационным нагрузкам (согласно Авиационным правилам (АП - 25, пп. 25.303; 25.561), введённым в действие приказом № 48 от 05.07.94 г Министерства транспорта РФ), имитирующим длительную эксплуатацию изделий в составе КС бортов гражданской авиации, а также согласно квалификационным требованиям КТ-160G/14G раздел 8 (вибрация). После приложения вибрационных нагрузок часть ДЗК расснаряжают для анализа состояния образцов и количества образовавшейся мелкодисперсной фракции, определяющейся гравиметрически.
Вторую часть ДЗК испытывают на установке “Искусственные легкие” (ИЛ) при следующих условиях, имитирующих условия эксплуатации ДЗК в нештатной ситуации на борту авиалайнера:
легочная вентиляция 30,0 ± 1 л/мин
объемная подача диоксида углерода 1,0 ± 0,05 л/мин
влажность газо-воздушной смеси, % 96 – 98
потребление кислорода (отсос из установки) 1,14 ± 0,05 л/мин
частота дыхания 20 ± 0,5 мин-1
температура окружающей среды 25 – 30оС
Объемы кислорода и диоксида углерода указаны при 10оС и 101,3 кПа, легочная вентиляция - при 37оС и 101,3 кПа. Время защитного действия (ВЗД) определяют как время от начала работы ДЗК до того момента, когда концентрация СО2 в потоке газо-воздушной смеси на линии “вдоха” установки “ИЛ” достигала 3%. Для сравнения в тех же условиях был испытан продукт для регенерации воздуха, изготовленный по методике, описанной в примере 6 патента РФ № 2456046. Коэффициент регенерации определяют как отношение объема выделившегося кислорода к объему поглощенного диоксида углерода в единицу времени. В таблице 1 представлены средние значения данного параметра для пяти образцов каждого состава, приведенного в примерах, а также для образца сравнения, в процессе эксплуатации в патроне изолирующего дыхательного аппарата.
Таблица 1
Результаты испытаний продуктов для химической регенерации воздуха в патроне ДЗК на установке “Искусственные легкие”
№ примера Масса продукта, г Средний коэффициент регенерации Количество поглощенного СО2, л Количество выделенного О2, л ВЗД, сек Количество пыли после вибрации, г Возможность повторного использования матрицы
1 197 1,59 17,02 27,12 1021 0,038 Да
2 198 1,58 16,61 26,24 1012 0,033 Да
3 198 1,59 16,51 26,26 983 0,032 Да
4 199 1,54 18,96 29,24 1039 0,046 Да
5 200 1,56 17,12 26,79 1016 0,024 Да
Пример 6 из патента РФ № 2456046 199 1,73 15,11 26,19 914 8,234 нет
На отработанный образец регенеративного материала по примеру 2, извлеченный из патрона ДЗК, после промывки дистиллированной водой и полного отделения продуктов реакции от керамической матрицы, повторно наносят активную композицию по методике, описанной в примере 2, после чего также испытывают в ДЗК (пример № 5 в таблице 1).
Как видно из представленных табличных данных, благодаря большей устойчивости к высокочастотному вибрационному воздействию, возникающему при эксплуатации в системах СЖО, керамические высокопористые блочно-ячеистые регенеративные материалы по времени защитного действия и степени отработки по кислороду и диоксиду углерода, превосходит аналогичные показатели продукта по патенту РФ № 2456046.
Известно, что постоянное нахождение коэффициента регенерации в пределах 1,4 ÷ 1,6 на протяжении всего времени работы продукта для регенерации воздуха - один из критериев, указывающих на максимальное использование ресурса продукта. Коэффициент регенерации воздуха полученных по изобретению регенеративных материалов практически не меняется на протяжении всего времени работы изделия и имеет значение, близкое к оптимальному, в то время как для продукта, полученного по патенту РФ № 2456046, данный параметр превышает оптимальное значение.
Кроме того, при эксплуатации предлагаемого регенеративного материала в системах жизнеобеспечения возможно повторное использование керамических матриц, снижающее негативную нагрузку на окружающую среду при их утилизации.

Claims (1)

  1. Способ получения керамических высокопористых блочно-ячеистых регенеративных материалов, включающий смешение стабилизированного сульфатом магния раствора пероксида водорода с гидроксидами натрия и калия с последующим нанесением щелочного раствора пероксида водорода на пористую матрицу и дегидратацией жидкой фазы на матрице, отличающийся тем, что в качестве матрицы используют керамический высокопористый блочно-ячеистый материал на основе электрокорунда и полуфарфоровой литейной массы ПФЛ-1, который предварительно выдерживают в растворе щелочи с рН 12-13 в течение не менее 1 часа и промывают дистиллированной водой до нейтрального значения.
RU2021133371A 2021-11-17 2021-11-17 Способ получения керамических высокопористых блочно-ячеистых регенеративных материалов RU2765943C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2021133371A RU2765943C1 (ru) 2021-11-17 2021-11-17 Способ получения керамических высокопористых блочно-ячеистых регенеративных материалов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2021133371A RU2765943C1 (ru) 2021-11-17 2021-11-17 Способ получения керамических высокопористых блочно-ячеистых регенеративных материалов

Publications (1)

Publication Number Publication Date
RU2765943C1 true RU2765943C1 (ru) 2022-02-07

Family

ID=80214760

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2021133371A RU2765943C1 (ru) 2021-11-17 2021-11-17 Способ получения керамических высокопористых блочно-ячеистых регенеративных материалов

Country Status (1)

Country Link
RU (1) RU2765943C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2521034B1 (ru) * 1982-02-05 1984-04-20 Air Liquide
RU2225241C1 (ru) * 2002-12-05 2004-03-10 Федеральное государственное унитарное предприятие "Тамбовский научно-исследовательский химический институт" Регенеративный продукт и способ его получения
RU2362601C1 (ru) * 2007-10-08 2009-07-27 Открытое акционерное общество "Корпорация "Росхимзащита" (ОАО "Корпорация "Росхимзащита") Способ получения регенеративного продукта для изолирующих дыхательных аппаратов
RU2367492C1 (ru) * 2008-01-31 2009-09-20 Открытое акционерное общество "Корпорация "Росхимзащита" (ОАО "Корпорация "Росхимзащита") Способ получения продукта для регенерации воздуха
RU2456046C1 (ru) * 2010-12-30 2012-07-20 Открытое акционерное общество "Корпорация "Росхимзащита" (ОАО "Корпорация "Росхимзащита") Способ получения продукта для регенерации воздуха
RU2580959C1 (ru) * 2015-04-08 2016-04-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Российский химико-технологический университет имени Д.И.Менделеева (РХТУ им. Д.И.Менделеева) Способ получения керамических высокопористых блочно-ячеистых материалов

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2521034B1 (ru) * 1982-02-05 1984-04-20 Air Liquide
RU2225241C1 (ru) * 2002-12-05 2004-03-10 Федеральное государственное унитарное предприятие "Тамбовский научно-исследовательский химический институт" Регенеративный продукт и способ его получения
RU2362601C1 (ru) * 2007-10-08 2009-07-27 Открытое акционерное общество "Корпорация "Росхимзащита" (ОАО "Корпорация "Росхимзащита") Способ получения регенеративного продукта для изолирующих дыхательных аппаратов
RU2367492C1 (ru) * 2008-01-31 2009-09-20 Открытое акционерное общество "Корпорация "Росхимзащита" (ОАО "Корпорация "Росхимзащита") Способ получения продукта для регенерации воздуха
RU2456046C1 (ru) * 2010-12-30 2012-07-20 Открытое акционерное общество "Корпорация "Росхимзащита" (ОАО "Корпорация "Росхимзащита") Способ получения продукта для регенерации воздуха
RU2580959C1 (ru) * 2015-04-08 2016-04-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Российский химико-технологический университет имени Д.И.Менделеева (РХТУ им. Д.И.Менделеева) Способ получения керамических высокопористых блочно-ячеистых материалов

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
КОМАРОВА А.Д. и др., Перспективы применения керамических высокопористых блочно-ячеистых регенеративных продуктов для средств индивидуальной защиты органов дыхания, Успехи в химии и химической технологии, Том XXXII, N8, Москва, ФГБОУВО "Российский химико-технологический университет им. Д.И. Менделеева", 2018, с. 80-82. *
КОМАРОВА А.Д. и др., Перспективы применения керамических высокопористых блочно-ячеистых регенеративных продуктов для средств индивидуальной защиты органов дыхания, Успехи в химии и химической технологии, Том XXXII, N8, Москва, ФГБОУВО "Российский химико-технологический университет им. Д.И. Менделеева", 2018, с. 80-82. ТУ 142-32359431-001-2006 Масса керамическая ПФЛ-1. *
ТУ 142-32359431-001-2006 Масса керамическая ПФЛ-1. *

Similar Documents

Publication Publication Date Title
US20070037702A1 (en) Co-formed base-treated aluminas for water and CO2 removal
CA1169203A (en) Dry powder compositions of vermiculite lamellae and additives
GB2013102A (en) A filter material and its manufacture
RU2765943C1 (ru) Способ получения керамических высокопористых блочно-ячеистых регенеративных материалов
JPS6025395B2 (ja) 硬質無機発泡体製品及びその製造法
CN110818442B (zh) 一种以石棉尾矿为原料的CaO-MgO-SiO2系泡沫陶瓷
CN113716924B (zh) 一种蒸压加气混凝土砌块及其制备方法
KR950000599A (ko) 단열재의 제조방법
US9987625B2 (en) Desulfurization agent
RU2456046C1 (ru) Способ получения продукта для регенерации воздуха
US3434980A (en) Production of insulating materials having low specific gravity
US3608060A (en) Method of making a foamed alumina shape or catalyst support
RU2810279C1 (ru) Способ получения продукта для химической регенерации воздуха в системах жизнеобеспечения пилотируемых летательных аппаратов
US3661663A (en) Method of producing siliceous fiber corrosion inhibiting composites
RU2599664C1 (ru) Способ получения структурированного регенеративного продукта
RU2325205C2 (ru) Способ получения продукта для регенерации воздуха
RU2225241C1 (ru) Регенеративный продукт и способ его получения
US2517707A (en) Mechanical shaping of porous materials
WO2002008139A2 (en) Method of increasing the heat insulating capacity of a material
RU2209647C2 (ru) Регенеративный продукт
JPH05261279A (ja) 脱硫剤の製造方法
RU2338567C2 (ru) Способ получения продукта для регенерации воздуха
JPH02113904A (ja) 石灰−石膏−石炭灰系水和硬化体の製造方法
US2625516A (en) Desiccant
GB2083899A (en) Removing water from gels