RU2759536C1 - Нелинейно-оптический и фотолюминесцентный материал редкоземельного скандобората самария и способ его получения - Google Patents

Нелинейно-оптический и фотолюминесцентный материал редкоземельного скандобората самария и способ его получения Download PDF

Info

Publication number
RU2759536C1
RU2759536C1 RU2020130063A RU2020130063A RU2759536C1 RU 2759536 C1 RU2759536 C1 RU 2759536C1 RU 2020130063 A RU2020130063 A RU 2020130063A RU 2020130063 A RU2020130063 A RU 2020130063A RU 2759536 C1 RU2759536 C1 RU 2759536C1
Authority
RU
Russia
Prior art keywords
crystals
rare earth
melt
samarium
scandoborate
Prior art date
Application number
RU2020130063A
Other languages
English (en)
Inventor
Артем Борисович Кузнецов
Константин Александрович Кох
Аммар Жамус
Валерий Анатольевич Светличный
Екатерина Александровна Симонова
Надежда Георгиевна Кононова
Вячеслав Сергеевич Шевченко
Александр Егорович Кох
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт геологии и минералогии им. В.С. Соболева Сибирского отделения Российской академии наук (Институт геологии и минералогии СО РАН, ИГМ СО РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт геологии и минералогии им. В.С. Соболева Сибирского отделения Российской академии наук (Институт геологии и минералогии СО РАН, ИГМ СО РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт геологии и минералогии им. В.С. Соболева Сибирского отделения Российской академии наук (Институт геологии и минералогии СО РАН, ИГМ СО РАН)
Priority to RU2020130063A priority Critical patent/RU2759536C1/ru
Application granted granted Critical
Publication of RU2759536C1 publication Critical patent/RU2759536C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/08Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
    • C01B35/10Compounds containing boron and oxygen
    • C01B35/12Borates
    • C01B35/128Borates containing plural metal or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/241Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion containing two or more rare earth metals, e.g. NdPrO3 or LaNdPrO3
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7759Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing samarium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/778Borates
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • C30B9/04Single-crystal growth from melt solutions using molten solvents by cooling of the solution
    • C30B9/08Single-crystal growth from melt solutions using molten solvents by cooling of the solution using other solvents
    • C30B9/12Salt solvents, e.g. flux growth
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

Изобретение относится к получению экологически чистых источников света и люминофоров. Нелинейно-оптический и фотолюминесцентный материал редкоземельного скандобората самария состава Sm0,78Sc3,22(BO3)4нецентросимметричной моноклинной структуры имеет пространственную группу Сс с параметрами решетки а=7,6819 Å, b=9,8088 Å, с=11,9859 Å, β=105,11, обеспечивает генерацию второй гармоники при накачке на длине волны 1064 нм, излучает свет от 550 нм до 750 нм. Для получения указанного материала методом спонтанной кристаллизации готовят исходную смесь, состоящую из компонентов Sm0,78Sc3,22(BO3)4, взятых в соотношении Sm:Sc=0,3:0,7, содержащую оксид самария Sm2O3, оксид скандия Sc2O3, борную кислоту Н3ВО3, карбонат лития Li2CO3, фторид лития LiF, и компонентов флюса, взятых в соотношении 0,59LiBO2:0,41LiF. Нагревают исходную смесь до 1000°С для получения раствор-расплава, в который вводят платиновую петлю. Снижают температуру со скоростью 20°С/ч до появления первых кристаллов и выращивают спонтанные кристаллы в интервале 910-870°С со скоростью снижения температуры 2°С/сутки. Изобретение позволяет расширить арсенал материалов, обладающих нелинейно-оптическими и фотолюминесцентными свойствами, на основе редкоземельных скандоборатов самария стабильной структуры. 2 н.п. ф-лы, 3 ил., 1 пр.

Description

Изобретение относится к соединениям скандоборатов с общей формулой ReSc3(BO3)4, где Re - катионы редкоземельных элементов (РЗЭ), в частности, к кристаллам нецентросимметричной моноклинной фазы Сс скандобората самария Sm0,78Sc3,22(BO3)4, обладающего нелинейно-оптическими и фотолюминесцентными свойствами.
В настоящее время большое количество исследований направлено на разработку новых нелинейно-оптических материалов и экологически чистых источников света и люминофоров. Одним из перспективных классов таких материалов являются ортобораты РЗЭ, которые имеют очень высокую химическую и механическую стойкость и обладают широким разнообразием химического состава и кристаллической структуры. Особый интерес представляют редкоземельные ортобораты состава ReSc3(ВО3)4 (Re-Ce,Pr,Nd,Sm,Eu), которые кристаллизуются как в ромбоэдрической пространственной группе R32 без центра симметрии (структура минерала хантита), так и в моноклинной группе С2/с с центром симметрии. Благодаря разнообразию структур бораты такого состава обладают комплексом ценных свойств. Кристаллы со структурой хантита используются в качестве активных элементов в нелинейной оптике, а кристаллы с центром симметрии пригодны для использования в качестве люминофоров и их матриц, на основе которых можно получать функциональные материалы для люминесцентных ламп, диодов, различных видов дисплеев и т.д.
В работе [G.М. Kuzmicheva, I.A. Kaurova, V.В. Rybakov, V.V. Podbel'skiy and N.К. Chuykin. Structural instability in single-crystal rare-earth scandium borates RESc3(BO3)4. // Crystal Growth & Design 2018, 18 (3), pp. 1571-1580] приведены уточненные пространственные группы, исследовано влияние размера ионного радиуса редкоземельного элемента на структурные особенности и определен реальный состав некоторых соединений ReSc3(BO3)4, где Re=Nd или Pr. Показано, что для поддержания стабильности кристаллической структуры характерно перераспределение зарядов между Sc и Re. Составы выращенных кристаллов для неодима и празеодима соответствовали Nd1.25Sc2.75(BO3)4 и Pr1.1Sc2.9(BO3)4, Pr1.25Sc2.75(BO3)4. Соединения ReSc3(BO3)4 имеют инконгруэнтный характер плавления в интервале температур 1475-1495°С. Выращивание кристаллов проводили из расплава стехиометрического состава с избытком В2О3 методом Чохральского [S.T. Durmanov, O.V. Kuzmin, G.M. Kuzmicheva, S.A. Kutovoi, A.A. Martynov, E.K.Nesynov, V.L. Panyutin, YuP. Rudnitsky, G.V. Smimov, V.L. Hait, V.I. Chizhikov. Binary rare-earth scandium borates for diode-pumped lasers // Opt. Mater., 18 (2001), pp. 243-284]. В нашей работе [Федорова М.В., Кононова Н.Г., Кох А.Е., Шевченко B.C. Выращивание кристаллов ReBO3 (Re - La, Y, Sc) и LaSc3(BO3)4 из раствор-расплавов системы LiBO2-LiF // Неорганические материалы. 2013. V.49. Р. 505-509] для выращивания простых и сложных ортоборатов РЗЭ в качестве флюса использован эвтектический состав 0,59LiBO2-0.41LiF, обладающий высокой растворяющей способностью для ортоборатов РЗЭ и пригодный для выращивания кристаллов в температурном интервале до 1000°С. Соединения ReSc3(BO3)4 для всего ряда РЗЭ недостаточно изучены. Поиск скандоборатов такого состава представляет интерес, т.к. позволяет обнаружить новые материалы, превосходящие по своим функциональным свойствам используемые в настоящее время. Такие материалы - потенциальные носители новых нелинейно-оптических и фотолюминесцентных свойств. Физико-химические свойства будут зависеть от структурных особенностей и состава полученных материалов. Известно, что SmSc3(ВО3)4 кристаллизуется в тригональной сингонии с пространственной группой R32 без центра симметрии (структура минерала хантита).
Технической проблемой, решение которой обеспечивается при осуществлении изобретения, является расширение арсенала материалов, обладающих нелинейно-оптическими и фотолюминесцентными свойствами на основе редкоземельных скандоборатов самария стабильной структуры.
Техническим результатом изобретения является получение кристалла редкоземельного скандобората самария нецентросимметричной моноклинной фазы, стабильность структуры которой связана с частичным замещением Sm в позициях Sc.
Технический результат достигнут получением редкоземельного скандоборта самария нецентросимметричной моноклинной структуры Sm0,78Sc3,22(BO3)4, имеющего пространственную группу Сс с параметрами элементарной ячейки а=7.6819
Figure 00000001
, b=9.8088
Figure 00000001
, с=11.9859
Figure 00000001
, р=105.11°, обеспечивающий генерацию второй гармоники при накачке на длине волны 1064 нм и обладающего способностью излучать свет от 550 нм до 750 нм, из раствор-расплава методом спонтанной кристаллизации на платиновую петлю.
Технический результат достигается также тем, что способ получения редкоземельного скандобората самария состава Sm0,78Sc3,22(BO3)4 нецентросимметричной моноклинной структуры из раствор-расплава методом спонтанной кристаллизации, включает приготовление исходной смеси, состоящей из компонентов Sm0,78Sc3,22(BO3)4, взятых в соотношении Sm: Sc=0,3:0,7 и компонентов флюса, взятых в соотношении 0,59LiBO2:0.41LiF, нагрев полученной исходной смеси до температуры 1000°С для получения раствор-расплава, введение платиновой петли в раствор-расплав и выращивание спонтанных кристаллов в интервале 910-870°С со скоростью снижения температуры 2 град/сутки.
На фиг. 1 представлена фотография спонтанных кристаллов Sm0,78Sc3,22(BO3)4, выращенных на платиновую петлю с использованием флюса 0,59LiBO2:0.41LiF в интервале 910-870°С; на фиг. 2 - интенсивность генерации второй гармоники (ГВГ) от Nd:YAG лазера на длине волны 1064 нм в зависимости от размера частиц для кристаллов Sm0,78Sc3,22(BO3)4 и KDP; на фиг. 3-спектр люминесценции Sm0,78Sc3,22(BO3)4 при комнатной температуре, возбуждаемый УФ-излучением с длиной волны 405 нм.
Соединение Sm0,78Sc3,22(BO3)4 кристаллизуется в пространственной группе Сс а=7.6819
Figure 00000001
, b=9.8088
Figure 00000001
, с=11.9859
Figure 00000001
, β=105.110. Структура была уточнена методом Ритвельда. В качестве структурной модели использовали моноклинную фазу LaSc3(ВО3)4 с пр. гр. Сс. [Guofu Wang Meiyun Не Wenzhi Chen Zhoubin Lin Shaofang Lu Qiangjin Wu. Structure of low temperature phase γ-LaSc3(BO3)4 crystal Structure of low temperature phase γ-LaSc3(BO3)4 crystal // Mat Res Innovat (1999) 2:341-344].
Полученные данные интенсивности ГВГ от интенсивности накачки для фракций 50-100 мкм кристаллов Sm0,78Sc3,22(BO3)4 и KDP (фиг. 2) подтверждают, что все фракции кристаллов Sm0,78Sc3,22(BO3)4 имеют коэффициент нелинейности, выше, чем KDP. Интенсивность ГВГ для всех образцов увеличивается с увеличением размера частиц, что свидетельствует о выполнении в них условий фазового синхронизма. Полученные данные также позволяют оценить эффективность нелинейного преобразования для выращенных образцов. Интенсивность ГВГ для Sm0,78Sc3,22(BO3)4 в 2.6 раза больше, чем у порошка KDP при плотности мощности излучения накачки ~20 МВт/см2.
Спектр фотолюминесценции Sm0,78Sc3,22(BO3)4, при комнатной температуре, возбуждаемый УФ-излучением с длиной волны 405 нм, приведенный на фиг. 3, состоит из четырех полос в спектральном диапазоне 550-750 нм, соответствующих электронным переходам с метастабильного уровня самария 4G5/2 на уровни терма 6HJ (J=5/2, 7/2, 9/2 и 11/2). Два наиболее интенсивных пика люминесценции расположены на 602 и 645 нм и соответствуют 4G5/26H7/2 и 4G5/26Н5/2 переходам.
Предлагаемое техническое решение иллюстрируется следующим примером выращивания из раствор-расплава редкоземельного скандоборта самария состава Sm0,78Sc3,22(BO3)4 методом спонтанной кристаллизации на платиновую петлю.
Пример. Подготовку раствор-расплава проводили из исходной смеси, состоящей из компонентов Sm0,78Sc3,22(ВО3)4, взятых в соотношении Sm: Sc=0,3: 0,7 и компонентов флюса, взятых в соотношении 0,59LiBO2: 0.41LiF, содержащей соответственно, мас. %: оксид самария Sm2O3 - 10,2%, оксид скандия Sc2O3 - 9,42%, борную кислоту Н3ВО3 - 48,23%, карбонат лития Li2CO3 - 21,60%, фторид лития LiF - 10,54%. Исходную смесь перетирали и загружали в платиновый тигель. Тигель помещали в печь и нагревали до 1000°С для получения раствор-расплава. Платиновую петлю устанавливали в готовый раствор-расплав и снижали температуру со скоростью 20 град/час до появления первых кристаллов. Кристаллы выращивали в интервале 910-870°С со скоростью 2 град/сутки. Платиновую петлю с друзами кристаллов извлекали из расплава и охлаждали до комнатной температуры.
Установлено, что вырастить нецентросимметричную моноклинную фазу SmSc3(BO3)4 не удается из раствор-расплава с компонентами, взятыми в стехиометрическом соотношении Sm:Sc=0,25:0,75. В этом случае первичной фазой кристаллизации является ортоборат скандия ScBO3, кристаллизующийся в пространственной группе R-3 (структурный тип кальцита). При увеличении в раствор-расплаве концентрации компонентов SmSc3(ВО3)4, равновесная температура повышалась, что приводило к кристаллизации SmSc3(BO3)4 в тригональной сингонии с пространственной группой R32 без центра симметрии (структура минерала хантита). Установлено, что при изменении соотношения Sm от 0,3 до 0,6, a Sc от 0,7 до 0,4 можно вырастить кристаллы нецентросимметричной моноклинной фазы, состав которых можно представить в виде твердых растворов Sm1-xSc3+х(BO3)4, х=0,15-0,22. Однако при увеличении в раствор-расплаве содержания Sm>0,3 происходит закономерное снижение температуры начала кристаллизации от 880 до 815°С, что приводит к повышению вязкости раствор-расплава и ухудшению качества кристаллов.
Таким образом, найденные экспериментальным путем соотношения компонентов в раствор-расплаве Sm: Sc=0,3:0,7 являются оптимальными для выращивания нецентросимметричной моноклинной фазы Sm0,78Sc3,22(BO3)4. Равновесная температура или температура начала кристаллизации для данного раствор-расплава соответствовала 910°С.
Экспериментальным путем найдено оптимальное соотношение компонентов в раствор-расплаве, и выращена нецентросимметричная моноклинная фаза Sm0,78Sc3,22(BO3)4, кристаллизующаяся в пространственной группе Сс с параметрами элементарной ячейки а=7.6819
Figure 00000001
, b=9.8088
Figure 00000001
, с=11.9859
Figure 00000001
, 0=105.11°.
Таким образом, созданием новой нецентросимметричной моноклинной фазы Sm0,78Sc3,22(BO3)4 решается задача расширения арсенала материалов, обладающих нелинейно-оптическими и фотолюминесцентными свойствами, найден способ выращивания кристаллов из раствор-расплава, содержащего оптимальные соотношения компонентов.

Claims (2)

1. Нелинейно-оптический и фотолюминесцентный материал редкоземельного скандобората самария состава Sm0,78Sc3,22(BO3)4 нецентросимметричной моноклинной структуры, имеющий пространственную группу Сс с параметрами решетки а=7,6819 Å, b=9,8088 Å, с=11,9859 Å, β=105,11, обеспечивающий генерацию второй гармоники при накачке на длине волны 1064 нм, излучающий свет от 550 нм до 750 нм и выращенный из раствор-расплава методом спонтанной кристаллизации на платиновую петлю.
2. Способ получения нелинейно-оптического и фотолюминесцентного материала редкоземельного скандобората самария состава Sm0,78Sc3,22(BO3)4 нецентросимметричной моноклинной структуры методом спонтанной кристаллизации, включающий приготовление исходной смеси, состоящей из компонентов Sm0,78Sc3,22(BO3)4, взятых в соотношении Sm:Sc=0,3:0,7, и компонентов флюса, взятых в соотношении 0,59LiBO2:0,41LiF, содержащей оксид самария Sm2O3, оксид скандия Sc2O3, борную кислоту Н3ВО3, карбонат лития Li2CO3, фторид лития LiF, нагрев полученной исходной смеси до температуры 1000°С для получения раствор-расплава, введение платиновой петли в раствор-расплав, снижение температуры со скоростью 20°С/ч до появления первых кристаллов и выращивание спонтанных кристаллов в интервале 910-870°С со скоростью снижения температуры 2°С/сутки.
RU2020130063A 2020-09-11 2020-09-11 Нелинейно-оптический и фотолюминесцентный материал редкоземельного скандобората самария и способ его получения RU2759536C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020130063A RU2759536C1 (ru) 2020-09-11 2020-09-11 Нелинейно-оптический и фотолюминесцентный материал редкоземельного скандобората самария и способ его получения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020130063A RU2759536C1 (ru) 2020-09-11 2020-09-11 Нелинейно-оптический и фотолюминесцентный материал редкоземельного скандобората самария и способ его получения

Publications (1)

Publication Number Publication Date
RU2759536C1 true RU2759536C1 (ru) 2021-11-15

Family

ID=78607316

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020130063A RU2759536C1 (ru) 2020-09-11 2020-09-11 Нелинейно-оптический и фотолюминесцентный материал редкоземельного скандобората самария и способ его получения

Country Status (1)

Country Link
RU (1) RU2759536C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU175162A1 (ru) * Р. И. Смирнова , Э. Я. Лесина Государственный институт прикладной химии Способ получения катодолюминофоров
JP2008194622A (ja) * 2007-02-13 2008-08-28 Univ Nagoya 環境浄化材、環境浄化装置及び環境浄化方法
WO2011066685A1 (zh) * 2009-12-04 2011-06-09 海洋王照明科技股份有限公司 硼酸盐发光材料及其制造方法
RU2710191C1 (ru) * 2019-04-11 2019-12-24 Федеральное государственное бюджетное учреждение науки Институт геологии и минералогии им. В.С. Соболева Сибирского отделения Российской академии наук (Институт геологии и минералогии СО РАН, ИГМ СО РАН) Фотолюминесцентный материал редкоземельного ортобората и способ его получения

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU175162A1 (ru) * Р. И. Смирнова , Э. Я. Лесина Государственный институт прикладной химии Способ получения катодолюминофоров
JP2008194622A (ja) * 2007-02-13 2008-08-28 Univ Nagoya 環境浄化材、環境浄化装置及び環境浄化方法
WO2011066685A1 (zh) * 2009-12-04 2011-06-09 海洋王照明科技股份有限公司 硼酸盐发光材料及其制造方法
RU2710191C1 (ru) * 2019-04-11 2019-12-24 Федеральное государственное бюджетное учреждение науки Институт геологии и минералогии им. В.С. Соболева Сибирского отделения Российской академии наук (Институт геологии и минералогии СО РАН, ИГМ СО РАН) Фотолюминесцентный материал редкоземельного ортобората и способ его получения

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ФЕДОРОВА М.В. и др., Выращивание кристаллов MBO3 (M - La, Y, Sc) и LaSc3(BO3)4 из раствор-расплавов системы LiBO2-LiF, Неорганические материалы, 2013. т. 49, N 5, сс. 505-509. *

Similar Documents

Publication Publication Date Title
WO2021004078A1 (zh) 一种掺谱钪酸钆可见波段激光晶体及其制备方法
CN102534777A (zh) 一种掺钕磷酸钆钾激光晶体及其制备方法和应用
CN110607557A (zh) 一种掺谱氟化铅可见波段激光晶体及其制备方法
CN1837418A (zh) 掺镱硼酸镧钙激光晶体及其制备方法和用途
CN101212122A (zh) 一种掺镱硼酸氧钙钆镧激光晶体及其制备方法和用途
RU2759536C1 (ru) Нелинейно-оптический и фотолюминесцентный материал редкоземельного скандобората самария и способ его получения
CN101212123A (zh) 一种掺镱硼酸氧钙钇镧激光晶体及其制备方法和用途
CN101037796A (zh) 掺钕硼酸氧钙钆镧激光晶体及其制备方法和用途
CN102191551A (zh) 掺钕钼酸钾钡钆激光晶体及其制备方法和用途
CN1837419B (zh) 掺镱硼酸氧钙钇镧激光晶体及其制备方法和用途
Zhang et al. Efficient Quantum Cutting in Tb 3+/Yb 3+ Codoped $\alpha $-NaYF 4 Single Crystals Grown by Bridgman Method Using KF Flux for Solar Photovoltaic
CN105350083A (zh) 硼酸碲铋化合物、硼酸碲铋非线性光学晶体、硼酸碲铋闪烁晶体及制备方法和应用
CN102086529B (zh) 一种铒镱双掺钽铌酸钾锂单晶的提拉制备方法
CN101676443B (zh) 掺钕钨酸镧铯激光晶体及其制备方法和用途
Maltsev et al. Synthesis and flux-growth of rare-earth magnesium pentaborate crystals RMgB5O10 (R= Y, Gd, La, Tm and Yb)
CN1318659C (zh) 掺钕硼酸镧锶激光晶体及其制备方法
Jubera et al. Crystal growth and optical characterizations of Yb3+-doped LiGd 6 O 5 (BO 3) 3 single crystal: a new promising laser material
Gao et al. Growth of single crystal K 3 Y 3 (BO 3) 4 with low-symmetry structure and multi-type of substitutional sites
RU2753258C1 (ru) Фотолюминесцентный материал скандобората самария SmSc(BO3)2
CN101387010A (zh) 掺钕硅酸钪激光晶体及其制备方法
CN1916243B (zh) 掺稀土离子的自倍频激光晶体钒酸钇钙及其制备方法
CN102888654A (zh) 掺镨钨酸镥钾激光晶体及其制备方法
CN100415949C (zh) 掺镱硼酸钆钇氧钙自倍频激光晶体
CN1318656C (zh) 掺钕硼酸二镧钡激光晶体及其制备方法和用途
CN1332074C (zh) 硼酸钆锶激光晶体及其制备方法