RU2764728C1 - Способ очистки, применяемый в металлургии молибдена - Google Patents

Способ очистки, применяемый в металлургии молибдена Download PDF

Info

Publication number
RU2764728C1
RU2764728C1 RU2020127506A RU2020127506A RU2764728C1 RU 2764728 C1 RU2764728 C1 RU 2764728C1 RU 2020127506 A RU2020127506 A RU 2020127506A RU 2020127506 A RU2020127506 A RU 2020127506A RU 2764728 C1 RU2764728 C1 RU 2764728C1
Authority
RU
Russia
Prior art keywords
molybdenum
acid
leaching
inorganic acid
hydrogen peroxide
Prior art date
Application number
RU2020127506A
Other languages
English (en)
Inventor
Жонгвей ЖАО
Йонгли ЛИ
Original Assignee
Сентрал Сауф Юниверсити
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сентрал Сауф Юниверсити filed Critical Сентрал Сауф Юниверсити
Application granted granted Critical
Publication of RU2764728C1 publication Critical patent/RU2764728C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/065Nitric acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/10Hydrochloric acid, other halogenated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/38Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds containing phosphorus
    • C22B3/384Pentavalent phosphorus oxyacids, esters thereof
    • C22B3/3842Phosphinic acid, e.g. H2P(O)(OH)
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/38Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds containing phosphorus
    • C22B3/384Pentavalent phosphorus oxyacids, esters thereof
    • C22B3/3844Phosphonic acid, e.g. H2P(O)(OH)2
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/38Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds containing phosphorus
    • C22B3/384Pentavalent phosphorus oxyacids, esters thereof
    • C22B3/3846Phosphoric acid, e.g. (O)P(OH)3
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/30Obtaining chromium, molybdenum or tungsten
    • C22B34/34Obtaining molybdenum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

Изобретение относится к металлургии цветных металлов, в частности, к способу получения молибдена. Проводят обжиг молибденита с кальцием для получения кальцинированного продукта обжига молибдена. Выщелачивают неорганической кислотой кальцинированный продукт обжига молибдена для получения продукта выщелачивания, содержащего молибден. Из продукта выщелачивания молибден извлекают с помощью катионного экстрагента для получения органической фазы, нагруженной катионами молибденила, и рафината, при этом катионный экстрагент представлен по меньшей мере одним из следующих экстрагентов: P204, P507 или Cyanex272. В качестве очищающего агента используют раствор перекиси водорода, который смешивают с органической фазой, нагруженной катионами молибденила, для получения очищающей жидкости молибдена. Очищающую жидкость молибдена нагревают для отделения в ней пероксимолибденовой кислоты, чтобы образовать осадок молибденовой кислоты. Затем проводят обжиг для получения трехокиси молибдена. Способ решает проблему образования отработанной воды с содержанием аммиачного азота и может применяться для обогащения и выделения рения. 9 з.п. ф-лы, 4 пр.

Description

УРОВЕНЬ ТЕХНИКИ ИЗОБРЕТЕНИЯ
Область техники изобретения
Настоящее изобретение относится к области технологии в сфере металлургии цветных металлов, а в частности, к способу экологически чистой металлургической обработки молибдена.
Предшествующий уровень техники
Молибден – редкий важный стратегический металл. Существует более 20 типов оруденения молибдена, но самым важным является применение молибденита (MoS2), составляя 99 % или более. Молибденит представляет собой не только сырьевой материал для металлургической обработки молибдена, но также является основным источником для другого стратегического металла – рения.
В настоящее время процесс окислительного обжига при аммиачном выщелачивании молибденита широко используется по всему миру, а также представляет собой классический процесс металлургической обработки молибдена. При применении классического процесса в основном сталкиваются со следующими проблемами. (1) трехокись молибдена склонна к сублимации и улетучиванию при высокой температуре, а окисление дисульфида молибдена является сильной экзотермической реакцией, поэтому требуется подача большого объема воздуха для регулирования температуры в печи в процессе окислительного обжига молибденита, что не только усложняет обжиг, но также приводит к образованию выхлопного газа с низким содержанием двуокиси серы; (2) для продукта обжига молибдена требуется использовать растворение аммиака, чтобы получить раствор молибдата аммония; раствор молибдата аммония очищается для получения молибдата аммония, затем молибдат аммония дополнительно обжигается, чтобы образовать трехокись молибдена, а так как в этом процессе используется аммиак, неизбежно образуются отработанные вода с содержанием аммиачного азота и газ; (3) рений, который присутствует в молибдените преимущественно в форме ReS2, окисляется до Re2O7 в процессе окислительного обжига, улетучивается с выхлопным газом и в конечном итоге выделяется из элюэнта со степенью выделения только в районе 50 %, что является очень низким показателем.
В процессе обжига молибденита добавление извести может удерживать серу и предотвратить улетучивание молибдена, а также способствовать выделению рения. Однако применяется связывание молибдена для образования стабильного молибдата кальция, который больше нельзя будет подвергать выщелачиванию аммиаком. Таким образом, сначала используется сернокислотное выщелачивание с извлечением отрицательных ионов, затем осуществляется реакция с удалением аммиака для получения раствора молибдата аммония. Вследствие этого процесс образования аммиачного азота будет продолжаться.
Молибденит также может окисляться и выщелачиваться мокрым способом в автоклаве с титановым основанием, преимуществом чего является высокая степень выделения молибдена и рения. Однако окисление молибденита является сильной экзотермической реакцией, в результате которой температура закрытого автоклава составляет от 180 до 220°C, а давление в автоклаве даже доходит до 40 атмосфер при времени реакции до 6 ч. Процесс кислородной автоклавной обработки предусматривает строгие требования к оборудованию и эксплуатации, а титановое основание склонно к прогоранию и взрыву в автоклаве в условиях высокоскоростного воздушного потока, высокой температуры и высокого давления кислорода, что может привести к авариям.
Кроме того, разложение молибденита может осуществляться посредством сильных окислителей, таких как газообразный хлор и высококонцентрированная азотная кислота при нормальном давлении, однако существуют проблемы, связанные с защитой окружающей среды, транспортировкой, затратами и т.д., которые необходимо решить.
В общем, текущий процесс металлургической обработки молибдена включает проблемы, такие как загрязнение двуокисью серы, выброс отработанной воды с содержанием аммиачного азота, сложная последовательность технологического процесса и низкая степень выделения сопутствующего элемента – рения. Для решения этих проблем необходимо разработать экологически чистый и эффективный процесс металлургической обработки молибдена с помощью теоретических инноваций.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Настоящее изобретение предусматривает способ экологически чистой металлургической обработки молибдена для решения проблемы загрязнения окружающей среды в использующемся процессе плавки молибденита, в частности, проблемы отработанной воды с содержанием аммиачного азота; в то же время рассматривается переработка продуктов выщелачивания, благодаря которой может осуществляться обогащение сопутствующего элемента – рения, что способствует его выделению.
Техническое решение реализации настоящего изобретения.
Чистая металлургическая обработка молибдена включает следующие этапы:
1) обжиг молибденита с кальцием для получения кальцинированного продукта обжига молибдена и выщелачивание кальцинированного продукта обжига молибдена неорганической кислотой для получения продукта выщелачивания неорганической кислотой с содержанием молибдена;
2) извлечение молибдена в продукте выщелачивания, полученном на этапе 1), с помощью катионного экстрагента для получения органической фазы, нагруженной катионами молибденила (MoO2 2+), и рафината, где катионный экстрагент представлен одним или несколькими из следующих экстрагентов: P507, P204 или Cyanex272;
3) использование раствора перекиси водорода в качестве очищающего агента и смешивание раствора перекиси водорода с органической фазой, нагруженной катионами молибденила, для получения очищающей жидкости молибдена; и
4) нагревание очищающей жидкости молибдена для отделения в ней пероксимолибденовой кислоты, чтобы образовать осадок молибденовой кислоты, и затем обжиг с целью получения трехокиси молибдена.
Этап 1) – выщелачивание неорганической кислотой при нормальной температуре и при 75-96°C; неорганическая кислота представлена одной или несколькими из следующих кислот: серной кислотой, азотной кислотой или соляной кислотой.
Этап 1) – выщелачивание неорганической кислотой при нормальной температуре и при 85-95°C в течение 2-6 ч.
Предпочтительно, чтобы на этапе 1) концентрация неорганической кислоты составляла от 2 до 4 моль/л, а соотношение продукта выщелачивания с твердыми веществами (л/кг) – от 3:1 до 10:1.
На этапе 2) катионный экстрагент готовится в керосиновом растворе и затем добавляется; объемная доля катионного экстрагента в керосиновом растворе составляет 10-50 %.
Рафинат, полученный на этапе 2), повторно используется на этапе 1) после добавления неорганической кислоты, поглощаемой в процессе выщелачивания; допускается многократное повторное использования для обогащения и выделения рения.
Рений – это незаменимый стратегический металл для авиационных двигателей, а также он является очень важным элементом в области обеспечения национальной обороны. Молибденит часто связывают с его микроэлементом – рением, так как это основной источник этого металла. Посредством обжига с кальцием ReS2 превращается в ренистокислый кальций, который подвергается выщелачиванию вместе с молибденом в процессе выщелачивания неорганической кислотой. В относительно сильнокислой среде молибден находится в форме катиона молибденила (MoO2 2+), в то время как рений – в форме аниона рената (ReO4 -). При выделении катионов осуществляется выделение молибдена, но рений остается в рафинате. Ввиду повторного использования рафината, рений постепенно обогащается и выделяется посредством выделения анионов или в режиме ионного обмена.
На этапе 2) фазовое соотношение извлечения O/A = от 2:1 до 1:3. Используется многоступенчатое противоточное извлечение; количество ступеней – от 3 до 5.
На этапе 3) массовая процентная концентрация перекиси водорода составляется от 10 до 20 %, а фазовое соотношение очистки O/A = от 3:1 до 5:1.
Предпочтительно, чтобы на этапе 3) использовалась противоточная очистка; количество ступеней очистки – от 2 до 5.
На этапе 4) раствор перекиси водорода с содержанием молибдена нагревается до 90-100°C для отделения связанного перекисного кислорода.
Молибден имеет два важных химических свойства поликислот в водном растворе.
С одной стороны молибден в основном находится в форме изополикислотного полианиона, например, Mo7O24 6- и Mo8O26 4-, в слабокислой среде, и когда pH<2, изополикислотные полианионы молибдена начинают отделяться и постепенного превращаются в катионы молиюденила (MoO2 2+).
С другой стороны в кислотном растворе молибден склонен вступать в реакцию с перекисью водорода, и превращается в анионы перекиси ([Mo2O11(H2O)2]2-).
Благодаря вышеуказанным свойствам молибдена и посредством связывания обжига молибдена с кальцием, используя кальцинированный продукт обжига молибдена, полученный из молибденита, в качестве сырьевого материала, автор изобретения выходит за рамки стандартного процесса металлургической обработки молибдена с выделением аммиачного азота, и представляет новый экологически чистый процесс металлургической обработки молибдена без выделения аммиачного азота со следующим теоретическим обоснование: «катионный экстрагент, извлекающий катионы молибденила в перекиси водорода, выборочно удаляет молибден как очищающий агент».
Способ выполнения экологически чистого процесса металлургической обработки по настоящему изобретению значительно упрощает процесс плавки молибдена, полностью решает проблемы с загрязнением атмосферы двуокисью серы и образования отработанной воды с содержанием аммиачного азота. Технически его можно охарактеризовать как кратковременный, экологически чистый и эффективный процесс, который можно легко популяризировать в промышленном масштабе.
ПОДРОБНОЕ ОПИСАНИЕ
Далее представлено дополнительное описание технических решений по настоящему изобретению посредством конкретных вариантов осуществления. На основании этой информации специалисту в данной области техники будет ясно, что варианты осуществления используются только для наглядного изображения изобретения, а не для ограничения его объема.
В вариантах осуществления, если не указано иное, используемые технические средства являются стандартными в данной области техники.
Вариант осуществления 1
(1) Кальцинированный продукт обжига молибдена, полученный из молибденита, используется в качестве сырьевого материала; содержание молибдена составляет 13,2 % при нормальном давлении и при 95°C, для выщелачивания используется азотная кислота с концентрацией 4 моль/л, соотношение продукта выщелачивания с твердыми веществами (л/кг) составляет 3:1 при времени выщелачивания 2 ч, таким образом получают продукт выщелачивания азотной кислотой с содержанием молибдена со степенью выщелачивания молибдена 99,2 %.
(2) Сульфинированный керосин 10 % P507+90 % используется в качестве экстрагента; извлечение молибдена осуществляется в условиях фазового соотношения извлечения O/A = 2:1; режим извлечения – 5-ступенчатое противоточное извлечение; степень извлечения молибдена должна составлять 95 % и выше. Нагруженная органическая фаза и рафинат получают посредством извлечения. Нагруженная фаза подвергается удалению молибдена, а рафинат повторно используется на этапе (1) после добавления азотной кислоты, поглощаемой в процессе выщелачивания.
(3) Перекись водорода с массовой процентной концентрацией 10 % используется в качестве очищающего агента, полученная нагруженная органическая фаза очищается в условиях фазового соотношения O/A = 5:1. После 5-ступенчатого противоточного извлечения молибден может полностью удаляться для получения очищающей жидкости перекиси водорода с содержанием молибдена с концентрацией около 103,6 г/л.
(4) Раствор перекиси водорода с содержанием молибдена нагревается до 90°C для отделения связанного перекисного кислорода, чтобы образовать осадок молибденовой кислоты (степень молибденового осадка составляет приблизительно 93,2 %), после чего выполняется обжиг для получения трехокиси молибдена. К остаточной жидкости после кристаллизации добавляется окись кальция для выделения некристаллизованного молибдена с непосредственной степенью выделения 87,6 %.
Вариант осуществления 2
(1) Кальцинированный продукт обжига молибдена, полученный из молибденита, используется в качестве сырьевого материала; содержание молибдена составляет 14,5 % при нормальном давлении и при 85°C, для выщелачивания используется соляная кислота с концентрацией 3 моль/л, соотношение продукта выщелачивания с твердыми веществами (л/кг) составляет 5:1 при времени выщелачивания 4 ч, таким образом получают продукт выщелачивания соляной кислотой с содержанием молибдена со степенью выщелачивания молибдена 99,5 %.
(2) Сульфинированный керосин 30 % Cyanex272+70 % используется в качестве экстрагента; извлечение молибдена осуществляется в условиях фазового соотношения извлечения O/A = 1:1; режим извлечения – 3-ступенчатое противоточное извлечение; степень извлечения молибдена должна составлять 90,5% и выше. Нагруженная органическая фаза и рафинат получают посредством извлечения. Нагруженная фаза подвергается удалению молибдена, а рафинат повторно используется на этапе (1) после добавления соляной кислоты, поглощаемой в процессе выщелачивания.
(3) Раствор перекиси водорода с массовой процентной концентрацией 20 % используется в качестве очищающего агента, полученная нагруженная органическая фаза очищается в условиях фазового соотношения O/A = 4:1. После 2-ступенчатого противоточного извлечения молибден может полностью удаляться для получения очищающей жидкости перекиси водорода с содержанием молибдена с концентрацией около 104,8 г/л.
(4) Раствор перекиси водорода с содержанием молибдена нагревается до 100°C для отделения связанного перекисного кислорода, чтобы образовать осадок молибденовой кислоты (степень молибденового осадка составляет приблизительно 93,3 %), после чего выполняется обжиг для получения трехокиси молибдена. К остаточной жидкости после кристаллизации добавляется окись кальция для выделения некристаллизованного молибдена с непосредственной степенью выделения 84,1 %.
Вариант осуществления 3
(1) Кальцинированный продукт обжига молибдена, полученный из молибденита, используется в качестве сырьевого материала; содержание молибдена составляет 12,5 % при нормальном давлении и при 75°C, для выщелачивания используется соляная кислота с концентрацией 2 моль/л, соотношение продукта выщелачивания с твердыми веществами (л/кг) составляет 10:1 при времени выщелачивания 6 ч, таким образом получают продукт выщелачивания серной кислотой с содержанием молибдена со степенью выщелачивания молибдена 99,6 %.
(2) Сульфинированный керосин 50 % P204+50 % используется в качестве экстрагента; извлечение молибдена осуществляется в условиях фазового соотношения извлечения O/A = 1:3; режим извлечения – 5-ступенчатое противоточное извлечение; степень извлечения молибдена должна составлять 99,1% и выше. Нагруженная органическая фаза и рафинат получают посредством извлечения. Нагруженная фаза подвергается удалению молибдена, а рафинат повторно используется на этапе (1) после добавления серной кислоты, поглощаемой в процессе выщелачивания.
(3) Раствор перекиси водорода с массовой процентной концентрацией 15 % используется в качестве очищающего агента, полученная нагруженная органическая фаза очищается в условиях фазового соотношения O/A = 3:1. После 4-ступенчатого противоточного извлечения молибден может полностью удаляться для получения очищающей жидкости перекиси водорода с содержанием молибдена с концентрацией около 111 г/л.
(4) Раствор перекиси водорода с содержанием молибдена нагревается до 95°C для отделения связанного перекисного кислорода, чтобы образовать осадок молибденовой кислоты (степень молибденового осадка составляет приблизительно 93,7 %), после чего выполняется обжиг для получения трехокиси молибдена. К остаточной жидкости после кристаллизации добавляется окись кальция для выделения некристаллизованного молибдена с непосредственной степенью выделения 92,5%.
Вариант осуществления 4
(1) Кальцинированный продукт обжига молибдена, полученный из молибденита, используется в качестве сырьевого материала; содержание молибдена составляет 12,5 % при нормальном давлении и при 75°C, используется рафинат по варианту осуществления 3 и содержание серной кислоты, добавляемой в рафинат, составляет 2 моль/л для циркуляционного выщелачивания, соотношение продукта выщелачивания с твердыми веществами (л/кг) составляет 10:1 при времени выщелачивания 6 ч, таким образом получают продукт выщелачивания серной кислотой с содержанием молибдена со степенью выщелачивания молибдена 99,2 %.
(2) Сульфинированный керосин 50 % P204+50 % используется в качестве экстрагента; извлечение молибдена осуществляется в условиях фазового соотношения извлечения O/A = 1:3; режим извлечения – 5-ступенчатое противоточное извлечение; степень извлечения молибдена составляет приблизительно 98,9 %. Нагруженная органическая фаза и рафинат получают посредством извлечения. Нагруженная фаза подвергается удалению молибдена, а рафинат повторно используется на этапе (1) после добавления серной кислоты, поглощаемой в процессе выщелачивания.
(3) Раствор перекиси водорода с массовой процентной концентрацией 15 % используется в качестве очищающего агента, полученная нагруженная органическая фаза очищается в условиях фазового соотношения O/A = 3:1. После 4-ступенчатого противоточного извлечения молибден может полностью удаляться для получения очищающей жидкости перекиси водорода с содержанием молибдена с концентрацией около 110 г/л.
(4) Раствор перекиси водорода с содержанием молибдена нагревается до 95°C для отделения связанного перекисного кислорода, чтобы образовать осадок молибденовой кислоты (степень молибденового осадка составляет приблизительно 93,4 %), после чего выполняется обжиг для получения трехокиси молибдена. К остаточной жидкости после кристаллизации добавляется окись кальция для выделения некристаллизованного молибдена с непосредственной степенью выделения 91,6 %.
После многократного повторного использования, как описано в варианте осуществления 4, и при повышении концентрации рения до 0,3-0,5 г/л выполняется выделение рения с помощью анионного экстрагента или анионообменной смолы.
В следующих вариантах осуществления описываются исключительно конкретные варианты осуществления настоящего изобретения без ограничения его объема. Специалист в настоящей области техники может дополнительно вносить различные изменения на основании предыдущего уровня. Различные модификации и изменения, сделанные специалистом в данной области техники без отступления от сущности изобретения, входят в объем правовой охраны этого изобретения.

Claims (14)

1. Способ получения молибдена, включающий следующие этапы:
1) обжиг молибденита с кальцием для получения кальцинированного продукта обжига молибдена и выщелачивание кальцинированного продукта обжига молибдена неорганической кислотой для получения продукта выщелачивания неорганической кислотой с содержанием молибдена,
2) извлечение молибдена в продукте выщелачивания, полученном на этапе 1), с помощью катионного экстрагента для получения органической фазы, нагруженной катионами молибденила, и рафината, при этом катионный экстрагент представлен одним или несколькими из следующих экстрагентов: P204, P507 или Cyanex272,
3) использование раствора перекиси водорода в качестве очищающего агента и смешивание раствора перекиси водорода с органической фазой, нагруженной катионами молибденила, для получения очищающей жидкости молибдена, и
4) нагревание очищающей жидкости молибдена для отделения в ней пероксимолибденовой кислоты, чтобы образовать осадок молибденовой кислоты, и затем обжиг с целью получения трехокиси молибдена.
2. Способ по п. 1, отличающийся тем, что на этапе 1) выполняют выщелачивание неорганической кислотой при нормальной температуре и при 75-96°C, неорганическая кислота представлена одним или несколькими из следующих кислот: серной кислотой, азотной кислотой или соляной кислотой.
3. Способ по п. 2, отличающийся тем, что на этапе 1) выполняют выщелачивание неорганической кислотой при нормальном давлении и при 85-95°C в течение 2-6 ч.
4. Способ по п. 1, отличающийся тем, что на этапе 1) концентрация неорганической кислоты составляет от 2 до 4 моль/л, а соотношения продукта выщелачивания с твердыми веществами (л/кг) от 3:1 до 10:1.
5. Способ по п. 1, отличающийся тем, что на этапе 2) катионный экстрагент готовят в керосиновом растворе перед добавлением, при этом объемная доля катионного экстрагента в керосиновом растворе составляет 10-50 %.
6. Способ по п. 1, отличающийся тем, что рафинат, полученный на этапе 2), повторно используют на этапе 1) после добавления неорганической кислоты, поглощаемой в процессе выщелачивания, допускается многократное повторное использование для обогащения и выделения/восстановления рения.
7. Способ по п. 1, отличающийся тем, что на этапе 2) фазовое соотношение извлечения = от 2:1 до 1:3, и используют многоступенчатое противоточное извлечение с количеством ступеней от 3 до 5.
8. Способ по п. 1, отличающийся тем, что на этапе 3) массовая процентная концентрация перекиси водорода составляется от 10 до 20 %, а фазовое соотношение очистки = от 3:1 до 5:1.
9. Способ по любому из пп. 1-8, отличающийся тем, что на этапе 3) используют противоточную очистку с количеством ступеней от 2 до 5.
10. Способ по любому из пп. 1-8, отличающийся тем, что на этапе 4) раствор перекиси водорода с содержанием молибдена нагревают до 90-100°C для отделения связанного перекисного кислорода.
RU2020127506A 2018-05-03 2019-04-26 Способ очистки, применяемый в металлургии молибдена RU2764728C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201810414821.8 2018-05-03
CN201810414821.8A CN108396141B (zh) 2018-05-03 2018-05-03 一种钼的清洁冶金方法
PCT/CN2019/084445 WO2019210810A1 (zh) 2018-05-03 2019-04-26 一种钼的清洁冶金方法

Publications (1)

Publication Number Publication Date
RU2764728C1 true RU2764728C1 (ru) 2022-01-19

Family

ID=63100979

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020127506A RU2764728C1 (ru) 2018-05-03 2019-04-26 Способ очистки, применяемый в металлургии молибдена

Country Status (7)

Country Link
US (1) US11959152B2 (ru)
JP (1) JP7061816B2 (ru)
CN (1) CN108396141B (ru)
AU (1) AU2019262261B2 (ru)
CL (1) CL2020002731A1 (ru)
RU (1) RU2764728C1 (ru)
WO (1) WO2019210810A1 (ru)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108396141B (zh) 2018-05-03 2019-09-10 中南大学 一种钼的清洁冶金方法
CN109650447A (zh) * 2019-01-31 2019-04-19 成都虹波钼业有限责任公司 一种环保高效的钼酸铵生产工艺
CN111041244A (zh) * 2019-12-20 2020-04-21 核工业北京化工冶金研究院 一种胺类含钼三相物的处理回收方法
CN114686705B (zh) * 2020-12-31 2023-08-22 郑州大学 一种从辉钼矿中回收金属元素的方法
CN114686683B (zh) * 2020-12-31 2024-01-30 中南大学 一种基于钼焙砂从辉钼矿中回收多种金属元素的方法
CN114686682B (zh) * 2020-12-31 2023-05-30 郑州大学 一种辉钼矿综合冶炼方法
CN114686706B (zh) * 2020-12-31 2023-09-26 郑州大学 一种从钼铅矿中回收钼、铅的方法
CN114686684B (zh) * 2020-12-31 2023-05-30 郑州大学 一种从钼精矿中回收金属元素的方法
CN114686704B (zh) * 2020-12-31 2023-05-30 郑州大学 一种钼矿和钨矿的联合冶炼工艺
CN113502403A (zh) * 2021-06-02 2021-10-15 四川星明能源环保科技有限公司 一种从废催化剂碱性溶液中回收钼的方法
CN114369718B (zh) * 2021-12-17 2023-12-15 中核沽源铀业有限责任公司 一种双氧水分离钼合格液中夹带有机相的系统及方法
CN114108016B (zh) * 2021-12-23 2023-05-30 大连理工大学 一种膜电耦合制备高纯纳米三氧化钼和钼基水凝胶的方法
CN114350945B (zh) * 2021-12-31 2024-02-09 中核沽源铀业有限责任公司 一种铀钼矿湿法冶炼钼反萃取三相物分离、回收方法
CN116395744A (zh) * 2023-04-11 2023-07-07 辽宁天桥新材料科技股份有限公司 一种钼酸铵的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU208954A1 (ru) * И. Ф. Егоров, Д. И. Скороваров , В. А. Кузнецов
RU2031167C1 (ru) * 1992-08-21 1995-03-20 Институт неорганической химии СО РАН Способ переработки вольфрамо-молибденовых концентратов
RU2195510C2 (ru) * 2001-02-23 2002-12-27 Уфимцев Виталий Павлович Способ извлечения молибдена из кислых растворов
RU2441084C2 (ru) * 2010-03-04 2012-01-27 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Способ переработки молибденитового концентрата
WO2013142022A1 (en) * 2012-03-23 2013-09-26 Kennecott Utah Copper Llc Process for the conversion of molybdenite to molybdenum oxide
CN105838908A (zh) * 2016-04-08 2016-08-10 中南大学 一种高效清洁的钼冶炼方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4278644A (en) * 1980-04-15 1981-07-14 Cabot Corporation Process for partitioning Mo and W from a mixed CaMoO4 -CaWO4 precipitate
US4328191A (en) * 1980-05-12 1982-05-04 Gte Laboratories Incorporated Process for the recovery of molybdenum from spent catalysts
JP6802582B2 (ja) * 2016-08-26 2020-12-16 中南大学 リンタングステン酸の調製方法
CN108728674B (zh) * 2018-04-20 2020-08-28 中南大学 一种从粗钼酸中提取钼并制备钼产品的方法
CN108396141B (zh) * 2018-05-03 2019-09-10 中南大学 一种钼的清洁冶金方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU208954A1 (ru) * И. Ф. Егоров, Д. И. Скороваров , В. А. Кузнецов
RU2031167C1 (ru) * 1992-08-21 1995-03-20 Институт неорганической химии СО РАН Способ переработки вольфрамо-молибденовых концентратов
RU2195510C2 (ru) * 2001-02-23 2002-12-27 Уфимцев Виталий Павлович Способ извлечения молибдена из кислых растворов
RU2441084C2 (ru) * 2010-03-04 2012-01-27 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Способ переработки молибденитового концентрата
WO2013142022A1 (en) * 2012-03-23 2013-09-26 Kennecott Utah Copper Llc Process for the conversion of molybdenite to molybdenum oxide
CN105838908A (zh) * 2016-04-08 2016-08-10 中南大学 一种高效清洁的钼冶炼方法

Also Published As

Publication number Publication date
CN108396141B (zh) 2019-09-10
AU2019262261A1 (en) 2020-08-13
AU2019262261B2 (en) 2021-09-09
JP2021515845A (ja) 2021-06-24
CN108396141A (zh) 2018-08-14
US11959152B2 (en) 2024-04-16
US20200399738A1 (en) 2020-12-24
JP7061816B2 (ja) 2022-05-02
CL2020002731A1 (es) 2021-03-05
WO2019210810A1 (zh) 2019-11-07

Similar Documents

Publication Publication Date Title
RU2764728C1 (ru) Способ очистки, применяемый в металлургии молибдена
Liu et al. A novel method to extract vanadium and chromium from vanadium slag using molten NaOH‐NaNO 3 binary system
KR102441721B1 (ko) 희토류 원소의 추출 및 분리 방법
CN105838895B (zh) 一种从含锂富锰渣中提取锂和锰的方法
TWI614347B (zh) 鋰離子電池廢料之瀝濾方法、及來自鋰離子電池廢料之金屬之回收方法
JP2014029006A (ja) 高純度硫酸コバルト水溶液の製造方法
AU2015381819A1 (en) Method for recovering scandium
AU2019331801B2 (en) Method for producing nickel sulfate compound
US3458277A (en) Process for the recovery of molybdenum values as high purity ammonium paramolybdate from impure molybdenum-bearing solution,with optional recovery of rhenium values if present
CN111020189A (zh) 一种钕铁硼氧化焙烧料矿浆萃取的方法
AU2018247569A1 (en) A method for preparing a leach feed material
US3206276A (en) Process for recovery of pure v2o5 from vanadium bearing materials
CN109930008B (zh) 一种钒渣清洁提钒的方法
CN114350963B (zh) 一种钙化提钒尾渣的回收利用方法
CN111020233B (zh) 一种无铵沉钒制备五氧化二钒的方法
Ziyadanoğullari et al. Recovery of uranium, nickel, molybdenum, and vanadium from floated asphaltite ash
CN103757445B (zh) 软锰矿的浸出方法
JPH0222426A (ja) 希土類元素の回収方法
WO2020075288A1 (ja) ニッケル酸化鉱石の処理方法及び処理装置
JP4961600B2 (ja) 亜鉛精鉱の処理方法
CN114686706B (zh) 一种从钼铅矿中回收钼、铅的方法
WO2022003747A1 (en) Process for the simultaneous treatment of residues of the non-ferrous metallurgical industry to produce pigments based on iron oxides and other valued products, in accordance with circular economy strategies
TWI427154B (zh) 含鎢廢觸媒中的金屬回收方法
US918908A (en) Process of extracting silver from its ores.
RU2261229C1 (ru) Способ получения чистых соединений молибдена из отходов производства