RU2751194C1 - Теплоотверждаемая литейная масса на биооснове, изготовленное из нее формованное тело, а также способ изготовления такого формованного тела - Google Patents

Теплоотверждаемая литейная масса на биооснове, изготовленное из нее формованное тело, а также способ изготовления такого формованного тела Download PDF

Info

Publication number
RU2751194C1
RU2751194C1 RU2020130079A RU2020130079A RU2751194C1 RU 2751194 C1 RU2751194 C1 RU 2751194C1 RU 2020130079 A RU2020130079 A RU 2020130079A RU 2020130079 A RU2020130079 A RU 2020130079A RU 2751194 C1 RU2751194 C1 RU 2751194C1
Authority
RU
Russia
Prior art keywords
acrylate
methacrylate
diacrylate
polyfunctional
bio
Prior art date
Application number
RU2020130079A
Other languages
English (en)
Inventor
Виталий ДАТСЮК
Адам ОРЕНДОРЦ
Оскар АХАТЦ
Original Assignee
Шок Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Шок Гмбх filed Critical Шок Гмбх
Application granted granted Critical
Publication of RU2751194C1 publication Critical patent/RU2751194C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/003Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor characterised by the choice of material
    • B29C39/006Monomers or prepolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/02Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/04Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B26/06Acrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/10Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B26/18Polyesters; Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/02Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polycarbonates or saturated polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F289/00Macromolecular compounds obtained by polymerising monomers on to macromolecular compounds not provided for in groups C08F251/00 - C08F287/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F292/00Macromolecular compounds obtained by polymerising monomers on to inorganic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03CDOMESTIC PLUMBING INSTALLATIONS FOR FRESH WATER OR WASTE WATER; SINKS
    • E03C1/00Domestic plumbing installations for fresh water or waste water; Sinks
    • E03C1/12Plumbing installations for waste water; Basins or fountains connected thereto; Sinks
    • E03C1/18Sinks, whether or not connected to the waste-pipe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/04Polymers of esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/04Polymers of esters
    • B29K2033/12Polymers of methacrylic acid esters, e.g. PMMA, i.e. polymethylmethacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2503/00Use of resin-bonded materials as filler
    • B29K2503/04Inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2509/00Use of inorganic materials not provided for in groups B29K2503/00 - B29K2507/00, as filler
    • B29K2509/02Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00603Ceiling materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/60Flooring materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2244Oxides; Hydroxides of metals of zirconium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2251Oxides; Hydroxides of metals of chromium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • C08K2003/2272Ferric oxide (Fe2O3)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/016Additives defined by their aspect ratio

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Polymerisation Methods In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

Изобретение относится к теплоотверждаемой литейной массе на биооснове, включающей в себя: (а) один или несколько моно- и один или несколько полифункциональных акрил- и/или метакрилбиомономеров растительного или животного происхождения, (b) один или несколько полимеров, или сополимеров, выбранных из полиакрилатов, полиметакрилатов, полиолов, сложных полиэфиров из переработанного материала или растительного или животного происхождения, (с) неорганические частицы наполнителя природного происхождения, при этом доля моно- и полифункционального или моно- и полифункциональных акрил- и метакрилбиомономеров составляет 10-40 вес.%, доля полимера или полимеров или сополимеров 1-16 вес.% и доля неорганических частиц наполнителя 44-89 вес.%. Изготовленное из соответствующей изобретению литейной массы формованное тело состоит преимущественно полностью из биологических, то есть природных, материалов. Изготовление биокомпозитных материалов из частиц наполнителя и способных к сшиванию материалов, изготавливаемых из возобновляемых источников, сокращает расход изготовленных нефтехимическим путем материалов и, тем самым, расход нефти и положительно сказывается на окружающей среде. 3 н. и 11 з.п. ф-лы, 9 табл.

Description

Изобретение касается теплоотверждаемой литейной массы на биооснове, пригодной для изготовления формованного тела, состоящей из полимерной матрицы, образованной из полимеризованной литейной массы, со встроенными в нее частицами наполнителя. Далее изобретение касается изготовленного из такой литейной массы формованного тела, например, в форме кухонной раковины, умывальника, рабочей поверхности, ванны для купания или душевого поддона или рабочей поверхности, при этом полимеризованная литейная масса образует биокомпозитный материал, состоящий из полимерной матрицы со встроенными частицами наполнителя.
Соответствующий изобретению биокомпозитный материал или, соответственно, соответствующее изобретению формованное тело изготавливается, когда для изготовления соответствующей изобретению литейной массы сначала неорганические частицы наполнителя диспергируются в растворе по меньшей мере одного био(со)полимера в смесь из моно- и полифункциональных биомономеров, после чего литейная масса впрыскивается в форму, полое пространство формы заполняется, и материал фиксируется соответственно форме полого пространства с помощью тепла путем вызванной теплом полимеризации монофункциональных биомономеров и вызванной теплом сшивки полифункциональных биомономеров.
Известно изготовление кухонных раковин, например, из полимеризованной литейной массы. Такая кухонная раковина имеет, как следствие, полимерную матрицу, в которую для установления желаемых свойств встроены частицы наполнителя. Литейная масса изготавливается применением пригодных сшиваемых полимеров, при этом используются полимеры нефтехимического происхождения, то есть полимеры на основе нефти. Действительно, изготовленные таким образом кухонные раковины демонстрируют очень хорошие механические свойства и термически стабильны в большом диапазоне температур. Вместе с тем, использование такого рода полимеров имеет недостаток, не в последнюю очередь, по причинам долговечности (защита окружающей среды и бережное отношение к ресурсам).
Поэтому в основе изобретения лежит задача по созданию улучшенной литейной массы.
Для решения задачи предусмотрена теплоотверждаемая литейная масса на биооснове, включающая в себя:
(a) один или несколько моно- и один или несколько полифункциональных акрил- и метакрил-биомономеров растительного или животного происхождения
(b) один или несколько полимеров или сополимеров, выбранных из полиакрилатов, полиметакрилатов, полиолов, сложных полиэфиров из перерабатываемого материала растительного или животного происхождения,
(c) неорганические частицы наполнителя природного происхождения,
при этом доля моно- и полифункционального акрил- и метакрил-биомономера или мономеров составляет 10-40 вес.%, доля полимера или полимеров или сополимеров составляет 1-16 вес.% и доля неорганических частиц наполнителя составляет 44-89 вес.%.
Соответствующая изобретению литейная масса отличается тем, что она большей частью, если не на 100%, состоит из биологических или, соответственно, природных материалов, в частности, в пересчете на использованные, сшиваемые вещества. Так, согласно изобретению, использованы моно- и полифункциональные акрил- и метакрил-биомономеры исключительно растительного или животного происхождения. То есть, здесь не используются полимеры, добытые нефтехимическим путем. Биомономер представляет собой мономер биополимера. Понятие «полифункциональный» включает в себя би-, три- и выше-функциональные биомономеры.
Использованные полимеры или сополимеры являются предпочтительно также исключительно растительного или животного происхождения, т.е., и эти вещества не являются веществами нефтехимического происхождения. Здесь, однако, альтернативно применению веществ растительного/животного происхождения имеется также возможность использовать полимеры или сополимеры из переработанного материала. Именно этот материал и имеет чаще всего нефтехимическое происхождение, однако не используется никакой новый материал, а повторно используется уже имеющийся, но переработанный материал, что также является предпочтительным с точки зрения окружающей среды. Поскольку биомономеры, наряду с использованными неорганическими наполнителями, являющимися также веществами природного происхождения, составляют большую часть со стороны полимеров, то внутри самой, соответствующей изобретению литейной массы при использовании переработанного материала большая часть использованных до этого веществ на нефтехимической основе замещена на биоматериал в форме биомономеров. Предпочтительно, разумеется, используются также полимеры или, соответственно, сополимеры исключительно растительного или животного происхождения, поэтому в этом случае получается литейная масса, состоящая на 100% из природных материалов, поскольку, как было описано, также наполнители являются материалами исключительно природного происхождения. Поэтому, у изготовленного из соответствующей изобретению литейной массы формованного тела речь идет, следовательно, о биоформованном теле, состоящем преимущественно или предпочтительно полностью из биологических, то есть природных, материалов. Изготовление биокомпозитных материалов из частиц наполнителя и способных к сшиванию материалов, изготавливаемых из возобновляемых источников, сокращает расход изготовленных нефтехимическим путем материалов и, тем самым, расход нефти и положительно сказывается на окружающей среде.
Несмотря на использование преимущественно или исключительно природных материалов для изготовления литейной массы или, соответственно, формованного тела, то есть, н-р, кухонной раковины, неожиданным образом выяснилось, что формованное тело демонстрирует очень хорошие, частично даже еще лучшие механические свойства, в частности, в отношении ударной вязкости или стойкости к царапанью, по сравнению с известной литейной массой, полученной из добытых нефтехимическим путем сшиваемых материалов или, соответственно, такого рода формованного тела.
Изготовление биокомпозитного формованного тела, такого как кухонные раковины, душевые поддоны, ванны для купания, мойки и рабочие поверхности, из высококачественных моно- и полифункциональных био-акрилат- и био-метакрилатмономеров позволяет комбинировать в продуктах высокие технические требования к рабочим характеристикам и повышенное значение Bio Renewable Carbon Content (BRC) (доли возобновляемого углерода или, соответственно, содержание углерода на биооснове). Есть множество различных биодоступных источников для изготовления моно- и полифункциональных био-акрилaт- и био-метакрилатмономеров, таких как, например, растительное масло, животный жир, древесина. В биомономерах может быть достигнуто значение BRC вплоть до 90%.
Формованное тело из биокомпозитного материала состоит из смеси неорганического наполнителя, который встроен в полимерную матрицу с помощью сшивающего процесса полимеризации моно- и полифункциональных биомономеров, и благодаря использованию воспроизводимого сырья достигается большой эффект долговечности.
Соотношение веса монофункциональных биомономеров к полифункциональным биомономерам должно составлять согласно изобретению от 2:1 до 80:1, предпочтительно от 4:1 до 70:1, в частности, от 5:1 до 60:1.
Может быть использован монофункциональный биомономер в форме акрилата на биооснове. Он может быть выбран из n-бутилакрилата, метилакрилата, этилакрилата, терт-бутилакрилата, изобутилакрилата, изодецилакрилата, дигидродициклопентадиенилакрилата, этилдигликольакрилата, гептадецилакрилата, 4-гидроксибутилакрилата, 2-гидроксиэтилакрилата, гидроксиэтилкапролактонакрилата, поликапролактонакрилата, гидроксипропилакрилата, лаурилакрилата, стеарилакрилата, тертиобутилакрилата, 2(2-этокси)этилакрилата, тетрагидрофурфурилакрилата, 2-феноксиэтилакрилата, этоксилированного 4-фенилакрилата, триметилциклогексилакрилата, октилдецилакрилата, тридецилакрилата, этоксилированного 4-нонилфенолакрилата, изоборнилакрилата, циклического триметилoлпропан-формальакрилата, этоксилированного 4-лаурилакрилата, полиэстеракрилата, стеарилакрилата, гиперразветвленного полиэстеракрилата, меламинакрилата, силиконакрилата, эпоксиакрилата.
Далее может быть использован монофункциональный биомономер в форме метакрилата на биооснове. Он может быть выбран из метилметакрилата, этилметакрилата, n-бутилметакрилата, изобутилметакрилата, терт-бутилметакрилата, бегенилметакрилата, бегенилполиэтиленгликольметакрилата, циклогексилметакрилата, изодецилметакрилата, 2-этилгексилметакрилата, лаурилметакрилата, стеарилметакрилата, стеарилполиэтиленгликольметакрилата, изотридецилметакрилата, уреидометакрилата, тетрагидрофурфурилметакрилата, феноксиэтилметакрилата, 3,3,5-триметилциклогесканолметакрилата, изоборнилметакрилата, метоксиполиэтиленгликольметакрилата, глицедилметакрилата, гексилэтилметакрилата, глицеролформальметакрилата, лаурилтетрадецилметакрилата, C17,4-метакрилата.
Полифункциональный биомономер может быть использован в форме акрилата на биооснове. Он может быть выбран из 1,6-гександиолдиакрилата, полиэтиленгликольдиакрилата, тетраэтиленгликольдиакрилата, трипропиленгликольдиакрилата, полибутадиендиакрилата, 3-метил-1,5-пентандиолдиакрилата, этоксилированного бисфенол-А-диакрилата, дипропиленгликольдиакрилата, этоксилированного гександиолдиакрилата, 1,10-декандиолдиакрилата, эфирдиолдиакрилата, алкоксилированного диакрилата, трициклодекандиметанолдиакрилата, пропоксилированного неопентилгликольдиакрилата, пентаэритритолтетраакрилата, триметилолпропантриакрилата, ди-триметилолпропантетраакрилата, трис(2-гидроксиэтил)изоцианураттриакрилата, ди-пентаэритритпентаакрилата, этоксилированного триметилолпропантриакрилата, пентаэритриттриакрилата, пропоксилированного триметилолпропантриакрилата, этоксилированного пентаэритриттетраакрилата, пропоксилированного глицерилтриакрилата, алифатического уретандиакрилата, алифатического уретангексаакрилата, алифатического уретантриакрилата, ароматического уретандиакрилата, ароматического уретантриакрилата, ароматического уретангексаакрилата, полиэстергексаакрилата, эпоксидированного диакрилата соевого масла.
Далее может быть использован полифункциональный биомономер в форме метакрилата на биооснове. Он может быть выбран из триэтиленгликольдиметакрилата, этиленгликольдиметакрилата, полиэтиленгликольдиметакрилата, 1,4-бутандиолдиметакрилата, диэтиленгликольдиметакрилата, 1,6-гександиолдиметакрилата, 1,10-декандиолдиметакрилата, 1,3-бутиленгликольдиметакрилата, этоксилированного бисфенол-А-диметакрилата, трициклодекандиметанолдиметакрилата, триметилолпропантриметакрилата.
Согласно изобретению, соотношение веса моно- или полифункциональных акрилатов и метакрилатов к полимеру или полимерам или сополимерам, в частности, выбранным из полиакрилатов, полиметакрилатов, полиолов или сложных полиэфиров, должно составлять от 90:10 до 60:40, предпочтительно от 85:15 до 70:30.
Также неорганические частицы наполнителя являются материалами природного, то есть биологического, происхождения и не произведены синтетически. Они могут быть выбраны из SiO2, Al2O3, TiO2, ZrO2, Fe2O3, ZnO, Cr2O5, углерода, металлов или металлических сплавов, при этом также могут быть использованы смеси двух или более различных видов частиц наполнителя. Соотношение смеси может быть произвольное.
При этом неорганические частицы наполнителя должны иметь размер частиц от 0,010 до 8000 мкм, предпочтительно от 0,05 до 3000 мкм, и, в частности, от 0,1 до 1300 мкм. Далее неорганические частицы наполнителя должны иметь соотношение сторон от 1,0 до 1000 (длина : ширина отдельной частицы).
Для легкой перерабатываемости вязкость полученной литейной массы должна быть уставлена так, чтобы литейная масса с помощью пригодного распылительного устройства могла быть впрыснута под давлением в форму, полностью заполняя полость литьевой формы.
Наряду с литейной массой, изобретение касается формованного тела, изготовленного из соответствующей изобретению литейной массы. Поскольку литейная масса представляет собой квази биолитейную массу, которая предпочтительно даже на 100% состоит из природных биологических веществ, речь идет, следовательно, о биокомпозитном теле, то есть, например, о биокомпозитной кухонной раковине или т.п.
При этом могут быть изготовлены различные типы формованного тела. Так, формованное тел может представлять собой кухонную раковину, душевом поддон, умывальник, ванну для купания, рабочую столешницу или панель для пола, стены или потолка, при этом это перечисление не является исчерпывающим.
Как уже было описано, оказалось, что полученные формованные тела, несмотря на использование исходных материалов на биооснове, из которых состоит литейная масса, имеют очень хорошие свойства, в частности, механические свойства. Полимеризованный биокомпозитный материал формованного тела должен иметь ударную прочность от 2 до 5 мДж/мм², также как и должен иметь термическую стабильность от -30 до 300°C.
Описанным ранее преимуществом изобретения является то, что использование одного, двух или нескольких монофункциональных биомономеров позволяет менять термические, механические свойства и свойства поверхности конечного продукта, то есть готового формованного тела, соответственно требованиям к продукту. Ударная вязкость, например, может быть улучшена добавлением биолаурилметакрилатмономера с хорошей эластичностью.
Концентрация биолаурилметакрилата в биокомпозитном материале составляет предпочтительно примерно от 0,5 до примерно 10 вес.%, в частности, от 0,7 до 5,0 вес.%. Было установлено, что малое количество эластичного биолаурилметакрилата ведет к улучшению ударной вязкости.
Следующим, ранее описанным преимуществом изобретения является то, что термическая стойкость готового формованного тела может быть улучшена, например, добавлением биоизоборнилметакрилатмономера с повышенной термической стабильностью.
Концентрация биоизоборнилметакрилата в биокомпозитном материале составляет предпочтительно примерно от 1,0 до примерно 20 вес.%, в частности, от 2,0 до 17,0 вес.%. Было установлено, что малое количество биоизоборнилметакрилата ведет к улучшению стойкости к царапанью.
Следующим преимуществом изобретения является то, что стойкость к старению может быть улучшена, например, добавлением биоизоборнилакрилатмономера с улучшенной стойкостью к погодным условиям. Концентрация биоизоборнилакрилата в биокомпозитном материале составляет предпочтительно примерно от 1,0 до примерно 10 вес.%, в частности, от 2,0 до 7,0 вес.%. Было установлено, что малое количество биоизоборнилакрилата ведет к улучшению стойкости к старению.
Следующим преимуществом изобретения является то, что химическая стойкость может быть улучшена, например, добавлением био-(1,10-декандиолдиакрилат)-бифункционального мономера. Концентрация био-(1,10-декандиолдиакрилата) в биокомпозитном материале составляет предпочтительно примерно от 0,15 до примерно 10 вес.%, в частности, от 0,3 до 5,0 вес.%. Было установлено, что малое количество био-(1,10-декандиолдиакрилата) ведет к улучшению химической стойкости.
Следующим преимуществом изобретения является то, что дисперсия наполнителя повышается, например, путем добавления био-(пропоксилированного (3)глицерилтрикрилат)-трифункционального мономера по причине очень хорошей смачиваемости наполнителя. Концентрация био-(пропоксилированного (3)глицерилтриакрилата) в биокомпозитном материале составляет предпочтительно от примерно 0,1 до примерно 5 вес.%, в частности, от 0,3 до 2,0 вес.%. Было установлено, что малое количество био-(пропоксилированного (3)глицерилтриакрилата) ведет к улучшению распределения наполнителя в матрице и к улучшенным термическим и механическим свойствам.
Следующим преимуществом изобретения является то, что стойкость к истиранию биокомпозитной массы формованного объекта может быть улучшена, например, добавлением биополиэтиленгликольдиметакрилат бифункционального мономера с повышенной стойкостью к истиранию. Концентрация биополиэтиленгликольдиметакрилата в биокомпозитном материале составляет предпочтительно от примерно 0,1 до примерно 10 вес.%, в частности, от 0,3 до 5,0 вес.%. Было установлено, что малое количество биополиэтиленгликольдиметакрилата ведет к улучшению стойкости к истиранию.
Следующим преимуществом изобретения является то, что прочностью к царапанью формованного тела может быть улучшена, например, путем добавления биодипентаэритритoлпентаакрилат- полифункционального мономера с повышенной прочностью к царапанью. Концентрация биодипентаэритритoлпентаакрилата в биокомпозитном материале составляет предпочтительно от примерно 0,1 до примерно 7 вес-%, в частности, от 0,3 до 5,0 вес-%. Было установлено, что малое количество би-дипентаэритритолпентаакрилата ведет к улучшению прочности к царапанью.
Неорганические наполнители могут быть использованы в форме SiO2 в форме частиц кварца, кусочков кристобалита, пирогенных частиц кремневой кислоты, аэрированных частиц кремневой кислоты, кремневых волокон, фибрилл кремневой кислоты, частиц силиката, таких как слоистые силикаты; Al2O3- частиц, TiO2- частиц, Fe2O3-частиц, ZnO-частиц, Cr2O5-частиц, частиц сажи, частиц углеродных нанотрубок, частиц графита или частиц графена.
Чтобы получить превосходную стабильную дисперсию неорганического наполнителя в полимерной матрице, смесь мономеров для установления пригодной вязкости может содержать композицию полимеров и/или сополимеров на биооснове из переработанных ресурсов или ресурсов на биооснове.
Далее изобретение касается способа получения формованного тела ранее описанного вида, при котором используется литейная масса также ранее описанного вида, которая подается в форму, в которой она при повышенной относительно комнатной температуры температуре полимеризуется, после чего полимеризованное формованное тело вынимается из формы и охлаждается.
При этом температура во время полимеризации должна составлять между 60-140°C, предпочтительно между 75-130°C и, в частности, 80-110°C.
Далее время выдержки, в течение которого литейная масса для полимеризации остается в форме, составляет между 15-50 мин, предпочтительно 20-45 мин и, в частности, 25-35 мин.
Изготовление формованного тела из теплоотверждаемой литейной массы на биооснове представляет собой многоступенчатый процесс, включающий в себя
- изготовление компонентов полимерной матрицы
- диспергирование неорганических наполнителей в полимерной матрице
- сшивающую полимеризацию кухонных раковин, умывальников, ванн для купания, рабочих поверхностей.
Далее приводится несколько примеров опытов для более подробного представления соответствующей изобретению литейной массы, соответствующего изобретению формованного тела и соответствующего изобретению способа.
Пример 1:
Изготовление компонентов полимерной матрицы из различных монофункциональных мономеров
Использованные компоненты:
(а) монофункциональные биомономеры
изоборнилметакрилат (ИБОМА/IBOMA, Эвоник Перформанс Матириалс ГмбХ/Evonik Performance Materials GmbH), лаурилметакрилат (ЛМА/LMA, Аркема Франс/Arkema France), изоборнилакрилат (ИБОА/ IBOA, Мивон Спешалти Кемикал Ко., Лтд./Miwon Specialty Chemical Co., Ltd), глицеролформальметакрилат (ГЛИФОМА/GLYFOMA, Evonik Performance Materials GmbH), лаурилакрилат (ЛА/LA, Arkema France), лаурилтетрадецилметакрилат (ЛТДМА/LTDMA, Miwon Specialty Chemical Co., Ltd), C17,4-метакрилaт (C17.4-MA, Evonik Performance Materials GmbH).
Все компоненты имеют растительное или животное происхождение, например, ВИЗИОМЕР Терра ИБОМА/VISIOMER® Terra IBOMA производится из сосновой смолы.
(b) полимер:
акриловое стекло - продукт тонкого помола XP 85 (переработанный ПММА/PMMA (Кунстштофф унд Фарбен-ГмбХ/Kunststoff- und Farben-GmbH))
(с) наполнитель:
SiO2 [80% кварц размер частиц 0.06-0.3 мм (Дорфнер ГмбХ/Dorfner GmbH); 20% кварцевая мука, размер частиц 0.1-0.70 мкм (Кварцверке ГмбХ/Quarzwerke GmbH) и TiO2-частицы (Кристал Интернейшнл Б.В./ Crystal International B.V.)
(d) присадки:
диспергирующие присадки (0.1%) (БИК Хеми ГмбХ/BYK Chemie GmbH) и тиксотропные присадки (0,1%) (BYK Chemie GmbH) на биооснове
Композиции для производства полимерных матриц изготавливаются путем растворения акрилового стекла - продукта тонкого помола XP 85 (перерабатываемый PMMA (Kunststoff- und Farben-GmbH) в смеси монофункциональных мономеров из Таблицы 1: изоборнилметакрилата (Evonik Performance Materials GmbH), лаурилметакрилата (LMA, Arkema France), изоборнилакрилата (Miwon Specialty Chemical Co., Ltd), глицеролформальметакрилата (Evonik Performance Materials GmbH), лаурилакрилата (Arkema France), лаурилтетрадецилметакрилат (Miwon Specialty Chemical Co., Ltd), C17,4-метакрилaта (Evonik Performance Materials GmbH). Реакционная смесь была нагрета до 40°C, чтобы ускорить растворимость вплоть до получения прозрачного раствора за 100 мин. Для сравнения компонентов матрицы были подготовлены композиции и объединены в Таблицу 1:
Таблица 1:
Монофункциональный биомономер Образец 1 Образец 2 Образец 3 Образец 4 Образец 5
Изоборнилметакрилат 80 45 50
Лаурилметакрилат 20 10
Изоборнилакрилат 80 45 40 60
Глицеролформаль-метакрилат 30
Лаурилакрилат 10
Лаурилтетрадецил-метакрилат 20
C17,4-метакрилaт 10
Все образцы из Таблицы 1 были использованы в качестве растворителей для акрилового стекла - продукта тонкого помола XP 85 в соотношении 80:20 для повышения вязкости реакционной массы (от 120 до 155 сПз, Брукфилд Вискозиметр ДВАй Прайм/Brookfield Viscometer DVI Prime) с последующим добавлением 20 вес.% био-(1,10-декандиолдиакрилата) (Arkema France).
Прозрачный раствор акрилового стекла - продукта тонкого помола XP85 в пробах 1-5 с добавлением био-(1,10-DDDA) был использован для диспергирования смеси из неорганических наполнителей (70 вес.%), содержащей 95 вес.% SiO2 [80% кварц размером частиц 0.06-0.3 мм (Dorfner GmbH), 20% кварцевая мука, размер частиц 0.1-0.70 мкм (Quarzwerke GmbH)] и 5% TiO2-частиц (Crystal International B.V.). Далее были добавлены диспергирующие присадки на биооснове (0.1%) (BYK Chemie) и тиксотропные присадки (0,1%) (BYK Chemie). Изготовленная таким образом литейная масса размешивалась в течение 20 минут (Диспермат/Dispermat AE-3M, ФМА-Гетцманн ГмбХ/VMA-Getzmann GmbH). Из литейной массы было изготовлено формованное тело в форме кухонной раковины путем заливки литейной массы в форму и полимеризации в течение 35 минут при 110°C.
Механические и термические свойства кухонных раковин из пробы 1-5.
Таблица 2:
Свойства Образец 1 Образец 2 Образец 3 Образец 4 Образец 5 Раковина сравнения
Ударная вязкость мДж/мм² 3.4 3.2 2.7 2.5 2,4 2.3
Стойкость к царапанью + + + + + +
Истирание по Таберу/Taber мкг 17 19 16 11 14 12
Термосопро-тивление* + + + + + +
Стойкость к смене температур** + + + + + +
Для измерений ударной вязкости из раковины были вырезаны 12 проб размером 80×6 мм. Измерения проводились на приборе ZwickRoell HIT P.
Для измерений стойкости к царапанью была вырезана проба (100×100 мм) и измерена топография до и после царапания (Mitutoyo Surftest SJ 500P).
Для теста на истирание по Таберу/Taber была вырезана проба (100×100 мм) и проведен тест на истирание на Elcometer 1720.
* Способ основывается на стандарте для испытаний DIN EN 13310, при котором испытуемый объект с температурой 180°C на 20 мин размещается в середине кухонной раковины, не оставляя никаких видимых изменений на поверхности.
** Способ основывается на стандарте для испытаний DIN EN 13310, при котором раковина в течение 1000 циклов обрабатывается холодной - горячей водой. Горячая вода, T=90°C, течет на протяжении 90 секунд в раковину с последующим успокоением на 30 секунд, далее с текущей холодной водой (T=15°C) в течение следующих 90 секунд. Цикл заканчивается успокоением на 30 секунд.
Композиционный материал для раковины сравнения был изготовлен с применением органических соединений нефтехимического происхождения согласно патентной заявке DE 38 32 351 A1.
Таблица показывает, что все примеры испытаний демонстрируют подобающие свойства, которые соответствуют, по меньшей мере, таковым известной раковины для сравнения, состоящей из компонентов не на биооснове, что касается мономеров и полимеров или, соответственно, в большинстве случаев даже лучше, чем у раковины сравнения. В частности, ударная вязкость у образцов 1-4 отчасти значительно улучшена.
Пример 2:
Изготовление компонентов полимерной матрицы с различными полифункциональными мономерами
Использованные компоненты:
(а) монофункциональные биомономеры:
IBOMA и LMA в соотношении 80:20 изоборнилметакрилат (IBOMA, Evonik Performance Materials GmbH) и лаурилметакрилат (LMA, Arkema France)
(b) полифункциональные мономеры:
1,10-(декандиолдиакрилат), пропоксилированный (3) глицерилтриакрилат (Arkema France), полиэтиленгликольдиметакрилат (Arkema France) и эпоксидированный диакрилат соевого масла (Miwon Specialty Chemical Co., Ltd)
(с) полимер:
метакрилат-сополимер (Рем Гмбх/Röhm GmbH)
(d) наполнитель:
SiO2 [80% кварц размер частиц 0.06-0.3 мм (Dorfner GmbH); 20% кварцевая мука, размер частиц 0.1-0.70 мкм (Quarzwerke GmbH)] и TiO2-частицы (Crystal International B.V.)
(е) присадки:
диспергирующие присадки на биооснове (0.1%) (BYK Chemie GmbH) и тиксотропные присадки (0,1%) (BYK Chemie GmbH)
Композиции для изготовления полимерной матрицы были получены растворением метакрилат-сополимера (Röhm GmbH) в смеси из монофункциональных мономеров IBOMA и LMA в соотношении 80:20. Реакционная смесь была нагрета до 40°C, чтобы ускорить растворимость за 150 мин, с последующим добавлением полифункциональных мономеров: 1,10 DDDA, пропоксилированного (3) глицерилтриакрилата (Arkema France), полиэтиленгликольдиметакрилата (ПЭГ-ДМА/PEG-DMA, Arkema France), эпоксидированного диакрилата соевого масла (Miwon Specialty Chemical Co., Ltd), чтобы закончить композицию для образования полимерной матрицы. Для сравнения компонентов матрицы были изготовлены композиции из различных полифункциональных мономеров и объединены в Таблицу 3. Концентрация полифункциональных мономеров приводится вес.% от количества монофункциональных мономеров:
Таблица 3:
Полифункциональные биомономеры Образец 6 Образец 7 Образец 8 Образец 9
1.10-декандиолдиакрилат 34 26 10
пропоксилированный (3) глицерилтриакрилат 16
полиэтиленгликоль-диметакрилат 10
эпоксидированный диакрилат соевого масла 2 2
Механические и термические свойства кухонных раковин из проб 6-9
Таблица 4:
Свойства Образец 6 Образец 7 Образец 8 Образец 9 Раковина сравнения
Ударная вязкость мДж/мм² 3.3 2,9 3,2 2.7 2.3
Стойкость к царапанью + + + + +
Истирание по Таберу, мкг 17 19 15 15 12
Термостойкость* + + + + +
Стойкость к смене температур** + + + + +
Значения измерений Таблицы 4 показывают, что и среди этих примеров исследований формованные тела отчасти демонстрируют значительно улучшенные механические свойства, в частности, в отношении ударной вязкости и стойкости к царапанью. Это означает, что путем использования исходных материалов на биооснове достигается не только целесообразное с точки зрения окружающей среды улучшение, но и улучшение, в частности, механических свойств формованных тел.
Пример 3:
Изготовление компонентов полимерной матрицы с различными перерабатываемыми полимерами или биополимерами
Использованные компоненты:
(а) монофункциональные биомономеры:
IBOMA и LMA в соотношении 80:20 изоборнилметакрилат (IBOMA, Evonik Performance Materials GmbH) и лаурилметакрилат (LMA, Arkema France)
(b) полифункциональные биомономеры: 20 вес.% био-(1,10-декандиолдиакрилат) (Arkema France).
(с) полимер:
переработанный полимер и/или биополимер и/или биосополимеры: переработанный PMMA (Kunststoff- und Farben-GmbH), поли-(3-гидроксибутират-со-3-гидроксивалерат) (Нингбо Тианан Биолоджик Материал Ко., Лтд/Ningbo Tianan Biologic Material Co. Ltd), полимер касторового масла (Д.О.Г. Дойче Оельфабрик Гез.ф.хем.Ерц.мбХ & Ко.КГ/D.O.G Deutsche Oelfabrik Ges. f. chem. Erz. mbH & Co.KG)
(d) наполнитель:
SiO2 [80% кварц размер частиц 0.06-0.3 мм (Dorfner GmbH); 20% кварцевая мука, размер частиц 0.1-0.70 мкм (Quarzwerke GmbH)] и TiO2-частицы (Crystal International B.V.)
(е) присадки:
диспергирующие присадки на биооснове (0.1%) (BYK Chemie) и тиксотропные присадки (0,1%) (BYK Chemie)
Композиции для изготовления полимерных матриц изготовлены путем растворения переработанного полимера и/или биополимера, и/или биосополимера (переработанный PMMA (Kunststoff- und Farben-GmbH), поли-(3-гидроксибутират-со-3-гидроксивалерат) (Ningbo Tianan Biologic Material Co.Ltd), полимер касторового масла (D.O.G Deutsche Oelfabrik Ges. f. chem. Erz. mbH & Co.KG) в смеси из монофункциональных мономеров IBOMA и LMA в соотношении 80:20. Реакционная смесь была нагрета до 40°C, чтобы ускорить растворимость за 100 мин, с последующим добавлением PEG-DMA (10 вес.% из монофункциональных мономеров) и эпоксидированного диакрилата соевого масла (2 вес.% из монофункциональных мономеров), чтобы закончить композицию для образования полимерной матрицы. Для сравнения компонентов матрицы были изготовлены композиции из различных биополимеров и объединены в Таблице 5. Концентрация биополимера указывается в вес.% от количества монофункциональных мономеров:
Таблица 5:
Полимер Образец 10 Образец 11 Образец 12 Образец 13
Переработанный PMMA 20 26
Поли-(3-гидроксибутират-co-3-гидроксивалерат) 20 2
Полимер касторового масла 25
Кухонные раковины были изготовлены по способу, описанному в Примере 1.
Механические и термические свойства кухонных раковин из пробы 10-13.
Таблица 6:
Свойства Образец 10 Образец 11 Образец 12 Образец 13 Раковина сравнения
Ударная вязкость мДж/мм² 3.0 2,9 2,7 2,3 2.3
Стойкость к царапанью + + + + +
Истирание по Таберу, мкг 17 15 16 18 12
Термо-сопротивление* + + + + +
Стойкость к смене температур ** + + + + +
Пример 4:
Приготовление формованного тела с различными неорганическими наполнителями
Использованные компоненты:
(а) монофункциональные биомономеры:
IBOMA и LMA в соотношении 80:20 изоборнилметакрилат (IBOMA, Evonik Performance Materials GmbH) и лаурилметакрилат (LMA, Arkema France)
(b) полифункциональный биомономер:
PEG-DMA и эпоксидированный диакрилат соевого масла
(с) полимер:
переработанный PMMA (Kunststoff- и Farben-GmbH)
(d) наполнитель:
кварц, кварцевая мука, оксид титана, оксид железа, сажа, графит, тригидрат гидроксида алюминия
(е) присадки:
диспергирующие присадки на биооснове (0.1%) (BYK Chemie GmbH) и тиксотропные присадки (0,1%) (BYK Chemie GmbH)
Смесь для образования полимерной матрицы изготавливают, как описано в примерах 1, 2, 3. 20 вес.%. переработанного PMMA (Kunststoff- и Farben-GmbH) растворяют в смеси (80:20 вес.%) из монофункциональных мономеров, IBOMA и LMA. Реакционную смесь нагрели до 40°C, чтобы ускорить растворимость за 100 мин, с последующим добавлением полифункциональных мономеров, 10 вес.% PEG-DMA и 2 вес.% эпоксидированного диакрилата соевого масла, чтобы закончить композицию для образования полимерной матрицы. Для сравнения были добавлены различные неорганические наполнители, объединенные в Таблицу 7. Частицы кварца были произведены Dorfner GmbH. Частицы оксида титана произведены Cristal International. Частицы оксида железа были произведены Харольд Шольц & Ко ГмбХ/Harold Scholz & Co GmbH. Частицы природной сажи (Орион Инжинирд Карбон ГмбХ/Orion Engineered Carbon GmbH), природный графит были изготовлены РМЦ Ремакон ГмбХ/RMC Remacon GmbH. Тригидрат гидроксида алюминия (ATH) был изготовлен ШИДЖАЖУН ЧЕНШИ ИМПОРТ ЭНД ЭКСПОРТ КО.ЛТД./SHIJIAZHUANG CHENSHI IMPORT AND EXPORT CO. LTD.
Таблица 7:
Наполнитель Образец 14 Образец 15 Образец 16 Образец 17
Кварц, размер частиц 0.06-0.3 мм 52 20 30
Кварц, размер частиц 0.4-0.8 мм 55
Кварц, размер частиц 0.9-1.3 мм 20
кварцевая мука, размер частиц 0.1-0.70 мкм 13 10 10 5
Частицы оксида титана 5
Частицы оксида железа 5
Частицы сажи 10
Графит 20
Тригидрат гидроксида алюминия 30
Концентрация биополимера указывается в вес.% в пересчете на общее количество материала.
Таблица 8:
Свойства Образец 14 Образец 15 Образец 16 Образец 17 Раковина сравнения
Ударная вязкость мДж/мм² 2,8 2,3 2,7 2,7 2.3
Стойкость к царапанью + + + + +
Истирание по Таберу, мкг 24 25 14 12
Термосопротивление* + + + + +
Стойкость к смене температур** + + + + +
Также и здесь различающиеся по наполнителям примеры изобретения демонстрируют по сравнению с формованным телом сравнения частью значительно лучшие значения измерений, в частности, в отношении ударной вязкости и стойкости к царапанью, также как и к истиранию.
Пример 5:
Расчет индекса биовозобновляемого углерода/Bio-Renewable Carbon Index (BCI) в соответствующих изобретению композициях литейной массы
Композиция BRC, % Образец 15 Образец 16
IBOA, C13H20O2 77 44 45
LMA, C16H30O2 75 10,73 11
1,10-DDDA, C16H26O4 60 5,34 4.4
эпоксидированный диакрилат соевого масла, C63H108O15 89 1,6 1,3
THBV, (-OCH(CH3)CH2-CO)x(OCH(C2H5)CH2CO-)y 100 17,9 2
Полимер касторового масла, C57H104O9 100 25
Общий BCI, % 79.57 88,7
BCI для раковин из нефтехимического сырья составляет 0.
BCI химических компонентов рассчитывается по следующей формуле:
BCI=100 x (BRC/C), при этом
BCI=индекс биологически возобновляемого углерода в %
BRC=количество биологически возобновляемого углерода
C=общее количество углерода
Например: изоборнилакрилат (IBOA) имеет формулу: C13H20O2
Figure 00000001
BRC=10
C=13
BCI=100 x (10/13) = 76,9%
Общий BCI для биокомпозитного материала рассчитывается путем расчета BRC в композите, в зависимости от BRC каждого компонента композита.
Например:
Образец 15 имеет по отношению к содержащим углеводород химикатам следующий состав или, соответственно, долю в %:
IBOA - 57,1
LMA - 14,3
1,10 DDDA - 8,9
eDA соевого масла - 1,8
THBV - 17,9
Всего - 100
Процентный химический состав перемножается на BCI-содержание.
IBOA - (57,1×77) / 100=44
LMA - (14,3×75) / 100=10,73
1,10 DDDA - (8,9×60) /100=5,34
eDA соевого масла- (1,8×89) /100=1,60
THBV - (17,9×100) / 100=17,9
Всего - 79,57
Вторая характеристика, дающая представление о содержании возобновляемого сырья, представляет собой RRM-значение (возобновляемое сырье, в вес.%).
RRM=Вес возобновляемого сырья, поделенный на вес конечного продукта
Использованные неорганические наполнители поставляются на 100% из возобновляемых источников: частицы песка, минеральные частицы, сажа из сожженной древесины, графит.
Пример RRM-расчета для органической фазы составляется с помощью Образца 15.
Образец 15 из органических химикатов имеет состав в %:
IBOA - 57,1
LMA - 14,3
1,10 DDDA - 8,9
eDA соевого масла - 1,8
THBV - 17,9
Всего 100
Молекулярный вес химикатов:
IBOA - 208
LMA - 254
1,10 DDDA - 282
eDA соевого масла - 1104
THBV (повторяющийся сегмент) - 186
с весовой долей возобновляемого сырья:
IBOA (C11H18O) - 166
LMA (C13H25O) - 197
1,10 DDDA (C12H20O2) - 196
eDA соевого масла (C55H108O11) - 944
THBV - 186
RRM-значение для химикатов составляет:
IBOA - 100×166/208=79,8
LMA - 100×197/254=77,6
1,10 DDDA - 100×196/282=69,5
eDA соевого масла- 100×944/1104=85,5
THBV (повторяющийся сегмент) - 100×186/186=100
Процентное химическое содержание перемножается на RRM-значение.
IBOA - (57,1×79,8) / 100=45,57
LMA - (14,3×77,6) / 100=11,10
1,10 DDDA - (8,9×69,5) /100=6,19
eDA соевого масла - (1,8×85,5) /100=1,54
THBV - (17,9×100) / 100=17,9
Всего 82,3
RRM-значение для материала связующего составляет 82.3 (вес.%), в то время как для всей раковины RRM-значение составляет 94,69 (вес.%).
RRM = (82,3×30) /100 + (70×100) /100=94,69 (вес.%)
В сравнении с этим RRM-значение для раковины из нефтехимического сырья составляет 66-69 (вес.%), поскольку использованные неорганические частицы наполнителя, как упомянуто в пункте 1 (c), являются природного происхождения.

Claims (18)

1. Теплоотверждаемая литейная масса на биооснове, включающая в себя:
(а) один или несколько моно- и один или несколько полифункциональных акрил- и/или метакрилбиомономеров растительного или животного происхождения,
(b) один или несколько полимеров или сополимеров, выбранных из полиакрилатов, полиметакрилатов, полиолов, сложных полиэфиров из переработанного материала или растительного или животного происхождения,
(с) неорганические частицы наполнителя природного происхождения,
при этом доля моно- и полифункционального или моно- и полифункциональных акрил- и метакрилбиомономера или акрил- и метакрилбиомономеров составляет 10-40 вес.%, доля полимера или полимеров или сополимеров 1-16 вес.% и доля неорганических частиц наполнителя 44-89 вес.%.
2. Литейная масса по п. 1, при этом весовое соотношение монофункциональных биомономеров к полифункциональным биомономерам составляет от 2:1 до 80:1, предпочтительно от 4:1 до 70:1, в частности от 5:1 до 60:1.
3. Литейная масса по п. 1 или 2, при этом монофункциональный биомономер или монофункциональные биомономеры выбраны из акрилатов на биооснове, а именно: n-бутилакрилата, метилакрилата, этилакрилата, терт-бутилакрилата, изобутилакрилата, изодецилакрилата, дигидродициклопентадиенилакрилата, этилдигликольакрилата, гептадецилакрилата, 4-гидроксибутилакрилата, 2-гидроксиэтилакрилата, гидроксиэтилкапролактонакрилата, поликапролактонакрилата, гидроксипропилакрилата, лаурилакрилата, стеарилакрилата, тертиобутилакрилата, 2(2-этокси) этилакрилата, тетрагидрофурфурилакрилата, 2-феноксиэтилакрилата, этоксилированного 4-фенилакрилата, триметилциклогексилакрилата, октилдецилакрилата, тридецилакрилата, этоксилированного 4-нонилфенолакрилата, изоборнилакрилата, циклического триметилолпропанформальакрилата, этоксилированного 4-лаурилакрилата, полиэстеракрилата, стеарилакрилата, гиперразветвленного полиэстеракрилата, меламинакрилата, силиконакрилата, эпоксиакрилата; и из метакрилатов на биооснове, а именно: метилметакрилата, этилметакрилата, n-бутилметакрилата, изобутилметакрилата, терт-бутилметакрилата, бегенилметакрилата, бегенилполиэтиленгликольметакрилата, циклогексилметакрилата, изодецилметакрилата, 2-этилгексилметакрилата, лаурилметакрилата, стеарилметакрилата, стеарилполиэтиленгликольметакрилата, изотридецилметакрилата, уреидометакрилата, тетрагидрофурфурилметакрилата, феноксиэтилметакрилата, 3,3,5-триметилциклогесканолметакрилата, изоборнилметакрилата, метоксиполиэтиленгликольметакрилата, глицедилметакрилата, гексилэтилметакрилата, глицеролформальметакрилата, лаурилтетрадецилметакрилата, C17,4-метакрилата.
4. Литейная масса по одному из предыдущих пунктов, при этом полифункциональный биомономер или полифункциональные биомономеры выбраны из акрилатов на биооснове, а именно: 1,6-гександиолдиакрилата, полиэтиленгликольдиакрилата, тетраэтиленгликольдиакрилата, трипропиленгликольдиакрилата, полибутадиендиакрилата, 3-метил-1,5-пентандиолдиакрилата, этоксилированного бисфенол-А-диакрилата, дипропиленгликольдиакрилата, этоксилированного гександиолдиакрилата, 1,10-декандиолдиакрилата, эфирдиолдиакрилата, алкоксилированного диакрилата, трициклодекандиметанолдиакрилата, пропоксилированного неопентилгликольдиакрилата, пентаэритритолтетраакрилата, триметилолпропантриакрилата, ди-триметилолпропантетраакрилата, трис(2-гидроксиэтил)изоцианураттриакрилата, ди-пентаэритритпентаакрилата, этоксилированного триметилолпропантриакрилата, пентаэритриттриакрилата, пропоксилированного триметилолпропантриакрилата, этоксилированного пентаэритриттетраакрилата, пропоксилированного глицерилтриакрилата, алифатического уретандиакрилата, алифатического уретангексаакрилата, алифатического уретантриакрилата, ароматического уретандиакрилата, ароматического уретантриакрилата, ароматического уретангексаакрилата, полиэстергексаакрилата, эпоксидированного диакрилата соевого масла и из полифункциональных метакрилатов на биооснове, а именно: триэтиленгликольдиметакрилата, этиленгликольдиметакрилата, полиэтиленгликольдиметакрилата, 1,4-бутандиолдиметакрилата, диэтиленгликольдиметакрилата, 1,6-гександиолдиметакрилата, 1,10-декандиолдиметакрилата, 1,3-бутиленгликольдиметакрилата, этоксилированного бисфенол-A-диметакрилата, трициклодекандиметанолдиметакрилата, триметилолпропантриметакрилата.
5. Литейная масса по одному из предыдущих пунктов, при этом весовое соотношение моно- и полифункциональных акрилатов и метакрилатов к полимеру или полимерам, или сополимерам составляет от 90:10 до 60:40, предпочтительно от 85:15 до 70:30.
6. Литейная масса по одному из предыдущих пунктов, при этом неорганические частицы наполнителя выбраны из SiO2, Al2O3, TiO2, ZrO2, Fe2O3, ZnO, Cr2O5, углерода, металлов или металлических сплавов.
7. Литейная масса по одному из предыдущих пунктов, при этом неорганические частицы наполнителя имеют размер частиц от 0,010 до 8000 мкм, предпочтительно от 0,05 до 3000 мкм и, в частности, от 0,1 до 1300 мкм.
8. Литейная масса по одному из предыдущих пунктов, при этом неорганические частицы наполнителя имеют соотношение сторон длины к ширине от 1,0 до 1000 (длина : ширина отдельной частицы).
9. Формованное тело, изготовленное с применением литейной массы по одному из предыдущих пунктов.
10. Формованное тело по п. 9, при этом формованное тело представляет собой кухонную раковину, душевой поддон, умывальник, ванну для купания, рабочую поверхность или панель для пола, стены или потолка.
11. Формованное тело по п. 9 или 10, при этом образующий формованное тело полимеризованный материал имеет термическую стабильность от -30 до 300°C.
12. Формованное тело по одному из пп. 9-11, при этом материал имеет ударопрочность от 2 до 5 мДж/мм2.
13. Способ изготовления формованного тела по одному из пп. 9-12, при котором используют литейную массу по одному из пп. 1-8, которую подают в форму, в которой ее при повышенной относительно комнатной температуры температуре полимеризуют, после чего полимеризованное формованное тело вынимают из формы и охлаждают, при этом температура во время полимеризации составляет между 60-140°C, предпочтительно между 75-130°C и, в частности, 80-110°C.
14. Способ по п. 13, при этом время выдержки, при котором литейная масса для полимеризации находится в форме, составляет между 15-50 мин, предпочтительно 20-45 мин и, в частности, 25-35 мин.
RU2020130079A 2019-09-25 2020-09-14 Теплоотверждаемая литейная масса на биооснове, изготовленное из нее формованное тело, а также способ изготовления такого формованного тела RU2751194C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019125777.8 2019-09-25
DE102019125777.8A DE102019125777A1 (de) 2019-09-25 2019-09-25 Wärmeaushärtbare biobasierte Gießmasse, hieraus hergestellter Formkörper sowie Verfahren zur Herstellung eines solchen Formkörpers

Publications (1)

Publication Number Publication Date
RU2751194C1 true RU2751194C1 (ru) 2021-07-12

Family

ID=72050649

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020130079A RU2751194C1 (ru) 2019-09-25 2020-09-14 Теплоотверждаемая литейная масса на биооснове, изготовленное из нее формованное тело, а также способ изготовления такого формованного тела

Country Status (10)

Country Link
US (1) US20210087383A1 (ru)
EP (1) EP3797959A1 (ru)
JP (1) JP7186205B2 (ru)
KR (1) KR102500105B1 (ru)
CN (1) CN112552458A (ru)
AU (1) AU2020220140B2 (ru)
CA (1) CA3090838C (ru)
DE (1) DE102019125777A1 (ru)
IL (1) IL276837B2 (ru)
RU (1) RU2751194C1 (ru)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020119386A1 (de) * 2020-07-22 2022-01-27 Schock Gmbh Wärmeaushärtbare biobasierte Gießmasse, hieraus hergestellter Formkörper sowie Verfahren zur Herstellung eines solchen Formkörpers
DE102020119385A1 (de) 2020-07-22 2022-01-27 Schock Gmbh Gießkörper in Form einer Spüle
DE102020122216A1 (de) 2020-08-25 2022-03-03 Schock Gmbh Wärmeaushärtbare Gießmasse, daraus hergestellter Formkörper, und Verfahren zur Herstellung des Formkörpers
DE102021111384A1 (de) 2021-05-03 2022-11-03 Schock Gmbh Aushärtbare Gießmasse, daraus hergestellter Formkörper und Verfahren zur Herstellung des Formkörpers
DE102021208803A1 (de) 2021-08-11 2023-02-16 Blanco Gmbh + Co Kg Aushärtbare Gießmasse zur Herstellung von Kunststoffformteilen
DE102021132486A1 (de) * 2021-12-09 2023-06-15 Schock Gmbh Verfahren zur Herstellung von hydrophobierten und reaktiven anorganischen und/oder organischen Füllstoffen, derart hergestellte Füllstoffe sowie aus einer polymerbasierten Gießmasse enthaltend wenigstens einen solchen Füllstoff hergestelltes Formteil
FR3131327A1 (fr) 2021-12-23 2023-06-30 Arkema France Composition (meth)acrylique, materiau composite obtenu a partir d’une telle composition, procede pour la production de ladite composition et utilisations correspondantes
IT202200000614A1 (it) 2022-01-17 2023-07-17 Delta Srl Composizione per prodotti di arredo per cucina o bagno, quali lavello, lavabo, work top, vasche e lastre

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6451910B1 (en) * 1998-04-28 2002-09-17 Mitsubishi Rayon Co., Ltd. Acrylic premix, acrylic artificial marble and production method thereof
RU2396286C2 (ru) * 2004-11-04 2010-08-10 Шок Гмбх Формованное изделие из пластмассы и способ его изготовления
US9085677B2 (en) * 2012-01-23 2015-07-21 Erica Budina Bioplastics
US9090509B2 (en) * 2009-03-18 2015-07-28 Consentino, S.A. Panel or slab formed by stone agglomerate containing an organic binder of a plant origin
US10315985B2 (en) * 2014-08-08 2019-06-11 Ndsu Research Foundation Bio-based acrylic monomers

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0393129B1 (en) * 1987-12-04 1995-05-31 E.I. Du Pont De Nemours And Company Cast polymeric sink with high thermal cycling resistance
DE3832351A1 (de) 1988-09-23 1990-04-05 Schock & Co Gmbh Bauteil, insbesondere einbau-spuele sowie verfahren zu seiner herstellung
CA2050450A1 (en) * 1990-09-04 1992-03-05 Yasumasa Asanaka Reactive particulate resin, method for producing the same, and resin composition for thermoforming
JPH0741345A (ja) * 1993-07-30 1995-02-10 Fukuvi Chem Ind Co Ltd 強度の向上した天然石状物品及びその製法
TW200632029A (en) * 2004-12-15 2006-09-16 Kaneka Corp Biodegradable resin compositions and molded object thereof
GB0612803D0 (en) * 2006-06-28 2006-08-09 Lucite Int Uk Ltd Polymeric composition
JP5486340B2 (ja) * 2010-02-23 2014-05-07 パナソニック株式会社 熱硬化型(メタ)アクリル系樹脂組成物
EP2644589A1 (en) * 2012-03-30 2013-10-02 Cytec Surface Specialties, S.A. Radiation Curable (Meth)acrylated Compounds
JP5751266B2 (ja) 2013-02-08 2015-07-22 コニカミノルタ株式会社 静電荷像現像用トナー
WO2015018466A1 (de) * 2013-04-05 2015-02-12 Fischerwerke Gmbh & Co. Kg Kunstharz-verklebungsmittel mit biogenen reaktiven verdünnern und harzen
JP2015086358A (ja) * 2013-09-26 2015-05-07 パナソニックIpマネジメント株式会社 熱硬化性(メタ)アクリル樹脂組成物及び成形体
JP6579513B2 (ja) * 2015-07-08 2019-09-25 パナソニックIpマネジメント株式会社 熱硬化型アクリル樹脂成形品の製造方法
DE102015115769A1 (de) * 2015-09-18 2017-03-23 Schock Gmbh Gießformkörper
IT201600108376A1 (it) * 2016-10-27 2018-04-27 Elleci Spa Materiale composito termoindurente, particolarmente per la realizzazione di articoli sanitari, lavabi da bagno e lavelli da cucina.
US10662273B2 (en) * 2016-12-19 2020-05-26 Celanese International Corporation Waterborne acrylic dispersions with high biorenewable content

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6451910B1 (en) * 1998-04-28 2002-09-17 Mitsubishi Rayon Co., Ltd. Acrylic premix, acrylic artificial marble and production method thereof
RU2396286C2 (ru) * 2004-11-04 2010-08-10 Шок Гмбх Формованное изделие из пластмассы и способ его изготовления
US9090509B2 (en) * 2009-03-18 2015-07-28 Consentino, S.A. Panel or slab formed by stone agglomerate containing an organic binder of a plant origin
US9085677B2 (en) * 2012-01-23 2015-07-21 Erica Budina Bioplastics
US10315985B2 (en) * 2014-08-08 2019-06-11 Ndsu Research Foundation Bio-based acrylic monomers

Also Published As

Publication number Publication date
KR20210036809A (ko) 2021-04-05
CA3090838C (en) 2023-08-01
DE102019125777A1 (de) 2021-03-25
AU2020220140B2 (en) 2022-08-11
IL276837A (en) 2021-03-25
CA3090838A1 (en) 2021-03-25
JP7186205B2 (ja) 2022-12-08
IL276837B1 (en) 2023-08-01
CN112552458A (zh) 2021-03-26
AU2020220140A1 (en) 2021-04-08
IL276837B2 (en) 2023-12-01
EP3797959A1 (de) 2021-03-31
KR102500105B1 (ko) 2023-02-15
US20210087383A1 (en) 2021-03-25
JP2021050335A (ja) 2021-04-01

Similar Documents

Publication Publication Date Title
RU2751194C1 (ru) Теплоотверждаемая литейная масса на биооснове, изготовленное из нее формованное тело, а также способ изготовления такого формованного тела
JP4754579B2 (ja) クラック模様を有する人造大理石及びその製造方法
RU2396286C2 (ru) Формованное изделие из пластмассы и способ его изготовления
JP7426353B2 (ja) 熱硬化可能なバイオベースの注型コンパウンド、これから製造される成形体、及びこのような成形体を製造する方法
KR20010006314A (ko) (메트)아크릴 예비 혼합물, (메트)아크릴 smc 또는 bmc, 및 (메트)아크릴 인조 대리석의 생산방법
DE4327610A1 (de) Verfahren zur Herstellung gegossener, hochgefüllter Polymethylmethacrylat-Formteile
US20180319970A1 (en) Solid hydrophobic polymeric surfacing
KR20220150186A (ko) 경화 가능한 주조 컴파운드, 이로부터 제조되는 성형체 및 성형체의 제조 방법
RU2776994C1 (ru) Термоотверждаемая литейная масса на биооснове, изготовленное из нее формованное тело, а также способ изготовления такого формованного тела
CN116253844A (zh) 疏水活性无机和/或有机填料的制造方法,用其制造的填料以及由含此类填料的模制件
ITMI20000011A1 (it) Articoli stampati ad alto contenuto di filler e relativo processo di preparazione
JPH10309727A (ja) 木質様成形物、その製造方法、及び成形物用組成物
RU2800354C1 (ru) Способ получения гидрофобизированных и реакционноспособных неорганических и/или органических наполнителей, наполнители, полученные этим способом, а также формованная деталь, полученная из литьевой массы на полимерной основе, содержащей по меньшей мере один такой наполнитель
NZ526889A (en) Solid surface sheet materials containing synthetic fluoro-phlogopite mica
ITTO20000848A1 (it) Massa da stampaggio sfusa per una pietra artificiale e lastra di pietra artificiale.